Chapter 6

Detecting and Tracking Sports Players with
Random Forests and Context-Conditioned
Motion Models

Jingchen Liu and Peter Carr

Abstract Player movements in team sports are often complex and highly correlated
with both nearby and distant players. A single motion model would require many
degrees of freedom to represent the full motion diversity of each player and could
be difficult to use in practice. Instead, we introduce a set of Game Context Fea-
tures extracted from noisy detection data to describe the current state of the match,
such as how the players are spatially distributed. Our assumption is that players
react to the current game situation in only a finite number of ways. As a result,
we are able to select an appropriate simplified motion model for each player and
at each time instant using a random decision forest which examines characteristics
of individual trajectories and broad game context features derived from all current
trajectories. Our context-conditioned motion models implicitly incorporate complex
interobject correlations while remaining tractable. We demonstrate significant per-
formance improvements over existing multitarget tracking algorithms on basketball
and field hockey sequences of several minutes in duration containing 10 and 20
players, respectively.

6.1 Introduction

Multitarget tracking has been a difficult problem of broad interest for years in
computer vision. Surveillance is perhaps the most common scenario for multitar-
get tracking, but team sports is another popular domain that has a wide range
of applications in strategy analysis, automated broadcasting, and content-based
retrieval. Recent work in pedestrian tracking has demonstrated promising results
by formulating multitarget tracking in terms of data association [1, 5, 8, 20, 25,
28, 30, 32]. A set of potential target locations are estimated in each frame using
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an object detector, and target trajectories are inferred by linking similar detections
(or tracklets) across frames. However, if complex intertracklet affinity models are
used, the association problem becomes NP-hard.

Tracking players in team sports has three significant differences compared to
pedestrians in surveillance. First, the appearance features of detections are less dis-
criminative because players on the same team will be visually similar. As a result,
the distinguishing characteristics of detections in team sports are primarily posi-
tion and velocity. Second, sports players move in more erratic fashions, whereas
pedestrians tend to move along straight lines at a constant speed. Third, although
pedestrians deviate to avoid colliding with each other, the motions between pedes-
trians are rarely correlated in complex ways (some scenarios, like sidewalks, may
contain a finite number of common global motions). The movements of sports play-
ers, on the other hand, are strongly correlated both locally and globally. For example,
opposing players may exhibit strong local correlations when ‘marking’ each other
(such as one-on-one defensive assignments). Similarly, players who are far away
from each other move in globally correlated ways because they are reacting to the
same ball (Fig.6.1).

Fig. 6.1 Motion Models. A player’s future motion is contingent on the current game situation. The
global distribution of players often indicates which team is attacking, and local distributions denote
when opposing players are closely following each other. We use contextual information such as
this to create a more accurate motion affinity model for tracking players. The overhead views of
basketball and field hockey show the input detections and corresponding ground truth annotations.
Player trajectories are strongly correlated with both nearby and distant players
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Simple, independent motion models have been popular for pedestrian tracking
because they limit the complexity of the underlying inference problem [8]. However,
the models may not always characterize the motion affinity between a pair of tracklets
accurately. Brendel et al. [5] modeled intertarget correlations between pedestrians
using context, which consisted of additional terms in the data association affinity
measure based on the spatiotemporal properties of tracklet pairs. Following this
convention, we will describe correlations between player movements in terms of
game context. Much like the differences between the individual target motions in
surveillance and team sports, game context is more complex and dynamic compared
to context in surveillance. For example, teams will frequently gain and lose possession
of the ball, and the motions of all players will change drastically at each turnover.

Because a player’s movement is influenced by multiple factors, the traditional
multitarget tracking formulation using a set of independent autoregressive motion
models is a poor representation of how sports players actually move. However, motion
affinity models conditioned on multiple targets (and that do not decompose into
a product of pairwise terms) make the data association problem NP-hard [8]. In
this work, we show how data association is an effective solution for sports player
tracking by devising an accurate model of player movements that remains tractable
by conditioning on features describing the current state of the game, such as which
team has possession of the ball. One of our key contributions is a new set of broad
game context features (GCF) for team sports, and a methodology to estimate them
from noisy detections. Using game context features, we can better assess the affinity
between trajectory segments by implicitly modeling complex interactions through
a random decision forest involving a combination of kinematic and game context
features. We demonstrate the ability to track 20 players in over 30 min of international
field hockey matches, and 10 players in 5 min of college basketball.

6.2 Related Work

Recent success in pedestrian tracking has posed multitarget tracking as hierarchi-
cal data association: long object trajectories are found by linking together a series
of detections or short tracklets. The problem of associating tracklets across time
has been investigated using a variety of methods, such as the Hungarian algorithm
[10, 21], linear programming [11], cost flow networks [30], maximum weight inde-
pendent sets [5], continuous-discrete optimization [4], and higher order motion mod-
els [8]. Data association is often formulated as a linear assignment problem where
the cost of linking one tracklet to another is some function of extracted features
(typically motion and appearance). More recent work (discussed shortly) considers
more complex association costs.

Crowds are an extreme case of pedestrian tracking where it is often not possible
to see each individual in their entirety. Because of congestion, pedestrian motions
are often quite similar and crowd tracking algorithms typically estimate a finite set
of global motions. Often, the affinity for linking two tracklets together depends on
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how well the hypothesized motion agrees with one of the global motions. References
[1, 32] solve tracking in crowded structured scenes with floor fields estimation and
Motion Structure Tracker, respectively. Reference [23] uses a Correlated Topic Model
for crowded, unstructured scenes.

Team sports is another relevant domain for multitarget tracking [24], with algo-
rithms based on particle filters being extremely popular [6, 9, 14, 16, 18, 27]. How-
ever, results are quite often demonstrated only on short sequences (typically less
than two minutes). In contrast, only a small amount of work has investigated long-
term sports player tracking. Nillius et al. [19] generated a Bayes network of splitting
and merging tracklets for a long 10-minute soccer sequence, and found the most
probable assignment of player identities using max-margin message passing. Kumar
and Vleeschouer proposed discriminative label propagation [2] and Shitrit et al. use
multicommodity network flow for tracking multiple people [26].

In both pedestrian and player tracking, object motions are often assumed to be
independent and modeled as zero displacement (for erratic motion) and/or constant
velocity (for smooth motion governed by inertia). In reality, the locations and motions
of sports players are strongly correlated. Pairwise repulsive forces have been used in
multitarget tracking to enforce separability between objects [3-5, 12, 29]. Recently,
multiobject motion models have been used in pedestrian tracking to anticipate how
people will change their trajectories to avoid collisions [20], or for estimating whether
a pair of trajectories have correlated motions [5]. In team sports, Kim et al. [13]
estimated motion fields using the velocities of tracklets to anticipate how the play
would evolve, but did not use the motion fields to track players over long sequences.
Zhang et al. [31] augmented the standard independent autoregressive motion model
with a database of a priori trajectories manually annotated from other games.

6.3 Hierarchical Data Association Tracking

Our tracking formulation (see Fig.6.2) employs an object detector to generate a set
O of hypothesized sports player locations through the duration of the video. Each
detection 0; = [t;, X;, a;] contains a time stamp, the player’s location on the ground
plane, and the player’s appearance information, respectively. The goal is to find
the most probable set 7* = {91, 7, ..., Iy} of player trajectories where each
trajectory is a temporal sequence of detections .7, = {0, Op, .. .}

T* :argm;xP(ﬁL?)P(ﬂ). 6.1)

The likelihood P(¢|.7) indicates how well a set of trajectories .7 matches the
observations, and the prior P(.7") describes, in the case of sports tracking, how
realistic the set of estimated player trajectories .7 is. In multitarget tracking, the
prior is often simplified to consider each trajectory as an independent Markov chain
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Detect Players and Extract Low-Level Generate Mid-Level
Estimate Team Affiliation Tracklets in Short Tracks using
in Each Video Frame Temporal Windows Hungarian Algorithm

nerate High-Level
Extract Game Context Ge o ate gh-leve
Features Trajectories using
Random Forest

Fig. 6.2 Algorithm. Our tracking algorithm has five distinct phases: detection, low-level tracklets,
mid-level tracks, game context features, and high-level trajectories

P(T) ~ [P (6.2)

NHHp(ynqynl—l), (6.3)
n t

where .7 indicates the trajectory of the nth player at time interval 7.

In team sports, the prior is a highly complex function and is not well approximated
by a series of independent trajectory assessments. We maintain the formulation of
conditional independence between trajectories, but condition each individual trajec-
tory prior on a set of game context features 6 which describe the current state of the
match

def

P = [P — F110). (6.4)
n,t

Conditioning the individual motion models on game context implicitly encodes
higher order intertrajectory relationships and long-term intratrajectory information
without sacrificing tractability.

6.3.1 Detection

We use the method of Carr et al. [7] to generate possible (x, y) positions of players in
all video frames. The technique requires a calibrated camera, and uses background
subtraction to generate foreground masks. Player locations are estimated by evaluat-
ing how well a set of hypothesized 0.5-m-wide cylinders 1.8 m tall can explain each
observed foreground mask. The method is tuned to only detect high confidence situ-
ations, such as when a player is fully visible and well separated from other players.
For each detected position, a rectified patch is extracted from the image and a coarse
RGB histogram (4 bins per channel) is computed as an appearance feature. The first
few seconds of video are accompanied by user supplied labels: each detection is
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assigned to one of four categories {home, away, referee, none}. A random forest is
constructed from the training data, and at test time, outputs the four-class probability
histogram for each detection.

6.3.2 Hierarchical Association

Because the solution space of data association grows exponentially with the number
of frames, we adopt a hierarchical approach to handle sequences that are several
minutes long (see Fig.6.3).

6.3.2.1 Low-Level Tracklets

Asset Y of low-level trackletsis extracted from the detections by fitting constant veloc-
ity models to clusters of detections in 0.5 s long temporal windows using RANSAC.

Each 7; represents an estimate of a player’s instantaneous position and velocity (see
Fig.6.4).

6.3.2.2 Mid-Level Tracks

Similar to [10], the Hungarian algorithm is used to combine subsequent low-level
trajectories into a set I" of mid-level tracks up to 60s in duration. The method
automatically determines the appropriate number of mid-level tracks, but is tuned

wn, (€)

g
g

g

g 8 § § 8 8 8 8

g
« 8 B 8 8 8§ 888 ¢§ 8

=% 8 8 8 8§ 8 8 8 8

AR R ﬂ':“m,mwwmn! ,,.;.mmaus:ﬂn‘wm
Fig. 6.3 Hierarchical data association. a Low-level tracklets 7" from noisy detections; b mid-level
tracks I" obtained via the Hungarian algorithm [10]; ¢ N high-level player trajectories .7 via a cost
flow network [30]
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Fig. 6.4 Low-level Tracklet Extraction. Each detection is represented as a circle with a frame
number. a Detection responses within a local spatial-temporal volume; b identified clusters; and
¢ RANSAC-fitted constant velocity models (red)

to prefer shorter, more reliable tracks. Generally, mid-level tracks terminate when
abrupt motions occur or when a player is not detected for more than 2s.

6.3.2.3 High-Level Trajectories

MAP association is equivalent to the minimum cost flow in a network [30] where a
vertex i is defined for each mid-level track I; and edge weights reflect the likelihood
and prior in (6.4). Unlike the Hungarian algorithm, it is possible to constrain solutions
to have exactly N trajectories by pushing N units of flow between special source s and
sink 7 vertices (see Fig. 6.5). The complete trajectory .7, of each player corresponds
to the minimum cost path for one unit of flow from s to z. The cost ¢;; per unit flow
from i to j indicates the negative affinity, or negative log likelihood that I7 is the
immediate successor of I;, which we decompose into probabilities in continuity of
appearance, time, and motion

Fig. 6.5 Cost flow network from mid-level tracks. Each small circle with a number inside indicates
a detection and its time stamp. Colored edges on the /eft indicate mid-level track associations. The
corresponding cost flow network is shown on the right. Each mid-level track I}, as well as the
global source s and sink ¢ forms a vertex, and each directed edge in black from vertex a to b has a
cost indicating the negative affinity of associating I, to I,
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cij = —log P(O|I — [})P(I; — T}16) (6.5)
= —log (Py - P; - Pp). (6.6)

The probability that I'; and I belong to the same team is
Po(Ii — Ij) = aj-aj+ (1 —a) - (1 —a)) (6.7)

where a; and 1 — a; are the confidence scores of the mid-level track belonging to
team A and B, respectively.

Let fjo and ;1 denote the start and end times of I, respectively. If Ij is the
immediate successor of I}, any nonzero time gap implies that missed detections must
have occurred. Therefore, the probability based on temporal continuity is defined as

Po (I — I}) = exp(=A(tjo — fi1)). (6.8)

Each mid-level trajectory I has “miss-from-the-start” and “miss-until-the-end”
costs on edges (s, i) and (i, 1), respectively. The weights are computed using (6.8)
for temporal gaps (T, tjo) and (¢1, T1), where Tg and T are the global start and end
times of the sequence.

Before describing the form of P,,(I; — I}|60) in more detail, we first discuss how
to extract a set of game context features 6 from noisy detections &.

6.4 Game Context Features

In team sports, players assess the current situation and react accordingly. As a result,
a significant amount of contextual information is implicitly encoded in player loca-
tions. In practice, the set of detected player positions in each frame contains errors,
including both missed detections and false detections. We introduce four game con-
text features (two based on absolute position and two based on relative position) for
describing the current game situation with respect to a pair of mid-level tracks that
can be extracted from a varying number of noisy detected player locations &.

6.4.1 Absolute Occupancy Map

We describe the distribution of players during a time interval using an occupancy
map, which is a spatial quantization of the number of detected players, so that we
get a description vector of constant length regardless of missed and false detections.
We also apply a temporal averaging filter of 1s on the occupancy map to reduce the
noise from detections. The underline assumption is that players may exhibit differ-
ent motion patterns under different spatial distributions. For example, a concentrated
distribution may indicate a higher likelihood of abrupt motion changes, and smooth
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Fig. 6.6 Absolute occupancy map. Four clusters are automatically obtained via K-means: a center-
concentrated, b center-diffuse, ¢ goal, and d corner. The rows show: noisy detections (fop), estimated
occupancy map (middle), and the corresponding cluster center (bottom), which is symmetric hori-
zontally and vertically

motions are more likely to happen during player transitions with a spread-out distri-
bution.

We compute a time-averaged player count for each quantized area. We assume
the same distribution could arise regardless of which team is attacking, implying
a 180° symmetry in the data. Similarly, we assume a left/right symmetry for each
team, resulting in a fourfold compression of the feature space.

Similar to visual words, we use K-means clustering to identify four common dis-
tributions (see Fig. 6.6) roughly characterized as: center-concentrated, center-diffuse,
goal, and corner.

When evaluating the affinity for I} — I}, we average the occupancy vector over
the time window (#;1, tjo) and the nearest cluster ID is taken as the context feature of
absolute occupancy Qé.A) =kefl,...K}.

The spatial quantization scheme may be tuned for a specific sport, and does not
necessarily have to be a grid.

6.4.2 Relative Occupancy Map

The relative distribution of players is often indicative of identity [19] or role [17].
For example, a forward on the right side typically remains in front and to the right of
teammates regardless of whether the team is defending in the back-court or attacking
in the front-court. Additionally, the motion of a player is often influenced by nearby
players.
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Fig. 6.7 Relative occupancy map. The quantization scheme is centered on a particular low-level
tracklet 7; at time 7. The same-team distribution and opponent distribution are counted separately

Therefore, we define a relative occupancy map specific to each low-level tracklet
7; which quantizes space similarly to the shape context representation: distance is
divided into two levels, with a threshold of 4m, and direction into four bins (see
Fig.6.7). The per-team occupancy count is then normalized to sum to one for both
the inner circle and outer ring. Like absolute occupancy maps, we cluster the 16 bin
relative occupancy counts (first 8 bins describing same-team distribution, last 8 bins
describing opponent distribution) into a finite set of roles using K-means.

For each pair of possible successive I'; — I mid-level tracks, we extract the
occupancy vector v; and v;, with cluster ID k;, k;, from the end tracklet of I; and the
beginning tracklet of I';. We also compute the Euclidian distance of d;; = |v; — vj]2.
Intuitively, a smaller d;; indicates higher likelihood that [ is the continuation of I5.

The context feature of relative occupancy is the concatenation of Hé.R) = (djj, ki, kj).

6.4.3 Focus Area

In team sports such as soccer or basketball, there is often a local region with relatively
high player density that moves smoothly in time and may indicate the current or
future location of the ball [13, 22]. The movement of the focus area in absolute
coordinates also strongly correlates to high-level events such as turnovers. We assume
the movement of individual players should correlate with the focus area over long time
periods, thus this feature is useful for associations I; — I with large temporal gaps
(when the motion prediction is also less reliable). For example, mid-level trajectory
I'; in Fig. 6.8 is more likely to be matched to [}, with a constant velocity motion
model. However, if the trajectory of the focus area is provided as in Fig. 6.8, it is
reasonable to assume I; — [} has a higher affinity than I; — 5.

We estimate the location and movement of the focus area by applying meanshift
mode-seeking to track the local center of mass of the noisy player detections. Given
a pair of mid-level tracks with hypothesized continuity I3 — I}, we interpolate
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Fig. 6.8 Focus area. Kinematic constraints are less reliable across larger time windows. Because
player motions are globally correlated, the affinity of two mid-level tracks over large windows
should agree with the overall movement trend of the focus area

the trajectory within the temporal window (#;1, #jo) and calculate the variance of its
relative distance to the trajectory of the focus area o;;. We also extract the average
speed of the focus area vy during the time window, which describes the momentum

of the global motion. The focus area context feature is thus set as Giﬁ.F) = (03, vf).

6.4.4 Chasing Detection

Individual players are often instructed to follow or mark a particular opposition
player. Basketball, for example, commonly uses a one-on-one defense system where a
defending player is assigned to follow a corresponding attacking player. We introduce
chasing (close-interaction) links to detect when one player is marking another. If the
trajectories /7 and I both appear to be following a nearby reference trajectory I,
there is a strong possibility that [7 is the continuation of I'; (assuming the mid-level
track of the reference player is continuous during the gap between I; and [, see
Fig.6.9).

We identify chasing links by searching for pairs of low-level tracklets (73, %)
that are less than 2 m apart and moving along similar directions (We use the angular
threshold of 45° during the experiment). Let 7;;x be the temporal gap between I7’s
last link with I'; and I5’s first link with I, and 7;x = - when there are no links

between either I or I and I;. The chasing continuity feature 91-1(.0 that measures
whether trajectories I and I are marking the same player is given by

Fig. 6.9 Chasing. If I'; and I} both correlate to a nearby track I, there is a higher likelihood that
T7; is the continuation of I
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Fig. 6.10 Visualization of all game context features, where detections of different teams are plotted
as blue and red dots. a The computed occupancy map based on noisy player detection; b the
corresponding cluster center of the global occupancy map; ¢ indicator of the role categories of each
player based on its local relative occupancy map; d the focus area; and e chasing between players
from different teams

©) .
Oy = k:rll}‘].l.]/i, j{nj'k}' (69

Intuitively, the likelihood that (I, I}) correspond to the same player increases as

Giﬁ.c) decreases.

A visualization of all game context features is shown in Fig. 6.10. Features based
on position appear on the left. The computed instantaneous occupancy map (a) and
its corresponding cluster center (b) are shown underneath. Each mid-level track is
assigned to one of the four role categories based on its local relative occupancy map
as indicated in (c). Features based on motion appear on the right. The focus area
(d) is shown as a dashed ellipse, and (e) detected correlated movements between
opposition players is illustrated using green lines.

6.5 Context-Conditioned Motion Models

Although we have introduced a set of context features § = {8, 9B () (O},
it is nontrivial to design a single fusion method for generating the final motion like-
lihood score. For instance, each game context feature may have varying importance
between different sports. For example, the chasing-based feature is less important in
sports where one-on-one defense is less common. To make our framework general
across different sports, we use a purely data-driven approach to learn a motion model
which uses both the traditional kinematic features as well as our game context fea-
tures.
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The kinematic features K = {1, eo, e1, €2, Av} describe the motion smoothness
between two successive mid-level tracks I; — I, and is based on the distance
error with extrapolate constant position, constant velocity, and constant acceleration
models, respectively. Additionally, the velocity change in velocity is also included
(see Table6.1).

We generate training data by extracting kinematic features f,.j(.K) and game con-
text features 6;; for all pairs of mid-level tracks (17, I}) that have a temporal gap
tgij € [0, 60) seconds. Using ground truth tracking data, we assign binary labels
vi € {1, 0} indicating whether the association is correct or not (two trajectories
belonging to the same ground truth player identity). However, the total number of
incorrect associations are usually much more than the correct ones. To avoid severely
unbalanced training data, we only select a subset of hard negative examples that has
high motion smoothness.

A random forest containing 500 decision trees is then trained to learn the mapping

C (f;./(.k), 0ij) — y;j.- A random forest is robust against the overfitting that might occur
when using limited training data via bootstrapping, especially when the data is not
easily separable due to association ambiguity in the real world. More importantly,
by recursively splitting the data with random subsets of features, the random forest
model automatically optimizes local adaptivity, i.e., decisions for linking pairs of
tracks having small or large temporal gaps may be split at different levels and han-
dled with different feature sets. As confirmed in our experiments (see Sect. 6.6), the
occupancy feature is more effective at handling short-term association (when feature
tg is small) and the chasing feature is more important in connecting trajectories with
long temporal gaps (Z is big).

During the testing stage, the average classification score across all trees provides
a continuous affinity score to approximate P(I; — [3|0) = C(fij(.K) ,0;j) in Eq. (6.5).

Table 6.1 Our context-conditioned motion models employ traditional kinematic features [10], such
as the position extrapolation error when joining two tracks across a temporal gap

Feature ID Symbol Meaning

1 ty Temporal gap duration

2 e Const-position extrapolation error

3 el Const-velocity extrapolation error

4 e Const-acceleration extrapolation error

5 Av Change in velocity

6 0jj Motion correlation with focus area

7 vy Velocity of focus area

8 d;j Consistency of local relative player distribution
9-12 ki, kj Local occupancy cluster encoded into binary digit
13-14 954) Global occupancy cluster encoded into binary digit
15 ei(fc) Chasing gap
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Fig. 6.11 Demonstration of evaluation metrics for high-level association (red)

6.6 Experiments

We validate our framework on two sports: field hockey with 20 players and basketball
with 10 players. Player detection is transformed from multiple calibrated views using
the method in [7] with frame rates of 30 (hockey) and 25 (basketball), respectively.
We use simple RGB-based color histogram classifiers to estimate the confidence
score a; € [0, 1] of track i belonging to home team or the away team. We also
discard tracks likely to correspond to the referees and goalies.

6.6.1 Baseline Models and Evaluation Metrics

To verify the contribution of the various GCF's, we construct five models for a quanti-
tative comparison. All models apply hierarchical association and start with the same
set of mid-level tracks {I"}. The only difference between the models is the motion
affinity used during the final association stage. Model 1 (K) only uses kinematic
features (X)) for training, which is equivalent to the combined algorithm of [10,
15, 30]. Models 2—4 use focus area features (F'), chasing related features (C), and
occupancy feature (A 4+ R), respectively, in addition to motion-smoothness features.
Model 5 uses all features (f K0, 9).

We have also examined other features for describing aspects of game context, such
as variance of track velocity or team separability. However we found these features
to be less effective than the ones described in Sect. 6.4.

Three errors are commonly evaluated in the multitarget tracking literature: (1) the
number of incorrect associations Nerr, (2) the number of missed detections Npigs,
and (3) the number of false detections Ng,. The Multiple Object Tracking Accuracy
measure MOTA = 1 — (Nerr + Nmiss + Nia) /N combines all three errors with equal
weighting. However the equal weighting de-emphasizes N in a hierarchical asso-
ciation framework with a high frame rate. Therefore, we report the individual error
sources and normalize for the situation of a known fixed number of objects: NZ,, is
an average count of incorrect ID associations per minute per player; Pp;ss and Py, are
the proportion of missed and false mid-level trajectory segments of .7, as compared
to the ground truth, ranging from O to 1.

In addition to overall tracking performance, we also evaluate in isolation the high-
level association stage {I"} — .7, which is the key part of our framework. We report
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Table 6.2 Quantitative evaluations on field hockey dataset

Features Ng. Priss Ps, Precision Recall toap (S)
Kinematic 0.84 0.131 0.032 0.69 0.97 3.68
Kinematic + Focus 0.81 0.129 0.032 0.71 0.97 3.97
Kinematic + Chasing 0.82 0.128 0.032 0.70 0.97 3.56
Kinematic + Occupancy 0.80 0.128 0.033 0.71 0.98 3.62
All 0.75 0.126 0.031 0.75 0.97 3.95

association precision and recall rate, where precision = Ntp/(Ntp + Nga), and Ntp,
NFa are correct/incorrect number of associations of 17 — I'. We define recall = 1 —
Tiss/ Tgap, Where Tgyp is the accumulation of temporal gaps tg,p between high-level
associations, and Ty 1S the total length of mid-level tracks I; being missed. The
motivation is to exclude miss-associations in previous stages. An illustration of these
metrics is given in Fig.6.11. Finally, we also report the statistics of average length
temporal gap 7,,p being correctly associated during the high-level association, which
reflects the algorithm’s ability to associate trajectories with long-term misses.

6.6.2 Field Hockey Dataset

We generated and labeled six field hockey sequences for a total length of 29 min, from
three games played by different teams. The average player detection miss and false-
alarm rates are 14.0 and 10.3 %, respectively, or the multitarget detection accuracy
MODA = 1 — (Npiss + Nta) /N = 0.75. Our first experiment uses as much training
data as possible: testing one sequence and using the remaining five for training.

The introduction of each individual GCF achieves better performance, and using
all GCFss generally produces the best performance (see Table 6.2).

According to Table6.2, all methods are good in terms of low false-alarm rate.
Thus the major difference in their performances is reflected in the terms for incorrect
association N, and miss association Pey;.

We can also introduce a weighting w,,, on motion likelihood relative to the appear-
ance likelihood into the objective function of Eq. (6.1), where w,, plays an essential
role in the trade-off between miss-associations and false associations:

log P(7|0,0) =1og P(O|.T) + wy, - log P(T10) + c. (6.10)

Instead of the default setting of w,, = 1, a lower weight for the motion likelihood
(wm < 1) gives higher priority to optimizing the observation likelihood P(O|I"),
which prefers to have fewer missing players. On the other hand, a higher weighting
wp > 1 encourages smoother motions and results in fewer false alarms but more
missed detections. As we vary wy, from 0.2 to 3, the tradeoff curves are plotted in
Fig.6.12a.
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Table 6.3 Quantitative evaluations on basketball dataset

Features Ng. Priss P, Precision Recall foap (5)
Kinematic 4.33 0.30 0.027 0.65 0.99 3.26
Kinematic + Focus 4.43 0.280 0.031 0.67 0.99 3.99
Kinematic + Chasing 0.380 0.280 0.024 0.71 0.99 5.09
Kinematic + Occupancy 4.32 0.280 0.025 0.68 0.99 3.60
All 3.81 0.281 0.018 0.71 0.99 3.81

We also conduct an experiment studying the cross-game-generalization of the
GCFs. Instead of testing 1 sequence trained on the other 5, we perform all pairwise
combinations (30 in total) of 1 sequence training with 1 other sequence testing.
We then evaluate the resulting statistics for same-game learning and different-game
learning, respectively, as summarized in Table 6.3.

It can be seen that the introduction of GCFs again improves the result both in
the case of same-game and different-game learning, yet this time the amount of
training data used is much smaller (4 min on average). On the other hand, same-game
learning outperforms cross-game learning in terms of generalization, which matches
our intuition that the game context features are more similar within the same game
with the same players, e.g., the team distribution/tactics and the velocity/acceleration
of players are more consistent.

6.6.3 Basketball Dataset

We also conduct the same evaluation on a basketball dataset of four sequences for a
total length of more than 5 min. The dataset is more challenging due to a higher player
density and less training data. Each sequence is tested while using the other three
sequences for training. The average testing performance is reported in the trade-off
curve of Fig.6.12b and Table 6.4. As can be seen, the chasing feature is much more
important for basketball sequences, indicating that one-on-one defensive situations
occur more frequently in basketball than field hockey.

6.6.4 Classifier

In addition to random forests, we also examined the performance of linear SVMs for
representing context-conditioned motion models. We utilize all the training data for
a fivefold cross-validation scheme and evaluate the RoC curves (see Fig.6.13). The
experiments suggest the underlying motion models are not linear functions of the
features because random forests outperform SVMs in all parameter configurations.
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Fig. 6.12 Trade-off curve between Pp;ss and NZ;, for a field hockey sequences and b basketball
sequences. N, is an averaged association error per minute per person. The triangle marks indicate
the default operating point (w,, = 1 in Eq.(6.10)). Our proposed method using all GCF's achieves

more than 10 % of improvements on both cases

Table 6.4 Comparison of same/cross-game learning (hockey)

Features Same game Different game

N:rr Phiss Py, Ne*rr Phiss Pr,
Kinematic 0.810 0.141 0.034 1.240 0.130 0.036
Kinematic + Focus 0.840 0.133 0.034 1.230 0.125 0.034
Kinematic + Chasing 0.780 0.134 0.034 1.190 0.127 0.035
Kinematic + Occupancy 0.780 0.136 0.034 1.170 0.126 0.034
All 0.770 0.134 0.033 1.140 0.124 0.034
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Fig. 6.13 RoC Curve comparison between random forest (red) and SVM (blue) classifier

6.6.5 Feature Importance

When training a random forest, we can also calculate the average decrease in Gini-
index after removing each feature, which indicates the significance of the feature
as shown in Fig. 6.14. In general, kinematic features' have greater significance than
context features, which makes sense because kinematic features have direct corre-
lation with the track association affinity. The constant velocity model (feature 3) is
the most important among kinematic features. However, in hockey, the consistency
of the local player distribution (feature 8) is more important than any kinematic
feature. Features 9-14 have low significance because they are binary features with
each bit containing very limited information. Furthermore, game context features are
individually more important in the hockey sequence than in the basketball sequence.

6.7 Summary

In this work, we use hierarchical association to track multiple players in team sports
over long periods of time. Although the motions of players are complex and highly
correlated with teammates and opponents, the short-term movement of each player
is often reactive to the current situation. Using this insight, we define a set of game
context features and decompose the motion likelihood of all players into independent
per-player models contingent on game state. Higher order interplayer dependencies
are implicitly encoded into a random decision forest based on track and game con-
text features. Because the conditioned model decomposes into pairwise terms, our
formulation remains efficiently solvable using cost flow networks. We validate our
approach on 30 min of international field hockey and 10 min of college basketball.

I Refer to Table 6.1 for the meaning of each feature number.
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6.14 Normalized feature significance in hockey (red) and basketball (blue) sequences

In both sports, motion models conditioned on game context features consistently
improve tracking results by more than 10 %.
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