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Preface

Sports is said to be the social glue of society. It allows people to interact irrespective
of their social status or age. With the rise of the mass media, a significant quantity
of resources has been channeled into sports in order to improve understanding,
performance and presentation. For example, areas like performance assessment,
which were previously mainly of interest to coaches and sports scientists, are now
finding applications in broadcast and other media, driven by the increasing use of
online sports viewing which provides a way of making all sorts of performance
statistics available to viewers. Manual creation of data describing details in sports
events is tiresome and in many cases simply unrealistic. Technology is therefore
becoming more and more crucial as the demand for improved understanding,
performance and presentation increases. Moreover, since the nature of most sports
means that monitoring by the use of sensors or other devices fixed to players or
equipment is generally not possible, a rich set of opportunities exist for the
application of computer vision techniques to help the competitors, trainers and
audience.

The purpose of this book is to present the state-of-the-art as well as current
research challenges in applying computer vision to problems in sports. The book
was inspired by the CVPR’13 workshop titled Computer Vision in Sports. The
workshop was well received and therefore led to the idea of this book. About half
of the 14 chapters in this book are extended workshop papers, whereas the rest are
invited papers from research groups active within this field. The book is organized
into four parts focused on answering the following four research questions:

Where is the Ball?
Where are the Players?
What are they Playing?
What’s Going on?

These four parts are preceded by an introductory chapter that outlines the
opportunities for applying computer vision in sports, using examples of some
current commercial products. It also explains how the different chapters in this book
extend the state of the art and fit into the bigger picture.
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Chapter 1
Introduction to the Use of Computer
Vision in Sports

Graham Thomas, Thomas B. Moeslund and Adrian Hilton

Abstract Computer vision has a lot to offer the world of sports, for the competitors,
organizers and viewers. This chapter sets the scene for this book, by outlining some
of these applications, giving examples of what is already being used, and referring
to the relevant chapters later in the book where current research is presented. It then
goes on to discuss the main themes covered by these chapters, and how they relate
to each other.

1.1 Introduction

The world of sports intrinsically involves fast and accurate motion that is not only
challenging for competitors to master, but can also be difficult for coaches and train-
ers to analyse, and for audiences to follow. The nature of most sports means that
monitoring by the use of sensors or other devices fixed to players or equipment is
generally not possible. This provides a rich set of opportunities for the application
of computer vision techniques to help the competitors, trainers and audience.

This book presents a picture of some of the current research challenges in applying
computer vision to problems in sports. To set the scene for rest of the book, this
chapter looks at possible application areas for computer vision through the life cycle
of a sports event, from training and coaching in the run-up to an event, through
to the event itself, and in analysing what happened afterwards (which often feeds

G. Thomas (B)
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e-mail: graham.thomas@bbc.co.uk

T.B. Moeslund
Visual Analysis of People Lab, Aalborg University, Rendsburggade 14,
9000 Aalborg, Denmark
e-mail: tbm@create.aau.dk

A. Hilton
Centre for Vision Speech and Signal Processing (CVSSP), University of Surrey,
Guildford, Surrey GU2 7XH, UK
e-mail: a.hilton@surrey.ac.uk

© Springer International Publishing Switzerland 2014
T.B. Moeslund et al. (eds.), Computer Vision in Sports,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-3-319-09396-3_1

1



2 G. Thomas et al.

back into further training and coaching). This chapter concludes with an overview
of the remainder of the book, introducing the main chapter groupings: ‘Where is the
ball?’ (Chaps. 2–4), ‘Where are the players?’ (Chaps. 5–8), ‘What are they playing?’
(Chaps. 9–11) and ‘What’s going on?’ (Chaps. 12–14).

1.2 Computer Vision in Training and Coaching

To the average sports viewer or amateur sports player, the use of technology in
training may not be particularly apparent when compared to more obvious uses such
as analysis of performance in TV coverage. However, technology plays a major
role in training, both at the professional level, and for many amateurs. This section
outlines some applications in training and coaching where computer vision can play
an important role.

1.2.1 Training Individual Athletes

Getting the optimum performance from an athlete involves understanding and apply-
ing the principles of biomechanics [1], relating the underlying physics of forces and
motion to the way that people move. Various techniques exist for measuring the
forces and motion of people [2], such as force plates to measure ground reaction
forces for jumping and running sports. To measure the detailed motion of athletes in
training, commercially available motion capture systems based on optical markers
on the athlete and multiple calibrated fixed cameras around the sides of the ‘cap-
ture volume’ can be used. For sports such as skiing where the large area covered
and uncontrollable lighting make optical systems impractical, approaches based on
inertial sensors [3] can be used.

In some situations, it is not practical to attach any kind of marker or transducer to
the athletes or the equipment that they are using, and pure vision-based approaches
using the natural appearance of the person or object are the only methods available.
One example of this is in training table tennis players, where knowledge of the ball
trajectory can be very useful but any modifications to the ball to help measure this
would not be feasible. Chapter3 presents an approach to estimating ball trajectories
from video analysis, using two cameras or a single RGB+depth camera. Another
example is analysing the performance of athletes in a competition environment,
where the only source of data may be a single video feed; approaches to tracking the
positions of an athlete’s limbs in this situation are discussed in Chap. 8.

1.2.2 Coaching in Team Sports

To help improve the performance of teams in sports such as football, analysing the
ways in which both individual players move, and the overall formation of the team,

http://dx.doi.org/10.1007/978-3-319-09396-3_2
http://dx.doi.org/10.1007/978-3-319-09396-3_4
http://dx.doi.org/10.1007/978-3-319-09396-3_5
http://dx.doi.org/10.1007/978-3-319-09396-3_8
http://dx.doi.org/10.1007/978-3-319-09396-3_9
http://dx.doi.org/10.1007/978-3-319-09396-3_11
http://dx.doi.org/10.1007/978-3-319-09396-3_12
http://dx.doi.org/10.1007/978-3-319-09396-3_14
http://dx.doi.org/10.1007/978-3-319-09396-3_3
http://dx.doi.org/10.1007/978-3-319-09396-3_8


1 Introduction to the Use of Computer Vision in Sports 3

can provide very valuable insights for the team coach. Ideally, the coach would have
access to a complete recording of the positions of all players many times per second
throughout an entire training session or actual game.

Commercial multi-camera player tracking systems tend to rely on a mixture of
automated and manual tracking and player labelling. One such system [4] uses 8–10
cameras positioned at the corners of the pitch (see Fig. 1.1), connected via an IP link
to a central control room, where the images are recorded. Events such as tackles and
passes can be identified and logged manually live, and after the match the images are
analysed semiautomatically to produce player positions at a rate of 10Hz. The live
data tend to be of most value to broadcasters, to provide statistics for live broadcast
or web streaming, while the player position data can be analysed in-depth off-line
to provide insight into player performance for team coaches. Another system is the
SportVU system from STATS [5] which uses one or two clusters of three cameras,
and can currently be used for football and basketball, with systems for Hockey,
American Football and Cricket reportedly being in development.

For some applications such as identifying particular stages of a game through
identifying team formations, knowledge of the positions of individual players is not
necessary, and fully automated approaches may be possible. Chapter12 describes
research into recognizing game states through occupancy maps derived from static
cameras covering the whole area of play, which could be used to quickly find key
parts of a recorded match. Where key player formations can be determined from
the field-of-view typically covered by a moving broadcast camera, analysing the
image from this one camera can provide an automated way of identifying incidents
of interest, as described in the context of American Football in Chap. 13.

Fig. 1.1 Cameras installed at a football ground for player tracking (picture courtesy of Prozone)

http://dx.doi.org/10.1007/978-3-319-09396-3_12
http://dx.doi.org/10.1007/978-3-319-09396-3_13


4 G. Thomas et al.

1.3 Computer Vision During Sports Events

When a sporting event is taking place, there are opportunities for computer vision to
help both the referee and other officials to keep track of exactly what is happening,
and also to help provide full coverage and detailed analysis of the event for TV
viewers. This section looks at several applications in this area, which tend to be
characterized by the need for real-time performance.

1.3.1 Help for the Referee

One of the first commercially available multi-camera systems based on computer
vision [6] was developed for tracking cricket balls in 3D, and was first used in 2001.
It was subsequently applied to tennis; although broadcast cameras were initially used
to provide the images [7], the system is generally now deployed with a number of
dedicated high-frame-rate synchronized cameras viewing the tennis court [8], as there
is no need to register the resulting 3D tracks to the images from the main broadcast
cameras, and space is available around the court (often on the roof of the stands)
to install them. Being static, they are easier to calibrate, and short shutter times and
higher frame rates can be used. There is a lot of prior knowledge about tennis that
the system can use, including the size and appearance of the ball, its motion (once it
is hit, its motion can be predicted using the laws of physics), and the area over which
it needs to be tracked. The cameras and the geometry of the court can be accurately
calibrated in advance. The system first identifies possible balls in each camera image,
by identifying elliptical regions in the expected size range. Candidates for balls are
linked with tracks across multiple frames, and plausible tracks are then matched
between multiple cameras to generate a trajectory in 3D. The system is sufficiently
accurate that it can be used by the referee to determine whether a ball lands in or out,
being first used for this in 2005. When applied to cricket, it can be used to predict
the path that the ball would have taken if the batsman had not hit it, or if it had not
turned when bouncing, as shown in Fig. 1.2.

More recently, various systems to determine whether a football has crossed the
goal line have been developed. At the time of writing, FIFA has certified goal-line
technology (GLT) installations at 29 football grounds [9]. Of these, 22 are based
on a multi-camera computer vision system developed by Hawk-Eye, 6 use a similar
vision system developed by GoalControl, and one uses GoalRef, an RF system (with
a transponder in the ball) developed by Fraunhofer IIS. The system fromGoalControl
was also used for the 2014World Cup in Brazil. Some insights into the development
and testing of a vision-based GLT system are given in Chap.4.

http://dx.doi.org/10.1007/978-3-319-09396-3_4
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Fig. 1.2 Analysis and prediction of cricket ball motion (picture courtesy of Hawk-Eye Innovations)

1.3.2 Sports Analysis for TV

Computer vision plays an important role in many sports graphics systems, helping
sports presenters on TV explain events to viewers. These systems are one of the more
‘visible’ uses of computer vision, being commonly used for sports such as football
and thus seen by many millions of people.

Any system that draws graphics so as to appear registered to the realworld requires
some form of camera calibration. The first systems relied on mechanical sensors to
measure the pan and tilt of the camera on a fixed mount, and sensors on the lens to
measure zoom and focus settings. Calibration data for the lens are needed to relate
the ‘raw’ values from these lens encoders to focal length. Ideally, lens distortion
and ‘nodal shift’ (movement of the notional position of the pinhole in a simple
camera model, principally along the direction-of-view) should also be measured by
the calibration process and accounted for when images are rendered. The position
of the camera mounting in the reference frame of the sports pitch also needs to be
measured, for example by using surveying tools such as a theodolite or range-finder.
An example of a camera and lens equipped with sensors, for placing virtual graphics
on athletics coverage, is shown in Fig. 1.3. However, this approach is costly and not
always practical, for example if the cameras are installed and operated by another
broadcaster and only the video feed itself is made available. The sensor data have to
be carried through the programme production chain, including the cabling from the
camera to the outside broadcast truck, recording on tape or disk, and transmission
to the studio. Also, any system that relies on sensor data cannot be used on archive
recordings for which no data are available.

Most current sports graphics systems that require camera calibration achieve this
using computer vision, using features at known positions in the scene. This avoids
the need for specially equipped lenses and camera mounts, and the problems with
getting sensor data back from the camera. In sports such as football where there are
prominent line markings on the pitch at well-defined positions, a line-based tracker
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Fig. 1.3 Camera with sensors on lens and pan/tilt mount for virtual graphics overlay

is often used [10]. In other sports such as ice hockey or athletics, where lines are
less useful, a more general feature point tracker can be used [11]. However, for live
use in applications where there are very few reliable static features in view (such as
swimming), sensor-based systems are still used.

The addition of some relatively simple image processing can allow graphics to
appear as if drawn on the ground, and not on top of people or other foreground
objects or players, if the background is of a relatively uniform colour. For example,
for football, a colour-based segmentation algorithm (referred to as a ‘chromakeyer’
by broadcast engineers) tuned to detect green can be used to inhibit the drawing of
graphics in areas that are not grass-coloured, so that they appear behind the players.
The fact that the chromakeyer will not generate a key for areas such as mud can
actually be an advantage, as long as such areas are not large, as this adds to the
realism that the graphics are ‘painted’ on the grass. Figure 1.4 shows an example of
graphics applied to rugby; other examples of this kind of system applied to American
Football include the ‘1st and Ten™’ line [12] and the ‘First Down Line’ [13].

An extension of this approach can be used to overlay the performance of several
contestants during successive heats of an event, such as a downhill ski race [14].
This requires the calibration of the moving camera in a repeatable way, so that the
background can be aligned from one heat to the next, and may also require the video
timing to be synchronized so that competitors are shown at the same time from
the start of the heat. More advanced segmentation techniques are required than for
overlay of graphics on grass, as a colour-based key is unlikely to be sufficient onmore
general scenes. However, the segmentation need not always be pixel-accurate as the
background should be the same in both images if the alignment is good, meaning
that segmentation errors will only be visible where one competitor overlaps another.
Figure1.5 shows an example of such a technique being used.
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Fig. 1.4 Example of virtual graphics overlaid on a rugby pitch (picture courtesy of Red BeeMedia)

Fig. 1.5 Overlay of successive heats of a ski competition (picture courtesy of Dartfish)

The approaches discussed above provide visual enhancements in an existing cam-
era image. However, in some situations, the best point-of-view to use when analysing
the event may not correspond to where a camera was actually placed. This applies
particularly when presenting an analysis of a team sport such as football, where
understanding the relative locations of the players is important. Cameras that can
move around (as distinct from just panning/tilting/zooming) are sometimes used at
such events; these include shoulder-mounted cameras used by a cameraman who
can run along the side of the pitch, or cameras suspended on wires over the pitch.
However, even these may not provide images that give the best explanation of critical
moments in the game.
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Synthesising a camera image from a new (‘virtual’) viewpoint can be a useful tool
for the sports presenter, and is a classic problem in computer vision. A combination of
foreground object segmentation and camera calibration can allow the approximate
3D positions of players to be inferred from a single camera view, if some simple
assumptions can be made. For players standing on a pitch, it is reasonable to infer
their 3D position by assuming that the lowest point of each silhouette (usually the
feet) is in contact with they ground (usually assumed to be planar). This simple
approach can be used to create a crude 3D model of the scene [15], by placing the
segmented players into a 3Dmodel of a stadium, as textures on flat planes positioned
at the estimated locations. An example of this approach is shown in Fig. 1.6 [16]. This
allows the generation of virtual views of the game from locations other than those
at which real cameras are placed, for example to present a view of the scene that a
linesman may have had when making an offside decision, or to provide a seamless
‘fly’ between an image from a real camera and a fully virtual top-down view more
suitable for presenting an analysis of tactics.

Fig. 1.6 Generation of a virtual view from a single camera image (picture courtesy of Red Bee
Media). a Original image. b Virtual view
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This simple player modelling approach works well in many situations, but the
use of a single camera for creating the models restricts the range of virtual camera
movement, with the planar nature of the players becoming apparentwhen the viewing
direction changes by more than about 15 degrees from that of the original camera.
Furthermore, overlapping players cannot easily be resolved. One solution to these
problems is to use pre-generated 3D playermodels, manually selected and positioned
to match the view from the camera. It can take a skilled operator several minutes to
model such a scene, which is acceptable for a post-match analysis programme but too
slow for use in an instant replay. The player models also lack realism. Approaches
using two or more cameras, either to create a ‘2.5D’ model that allows smooth
blending between multiple billboarded images, or to infer the player pose in 3D
by matching player silhouettes to a library of pre-generated poses, are described in
Chap.7. This chapter also includes a discussion of techniques for creating full 3D
models from camera images [17].

In addition to determining the 3D location and appearance of players, information
about their pose and their interactions with their immediate environment or sports
equipment can be obtained using computer vision techniques and used to provide
data that can help the commentator. Examples of this include estimating the stride
length or centre-of-gravity of athletes, the pedalling speed of a cyclist or the angle-
of-entry and splash size of a diver [18]. In a typical live sports situation, there may be
only be one camera view available of an event; some of the challenges this presents
and approaches that can be taken to deducing details about an athlete’s motion from
a single image are discussed in Chap. 8.

1.3.3 Automating the Coverage of Sports Events on TV

An area of current research in sports TV production is the automating of the camera
control using computer vision. This is a very challenging task, as it involves both
the tracking of fast action, and framing an aesthetically pleasing shot that helps to
‘tell the story’ of what is happening in the event. It is unlikely that fully automated
systems will replace cameramen in the foreseeable future for high-profile events
such as major football matches, although there may be opportunities for automating
the coverage of minority-interest events where a large production budget cannot be
justified, particularly with ever-increasing capacity to deliver video to niche audience
sectors via the internet.

One approach to the automatic control of cameras is to use a cameraman to
control one main camera that is equipped with sensors or a computer vision system
to determine its pose. The pose data from this camera are then used to control a
number of ‘slave’ robotic cameras in different locations, so that they all show the
same area of the action but from different viewpoints. One example of such a system
is described in [19].

Amore ambitious approach is to identify the area of interest using computer vision
techniques, and automatically frame a shot to cover this. One inherent problem to

http://dx.doi.org/10.1007/978-3-319-09396-3_7
http://dx.doi.org/10.1007/978-3-319-09396-3_8
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solve is that of latency: even with very low-latency vision algorithms and robotic
cameras, it is hard to match the performance of a human who can anticipate what
might happen.One solution to this is to use fixedwide-angle high-resolution cameras,
and crop a portion of the image out that shows the main action [20]. This allows a
delay to be applied to the video to compensate for the processing time, and could also
allow some element of look-ahead in the tracking and shot framing algorithms. Even
with an ultra-high-definition camera system, this approach can reduce the resolution
available significantly compared to a conventional pan/tilt/zoom broadcast camera;
a hybrid approach that combines some degree of reframing and video delay with a
robotic camera is one potential solution to this [21]. Some approaches to tracking
players that could be used to control shot framing are discussed in Chaps. 5 and 6.

1.4 Computer Vision for Analysis After the Event

Once a sports event has finished, there may be a significant amount of video material
that can be used, both for TV-type applications (viewing past events in a video-
on-demand system, or watching key highlights in particular events) and to help
coaches and competitors learn from previous events. This section highlights some
examples of how computer vision algorithms can help with these tasks.

1.4.1 Identification of Sports in Large Video Collections

Sports programmes produced by broadcasters and other professional media pro-
duction companies are likely to be accompanied by metadata created during the
production process, that should identify the kind of sport being covered, as well as
giving additional details such as date, location, name of the competition and names of
the teams or competitors. However, in unstructured video databases, or recordings of
TV programmes that cover a wide range of sports within one programme, there may
be little or no metadata available to identify the sport. Computer vision techniques
have been developed to help in these situations, with details of some approaches
being described in Chaps. 9 and 11. A related application is to identify the kind of
sports that were played in a sports hall over a long period of time to provide feedback
to those running the facility; details of a solution to this problem that makes use of
locked-off thermal cameras viewing the sports hall are given in Chap.10.

1.4.2 Identification of Key Events Within a Sports Recording

The identification of key moments in a recording of a sports event is a prerequisite
for a number of applications, including editing a ‘highlights video’ of the event,

http://dx.doi.org/10.1007/978-3-319-09396-3_5
http://dx.doi.org/10.1007/978-3-319-09396-3_6
http://dx.doi.org/10.1007/978-3-319-09396-3_9
http://dx.doi.org/10.1007/978-3-319-09396-3_11
http://dx.doi.org/10.1007/978-3-319-09396-3_10
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or placing markers on a timeline to allow viewers to quickly scroll to interesting
incidents. Current practice in broadcast TV production involves logging events as
they happen, either by someone in the production team, or by a third-party supplier
such as Opta [22], who use a large number of people to manually enter data on events
such as kicks and tackles in football. Where such data are not available, computer
vision techniques can be used to process recordings of events to obtain some useful
information. Chapter 2 describes an approach for tracking the ball from a single
wide shot of a tennis court, for applications including determining the state of play.
Chapter14 describes two approaches that effectively ‘reverse engineer’ decisions
made while an event was being covered, by detecting interesting events from the
pattern of camerawork, and reading overlaid scoreboard graphics in a broadcast
programme.

1.5 Introduction to the Remainder of the Book

The following chapters give deeper insights into some of the techniques at the fore-
front of computer vision research for sports applications. Various application areas
have already been mentioned in this chapter, with some techniques having applica-
tions in several stages in the life cycle of a sports event. The chapters have therefore
been grouped by the kind of information that the techniques they describe are trying
to produce: ‘Where is the ball?’ (Chaps. 2–4), ‘Where are the players?’ (Chaps. 5–8),
‘What are they playing?’ (Chaps. 9–11) and ‘What’s going on?’ (Chaps. 12–14).

1.5.1 Where Is the Ball?

Many of the different sports activities performed at both a professional and amateur
level involve a ball. Indeed, seen from the outside, many sports are rather simple
and can be described as a matter of placing a ball in a certain location more times
than the opponent. Looking closer, each sport is of course much more complicated
with multiple layers being revealed as the skills of the players/team/viewer increase.
Across many sports, when computer vision methods are applied to enhance the
different stages in the life cycle of sport events, a crucial ability is to be able to
keep track of where the ball is. This will help to resolve critical situations by for
example objectively assessing whether a ball in football has crossed the goal line or
not, see Fig. 1.7. Furthermore, it will also aid the process of automatic understanding
of the different events that have occurred in a particular game, which in turn opens
up possibilities for automatic generation of statistics as well as automatic annotation
for post-event search.

At a first glance, the notion of ball trackingmay appear relatively simple compared
to for example player tracking. However, one needs to remember that failure to track
the ball accurately is normally much more critical. The exact location of the ball

http://dx.doi.org/10.1007/978-3-319-09396-3_2
http://dx.doi.org/10.1007/978-3-319-09396-3_14
http://dx.doi.org/10.1007/978-3-319-09396-3_2
http://dx.doi.org/10.1007/978-3-319-09396-3_4
http://dx.doi.org/10.1007/978-3-319-09396-3_5
http://dx.doi.org/10.1007/978-3-319-09396-3_8
http://dx.doi.org/10.1007/978-3-319-09396-3_9
http://dx.doi.org/10.1007/978-3-319-09396-3_11
http://dx.doi.org/10.1007/978-3-319-09396-3_12
http://dx.doi.org/10.1007/978-3-319-09396-3_14
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Fig. 1.7 World Cup 1966. Goal? No-goal? We are still arguing. . .

can essentially define the result of a game whereas inaccurate player tracking and
even loss of track is often acceptable. Moreover, the ball is normally small and fast-
moving compared to the size of the playing field and hence limited spatio-temporal
resolution as well as significant occlusion can further complicate matters.

In the first part of this book, three different chapters (2, 3 and 4) will provide
insights into state-of-the-art ball tracking within three different sports types: tennis,
football, and table tennis.

In Chap.2, Yan et al. present work on ball tracking for tennis. The motivation is
that the trajectory of the ball carries significant semantic information and can thus
provide a better understanding of the play as opposed to current research based on
analysing the audio and the actions of the players. The aim is to produce a generic
system that can handle video sequences from non-specialist data capture systems.
Besides occlusion and other obvious issues, this ambition also leads to significant
detection problems due to motion blur, resolution and colour coding. Yan et al.
follow a multilayered data association approach. First, a sliding window is used to
analyse each detection and its spatio-temporal neighbours. From this, tracklets are
built and defined as nodes in a graphical model. Some of these nodes originate from
the trajectory of the real ball, while others are by-products of false positives and/or
incorrect associations. Temporal optimization across the entire graphical network
results in the most likely trajectory of the ball in an entire rally. The algorithm is
evaluated on broadcast videos from three tennis tournaments and found to work
robustly even in difficult scenarios.

In Chap.3, Tamaki et al. present work on ball tracking for table tennis. The
motivation is the need for an automatic data collection tool that is used to understand
and later improve the performances of players. Currently, such data are collected
manually, which is of course very time-consuming and hence difficult to deploy. In
table tennis, the 3D trajectory of the ball is of interest and this work therefore aims

http://dx.doi.org/10.1007/978-3-319-09396-3_2
http://dx.doi.org/10.1007/978-3-319-09396-3_3
http://dx.doi.org/10.1007/978-3-319-09396-3_4
http://dx.doi.org/10.1007/978-3-319-09396-3_2
http://dx.doi.org/10.1007/978-3-319-09396-3_3
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at first estimating the 3D positions of the ball and from this reconstructing the 3D
trajectory. The approach is based on the notion that due to the low weight of the ball
and the fact that it is spinning, the ball will follow a 3D trajectory located on a tilted
plane. During runtime, the 3D detections are filtered and then fitted to a trajectory
located on such a plane. The method is evaluated using two different data capturing
devices: a stereo setup using two RGB cameras, and a RGB-D camera. Tests show
that using the stereo setup allows for accurate tracking of the 3D trajectory of the
ball, but is perhaps too impractical for use due to the required setup and calibration.
Using the RGB-D camera, on the other hand, allows for a less cumbersome setup,
but unfortunately the frame rate of the camera is too low compared to the speed of
the table tennis ball and hence too few 3D detections can be extracted. A better 3D
sensor may circumvent this issue opening up possibilities for a useful and practical
solution to the problem of automatic data collection in table tennis.

In Chap.4, Spagnolo et al. present work on tracking a football with the purpose
of assessing whether or not the ball has crossed the goal line. Goal-line technologies
have been a hot topic in modern football for a long time, with notable incidents
including questionable decisions in high-profile games such as the two England
versus Germany World Cup matches in 1966 and 2010. The approach in this work
is to continuously estimate the 3D position of the ball when it is close to the goal
and estimate whether it has crossed the line. This is achieved by using three cameras
focused on the goal area. In each camera, the ball is detected and triangulation (using
two or three views) is used to find the 3D position. The detection of the ball is
carried out as a combination of dynamic background subtraction, circle detection,
appearancemodelling and temporal consistency. Since the required accuracy of goal-
line technology is a few centimetres and as the speed of the ball can reach 120km/h,
the choice of methods in this work is made with hard real-time constrains in mind.
The system is evaluated on both controlled scenarios and a significant number of real
football matches. The tests indicate that the system has the potential for assisting the
referee in making better decisions.

1.5.2 Where Are the Players?

Although the position of the ball is of key interest in critical situations, like goal/no-
goal, for many other aspects in the life cycle of sports events, the whereabouts
of the players (and their limbs) also carry significant information. This ranges from
understanding the teamdynamics, to extracting statistics of individuals in teamsports,
and understanding the detailed pose of athletes in for example running or high-jump.
Clearly such data can provide valuable insights both when it comes to optimizing the
training and performances of individuals and teams, and for automatically annotating
video sequences for post-event search. But equally importantly, such data can also
be used on-the-fly by producers to enhance the viewing experience, for example, to
generate a novel viewpoint as illustrated in Fig. 1.8.With strong competition between
different sports broadcasters, the need to innovate is high and hence more advanced

http://dx.doi.org/10.1007/978-3-319-09396-3_4
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Fig. 1.8 Virtual view generation using the approach described in Chap. 7. a Two input images. b
Novel view

methods for providing compelling viewing experiences can be expected. Computer
vision will definitely be one of the enabling technologies as it uses data that has been
captured non-invasively.

Detection and tracking of players via computer vision is complicated by issues
like occlusion, motion blur, low resolution and image compression. Furthermore,
when detecting and tracking players in a team, algorithms are further challenged by
the fact that team members often wear very similar clothing. One aspect that may
ease detection and tracking is that in many situations sports are performed in a highly
controlled environment, meaning that background clutter is almost non-existent and
hence the players tend to stand out from the background.

In the second part of this book, four chapters will provide state-of-the-art insights
into how to obtain thewhereabouts and pose of the players. The first two (5 and 6) aim
at tracking the individual positions, while the latter two (7 and 8) aim at estimating
the pose of the players.

In Chap.5, Zhang et al. present a tracking framework focused on tracking one
object. The framework is not limited to sports data, but is general enough to be
applied to most tracking problems within computer vision. The approach followed
in this work is based on the notion that one of the main difficulties in tracking is to be
able to handle occlusion. While occlusion may be hard to predict, it can be assumed
that an occlusion event in one frame can be propagated to the next frame. Moreover,
the pixel errors that are common in tracking due to occlusions are not randomly
distributed, but rather form a contiguous region. In this chapter, these two ideas are

http://dx.doi.org/10.1007/978-3-319-09396-3_7
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merged into a sparse learning framework. The developed system is evaluated on both
sports videos and other types of video data. The system is found to outperform six
state-of-the-art trackers especially during occlusion.

In Chap.6, Liu and Carr also present a tracking framework. This work, as opposed
to the work described in the previous chapter, is aimed at tracking multiple team
players simultaneously. Since players on the same team tend to look similar in terms
of appearance, a tracker will have to rely on predictions when inferring trajectories
from detections. To this end a motion model is required. In sports, however, player
movements are highly complex and hence very hard tomodel in practice. The novelty
in this work is to estimate the current motion model for each player based on the
current game context. In team sports, players follow certainmovement patterns based
on the overall game context (defence, offence, etc.) as well as the local context,
where a player from one team often has the same trajectory (for a short interval)
as a player from the opposite team. In this work, these game contexts are found
from occupancy maps and correlation of nearby tracklets. The tracking framework
developed is evaluated on both field hockey and basketball. The main findings are
that the use of game context in motion models improves tracking accuracy by more
than 10%, and that the importance of the different game contexts depends on the
sport.

In Chap.7, Popa et al. present work on pose estimation of players. The motiva-
tion behind this work is to have a method that allows a sports broadcast producer to
generate novel views of the scene. Such capability allows an enhanced viewer expe-
rience as the state of play can be visualized from the viewpoint of individual players,
coaches, referees, linesmen, etc. The viewer is likely to be even more immersed in
the broadcast as commentators can provide further in-depth insights into the game.
Current methods for virtual view generation are costly and hence only used in post-
event analysis. In this chapter, the goal is a real-time method and two rather different
approaches are followed. The first matches the silhouettes of a player in multiple
views with a database of different poses. The resulting 3D pose will be coarse and
is therefore corrected using local optical flow as well as temporal consistency. The
second method does not explicitly extract the skeleton of a player, but rather learns
the local 3D geometry. This is done by approximating the 3D shape of a player by
triangles, each aiming at modelling a rigid part of the body. Both methods provide
impressive results on real broadcast sequences of football and offer two interesting
ways forward for automatic generation of virtual views in sports broadcasts.

In the last chapter in this part of the book, Fastovets et al. present work on accu-
rate pose estimation. In most team sports, semantic data can often be inferred from
location information alone. However, in more individual sports like athletics much of
the semantic information is carried in the actual pose and movements of the different
body parts, e.g., the number of steps during a sprint or the body pose on impact
with the water in diving. The human body has a high number of degrees-of-freedom
and finding the correct pose in each frame is therefore extremely challenging due to
self-occlusion and local minima in the search space. The approach in this chapter
is a semiautomatic method whereby the pose is manually annotated in a number of
keyframes. These then serve as anchor points in a graphical optimization scheme

http://dx.doi.org/10.1007/978-3-319-09396-3_6
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as well as seeds for learning the appearances of the different body parts. While this
method is not fully automatic, it still provides a significant speed-up compared to
manually annotating all frames and at the same time an evaluation demonstrates
that the method is much more robust than state-of-the-art pose estimation methods,
especially when dealing with challenging pose variations as seen in sports.

1.5.3 What Are They Playing?

The chapters in this part address the problem of identifying the sports type from video
footage. This can be an important problem for automatic labelling of datasets, as the
starting point for subsequent play analysis or monitoring of sports play activities in
public facilities, as in Chap.10. A variety of approaches have been developed which
are each evaluated on a substantial corpus of data achieving promising results and
demonstrating the potential for automatic visual classification of sports.

Chapter9 presents a comprehensive review of action recognition in sports and in
particular the use of theUCF Sports dataset that has beenwidely used as a benchmark
for performance evaluation. TheUCF dataset comprises real sports broadcast footage
of 10 actions with 150 clips in total. The review breaks the problem down into the
sub-tasks of action localization and recognition. A chronology of research progress
and different approaches to address each of these sub-tasks is presented together with
their performance benchmarked on the UCF dataset. Action recognition is decom-
posed into three main stages: feature extraction; learning; and classification. The
contribution of different approaches to each of these steps is reviewed. This provides
useful insights into existing approaches drawing on experience with the evolution
and benchmarking of techniques on the UCF dataset leading to conclusions about
the requirements for future action recognition frameworks to operate on real sports
footage.

The classification of sports types in indoor arenas using infrared thermal imaging
is presented in Chap.10. Thermal imaging resolves the issue of individual privacy
for video capture of public spaces and has the advantage of distinguishing individ-
uals based on heat characteristics rather than colour or grey scale which are often
ambiguous for imaging under poor illumination conditions. The chapter considers the
classification of five common indoor sports: badminton; basketball; indoor soccer;
volleyball; and handball. The thermal image gives a clear separation of the players
from the background sports arena as illustrated in Fig. 1.9. The player locations are
then used to classify the sports type. An end-to-end system system for sport classi-
fication is presented including acquisition, camera calibration, player segmentation,
player-to-player occlusion handling and player localization. Classification of sports
type is based on the temporal occupancy distribution of player location in the arena
integrated over a 10min period. This is demonstrated to give 90% overall true pos-
itive classification rate across a comprehensive dataset spanning almost two weeks
of footage from a public sports arena. This work demonstrates a practical approach
to reliable classification of indoor sports that is robust to errors in player detection
and segmentation.

http://dx.doi.org/10.1007/978-3-319-09396-3_10
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Fig. 1.9 Example of thermal imagery of indoor stadium sports (Chap.10)

1.5.4 What’s Going On?

In the final part of this book, three chapters present systems for the automatic analysis
and classification of sports play. These contributions demonstrate that substantial
progress has beenmade towards automatic game play analysis that is an essential tool
for teams to monitor player performance and team interaction for coaching together
with tactical analysis of opposing teams. The first chapter in this part (Chap.12)
proposes a representation to improve the analysis of game play that is robust to
errors in visual tracking. The approach is evaluated on field hockey but has wider
applicability. Chapter13 addresses the detection and analysis of play formation in
American football. Finally, Chap.14 uses audio-visual features together with on-
screen scoreboard analysis to detect key events in broadcast footage with reliable
performance across a wide range of sports.

Chapter12 addresses the representation of team activities to cope with errors in
the individual player tracks due to the inherent ambiguity in visual tracking. To
achieve a compact representation a bilinear spatio-temporal basis model using role
representation is proposed to clean up the errors in the player detections. The role
representation provides a low-dimensional description of the team play that is not
dependent on individual player identity. The approach is evaluated across a dataset
comprising seven complete field hockeymatches, employing a state-of-the-art player
tracker as input. This representation is compared to previously proposed occupancy
maps where the playing field is discretized into a set of cells and the number of
player detections is stored for each cell. Team activity is then encoded as the cell
occupancy over time. This representation is less sensitive to missing or erroneous
tracks for individual players; however, the resulting feature space is high dimensional
due to the variability in the occupancy and noise in individual player tracks. Results
(Fig. 1.10) demonstrate that occupancy maps provide a good representation of global
behaviour allowing recognition of team play activities but require a high-dimensional
space. The proposed spatio-temporal model based on player roles is demonstrated
to provide a compact representation of team behaviour that allows identification of
individual activities.

Chapter13 addresses the automatic recognition of team play formation in Ameri-
can football, a sport that has a high level of structured play. The chapter proposes an
approach to automatically identify the formation of key plays at the frame level. This
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is then used as the starting point for automatic classification of the type of offensive
team formation. Labelling and analysis of offensive formation is a manual process
required for performance and tactical analysis of teams and their opponents. Forma-
tion frame detection is performed by identifying the frame with least motion. Line
of scrimmage is then detected based on player density at the formation frame. The
offensive team are then identified based on the player formation shape and classified
into one of five formation types using amulticlass support vectormachine. Evaluation
on a large corpus with over 800 play clips of American football games demonstrates
a performance of 95% in detecting the play formation and 98% in identifying the
line of scrimmage and 67% in the more ambiguous task of classifying the formation
of the offensive team.

The final chapter in this volume (Chap.14) presents a real-time system for event
detection in broadcast footage of field sports. The system presented detects key
events such as scores, near misses and other dramatic action in the game play. Two
independent approaches are employed for event detection using audio-visual feature
and on-screen scoreboard-based analysis. To allow application across a wide range
of sports the system avoids the use of sports-specific visual cues such as pitch colour
commonly used in field sport analysis. In the first approach, audio-visual features
are trained for different events such as goals and other exciting game play. Different
learning approaches for event detection are evaluated and it is found that artificial
neural networks and decision trees achieve good resultswith event detection accuracy
of around 90%. The score-based approach analyses the on-screen score through
numeral detection achieving a 100% performance. This approach is complementary
to the audio-visual feature-based event detection method as it is only capable of

Fig. 1.10 Structured team play in field hockey with individual player roles independent of player
identity (from Chap.12, Fig. 12.6). a Faceoff. b Penalty corner. c Long corner. d Defensive corner.
e Goal
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detecting events which result in a score and thus cannot identify other events of
interest such as near misses. The system is evaluated on a diverse range of field
sports including soccer, rugby, American football, hockey and basketball.

1.6 Conclusion

Sports are big business, with the European football market alone being worth 19.4
billion Euro in 2011–2012 [23], and marketing revenue from the Olympics in the
period 2009–2012 exceeding $8bn [24]. This provides a rich market for anything
that can improve the experience of sports for participants or viewers.

This chapter has set the scene for the rest of the book, by looking at opportunities
for applying computer vision to solve problems at all stages of a sports event, from
training and coaching before an event, though to the event itself, and analysis of
captured video after the event. Examples of commercial products that use computer
vision for sports were discussed; those currently used to analyse performance to help
in training include systems from Prozone [4], Dartfish [25], and STATS [5]. Others
provide graphical enhancements, including graphics systems for broadcasters such
as Sportvision [12], Orad [13] and Red Bee Media [16], and systems for generating
virtual fly-arounds of events includingReplayTechnologies [26] andViz Libero [27].
Some systems are currently used to help with refereeing games, such as the Hawk-
eye system for tennis [6], and the goal-line technology systems that are currently
certified by FIFA [9]. This is by no means an exhaustive list.

Despite the current availability of computer vision systems for various sports
applications, there is ample scope to improve upon the performance of these systems
and to take computer vision into more challenging areas. This is the motivation for
the work described in the remainder of this book, which is divided into four parts:
‘Where is the ball?’ (Chaps. 2–4), ‘Where are the players?’ (Chaps. 5–8), ‘What are
they playing?’ (Chaps. 9–11) and ‘What’s going on?’ (Chaps. 12–14). Each of these
parts was briefly summarized.

Ball tracking is a fundamental part of many applications yet remains challenging,
particularly in the presence of occlusions or when a small number of cameras are
being used, as will be discussed in Chaps. 2–4. Fully automated player tracking and
pose estimation is difficult, but if solved would open the door to applications such as
automated camera control and in-depth analysis of sports such as athletics, as well
as better generation of statistics or synthesis of virtual views; some new approaches
for this will be explored in Chaps. 5–8.

An area that is currently not well covered by commercial products is the ‘higher
level’ analysis of sports, where multiple event or motion detections are used to
infer things like the type of sport being played, or to detect kinds of events within a
sport, for example for automatic highlights generation or searching of video archives.
Approaches to identifying types of sports will be discussed in Chaps. 9–11, while
Chaps. 12–14 conclude the bookby looking at recognizingparticular teambehaviours
or formations and detecting specific kinds of events.
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Part I
Where Is the Ball?



Chapter 2
Ball Tracking for Tennis Video Annotation

Fei Yan, William Christmas and Josef Kittler

Abstract Tennis game annotation using broadcast video is a task with a wide range
of applications. In particular, ball trajectories carry rich semantic information for the
annotation. However, tracking a ball in broadcast tennis video is extremely challeng-
ing. In this chapter, we explicitly address the challenges, and propose a layered data
association algorithm for trackingmultiple tennis balls fully automatically. The effec-
tiveness of the proposed algorithm is demonstrated on two data sets with more than
100 sequences from real-world tennis videos, where other data association methods
perform poorly or fail completely.

2.1 Introduction

Effective and efficient sports video annotation systems have wide applications in,
e.g. content-based video retrieval, enhanced broadcast, summarisation, object-based
video encoding, automatic analysis of player tactics, to name a few. Owing to
advances in computer vision and machine learning, building such tools has become
possible [10, 13, 15].

Much of the effort in sports video annotation has been devoted to court games
such as tennis and badminton, not only due to their popularity, but also to the fact
that court games have well- structured rules. In court games, ball trajectories carry
rich semantic information for the annotation. However, tracking a ball in broadcast
video is an extremely challenging task. In broadcast videos, the ball can occupy as
few as only 5 pixels; it can travel at very high speed and blur into the background; the
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Fig. 2.1 Image patches cropped from frames demonstrating the challenges of tennis ball tracking.
a Ball travels at high speed and blurs into background, making it very hard to detect. b Far player
serves. The ball region contains only a few pixels, and due to low bandwidth of colour channel, its
colour is strongly affected by the background colour. c Chroma noise caused by PAL cross-colour
effect. This may introduce false ball candidates along the court lines. d Multiple balls in one frame.
A new ball (left) is thrown in by a ball boy, while the ball used for play (middle) is still in the scene.
There is another ball (right) in the ball boy’s hand. e A wristband can look very similar to the ball,
and can form a smooth trajectory as the player strikes the ball

ball is also subject to occlusion and sudden change of motion direction. Furthermore,
motion blur, occlusion, and abrupt motion change tend to occur together, when the
ball is close to one of the players. Example images demonstrating the challenges in
tennis ball tracking are shown in Fig. 2.1.

As a result of these challenges, many existing tennis annotation systems avoid
ball tracking and rely only on audio and player information [6, 10, 12, 15, 31].
As a result, they can only annotate at a crude level, e.g. highlight detection [10],
shot type classification [13], action recognition [31]. In this chapter, we explicitly
address the challenges, and propose a fully automatic tennis ball tracking algorithm.
Before presenting the algorithm, in the following we briefly review related work in
the literature.

2.1.1 Related Work

Object tracking is one of the key topics of computer vision. Briefly speaking, object
tracking is concerned with finding and following the object of interest in a video
sequence. Two pieces of information are essential for any object tracking problem:
object appearance and object dynamics. Depending on the way, these two pieces of
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information are combined, tracking algorithms can be broadly categorised into track-
after-detection (TAD) type of approach and track-before-detection (TBD) type.1

In the TAD approach, object candidates are first detected in each frame. After this
step, only the candidates are used for the tracking, the rest of the image is discarded.
The tracking problem then involves two elements: data association and estimation.
While data association deals with measurement origin uncertainty, i.e. which can-
didates are object-originated and which are clutter-originated (which candidates are
which-object-originated in a multiple object tracking scenario); estimation deals
with measurement inaccuracy, i.e. what is the “true state” of the object, assuming the
object-originated candidate has been identified. The TAD type of approach is suit-
able for tracking small and fast-moving objects with simple representations. Typical
examples can be found in aerospace and defence applications [1, 2, 17, 19, 24],where
scans of radar signal are equivalent to frames in a video, and an object candidate is
simply a point in a scan with no resolvable features.

The TBD approach, on the other hand, is suitable for tracking large and slowly
moving objects with complex representations. In a TBD approach, hypotheses about
the object’s position in a state space are generated, and then evaluated using the image.
Depending on the features used for evaluating the hypotheses, this type of approach
can be further categorised into contour-based tracking, colour-based tracking, etc.
The TBD approach is often used together with a particle filter, since a particle filter
provides a nice probabilistic framework for combining the hypotheses. Example
applications of the TBD approach include people tracking, face tracking [11, 21, 28]

A tennis ball is a small and fast-moving object with few features. We therefore
believe the TAD approach is more suitable for tracking a tennis ball.We first generate
ball candidates in each frame using image processing techniques. Each candidate
is then treated as a two-dimensional point in the image plane without resolvable
features.We then try to solve a pure data association problem using only the positions
of these candidates. Once the data association problem is solved, the estimation
problem becomes trivial. For example a Kalman smoother can give a Minimum
Mean Square Estimate (MMSE) of the object state.

Several tennis ball tracking algorithms have been reported in the literature [16, 18,
22, 23, 25, 30]. All these algorithms adopt the TAD approach. Some of the existing
algorithms have been successfully applied in practice for enhanced broadcast [23,
25]. In [23, 25], multiple cameras are used. This allows tracking the ball in the 3D
real world space, which significantly simplifies the data association problem.

Techniques in [16, 18, 22, 30], on the other hand, rely on a single camera. In
this sense, they are more closely related to the scope of this chapter. In [18, 22,
30], the focus is on ball candidate generation rather than data association. Typically,
foreground moving objects are extracted by frame differencing. The resulting blobs
are then tested using visual features such as size, shape and colour. Among the blobs
that have passed the test, the one that is closest to a predicted position is used to update
the trajectory. In other words, the data association problem is implicitly addressed

1 Note that TBD is short for track-before-detection instead of track-by-detection, which is in fact
TAD (track-after-detection).
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with a nearest neighbour type of single hypothesis scheme. This implicitly imposes
the assumption that the false candidate rate is very low, and the true ball detection
rate is reasonably high.

In [16], the authors propose a data association algorithm under the name of Robust
Data Association (RDA), and use RDA to track a tennis ball in monocular sequences.
RDA does not use the naive single hypothesis data association scheme. The key idea
of RDA is to treat data association as a motion model fitting problem. First, ball
candidates in each frame are detected. A sliding window containing several frames is
then moved over the sequence. A RANSAC-like algorithm is used to find the motion
model that is best at explaining the candidates inside the window. An estimate of the
ball position in one frame, e.g. the middle frame in the sliding window, is then given
by this model. As the sliding window moves, eventually ball positions in all frames
are estimated.

The remainder of this chapter is organised as follows. In Sect. 2.2 we propose
a layered data association (LDA) algorithm for tennis ball tracking. Experimental
evaluation is presented and discussed in Sect. 2.3. Finally, Sect. 2.4 concludes the
chapter.

2.2 Layered Data Association

In this section, we present our three-layered data association scheme for tracking
the tennis ball. From bottom to top, the three layers are: candidate level association,
tracklet level association and path level analysis (Fig. 2.2).

1. Assume ball candidates in each frame have been generated. Also, assume a tem-
poral sliding window is moved over the sequence. At the candidate level, we
exhaustively evaluate for each candidate in the middle frame of the sliding win-
dow whether a small ellipsoid around it in the column-row-time space contains
one candidate from the previous frame and one candidate from the next frame. If
it does, we fit a dynamic model to the three candidates. The fitted model is then
optimised recursively using candidates in the sliding window that are consistent
with it. This process is repeated until convergence, forming a “tracklet”.

2. As the slidingwindowmoves, a sequence of tracklets is generated. These tracklets
may have originated from tennis balls or from clutter.We formulate tracklet level
association as a shortest path problem. We construct a weighted and directed
graph, where each node is a tracklet, and the edge weight between two nodes
is defined according to the “compatibility” of the two tracklets. If we were to
assume that there was only one ball to track, and that the first and last tracklets of

candidate
level

tracklet
level

path level

Fig. 2.2 The three layers of the proposed data association scheme
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this ball were already known, the shortest path between the two tracklets (nodes)
in the graph would then correspond to the trajectory of the ball.

3. We relax above assumptions by looking for shortest paths between all pairs of
nodes in the graph, instead of the shortest path between a given pair of nodes. By
analysing the all-pairs shortest paths at the path level, the first and last tracklets
of each ball can be identified. Track initiation/termination of this multiple object
tracking problem is then automatically dealt with.

2.2.1 Candidate Level Association

Assume a tennis sequence is composed of K frames numbered from 1 to K . Let us
denote the set of candidates in frame k by Ck = {c j

k }mk
j=1, where mk is the number of

candidates in frame k, c j
k is the j th of them, and k = 1, . . . , K . Assume a temporal

sliding window containing 2V +1 frames is moved over the sequence. At time i , the
interval Ii spans frame i − V to frame i + V . We project all the candidates inside
interval Ii , i.e. all the candidates in C (i) = {Ci−V , . . . ,Ci+V } onto the row-column
image plane. In this image plane, centred at each c j

i ∈ Ci and with radius R, a

circular area A j
i is considered, where R is the maximum distance the ball can travel

between two successive frames. We examine if at least one candidate from Ci−1 and

at least one candidate from Ci+1 fall into A j
i (see Fig. 2.3). Assume c j ′

i−1 ∈ Ci−1

and c j ′′
i+1 ∈ Ci+1 are found inside A j

i , throughout the rest of this chapter, we call the

three candidates c j ′
i−1, c j

i and c j ′′
i+1 a seed triplet.

The acceleration of a tennis ball in the 3D world space is constant if the air
resistance is ignored, since the ball is subject only to gravity.According to perspective
geometry [9], after the projective transformation to the 2D image plane, themotion of
the ball is approximately constant acceleration, as long asΔZ is negligible compared

Fig. 2.3 Three examples of looking for seed triplet. Squares with numbers candidates detected in
different frames. Dashed circle the circular area A j

i around a candidate c j
i . The radius of this circle

is R. a, b For the candidate in frame 76, no seed triplet is found. c Sufficient candidates are found
in the circular area to form a seed triplet: one from C75 and one from C77
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to Z , whereΔZ is the distance the ball moves in the world space between two frames
along the direction perpendicular to the image plane, and Z is the distance from the
ball to the camera along the same direction.

Consider any three candidates detected in frames k1, k2 and k3, where k1 <

k2 < k3. Let the positions of the candidates in the image plane be p1, p2 and p3,
respectively. A constant acceleration model M can be solved as:

v1 = p2 − p1

Δk21
− Δk21 × a

2
(2.1)

a = 2 × Δk21 × (p3 − p2) − Δk32 × (p2 − p1)

Δk21 × Δk32 × (Δk21 + Δk32)
(2.2)

where Δk21 = k2 − k1, Δk32 = k3 − k2, a is the constant acceleration, v1 is the
velocity at time k1, and p1, p2, p3, a, v1 ∈ R

2. An estimate of the ball position in
any frame k is then given by

p̂k = p1 + Δk × v1 + (Δk)2

2
× a (2.3)

where Δk = k − k1. Such a model can be fitted to any three candidates detected
in different frames. We apply it to the seed triplet found inside A j

i , as illustrated in
Fig. 2.4a. In this special case, k1 = i − 1, k2 = i and k3 = i + 1.

Compared to the random sampling scheme in Robust Data Association (RDA)
[16], the advantage of using seed triplets for model fitting is that a seed triplet

Fig. 2.4 Model fitting andmodel optimising. Squares with numbers candidates detected in different
frames, including true positives and false positives. Big dashed circle the circular area A j

i around

the candidate c j
i . The radius of this circle is R. Bold squares the triplet used for model fitting. Solid

circles with numbers positions estimated with the fitted model. Small dashed circles the region a
candidate has to fall into to be a support. The radius of these circles is dth. Shaded squares candidates
that are in the support set of the model after the current iteration. Note that the bold squares are also
in the support set. a Fitting a motion model to the seed triplet in Fig. 2.3c. b Optimising the fitted
model. Assume in a two candidates, one from C74 and one from C78 are consistent with the model
fitted to the seed triplet, i.e. k̇ = 74,

...
k = 78 and k̈ = 76. The new triplet (bold squares in b) is then

used to compute a “better” model
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has a higher probability of containing only true positives than a sample set that is
drawn randomly from all candidates in the sliding window [20]. However, even if a
seed triplet is free of false positives, the model computed with it is usually poor, as
estimates are given by extrapolation. This can be seen in Fig. 2.4a. As the estimates
get further away from the seed triplet on the time axis, they depart from the detected
ball positions in row-column plane rapidly.

We remedy this by recursively optimising the model using supports found in the
previous iteration [4]. First, we define the support of a model as a candidate that is
consistent with the model. More precisely, a candidate c j

k ∈ C (i) located at pj
k is said

to be a support if d(p̂k, pj
k) < dth, where d(·, ·) is the Euclidean distance between

two points; p̂k is the estimated ball position at time k as given by the model; and dth
is a predefined threshold. In the rare case where more than one candidate satisfies
this condition at time k, only the one with the smallest d(p̂k, pj

k) is selected as a
support.

Let S be the set of supports of a model. Also, let

k̇ = min k ∀c j
k ∈ S

...
k = max k ∀c j

k ∈ S (2.4)

k̈ = argmin
k

||...k − k| − |k − k̇|| ∀c j
k ∈ S

We use the three candidates inS from frame k̇, k̈ and
...
k as a new triplet to fit another

model. Since the candidates in the new triplet are further apart from each other,
more estimates are interpolated. The resulting model is usually “better” than the one
computed with the seed triplet. One iteration of the optimisation is thus complete
(Fig. 2.4b).

Now, we need a measure of the quality of a model. RANSAC-like algorithms
normally use the number of supports a model gets. In [27], a maximum likelihood
version of RANSAC, MLESAC, is proposed as a more accurate measure. However,
MLESAC involves estimationofmixture parameters of a likelihood function [16, 26],
which can be complicated and computationally expensive. In our implementation,
the following cost function [27] is adopted:

C =
i+V∑

k=i−V

∑

j

ρ(pj
k) (2.5)

where

ρ(pj
k) =

{
d2(p̂k, pj

k) if d(p̂k, pj
k) < dth

d2
th if d(p̂k, pj

k) ≥ dth
(2.6)

and a smaller C indicates a better model.
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Having defined C , the optimisation loop terminates when the support setS stops
expanding, or when C increases. More specifically, let M (z) be the model after the
zth iteration,C (z) be its cost, k̇(z) and

...
k

(z) be defined as in Eq. (2.4). The optimisation
loop terminates if

(k̇(z+1) = k̇(z) ∧ ...
k

(z+1) = ...
k

(z)
) ∨ (C (z+1) > C (z)) (2.7)

and M (z) is retained as the final fitted model to the current seed triplet.
A tracklet T is defined as the combination of a parameterised model M and its

support set S , i.e. T = {M,S }. For interval Ii , the above model-fitting process is
applied to each seed triplet that contains each c j

i in Ci . We then retain only track-
lets that have more than mth supports, and denote the lth retained tracklet in Ii

by T l
i = {Ml

i ,S
l
i }. As the sliding window moves, a sequence of tracklets is gen-

erated. Figure2.5 plots all 672 tracklets generated in an example sequence in the
row-column-time 3D space. In the figure, a tracklet T l

i is plotted as its dynamic

model Ml
i , and is bounded by k̇l

i and
...
k

l
i .

Fig. 2.5 All the generated tracklets in an example sequence plotted in random colours. a 3D view.
b Projection on the row-column plane. c Projection on the row-time plane. d Projection on the
column-time plane
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2.2.2 Tracklet Level Association

The tracklet level association problem is mapped onto a graph. We construct a
weighted and directed graph G = {N ,E }, where N is the set of nodes, and E
is the set of edges. Each node in N is a tracklet, and the node corresponding to
tracklet T l

i is denoted by nl
i . Clearly, N is composed of stages as

N = {N1+V ,N2+V , . . . ,NK−V −1,NK−V } (2.8)

where the i th stageNi is the set of nodes (tracklets) generated in interval Ii , Ii centres
on frame i and spans frame i − V to frame i + V , and K is the number of frames in
the sequence. A directed edge from node n p

u to node nq
v , ep,q

u,v , exists in E , if

u < v ∧ k̇q
v − ...

k
p
u ≤ kth (2.9)

where k̇q
v is the k̇ of tracklet T q

v ,
...
k

p
u is the

...
k of tracklet T p

u , and u, v ∈ [1+ V, K −
V ]. The assumption here is that misdetection of the ball can happen in at most kth
successive frames, where kth ∈ N +. An example of graph topology is given in
Fig. 2.6.

Both M and S of the tracklets are used to define the edge weight between two
nodes. First, two nodes n p

u and nq
v are said to be “overlapping” if

u < v ∧ k̇q
v − ...

k
p
u ≤ 0 (2.10)

For overlapping nodes, their support sets are used. Two overlapping nodes are “con-
flicting” (not compatible) if for k̇q

v ≤ k ≤ ...
k

p
u , ∃k such that

(∃c j ′
k ∈ S

p
u ∧ �c j ′′

k ∈ S q
v ) ∨ (�c j ′

k ∈ S
p

u ∧ ∃c j ′′
k ∈ S q

v )

∨ (∃c j ′
k ∈ S

p
u ∧ ∃c j ′′

k ∈ S q
v ∧ pj′

k 
= pj′′
k ) (2.11)

In other words, two compatible tracklets should agree on the support in every frame
in the overlapping region: either both having the same support, or both having no
support. The edge weight between two overlapping nodes is then given by

Fig. 2.6 An illustrative example of the graph topology. Nodes in the same stage are aligned ver-
tically. Note that the number of nodes in a typical sequence is of the order of 102–103. Far fewer
nodes are plotted in this figure for ease of visualisation
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wp,q
u,v =

{
∞ if n p

u and nq
v are conflicting

0 otherwise
(2.12)

For non-overlapping nodes, their parameterised models are used. Ball positions
from frame

...
k

p
u to frame k̇q

v are estimated. The edge weight is then defined as

wp,q
u,v = min d(p̂p

u,k, p̂q
v,k), ∀k ∈ [...k p

u , k̇q
v ] (2.13)

A path in a directed graph is a sequence of nodes such that from each node (except
the last one), there is an edge going to the next node in the sequence. In an edge-
weighted graph, the weight of a path is defined as the sum of the weights of all
the edges it goes through. The shortest path between two nodes is the path with the
smallest weight among all possible paths.

The edge weight defined in Eq. (2.12) and Eq. (2.13) can be thought of as a
compatibility measure. For now, we assume that there is only one ball to track, and
the first and last nodes that have originated from this ball are already known. The
Dijkstra’s algorithm [8] can then be applied to find the shortest path between the pair
of nodes.Wemanually specify the first and last ball-originated nodes in the third play
of the example sequence as source node and destination node. The result of applying
Dijkstra’s algorithm is illustrated in Fig. 2.7: a shortest path that corresponds to the
ball trajectory. According to the definition of edge weight, the shortest path found is
guaranteed to be non-conflicting: at any time k, there is at most one candidate in the
support sets of the shortest path. The data association problem is thus solved.

In tennis ball tracking, the points at which the ball changes its motion abruptly
correspond to key events such as hit and bounce, and provide important information
for high-level annotation.We use the algorithm of generalised edge-preserving signal
smoothing to detect these key events. A more detailed description can be found in
our previous work [29].

2.2.3 Path Level Analysis

In this section, we relax the assumptions made in the previous section, and show how
this relaxation can lead to a fully automatic algorithm for tracking multiple balls.
The key idea is to use all-pairs shortest path (APSP) instead of single-pair shortest
path (SPSP) at the tracklet level, and introduce one more layer on top of that, namely,
path level analysis.

For a given pair of nodes n p
u and nq

v in G , there may be paths connecting n p
u to

nq
v , or there may not be any such path at all. One example of the latter case is when

u ≥ v. Assume the shortest paths between any pair of nodes that has at least one
path connecting them have already been identified. LetQ be the set of such all-pairs
shortest paths, and Q is the number of paths inQ. Q is in the order of N 2, where N
is the number of nodes in the graph. Now, observe that the paths that correspond to
ball trajectories form a subset ofQ. Our goal is to reduce the original set of APSPQ
to its subset that contains only paths that correspond to the ball trajectories (Fig. 2.8).
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Fig. 2.7 a Shortest path given by Dijkstra’s algorithm. Adjacent nodes in the shortest path are
plotted alternatively in blue and red. 3D view. b Ball trajectory superimposed on the mosaic image.
Yellow circles positions of the candidates in the support sets of the nodes in the shortest path. White
crosses interpolated tennis ball positions. Red squares detected key events

Fig. 2.8 An illustration of the shortest path in Fig. 2.7 in the graph. Striped red squares themanually
specified source node and destination node. Red squares the shortest path between the source node
and the destination node

To this end, we need to define the relative quality and compatibility of the paths.
Recall that the weight of a path is the sum of the weights of all edges the path goes
through. We then define the length of a path to be the size of the union of the support
sets in all its nodes. It should be noted that according to the definitions of weight
and length of a path, the term “shortest path” used in the previous sections should
have been “lightest path”. However, we chose to use “shortest path” for the sake of
consistency with the terminology used in the literature.
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Intuitively, a good path is one that is both “light” and “long”. However, there is
usually a trade-off between the weight and the length of a path: a longer path tends
to be heavier. Taking this into account, we define the relative quality of two path P1
and P2 as follows:

P1

⎧
⎨

⎩

>

=
<

⎫
⎬

⎭ P2 if (W1 − W2)

⎧
⎨

⎩

<

=
>

⎫
⎬

⎭α · (L1 − L2) (2.14)

where the relation operators “>”, “=” and “<” between P1 and P2 stand for “is
better than”, “has the same quality as”, and “is worse than”, respectively; W1 and W2
are the weights of P1 and P2, respectively; L1 and L2 are the lengths of P1 and P2,
respectively; and α is a controllable parameter with a unit of pixel. According to this
definition, if a path P1 is “much longer” but “slightly heavier” than a path P2, then
P1 is said to have a better quality than P2. It easily follows that the set Q equipped
with an operator “≥” satisfies transitivity, antisymmetry and totality. According to
order theory [7],Q associated with operator “≥” is a totally ordered set. The relative
quality of the paths is defined.

The definition of pair-wise compatibility of the paths is straightforward. Under
the assumption that two objects cannot produce the same candidate in a frame, two
paths are said to be compatible if and only if they do not share any common support.
It should be noted, however, two paths that do not share any common node are not
necessarily compatible, because different nodes can have common supports.

Algorithm 1 The path reduction algorithm

Input: Set P with p paths, and empty set B.
Output: A reduced set P .
1: while P is not empty do
2: Remove the best path P∗ in P from P
3: if P∗ is compatible with all paths in B then
4: add P∗ to B
5: end if
6: end while

We propose a simple path reduction algorithm (see Algorithm 1) to prune the
APSP set. According to the definition of relative quality and pair-wise compatibility
of the paths, the paths in the resulting subset aremutually compatible, and are optimal
in the sense that the best remaining path inP was always considered first.We call the
output of the path reduction algorithmB the Best Set of Compatible Paths (BSCP).

Now, we have a complete data association algorithm for tracking multiple objects
fully automatically. We apply the complete algorithm to the example sequence. With
path level analysis, track initiation and track termination is automated, and multiple
plays canbehandled.By looking for all-pairs shortest paths, a setQwith Q = 87,961
paths is obtained. The path reduction algorithm is then applied, which gives a BSCP
B containing 11 paths. In descending order, the numbers of supports (lengths) of
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Fig. 2.9 Results of applying the complete algorithm to the example sequence: three paths in the
thresholded BSCPBth. Adjacent nodes in each path are plotted alternatively in blue and red. a 3D
view. b Projection on the row-column plane. c Projection on the row-time plane. d Projection on
the column-time plane

the paths in B are: 411, 247, 62, 23, 20, 17, 17, 16, 15, 10, 9. It is a reasonable
assumption that a path corresponding to a ball trajectory has more supports than a
path corresponding to the motion of a non-ball object, e.g. a wristband. We set a
threshold L th and keep only the paths that have more supports than L th. This results
in a thresholded BSCPBth with three paths, where each path corresponds to a play in
the sequence. The paths inBth are plotted in the 3D space in Fig. 2.9. In Fig. 2.10, the
three reconstructed trajectories are superimposed on mosaic images. An illustration
of the three paths in the graph is shown in Fig. 2.11.

2.3 Experiments

In this section, we first introduce data sets used in our evaluation and tracking
algorithms under comparison. We then define performance metrics. Finally, experi-
mental results are presented, including a study of sensitivity of the proposed method
to parameters.
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Fig. 2.10 Ball trajectories (after interpolation and key event detection) superimposed on mosaic
images. From (a) to (c): the first, second and third play in time order. The first and second plays
overlap in time: the first play spans frame 16–260; the second frame 254–321; and the third frame
427–887

Fig. 2.11 An illustration of the paths in Bth. Magenta, cyan and red paths correspond to the first,
second and third play in the sequence, respectively

2.3.1 Experimental Data

Experiments were carried out on broadcast tennis videos from three tennis tourna-
ments. A broadcast tennis video is composed of shots, such as play, close-up, crowd,
advertisement. A play shot is a shot in which the ball is in play. In a play shot, the
camera is usually from behind one of the players, and has small pan, tilt and zoom
(PTZ) motion. Tennis ball tracking is performed only on play shots. In this chapter,
we also refer to a play shot as a “sequence”.

The three data sets used contain 165 sequences in total. A set with 25 sequences
was used as training set, and the other two with 70 sequences each as test sets.
Some statistics of the three data sets are shown in Table2.1. In Table2.1, N̄ is the
average number of false candidates in each frame, and rd is the probability that a ball
is detected as a candidate (ball detection rate). In our experiments, the parameters
of the proposed method were assumed independent of each other, and were tuned

Table 2.1 Statistics of experimental data

Game Court type No. of seq No. of frames Length N̄ rd

(min) (%)

Training set Australian’03 Women’s Artificial 25 15,716 5.2 12.1 90.3

Test set 1 Australian’06 Men’s Artificial 70 60,094 20.0 10.6 91.6

Test set 2 Wimbledon’05 Men’s Grass 70 43,706 14.6 16.5 88.2
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separately on the training set to maximise the F-measure of event detection. The
definition of F-measure which will be given shortly in Sect. 2.3.3. The optimal set of
parameters obtained during the training was: V = 10, R = 20.0, dth = 5.0,mth = 6,
kth = 20, L th = 45, and α = 1.0.

The proposed data association algorithm takes as input the tennis ball candidates
in each frame. In each sequence, image frames were first de-interlaced into fields.
For the sake of consistency with the terminology used in the literature, we have used
“frame” to refer to “field”. After de-interlacing, homographies between frames were
calculated by tracking corresponding corners that are automatically detected, and
were used to compensate the global motion (camera PTZ) between frames [3, 14].
Foreground moving objects were then extracted by differencing nearby frames and
thresholding the differences. Finally, a simple filter was applied to keep only fore-
groundblobswith an appropriate size. These blobswere used as tennis ball candidates
for tracking algorithms.

2.3.2 Algorithms Under Comparison

For comparison with the proposed algorithm, PDA [1] and RDA [16] were also
implemented. Due to the abrupt motion changes, PDA lost track in most sequences.
We will therefore focus on the comparison between the proposed method and RDA.
In RDA, the number of trials, n, is chosen so that the probability of finding a set
consisting entirely of true positives, P , is greater than a threshold P0. It has been
shown [5] that

n ≥ log(1 − P0)/ log(1 − εs) (2.15)

where ε is the ratio of the number of true positives to the number of all candidates,
and s is the size of each sample set. In our experiments, P0 was set to 0.95, and the
interval size was set to 15, both as suggested in [16]. According to Eq. (2.15), at
least 8,161 trials were needed. The mixture parameters of the likelihood function in
RDA were estimated recursively until convergence, also as suggested in [16]. As to
dynamic model, the same constant acceleration model as defined in Eq. (2.1) and
Eq. (2.2)was used. SinceRDAcannot dealwith track initiation and track termination,
we manually specified the frames in which it was applied.

2.3.3 Evaluation Methods

2.3.3.1 Matching the Tracked Trajectories and the Ground
Truth Trajectories Automatically

For each sequence, let Tgt be the set of trajectories in the ground truth, and Ttr be
the set of trajectories given by the tracker. Each trajectory is a sequence of points in
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the row-column-time 3D space. Define an assignment scheme as a correspondence
between the two sets of trajectories that satisfies: each trajectory in Tgt corresponds
to at most one trajectory in Ttr , and vice versa.

Observe that an assignment scheme consists of correspondence pairs. For a given
pair, letI ∗ be the time interval where the two trajectories overlap. For each frame in
I ∗, two ball positions are given, one by the tracker and one by the ground truth. The
two positions are compared. If the distance between them is smaller than a threshold,
the two trajectories are said to be “matched” in this frame. The match score of a pair
of trajectories is defined as the total number of frames where the two trajectories are
matched. Finally, the quality of an assignment scheme is defined as the sum of match
scores of all its correspondence pairs. Among all possible assignment schemes, the
one with highest quality is chosen.

2.3.3.2 Quality of Track Initiation and Track Termination

Having obtained the correspondence between Tgt and Ttr , we can measure the per-
formance of the tracker from several aspects. Let T i

gt ∈ Tgt and T i
tr ∈ Ttr be the

trajectories in the i th pair, andI i
gt andI

i
tr be the time interval of T i

gt and T i
tr , respec-

tively. Moreover, let T
′ j
gt be the j th trajectory inTgt that is not in any correspondence

pair, and I
′ j
gt be its time interval; and let T

′k
tr be the kth trajectory in Ttr that is not

in any correspondence pair, and I
′k
tr be its time interval. Now, define

I ∩ =
∑

i

|I i
gt ∩ I i

tr| (2.16)

and

I ∪ =
∑

i

|I i
gt ∪ I i

tr| +
∑

j

|I ′ j
gt | +

∑

k

|I ′k
tr | (2.17)

The quality of track initiation and track termination on this sequence is then:

β = I ∩/I ∪ (2.18)

where β ranges between 0 an 1. When β = 1, track initiation/termination is said to
be perfect.

2.3.3.3 Proportion of LOT

In addition to the quality of track initiation and termination, we would also like to
know how close the positions given by the tracker are to the ground truth. Consider
the i th pair of trajectories in the best assignment scheme. Two ball positions are
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given in each frame in I i
tr ∩ I i

gt, one by the tracker and the other by the ground
truth. We define tracking error as the Euclidean distance between the two positions.
For a given sequence, the number of such errors is I ∩. A loss-of-track (LOT) is then
defined as when tracking error is greater than 6 pixels. Let the number of LOTs in
the given sequence be I L

m . The proportion of LOT is then defined as:

γ = I L/I ∩ (2.19)

2.3.3.4 Quality of Event Detection

We also measure the performance of the proposed algorithm in terms of quality of
event detection. For each trajectory in Tgt, points that correspond to motion discon-
tinuities are marked up as ground truth events. These events correspond to racket
hitting the ball, the ball bouncing on the ground and the ball touching the net. We
then compare the events detected by an event detection algorithm against the ones
in ground truth. A detected event in a tracked trajectory T i

tr is regarded as “matched”
if it is within 3 frames and 5 pixels of a ground truth event in the corresponding
ground truth trajectory T i

gt. We report the F-measure of event detection, which is the
harmonic mean of the precision and the recall. The F-measure ranges from 0 to 1,
and a larger value indicates a better performance.

The quality of event detection is obviously affected by the event detection algo-
rithm used, and thus not a direct quality measure of the ball tracking algorithm.
However, event detection plays a crucial role in high-level annotation. We present
the quality of event detection to give an idea of the performance of the ball tracking
algorithm in the context of tennis video annotation.

2.3.4 Results and Discussion

Experimental results on the two test sets are shown in Table2.2. The quality of track
initiation/termination of the two methods is not comparable, since in RDA this was
manually dealt with. In terms of proportion of LOT and F-measure of event detection,
the proposed method outperforms RDA significantly on both test sets. In RDA,
estimates are given by the best models in corresponding intervals independently of

Table 2.2 Experimental
results on the test sets

β γ (%) F-measure Frames/s

Test set 1 Proposed 83.7% 3.51 0.758 98.4
RDA − 11.74 0.423 3.6

Test set 2 Proposed 82.2% 3.66 0.729 109.3
RDA − 13.23 0.411 3.2
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eachother, and the concept of “tracklet” does not exist. This significantly limitsRDA’s
ability to deal with complexities in broadcast tennis video. In fact, RDA works only
under a strong assumption: a model fitted to three candidates that have all originated
from the ball being tracked is always “better” than that fitted to candidates that have
not. This assumption is not true in broadcast tennis sequences because:

1. Ball trajectories can overlap in time, i.e. there may be multiple balls in the same
part of a sequence;

2. Clutter-originated candidates can also form smooth trajectories that can be
explained by constant acceleration models;

3. A ball can change its motion drastically. As a result, even a model fitted to three
ball-originated candidates can have a poor quality.

By contrast, the proposed method slices the data association problem into layers,
and each layer is designed to solve the data association problem at its own level. It
is therefore more flexible in dealing with the complexities in broadcast tennis video.
(see Fig. 2.12 for an example).

The proposed algorithm also has the advantage of being more efficient. The fact
that it always starts model fitting from a seed triplet allows it to eliminate false

Fig. 2.12 The assumption in order for RDA to work is invalid in broadcast tennis video. a Tracking
results of the proposed method. b Tracking results of RDA
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Table 2.3 Sensitivity to parameters

Opt. param. RDA V R dth mth

7 13 15.0 25.0 4.0 6.0 4 8

β 83.7% – 82.8% 82.9% 83.6% 83.7% 82.9% 83.0% 83.0% 75.9%

γ 3.51% 11.74% 3.94% 3.78% 3.58% 3.50% 3.87% 3.29% 3.82% 3.75%

F-measure 0.758 0.423 0.725 0.770 0.754 0.759 0.732 0.768 0.763 0.696

Frames/s 98.4 3.6 102.2 93.8 100.3 96.6 128.4 81.4 55.7 152.9

kth L th α

15 25 30 60 0.001 0.01 0.1 10.0 100.0 1,000.0

β 76.5% 85.1% 80.0% 84.0% 42.5% 49.3% 78.1% 76.8% 75.2% 75.1%

γ 2.78% 4.46% 2.89% 3.29% 2.10% 2.14% 2.64% 5.78% 7.48% 7.60%

F-measure 0.740 0.747 0.747 0.759 0.538 0.584 0.738 0.700 0.668 0.667

Frames/s 105.6 89.4 92.9 102.4 88.8 91.3 96.0 98.5 100.0 100.2

candidates very quickly. Taking test set 1, for example at each time step, on average
10.6 candidates are evaluated. On average, there are 1.02 seed triplets containing each
candidate, and it takes 3.7 iterations formodel optimisation to converge. The effective
number of models evaluated is then 10.6 × 1.02 × 3.7 ≈ 40. On the other hand,
according to Eq. (2.15), at least 8161 models are needed in RDA. The estimation of
mixture parameters of the likelihood function in RDA is also time-consuming. Time
in Table2.2 was measured on a single thread of an Intel Xeon 3.0G computer running
Linux, and overhead of disk I/O was included. Both algorithms were implemented
in C++.

Finally in Table2.3 we show the sensitivity of the proposed algorithm to para-
meters using test set 1. It is evident from the table that the proposed algorithm is
not sensitive to small changes of most parameters. However, when the parameter for
determining the relative quality of two paths, α, varies over a large range, paths can
be inappropriately merged or broken, severely degrading track initiation/termination
and event detection. We can also see that the proposed method is sensitive to the
increase of the tracklet threshold mth. This is because when mth is too high, ball-
originated tracklets are discarded, and the shortest path algorithm is forced to take a
wrong path. On the other hand, whenmth is low, false tracklets are allowed. However,
the shortest path algorithm can remove them effectively.

2.4 Conclusions

In this chapter, we have presented a layered data association algorithm with graph-
theoretic formulation for tracking multiple objects that undergo switching dynamics
in clutter. At the object candidate level, tracklets are grown from sets of candidates
that have high probabilities of containing only true positives. The tracklet association
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problem is then mapped onto a graph, and solved with an all-pairs shortest path
formulation and path level analysis. This results in a fully automatic data association
algorithmwhich can handle multiple object scenarios. The proposed data association
algorithm has been applied to tennis sequences from several tennis tournaments to
track tennis balls. Comparative experiments show that it works well on sequences
where other data association methods perform poorly or fail completely.
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Chapter 3
Plane Approximation-Based Approach
for 3D Reconstruction of Ball
Trajectory for Performance
Analysis in Table Tennis

Sho Tamaki and Hideo Saito

Abstract A plane approximation-based approach for 3D reconstruction of ball
trajectory is introduced, which was developed as a solution to the problem with
conventional analysis in table tennis. There are methods of reconstructing 2D ball
trajectories or 3D trajectories of balls heavier than those in table tennis. However,
these methods cannot be adopted to reconstruct the 3D trajectories of table tennis
balls, because there are problems that are attributed to the dimensions of the trajec-
tories and weight of the balls. The method proposed in this chapter could reconstruct
the 3D trajectories of a table tennis ball. The key feature of the method is that
it approximates that a ball is traveling on tilted planes. This approximation makes
reconstruction robust against failure to measure 3D ball positions. Two systems were
developed based on the new method. A system using two RGB cameras experimen-
tally demonstrated that it could provide accurate information for match analysis. A
system using an RGB-D camera was experimentally demonstrated that the system
could provide accurate information for service analysis.

3.1 Introduction

There has recently been increasing interest in statistical analysis in sports sciences
[1–3]. The analysis has been called “performance analysis” and described as “an
objective way of recording performance so that key elements of that performance
can be quantified in a valid and consistent manner” by International Society of
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Performance Analysis of Sports in [4]. Coaches can use the results of performance

analysis to optimize decision making. There has been some research that has aimed
at applying methods of performance analysis to table tennis [5, 6].

However, table tennis coaches and players have rarely conducted performance
analysis because this analysis in table tennis requires enormous amounts of time or
huge budgets due to the heavyworkload imposed by data collection. It is not currently
available for many practitioners to carry out analysis because of the inefficiency of
data collection methods.

A systemwithout computer vision technologies was developed to solve this prob-
lem. It made data collection more efficient by supporting input operations by just
using a graphical user interface (GUI). This system certainly advanced solutions to
the problem. For example, the system enabled performance analysis at the London
Olympics in 2012. While the system achieved advances, it still had a major problem
in that they required a lot of time to collect shot data, such as the positions where
the ball was hit and where it bounced. We call the analysis with the software “con-
ventional analysis” in this chapter. The main problem of the conventional analysis
originated from its dependence on the operation of manual input. Automated data
collection is therefore urgently required. If we could obtain the 3D trajectories of
table tennis balls automatically, this problem would be solved.

Here, we propose a vision-based approach for reconstructing the 3D trajectories of
table tennis balls. There are several methods of reconstructing 2D ball trajectories or
3D trajectories of balls that are heavier than table tennis balls. However, they cannot
be adopted to reconstruct the 3D trajectories of table tennis balls because there are
problems that are attributed to the dimensions of the trajectories and weights of balls.
The proposed approach in this chapter can be used to reconstruct the 3D trajectories
of table tennis balls. The key feature of the proposed method is approximation where
the ball is traveling on tilted planes. This approximation makes the reconstruction
robust against failures to measure 3D ball positions in various frames. In addition,
the proposed approach can successfully be used to reconstruct trajectories with ball
candidates including false positives. The method of dealing with false positives is
based on the method proposed by Yan et al. [7]. We developed a system using two
RGB cameras based on the new method. The system obtains shot data for match
analysis and is expected to solve the problem with conventional analysis. We then
developed a system using an RGB-D camera to optimize usability for practitioners.
Although the system using the RGB-D camera cannot reconstruct the trajectories of
fast-moving or rotating balls due to functional issues with the RGB-D camera, the
system is still useful for analyzing services. Moreover, we expect that the system
would be able to reconstruct the positions of any balls in the future when the frame
rates and the measurement range of depths of RGB-D cameras were enhanced. The
proposed method experimentally demonstrates that it made performance analysis
more useful for table tennis practitioners through these developments in the systems.

This chapter consists of eight sections. Section3.2 briefly describes conventional
analysis. Section3.3 considers technical issues in reconstructing the 3D trajecto-
ries of table tennis balls with usable photographic devices for performance analysis.
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Section3.4 introduces related work. Section3.5 describes proposing method that
overcame several technical issues. Section3.6 introduces the system that uses two
RGB cameras, whichwe experimentally evaluated. Section3.7 introduces the system
using an RGB-D camera, which we also experimentally evaluated. Finally, we
conclude the chapter in Sect. 3.8.

3.2 Conventional Analysis

We developed a GUI computer software to conduct performance analysis efficiently.
Table tennis matches were analyzed with conventional analysis in two steps with the
software : (1) analysis that provided brief results based on data related to rallies and
(2) analysis that provided detailed results, based on data collected at (1) and data
related to shots. We collected data related to rallies in analysis (1), such as those
from the server, the scoring player, and the shot number of the scoring shot.1 After
the data were collected, we computed statistics that could be used as indicators of (a)
the scoring possibility depending on serves or returns, (b) transitions in scores, and
(c) the scoring possibility depending on the shot number. Many data were obtained
automatically with this software, based on the assumption that a shot was played
alternately by players. Input operation was therefore just to record the times of shots
and the shot number of the scoring shots, and we could conduct this analysis in real
time. We collected data related to shots in analysis (2), such as the types of shots
and the direction (position from which the ball bounced and the direction in which it
moved) of a shot. After the data were collected, we computed the statistics that could
be used as indicators of (a) the scoring possibility depending on the type of shot
and (b) the scoring possibility depending on the direction of the shot. We mainly
analyzed the spatial factor of tactics in this analysis. It was difficult to manually
record the precise coordinates of shots, but it was possible to record the data on a
scale according to a 3 × 3 divided area of a half court. Spatial tactics in table tennis
are generally considered based on the 3 × 3 divided area. We could therefore use the
direction data if they were obtained on a 3 × 3 scale of accuracy.

The conventional analysis using the developed systemwas conducted by Japanese
national team at the London Olympics in 2012 for performance analysis at the com-
petition venue. We analyzed 136 matches based on (1) and 59 matches based on
(2) as a result of this analysis, which provided advanced performance analysis in
table tennis. However, the problem where we needed a great deal of time to collect
shot data remained because this could not be solved by manually collecting data
conventionally, and a method of automatically collecting data was needed urgently.

1 Shot number denotes the ordinal number of shots in a rally. For example, making the serve is the
first, and receiving it is the second.
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3.3 Technical Issues

The enormous workload imposed by collecting shot data is the most important
problem with conventional analysis. We propose a method of reconstructing the
3D trajectories of table tennis balls to solve this problem. 3D trajectories provide the
spatial features of shots (e.g. the positions fromwhich balls bounced, their maximum
height, and the direction and velocity of movements). However, because we cannot
set up optimal environments for performance analysis in practice, it is difficult to
reconstruct the 3D trajectories of table tennis balls.

Let us consider usable devices in practical scenario (e.g. competition venues and
training rooms). The setup to operate devices for performance analysis would be
difficult to achieve if it required many devices. Therefore, the smaller the number
of devices, the better. We can minimize the number of devices by using only one
device that can detect depth, like anRGB-D camera. However, since RGB-D cameras
cannot be set to have either high frame rate or short exposure times, we cannot target
fast-moving balls with them. We can target fast-moving balls by using two RGB
cameras, although usability would decrease. We therefore used two RGB cameras
or an RGB-D camera to reconstruct trajectories for this reason.

We then considered the technical issues we faced in reconstructing the 3D tra-
jectories of a table tennis ball. First, it is difficult to detect a table tennis ball. We
took a video far from the court at a competition venue. We could therefore not take
images of the ball at high resolution.Wewould encounter the same problemwhenwe
used an RGB-D camera even in a training room because the resolution of standard
RGB-D cameras is around 640× 480 pixels. The diameter of a table tennis ball is
less than 10 pixels in this situation and it is difficult to discriminate this from many
other objects. Second, the 3D position of balls cannot be measured robustly because
of the restrictions with usable devices. We cannot measure the 3D coordinates of
balls with two RGB cameras when ball-to-objects, usually ball-to-player, occlusion
occurs at one viewpoint. We encountered more difficult situations using an RGB-D
camera because there were many missing values in the depth images we took with
it. The ratio, expressed as a percentage, where we successfully measured the 3D
positions of a ball was about 20% in all frames including the ball in our experiments.
We needed a method that could reconstruct the 3D trajectories of table tennis balls
from a few 3D positions of the balls.

3.4 Related Work

Huanget al. [8] tried to compute aball position in a frameby integrating segmentation-
baseddetection andparticle filter-based tracking. First, an image is segmented as fore-
ground and background based on the color, the background is assumed to be grass
field and the color is green. Ball-like objects are then extracted from the extracted
foreground blobs based on the circularity and the color. The particle filter-based
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tracking is applied after segmentation-based detection succeeded. In their experi-
ment, ball detection and tracking was successfully done at many frames. However,
detection was sometimes failed and then false positive was tracked in successive
about 40 frames. This is a common issue of ball tracking. Imaged balls cannot be
differentiated from other objects robustly based only on its appearance because of
their size and the poor features. Although many other researches employed same
framework [9–12], they showed no effective way to avoid this problem.

Yu et al. [13] mentioned a ball in low resolution as “object-indistinguishable”. In
order to solve the problem of ball detection, they estimate hitting points based on the
players position and the hitting sound. The ratio of the ball position which success-
fully computed was nearly 100% in their experiment, even if the ratio of successfully
tracked ball was 60–90%. This method, however, is not always applicable. Many
matches might be played in one competition venue or one training room at the same
time. It is really a difficult problem to extract the sound generated from the targeted
match.

Poliakov et al. [14] exploited the knowledge that the ball was traveling from a
racket to track a tennis ball. Balls can be interpolated robustly when they know the
hitting points. Their method avoided the difficulty of ball detection using racket
positions. However, it was also difficult to detect rackets, especially in table tennis,
because they were small and were often occluded by the players. We would have
faced other difficult issues if we had used their method.

“Hawk-Eye” [15] is one of the leading system for ball detection and tracking. Balls
are detected based on the size and the shape. Noise filtering is done in 3-space based
on epipolar constraint. The reliability and accuracy of the system are undoubtable. It
is officially used in cricket as a broadcast tool and in tennis as a line calling system.
This system, however, assumes the number of cameras are sufficient for detecting a
ball during a rally. We cannot take this assumption because of our constraint of the
number of usable devises as we discussed in Sect. 3.3.

Yan et al. [7] reconstructed the 2D trajectories of a tennis ball from cluttered data.
They approximated a motion model of balls with constant acceleration over short
periods of time and linked short trajectories by solving the shortest path problem.
Their experimental results indicated that this method could reconstruct a trajectory
even if the detection results include many false positives. However, if we failed to
measure ball positions in successive frames, the approximation used in their method
would be inappropriate because the actual acceleration of the ball is not constant.
We often encountered such situations in 3-space because of restrictions with usable
devices, as we mentioned in Sect. 3.3. Therefore, we could not deal with the problem
by using only their method.

Ren et al. [16] reconstructed the 3D trajectory of a soccer ball. They approximated
the trajectory of a soccer ball with planar curves on vertical planes. Because they
could obtain the 3D positions of the ball by projecting its 2D position, this method
could be used to reconstruct the 3D trajectories of the ball when there were few 3D
positions of balls. However, when a ball is spinning fast and changes direction after
being affected by lift force, the approximation that the ball will travel on a vertical
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plane is inappropriate. We could not use this method because table tennis balls are
light and can be severely affected by lift force. We will demonstrate that in the next
section.

We could conclude that there were technical problems that related work could not
solve. The problems were attributed to the dimensions of trajectories and the weights
of the balls. We therefore needed a new method of reconstructing the 3D trajectories
of table tennis balls.

3.5 Method for Trajectory Reconstruction

Figure3.1 shows a flowchart for our method. The proposed method requires the
following information: camera parameters, table corners in world and image space,
ball candidates in world and image space, bounce time, impact time, and the start and
end times of rallies. We assume the impact times, and start and end times of rallies
would be recorded with the conventional method. As it is not a problem to record
data with the conventional method, these assumptions are appropriate.

We will first validate the key idea behind our method, approximating a ball trav-
eling on tilted planes, in Sect. 3.5.1. We will then describe methods of reconstructing
the 3D trajectories of table tennis balls in Sects. 3.5.2 and 3.5.3.Methods of obtaining
other information are described in Sects. 3.6 and 3.7 because they depend on devices.

3.5.1 Validity of Planar Approximation

First, let us consider an approximation where a ball traveling on a vertical plane is
valid, which is the approximation used by Ren et al. [16]. The force that influences
traveling balls is the resulting force of gravity force, drag force, and lift force. The
directions of gravity force, drag force, and lift force are vertically downward, opposite
to the direction of travel, and perpendicular to the velocity vector and rotation axis of

Fig. 3.1 Flowchart to reconstruct trajectory for table tennis
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the ball, respectively. When balls do not rotate, only gravity and drag force influence
them and they travel on the vertical plane. Even if balls rotate, they still travel on the
vertical plane because the direction of lift force is the same to the direction of gravity
force when the rotation axis is perpendicular to the velocity vector and parallel to the
ground. We can therefore assume that balls traveling on the vertical plane when their
rotation is very slow or in the direction of the rotation axis are nearly perpendicular
to the velocity vector and parallel to the ground.

This condition, however, is not always the case in actual table tennis matches
where the rotation of the ball can be fast and the rotation axis can head in various
directions. We conducted a simulated experiment to find how far a ball could be
away from the vertical plane. The trajectory of a rotating ball whose rotation axis
was vertical to the ground was computed in this simulation. The travel distance on
the horizontal plane was 2.74m, which is the same length as that of a table tennis
court. The rotation speed was 70 fps, which is about half that of an elite player’s top
spin. The motion model of the ball used the model proposed by Okada et al. [17].
Let us denote the mass of a ball as m kg, the radius of a ball as r m, and the velocity
of a ball as ṙ m/s. Let us also denote the angular velocity as ω rad/s, the air density as
ρ kg/m3, the drag coefficient as CD , and the lift coefficient(or Magnus coefficient)
as CM . The motion model is defined as

d ṙ
dr

= 1

m
(FG + FD + FL) (3.1)

FG = m g (3.2)

FD = −1

2
CDπa2ρ|ṙ|ṙ (3.3)

FL = 4

3
CMπa3ρω × ṙ (3.4)

The accumulation of infinitesimal change was simulated by using this model and
the difference equation below by using the classical Runge–Kutta method to prevent
large errors from accumulating.

(r ′, ṙ ′,ω′)t = (r, ṙ,ωt) + Δr(ṙ,
d ṙ
dr

, 0t) (3.5)

Air density ρ was set to 1.28, drag coefficient CD was set to 0.75, and the lift
coefficient was set to 0.45 in the experiment by referring to the experimental results
reported by Seydel [18]. In addition, the initial position[m] of the ball was set to
(0, 0, 0), and the initial velocity[m/s] of the ball was set to (0, 10, 0), where the end
and side lines of the court were defined as the X–Y plane and the vertical direction of
the court was defined as the Z axis in world space. The vertical plane that provides the
least mean square distance from simulated balls was computed. The average distance
from the simulated balls to the plane was 291mm and the maximum distance was
452mm. The data in conventional analysis are recorded on a scale according to a
3× 3 divided area of a half court (see Sect. 3.2). The approximation where a ball is



54 S. Tamaki and H. Saito

Fig. 3.2 The simulated ball trajectory and the plane that provides the least mean square distance
to the trajectory. a Overview of the trajectory. b Side view of the trajectory and the plane for the
comparison

traveling on the vertical plane can be too inaccurate to analyze performance and is
not practical in table tennis.

A tilted plane that provided the least mean square distance from the simulated
balls was then computed. The simulated balls and the plane are outlined in Fig. 3.2.
The average distance from the simulated balls was 5mm and the maximum distance
was 29 mm. The error in approximation using the tilted plane is much smaller than
that of approximation using the vertical plane. The error, up to 29mm, is sufficiently
small to be used in performance analysis. We can conclude at the end of validation
experiment that the approximation where a table tennis ball is traveling on a tilted
plane is reasonable.

3.5.2 Estimating Trajectory Planes

We approximate that ball trajectories are planar trajectories between ball-to-racket or
ball-to-court collisions.We assume the bounce times and impact timeswere obtained.
We therefore separately take eachperiodof timebetween collisions into consideration
after this.

Outliers are detected and eliminated by fitting the planar model to ball candidates
in world space at first. Next, three optimal ball candidates are chosen. Let us denote
the number of ball candidates in world space as nc, the j th candidates as c j , the
plane constructed by three chosen ball candidates as P , and the Euclidean distance
between plane Pi and candidate c j as D(Pi , c j ). The planar model that minimizes
the following cost function are chosen as:



3 Plane Approximation-Based Approach for 3D Reconstruction … 55

C =
nc∑

j=0

D(P, c j ) (3.6)

This computation may provide poor results when we have so few candidates because
of the errors included in true positives. The trajectory plane is robustly estimated using
bounce points as anchors. The number of candidates in a period can be too small to
reconstruct a plane even using a bounce position.We set the threshold for the number
of candidates required to reconstruct a trajectory plane with the method. The candi-
dates in the time trajectory plane that are not reconstructed are projected to another
plane, which is in the closest planes in the future or past and provides smaller C .

3.5.3 Reconstruction of Trajectory Model

First, we obtain ball candidates in world space by projecting ball candidates in image
space to a trajectory plane. Let us denote the normal of a trajectory plane as n, the
model of the trajectory plane as ax + by + cz + d = 0, the imaged position of the
ball as ximage, and the physical position of the ball on the image as X image. A ball
position in world space Xworld is computed as:

Xworld = −( d
n·X image

)X image (3.7)

where X image = K−1ximage (3.8)

where the optical center of the camera that takes the projected ball candidate is
defined as the origin of world space. The physical position of the ball on the image
is computed based on Eqs. (3.7) and (3.8).

We then reconstruct the 3D trajectory model from the 3D positions of balls
obtained before processes. We use the method proposed by Yan et al. [7] to esti-
mate the trajectory model with extensions for 3D. First, false positives are eliminated
based on the consecutive candidates in adjacent frames, as described inFig. 3.3. Every

Fig. 3.3 Elimination of false positives. Candidates 1 and 3 are eliminated in frame i, because they
have no consecutive candidates within the threshold range (dashed sphere) in frame i − 1 and/or
frame i + 1. Candidate 2 is not eliminated, because it has consecutive candidates in both adjacent
frames
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candidate is examined in the process to check whether it has consecutive candidates,
which is defined by the distance from the candidate, in adjacent frames. The dis-
tance that defines successive candidates is the maximum distance the ball can travel
between frames. A candidate is eliminated when no other candidates are detected
in either or both adjacent frames. If there is more than one candidate in a frame, all
candidates in the frame are eliminated. Most of the false positives are eliminated
after the process.

Next, trajectory models are estimated. We approximate that the motion model of
the ball has constant acceleration in the specific period of time, nc. Let us denote the
positions of candidates as p1, p2, and p3, their time as t1, t2, and t3 (t1 < t2 < t3),
t2 − t1 as Δt21, t3 − t1 as Δt31, constant acceleration as a, and velocity at time t1 as
v1. The constant acceleration model can be solved as:

v1 = p2 − p1
Δt21

− Δt21a
2

(3.9)

a = 2
Δt21( p3 − p2) − Δt32( p2 − p1)

Δt21Δt32(Δt21 + Δt32)
(3.10)

Models could be inaccurate when they are reconstructed from successive candidates
in close frames. The problem is solvedwith the trajectorymodel by using three points,
i.e., the earliest, the latest, and the middle ones in inliers, which were consistent with
the trajectory. This iterative optimization stopswhen the three points do not change or
the sum of errors starts to increase. As we can see from Fig. 3.4, the distance between
the trajectory model that is estimated from the three successive points (Fig. 3.4a) is
longer than that of the trajectory model that is estimated after three iterations of the
optimization process (Fig. 3.4b). Next, we link reconstructed trajectories in time-
series order. We then smooth the trajectories with a Savitzky-Golay filter [19]. As a
result, the 3D trajectories of a table tennis ball can finally be reconstructed.

Fig. 3.4 Estimation of trajectory model by iterative optimization. a is model before optimization
and b is model after tree optimizations. Open circles are detected ball candidates. Filled circles are
estimates given by trajectory model
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3.6 System Using Two RGB Cameras

We developed two different sensing settings of the system, two RGB cameras and
an RGB-D camera, based on the proposed method. Although it is optimal to use
an RGB-D camera from the aspect of usability, we have to use two RGB cameras
when we need to track a fast-moving ball. The details of the system using two RGB
cameras is described in this section.

3.6.1 System Architecture

Figure3.5 has the flowchart to obtain data with the system. The steps are described
in detail in the following subsections.

3.6.2 Camera Calibration

At first, camera calibration, namely obtaining intrinsic and extrinsic camera para-
meters, is done. We use the method proposed by Zhang [20] to compute intrinsic
camera parameters. Extrinsic camera parameters are obtained from planar transfor-
mation matrix (Homography) H[21]. Let us define the end lines and side lines of
the court as the X–Y plane, the vertical direction of the court as the Z axis in world
space, and the position[m] of the four corners as (0, 0, 0), (1.525, 0, 0), (0, 2.74, 0),
and (1.525, 2.74, 0). Based on this definition, H can be computed [22]. The four
corners were manually recorded. Optimal extrinsic parameters cannot be expected
with this method because we only use four points on the same plane and indepen-
dently calibrated each of the cameras. However, this method is easy to operate and

Fig. 3.5 Flowchart to obtain data using multiple camera system
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can be used in many cases. Its results are also sufficiently accurate to be used for
performance analysis. This is experimentally demonstrated in Sect. 3.6.5.

3.6.3 Detection of Ball Candidates

First, large segments are eliminated by using contour-based segmentation and area-
based elimination. We use findContours, which is an OpenCV function, to obtain
contours. Ball candidates are then detected by extracting moving objects through
interframe subtraction, and extracting high-intensity segments and those that are
circular.

The main aim of the elimination of the large segments is to eliminate player
segments. Figure3.6 shows some results of interframe subtraction. Player contains
segments that have a similar appearance to balls and they can generate false positives.
Let us denote l as boundary length, S as area. Circularity of a segment is defined as:

C = 4πs/ l2. (3.11)

Segments are regarded as circular when their circularity is higher than the threshold.
Candidates without consecutive candidates in adjacent frames were eliminated (the
same as the algorithm in Fig. 3.3) after this process. Next, we computed the 3D
positions of the ball by triangulation. If there are multiple candidates in a frame, no

(a) 4138th (b) 4139th (c) 4140th (d) 4141st (e) 4142nd

(f) 4138th (g) 4139th (h) 4140th (i) 4141st (j) 4142nd

Fig. 3.6 Samples of the results of interframe subtraction. a–e are input images, and f–j are extracted
foreground
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candidates are computed in the frame. Finally, ball candidates in the world space can
be obtained.

3.6.4 Estimation of Bounce Time

First, we reconstruct the trajectories by using the method proposed by Yan et al. [7]
and smooth them with a Savitzky-Golay filter [19]. Next, we look for the time when
the vertical component of the direction of movement changed from going downward
to going horizontally or upward. This method cannot detect bounces when a player
hit a ball right after it bounced and the ball was occluded by a racket or a player.
However, this does not influence reconstructing the trajectories, since the period of
time between bounces and shots is short.

3.6.5 Experiments

Experiments were performed to verify whether our method could reconstruct 3D
trajectories and provide performance indicators. The subjects were experienced table
tennis players who executed ten rallies. The resolution of the video was 640 × 480
pixels, and the frame rate was 60 fps. RGB cameras and a table tennis court were
setup as shown in Fig. 3.7.

The reconstructed trajectory of a table tennis ball is shown in Fig. 3.8. The results
for estimating the bounce positions are summarized in Table3.1 where manually
measured data were used as the reference data.

Fig. 3.7 The experimental environment and world coordinate system of the system using two
RGB cameras. A corner denoted O in this figure is defined as the origin of world space. The plane
comprised of end lines and sidelines of the court is defined as X–Y plane. Vertical direction of a
court is defined as Z axis
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Fig. 3.8 Reconstructed trajectories with the system using two RGB cameras. Black line and gray
line indicate the curves reconstructed using trajectory plane, and without using trajectory plane,
respectively

Table 3.1 Results for estimating bounces

Indicator Value

Minimum error (mm) 7.3

Maximum error (mm) 298.3

Average error (mm) 56.5

Standard deviation (mm) 50.4

Recall (%) 91.9

Precision (%) 97.1

Errors are differences from ground truth recorded manually

If we do not use planar approximation, the shape of the trajectory could be unnat-
ural around impact due to the occlusion between players and the ball (the gray curve
in Fig. 3.8). Since our method is robust against occlusion by one viewpoint, the shape
of the trajectory is natural (the black curve in Fig. 3.8). The average error in bounce
positions, i.e., 56.5 ± 50.4mm (Table3.1), is attributed to inaccuracy in calibration
because ball detection and the trajectory plane were accurately estimated according
to the shape of the trajectory. This error was acceptable in actual practical use of
performance analysis. As we discussed in Sect. 3.2, coaches and players who con-
sider bounce positions generally refer to a 3 × 3 separated area of the half court and
conventional analysis provides accurate data. The short side of the separated area is
460mm,which is much greater than the error in our method. All the bounce positions
were correctly predicted in this experiment on the 3×3 scale. We could conclude
that the results using the system are sufficiently accurate to solve the problem with
conventional analysis.

However, we should note that we are required to setup the two RGB cameras,
synchronize them, and calibrate them. Although it could be acceptable and effective
in many cases, the usability is not optimal. The next section describes a system that
makes it possible to solve the issue of usability.
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3.7 System Using RGB-D Camera

3.7.1 System Architecture

As we mentioned in the Sect. 3.3, it is optimal to use an RGB-D camera from the
aspect of usability. Although current RGB-D cameras cannot track fast-moving balls
because of functional issues(e.g. low frame rates and long exposure times), these
would not be problems if we only targeted services.2 Moreover, developing the skill
of service is regarded as an important issue in table tennis. It would be useful for
players if there were a system to reconstruct the trajectory of services and provide
their quantitative features. In addition, there is the possibility that the capabilities of
RGB-D cameras will be improved and they will be able to track fast-moving balls
in the future.

We developed a system that provides the features of service trajectory using an
RGB-D camera. Fewer devices are required and it is easy to use. The flowchart
for the system is nearly the same as the one that uses two RGB cameras (Fig. 3.5).
However, the algorithms that are adopted in each process were different. The steps
are described in detail in the following subsections.

3.7.2 Detection of Table Corners

First, a planar model of a court are reconstructed by using the 3D positions of all
pixels in the depth images. The RGB-D camera is placed above the table, and the
major part of the image is a court. We can reconstruct the planar model using the
randomsample consensus (RANSAC) algorithm for this reason.We then detectwhite
lines on the reconstructed plane by using a Hough transform. Finally, four optimal
points are selected from the intersections of the white lines based on the area of the
quadrangle that is comprised of selected points.

3.7.3 Detection of Ball Candidates

Theball’s position in depth images are required to compute its 3Dpositions.However,
it is difficult to detect the table tennis ball in depth images because there are many
missing values and there is a great deal of noise in the depth images taken with the
RGB-D camera. We therefore detect the ball in the RGB images, define the range
of positions where it could be in a depth images, and detect it. The position in a

2 Players making serves in table tennis need to bounce the ball in their own court before they bounce
it in the opposite court. It is therefore difficult to score by increasing the velocity of the ball. This
is why many players mainly consider tactics with rotation and direction when serving.
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depth image calculated from the position in an RGB image using known geometric
relations could be inaccurate because the exposure of the RGB camera and the depth
camera are not synchronized. We therefore needed to detect the ball in RGB images
and depth images.

The method of detecting balls in RGB images is the same as that used in the
system using two RGB cameras: the elimination of large segments, the extraction of
moving objects, the extraction of high-intensity segments, and extraction based on
circularity.

A 2D trajectory in RGB images is then reconstructed by using the method pro-
posed by Yan et al. [7]. As we can see from Fig.3.9, the trajectory defines the range
of positions where the ball can be in a depth image. For example, when we look
for ball candidates in the i th frame of depth images, the range is defined as the cir-
cumscribed rectangle of the 2D trajectory from the i−1th to the i+1 frames, which
include specific size margins. Ball candidates are detected based on the area and the
circularity of segments. The closest one in the detected candidates is chosen. The
ball positions in the depth images provide the 3D coordinates of balls [23].

However, the ratio, expressed as a percentage, of successfully measured 3D posi-
tional data was about 20% in all frames that included the ball (Table3.2) in our
experiment. The ratio was low because there were many missing values in the depth
images taken with the RGB-D camera and the table tennis ball is small. The results
indicates that the RGB-D camera cannot robustly obtain the depth values of moving
table tennis balls.

Fig. 3.9 Detection of ball candidates in a depth image.Dotted curve is a 2D trajectory reconstructed
based on RGB images. Rectangle is the range of positions where ball can be, which was defined
with the trajectory. While segments were candidates, and the closest one was selected as ball
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Table 3.2 Results of recall ratio (%) of successfully measured 3D positional data for balls with
RGB-D camera

Indicator (%) Value

Minimum 10.3 (4/39)

Maximum 24.4 (10/41)

Average 20.7 (7.8/37.8)

Standard deviation 6.4

This table indicates RGB-D camera could not robustly obtain data from moving balls

3.7.4 Estimation of Bounce Time

We cannot use 3D positions of the ball for detecting bounces because there are too
few 3D positional data as we mentioned in the previous subsection. We therefore
detect bounces based on the 2D trajectory of the ball in RGB images, which have
already been obtained when we detected the ball in depth images. The field of view
can be assumed to be almost fixed. The bounce positions are the minimal values
vertical to the direction of movement in the trajectories. The direction of movement
in trajectories is determined according to the direction ofmovement of the ballwhen it
bounces or peeks. The temporal differentiation of the inner product of the successive
directions of movement of the ball takes a minimal value at peaks and bounces in the
trajectory.We detect peaks and bounces in the 2D trajectory of the ball using this fact,
and calculate the direction of movement in the trajectory by computing the average
direction of movement by the ball at bounces and peaks. Let us denote the direction
vector of the ball at i as vi , and the second order differential of the inner product
of adjacent directions of movement by the ball as ci,i−1, ci−1,i−2. The direction of
movement in 2D trajectory d is calculated as:

d = Σsi

|Σsi | (3.12)

where si =

⎧
⎪⎨

⎪⎩

0 if c′′
i−1,i−2 = 0

0 if c′′
i,i−1c′′

i−1,i−2 ≥ 0

vi otherwise

(3.13)

We rotate the trajectory to fit the direction of movement in the trajectory on the X
axis.We can then detect bounces by seeking the minimal value for the Y components
in the rotated trajectory. The service in table tennis bounces two times, i.e. first in
the serving player’s own court and then in the receiver’s court. The second bounce
position is used to estimate the trajectory plane because it is more important than the
first one in tactical analysis.
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3.7.5 Experiments

Experiments were carried out to verify whether the system could reconstruct the
3D trajectory of a service and provide information. The subjects were experienced
table tennis players who made six services. The resolution of the RGB and the depth
images were 640 × 480 pixels, and the frame rate was 30 fps. Microsoft Kinect was
placed 2.3m above the ground, opposite to the server, and used to capture videos.

The 3D trajectory of two services are shown in Fig. 3.10. The recall rates to
measure the 3D positions of balls with the RGB-D camera are listed in Table3.2.
Five out of six trial shots were successfully reconstructed, the same as in Fig. 3.10a, c.
The trajectory could not be reconstructed from measured positions without planar
approximation because too few 3D positions weremeasuredwith the RGB-D camera
(white spheres) as we can see from Fig. 3.10. Unfortunately, the accuracy of results
cannot be quantitatively evaluated in these experiments, but we expect the trajectory
to provide information that could be used for training purposes. However, one of
the reconstructed trajectories could not be successfully reconstructed, as we can see
from Fig. 3.10b, d. There were too few 3D positions of balls in the experiments.
Therefore, all the ball positions in the trajectory were projected onto one trajectory
plane. The projection is inappropriate for the service shown in Fig. 3.10b, d because

Fig. 3.10 Reconstructed 3D trajectory. This figure indicates trajectory 1 was successful and tra-
jectory 2 failed. a Trajectory 1. b Trajectory 2. c Trajectory 1. d Trajectory 2
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it rotated quickly and rapidly changed the direction of movement when it bounced.
We may be able to solve the problem by using RGB-D cameras whose frame rates
are higher than that of the Kinect because the problem just involves the amount of
3D positional data. Other RGB-D cameras should be considered for future systems.

3.8 Conclusion

We introduced an plane approximation-based approach of reconstructing the 3D
trajectories of a table tennis ball. The key feature of the proposed method was that
it was robust against failures in measuring 3D ball positions in some frames. A
system using two RGB cameras was developed based on the new method and it
was experimentally verified that it could provide accurate information for match
analysis. We also developed a system using an RGB-D camera to optimize usability
for practitioners. The system experimentally verified that it could provide accurate
information for service analysis. Although the system using the RGB-D camera
cannot currently track fast-moving or rotating balls, this will probably not be a
problem in the future because this issue depends on the capability of current RGB-D
cameras. In conclusion, it was possible to collect shot data from table tennis matches
without imposing heavy workloads by using the systems. Future issues involve using
the systems in practical scenarios that will contribute to make performance analysis
more useful for table tennis practitioners.
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Chapter 4
On-Field Testing and Evaluation
of a Goal-Line Technology System

Paolo Spagnolo, Pier Luigi Mazzeo, Marco Leo, Massimiliano Nitti,
Ettore Stella and Arcangelo Distante

Abstract Goal-LineTechnology (GLT) is a systemused in football game to establish
if the ball has completely crossed the goal line and contextually assisting referee in
awarding a goal or not. The first aim of GLT is not to replace the institutional role
of the officials, but rather to help them in highly critical situations where making
the correct decision is difficult. This work is focused on a real case study on a
Goal-Line Technology system. The chapter details the ball detection algorithm that
analyzes candidate ball regions in order to recognize the ball pattern. In order to
decide about the goal event occurrence, a decision-making approach by means of
camera calibration is developed. Differently from other GLT systems present in the
literature, this one has two main strengths: (i) it gives, as unquestionable proof, the
image video sequence that records the goal event when it occurs; (ii) it is noninvasive:
it does not require any change in the typical football devices (ball, goal posts, and
so on). Extensive sessions of experiments were performed on both real matches
acquired during the Italian Serie A championship, and specific evaluation tests by
using an artificial impact wall and a shooting machine for shot simulation. The
obtained experimental results are encouraging and confirm that the system could
help humans in ambiguous goal-line event detection.

4.1 Introduction

Soccer is the world’s most popular sport and an enormous business, and every match
is currently refereed by a single person who ‘has full authority to enforce the Laws
of the Game’. Therefore, each match is strongly influenced by referee calls and
a large number of controversies may arise. In most cases, these controversies are
inevitable since the rules of the game leave room for personal interpretations. How-
ever, the most glaring controversies are usually about referee calls for which no
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interpretation is required and about whether the ball has completely crossed goal
line or not (commonly referred to as “phantom goals”). History of soccer is full of
mistakes, starting from themost famous one (duringWorld Cup 1966 a very doubtful
goal was allowed to England against Germany Fig. 4.1a), and other very important
ones (World Cup 2010, again England versus Germany, a goal of England’s midfield
Lampard was disallowed Fig. 4.1b, as well as a goal of Ukraine’s Marko Devic in
Eurocup 2012 against England Fig. 4.1c, and Milan’s player Muntari against Juven-
tus in a relevant match in the Italian Serie A Championship Fig. 4.1d, just to cite
some examples). These ‘bad calls’ are shown in Fig. 4.1.

In cases like these, the referee’s call is influenced by, among other things, three
ineluctable factors:

• the referee’s position on the field: he is not aligned with the goal line and then a
parallax error affects his decision;

• the high speed of the ball that can reach up to 120km/h. It is impossible for human
visual and cognitive systems to estimate the position of such a moving object
continuously. In other words, since a human being can process up to 25 images

(a) Goal? No-Goal? We are still argu-
ing...

(b) World Cup 2010: disallowed goal

(c) Eurocup 2012: again a disallowed
goal

(d) Italian Serie A: another important
disallowed goal

Fig. 4.1 Examples of different controversial goals: a The most famous, England–Germany in the
world cup 1966; b Again England–Germany, World Cup 2010; c England–Ukraine, Euro cup 2012;
d Milan-Juventus (Italy), Serie A 2011–2012
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per second, the position of the ball between two consecutive observations can
significatively change (even more than a meter) and then intermediate positions
of the ball can only be inferred.

• the considerable distance (about 35–40m.) between the linemen and the goal post:
this makes it very hard to evaluate goal events with a resolution of about 1–2cm.

The only way to definitively avoid these kinds of controversies is to introduce a
“goal-line technology”, i.e., an automatic system to assist the referee in decisions
concerning goal events.

For this purpose, different technologies have been proposed. The earliest ones
were based on instant replay: in case of a controversial call about a goal event,
the referee (or an assistant) could stop the game and watch the images (acquired
from broadcast or dedicated cameras). This would slow down the game taking away
possible plays and annoying the audience. Thus, attention has recently turned to
technologies that are able to decide autonomously whether or not the ball has crossed
the goal line. One of the most promising approaches uses a magnetic field to track a
ball with a sensor suspended inside [9]. Thin cables with electrical current running
through them are buried in the penalty box and behind the goal line to make a grid.
The sensor in the ball measures the magnetic grids and relays the data to a computer
which determines if the ball has crossed the line or not. The main drawbacks of this
kind of technology are:

1. it cannot provide unquestionable proof of detected events;
2. it requires substantial modifications to the infrastructure of the stadium and game

component (ball, playing field, goalposts, ...).

For these reasons, the efforts of several companies and research institutes are
currently focused on the development of noninvasive goal-line technologies. In par-
ticular, vision-based systems appear to be very promising considering their capability
to provide a posteriori verification of the system’s operations [10].

In this chapter, a visual system is able to detect the goal event through real-time
processing of the acquired images and immediately provide the image sequence that
records the goal event under consideration is presented. The systemwas implemented
at the Friuli Stadium in Udine, Italy. It was tested both during real matches of the
Italian Serie A championship, and specific simulation sessions: in this case, the ball
was shot by a shooting machine in different contexts, as explained in detail in the
experimental results’ section, in order to validate the system in terms of both spatial
and temporal accuracy.

4.2 Related Works

In this section a brief overview of related work is presented. Firstly, some papers
facing ball detection and tracking issues are reported, then some pioneering systems
performing real-time analysis of soccer events are briefly outlined and discussed.
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The problem of ball detection in soccer images is very difficult since the ball
is represented by a small number of pixels and, moreover, it can have different
scales, textures, and colors. For this reason, most ball detection approaches are
based on an evaluation of the ball’s trajectory. The underlying idea is that the analy-
sis of kinematic parameters can point out the ball among a set of ball candidates
[15, 17, 20]. Trajectory-based approaches are generally off-line since the evaluation
of the kinematic parameters for all ball candidates requires a long period of obser-
vation. In [20], a trajectory based detection and tracking algorithm for locating the
ball is presented. In the first phase, a set of ball candidates is selected according to
ball size, color, and shape, and consequently a set of ball trajectories is extracted.
Then, studying the trajectory information, it is relatively easy to recognize the ball
as the most active object among the candidates in the soccer video. Possible false
positives, such as parts of players’ t-shirt or socks, do not move significantly during
the game. As well, in [13], several features such as the color, the size, the ratio of
the length, and the width of the ball shape are considered to extract ball candidates
in each frame, then a Viterbi decoding algorithm is applied to extract the optimal
path which is most likely to be the balls path in consecutive frames. Once the ball
is detected, the Kalman filter and template matching tracking procedure is started
using the ball location to update the template and to guide possible ball redirection.

In [15], hybrid techniques are used to identify the ball in medium and long shots.
Candidate ball positions are first extracted using shape and size, then motion infor-
mation is used to filter candidates in medium shots, whereas dynamic programming
is applied to search for the longest path of weighted graphs constructed for ball can-
didates in long shots. In [17], multiple fixed cameras are used for real-time modeling
of 3D ball trajectories. A motion-based thresholding process detects the candidate
balls, while a probability measure calculates the likelihood of which moving object
could represent a ball. Then, the 3D ball motion is modeled as a series of planar
curves. Reliable estimates are obtained by triangulating multiple views. Finally, the
ball trajectory ismodeled as one type of ballmovement: rolling, flying, in-possession,
and out of play.

Direct detection algorithms based on pattern recognition approaches have also
been proposed: they require zoomed images (the ball texture must be clearly visible)
and have to be reinitialized if the appearance of the ball varies greatly.

For this purpose, a neural network approach is used in [2] onvideo images acquired
by fixed cameras. A set of ball candidates is generated by using a Circular Hough
Transform; then different neural networks, trained under different light conditions,
are used to select the best candidate who contains the ball. The appropriate pre-
processing of the ball candidate images is selected in order to guarantee the best
performances of the ball recognition routine. Two opposite views of the ball are used
to evaluate the 3D ball trajectory and solve occlusion problems.

In recent years, few research groups have started working on visual frameworks
with the aim of recognizing real-time events.

This is a really challenging field of research for a number of reasons. First of
all, these systems also have to address problems associated with the time spent on
image acquisition, transmission, and processing (often the frame rate is even higher
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than for standard TV cameras). Furthermore, the ability to work autonomously for
several hours and under all environmental conditions are additional characteristics
required by these kinds of systems. In [3], the authors present a real-time visual
system for goal detection which can be used as a decision support by the referee
committee. Four fixed high-resolution cameras acquire 200 f/s that are elaborated by
four parallel processes to track the ball and reconstruct the 3D trajectory in order
to detect the frame in which the ball passes the goal mouth plane. Objects having
features such as circular contour and ball texture are searched for in the image and
are considered ball candidates. A set of neural networks, trained to recognize the ball
in different parts of the image and in different light conditions, are used to select the
most probable candidate who contains the ball. A system for automatic judgment of
offside events is presented in [7]. The authors propose the use of 16 cameras located
along both sides of the soccer field to cover the whole area. Player tracking and team
classification are used for offside line calculation; 3D ball trajectory reconstruction
allows play recognition; the integration of results from multiple cameras is used
for offside judgment. In [14], preliminary results on a small number of images for
offside analysis were presented; a method for ball, player and referee detection,
team identification, and field extraction is proposed. The differentiation between the
players of the two teams and the referee is based on the colors of the player uniforms
which are compared to three sets of colors manually selected by the user clicking on
the jersey of a single player fromeach team. Projecting the lines fromeach object onto
the global reference point obtained during the field extraction process, the system
evaluates the position of all players relative to one another. Six fixed cameras were
used in [4] to cover the whole field and to acquire image sequences from both sides
of the stadium. Player and ball tracking processes run parallel on the six image
sequences and extract the player and ball positions in real time. All the information
is projected onto a virtual field by a central supervisor. The players’ poses, extracted
from opposite views, are related to the ball trajectory in order to detect the player
who kicked the ball.

By considering the state of the art of goal-line monitoring systems, it is evident
that both research groups and commercial enterprises are working in the assembly
of a real useful system. It means that the problem is very complex and difficult
to be solved. Moreover, some parameters need to be considered, for example the
noninvasiveness of them on both the structures of the play field and the temporal flow
of the game. So, our effort is to propose a solution that respects these constraints,
providing acceptable results. In the following, firstly, a brief overview of the overall
system and the calibration procedure are presented (Sects. 4.3 and 4.4); then, the
motion segmentation approach for moving region selection is proposed (Sect. 4.5),
followed by the candidate ball procedure (Sect. 4.6) and the data fusion subsystem
(Sect. 4.7). Finally, experiments obtained on real tests performed both in real games
and simulation sessions are proposed (Sect. 4.8).
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4.3 Overview of the System

In Fig. 4.2a, the visual system is outlined. Six synchronized cameras are placed on
the stands of the stadium. For each side of the pitch, two of the three cameras have
their optical axes parallel to the goal frame, the remaining one is placed behind the
goal with its optical axis perpendicular to the goal frame. Each camera is connected
to a processor (node) that records and analyzes the acquired images. In Fig. 4.2b, a
schematic diagram of the processing steps executed by each node is shown.

The six processors are connected to a main node, which has the supervisor
function. The supervisor node has a decision-making function by combining the

Fig. 4.2 The scheme of the visual system (a), and a schematic diagram of the processing steps
executed by each Node (b)
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processing results coming from the cameras. The strategy is based on some heuristics
that perform data fusion evaluating the time space coherence of the ball’s 3D tra-
jectory. The processing results of the three corresponding nodes are compared and a
goal event probability function is evaluated.

4.4 System Calibration

First of all, it is necessary to do a calibration step for each node in which the
correspondences between the image plane and a plane in the 3D world are assessed.
This step is fundamental in determining the 3D position of the ball. In other words,
the homography transformation matrix is estimated by using Random Sample Con-
sensus for each node [5] in this step. Each homography transformation matrix Mi
relates the points on the image plane to the corresponding points on the 3D plane.
The only constraint to be considered when choosing the planes is that they must
not be perpendicular to the image plane of the associated camera. This calibration
needs to be done only once, after camera installation, and if the cameras remain in
place these measures are still valid for any subsequent matches. For the experiments
reported in this chapter, the calibration phase was carried out using nondeformable
steel structures: each structure defines a plane in the 3D world and specific markers
were used for the identification of the control points (see Fig. 4.3).

Fig. 4.3 The calibration phase was performed using nondeformable steel structures with specific
markers (black dots) for the identification of the control points
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4.5 Moving Object Segmentation

The segmentation of the image to extract moving objects is the first processing step
executed by each node. It is fundamental as it limits the ball detection to moving
areas and reduces computational time.

For this purpose a background subtraction-based segmentation algorithm was
implemented. The procedure consists of a number of steps. Firstly, a background
model has to be generated and then continuously updated to include lighting varia-
tions in the model. Then, a background subtraction algorithm distinguishes moving
points from static ones. The implemented algorithm uses themean and standard devi-
ation to provide a statistical model of the background. Detection is then performed
by comparing the pixel’s current intensity value with its statistical parameters, as
explained in several works on this topic (a good review can be found in [16]). The
particular context of the application imposes some constraints: first of all, players
are continuously on the pitch, so it is necessary to develop a background modeling
procedure that is able to handle this situation. Moreover, it is necessary to adapt the
model quickly to the variations in lighting conditions, which can rapidly and signif-
icantly modify the reference image, especially in cases of natural illumination (or
when artificial lights are turned on). In addition, it is necessary to avoid including
players in the backgroundmodel who remain in the same position for a certain period
of time (goalkeepers are a particular problem for goal detection as they can remain
relatively still when play is elsewhere on the pitch).

Starting from these remarks, it is evident that the first step of each background-
based algorithm is background modeling. This procedure, along with the updating
algorithm, is the core of a reliable segmentation procedure. Thus, here we focus our
attention on this phase; after the creation of a statistical model (in terms of mean
and standard deviation), the popular background subtraction approach suggested
in [1] is used for segmentation. The implemented modeling algorithm evaluates
the energy content for each point in a small temporal window: slow energy points
contribute to the statistical background model creation, while high energy points are
discarded. In the current temporal window, a point with a small amount of energy
is a static point; otherwise it corresponds to a nonstatic point, in particular it could
be a foreground point belonging to a foreground object present in the scene, or a
background point corresponding to a moving background object. A coarse-to-fine
approach for background modeling is applied in a size W (number of frames) sliding
window. The first image of eachwindow is the coarse backgroundmodel BC (x, y). In
order to have an algorithm able to create the required model at runtime, the mean and
standard deviation are evaluated at each frame, instead of building the model at the
end of a training period; then, the energy content of each point is evaluated over the
whole sliding window, to distinguish real background points from others. Formally,
for each frame the algorithm evaluates runtime approximations of mean (μ) and
standard deviation (σ ) (this approximation allows a simpler and faster incremental
algorithmwhich works in real time—α is the learning rate that balances the updating
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of statistical parameters, it varies in the range [0,1] and needs to be tuned according
to the light conditions):

μt (x, y) = αμt (x, y) + (1 − α)μt−1(x, y) (4.1)

σ t (x, y) = α|μt (x, y) − μt (x, y)| + (1 − α)σ t−1(x, y) (4.2)

only if the intensity value of that point is substantially unchanged with respect to
the coarse background model, that is:

|I t (x, y) − BC (x, y)| < th (4.3)

where th is a threshold experimentally selected. It depends strictly on the spectral
content of the image, which is related to the noise level, the gain, and the black level
of the sensor. The hardware used (the sensor and its thermoregulated case), jointly
with the trick of turning on the system some minutes before the game (to allow the
sensor to get up to the proper working conditions), permit this value to be considered
as static. This way, at the end of the first W frames, the algorithm evaluates the energy
content for each point as:

E(x, y) =
∫

t∈W

|I t (x, y) − BC (x, y)|2 (4.4)

The first fine model of background BF is generated as:

BF (x, y) =
{

(μ(x, y), σ (x, y)) if E(x, y) < th(x, y)

∅ if E(x, y) >= th(x, y)
(4.5)

A low-energy content means that the considered point is a static one and the
corresponding statistics are included in the background model, whereas high-energy
points, corresponding to foreground or moving background objects will not con-
tribute to the model. In all our experiments, the threshold th(x, y) was set to a level
of 10% of the mean energy content for a static point (a point is considered ad static
if its energy content in the examined window can be considered stable) in a window
of W frames, that is:

th(x, y) = 0.1 ∗ E(x, y) (4.6)

The whole procedure is iterated on another sequence of W frames, starting from
the frame W + 1. The coarse model of the background is now the frame W + 1, and
the new statistical values (Eqs. 4.1 and 4.2) are evaluated for each point, like the new
energy content (Eq.4.4). The relevant difference with (Eq.4.5) is that now the new
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statistical parameters are averaged with the previous values, if they are present; so,
the new formulation of Eq.4.5 becomes:

BF (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ(x, y), σ (x, y))

if E(x, y) < th(x, y) ∧ BF (x, y) = ∅

β ∗ BF (x, y) + (1 − β) ∗ (μ(x, y), σ (x, y))

if E(x, y) < th(x, y) ∧ BF (x, y) �= ∅

∅ if E(x, y) > th(x, y)

(4.7)

The parameter β is the classic updating parameter introduced in several works on
background subtraction [1, 18]. It allows the existent background model values to
be updated to the new light conditions in the scene. The modeling procedure stops
when a great number of background points have meaningful values:

#(BF (x, y) = ∅) ∼= 0 (4.8)

As mentioned above, this complex procedure allows the system to detect only
moving points. This is very important for both limiting computational time and
reducing false alarms. Starting from this observation, it should be noted that a low
number of false positives is admitted (they influence only the computational time),
while false negatives have to be mandatorily avoided (they could be a miss-detection
of the ball!). For this reason, the sliding window-based modeling approach was also
used for the updating procedure, allowing the system to adapt itself to variation in
light conditions, but avoiding including players (and ball) in the reference model.

The temporal window W is correlatedwith the frame rate of the acquiring devices:
in our experiments, at a frame rate of 200 fps, we set this value to 1,000, which
corresponds to a sliding window of 5 s. This time interval is long enough to avoid
including the ball in the model, but short enough to be sensitive to both temporal (for
example, cloud effects) and permanent (artificial lights turning on/off) variations in
light conditions.

Finally, a connected components analysis detects the blobs in the image. A con-
nectivity analysis was implemented which scans the entire image, and then groups
and labels neighboring pixels into regions. For each pixel, the 8-neighboring pixels
are considered and put together into a list until no more connected points are found.
The search is repeated until all the moving points have been considered. After this
step, the position in the image and the number of points belonging to each mov-
ing region, are known. This way, regions with an area less than a given threshold
are considered as noise and removed, whilst remaining regions are evaluated in the
following steps.

The proposed segmentation model is general-purpose and can be used in other
contexts, with the only expedient to properly set the value of W (according to the
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frame rate, as explained above). For example, we have also used this model in an
indoor surveillance system for the detection of intruders.

4.6 Ball Detection and Tracking

An automatic method that detects ball position in each image is the central step to
building the vision system. In the soccer world, a great number of problems have to
be managed, including occlusions, shadowing, misdetection (the incorrect detection
of objects similar to the ball), and, last but not least, real-time processing constraints.
The ball detection method has to be very simple, fast, and effective as a great number
of images per second must be processed. This kind of problem can be addressed
by considering two different detection systems: geometric approaches that can be
applied to match a model of the object of interest to different parts of the image in
order to find the best fit; or example-based techniques that can be applied to learn
the salient features of a class of objects from sets of positive and negative examples.

This method uses two different techniques together in order to take advantage of
their peculiarities: first of all, a fast circle detection (and/or circle portion detection)
algorithm, based only on edge information, is applied to the segmented image (the
motion image that is the output of the previous step) to limit the image area to the
best candidate containing the ball; second, an appearance based distance measure is
used to validate ball hypothesis.

In Fig. 4.4, a schematic representation of the implemented procedures and rea-
sonings aiming at detecting the ball in the acquired image is reported.

The Circle Hough Transform (CHT) aims to find circular patterns of a given
radius R within an image. Each edge point contributes a circle of radius R to an
output accumulator space. The peak in the output accumulator space is detected
where these contributed circles overlap at the center of the original circle. In order to
reduce the computational burden and the number of false positives typical of theCHT,
a number of modifications have been widely implemented in the last decade. The use
of edge orientation information limits the possible positions of the center for each
edge point. This way only an arc perpendicular to the edge orientation at a distance
R from the edge point needs to be plotted. The CHT, as well as its modifications, can
be formulated as convolutions applied to an edge magnitude image (after suitable
edge detection). We have defined a circle detection operator that is applied over all
the image pixels, which produces a maximal value when a circle is detected with a
radius in the range [Rmin, Rmax]:

u(x, y) =
∫ ∫

D(x,y)
e(α, β) · O(α − x, β − y)dαdβ

2π(Rmax − Rmin)
(4.9)
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Fig. 4.4 A schematic representation of the implemented procedures and reasonings aiming at
detecting the ball in the acquired image. Each new image is investigated to detect the ball; if the ball
candidate is very close to existing ball models then it is validated and used for the updating of the
reference set. Otherwise, it is discarded. The reference set is: built bymeans of cinematic evaluations
on ball candidates; updated after each reliable ball detection; cleaned if no ball is detected for a
long period of time

where the domain D(x, y) is defined as:

D(x, y) = {(α, β) ∈ �2|R2
min ≤ (α − x)2 + (β − y)2 ≤ R2

max} (4.10)

e is the normalized gradient vector:

e(x, y) =
[

Ex (x, y)

|E | ,
Ey(x, y)

|E |
]T

(4.11)

and O is the kernel vector

O(x, y) =
[
cos(tan−1(y/x))√

x2 + y2
,
sin(tan−1(y/x))√

x2 + y2

]T

(4.12)
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The use of the normalized gradient vector in (4.9) is necessary in order to have
an operator whose results are independent from the intensity of the gradient in each
point: we want to be sure that the circle detected in the image is the most complete in
terms of contours and not the most contrasted in the image. Indeed, it is possible that
a circle that is not well contrasted in the image gives a convolution result lower than
another object that is not exactly circular but has a greater gradient. The kernel vector
contains a normalization factor (the division by the distance of each point from the
center of the kernel), which is fundamental to ensuring that we have the same values
in the accumulation space when circles with different radii in the admissible range
are found. Moreover, normalization ensures that the peak in the convolution result
is obtained for the most complete circle and not for the greatest in the annulus. As a
final consideration, in Eq.4.1 the division by (2π(Rmax− Rmin)) guarantees the final
result of our operator in the range [−1,1] regardless of the radius value considered
in the procedure. The masks implementing the kernel vector have a dimension of
(2Rmax + 1)(2Rmax + 1) and they represent the direction of the radial vector scaled
by the distance from the center in each point. The convolution between the gradient
versor images and these masks evaluates how many points in the image have a
gradient direction concordant with the gradient direction of a range of circles. Then
the peak in the accumulator array provides the center of the subimage with higher
circularity that is finally passed to the validation step. Examples of subimages given
as input to the ball recognition process are shown in Fig. 4.5.

The validation step assesses the similarity of appearance between the candidate
region and a set of positive examples stored previously. The similarity is evaluated by
computing the Bhattacharyya distance among histograms (reduced to 64 bins): this

Fig. 4.5 Some images of the
training set: in the first row
there are some negative
examples of the ball, in the
second row some positive
examples
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measure is not computationally time-consuming but at the same time it is sufficiently
robust as it is invariant to the rotation of the target (textured balls are considered) and
also to slight changes in scale. One of the strengths of the proposed system is that
the construction and updating of the set of reference examples for validation takes
place automatically.

Initially, the set of reference examples is empty and all the moving objects with
the highest value of circularity (greater than a weak threshold) and with an area com-
patible with that of the ball are taken into account. Their displacement on the image
plane frame after frame is then evaluated in order to estimate somemotion parameters
(specifically direction and velocity). The candidate regions are then included in the
reference set if the associated motion parameters are compatible with those that only
a ball can have in case of a shot on goal (direction toward the goal and plausible num-
ber of pixel displacement between frames). At the same time, the relative distance
into the image plane between the candidate regions and the other moving object in
the scene is evaluated: if the relative distance is low and almost consistent, the ball
candidate is discarded since it has likely been produced by incorrect segmentation
of players’ bodies.

The same criteria are used to add new examples to the reference set, additionally
considering the value of themeasurement of similaritywith the preexisting examples.
The maximum number of examples in the reference set is 100 and it is managed as
a circular buffer.

The reference set is reinitialized when circular objects with peculiar motion para-
meters and low similarity (i.e., higher distances in the space of histograms) to the
examples in the reference set appear in a number of consecutive frames. This way the
introduction of a new type of ball or sudden and substantial changes in lighting con-
ditions (due to clouds or floodlights) can be handled automatically. This procedure
is graphically exploited in Fig. 4.4.

This way, we are able to automatically build a reference set by considering only
cinematic evaluations. This set is then used for the ball validation procedure bymeans
of the evaluation of the Bhattacharyya distance between candidates and the reference
set. However, the evaluation of cinematic parameters cannot be used as a stand-alone
procedure for the ball detection: the ball is often very close to other objects (players
and goalposts) and the evaluation of its cinematic parameters can be unreliable. So,
we build the reference set (that is very very important) only if we are almost sure
that the object is a ball (no false positives are admissible at this step), and then we
use these reference images to validate the ball candidates in more ambiguous images
(that are typical near the goal line).

The ball has to be detected in more consecutive images in order to be sure that
a true positive has been found. In this case, a different and more reliable procedure
for selecting candidate moving regions is used (tracking phase). A ball position
probabilitymap, covering all the points of the processing image, is created as follows:

P(x, y) = e(− |(x−|̃x+Vx sign(cos θ)|)+(y−|̃y+Vy sign(sin θ)|)|2
2σ2

)

σ
√
2π

(4.13)
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where (̃x, ỹ) is the last known ball position and

σ = RpVmaxn

RcmT
(4.14)

where V and θ are the local velocity and the direction of the ball in the image plane,
respectively, Rp is the Ball radius in pixels, Rcm is the Ball radius in centimeters,
Vmax is the maximum admissible velocity of the ball (in cm/sec), T is the camera
frame rate, and n is the number of frames between the past and actual ball detection
(1 if, in this case, the two frames are consecutive). Thus, the maximum probability
value is related to the point where, on the basis of past information about the ball’s
movement, the ball should be found (predicted point). Theprobability value decreases
exponentially as the distance from the predicted point becomes close to 0 for points
far from the last known ball position that cannot be reached considering themaximum
speed limits (usually 120km/h). In the following frames, the probability map is used
to select candidate moving regions (like those with a probability greater than zero).
This way, the ball can be detected both in case of merging with players and in case
of partial occlusions. The ball’s velocity, direction, and probability map are always
updated using the proper value for n (i.e., the number of frames between the actual
frame and the last ball detection). If the ball is not detected for three consecutive
seconds (i.e., n becomes greater than T*3), past information is considered outdated
and the ball detection procedure starts again considering all the candidate ball regions
in the whole image.

4.7 Supervisor Node

The supervisor node has a decision-making function according to the processing
results coming from the nodes. For each frame the processing units send several
items of information to the supervisor, including the last frame number processed,
the position of the ball (if detected), and the number of consecutive frames in which
the ball has been correctly tracked. It should be noted that even if the images are
synchronized in the acquisition process, the processing results are not necessarily
synchronized, since each node works independently from the others. Moreover, a
node may jump some frames having accumulated a significant delay during the
processing.When the supervisor receives the results of three nodes for a given frame,
or when it detects that synchronized data obtained cannot be retrieved for a given
frame, the supervisor processes the obtained information to evaluate the occurrence
of a goal event.

For this purpose, it is necessary to provide an accurate evaluation of the 3Dposition
of the ball, and this requires a calibration procedure (described in Sect. 4.4). The 3D
position is necessary because only the 2D information is not sufficient to evaluate
if the ball crossed the goal line inside the goal posts or not. It can be overcome by
considering the 3D ball position and its trajectory before crossing the goal line.
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If the ball position is evaluated in the image plane, we project the ball onto the
ground plane by means of the homographic transformation. Then we can build the
line connecting this point on the ground with the corresponding one in the 2D image.
This is done for all cameras, so we can find the 3D position of the ball by finding
the intersection between these lines. This intersection provides the estimate of the
ball position in the real-world coordinate system. In practice, this process entails
uncertainty, so corresponding lines of sight may not meet in the scene. Furthermore,
it is likely that in certain moments it is not possible to see the ball by one or more
cameras because of occlusions, for example created by the players, the goalkeeper,
or the goalposts. For these reasons, a special procedure for estimating the 3D position
of the ball was introduced. If the ball is visible in only 2 cameras, the 3D distance
between the two projection lines is firstly computed. Then, if this distance is smaller
than a selected threshold (typically about the size of the diameter of the ball, i.e.,
22cm), the two projection lines are considered as referring to the same object (dealing
with possible errors of the detection algorithms of the ball which are described in
Sect. 4.6) and then the midpoint of the common perpendicular to the two projection
lines is chosen as an estimate of the 3D position of the ball. If the ball is visible
in all three cameras, the mutual 3D distance among the three projection lines is
calculated. The two projection lines with shorter distance are then considered the
most reliable and this leads the calculation to the previous case. We are aware that
different approaches have been proposed in literature to handle the 3D position
estimation issue by triangulation [6, 11, 12] but we have not considered using them
because of the difficulties of their implementation and their high computational costs
that make them unsuitable for a real-time system that must process a large number
of frames per second.

Finally, if the ball is only in a single camera, its 3D position can be estimated
if some previous temporally close 3D positions are available. In this case, a linear
filter is used to predict the next 3D position and then to estimate the projection lines
of the missing views. In other words, when possible, the 3D trajectory of the ball is
evaluated and it is used for the estimation of the 3D position of the ball also when
only one view is available.

4.8 Experimental Results

A prototypal system was installed at the Friuli Stadium in Udine. The system uses
MikrotronMC1362 cameras with a spatial resolution of 1024× 768 pixels at 504 fps
and Xeon QuadCore E5606 2,13Ghz as the processing node. Each node is equipped
with aX64-CL iProPCI framegrabber capable of acquiring images fromoneMedium
Camera Link™ camera and performing image transfers at rates of up to 528MB/s.

The calibration has been done by means of a thedolite during the installation of
the system, and periodically checked to avoid alterations and interference. The error
introduced by the calibration step has been carefully evaluated: it is negligible along
the most important direction (orthogonal to the plane of the goal), while it is about
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10cm in the other two directions (the one orthogonal to the ground plane, and the
one orthogonal to the camera image plane). By considering the size of the goal posts
(12cm), the calibration error may generate uncertainty in the decision only in case
of shots very close to the goal posts.

The system was extensively tested during real “Serie A” championship matches
and specific experimental sessions (making use of the impactwall, slide, ball shooting
machine, etc.) were conceived to evaluate goal event detection accuracy. Thus, both
the system’s reliability in the real context of a soccer match and its performance
in very stressful sessions of shots executed using a ball shooting machine (which
also allows repeatable results to be obtained) were tested. Specifically, a (portable)
replica of the described system has also been installed in a Stadium in Zurich for
additional massive tests, in totally different conditions (in terms of both natural and
artificial light conditions, at different weather conditions, in presence of a different
turf—artificial instead of natural grass).

An observation about experimental tests is mandatory: a comparison with other
approaches is unfeasible, due to the complexity of thewhole system. It could be inter-
esting a comparison with commercial/industrial systems [8, 10, 19], but it is practi-
cally impossible: commercial companies do not release technical details about their
systems, so they cannot be replicated. Moreover, the complexity of both hardware
and software solutions make the replication of the systems practically impossible. A
real comparison of the performance of several systems (including the proposed one)
has been done by an external evaluation authority, but each competitor received only
the results it obtained, ignoring the results of the other ones.

4.8.1 Benchmark Results

Here, we focus our attention on benchmark sessions performed outside the match
(in two different stadiums, as described above). In detail, four different experiments
were carried out:

• Impact Wall shots (Fig. 4.6a, b): during this test, an artificial wall was placed
behind the goal line in two different positions: in the first, the ball position at the
moment of impact is “No Goal”, while in the second it is “Goal” (ground truth).
The ball was shot by a shootingmachine at different speeds. This way the accuracy
of the system to detect the goal event in terms of both spatial resolution and mostly
temporal resolution (at high ball speed, even at 200 fps, there are just 1–2 frames
to correctly detect the goal event) can be tested.

• Sled (Fig. 4.6c): in this test, the ball is positioned on a mobile sled, and slowly
moved from a nongoal to a goal position. The system’s precision to detect the
exact ball position (in terms of cm over the goal line) was tested.

• Free Shots: during these experiments, several shots were performed by means of
the shooting machine, in different positions with respect to the goal: left, right,
middle, just under the horizontal crossbar, and just over the ground; each of them at
different ball speeds.We tested whether the system fails to detect a specific portion
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Fig. 4.6 Example of different tests. a Impact wall position for no goal simulation. b Impact wall
position for goal simulation. c Sled. d Outer net (note that the ball is over the net)

of the goal area. Moreover, the reliability of the 3D reconstruction procedure (to
separate shots inside and outside the goal posts) was tested.

• OuterNet (Fig. 4.6d): in this session, specific shots on the outer net were performed
with the final position of the ball inside the volumetric area of the goal, but arriving
from outside the goal posts. We tested the system’s capability of tracking the ball
accurately (even in 3D), by separating balls that arrived in the goal volumetric
area from a “goal trajectory” (inside the goal posts) from balls that arrived from
an external trajectory.

In order to show the weak impact of light conditions, some tests were also per-
formed at night, in the presence of artificial stadium light. In Table4.1 the final results
are reported. The Impact Wall sessions gave good results, with an overall success
rate of more than 91%. The evaluation authority gave us specific values about perfor-
mance, and they considered acceptable a success rate greater than or equal to 90%.
The experiments were carried out by shooting the ball at different speeds, impacting
the wall in different positions.

All shots in the Outer Net session were correctly detected; for the Sled session,
we reported the mean distance over the goal line detected by the system, while a
more detailed analysis of this data, to emphasize that the system mostly detected the
event within 2cm, is reported in Table4.2.
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Table 4.1 Overall
performance of the GLT
system during extensive
experimental sessions

Test Results

Impact wall— daylight 374/398—93.97%

Outer net—daylight 153/155—98.71%

Free shots—daylight 310/324—95.68%

Impact wall—night 153/168—91.07%

Free shots—night 177/202—87.62%

Sled—daylight Average of 3.3cm

Table 4.2 Sensibility
evaluation of the system in
the sled test

Distance (cm) Results (%)

0–2 34/60—56.66

2–3 14/60—23.33

3–5 7/60—11.66

>5 5/60—8.33

The Free Shots session realized different results according to test lighting condi-
tions: in the daylight test a success rate of over 95%was obtained. On the contrary, in
the night test, an 87.62% success rate was obtained, in the same test. This was due to
the different performances of the algorithms. First of all, the background subtraction
together with computational aspects: if the segmentation algorithm, due to artificial
light flickering, detects a number of moving points greater than reality, the following
algorithms have to process more points causing a growing computational load, which
leads to problems with memory buffers, and subsequently some frames are discarded
(it should be noted that all our experiments were performed in real time). To confirm
this, this test session was off-line processed again, obtaining results comparable to
those in daylight. It can be concluded that this drawback can easily be overcome, by
simply optimizing the code and/or improving hardware with more performing com-
ponents. The same observations are valid for the night session of the Impact Wall test.

Figure4.7 reports images acquired during the experimental phase and correspond-
ing to goal events in an Impact Wall session (just 2 cameras are reported for this
experiment, the third one is evidently occluded and cannot help in any way).

Fig. 4.7 Some images acquired during the experimental phase. a Camera 1. b Camera 2
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Table 4.3 Performance in
real conditions

Goal events True positives False negatives False positives

72 goals 72 0 3

4.8.2 Real Match Results

In order to evaluate the system’s robustness in real uncontrolled conditions, tests were
conducted during real matches of the Italian Serie A Championship; in particular, the
system was tested during 38 matches played at the Friuli Stadium in Udine (Italy)
in two different Championships. Table4.3 reports the goal detection results. In a
real context, the important events (goals) are limited in number so the benchmark
sessions reported in the previous section are mandatory in order to test the system
exhaustively. On the other hand, in a benchmark session, it is really hard to introduce
and simulate all possible events that could happen during a real match: the presence
of players in the scene that could alter the detection of the ball (some body parts, like
legs and shoulders, could be erroneously detected as the ball); the presence of logos
and/or particular combinations of colors on the players’ uniforms that can influence
the ball detection procedure; the possibility that players randomly cross the goal line
(goalkeepers often do); the presence of objects in the goal area (towels, bottles, etc.)
that could lead to misclassifications.

As it can be noted, during the 38 matches there were 72 goal events that were
correctly detected (no misdetections) and just 3 false positive occurrences.

In Fig. 4.8, one of the goal events correctly detected (even if the ball was occluded
by one camera and the ball appearance is not very different from the player’s jersey) is
shown.During this experimental phase, in addition to goal events, a very controversial
situation occurred: the goalkeeper saved a shot when the ball was on the goal line
(see Fig. 4.9). The system evaluated that situation as No goal and the image clearly
evidences that it was right.

Fig. 4.8 One of the 72 goal events occurred during the test on real matches
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Fig. 4.9 A controversial situation occurred during a real match and rightly evaluated by the system
as no goal

Fig. 4.10 A situation in which the system erroneously detected a goal

One of the three false positives also occurred during a complex defensive action:
four defenders were close to the goal line, trying to protect the goal and one of them
kicked the ball away clearly before it crossed the line (see Fig. 4.10). Afterward, a
defender crossed the goal line and, unfortunately, the system recognized the pattern of
the ball on his shorts (whose positionwas also consistent with the trajectory predicted
by the ball tracking procedure). Cases like this (although rare) could happen again,
and certainly need further investigation.
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4.8.3 Computational Evaluations

An important aspect of this system is the real-time implementation: a quick response
ismandatory for the systemactually to be used. For this reason,we evaluated the delay
in response for each test. In Fig. 4.11, a summary of the response time is reported.
Each angular section refers to a time interval of the delay in response (yellow for a
delay less than 1s, brown for a delay between 1 and 1.5 s, and so on) with the relative
percentage. As evidenced, considering the realistic threshold of 2 s for the system’s
response (that correspond to yellow + brown + blue sectors), it can be noted that in
about 80% of the total number of experiments the response time was acceptable.

Fig. 4.11 Plot of the response time. The same colors have been used for the same time intervals
(yellow for a delay less than 1s, blue for a delay between 1.5 and 2s, purple for a delay between 2
and 3s, green for a delay between 3 and 5s, and red for a delay over 5 s)
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The only exception, as remarked previously (see Sect. 4.8.1), is for the nightly Free
Shots test.

It should be noted that just minor code optimizations were made, without any
kind of hardware ones. So, considering that algorithms can be further improved and
optimized, it can be concluded that the real-time constraint can be achieved with a
reasonable effort.

4.9 Conclusions

In this chapter, we explain our efforts in the realization of a real-time system for
goal-line monitoring. We demonstrate that the use of technology to support referees
in football matches is possible. The system we propose is very complex and requires
several steps to work properly: the hardware installation, the calibration of cameras,
the real-time processing of the image stream, the fusion and interpretation of data
coming from each processing node.

We tested our system both in real matches and specific simulation sessions, with
the intention of simulating all possible situations that can occur during a match. The
obtained results are encouraging, and confirm that this system can be used for referee
assistance. However, some issues need to be further investigated. In particular, the
calibration procedure can be refined to reduce error in 3D position of the ball. The
algorithms of motion segmentation and ball detection gave reliable results, but they
need to be intensively tested in real contexts, because troubles can occur is a specific
game (due to light conditions, ball appearance, uniform of players, and so on) even
if the system worked properly in all precedent matches.

Acknowledgments The authors thankLiborioCapozzo andArturoArgentieri for technical support
in the setup of the hardware used for data acquisition and processing.
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Part II
Where are the Players?



Chapter 5
Occlusion Detection via Structured
Sparse Learning for Robust
Object Tracking

Tianzhu Zhang, Bernard Ghanem, Changsheng Xu
and Narendra Ahuja

Abstract Sparse representation based methods have recently drawn much attention
in visual tracking due to good performance against illumination variation and occlu-
sion. They assume the errors caused by image variations can bemodeled as pixel-wise
sparse. However, in many practical scenarios, these errors are not truly pixel-wise
sparse but rather sparsely distributed in a structured way. In fact, pixels in error
constitute contiguous regions within the object’s track. This is the case when signif-
icant occlusion occurs. To accommodate for nonsparse occlusion in a given frame,
we assume that occlusion detected in previous frames can be propagated to the
current one. This propagated information determines which pixels will contribute
to the sparse representation of the current track. In other words, pixels that were
detected as part of an occlusion in the previous frame will be removed from the
target representation process. As such, this paper proposes a novel tracking algo-
rithm that models and detects occlusion through structured sparse learning. We
test our tracker on challenging benchmark sequences, such as sports videos, which
involve heavy occlusion, drastic illumination changes, and large pose variations.
Extensive experimental results show that our proposed tracker consistently outper-
forms the state-of-the-art trackers.
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5.1 Introduction

For sports video analysis, knowing the location of each player on the field at each
point of the game is crucial for sports experts (e.g., coaches, trainers, and sports ana-
lysts) to better understand complex player formations and trajectory patterns, which
ultimately depict the effectiveness of their teams ‘strategies as well as their oppo-
nents.’ Being able to effectively track players can enable the development of reliable
activity recognition and higher level processing modules for sports video analysis.
Such a tracking building block will have a positive impact on how sports experts ana-
lyze game footage, how content providers identify/display particular sports events
and highlights accompanied with relevant advertisements, and how end users browse
and query large collections of sports video. Moreover, visual tracking is a classical
problem in computer vision; it is a core task for many applications [44, 48, 50]
e.g., automatic surveillance, robotics, human computer interaction, action recogni-
tion, etc. It is also very challenging due to appearance variations such as occlusion,
illumination change, significant motion, background clutter, etc. Over the years, a
significant amount of effort has been made to overcome these challenges. To survey
many of these algorithms, we refer the reader to [32, 41].

A truly robust tracking method must be able to handle occlusion. However,
modeling occlusion is not straightforward. There exists a significant amount of work
that addresses this issue through statistical analysis [16, 34], robust statistics [1, 7],
patch matching [39], the use of multiple cameras [12, 31], context information [40],
model analysis [13], and learning occlusion with likelihoods [20]. Recently, sparse
representation has been successfully applied to visual tracking [29, 46, 47, 49] under
the particle filter framework as an attempt to alleviate the occlusion problem in track-
ing. In thesemethods, particles are randomly sampled around the states of the tracked
object according to a zero-mean Gaussian distribution. At time t , n particles are sam-
pled. The observation (pixel color values) of each particle in the frame is denoted as:
x ∈ R

d . In the noiseless case, each particle x is represented as a linear combination
z of templates that form a dictionary D = [d1, d2, . . . , dm], such that x = Dz. D
can be constructed from an overcomplete sampling of the target object, based on an
initial bounding box at the start of tracking, and dynamically updated to maintain an
up-to-date target appearance model.

Inmany visual tracking scenarios, targets are often partially occluded or corrupted
by noise. Occlusion is unpredictable as it may affect any part, or occlude any amount,
of the target. The occluded object can be either a connected region or a number of
randomly scattered pixels, though the former is more likely in natural images. In
addition, only a sparse number of these templates is required to reliably represent
each particle, which encourages z to be sparse. To incorporate these two pieces of
information, each particle x should be represented as a sparse linear combination,
while allowing for sparse error e to encode occlusion: x = Dz + e. The sparse
coefficients z and sparse error e are recovered by solving the following �1 minimiza-
tion problem. The current tracking result is usually chosen to be the particle x with
minimum reconstruction error w.r.t. dictionary D.
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min ‖z‖1 + ‖e‖1 s.t. x = Dz + e (5.1)

This approach has demonstrated to be robust against partial occlusions, which
improves tracking performance. However, it suffers from the following drawbacks:
(1) The error (due to occlusion) is not sparse for many tracking scenarios, as exem-
plified in Fig. 5.1. Because a portion of the target is significantly occluded, we need
to discard that portion for the sparsity assumption to still hold. (2) This kind of
algorithm does not exploit any prior information about the occlusion, especially the
important property that occlusion is spatially contiguous. Bymodeling error pixels as
structured and sparse, the representation is made more accurate to model occlusion
and better defined.

To deal with the above drawbacks, we propose a new particle filter tracker that
involves tracking by occlusion detection, thus appropriately named the TOD tracker.
In each frame, particles are represented in a structured sparse learning framework,
which exploits prior information about the location of occlusion and its spatial conti-
guity. This prior is propagated fromprevious frames in the formof an occlusionmask.
The main goal is to show how this prior information can be effectively incorporated
into the sparse representation framework, thus improving its robustness against more
types of realistic occlusions. Compared with existing methods, the contributions of
this work are twofold: (1) We propose a structured sparse learning method for occlu-
sion detection in object tracking. It exploits structure information to make occlusion
both sparse and spatially continuous for more robust performance. To the best of our
knowledge, this is the first work to use occlusion prior information through structured
sparsity in object tracking. (2) Compared to the popular L1 tracker [29] that does not
model occlusion explicitly, our method is generic. In fact, it yields the L1 tracker as
a special case.

The chapter is organized as follows. In Sect. 5.2, we summarize work most related
to ours. The particle filter algorithm is reviewed in Sect. 5.3. The proposed tracking
approach and optimization methodology are presented in Sects. 5.4 and 5.5, respec-
tively. In Sect. 5.6, we report and analyze extensive experimental results.

Fig. 5.1 Frames from two different video sequences portraying significant occlusion. The ground
truth track of each object is designated in green. Clearly, occlusion renders the tracking problem
very difficult. However, certain assumptions about the structuredness of occlusion (e.g., spatial
contiguity) can be exploited to alleviate its effect on tracking performance
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5.2 Related Work

Visual tracking is an important topic in computer vision and it has been studied
for several decades. There is extensive literature, and we refer to [36, 37, 41] for a
more extensive review. In this section, we review and focus on previous work, from
which our proposed tracking method borrows some ideas. In fact, we provide a brief
overview of visual tracking and sparse representation for object tracking.

5.2.1 Visual Tracking

In general, visual tracking methods can be categorized into two groups: generative
and discriminative.

5.2.1.1 Generative Visual Tracking

Generative tracking methods adopt an appearance model to describe the target
observations, and the aim is to search for the target location that has the most
similar appearance to this model. Examples of generative methods include eigen-
tracker [5], mean shift tracker [9], appearance model based tracker [17], context-
aware tracker [38], incremental tracker (IVT) [35], fragment-based tracker (Frag) [1],
and VTD tracker [21]. In [5], a view-based representation is used for tracking rigid
and articulated objects. The approach builds on and extends work on eigenspace rep-
resentations, robust estimation techniques, and parametrized optical flow estimation.
The mean shift tracker [9] is a traditional and popular method, which successfully
copes with camera motion, partial occlusions, clutter, and target scale variations.
In [17], a robust and adaptive appearance model is learned for motion-based tracking
of natural objects. The model adapts to slowly changing appearance, and it maintains
a natural measure of the stability of the observed image structure during tracking.
The context-aware tracker [38] considers the context of the tracked object for robust
visual tracking. Specifically, this method integrates into the tracking process a set
of auxiliary objects that are automatically discovered in the video on the fly by data
mining. The IVT tracker [35] seeks an adaptive appearance model that accounts for
appearance variation of rigid or limited deformable motion. Although it has been
shown to perform well when the target object undergoes lighting and pose variation,
this method is less effective in handling heavy occlusion or nonrigid distortion as a
result of the adopted holistic appearance model. The Frag tracker [1] aims to solve
the partial occlusion problem by using a representation that is based on histograms
of local patches. The tracking task is carried out by combining votes of matching
local patches using an object template. However, this template is not updated and
therefore it is not expected to handle appearance changes due to large variations
in scale and/or shape deformation. The VTD tracker [21] effectively extends the
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conventional particle filter framework with multiple motion and observation models
to account for appearance variation caused by change of pose, lighting, and scale as
well as partial occlusion. However, as a result of its adopted generative representation
scheme that is not equipped to distinguish between target and background patches,
it is prone to drift.

5.2.1.2 Discriminative Visual Tracking

Discriminative tracking methods formulate object tracking as a binary classification
problem, which aims to find the target location that can best distinguish the tar-
get from the background. Examples of discriminative methods are online boosting
(OAB) [14], semi-online boosting [15], ensemble tracking [2], co-training track-
ing [25], onlinemultiview forests for tracking [22], adaptivemetric differential track-
ing [18], and online multiple instance learning tracking [3]. In the OAB tracker [14],
online AdaBoost is adopted to select discriminative features for object tracking.
Its performance is affected by background clutter and can easily drift. The ensem-
ble tracker [2] formulates the task as a pixel-based binary classification problem.
Although this method is able to differentiate between target and background, the
pixel-based representation is rather limited and thereby limits its ability to handle
occlusion and clutter. Moreover, the MIL tracker [3] extends multiple instance learn-
ing to an online setting for object tracking. Although it is able to address the problem
of tracker drift, this method does not handle large nonrigid shape deformations well.
In [8], a target confidence map is built by finding the most discriminative RGB color
combination in each frame. Furthermore, a hybrid approach that combines a gener-
ative model and a discriminative classifier is proposed in [43] to capture appearance
changes and allow the reacquisition of an object after total occlusion. Also, global
mode seeking can be used to detect and reinitialize the tracked object after total
occlusion [42]. Another approach uses image fusion to determine the best appear-
ance model for discrimination and then a generative approach for dynamic target
updates [6].

5.2.2 Sparse Representation for Object Tracking

Recently, sparse linear representation based on the particle filter framework has been
introduced to object tracking and has been shown to achieve significant tracking per-
formance [4, 23, 26, 29, 30, 45, 47, 51]. In the L1 tracker [29], a tracking candidate
is represented as a sparse linear combination of object templates and trivial templates.
Sparse representation is computed by solving a constrained �1 minimization problem
with nonnegativity constraints to solve the inverse intensity pattern problem during
tracking. The results show good performance at a high computational expense due
to the �1 minimization. In fact, the computational cost grows proportionally with
the number of particle samples. In [30], an efficient L1 tracker with minimum error
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bound and occlusion detection is proposed. The minimum error bound is quickly
calculated from a linear least squares equation, and serves as a guide for particle
resampling in a particle filter framework. Without loss of precision during resam-
pling, themost insignificant samples are removed before solving the computationally
expensive �1 minimization problem. In [26], dynamic group sparsity is integrated
into the tracking problem and high-dimensional image features are used to improve
tracking robustness. In [23], dimensionality reduction and a customized orthogonal
matching pursuit algorithm are adopted to accelerate the L1 tracker [29]. However,
this method may reduce the tracking performance sometimes [23]. In [4], a very fast
numerical solver based on the accelerated proximal gradient approach is developed to
solve the �1 norm minimization problem with guaranteed quadratic convergence. In
[45], compressive sensing theory is adopted for real-time tracking. In [51], a sparsity-
based discriminative classifier and a sparsity-based generative model are designed
for tracking. Zhang et al. [47, 49] propose a multitask learning approach to jointly
learn the particle representations for robust object tracking. Our proposed method
is inspired by the success of these �1 minimization based trackers, and we will also
adopt the sparsity property for robust tracking.

5.3 Particle Filter

A particle filter [11] is a Bayesian sequential importance sampling technique for
estimating the posterior distribution of state variables characterizing a dynamic sys-
tem. It provides a convenient framework for estimating and propagating the posterior
probability density function of state variables regardless of the underlying distribu-
tion through a sequence of prediction and update steps. Let st and y∗

t denote the state
variable describing the parameters of an object at time t (e.g., motion features) and its
observation, respectively. In the particle filter framework, the posterior p(st |y∗

1:t ) is
approximated by a finite set of n samples

{
si

t

}n
i=1 (called particles) with importance

weightswi . The particle samples si
t are independently drawn from an importance dis-

tribution q(st |s1:t−1, y∗
1:t ), which is set to the state transitional probability p(st |st−1)

for simplicity. In this case, the importance weight of particle i is updated by the
observation likelihood as: wi

t = wi
t−1 p(y∗

t |si
t ).

Particle filters have been extensively used in object tracking [41], and we also
employ particle filters to track the target object. Similar to [29], we assume an affine
motionmodel between consecutive frames. Therefore, the state variable st consists of
the six affine transformation parameters (2D linear transformation and translation).
By applying an affine transformation using st as parameters, we crop the region of
interest y∗

t from the image and normalize it to the same size as the target templates in
our dictionary. The state transition distribution p(st |st−1) is modeled to be Gaussian,
with the dimensions of st assumed independent. The observation model p(y∗

t |st )

reflects the similarity between a target candidate and target templates in the dictionary.
In this work, p(y∗

t |st ) is inversely proportional to the reconstruction error obtained
by linearly representing y∗

t using the template dictionary.
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5.4 Tracking by Occlusion Detection (TOD)

Occlusion is one of the most important challenges for visual tracking. In this section,
we give a detailed description of our particle filter based tracking method, which
makes use of occlusion prior information in a structured sparse learning framework
to represent particle samples.

5.4.1 Occlusion Detection via Structured Sparsity

Occlusion detection is very important and difficult for tracking. In this section, we
show how we incorporate a sparsity-inducing norm that also encodes prior structural
information (spatial contiguity) regarding the support of the error incurred when
sparse linear representation is used to describe particles. We expect that such struc-
tural information renders a more accurate and robust representation model that can
handle occlusions in object tracking. In our particle filter based tracking method,
particles are randomly sampled around the states of the tracked object according
to a zero-mean Gaussian distribution. Similar to [29], we assume an affine motion
model between consecutive frames. Therefore, the state of a particle st consists of the
six affine transformation parameters (2D linear transformation and translation). By
applying an affine transformation based on st , we crop the region of interest y∗

t from
the image and normalize it to the same size as the target templates in our dictionary.
The state transition distribution p(st |st−1) is modeled to be a zero-mean Gaussian,
with the dimensions of st independent. The observation model p(y∗

t |st ) reflects the
similarity between a particle and target templates in the dictionary. In this chapter,
p(y∗

t |st ) is inversely proportional to the reconstruction error obtained by linearly
representing y∗

t using the template dictionary.
We sample n particles at each frame, and the observation (pixel color values)

of the i th particle is denoted in vector form as: x ∈ R
d (for simplicity, we ignore

the subscript i). The observation x of a particle is represented as a sparse linear
combination z of m dictionary templates D ∈ R

d×m , as shown in Eq. (5.1). D is
updated dynamically to handle frame-to-frame changes in target appearance (The
dictionary update issue is addressed later). The popular L1 tracking work [29],
which represents each particle by solving an �1 LASSO problem, can be generalized
as shown in Eq. (5.1).

min
z,e

‖z‖1 + ϕ(e) s.t. x = Dz + e, (5.2)

In the L1 tracker, the regularizer ϕ(•) on e is chosen to be ‖e‖1. This regularization
scheme encourages the error (e.g., occlusion) to be pixel-wise sparse. This assump-
tion fails in many tracking scenarios as exemplified in Fig. 5.1. It also does not
incorporate the structural information inherent to occlusion, namely spatial contigu-
ity. Basically, the �1-norm regularization treats each entry (pixel) in e independently.
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It does not take into account any specific structures or possible relations among sub-
sets of the entries. To encode this structured prior information, we assume that the
spatial support of the error is contiguous. This can be enforced by modeling the error
as spatially smooth. Also, this error can be assumed to be sparse, if any significant
occlusion is detected and removed beforehand. Note that we assume that some pix-
els in a particle are occluded and those are determined by an occlusion mask that is
propagated from frame-to-frame. At every frame, this mask is used to determine the
pixels, from which the particle representation z is computed. This representation is
used to estimate the error at each pixel. By thresholding this error with a predefined
threshold, the occlusion mask is updated and propagated to the next frame.

To incorporate pairwise relationships between pixels in the particle, we adopt a
graph-guided fused LASSO framework that explicitly takes into account the complex
dependency structure represented as a graph, whose nodes are pixels in the particle.
We assume that the d pixels in each particle are organized in a graph G with a set
of nodes V and edges E . In this chapter, we adopt a simple strategy for constructing
such a graph, whereby an edge exists between any pair of neighboring pixels and
its weight is proportional to the correlation of their intensity values and inversely
proportional to the Euclidean distance between them. More sophisticated methods
can be employed, but they are not the focus of this chapter. Letwml denote the weight
of an edge (m, l) ∈ E that represents the strength of correlation between pixels m
and l. Therefore, to encourage spatial contiguity between particle pixels, we employ
a graph-guided fusion penalty, which extends the standard LASSO by fusing the
em and el if (m, l) ∈ E . With the above notation, we formulate the representation
problem as a structured sparse �1 problem as follows.

min
z,e

‖z‖1 + λ‖e‖1 + γ
∑

(m,l)∈E
wml‖em − el‖1

s.t. x = Dz + e,
(5.3)

where λ and γ are trade-off parameters that control the complexity of the model. A
larger value for γ leads to a greater fusion effect. The wml weighs the fusion penalty
for each edge such that em and el for highly correlated pixels have a largewml . Details
of solving this problem are provided in Sect. 5.5.

Discussion: In this chapter, we propose a generic formulation for robust object
tracking using structured sparse learning as shown in Eq. (5.3). By defining γ differ-
ently, different object trackers are obtained. When γ = 0, TOD becomes the popular
L1 tracker [29]. In this way, the popular L1 tracker [29] is a special case of our
formulation. To the best of our knowledge, introducing the structured information in
occlusion detection for tracking has not been proposed in any of the previous works.
In Fig. 5.2, we present an example of how our TOD tracker works as compared to the
L1 tracker. In the top row, we show a result of representing particle x using structured
sparse learning instead of traditional sparse learning (used in L1 tracking), whose
result is shown in the bottom row. Clearly, the error generated by TOD leads to a
high response at the actual location of the occlusion, while it is missed by traditional
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Fig. 5.2 Schematic example of TOD. The representation z of particle xw.r.t. dictionaryD is learned
by solving Eq. (5.3). Notice that z is sparse in general, i.e., a few dictionary templates are used to
represent x. The first row is our TOD, and the second row is the popular L1 tracker. Compared with
the L1 tracker, our methods can obtain much more continuous occlusion detection result

sparse learning. It is evident that by enforcing spatial contiguity on the error val-
ues, the occlusion can be better localized. This error is thresholded to produce an
occlusion mask that is propagated to the next frame.

5.4.2 Dictionary Template Update

In the literature, a large body of work has been proposed to use object templates for
visual tracking [27]. Target appearance remains the same only for a certain period of
time, but eventually the object templates are no longer an accurate representation of its
appearance.Afixed appearance template is not sufficient to handle changes in appear-
ance due to occlusion or changes in illumination and pose. Also, if the templates are
updated too often, small errors are introduced each time a template is updated, errors
accumulate, and the tracker may drift from the target. Many approaches have been
proposed over the years to address the drift problem [19, 28]. In this chapter, we do
so by dynamically updating templates in D.

In order to initialize the object and background dictionaries, we sample equal-
sized patches at and around the initial position of the object. In our experiments, we
shift the initial bounding box by 1–3 pixels in each direction, thus resulting inm = 20
object templates as in [29]. Note that m is a user-defined parameter. All templates
are normalized. To each object template, we allocate a weight ωi that is indicative of
how representative the template is. In fact, the more a template is used to represent
tracking results, the higher is its weight. Next, we describe howwe use these weights
to update D. As mentioned earlier, the tracking result at instance t is the particle
zi that is best represented by D such that i = argmink=1,...,n (‖xk − Dzk‖2). The
weight of an object template in D is updated depending on howmuch that template is
used in representing zi . If zi is sufficiently represented (up to a predefined threshold)
by the dictionary, then there is no need to update it. Otherwise, the current tracking
result replaces the object template that has the smallest weight. The weight of this
new template is set to the median of the current normalized weight vector ω. This
template update scheme is summarized in Algorithm 1.We have two criteria: (1) The



102 T. Zhang et al.

Algorithm 1: Dictionary Template Update
1: Predefined threshold ε1 and ε2
2: y∗ is the newly chosen tracking target and zi its representation. Set Δdi = ‖xi − Dzi ‖2 and

simi = sim(D, y∗), where sim is the maximum similarity between y and all elements in D.
3: ω is the current weight vector of templates in D
4: Update weights according to the coefficients of the target templates: ωk ← ωk exp(zi (k))

5: if (simi < ε1 & Δdi > ε2) then
6: r ← argmink=1,...,mO ωk
7: D(:, r) ← y∗, /*replace template with y∗ */
8: ωr ← median(ω), /*replace weight*/
9: end if
10: Normalize ω such that ‖ω‖1 = 1

similarity simi between the current tracking result and template should be smaller
than ε1, which avoids updating templates frequently and thus avoids tracker drift;
Once the current tracking result leads to a big variance, we add it to the dictionary
by replacing it with the ‘least’ used dictionary template; (2) The error Δdi should be
smaller than ε2, which means we update the dictionary template if only if there is no
occlusion; In our experiments, ε1 and ε2 are set to be 0.6, and 0.7, respectively.

5.5 Optimization

In this section, we provide a detailed description of howEq. (5.3) is solved efficiently.
First, we rewrite the graph-guided fusionLASSOproblem inEq. (5.3), using a vertex-
edge incident matrix W ∈ R

|E |×d , as follows:

∑

(m,l)∈E

wml‖em − el‖1 = ‖We‖1

where each row in W corresponds to an edge in the graph. If we label each edge with
a linear index, we can define W formally as below:

W j,k =
⎧
⎨

⎩

wml i f j = (m, l) and k = m
−wml i f j = (m, l) and k = l
0 otherwise

Therefore, the overall penalty in Eq. (5.3) including both LASSO and graph-
guided fusion penalty functions can be written as ‖Be‖1, where B = [

λW; γ I
]

and I ∈ R
d×d denotes an identity matrix. Then, the structured sparsity problem in

Eq. (5.3) is converted into the following problem:

min
z,e

‖z‖1 + ‖Be‖1 s.t. x = Dz + e (5.4)
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To solveEq.5.4,we introduce two slackvariables and add twoequality constraints,
thus converting it into Eq. (5.5).

min
z,e

‖z1‖1 + ‖f‖1 (5.5)

such that: x = Dz2 + e; z2 = z1; f = Be

This transformed problem can be minimized using the conventional Inexact Aug-
mented Lagrange Multiplier (IALM) method that has attractive quadratic conver-
gence properties and is extensively used in matrix rank minimization problems [33].
IALM is an iterative method that augments the traditional Lagrangian function with
quadratic penalty terms. This allows closed form updates for each of the unknown
variables. By introducing augmented lagrange multipliers (ALM) to incorporate the
equality constraints into the cost function, we obtain the Lagrangian function in
Eq. (5.6) that we show, in what follows, can be optimized through a sequence of
simple closed form update operations (refer to Eq. (5.7)).

L(z1−2, y1−3, u1−3)

= ‖z1‖∗ + ‖f‖1
+ tr

[
yT
1 (x − Dz2 − e)

]
+ u1

2
‖x − Dz2 − e‖2F

+ tr
[
yT
2 (z2 − z1)

]
+ u2

2
‖z2 − z1‖2F

+ tr
[
yT
3 (f − Be)

]
+ u3

2
‖f − Be‖2F (5.6)

⇒ min
z1−2,y1−3,u1−3

L(z1−2, y1−3, u1−3) (5.7)

y1, y2, and y3 are lagrange multipliers, and u1 > 0, u2 > 0, and u3 > 0 are three
penalty parameters. The above problem can be solved by either exact or inexact
ALM algorithms [24]. For efficiency, we choose the inexact ALM, whose details we
outline in Algorithm (2). Its convergence properties can be proven similar to those
in [24]. In fact, both IALM is an iterative algorithm that solves for each variable in
a coordinate descent manner. In other words, each iteration of IALM involves the
updating of each variable, with the other variables fixed to their most recent values.
Consequently, we obtain five update steps corresponding to the five sets of variables
we need to optimize for. Note that Steps 1–5 all have closed form solutions.

Step 1: [Update z1] Updating z1 requires the solution to the optimization prob-
lem in Eq. (5.8). This solution can be computed in closed form in Eq. (5.9), where
Sλ

(
zi j

) = sign(zi j )max
(
0, |zi j | − λ

)
is the soft-thresholding operator, and zi j is

the j th element of vector z.

z∗
1 = argmin

z1

1

u1
‖z1‖∗ + 1

2

∥∥∥∥z1 −
(

z2 + 1

u2
y2

)∥∥∥∥
2

F
(5.8)
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⇒ z∗
1 = S 1

u1

(
z2 + 1

u2
y2
)

(5.9)

Step 2: [Update f] f is updated by solving the optimization problem in Eq. (5.10)
with the closed form solution shown in Eq. (5.11).

f∗ = argmin
f

1

u3
‖f‖1 + 1

2

∥∥∥∥f −
(

Be + 1

u3
y3

)∥∥∥∥
2

F
(5.10)

⇒ f∗ = S 1
u3

(
Be + 1

u3
y3
)

(5.11)

Step 3: [Update e] e is updated by solving the optimization problem in Eq. (5.12)
with the closed form solution shown in Eq. (5.13).

e∗ = argmin
e

tr [yt
1(x − Dz2 − e)] + u1

2
‖x − Dz2 − e‖2F

+ tr [yt
3(Be − f)] + u3

2
‖Be − f‖2F (5.12)

⇒ e∗ = (
BT B + I

)−1
G , (5.13)

where G = x − Dz2 + 1
u1

y1 − BT
(

1
u3

y3 − f
)
.

Step 4: [Update z2] z2 is updated by solving the optimization problem in
Eq. (5.14) with the closed form solution shown in Eq. (5.15).

z2∗ = argmin
z2

tr [yt
1(x − Dz2 − e)] + u1

2
‖x − Dz2 − e‖2F

+ tr [yt
2(z2 − z1)] + u2

2
‖z2 − z1‖2F (5.14)

⇒ z2∗ = (
DT D + I

)−1
G , (5.15)

where G = DT (x − e + 1
u1

y1) + z1 − 1
u2

y2.

Step 5: Update Multipliers y1, y2: We update the Lagrange multipliers in
Eq. (5.16), where ρ > 1.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = y1 + u1(x − Dz2 − e)
y2 = y2 + u2(z2 − z1)
y3 = y3 + u3(f − Be)
u1 = ρu1; u2 = ρu2; u3 = ρu3

(5.16)
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Algorithm 2: Structured sparse learning for occlusion detection (Solving Eq
(5))

Input : data x, parameters λ, γ , and ρ

Output: z

Initialize z2 = 0, y1 = 0, y2 = 0, y3 = 01
while not converged do2

fix other variables and update z1 [Eq (9)]3
fix other variables and update f [Eq (11)]4
fix other variables and update e [Eq (13)]5
fix other variables and update z2 [Eq (15)]6
update multipliers and parameters [Eq (16)]7
Update final solution z ← z28

end9

The IALM algorithm that solves Eq. (5.5) is shown in Algorithm (2), where con-
vergence is reached when the change in objective function or solution z is below a
user-defined threshold ε = 10−3. Empirically, we find that our IALM algorithm is
insensitive to a large range of ε values. In our implementation, u1 = u2 = u3.

Computational Complexity: For the proposed TOD, it just uses the soft-
thresholding operator, and is also very fast. This complexity is on par with that of
other fast particle-based tracking algorithms. In comparison, the computational com-
plexity of the L1 tracker [29], which uses a sparse linear representation similar to our
proposed tracker, is at leastO

(
nd2

)
, since the number of dictionary templates (object

and trivial) is (m + 2d) and n Lasso problems are solved independently. Clearly, our
method is more computationally attractive than L1 tracker. When m = 21, n = 400,
and d = 32×32, the average per-frame run-time for TOD and L1 trackers are about
5 s and 6min, respectively.

5.6 Experimental Results

In this section, we do experimental results that validate the effectiveness and effi-
ciency of our TOD method. We also make a thorough comparison between TOD
and state-of-the-art tracking methods where applicable. We compile a set of 10 chal-
lenging tracking sequences to evaluate TOD. The sequences are sports videos and
general videos include challenging appearance variations due to changes in pose,
illumination, scale, and occlusion. Most of them involve various types of partial
occlusions or multiple occlusions. We compare our TOD method to 6 recent and
state-of-the-art trackers denoted as: L1 [29], RCT [45], MIL [3], IVT [35], Frag [1],
and OAB [14]. We implemented them using publicly available source codes or
binaries provided by the authors. They were initialized using their default para-
meters. In our implementation, the initial position of the target is selected man-
ually, and we shift the initial bounding box by 1–3 pixels in each dimension,
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thus resulting in m = 21 target templates D (similar to L1 tracker [29]). All our
experiments are done using MATLAB on a 2.66GHZ Intel Core2 Duo PC with
18GB RAM. For all experiments, we model p (st |st−1) ∼ N (0, diag(σ )), where
σ = [0.005, 0.0005, 0.0005, 0.005, 3, 3]T . We set the number of particles n = 400.
In Algorithm2, we set λ = 1 and γ = 5. Next, we give a qualitative and quantitative
analysis of TOD, and compare it against the 6 baseline methods. Our experiments
show that TOD produces more robust and accurate tracks.

5.6.1 Qualitative Comparison

The qualitative comparison results are shown in Figs. 5.3 and 5.4, which show track-
ing results of the 7 trackers on a subset of the videos. The details are introduced
as follows. In the AF1 sequence, a player is tracked with appearance changes due
to camera motion. Tracking results for frames {10, 162, 300, 400} are presented in
Fig. 5.3a. IVT and MIL start to drift around frame 162. Due to changes in appear-
ance, OAB and L1 start to undergo target drift from frame 300. Frag starts to fail
after frame 400. RCT can track the target through the whole sequence; however,
this tracker is not as robust or accurate as the TOD tracker. For the AF2 sequence,
the player is subject to changes in illumination and pose. Based on the results in
Fig. 5.3b, OAB, RCT, and L1 start to drift from the target at frame 200, while MIL
and Frag drift at frame 277 and finally lose the target. IVT tracks the target quite
well with a little drift. However, the target is successfully tracked throughout the
entire sequence by TOD. In So1 shown in Fig. 5.3c, a player with white color is
tracked. The results at 4 frames are shown in Fig. 5.3c. Because there is only minor
occlusion by other players, most of the methods can track the face accurately except
Frag, which drifts around frame 170. The So2 sequence contains abrupt object and
camera motion with significant scale changes, which cause most of the trackers to
drift as shown in Fig. 5.3d. TOD, L1, and RCT handle these changes well. Compared
with L1, TOD obtains much better performance, which shows that harnessing local
structure between pixels is useful for object tracking. In the So3 sequence, tracking
results for frames {1, 27, 92, 230} are presented in Fig. 5.3e. Frag and IVT start to
drift around frame 27 and 92, respectively. Due to changes in lighting and camera
motion, most of the trackers drift including L1 and O AB. TOD, MTT, and RCT
can track the target through the whole sequence; however, the proposed TOD tracker
shows the best performance.

On the faceocc2 sequence, the results are shown in Fig. 5.4a. Most trackers start
drifting from the man’s face when it is almost fully occluded by the book. Because
the L1 and TOD methods explicitly handle partial occlusions, and update the object
dictionary progressively, they handle the appearance changes in this sequence very
well. Fig. 5.4b shows tracking results for the girl sequence. Performance on this
sequence exemplifies the robustness of TOD to occlusion (complete occlusion of the
girl’s face as she swivels in the chair) and large pose change (the face undergoes
significant 3D rotation). TOD and L1 are capable of tracking the target during the
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(a)

(b)

(c)

(d)

(e)

Fig. 5.3 Tracking results of 7 methods on 5 sports video sequences. Frame numbers are denoted
in red and the 7 tracking results (bounding boxes) are color-coded in each frame a AF1 b AF2
c So1 d So2 e So3
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(a)

(b)

(c)

(d)

(e)

Fig. 5.4 Tracking results of 7 methods on 5 general video sequences. Frame numbers are denoted
in red and the 7 tracking results (bounding boxes) are color-coded in each frame a faceocc2 b girl
c onelsr1 d onelsr1 e tud_crossing
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entire sequence. Other trackers experience drift at different time instances. Fig. 5.4c
shows tracking results for the onelsr1 sequence. In this sequence, partial occlusion
happens, and it is much more easier. Therefore, many trackers (except OAB) can
track the target through the whole video sequence. In the onelsr2 sequence (refer to
Fig. 5.4d), the walking woman is partially occluded by a walking man. IVT, MIL,
Frag, OAB, and RCT lose the target woman, start tracking the man when partial
occlusion occurs around frame 200, and are unable to recover from this failure. TOD
and L1 track thewomanquitewell. In the tud_crossing sequence, the target is severely
occluded by multiple humans as shown in Fig. 5.4e. RCT and MIL start to drift
around frame 32. Due to multiple occlusions, IVT starts to undergo target drift from
frame 83. Other trackers, TOD, L1, and Frag can track the target through the whole
video; however, among all of the trackers, the TOD shows the best performance.

5.6.2 Quantitative Comparison

To give a fair quantitative comparison among the 7 trackers, we obtain manually
labeled ground truth tracks for all the sequences. Most of the ground truth can be
downloaded with the sequences. Tracking performance is evaluated according to the
average per-frame distance (in pixels) between the center of the tracking result and
that of ground truth as used in [3, 10, 29]. Clearly, this distance should be small.
In Fig. 5.5, the average center distance for each tracker over the 10 sequences is
plotted. TOD consistently outperform the other trackers in all sequences except for
AF2 and onelsr1, where they obtain very similar results to IVT. OAB is effected by
background clutter and easily drifts from the target. MIL performs well except under
severe illumination changes. RCT is not stable on several video sequences, especially
those that contain occlusion and illumination variations. Frag and L1 handle partial
occlusion well, but tend to fail under severe illumination and pose changes. IVT
is hardly affected by parameter settings and obtains good results in the absence of
severe illumination changes. TOD can consistently produce a smaller distance than
other trackers. This implies that TOD can accurately track the target despite severe
occlusions and pose variations.

To demonstrate the effectiveness of our TOD, we compare it with the L1 and RCT
trackers, which are the most related trackers to ours based on sparse learning and
have shown state-of-the-art performance [29, 45]. Based on the results in Fig. 5.5,
TOD outperform the L1 tracker and RCT. This is primarily due to the use of structure
information for occlusionmodeling, whichmakes TOD robust to occlusion problem.
In addition, about the computational cost, TOD is much more efficient than L1 as
discussed in Sect. 5.5.
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Fig. 5.5 Average distance of 7 trackers applied to 10 sequences

5.7 Conclusion

In this chapter, we propose a novel tracking method that allows for occlusion model-
ing and detection via structured sparse learning. By considering the structural infor-
mation inherent to occlusion (e.g., spatial contiguity), the proposed TOD is much
more robust for tracking under occlusion. The structured sparse learning problem is
solved using an efficient IALMmethod. We show that the popular L1 tracker [29] is
a special case of our formulation. Also, we extensively analyze the performance of
our tracker on challenging real-world video sequences and show that it outperforms
6 state-of-the-art trackers. In the future, we will do research on how to embed the
temporal information to model occlusion in our framework.
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Chapter 6
Detecting and Tracking Sports Players with
Random Forests and Context-Conditioned
Motion Models

Jingchen Liu and Peter Carr

Abstract Player movements in team sports are often complex and highly correlated
with both nearby and distant players. A single motion model would require many
degrees of freedom to represent the full motion diversity of each player and could
be difficult to use in practice. Instead, we introduce a set of Game Context Fea-
tures extracted from noisy detection data to describe the current state of the match,
such as how the players are spatially distributed. Our assumption is that players
react to the current game situation in only a finite number of ways. As a result,
we are able to select an appropriate simplified motion model for each player and
at each time instant using a random decision forest which examines characteristics
of individual trajectories and broad game context features derived from all current
trajectories. Our context-conditioned motion models implicitly incorporate complex
interobject correlations while remaining tractable. We demonstrate significant per-
formance improvements over existing multitarget tracking algorithms on basketball
and field hockey sequences of several minutes in duration containing 10 and 20
players, respectively.

6.1 Introduction

Multitarget tracking has been a difficult problem of broad interest for years in
computer vision. Surveillance is perhaps the most common scenario for multitar-
get tracking, but team sports is another popular domain that has a wide range
of applications in strategy analysis, automated broadcasting, and content-based
retrieval. Recent work in pedestrian tracking has demonstrated promising results
by formulating multitarget tracking in terms of data association [1, 5, 8, 20, 25,
28, 30, 32]. A set of potential target locations are estimated in each frame using
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an object detector, and target trajectories are inferred by linking similar detections
(or tracklets) across frames. However, if complex intertracklet affinity models are
used, the association problem becomes NP-hard.

Tracking players in team sports has three significant differences compared to
pedestrians in surveillance. First, the appearance features of detections are less dis-
criminative because players on the same team will be visually similar. As a result,
the distinguishing characteristics of detections in team sports are primarily posi-
tion and velocity. Second, sports players move in more erratic fashions, whereas
pedestrians tend to move along straight lines at a constant speed. Third, although
pedestrians deviate to avoid colliding with each other, the motions between pedes-
trians are rarely correlated in complex ways (some scenarios, like sidewalks, may
contain a finite number of common global motions). The movements of sports play-
ers, on the other hand, are strongly correlated both locally and globally. For example,
opposing players may exhibit strong local correlations when ‘marking’ each other
(such as one-on-one defensive assignments). Similarly, players who are far away
from each other move in globally correlated ways because they are reacting to the
same ball (Fig. 6.1).

Fig. 6.1 Motion Models. A player’s future motion is contingent on the current game situation. The
global distribution of players often indicates which team is attacking, and local distributions denote
when opposing players are closely following each other. We use contextual information such as
this to create a more accurate motion affinity model for tracking players. The overhead views of
basketball and field hockey show the input detections and corresponding ground truth annotations.
Player trajectories are strongly correlated with both nearby and distant players
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Simple, independent motion models have been popular for pedestrian tracking
because they limit the complexity of the underlying inference problem [8]. However,
the models may not always characterize the motion affinity between a pair of tracklets
accurately. Brendel et al. [5] modeled intertarget correlations between pedestrians
using context, which consisted of additional terms in the data association affinity
measure based on the spatiotemporal properties of tracklet pairs. Following this
convention, we will describe correlations between player movements in terms of
game context. Much like the differences between the individual target motions in
surveillance and team sports, game context is more complex and dynamic compared
to context in surveillance. For example, teams will frequently gain and lose possession
of the ball, and the motions of all players will change drastically at each turnover.

Because a player’s movement is influenced by multiple factors, the traditional
multitarget tracking formulation using a set of independent autoregressive motion
models is a poor representation of how sports players actually move. However, motion
affinity models conditioned on multiple targets (and that do not decompose into
a product of pairwise terms) make the data association problem NP-hard [8]. In
this work, we show how data association is an effective solution for sports player
tracking by devising an accurate model of player movements that remains tractable
by conditioning on features describing the current state of the game, such as which
team has possession of the ball. One of our key contributions is a new set of broad
game context features (GCF) for team sports, and a methodology to estimate them
from noisy detections. Using game context features, we can better assess the affinity
between trajectory segments by implicitly modeling complex interactions through
a random decision forest involving a combination of kinematic and game context
features. We demonstrate the ability to track 20 players in over 30 min of international
field hockey matches, and 10 players in 5 min of college basketball.

6.2 Related Work

Recent success in pedestrian tracking has posed multitarget tracking as hierarchi-
cal data association: long object trajectories are found by linking together a series
of detections or short tracklets. The problem of associating tracklets across time
has been investigated using a variety of methods, such as the Hungarian algorithm
[10, 21], linear programming [11], cost flow networks [30], maximum weight inde-
pendent sets [5], continuous-discrete optimization [4], and higher order motion mod-
els [8]. Data association is often formulated as a linear assignment problem where
the cost of linking one tracklet to another is some function of extracted features
(typically motion and appearance). More recent work (discussed shortly) considers
more complex association costs.

Crowds are an extreme case of pedestrian tracking where it is often not possible
to see each individual in their entirety. Because of congestion, pedestrian motions
are often quite similar and crowd tracking algorithms typically estimate a finite set
of global motions. Often, the affinity for linking two tracklets together depends on
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how well the hypothesized motion agrees with one of the global motions. References
[1, 32] solve tracking in crowded structured scenes with floor fields estimation and
Motion Structure Tracker, respectively. Reference [23] uses a Correlated Topic Model
for crowded, unstructured scenes.

Team sports is another relevant domain for multitarget tracking [24], with algo-
rithms based on particle filters being extremely popular [6, 9, 14, 16, 18, 27]. How-
ever, results are quite often demonstrated only on short sequences (typically less
than two minutes). In contrast, only a small amount of work has investigated long-
term sports player tracking. Nillius et al. [19] generated a Bayes network of splitting
and merging tracklets for a long 10-minute soccer sequence, and found the most
probable assignment of player identities using max-margin message passing. Kumar
and Vleeschouer proposed discriminative label propagation [2] and Shitrit et al. use
multicommodity network flow for tracking multiple people [26].

In both pedestrian and player tracking, object motions are often assumed to be
independent and modeled as zero displacement (for erratic motion) and/or constant
velocity (for smooth motion governed by inertia). In reality, the locations and motions
of sports players are strongly correlated. Pairwise repulsive forces have been used in
multitarget tracking to enforce separability between objects [3–5, 12, 29]. Recently,
multiobject motion models have been used in pedestrian tracking to anticipate how
people will change their trajectories to avoid collisions [20], or for estimating whether
a pair of trajectories have correlated motions [5]. In team sports, Kim et al. [13]
estimated motion fields using the velocities of tracklets to anticipate how the play
would evolve, but did not use the motion fields to track players over long sequences.
Zhang et al. [31] augmented the standard independent autoregressive motion model
with a database of a priori trajectories manually annotated from other games.

6.3 Hierarchical Data Association Tracking

Our tracking formulation (see Fig. 6.2) employs an object detector to generate a set
O of hypothesized sports player locations through the duration of the video. Each
detection Oi = [ti, xi, ai] contains a time stamp, the player’s location on the ground
plane, and the player’s appearance information, respectively. The goal is to find
the most probable set T � = {T1,T2, . . . ,TN } of player trajectories where each
trajectory is a temporal sequence of detections Tn = {Oa,Ob, . . .}

T � = arg max
T

P(O|T )P(T ). (6.1)

The likelihood P(O|T ) indicates how well a set of trajectories T matches the
observations, and the prior P(T ) describes, in the case of sports tracking, how
realistic the set of estimated player trajectories T is. In multitarget tracking, the
prior is often simplified to consider each trajectory as an independent Markov chain
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Detect Players and 
Estimate Team Affiliation 

in Each Video Frame

Extract Low-Level 
Tracklets in Short 

Temporal Windows

Generate Mid-Level 
Tracks using 

Hungarian Algorithm

Extract Game Context 
Features

Generate High-Level 
Trajectories using
 Random Forest

Fig. 6.2 Algorithm. Our tracking algorithm has five distinct phases: detection, low-level tracklets,
mid-level tracks, game context features, and high-level trajectories

P(T ) ∼
∏

n

P(Tn) (6.2)

∼
∏

n

∏

t

P(T t
n |T t−1

n ), (6.3)

where T t
n indicates the trajectory of the nth player at time interval t.

In team sports, the prior is a highly complex function and is not well approximated
by a series of independent trajectory assessments. We maintain the formulation of
conditional independence between trajectories, but condition each individual trajec-
tory prior on a set of game context features θ which describe the current state of the
match

P(T )
def=

∏

n,t

P(T t−1
n → T t

n |θ). (6.4)

Conditioning the individual motion models on game context implicitly encodes
higher order intertrajectory relationships and long-term intratrajectory information
without sacrificing tractability.

6.3.1 Detection

We use the method of Carr et al. [7] to generate possible (x, y) positions of players in
all video frames. The technique requires a calibrated camera, and uses background
subtraction to generate foreground masks. Player locations are estimated by evaluat-
ing how well a set of hypothesized 0.5-m-wide cylinders 1.8 m tall can explain each
observed foreground mask. The method is tuned to only detect high confidence situ-
ations, such as when a player is fully visible and well separated from other players.
For each detected position, a rectified patch is extracted from the image and a coarse
RGB histogram (4 bins per channel) is computed as an appearance feature. The first
few seconds of video are accompanied by user supplied labels: each detection is
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assigned to one of four categories {home, away, referee, none}. A random forest is
constructed from the training data, and at test time, outputs the four-class probability
histogram for each detection.

6.3.2 Hierarchical Association

Because the solution space of data association grows exponentially with the number
of frames, we adopt a hierarchical approach to handle sequences that are several
minutes long (see Fig. 6.3).

6.3.2.1 Low-Level Tracklets

A set Υ of low-level trackletsis extracted from the detections by fitting constant veloc-
ity models to clusters of detections in 0.5 s long temporal windows using RANSAC.
Each Υi represents an estimate of a player’s instantaneous position and velocity (see
Fig. 6.4).

6.3.2.2 Mid-Level Tracks

Similar to [10], the Hungarian algorithm is used to combine subsequent low-level
trajectories into a set Γ of mid-level tracks up to 60 s in duration. The method
automatically determines the appropriate number of mid-level tracks, but is tuned

Fig. 6.3 Hierarchical data association. a Low-level tracklets Υ from noisy detections; b mid-level
tracks Γ obtained via the Hungarian algorithm [10]; c N high-level player trajectories T via a cost
flow network [30]
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Fig. 6.4 Low-level Tracklet Extraction. Each detection is represented as a circle with a frame
number. a Detection responses within a local spatial-temporal volume; b identified clusters; and
c RANSAC-fitted constant velocity models (red)

to prefer shorter, more reliable tracks. Generally, mid-level tracks terminate when
abrupt motions occur or when a player is not detected for more than 2 s.

6.3.2.3 High-Level Trajectories

MAP association is equivalent to the minimum cost flow in a network [30] where a
vertex i is defined for each mid-level track Γi and edge weights reflect the likelihood
and prior in (6.4). Unlike the Hungarian algorithm, it is possible to constrain solutions
to have exactly N trajectories by pushing N units of flow between special source s and
sink t vertices (see Fig. 6.5). The complete trajectory Tn of each player corresponds
to the minimum cost path for one unit of flow from s to t. The cost cij per unit flow
from i to j indicates the negative affinity, or negative log likelihood that Γj is the
immediate successor of Γi, which we decompose into probabilities in continuity of
appearance, time, and motion

Fig. 6.5 Cost flow network from mid-level tracks. Each small circle with a number inside indicates
a detection and its time stamp. Colored edges on the left indicate mid-level track associations. The
corresponding cost flow network is shown on the right. Each mid-level track Γi, as well as the
global source s and sink t forms a vertex, and each directed edge in black from vertex a to b has a
cost indicating the negative affinity of associating Γa to Γb
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cij = − log P(O|Γi → Γj)P(Γi → Γj|θ) (6.5)

= − log (Pa · Pτ · Pm). (6.6)

The probability that Γi and Γj belong to the same team is

Pa(Γi → Γj) = ai · aj + (1 − ai) · (1 − aj) (6.7)

where ai and 1 − ai are the confidence scores of the mid-level track belonging to
team A and B, respectively.

Let ti0 and ti1 denote the start and end times of Γi, respectively. If Γj is the
immediate successor of Γi, any nonzero time gap implies that missed detections must
have occurred. Therefore, the probability based on temporal continuity is defined as

Pτ (Γi → Γj) = exp(−λ(tj0 − ti1)). (6.8)

Each mid-level trajectory Γi has “miss-from-the-start” and “miss-until-the-end”
costs on edges (s, i) and (i, t), respectively. The weights are computed using (6.8)
for temporal gaps (T0, ti0) and (tj1, T1), where T0 and T1 are the global start and end
times of the sequence.

Before describing the form of Pm(Γi → Γj|θ) in more detail, we first discuss how
to extract a set of game context features θ from noisy detections O .

6.4 Game Context Features

In team sports, players assess the current situation and react accordingly. As a result,
a significant amount of contextual information is implicitly encoded in player loca-
tions. In practice, the set of detected player positions in each frame contains errors,
including both missed detections and false detections. We introduce four game con-
text features (two based on absolute position and two based on relative position) for
describing the current game situation with respect to a pair of mid-level tracks that
can be extracted from a varying number of noisy detected player locations O .

6.4.1 Absolute Occupancy Map

We describe the distribution of players during a time interval using an occupancy
map, which is a spatial quantization of the number of detected players, so that we
get a description vector of constant length regardless of missed and false detections.
We also apply a temporal averaging filter of 1s on the occupancy map to reduce the
noise from detections. The underline assumption is that players may exhibit differ-
ent motion patterns under different spatial distributions. For example, a concentrated
distribution may indicate a higher likelihood of abrupt motion changes, and smooth
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Fig. 6.6 Absolute occupancy map. Four clusters are automatically obtained via K-means: a center-
concentrated, b center-diffuse, c goal, and d corner. The rows show: noisy detections (top), estimated
occupancy map (middle), and the corresponding cluster center (bottom), which is symmetric hori-
zontally and vertically

motions are more likely to happen during player transitions with a spread-out distri-
bution.

We compute a time-averaged player count for each quantized area. We assume
the same distribution could arise regardless of which team is attacking, implying
a 180◦ symmetry in the data. Similarly, we assume a left/right symmetry for each
team, resulting in a fourfold compression of the feature space.

Similar to visual words, we use K-means clustering to identify four common dis-
tributions (see Fig. 6.6) roughly characterized as: center-concentrated, center-diffuse,
goal, and corner.

When evaluating the affinity for Γi → Γj, we average the occupancy vector over
the time window (ti1, tj0) and the nearest cluster ID is taken as the context feature of

absolute occupancy θ
(A)
ij = k ∈ {1, . . . K}.

The spatial quantization scheme may be tuned for a specific sport, and does not
necessarily have to be a grid.

6.4.2 Relative Occupancy Map

The relative distribution of players is often indicative of identity [19] or role [17].
For example, a forward on the right side typically remains in front and to the right of
teammates regardless of whether the team is defending in the back-court or attacking
in the front-court. Additionally, the motion of a player is often influenced by nearby
players.
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Fig. 6.7 Relative occupancy map. The quantization scheme is centered on a particular low-level
tracklet Υi at time t. The same-team distribution and opponent distribution are counted separately

Therefore, we define a relative occupancy map specific to each low-level tracklet
Υi which quantizes space similarly to the shape context representation: distance is
divided into two levels, with a threshold of 4 m, and direction into four bins (see
Fig. 6.7). The per-team occupancy count is then normalized to sum to one for both
the inner circle and outer ring. Like absolute occupancy maps, we cluster the 16 bin
relative occupancy counts (first 8 bins describing same-team distribution, last 8 bins
describing opponent distribution) into a finite set of roles using K-means.

For each pair of possible successive Γi → Γj mid-level tracks, we extract the
occupancy vector vi and vj, with cluster ID ki, kj, from the end tracklet of Γi and the
beginning tracklet of Γj. We also compute the Euclidian distance of dij = |vi − vj|2.
Intuitively, a smaller dij indicates higher likelihood that Γj is the continuation of Γi.

The context feature of relative occupancy is the concatenation of θ
(R)
ij = (dij, ki, kj).

6.4.3 Focus Area

In team sports such as soccer or basketball, there is often a local region with relatively
high player density that moves smoothly in time and may indicate the current or
future location of the ball [13, 22]. The movement of the focus area in absolute
coordinates also strongly correlates to high-level events such as turnovers. We assume
the movement of individual players should correlate with the focus area over long time
periods, thus this feature is useful for associations Γi → Γj with large temporal gaps
(when the motion prediction is also less reliable). For example, mid-level trajectory
Γi in Fig. 6.8 is more likely to be matched to Γj1 with a constant velocity motion
model. However, if the trajectory of the focus area is provided as in Fig. 6.8, it is
reasonable to assume Γi → Γj2 has a higher affinity than Γi → Γj1.

We estimate the location and movement of the focus area by applying meanshift
mode-seeking to track the local center of mass of the noisy player detections. Given
a pair of mid-level tracks with hypothesized continuity Γi → Γj, we interpolate
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Fig. 6.8 Focus area. Kinematic constraints are less reliable across larger time windows. Because
player motions are globally correlated, the affinity of two mid-level tracks over large windows
should agree with the overall movement trend of the focus area

the trajectory within the temporal window (ti1, tj0) and calculate the variance of its
relative distance to the trajectory of the focus area σij. We also extract the average
speed of the focus area vf during the time window, which describes the momentum

of the global motion. The focus area context feature is thus set as θ
(F)
ij = (σij, vf ).

6.4.4 Chasing Detection

Individual players are often instructed to follow or mark a particular opposition
player. Basketball, for example, commonly uses a one-on-one defense system where a
defending player is assigned to follow a corresponding attacking player. We introduce
chasing (close-interaction) links to detect when one player is marking another. If the
trajectories Γi and Γj both appear to be following a nearby reference trajectory Γk ,
there is a strong possibility that Γj is the continuation of Γi (assuming the mid-level
track of the reference player is continuous during the gap between Γi and Γj, see
Fig. 6.9).

We identify chasing links by searching for pairs of low-level tracklets (Υi, Υk)

that are less than 2 m apart and moving along similar directions (We use the angular
threshold of 45◦ during the experiment). Let τij|k be the temporal gap between Γi’s
last link with Γk and Γj’s first link with Γk , and τij|k = ∞ when there are no links

between either Γi or Γj and Γk . The chasing continuity feature θ
(C)
ij that measures

whether trajectories Γi and Γj are marking the same player is given by

Fig. 6.9 Chasing. If Γi and Γj both correlate to a nearby track Γk , there is a higher likelihood that
Γj is the continuation of Γi
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Fig. 6.10 Visualization of all game context features, where detections of different teams are plotted
as blue and red dots. a The computed occupancy map based on noisy player detection; b the
corresponding cluster center of the global occupancy map; c indicator of the role categories of each
player based on its local relative occupancy map; d the focus area; and e chasing between players
from different teams

θ
(C)
ij = min

k=1,.../i,j
{τij|k}. (6.9)

Intuitively, the likelihood that (Γi, Γj) correspond to the same player increases as

θ
(C)
ij decreases.

A visualization of all game context features is shown in Fig. 6.10. Features based
on position appear on the left. The computed instantaneous occupancy map (a) and
its corresponding cluster center (b) are shown underneath. Each mid-level track is
assigned to one of the four role categories based on its local relative occupancy map
as indicated in (c). Features based on motion appear on the right. The focus area
(d) is shown as a dashed ellipse, and (e) detected correlated movements between
opposition players is illustrated using green lines.

6.5 Context-Conditioned Motion Models

Although we have introduced a set of context features θ = {θ(A), θ (R), θ (F), θ (C)},
it is nontrivial to design a single fusion method for generating the final motion like-
lihood score. For instance, each game context feature may have varying importance
between different sports. For example, the chasing-based feature is less important in
sports where one-on-one defense is less common. To make our framework general
across different sports, we use a purely data-driven approach to learn a motion model
which uses both the traditional kinematic features as well as our game context fea-
tures.
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The kinematic features K = {tg, e0, e1, e2,Δv} describe the motion smoothness
between two successive mid-level tracks Γi → Γj, and is based on the distance
error with extrapolate constant position, constant velocity, and constant acceleration
models, respectively. Additionally, the velocity change in velocity is also included
(see Table 6.1).

We generate training data by extracting kinematic features f (K)
ij and game con-

text features θij for all pairs of mid-level tracks (Γi, Γj) that have a temporal gap
tg|i→j ∈ [0, 60) seconds. Using ground truth tracking data, we assign binary labels
yij ∈ {1, 0} indicating whether the association is correct or not (two trajectories
belonging to the same ground truth player identity). However, the total number of
incorrect associations are usually much more than the correct ones. To avoid severely
unbalanced training data, we only select a subset of hard negative examples that has
high motion smoothness.

A random forest containing 500 decision trees is then trained to learn the mapping
C(f (k)

ij , θij) → yij. A random forest is robust against the overfitting that might occur
when using limited training data via bootstrapping, especially when the data is not
easily separable due to association ambiguity in the real world. More importantly,
by recursively splitting the data with random subsets of features, the random forest
model automatically optimizes local adaptivity, i.e., decisions for linking pairs of
tracks having small or large temporal gaps may be split at different levels and han-
dled with different feature sets. As confirmed in our experiments (see Sect. 6.6), the
occupancy feature is more effective at handling short-term association (when feature
tg is small) and the chasing feature is more important in connecting trajectories with
long temporal gaps (tg is big).

During the testing stage, the average classification score across all trees provides
a continuous affinity score to approximate P(Γi → Γj|θ) = C(f (K)

ij , θij) in Eq. (6.5).

Table 6.1 Our context-conditioned motion models employ traditional kinematic features [10], such
as the position extrapolation error when joining two tracks across a temporal gap

Feature ID Symbol Meaning

1 tg Temporal gap duration

2 e0 Const-position extrapolation error

3 e1 Const-velocity extrapolation error

4 e2 Const-acceleration extrapolation error

5 Δv Change in velocity

6 σij Motion correlation with focus area

7 vf Velocity of focus area

8 dij Consistency of local relative player distribution

9–12 ki, kj Local occupancy cluster encoded into binary digit

13–14 θ
(A)
ij Global occupancy cluster encoded into binary digit

15 θ
(C)
ij Chasing gap
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Fig. 6.11 Demonstration of evaluation metrics for high-level association (red)

6.6 Experiments

We validate our framework on two sports: field hockey with 20 players and basketball
with 10 players. Player detection is transformed from multiple calibrated views using
the method in [7] with frame rates of 30 (hockey) and 25 (basketball), respectively.
We use simple RGB-based color histogram classifiers to estimate the confidence
score ai ∈ [0, 1] of track i belonging to home team or the away team. We also
discard tracks likely to correspond to the referees and goalies.

6.6.1 Baseline Models and Evaluation Metrics

To verify the contribution of the various GCFs, we construct five models for a quanti-
tative comparison. All models apply hierarchical association and start with the same
set of mid-level tracks {Γ }. The only difference between the models is the motion
affinity used during the final association stage. Model 1 (K) only uses kinematic
features (f (K)) for training, which is equivalent to the combined algorithm of [10,
15, 30]. Models 2–4 use focus area features (F), chasing related features (C), and
occupancy feature (A + R), respectively, in addition to motion-smoothness features.
Model 5 uses all features (f (K), θ).

We have also examined other features for describing aspects of game context, such
as variance of track velocity or team separability. However we found these features
to be less effective than the ones described in Sect. 6.4.

Three errors are commonly evaluated in the multitarget tracking literature: (1) the
number of incorrect associations Nerr, (2) the number of missed detections Nmiss,
and (3) the number of false detections Nfa. The Multiple Object Tracking Accuracy
measure MOTA = 1 − (Nerr + Nmiss + Nfa)/N combines all three errors with equal
weighting. However the equal weighting de-emphasizes Nerr in a hierarchical asso-
ciation framework with a high frame rate. Therefore, we report the individual error
sources and normalize for the situation of a known fixed number of objects: N∗

err is
an average count of incorrect ID associations per minute per player; Pmiss and Pfa are
the proportion of missed and false mid-level trajectory segments of Tn as compared
to the ground truth, ranging from 0 to 1.

In addition to overall tracking performance, we also evaluate in isolation the high-
level association stage {Γ } → T , which is the key part of our framework. We report
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Table 6.2 Quantitative evaluations on field hockey dataset

Features N∗
err Pmiss Pfa Precision Recall tgap (s)

Kinematic 0.84 0.131 0.032 0.69 0.97 3.68

Kinematic + Focus 0.81 0.129 0.032 0.71 0.97 3.97

Kinematic + Chasing 0.82 0.128 0.032 0.70 0.97 3.56

Kinematic + Occupancy 0.80 0.128 0.033 0.71 0.98 3.62

All 0.75 0.126 0.031 0.75 0.97 3.95

association precision and recall rate, where precision = NTP/(NTP +NFA), and NTP,
NFA are correct/incorrect number of associations of Γi → Γj. We define recall = 1−
Tmiss/Tgap, where Tgap is the accumulation of temporal gaps tgap between high-level
associations, and Tmiss is the total length of mid-level tracks Γi being missed. The
motivation is to exclude miss-associations in previous stages. An illustration of these
metrics is given in Fig. 6.11. Finally, we also report the statistics of average length
temporal gap tgap being correctly associated during the high-level association, which
reflects the algorithm’s ability to associate trajectories with long-term misses.

6.6.2 Field Hockey Dataset

We generated and labeled six field hockey sequences for a total length of 29 min, from
three games played by different teams. The average player detection miss and false-
alarm rates are 14.0 and 10.3 %, respectively, or the multitarget detection accuracy
MODA = 1 − (Nmiss + Nfa)/N = 0.75. Our first experiment uses as much training
data as possible: testing one sequence and using the remaining five for training.

The introduction of each individual GCF achieves better performance, and using
all GCFs generally produces the best performance (see Table 6.2).

According to Table 6.2, all methods are good in terms of low false-alarm rate.
Thus the major difference in their performances is reflected in the terms for incorrect
association N∗

err and miss association Perr.
We can also introduce a weighting wm on motion likelihood relative to the appear-

ance likelihood into the objective function of Eq. (6.1), where wm plays an essential
role in the trade-off between miss-associations and false associations:

log P(T |O, θ) = log P(O|T ) + wm · log P(T |θ) + c. (6.10)

Instead of the default setting of wm = 1, a lower weight for the motion likelihood
(wm < 1) gives higher priority to optimizing the observation likelihood P(O|Γ ),
which prefers to have fewer missing players. On the other hand, a higher weighting
wm > 1 encourages smoother motions and results in fewer false alarms but more
missed detections. As we vary wm from 0.2 to 3, the tradeoff curves are plotted in
Fig. 6.12a.
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Table 6.3 Quantitative evaluations on basketball dataset

Features N∗
err Pmiss Pfa Precision Recall tgap (s)

Kinematic 4.33 0.30 0.027 0.65 0.99 3.26

Kinematic + Focus 4.43 0.280 0.031 0.67 0.99 3.99

Kinematic + Chasing 0.380 0.280 0.024 0.71 0.99 5.09

Kinematic + Occupancy 4.32 0.280 0.025 0.68 0.99 3.60

All 3.81 0.281 0.018 0.71 0.99 3.81

We also conduct an experiment studying the cross-game-generalization of the
GCFs. Instead of testing 1 sequence trained on the other 5, we perform all pairwise
combinations (30 in total) of 1 sequence training with 1 other sequence testing.
We then evaluate the resulting statistics for same-game learning and different-game
learning, respectively, as summarized in Table 6.3.

It can be seen that the introduction of GCFs again improves the result both in
the case of same-game and different-game learning, yet this time the amount of
training data used is much smaller (4 min on average). On the other hand, same-game
learning outperforms cross-game learning in terms of generalization, which matches
our intuition that the game context features are more similar within the same game
with the same players, e.g., the team distribution/tactics and the velocity/acceleration
of players are more consistent.

6.6.3 Basketball Dataset

We also conduct the same evaluation on a basketball dataset of four sequences for a
total length of more than 5 min. The dataset is more challenging due to a higher player
density and less training data. Each sequence is tested while using the other three
sequences for training. The average testing performance is reported in the trade-off
curve of Fig. 6.12b and Table 6.4. As can be seen, the chasing feature is much more
important for basketball sequences, indicating that one-on-one defensive situations
occur more frequently in basketball than field hockey.

6.6.4 Classifier

In addition to random forests, we also examined the performance of linear SVMs for
representing context-conditioned motion models. We utilize all the training data for
a fivefold cross-validation scheme and evaluate the RoC curves (see Fig. 6.13). The
experiments suggest the underlying motion models are not linear functions of the
features because random forests outperform SVMs in all parameter configurations.
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Fig. 6.12 Trade-off curve between Pmiss and N∗
err for a field hockey sequences and b basketball

sequences. N∗
err is an averaged association error per minute per person. The triangle marks indicate

the default operating point (wm = 1 in Eq. (6.10)). Our proposed method using all GCFs achieves
more than 10 % of improvements on both cases

Table 6.4 Comparison of same/cross-game learning (hockey)

Features Same game Different game

N∗
err Pmiss Pfa N∗

err Pmiss Pfa

Kinematic 0.810 0.141 0.034 1.240 0.130 0.036

Kinematic + Focus 0.840 0.133 0.034 1.230 0.125 0.034

Kinematic + Chasing 0.780 0.134 0.034 1.190 0.127 0.035

Kinematic + Occupancy 0.780 0.136 0.034 1.170 0.126 0.034

All 0.770 0.134 0.033 1.140 0.124 0.034
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Fig. 6.13 RoC Curve comparison between random forest (red) and SVM (blue) classifier

6.6.5 Feature Importance

When training a random forest, we can also calculate the average decrease in Gini-
index after removing each feature, which indicates the significance of the feature
as shown in Fig. 6.14. In general, kinematic features1 have greater significance than
context features, which makes sense because kinematic features have direct corre-
lation with the track association affinity. The constant velocity model (feature 3) is
the most important among kinematic features. However, in hockey, the consistency
of the local player distribution (feature 8) is more important than any kinematic
feature. Features 9–14 have low significance because they are binary features with
each bit containing very limited information. Furthermore, game context features are
individually more important in the hockey sequence than in the basketball sequence.

6.7 Summary

In this work, we use hierarchical association to track multiple players in team sports
over long periods of time. Although the motions of players are complex and highly
correlated with teammates and opponents, the short-term movement of each player
is often reactive to the current situation. Using this insight, we define a set of game
context features and decompose the motion likelihood of all players into independent
per-player models contingent on game state. Higher order interplayer dependencies
are implicitly encoded into a random decision forest based on track and game con-
text features. Because the conditioned model decomposes into pairwise terms, our
formulation remains efficiently solvable using cost flow networks. We validate our
approach on 30 min of international field hockey and 10 min of college basketball.

1 Refer to Table 6.1 for the meaning of each feature number.



6 Detecting and Tracking Sports Players with Random … 131

Fig. 6.14 Normalized feature significance in hockey (red) and basketball (blue) sequences

In both sports, motion models conditioned on game context features consistently
improve tracking results by more than 10 %.
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Chapter 7
Geometry Reconstruction of Players
for Novel-View Synthesis of Sports
Broadcasts

Tiberiu Popa, Marcel Germann, Remo Ziegler,
Richard Keiser and Markus Gross

Abstract In this chapter, we present two methods for geometric reconstruction of
players in standard sports broadcasts specifically designed to enable the broadcast
director to generate novel views from locations where there is no physical camera
(novel-view synthesis). This will significantly broaden the creative freedom of the
director greatly enhancing the viewing experience. First, we propose a data-driven
method based onmultiview body pose estimation. This method can operate in uncon-
trolled environments with loosely calibrated and low resolution cameras and without
restricting assumptions on the family of possible poses or motions. Second, we pro-
pose a scalable top-down patch-based method that reconstructs the geometry of the
players adaptively based on the amount of detail available in the video streams. These
methods are complementary to each other and together provides a more complete
set of tools for novel-view synthesis for sport broadcasts.

7.1 Introduction

Novel-view video synthesis is an area of active research in computer vision whose
goal is to produce views of a scene from a camera position where there is no physical
camera present (i.e., virtual camera). It has a large variety of applications including
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telepresence, games, movie production, interactive TV sports broadcasts, etc. This
chapter focuses on novel-view video synthesis from conventional sports broadcasts
footage [1, 2]. The goal is to extend the creative freedom of an editor or director by
providing the possibility to place a virtual camera in the stadium without having to
change or add anything in the already existing physical camera setup: no additional
cameras or other sensor modalities and no additional constraints to the existing
cameras’ position or motion.

Typical novel-view synthesis pipelines [3], first, reconstructs the textured geom-
etry of the scene by calibrating the existing video cameras and applying multiview
stereo algorithms. Second, they render it from a new view point. As noted in [1,
4, 5] for sports broadcasts this is very challenging due to several factors. There are
typically only few moving cameras available that cover the interesting part of the
scene and can be calibrated. In some sports, they are positioned only on one side of
the stadium. Although the cameras provide high resolution images, they are usually
set to be wide angle for editorial reasons. Therefore, an individual player covers only
a height between 50 and 200 pixels [1] (Fig. 7.1 Left). In sports broadcasts, the player
motion is usually fast and thus often results in motion blur. Methods for per frame
automatic calibration in such setups [6] suffer from errors and typically contain no
radiometric calibration (Fig. 7.1 Right). All these factors have to be circumvented in
order to create a convincing novel-view synthesis.

One key observation is that the field of play is for many sports planar and thus
it is only the geometry of the players that has to be computed. Some of the most
popular approaches in this field still use simple planar billboards [7] to represent
the geometry of a player. Unfortunately, this approximation is not sufficient and
invariably produces unwanted visual artifacts like ghosting.

In this chapter, we present two methods that can be used to robustly reconstruct
the geometry of the player under challenging conditions with sufficient accuracy to
be used for high-quality novel-view synthesis. The first method [5] is based on pose
estimation of the players (Fig. 7.2). If the pose of each player is correctly recon-
structed in 3D, the geometry of the players can be approximated using an articulated

Fig. 7.1 Left Resolution of input images. Right Example with calibration errors visible on the
ground as ghosting of lines
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Fig. 7.2 Estimated poses in a soccer game. The image shows a projection of the 3D skeletons into
a source camera

Fig. 7.3 Novel-view synthesis using our top-down, adaptive patch-based reconstruction technique:
a and b Closeups of the two source camera images used. c Our reconstruction of the same view

template or articulated billboards [8] yielding good novel-view synthesis results. The
second method [9] uses a robust, adaptive, top-down reconstruction technique that
starts with a course initial geometry that is gradually refined based on color consis-
tency (Fig. 7.3). These two methods are complementary: they use radically different
approaches and thus they have different pros and cons. Therefore, depending on the
particular context onemight bemore desirable than the other. A comparative analysis
of these two methods will be provided at the end of this chapter.

7.2 Robust Data-Driven Pose Estimation of Players
in Sport Broadcast Footage

Pose estimation or motion capture is a fundamental problem in computer vision
[10, 11] with many applications. Many current commercially available motion cap-
ture systems [12] typically use optical markers placed all over the body to track the
motion over time. These systems are very accurate, however, they are invasive and
work under controlled environment. Therefore, they are unsuitable for our setup.
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Markerless motion capture methods based on multiple video footage have received
a lot of attention in the last decade [10, 11]. Most methods for multiple views 3D
pose estimation use tracking algorithms to reconstruct the pose at time t from the
pose at time t − 1 [13]. The tracking can be done either using optical flow [13]
or stereo matching [14]. These methods can provide very accurate pose estima-
tion, but they generally work in a controlled environment, require larger number
of high-resolution cameras (usually at least four) and good spatial coverage of the
scene (usually circular coverage) to resolve ambiguities due to occlusions. Other
methods [15–17] construct a proxy geometry either using multiview silhouettes or
multiview stereo. The skeleton is then fitted into this geometry. These methods pro-
vide very good results, but impose restrictions on the setup. They require a carefully
built studio setup, many high-resolution cameras, and very good spatial coverage.
Another class of algorithms is based on image analysis and segmentation [18, 19].
These algorithms use machine learning methods to discriminate between body parts.
This analysis generally requires high-resolution footage, which is not available in
our setup.

Due to the complexity of the problem, there still does not exist a universal solution
for all the applications. The solutions strongly depend on the conditions and on
the constraints imposed on the setup. In this chapter, we focus on pose estimation
based on unconstrained broadcast footage. This implies several challenges to camera
positions, object size, and temporal coherence. Although, the pose estimation can
be computed based on a multicamera setup, there are only few cameras available,
which additionally featurewide baselines.Moreover, the cameras are typically placed
only on one side of the field providing limited coverage of the scene. The cameras
provide high-resolution images, but are usually set to be wide angle for editorial
reasons. Therefore, players typically cover only a height between 50 and 200 pixels.
Furthermore, themotion of the players can be very complex and, especially in contact
sports like football, there is a lot of occlusion.

We present a data-driven pose estimation algorithm that can operate in an uncon-
trolled, outdoors environment with loosely calibrated cameras, low resolution play-
ers, and in presence of occlusions. Our algorithm can use as little as only two cameras
to estimate the pose. No restricting assumption is made on the family of possible
poses or motions. By using temporal coherence for the initial pose estimation as
well as pose refinement, the user interaction is limited to few clicks inverting arms
and legs in failure cases. We use a database of poses and silhouette comparison to
extract pose candidates in 2D and use camera calibration information to compute the
corresponding 3D skeleton.We first perform a novel time consistent silhouette-based
search in the database to extract the closest database candidate with temporal coher-
ence. An additionally applied novel time consistency step is leading to the initial pose
estimation. Because the exact real pose is generally not in the database, this will only
result in a closest match, but not in an accurate pose. Therefore, we developed a
novel space–time optimization technique that leverages the temporal information to
automatically compute the accurate 3D pose.
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Fig. 7.4 Algorithm overview. Left the silhouettes obtained from each camera.Middle the estimated
3D pose obtained from queried to the motion capture database. Right the final 3D pose after the
optimization procedure

7.2.1 Overview

Our algorithm consists of two steps as illustrated in Fig. 7.4. In the first step, the
algorithm extracts 2Dposes for each individual camera viewusing a spatial–temporal
silhouette matching technique, yielding a triangulated 3D pose guess. This pose
detection is inherently prone to ambiguities, namely left-right flips of symmetrical
parts. Although the skeletonmatches the silhouettes quite well, the arms or legs of the
player can still be flipped. Due to occlusions and low resolution, these ambiguities
are sometimes very difficult to spot even for the human eye. Therefore, we employ
an optical flow-based technique to detect the cases where flips occur, and correct
them to obtain a consistent sequence. It is important to note that optical flow is in
such setups not reliable enough for tracking the entire motion of a player’s body
parts over an entire sequence, but it can be used for local comparisons as shown by
Efros et al. [20].

However, in general, no pose from the database will match the actual pose exactly.
As a consequence, in the second part of the algorithm, this initial 3D pose is refined
by an optimization procedure, which is based on spatio-temporal constraints. The
resulting optimized 3D skeleton matches the silhouettes from all views and features
temporal consistency over consecutive frames.

The following sections present the algorithm inmoredetail. Section7.2.2 describes
how the initial pose is obtained. The optimization procedure to obtain the final, more
accurate pose estimation is presented in Sect. 7.2.3. Finally, a selection of the results
are presented in Sect. 7.2.4.

7.2.2 Initial Pose Estimation

The initial pose estimation is computed by first retrieving the 2D pose from each
player and each camera view using a novel space–time data-driven silhouette-ased
search. Once we find the 2D poses for every player in every camera, we can use the
calibration information from the cameras to lift the 2D joints to 3D. We compute the
3D location of each joint by intersecting the rays corresponding to each 2D joint in
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each camera view. The rays will not intersect exactly, therefore,we choose the closest
point to these rays in least-squares sense. From this,we get a triangulation error Et

and an initial camera shift as described by Germann et al. [21].
We represent the 3Dskeletonof a pose S in angle space.Everybone i is represented

relative to its parent bone using two angles αi and βi as well as the length li of the
bone. The root bone is defined by its orientation given by three angles α0, β0, γ0, and
by a global position p0. The joint positions ji in the 3D Euclidian space can easily
be computed from this representation and vice versa.

7.2.2.1 Pose Database Construction

A large database that samples the entire range of human motion is important for our
algorithm and is very difficult to create manually. Therefore, we use the CMUmotion
capture database [22]. A template mesh rigged with the same skeleton is deformed
using linear blend skinning to match the pose of the database pose. From this,virtual
snapshots are taken and the silhouette is extracted. This way we created a database
of around 20,000 silhouettes.

Unfortunately, the CMU database has only a limited number of types of poses,
mostly from running and walking sequences. Therefore, we manually added a set
of 900 silhouettes from several soccer scenes. Figure7.5 shows some database
poses taken from real scenes. This is significantly fewer than the ones generated
automatically, but enough to enlarge the span of example poses to obtain good results.
It is important to note that the added example poses were not taken from the same
sequences as we used to fit the poses. The database could continuously be enlarged
by newly generated poses, resulting in a better initial pose estimation.

7.2.2.2 2D Pose Estimation

Similar to Germann et al. [21], we assume as an input a coarse binary silhouette mask
for each player as well as coarse camera calibrations. We compare these silhouettes
against the silhouettes from the database using the technique presented by Germann
et al., that computes the quality of amatch between the input silhouette and a database
silhouette on a fix raster size (grid with height = 40 and width = 32) that is fitted to
the segmentation.

Fig. 7.5 Example of database poses taken from real soccer footage
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The silhouette extraction extends the algorithm presented by Germann et al. by
leveraging temporal information. Instead of relying on a single frame matching, our
approach considers a weighted sum of differences over a sequence. The resulting
pixel error Eq(s) of the binary input silhouette image I with index t based on the
silhouette image I ′

s with index s from the database is evaluated as follows:

Eq(s) =
∑

i∈{− n
2 ,.., n

2 }
θs(i)

1

|P|
∑

p∈P

|It+i (p) − I ′
s+i (p)|. (7.1)

n is the filter window size, and P is the set of all raster positions where the corre-
sponding pixel is in both images not possibly occluded, i.e., part of another player’s
silhouette. The weights θs(i) describe a normalized Gaussian function with the cen-
ter around s. For I ′

s+i (p) not included in the database, θs(i) is set to 0 before the
normalization. Comparing sequences instead of single images, does not only add
temporal coherence resulting in smooth motions, but also improves pose estimation.
Even image parts occluded over few frames can be fitted more robustly. In general,
this approach helps to prevent matching a silhouette that is similar but originated
from a completely different pose.

Using this energy function, we search for each camera view for the best two pose
hypotheses and select the best combination of those by choosing the lowest resulting
triangulation error Et .

7.2.2.3 Pose Consistency

The 2D pose detection step relies on silhouette matching, and therefore, is prone to
ambiguities. Given a silhouette and an initial 2D pose for it taken from the database,
we cannot decide if the labelings of left/right in arms and legs are correct. Figure7.6
shows an example silhouette with two possible labelings for the legs. Figure7.6
(left) and Fig. 7.6 (right) show two inconsistent labeling in the two cameras. Without
additional information we cannot decide in such a situation which positions are
correct, i.e., select the only one correct out of the four possibilities—especially when
only two cameras are available. To correctly solve these ambiguities, we propose a
two-step approach: first, the local consistency between each pair of consecutive 2D
frames is resolved, resulting in an entire sequence of temporally consistent 2D poses.
Second, the entire sequence is resolved globally.

Local Consistency. The goal of this step is tomake sure that the 2Dpose recovered
from a camera at frames k and k + 1 are consistent (i.e., there are no flips of arms
or legs between consecutive frames). In other words, if a pixel at frame k belongs
to the right leg, it should belong to the same leg in the frame k + 1 as well. To
assure this assumption, we assign to each pixel in both color images ICk and ICk+1

a corresponding bone, and we compute the optical flow [23] between the frames.
The underlying idea is that a pixel in frame k and its corresponding pixel in frame
k + 1, computed using optical flow, should be assigned to the same bone. Therefore,
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Fig. 7.6 Example for pose ambiguities. Left Possible labelings in first camera. Middle Schematic
view from the top to illustrate the two possible positions of the knees. Right Possible labelings in
the second camera

we compute this association for all combinations of possible labelings, compute the
consistency of the pixels, and select the most consistent label configuration for the
second frame. To make the approach more robust in respect to optical flow errors,
we only consider pixels with good optical flow and where the corresponding pixel
labels in both frames are of the same bone type, i.e., either both arms or both legs.
This resolves most of the flips of arms or legs. For failure cases, the user can change
the flipping for all subsequent frames of a sequence with one mouse click. This is
the only user interaction in our system and for a view of a player takes only about 1
click per 10 frames.

Global Consistency. After the local consistency step, all consecutive frames
should not have flips between them which means that the entire sequence is consis-
tent. There is still the possibility that the entire sequence is flipped the wrong way.
However, this is a simple problem as we only have a binary predicate to apply for the
entire sequence. Therefore, the global consistency is checked for the possible global
labelings of the arms and the possible global labelings of the legs. The final labeling
is selected by choosing the labeling combination that minimizes the following error
term:

Eg = λDBEDB + λt Et (7.2)

This is a weighted sum with constant parameters λDB and λt . EDB ensures that the
selected labeling/flipping results in plausible poses along the sequence. It penalties
for the distance to the closest pose P in the database:
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Fig. 7.7 Comparisons of the pose before (left) and after (right) the pose optimization

EDB = min
P

1

2|J |
|J |∑

i=0

(α′
i − αi )

2 + (β ′
i − βi )

2 (7.3)

where α and β are the joint angles of the triangulated joint positions J. α′ and β ′ are
the ones of the database pose P. Since the database contains only anthropometrically
correct poses, this penalties for nonplausible poses.

7.2.3 Pose Optimization

The best 3D poses computed by the pose estimation are still limited to fit in each
view to a pose of the database. The database is only a subset of all possible poses,
and therefore, often does not contain the accurate solution. We developed a new
optimization method to retrieve a more accurate pose as shown in Fig. 7.7. To guide
our optimization method, we combine several spatial and temporal energy functions
and minimize them using an optimization method.

7.2.3.1 Energy Function

The energy function is based on our representation of the skeleton S described
in Sect. 7.2.2. All the parameters besides the bone length are variable per frame.
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The lengths are also variable but stay the same over the entire sequence and are
initialized as the average of the local lengths of all frames. This automatically intro-
duces an anthropometric constraint, since bones should not shrink or grow over time.
Another nice property of the chosen skeleton representation is that it significantly
reduces the number of variables. In order to cope with calibration errors, we also
optimize for the two-dimensional shift vector given per subject, camera, and frame.

We define our energy functional per frame and subject as the following weighted
sum of error terms:

E(S) = ωs Es + ω f E f + ωDBEDB + ωrotErot + ωp E p + ωl El (7.4)

Silhouette Matching Term Es

The bones of the correct 3D skeleton should project onto the 2D silhouette in all
cameras. The error term Es penalizes the joint positions whose 2D projections are
outside the silhouettes:

Es = 1

|C ||J+|
∑

c∈C

∑

j∈J+
E DTc(Pc(j)), (7.5)

where C is the set of all cameras that cover a silhouette of this subject. J+ is the
union of the set J of all joints and the points that are exactly in the middle of a bone.
The normalized Euclidean distance transform E DT returns for every 2D point in
the camera image, the distance to the closest point inside the silhouette divided by
the larger side of the silhouettes’ bounding box. This normalization is important to
make the error independent of the size of the subject in the camera image which may
vary according to the zoom. Pc( j) is the projection to transform the 3D joint j into
camera space taking into account the camera shift.

Silhouette Filling Error Term E f

Although the silhouette matching term Es penalizes joints outside the silhouette,
there is no restriction on them for where to be placed inside the silhouette. The filling
error term E f prevents them from just shrinking together somewhere inside the torso
and especially makes sure that there are also joints in all the extremities:

E f = 1

|C ||R|
∑

c∈C

min
j∈J

∑

r∈R

dist(P−1
c (r), j), (7.6)

where R is the set of all grid points from Sect. 7.2.2.2 that are inside the silhouette.
P−1

c (r) transforms such a grid point from camera space of camera c into a ray in
world space while dist() describes the distance of a ray to a joint.
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Distance to Database Pose EDB

This was already defined in Sect. 7.2.2.3. It ensures that the final 3D pose is kine-
matically possible (e.g., the knee joint bends the right way) by taking into advantage
the database of correct poses. It implicitly adds anthropometric constraints to our
optimization.

Smoothness Error Terms Erot and E p

Human motion is generally smooth such that the skeletons of adjacent frames should
be similar. This enables us to introduce temporal coherence to the pose optimization.
Therefore, Erot penalizes large changes of the internal angles of the skeleton of
consecutive frames and E p penalizes large motion:

Erot = 1

2|J |
|J |∑

i=0

(α′
i − αi )

2 + (β ′
i − βi )

2 (7.7)

E p = |p0 − p′
0| (7.8)

where α′ and β ′ are the corresponding angles of the same subject in the previous
frame and p′

0 is the global position of the root joint in the previous frame. We also
constraint the rotation of the root bone in a similar way, which we omitted here for
simplicity.

Length Error Term El

The initialization of the bone lengths is already a good approximation, when handling
a sequence of frames. Therefore, we try to keep the optimized pose close to these
lengths:

El = 1

|J |
|J |∑

i=0

(li − l̂i )
2 (7.9)

where li is the final bone length and l̂i is the initial bone length.

7.2.3.2 The Optimization Procedure

To minimize the energy term in Eq.7.4, we employ a local optimization strategy
where we iteratively optimize the variables one by one by performing line search
along randomly picked directions [24]. For each variable, we select 10 random direc-
tions for optimization and we perform 20 global iterations. Due to the inherent non-
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Table 7.1 The parameter values that we used for all our results, computed using our automatic
parameter tuning system

Param. ωs ω f ωdb ωrot ωp ωl λDB λt

9 15 0.05 0.1 1 1 0.15 0.3

smooth nature of our objective functions, this method performed better in practice
than Levenberg–Marquardt [25].

Figure7.7 illustrates the effect of the optimization procedure. The leftmost exam-
ple shows the influence of the silhouette filling error term: The arm of the player can
be brought up or down to reduce the silhouette matching error term, but the silhouette
filling error term is only reduced when moving the arm up. Figure7.7 shows a clear
improvement over the method by Germann et al. [21] which did not include a pose
optimization at all and where each pose had to be corrected manually.

7.2.4 Results

We evaluated our system on four sequences of TV footage from real soccer games
with two or three cameras, yielding roughly 1,500 poses to process.

For the optimization functions in Eqs. (7.4) and (7.2), we used the parameters
shown in Table7.1 for all our results.

Our pose estimation algorithm takes about 40 s per player per frame in a two-
camera setup and about 60 s for a three-camera setup. We implemented a parallel
version that runs a thread for every player. On an 8 core system, this gave a speedup
of roughly a factor of 8.

Note that the initial pose estimation does not depend on the pose estimation of
the previous frame. Thus, there is no drift and the process can recover from bad pose
guesses.

Figure7.8 shows a result of our pose estimation algorithm. Figure7.9 shows how
the pose estimation can be used to generate novel views.

7.3 Adaptive Geometry Reconstruction from Sport
Broadcast Footage

The method presented in the previous chapter has two main shortcomings. First, it
requires somemanual intervention.When processing thousands of frames, even little
manual intervention can be cumbersome. Second, it relies on a large pose database
that it might not be easy to create. An alternative way to retrieve 3D geometric
information is to exploit the 2D silhouettes in all the camera views and construct a
visual hull of the scene, which can be used to render the scenes from an arbitrary
viewpoint with the video camera images as textures [26–30]. Visual hull methods
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Fig. 7.8 3D poses overlaid with the video footage

are suitable for novel-view synthesis of single objects. In crowded scenes, unless a
large number of cameras are employed, extraneous so-called phantom geometry is
generated [31]. Additionally, when using distant cameras, small calibration errors
can cause entire arms or legs to be cut off. Guillemaut et al. [1, 4, 32] addresses many
challenges for free viewpoint video in sports broadcasting by jointly optimizing scene
segmentation and player reconstruction. Their approach is leading to a more accurate
geometry than the visual hull, but still requires a fairly large number of cameras
(6–12). Inamoto et al. [33] also use silhouettes and match dense correspondences
on epipolar lines. These correspondences, will suffer from the same drawbacks as
the visual hull when working with weak calibration. Also their method does only
interpolate on the path between cameras whereas we allow arbitrary viewpoints in
the area of the two cameras.

Rather than relying on silhouettes alone to reconstruct a proxy geometry, an alter-
native way is to use dense geometry reconstruction techniques [34–36]. The results
are very convincing, but dense reconstruction is difficult to do in wide-baseline cam-
era setups. An alternative approach suitable for setups where dense feature matching
is difficult to accomplish, is patch-based reconstruction [37–40]. Patch-based recon-
struction methods only require a sparse set of correspondences, but are limited to
objects with a strong planarity assumption, and thus not suitable for reconstructing
players.

Since our wide-base camera setup does not allow dense reconstruction, but it is
possible to get reliable sparsematches [41], we propose a technique in the spirit of the
patch-based reconstruction methods. However, instead of a bottom-up approach that
tries to cluster pixels in planar patches, we propose a top-down approach that starts
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Fig. 7.9 A rendering from a novel view where there is no existing video camera

by reconstructing the scene with a few large planar pieces and recursively subdivides
the geometry and gradually adds geometric detail up to resolution limitations.

7.3.1 Overview

The backbone of our method is a top-down adaptive reconstruction technique that is
able to retrieve a 2.5D triangulation of the players in each camera even in challenging
setups consisting of only two wide-baseline cameras. The reconstruction starts with
a simple triangulation (Fig. 7.10a). The triangles are placed according to a sparse 3D
point cloud (Fig. 7.10b), which is generated using an extended version of the Daisy
features [41]. If the triangles are too large and do not represent the shape of the object
accurately (red triangles in Fig. 7.10c), they are subdivided. This process is repeated
until the triangles are just small enough to approximate the shape of the object.
This way the reconstruction method inherently adapts to the geometric complexity
as well as to the resolution of the represented object. In an additional refinement
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(a) (b) (c) (d) (f)(e)

Fig. 7.10 Overview of the algorithm: a–e The adaptive reconstruction. f The view-dependent
rendering

step, the vertex depths of those triangles that do not contain any features are set to
optimal depth values of neighboring triangles including random perturbation tests.
The adaptive level of detail and the reconstruction lead to a robust geometry. To cover
also parts of the scene that are occluded in one camera, we repeat the reconstruction
for each camera as a base camera and merge these 2.5D reconstructions into a final
3D geometry (Fig. 7.10e).

We render this geometry from an arbitrary viewpoint and blend the color infor-
mation from the available cameras. However, inherent calibration errors will yield
rendering artifacts such as ghosting. Therefore, we propose a method that morphs
the geometry based on the viewing positions to compensate for calibration errors
(Fig. 7.10f).

In Sect. 7.3.2, the adaptive reconstruction is elaborated in detail. The view-
dependent geometry morph and rendering is described in Sect. 7.3.3. Our proposed
method is evaluated and discussed in Sect. 7.3.4.

7.3.2 Adaptive Reconstruction

We chose to represent the geometry as a per camera triangle soup. The advantage
of a triangle soup as opposed to a connected mesh is that it allows us to place
these triangles independently solving implicitly for depth discontinuities. However,
to avoid discontinuities on connected surface parts, we connect the triangles that are
close together before the rendering stage. Our reconstruction algorithm proceeds as
follows (Fig. 7.10):

1. Initial Triangulation: an initial set of triangles is created from the image of one of
the cameras. The triangulation of this base camera is illustrated in Fig. 7.10a. The
triangles are aligned with the view of the base camera such that the only degree of
freedom is the depth of its vertices in camera coordinates. This allows for a low
degree of freedom optimization that facilitates the process of positioning them in
3D, without sacrificing precision.
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2. Triangle Optimization: in this step each triangle of the current set is positioned
independently in 3D by optimizing the depth of its vertices only. As a result,
the projection of the triangle onto the base camera never changes. The optimiza-
tion process uses robust sparse feature correspondences from pixels inside the
projection of the triangle to determine the depth of each vertex.

3. Subdivision: the 3D triangles may not approximate well the local geometry. For
instance, in Fig. 7.10a the players are initially approximated only by two triangles.
In this case, we subdivide the triangle if the error evaluated by a robust errormetric
of texture reprojection is too big. Figure7.10c shows triangles to be subdivided in
red. We repeat the optimization and subdivision step until the reprojection error
is small for all triangles.

4. Refinement: due to occlusions and the low resolution of the image, it is not always
possible to find image features in every triangle. If a triangle has no features, it
inherits its vertex depths from the previous subdivision. However, these depths
could be wrong and as a result we might have rendering artifacts such as missing
parts of the players. To further refine the position of such triangles, we employ a
heuristic to determine their 3D location based on depth guesses from the neigh-
boring triangles combined with random perturbations.

5. Merge: We reconstruct a 2.5D geometry the same way for every input camera as
base camera and build the union of these resulting in a final 3D reconstruction
(Fig. 7.10e).

7.3.2.1 Inital Triangulation

The initial triangulation is done in 2D using a delaunay triangulation of the four
corners of the image and the corners of the bounding boxes of each player (Fig. 7.10a).
The bounding boxes of each player are computed automatically [42]. Note that we
do not rely on an accurate bounding box detection. As one can see in Fig. 7.10a,
players who are occluding each other are generally classified into one box. Also the
goal keeper’s box is shifted. This does not create any problems for the algorithm
since it is only used as an initial triangulation. This procedure gives us a set of 2D
triangles in a base camera, which we project to the ground plane to obtain an initial
3D triangle soup. The ground plane can be found automatically by the calibration
method according to pitch lines such as described in [6].

7.3.2.2 Triangle Optimization

Themain goal of this step is to optimize the 3D position of the triangles in the current
set. The triangles are optimized independently while the only degree of freedom is
the depth along the camera ray of their respective vertices as illustrated in Fig. 7.10b.
Our optimization technique combines two criteria: one is based on a background
color model and one based on robust feature matches.
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Background Color Model.

Triangles are part of the background if more than 95% of the pixels are classified
as such by the background color model. An alternative way to accomplish this test
is using a background subtraction technique as described in [43]. If the triangle is
classified as background, its vertices are pushed to the ground.

The depth of nonbackground triangles relies on feature matching of pixels con-
tained in the corresponding 2D triangles in the camera image. We first compute a
robust set of matching pairs according to Sect. 7.3.2.2. Each 2D pair of matches
represents a point in 3D that can be computed as the intersection of two rays. Due
to calibration errors these rays usually do not intersect, and we use the point on the
base camera’s ray that is closest to the other ray, as explained in Sect. 7.3.3. The
reconstructed set of 3D points belongs to the scene geometry of the base camera. By
applying a RANSAC technique [44], we can accurately and robustly fit a plane to
the set of 3D points. Once the best fitting plane is determined, we can solve for the
depth values of every vertex, such that the optimized triangle lies in the plane.

Feature Matching

In order to position a triangle in 3D, we rely on image feature matching between
the views. We selected Daisy features [41], which are designed for wide baselines.
However, due to the low resolution of each player and the lack of features on the
pitch, the feature detection contains a lot of wrongly matched pairs. Therefore, we
added more constraints to the matching operator to get more reliable, and robust
matches in three steps:

1. For every pixel in the base camera,we restrict the search space of possiblematches
in the second camera. This search space is defined by a band of d = 20 pixels
around the epipolar line, whereof only pixels lying inside the bounding box are
considered. This is illustrated as the yellow area in Fig. 7.11.

2. Only matches with a Daisy error value below 1.4 and below 0.8 times the average
of the matches within this stripe are considered.

3. We verify that the match is symmetric. That is, if pc0 is a pixel in the base camera
and pc1 is its corresponding Daisy match in the second camera, the Daisy match
of pixel pc1 has to lie within five pixels of pc0 .

The resulting matches are a relatively sparse set of reliable matches that we use in
the triangle optimization process (depending on the scene, it varies from 20 to 300
per player).

7.3.2.3 Adaptive Subdivision

If the scene geometry represented by a triangle significantly differs from a planar sur-
face, a further subdivision of the triangle is required. The triangles are only refined if
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Fig. 7.11 Feature correspondence search for a pixel in the left image within a cropped epipolar
stripe in the image of the other camera

the projective textures from the respective source cameras do not match. The result-
ing triangle soup only features small triangles where the underlying 3D geometry
requires a refinement.

Error Metric

For every triangle, a color error value is computed to decide if the triangle has to be
subdivided or not. To do so, the current geometry is used to reproject the textures from
all cameras into the base camera. The error of a single triangle is then computed as
the average of all pixel differences, which are not occluded in any of the cameras. To
have comparable image sources, the appearances of the images are roughly adjusted
by adding a compensating color shift as described in Sect. 7.3.3. An example of the
initial per-pixel error viewed from the base camera is shown in Fig. 7.12 (right) where
the entire geometry is approximated as the ground plane.

Fig. 7.12 Example for an initial color error when using the ground plane as the geometric proxy.
The errors appear at pixels with wrong depth values
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Fig. 7.13 a Initial triangulation.bFirst subdivision based on player’s silhouettes. c Final subdivided
geometry

Inaccurate calibration will inherently introduce a bias in this error metric as the
projection of a 3D point into the cameras suffers from calibration errors. We address
this problem by adding a geometric shift to each triangle vertex. This view-dependent
geometry is described in detail in Sect. 7.3.3.

Subdivisions

The subdivision is a simple splitting of the triangle into two halves at the longest
edge, including splitting of neighbors sharing the same edge. This directly inherits
the position in 3D to the children. Therefore, even if no feature point is available
for a child (e.g., at occlusions), it still inherits a most plausible 3D position and
orientation. In the first iteration step, we use the background color model and a blob
detection to get contour lines. These contour lines guide the first subdivision of the
initial triangulation as shown in Fig. 7.13b. This speeds up the reconstruction and
avoids high triangle counts, since it adds edges at potential depth discontinuities.

Figure7.13c shows a final subdivision after 3 iteration steps of optimization and
subdivision.

7.3.2.4 Refinement

Due to a lack of Daisy features, a small subset might not be positioned correctly in
3D and could also not be recovered by the inheritance of the subdivision. This may
lead to rendering artifacts as shown in Fig. 7.14. To resolve these, we assume that
neighboring triangles tend to have similar 3D depth values.

We try several positions using depth values from the neighboring triangles adding
random perturbations. Finally, we select the one minimizing the color error.
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Fig. 7.14 Two examples show the improvement of the result before and after applying the refine-
ment step

Similar to the generalized PatchMatchmethod [45], this is done iteratively over all
triangles 10 times with 10 random perturbations per vertex and iteration. Figure7.14
shows the improvement of this step.

7.3.3 View-Dependent Geometry and Rendering

Our representation could be rendered as simple triangles in 3D with the color values
from projective texturing of the source camera images, using some smart blending
function [46]. Due to the inherent errors in the calibration process, the projection
errors—even on a perfectly reconstructed geometry—result in rendering artifacts
such as blurriness and ghosting. This problem is illustrated in Fig. 7.15. The blue
dots are reliable feature matches from one camera to the other. If the calibration is
correct then the corresponding rays (the red lines) would intersect. This is generally
not the case. Wherever we position the 3D point, in at least one camera it will not
project back to the 2D position where the feature point was detected. To solve this,
we shift (morph) this point in 3D along the line of the shortest path between the two
rays (the red arrow) when changing the viewing position. We call this shortest path a
displacement. These displacements describe the geometric 3D morph function from
every feature point in the base camera to the corresponding feature point in the other
camera. To calculate the morph function of any view-dependent vertex (green dot),
we interpolate all the displacements of neighboring features using aweighted average
(the green arrow). The weighting function is a Gaussian, while only features lying
in a radius of 1m of the vertex are considered being neighbors. This view-dependent
rendering (Fig. 7.10f) is not a 2D morph but a morph of the 3D geometry and should
not be confused with the merge of the 2.5D reconstructions (Fig. 7.10e). It resolves
most of the rendering artifacts as demonstrated in Fig. 7.16.

More formally, let vi (c) be the view-dependent position of vertex vi in camera
c ∈ C as illustrated in Fig. 7.15. Let vi (ĉ) be the 3D position that we need to compute
to render the vertex vi from a novel-viewpoint ĉ. This view-dependent position can
be interpolated between its corresponding positions of all cameras C.
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vi(c2)

vi (c1)

Fig. 7.15 Sketch of the view-dependent geometry. The arrows indicate the view-dependent geo-
metric shift

Fig. 7.16 a Rendering with one geometry. b Rendering with a view-dependent geometry
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vi (ĉ) =
∑

c∈C

λc(ĉ)vi (c) (7.10)

where the weights λc correspond to the blending weights as described in [8]. The
angles αc used for the blending are defined as the angle between the vector from
v to the viewers’ position and the vector from v to the position of camera c, with
v = 1

|C|
∑

c∈C vi (c).
For the texture blending, we use projective textures. However, it is important that

for the projection from a source camera c we do not use the interpolated geometry
(vertex vi (ĉ)) but the geometry relating to camera c (vertex vi (c)). The color values
are blended with the same weights λc used above. However, at occlusions, the λc of
any camera c not covering this pixel is set to 0 and the weights are renormalized.

The cameras are typically not radiometrically calibrated. Therefore, we also com-
pute the color shifts between cameras: an average color Rc, Gc, Bc is computed per
camera c. It is the average of the color values of those pixels of the image c that
project onto 3D positions covered by more than one camera. The per-pixel average
color for the interpolated view rendering is then given by

Rĉ =
∑

c∈C

λc(ĉ)Rc, Gĉ =
∑

c∈C

λc(ĉ)Gc, Bĉ =
∑

c∈C

λc(ĉ)Bc.

For every source camera, the RGB values Rĉ − Rc, Gĉ − Gc, Bĉ − Bc are added to
the texture values of camera c before interpolating the color of a pixel.

This method for geometry interpolation and texturing is also used for the compu-
tation of the color error in Sect. 7.3.2.3.

7.3.4 Results

We demonstrate our method on footage of original TV broadcasts of several soccer
scenes. All computations were done on a standard desktop computer (Core i7 CPU,
3.20GHz). All results shown here and in the video are reconstructed using only two
source cameras (Fig. 7.17).

Despite low resolutions and calibration errors (Fig. 7.1), our algorithm fully auto-
matically reconstructs plausible novel views as shown in Fig. 7.18d. Figure7.16 illus-
trates the effect of the view-dependent geometry that is able to reduce calibration
error artifacts.

With our improved Daisy feature matching, the feature matches are reduced to
a set of reliable correspondences. Sometimes this set contains only a few matches
per player, but nevertheless our adaptive reconstruction method recovers a good
approximation of the players’ geometry as shown in Fig. 7.17.

Our method performs a reconstruction for each camera. This can be used to
recover parts occluded in one camera but visible in another. The result ofmerging two
reconstructions is shown in Fig. 7.18, where Fig. 7.18a shows a novel view using the
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Fig. 7.17 Difficult occlusion. a View in camera 1 with feature points shown as white dots. b View
in camera 2 where one player is almost entirely occluded. c Novel view

Fig. 7.18 a Reconstruction with triangulation in camera 1. The ghostings on the ground are parts
not seen and thus not reconstructed in camera 1. b Merge of the reconstructions of camera 1 and
camera 2. c A rendering using billboarding. d The same view using our method

Fig. 7.19 Leave-one-out example: a and b Closeups of the two source camera images used. c
High-resolution ground truth from a third (not used) camera that zoomed in. d Our reconstruction
of the same view
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Fig. 7.20 Results Each group shows on the top the two camera views, followed by a number of
synthetic views
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reconstruction of camera 1 only and Fig. 7.18b shows the same view with the unified
reconstruction of the two cameras. With the reconstruction of only one camera, parts
of players visible only in the other camera are not reconstructed and are thus projected
onto the ground. With the merged reconstruction, we also get a valid depth for these
parts allowing to reconstruct occlusions (Fig. 7.10e). Figure7.17 demonstrates this
with another example.

Figure7.18c, d show a comparison to billboarding in a view halfway between the
two source cameras. While billboarding shows ghosting (more than two legs) due to
the planar representation, our method preserves the pose of the player in the novel
view.

Figure7.19 depicts a ground truth comparison to a third camera which was not
used in the reconstruction. It demonstrates that the result of our reconstruction is
correct and with similar quality as the input images. More results are shown in
Fig. 7.20. The first two images are always the input images followed by the novel
views. They show views not lying directly in between the cameras, e.g., top views
or views from the height of the players’ heads.

The rendering of novel views is done in real time, i.e., more than 60 frames per
second for HD resolution. Our fully automatic algorithm for reconstruction takes on
average 1min per frame. The exact timing depends on the scene complexity, but none
of our examples required more than 2min to reconstruct. About 19 s of this time are
Daisy feature vector computation and our feature matching. The rest of the time is
spent about equally for positioning, and for the refinement. The time required per
frame could be reduced by parallelization in several ways. First, the reconstruction
for each camera is done completely independently (Fig. 7.10). Second, the refinement
is done independently per triangle. Third, the feature matching could be parallelized.

7.4 Summary

In this chapter, we presented two player reconstruction methods designed for novel-
view synthesis of sport broadcasts. The first one is based on accurate pose estimation
from multiple cameras. To compute accurate 3D poses in such an uncontrolled envi-
ronment, we rely on a rich database of poses and use the temporal coherence of
human motion as a strong prior. Our algorithm works in two stages. First, it retrieves
a good initial pose based on silhouette matching. Second, the initial estimation is
improved using a novel optimization technique that combines spatial and temporal
constraints to yield the final pose.

The second method is based on a multiview geometry reconstruction. We employ
a novel, adaptive, top-down patch matching method where geometric detail is added
gradually in the areas where it is needed based on a reliable sparse feature matching
technique. It also robustly handles areas with no image features by inferring the
position based on the neighboring triangles and back projection error.

The two methods presented use very different approaches with different pros and
cons. The pose estimation method is inherently temporally consistent and can have
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additional useful applications in biomechanics.When an injury or trauma takes place,
it is possible to study the footage leading up to the event and check for the moments
when the body was outside the normal envelop. It is also possible to use this method
to prevent injury, by using the footage of the skeletal movement to improve the design
of the protective gear.

However, this method also has two disadvantages. First, it relies on a relatively
large database of poses that can be difficult to construct. Moreover, some of these
databases might be sport specific (i.e., a different database is required for soccer and
hokey). Second, due to occlusions it may require occasional manual intervention to
solve some ambiguities. When processing thousand of frames, even light manual
interaction per frame may lead to a significant editing effort overall and a fully
automatic method is desirable.

The second method, based on adaptive reconstruction, is more general, more
robust and fully automatic, but it is not guaranteed to be temporally consistent. This
second method is less sensitive to occlusions as it uses several heuristics that seem to
work well in practice to fill in the geometry when it is only viewed from one camera.
Therefore, it can generate convincing results even in two camera setups.

Novel views. As the main application of these methods is to enable virtual novel
views, we provide some insight about the quality of the novel-view generation in
both methods. The first method, based on pose reconstruction, is more flexible and
can generate a wider range of virtual views not restricted to the path between two
existing cameras. However, if the virtual pose is too far from an existing camera,
some ghosting artifacts can still occur due to the billboard-based rendering. The
second method, on the other hand, as it construct its geometry in a view-dependent
way, it provides best results when the virtual viewpoint is along a path between two
existing cameras. However, it is more robust to noise and to calibration errors making
it more versatile.

Acknowledgments The image data is courtesy of Teleclub and LiberoVision.
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Chapter 8
Estimating Athlete Pose from Monocular
TV Sports Footage

Mykyta Fastovets, Jean-Yves Guillemaut and Adrian Hilton

Abstract Human pose estimation from monocular video streams is a challenging
problem. Much of the work on this problem has focused on developing inference
algorithms and probabilistic prior models based on learned measurements. Such
algorithms face challenges in generalisation beyond the learned dataset. We propose
an interactive model-based generative approach for estimating the human pose from
uncalibratedmonocular video in unconstrained sportsTVfootage.Belief propagation
over a spatio-temporal graph of candidate body part hypotheses is used to estimate a
temporally consistent pose between user-defined keyframe constraints. Experimental
results show that the proposed generative pose estimation framework is capable of
estimating pose even in very challenging unconstrained scenarios.

8.1 Introduction

Pose estimation is an important problem and has received considerable interest in
the computer vision community [11]. We consider the problem of estimating human
pose in 2D from a single view video stream. There are many potential advantages
to being able to analyse monocular video streams including lower equipment cost,
lower complexity and higher portability of the camera set-up. Additionally, most of
the content available to the user, despite recent advances in 3D film and stereoscopic
displays, remains single view. Thus, for most practical purposes only a single video
stream of the scene is available for analysis.

Monocular sports footage is challenging due to the complexity of the backgrounds
and the highly articulated human body, engaged in fast-paced activities. Additional
challenges posed by such data include motion blur, low foreground resolution,
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occlusions and self-occlusions and rapid configuration changes, camera movement
and zoom. The goal of the proposed algorithm is not only to deal with such data,
but to do so with sufficient reliability to be suitable for use in a broadcast/production
environment and can be summarised as follows: Given a monocular sequence of
images with one or more athletes in each image, estimate the full-body 2D limb
configuration and joint locations of the athletes in each image.

The aim is to provide rapid, yet robust, user-assisted pose estimation and tracking.
We opt for a generative model-based approach that requires no offline learning and is
generic in the types of motion it is capable of handling but relies on a small amount
of human interaction. As the target use scenario is within a production environment
with the presence of human operators, complete automation is not critical. Although
we focus our experiments on real athletic events footage, no assumptions are made
about body size and appearance, type of motion and the scene.

The algorithm introduces an effective constraint on pose change over time for a
full human skeletal model and is capable of estimating pose in unconstrained data
requiring a relatively small number of keyframes. Figure8.1 illustrates a sample
result and compares to a standard off-the-shelf method, demonstrating full-body 2D
pose estimation with the proposed approach.

Fig. 8.1 Comparison of the proposed method with interpolation in green and solution in black with
a silhouette overlay (left) to an off-the-shelf implementation in [7] (right)
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8.2 Previous Work

Human pose estimation algorithms in the literature can be separated into two distinct
categories—generative and discriminative. Discriminative approaches are typically
data driven and tend to rely on amapping from image features (silhouettes, salient fea-
tures, etc.) to pose information [1, 5]. The key idea behind discriminative approaches
is that the number of typical human poses is far smaller than the number of kine-
matically possible ones. Discriminative methods learn a model that directly recovers
pose estimates from observable image metrics. In other words, the state posterior is
modelled directly by learning an image to pose mapping. Once this training process
is complete, estimating pose is fast but heavily reliant on the training data.

Visual cues used in discriminative approaches often rely on salience or segmen-
tation [13, 18] and attempt to exploit inherent symmetries in the human body [15].
The cues are used to produce part detections for most body parts. The recovery of
human pose from these detections can then be formulated as either a combinatorial
[13, 15, 16] or a parsing problem [18]. One of the difficulties associated with this
class of approaches is their reliance on an accurate and robust part detector. Detectors
often fail when background clutter is significant or when body parts have little visual
distinction. Advantages of discriminative approaches include the ability to model
occlusions as well as the freedom to formulate the pose recovery problem for use
with efficient global search algorithms.

Generative approaches presuppose an explicitly known parametric body model
(generally a kinematic tree) and estimate pose by inverse kinematics or numeric
optimization of a model-image correspondence metric over the pose variables, using
forward rendering to predict the images. Bottom-up Bayes’ rule is used and the
state posterior density is modelled using observation likelihood or a cost function.
Decision-making can proceed even in the case of missing or incomplete data and
assumptions as well as any prior information (such as pose constraints) are easily
accommodated, butmost importantly, there exists a bilateral dependence between the
model and the data. Such algorithms generally incorporate a likelihood model capa-
ble of discriminating incorrect hypothetical poses from correct ones based on image
evidence and an estimation algorithm able to generate possible pose hypotheses
from the parametric body model [9, 10]. Model-based tracking is a derived tech-
nique which focuses on tracking the pose estimate from one time step to the next,
starting from a known initialisation based on an approximate dynamical model. Most
generative pose estimation frameworks suffer from the fact that the optimisation is
prone to hitting local minima, requiring a good initialisation and often failing on
complex motions [2].

Pictorial Structures (PS) is a probabilistic inference approach for a tree-structured
graphical model where the overall cost function for a pose decompose across edges
andnodes of the tree. PS recovers locations scales andorientations of rigid rectangular
part templates that represent a body. PS is a well-developed detection method and
can be used for tracking by detection [3, 4, 6]. A technique to extend existing training
datasets is presented in [14]. These methods, however, require a large motion capture
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and image training dataset. Lan and Huttenlocher [10] use a spatio-temporal model
though pictorial structures as states in a Hidden Markov Model (HMM). A recent
development [3] introduces the idea that pictorial structures may be a generic multi-
purpose solution to pose estimation, detection and tracking. The method is reliant
on a strong discriminatively trained appearance model. Ferrari et al. [8] propose
a temporal link between frames when estimating pose in videos, but the proposed
algorithm only works for frontal upper body poses.

While there existmultiple pose estimation techniques capable of extracting human
pose from monocular image streams, existing approaches do not provide a suitable
solution to the problem of general pose estimation in sports footage due to the fast and
extreme motion captured with moving and zooming cameras. Most algorithms focus
on recovering pose from single images and/or do not make full use of the temporal
constraint on limbmotion [2, 3, 14, 17].Available off-the-shelf single imagemethods
such as [7] have trouble copingwith the difficulty of the data, evenwhen the human is
detected. Figure8.1 shows a side-by-side comparison of the output of the algorithm
developed in [7] obtained using their online demo tool and the proposed method.

We propose a novel generative approach to pose estimation from sports video
to avoid loss of generality and bypass the requirement for motion captured training
data of specific athlete motions. The focus of the framework is on pose estimation
with the assumption that a human is detected and an approximate foreground mask is
available. Silhouette extraction is a well-studied problem and there is a wide variety
of methods that deal with background subtraction, for example [20]. The diagram in
Fig. 8.2 showswhere our algorithmfitswithin a complete pose estimation framework.

Fig. 8.2 Generic pipeline of a full pose estimation framework. The area in green represents where
the proposed algorithm could fit into the pipeline
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The contributions of this work are twofold. First, we propose a temporal
smoothness term applied to the pictorial structures model and show that this term
makes a significant impact on the outcome of the pose estimation problem. This
temporal smoothness constraint should be useful in most existing pose estimation
algorithms. Second, we propose a framework for estimating full-body pose in chal-
lenging circumstances by effectively moving the learning stage of the algorithm
online.Generally, for aTVsequence of around200 images, our algorithmwill require
10–30 keyframes (depending on the difficulty of the motion) to produce high-quality
results. The keyframes provide a motion prior and local part appearance models.

8.3 Methodology

The input into the algorithm is an image sequence along with a corresponding
sequence of foreground masks and several user-created keyframes. The keyframes
are used for building appearance models of body parts as well as to provide a body
part location prior through motion interpolation. The process of pose estimation
consists of two steps: body part detection and pose recovery.

We employ a human skeletalmodel consisting of b = 13 body parts (root (R), head
(H), neck (N), right and left femur (RF, LF), tibia (RT, LT), metatarsal (RM, LM),
humerus (RH, LH) and radius (RR, LR)) as depicted in Fig. 8.3.

Let xt represent the state of the skeleton at time instant t . Let pi represent the state
(x, y, θ, s) of part i as per the standard PS model [6]. Then, xt = {p1, p2, . . . , pb}t .

Fig. 8.3 Graph (tree) representation of the human kinematic skeletal model consisting of 13
body parts
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Given a sequence of n frames, the problem of estimating human pose at each time
instance can be written as:

X = argminxα

n∑

t=1

D(xt ) + (1 − α)

n∑

t=1

S(xt , xt−1) (8.1)

where X represents the temporal sequence of poses {x1, x2...xt }, D(xt ) represents
the data term and S(xt , xt−1, ) the smoothness term at time instance t . The data
term evaluates the cost of a state xt with respect to image observations, while the
smoothness term evaluates the temporal continuity of the sequence. Sections8.3.1
and 8.3.2 explain in more detail how these terms are computed. In order to solve
the problem, we first represent it as a factor graph and solve the resulting graph
using an implementation of Generalised Belief Propagation [12]. Generalised Belief
Propagation lends itself naturally to the problem of finding correct labels for body
parts and although it provides an approximate solution, in practice the algorithm
often converges to the global optima [19].

8.3.1 Smoothness Term

The smoothness term consists of two distinct components: an inter-limb distance cost
Jxt , representing joint connectivity, and a temporal distance term Txt , representing
smoothness of motion across time:

S(xt , xt−1) = βJ(xt ) + (1 − β)T(xt , xt−1) (8.2)

The joint distance cost for skeleton xt is given by:

J(xt ) =
b∑

k=1

dist(bk, par(bk)) (8.3)

where the dist() function gives the Euclidean distance between corresponding joints
and par() gives the hierarchical parent of bone bk . The root bone has no parent. This
creates a soft requirement on inter-part connectivity. The assumption here is based
on the physical reality that adjacent limbs should be connected. This term alone,
however, is not likely to lead to desirable solutions due to frame-to-frame jitter.

In order to reduce jitter between frames, a temporal smoothness term is introduced:

T(xt , xt−1) = d(xt , xt−1) (8.4)

The temporal term is effectively the Euclidean distance between the joint locations
at t and t − 1. Figure8.4 illustrates the complete graph including the temporal term
for three consecutive frames.
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Fig. 8.4 Representation of temporal and inter-limb links for frames at time instances t − 1, t and
t + 1. Coloured links represent the temporal constraint, while those in black represent the joint
connectivity constraint

8.3.2 Data Term

The data term is defined simply as the sum of support scores S(kxt ) assigned to each
generated part candidate for configuration xt :

D(xt ) =
b∑

k=1

S(kxt ) (8.5)

To generate part candidates for part k a search region centred around the mid-
point between the two joints of the interpolation for that part is created. At each
pixel within the search region and the foreground mask, a rectangular template R =
{p0, p1, . . . , pq} containing q pixels is centred with varying orientations and scales.
Each instance of the template receives a support score S based on the strength of the
support region as detailed in Eq.8.6.

S(k) =
∑n

i=0 d(pi )k

q
(8.6)
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Fig. 8.5 a Image with mask overlay and keyframe skeleton with part regions that part models
are built from. b Sample foot histogram model. Blob size represents frequency and blob colour
represents the actual bin colour

To obtain the descriptor d in Eq.8.6, an 83 RGB colour histogram for each body
part using information from the two closest user-created keyframes is first built. The
histogram is sampled from image data at 8 bits per colour channel and is normalised
by the total number of samples. The histogram is accumulated across all regions
within the foreground in a defined area around each bone. This normalised 3D colour
histogram serves as an appearance model for body parts. Figure8.5a is an example
of regions from which the histogram model is built, while Fig. 8.5b shows a sample
histogram of a foot model.

The histogram models provide k colour distribution functions, one for each body
part. A k-dimensional vector is built at every pixel of the foreground region with
each element giving the likelihood of the pixel belonging to a given part based on
colour using the colour distribution functions previously obtained. This vector is
then normalised by the maximum of its elements, creating k-dimensional descriptor
d assigned to the pixel p(x, y) where each element of the descriptor is the probability
of the pixel belonging to the corresponding body part. The rationale here is that
each pixel in the foreground mask should, in principle, belong to one of the body
parts. The normalisation allows for an effective ranking of probabilities of the pixel
belonging to each distinct body part. This does, however, increase reliance on high-
quality foregroundmasks as the algorithmwill try to associate any background pixels
that are within the foreground mask with human body parts. In practice, we find that
obtaining sufficiently good masks is possible through readily available off-the-shelf
methods.

Additionally, a 3D motion interpolation is computed using the two closest
keyframes. The interpolation limits the search region and provides initial orienta-
tion and scale estimates for body part candidate generation. Interpolation is used
to limit the search space and make the problem tractable on commodity hardware.
The interpolation is computed using the manually annotated keyframes based on
locations of joints in 3D space. Joint angles are represented in quaternions and linear
interpolation is used to estimate the body state at each time instance.
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8.4 Results and Evaluation

The framework is evaluated on three sports TV sequences with different camera
angles, zoom and motion from two different sports—triple jump and hurdles. Due to
the fast motion of the athlete’s body, many frames suffer from motion blur effects.
Additionally, we evaluate our algorithm on three of the HumanEva sequences: Box,
Jog and Walk. Table8.1 summarises the data used to evaluate the framework. The
size of the athlete (height in pixels) differs in every sequence, ranging from 42 to
over 800.

We use the interpolation between keyframes as the motion prior and assume that
it gives a reasonable initial estimate. In order to help reduce the search space, we
do not vary scale and vary limb orientation by 90◦ in each direction in increments
of 10◦. We also limit the search region for body parts to twice the interpolated limb
length. This strikes a good balance between accuracy and computability allowing us
to obtain results for 10 images (8 frames plus two keyframes) at speeds of around
15 (depending on foreground region size) seconds per frame on an Intel i5 processor
with 4gb of RAM (Figs. 8.8, 8.9, 8.10, 8.11, and 8.12).

The error of a body part to ground truth is defined as the square of Euclidean
distance to ground truth body part joints and is given by:

Ek = d( j0, g0)2 + d( j1, g1)2

2
(8.7)

where j0 and j1 are estimated joint positions for the body part k and g0 and g1 are the
ground truth positions. The graphs in Figs. 8.13, 8.14, and 8.15 show a comparison
of RMS error at each time instance between 3D interpolation and our method for
each of the three sequences. The ground truth is obtained by manual annotation of
the sequences. The manual annotation of the sequence includes labelling of limbs
as occluded to the point where even a human operator cannot reliably determine the
location of the limb. Limbs labelled in this way are removed from error analysis as
their true location is unknown.

The three HumanEva sequences were evaluated using the same error measure
against the ground truth provided in the dataset. As the limb labelling scheme

Table 8.1 Summary of sequences used for framework evaluation

Name Sport Resolution Frames Keyframes Average
athlete height
(pix)

Tuning
frames

HurdlesSD Hurdles 720× 576 76 17 60 12

TriplejumpHD Triple jump 1920× 1080 198 42 800 10

TriplejumpSD Triple jump 720× 288 89 12 150 18

HumanEva Box Triple jump 720× 540 374 22 400 20

HumanEva Jog Triple jump 720× 540 391 17 400 30

HumanEva Walk Triple jump 720× 540 431 14 400 30
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Fig. 8.6 Parameter tuning for the three TV sequences. Heat represents RMS error in square pixels

and the body model differ somewhat from our own the error measures are higher.
Additionally, the human-labelled keyframes no longer correspond to ground truth
and instead introduce some inherent error. We plot these errors, including keyframe
errors in Figs. 8.16, 8.17, and 8.18 for the Box, Jog andWalk sequences, respectively.
Our method is able to provide high quality results with far fewer keyframes required
on these three sequences.

The parameters used for obtaining the results were experimentally derived using a
short section of each of the tested sequences (see Table8.1. Results of parameter tun-
ing are presented in Figs. 8.6 and 8.7 for the TV and HumanEva sequences, respec-
tively. As expected, the parameter tuning heat maps for the triplejump sequences
appear similar with overlapping local minima. This is most likely due to the inherent
similarity in the activity. Meanwhile, the heat map for hurdlesSD is significantly
different. These results indicate not only that the temporal component has a quan-
tifiable impact, but that parameter selection can be shared across sequences that are
similar, e.g. same sport and somewhat similar camera angle. Though there is no one
parameter set that is universally good.

Analysis of these sequences indicates that qualitatively our method is better
than pure interpolation. The significance of improvement can depend on how good
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Fig. 8.7 Parameter tuning for the three HumanEva sequence. Heat represents RMS error in square
pixels

interpolation is for a particular sequence. Since the interpolation we compare against
is done on a 3D skeleton, it is fairly good at coping with normal human motion and
is guaranteed connectivity and temporal consistence as long as it is across one gait
cycle. Currently, we make use of interpolation as a motion prior and a constraint
on the search space with the assumption that the interpolation provides a reason-
able initial estimate of pose. Thus, even a seemingly small improvement in distance
often has significant visual impact with regard to accuracy of body part locations.
Furthermore, the problem of the interpolation straying significantly from the ground
truth, preventing detection and potentially dragging the optimisation in the wrong
direction is left for future work but has a definite impact on the results.

The error differences between interpolation and our method vary for the dif-
ferent sequences and sections of sequences. For example the graph for the triple-
jumpHD sequence 13 has a much more significant error gap than both triplejumpSD
and hurdlesSD. Similarly, our method outperforms interpolation significantly on the
HumanEva Box sequence for similar reasons. Large gaps can occur when the inter-
polation has strayed 90◦ of rotation away from ground truth (at the limit of our used
range) but has stayed close enough to contain the image body parts within the search
region.
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Fig. 8.8 Sample solutions from the trijumpHD sequence

Fig. 8.9 Sample solutions from the trijumpSD sequence
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Fig. 8.10 Sample solutions from the hurdlesSD sequence

Fig. 8.11 Sample solutions from the Box, Jog and Walk HumanEva sequences

The HumanEva sequences require far fewer (generally one every 30–40 frames)
keyframes due to the significantly slower motion and high framerate for the capture
cameras. Additionally, the body part model used in the dataset does not include
metatarsals. Feet are therefore excluded from the evaluation. The analysis of the
HumanEva sequences also include a comparison of the method with the temporal
component turned off, that is β = 0. Results indicate that the temporal smoothness
term has a definite quantifiable impact on the result. The improvements are most
noticeable at frames furthers away from keyframes, where detections relying on
interpolation begin to fail. On these frames, improvements in accuracy over the non-
temporal solve can in some cases reach 25–30 pixels.
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Fig. 8.12 Examples of solution where interpolation is significantly worse than proposed solution.
Interpolation in green

Fig. 8.13 Error to ground truth of our algorithm (green) and motion interpolation (red) for the
triplejumpHD sequence. Black marks indicate keyframes

Figures8.8, 8.9, and 8.10 show sample results from each sequence. The improve-
ment over interpolation here is in many cases significant, despite the fact that
keyframes are much sparser. A number of keyframes have high error when compared
to the HumanEva ground truth as the human body models used differ. Our model is
fully connected and joints are labelled visually, while motion capture data is derived
from sensors attached to more anatomically correct joint locations. Figure8.12 con-
tains samples from the HumanEva sequences.
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Fig. 8.14 Error to ground truth of our algorithm (green) and motion interpolation (red) for the
triplejumpSD sequence. Black marks indicate keyframes

Fig. 8.15 Error to ground truth of our algorithm (green) and motion interpolation (red) for the
hurdlesSD sequence. Black marks indicate keyframes
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Fig. 8.16 Error to ground truth for the HumanEva Box sequence. Black marks indicate keyframes

Fig. 8.17 Error to ground truth for the HumanEva Jog sequence. Black marks indicate keyframes
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Fig. 8.18 Error to ground truth for the HumanEvaWalk sequence. Black marks indicate keyframes

8.5 Conclusion and Future Work

We have presented a method for recovering human pose in challenging sports
scenarios using only a single view but requiring some human interaction. The pro-
posed framework is generic in terms of types of motion and pose the athlete could
take. The algorithm has been tested on three challenging sports sequences of differ-
ent sports as well as three sequences from the HumanEva dataset. Quantitative and
qualitative analyses have shown that our method provides a significant improvement
to using interpolation and is capable of recovering pose even in the most challenging
of conditions. Sequences that are less difficult require significantly fewer keyframes
for a successful solve.

Future work will focus on improving the appearance model as a stepping stone
to weakening the reliance of the algorithm on keyframe interpolation and reducing
the solution search space by generating higher quality body part candidates. This
should also be useful in reducing the overall number of keyframes required for a
high-quality solution.

Since our algorithm is capable of recovering joint locations another avenue for
exploration is recovery of pose in 3D, which would allow for additional kinematic
constraints to be added to the optimisation as well as derivation of useful metrics
about the athlete.
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Chapter 9
Action Recognition in Realistic
Sports Videos

Khurram Soomro and Amir R. Zamir

Abstract The ability to analyze the actions which occur in a video is essential for
automatic understanding of sports. Action localization and recognition in videos
are two main research topics in this context. In this chapter, we provide a detailed
study of the prominent methods devised for these two tasks which yield superior
results for sports videos. We adopt UCF Sports, which is a dataset of realistic sports
videos collected from broadcast television channels, as our evaluation benchmark.
First, we present an overview of UCF Sports along with comprehensive statistics of
the techniques tested on this dataset as well as the evolution of their performance
over time. To provide further details about the existing action recognition methods
in this area, we decompose the action recognition framework into three main steps
of feature extraction, dictionary learning to represent a video, and classification; we
overview several successful techniques for each of these steps. We also overview
the problem of spatio-temporal localization of actions and argue that, in general,
it manifests a more challenging problem compared to action recognition. We study
several recent methods for action localization which have shown promising results on
sports videos. Finally, we discuss a number of forward-thinking insights drawn from
overviewing the action recognition and localization methods. In particular, we argue
that performing the recognition on temporally untrimmed videos and attempting to
describe an action, instead of conducting a forced-choice classification, are essential
for analyzing the human actions in a realistic environment.
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9.1 Introduction

Developing automatic methods for analyzing actions in videos are of particular
importance for machine understanding of sports. Action recognition, which is the
problem of assigning a video to a set of predefined action classes, and action localiza-
tion, defined as identification of the spatio-temporal location where an action takes
place, are two of the fundamental and heavily studied topics in this context.

The majority of existing frameworks for action recognition consist of three main
steps: feature extraction, dictionary learning to form a representation for a video
based on the extracted features, and finally classification of the video using the
representation. In the first step, a set of features, such as STIP [32, 33] or dense
trajectories [77, 78], are extracted from a given video. These features are supposed
to encode the information which is useful for recognition of the action in a numerical
form such as a vector. Then, the extracted features are used for forming a represen-
tation of a video, which captures the actions that occur therein. Such representation
may be as simple as a histogram of most frequent motions [32, 33, 75, 77, 78] or a
semantically meaningful model such as action poses [76]. In the last step, a general
model for each action of interest is learnt using the computed representation of a set
of labeled training videos. Given the learnt models, a query video is then assigned
to the most similar action class by the classifier.

Action localization, unlike action recognition, deals with the problem of identi-
fying the exact location in space-time where an action occurs. It manifests a wider
range of challenges, e.g., dealing with background clutter or the spatial complexity
of the scene, and has been the topic of fewer research papers as compared to action
recognition. The recent successful action localization techniques, which will be dis-
cussed in Sect. 9.4, typically attempt to segment the action utilizing cues based on
the appearance, motion, or a combination of both [40, 69].

UCF Sports [57] is one of the earliest action recognition datasets that contains
realistic actions in unconstrained environment. In this chapter, we provide a detailed
study of the UCF Sports dataset along with comprehensive statistics of the methods
evaluated on it. We also discuss the technical details of the prominent approaches for
action localization and recognition which yield superior results for sports videos.

In Sect. 9.5, we discuss the insights acquired from summarizing the existing action
recognition and localization methods, especially the ones evaluated on UCF Sports. In
particular, we will argue that many of the existing action localization and recognition
systems are devised for temporally trimmed videos. This is a significantly unrealistic
assumption, and it is essential to develop techniques which are capable of perform-
ing the recognition or localization on temporally untrimmed videos. In addition, we
discuss that describing an action using a universal lexicon of lower level actions,
also known as action attributes [17, 37], is a worthwhile alternative to increasing the
number of classes in action datasets and performing a forced-choice classification
task. Lastly, we will discuss that the majority of existing action localization algo-
rithms mostly perform an exhaustive search in, spatial, temporal, or spatio-temporal
domain, in order to find a match for their action representation. This approach is
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Walking Swing-Side Skateboarding 

Diving Kicking Golf Swing Riding Horse 

Running Swing-Bench 

Lifting 

Fig. 9.1 UCF Sports Dataset: sample frames of 10 action classes along with their bounding box
annotations of the humans shown in yellow

inefficient, as also observed in several recent object detection methods [9, 15, 72],
and can be improved by employing a more efficient search strategy similar to selective
search [25, 72] or object proposals [15].

9.2 UCF Sports Dataset

UCF Sports consists of various sports actions collected from broadcast televi-
sion channels including ESPN and BBC. The dataset includes 10 actions: diving,
golf swing, kicking, lifting, riding horse, running, skateboarding, swinging-bench,
swinging-side, and walking. Figure 9.1 shows a sample frame of all ten actions. The
dataset along with human bounding box and human gaze annotations is available to
the public.1

The dataset includes a total of 150 sequences with the resolution of 720× 480.
Table 9.1 summarizes the characteristics of the dataset. Figure 9.2 shows the distrib-
ution of the number of clips per action as the number of clips in each class is not the
same. Figure 9.3 illustrates the total duration of clips (blue) and the average clip length
(green) for every action class. It is evident that certain actions are short in nature, such
as kicking, as compared to walking or running, which are relatively longer and have
more periodicity. However, it is apparent from the chart that the average duration
of action clips shows great similarities across different classes. Therefore, merely
considering the duration of one clip would not be enough for identifying the action.

Table 9.1 Summary of the
characteristics of UCF Sports

Actions 10 Total duration 958 s

Clips 150 Frame rate 10 fps

Mean clip length 6.39 s Resolution 720 × 480

Min clip length 2.20 s Max num. of clips per class 22

Max clip length 14.40 s Min num. of clips per class 6

1 Download UCF Sports dataset: http://crcv.ucf.edu/data/UCF_Sports_Action.php.

http://crcv.ucf.edu/data/UCF_Sports_Action.php
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Fig. 9.2 Number of clips per action class

UCF Sports has been cited by more than 400 times since its introduction in
2008 and has been adopted by many state-of-the-art algorithms as an evaluation
benchmark. Figure 9.4 shows number of citations per year and the cumulative count
showing its rise every year.

Since its introduction, the dataset has been used for numerous applications such
as: action recognition, action localization, and saliency detection. Saliency detection
methods specify the region in the videos which attracts the human attention the most.
The following sections explain how the methodologies applied on UCF Sports have
evolved over time and describe the standard experimental setups. In the rest of this
chapter, we focus on action recognition and localization as the two main tasks for
analyzing the actions in videos.

9.2.1 Action Recognition

Action recognition is one of the heavily studied topics in computer vision. More than
80 % of the research publications which have utilized UCF Sports reported action
recognition results on this dataset. Figure 9.5 shows how the accuracy of action
recognition on UCF Sports has evolved every year since 2008. This figure reports
yearly mean accuracy for two experimental setups: (1) Leave-One-Out and (2) Five-

Fig. 9.3 The total time of video clips for each action class is shown in blue. Average length of clips
for each action is shown in green
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Fig. 9.4 Research publications in which UCF Sports was utilized. The chart shows yearly and
cumulative counts until 2013

Fold cross-validation. The mean accuracy has gradually improved every year and
the state-of-the-art method (96.6 % accuracy [23]) is able to recognize the minority
of the actions correctly.

The early successful methods on UCF Sports were mostly based on sparse space-
time interest points [32, 33] and cuboid descriptors. However, the more recent dense
sampling [18, 50] and trajectory-based [77, 78] techniques have been able to outper-
form them and significantly improve the overall accuracy. Several of such methods
for feature extraction [16, 32, 33], action representation [26, 76], dictionary learning
[53], and classification [51, 57] will be discussed in more detail in Sect. 9.3.

9.2.1.1 Experimental Setup

The original way [57] to test on UCF Sports was to use a Leave-One-Out (LOO)
cross-validation scheme. This scenario takes out one sample video for testing and
trains using all of the remaining videos of an action class. This is performed for every
sample video in a cyclic manner, and the overall accuracy is obtained by averaging
the accuracy of all iterations.

An alternative experimental setup was proposed in [86] that uses a five-fold
cross-validation scheme. Each fold consisted of one-fifth videos for testing and the
remaining for training. For each fold the recognition accuracy is calculated using

Fig. 9.5 Yearly mean accuracy of action recognition for two experimental setups: (1) Leave-One-
Out (2) Five-Fold cross-validation. The brackets show the maximum and minimum accuracy for
every year
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average class accuracy and the results are averaged over all folds to get the final
accuracy.

For action localization methods that perform action recognition as well, [31]
proposed a different testing scheme that uses one-third videos for each action class
as testing and the remaining two-thirds for training. Further details can be seen in
Sect. 9.2.2.1.

All of the three aforementioned experimental setups of LOO [30, 35, 57, 58, 81,
87], fivefold cross-validation [53, 86], and predefined splits [31, 69] have been used
for performing the evaluations on UCF Sports, while LOO and fivefold are more
common. However, fivefold cross-validation and using splits are computationally
less expensive as they require less training-testing iterations.

9.2.2 Action Localization

Action localization is an important problem with a wide range of applications such
as human activity analysis, behavior recognition, video retrieval, and many others.
Action localization is generally a more difficult task compared to action recognition.
That is because a successful action localization requires the action class to be correctly
recognized, and also its spatio-temporal location to be identified. Therefore, action
recognition is a subproblem solved within action localization. In action recognition,
at times it is feasible to recognize an action using only the background features,
and without utilizing the temporal or motion information. Therefore, even though
one could recognize such actions, detecting the exact spatio-temporal location of
the action would require additional steps such as modeling the temporal movement
of body parts. This becomes even more complex when practical challenges, e.g.,
occlusion or background clutter, are considered as well.

Action localization has been the subject of fewer research efforts compared to
action recognition. This is observable in the statistics as less than 15 % of the research
papers evaluated on UCF Sports have discussed action localization results. UCF
Sports was one of the first datasets for which bounding box annotations of the actions
were made available, and therefore it is an excellent dataset for studying the advances
on this topic. Table 9.2 shows some of the recent action localization approaches and
their results on this dataset.

Action localization approaches have mostly focused on developing action
representation models which suit the problem of spatio-temporal localization. The
figure-centric model [31] using the human location as a latent variable, Spatio-
temporal Deformable Part Model (SDPM) [69], or hierarchical space-time segments
[40] are some of the notable methods in this context. The key idea behind the major-
ity of these methods is to capture the human structure and its deformity in a spatio-
temporal framework. Further details of several localization methods tested on sports
videos are provided in Sect. 9.4.
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Table 9.2 Action localization results on UCF sports

Method Year Experimental Evaluation Accuracy

setup metric (%)

Shapovalova et al. [61] 2013 Splits ROC & AUC 32.3

Lan et al. [31] 2011 Splits ROC & AUC 38

Tian et al. [69] 2013 Splits ROC & AUC 42

Tran and Yuan [71] 2012 Splits Average precision 55.34a

Ma et al. [40] 2013 Splits Intersection-over-union 42.1

Gall et al. [21] 2011 Five-fold cross-validation Average precision 54

Yao et al. [86] 2010 Five-fold cross-validation Average precision 54

Cheng et al. [10] 2013 Five-fold cross-validation Average precision 61.6

Thi et al. [68] 2012 Five-fold cross-validation Binarized overlap 89

Raptis et al. [56] 2012 Leave-one-out cross-validation Localization score 62.6
a Only three actions were used for localization: Horse Riding, Running and Diving

9.2.2.1 Experimental Setup

Similar to Sect. 9.2.1, the original experimental setup for action localization is to
use Leave-One-Out (LOO) scheme. However, this setup has been criticized by
Lan et al. [31] for two main reasons. The first reason is that no parameters (e.g.,
the SVM regularizer weightings, C) have been given and experiments show that the
accuracy can change drastically by varying parameters. The second reason, which is
more critical, is that many videos have similar backgrounds, and therefore a strong
scene correlation exists between videos. Thus, while testing under LOO setting, the
classifier may use the background features to classify the video which results in an
artificially high accuracy. An empirical evidence for this issue has been provided in
[31]. To alleviate this problem, an alternate experimental setup [31] is proposed. The
new setup2 splits the dataset into two uneven parts: two-third of videos for training and
one-third for testing. To calculate the accuracy, an intersection-over-union criterion
is used to plot ROC curves with a certain overlap threshold. The intersection-over-
union computes the overlap between the predicted bounding box and the ground
truth, and divides it by the union of both the bounding boxes, for every frame. This
value is then averaged over all frames in a video. A 20 % overlap threshold is used
for this experiment. Area Under Curve (AUC) against the overlap threshold, which
shows how the performance varies if the threshold is changed, is used to compute
the final performance. To calculate the overlap, the ground truth bounding box per
frame is provided for the dataset. Figure 9.1 shows sample frames from UCF Sports
dataset for each action class along with their annotated bounding boxes of humans.

The reported results in Table 9.2 show a variety of experimental setups and eval-
uation metrics. Due to the aforementioned issues, adopting the predefined splits of

2 UCF Sports experimental setup for Action Localization: http://www.sfu.ca/~tla58/other/train_
test_split.

http://www.sfu.ca/~tla58/other/train_test_split
http://www.sfu.ca/~tla58/other/train_test_split
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[31] as the setup is recommended. As the evaluation metric, both Precision/Recall
and ROC curves are appropriate. However, Precision/Recall has been a more popular
choice for the other datasets, and therefore it is recommended for UCF Sports as well
for the sake of consistency.

9.3 Action Recognition in Realistic Sports Videos

In this section, we provide an overview of some of the action recognition techniques
which have shown superior results for sports videos. The overall recognition frame-
work is broken down into three major steps of feature extraction, dictionary learning
(for forming the representation of videos), and finally classification. The prominent
methods for each step are elaborated in the rest of this section.

9.3.1 Feature Extraction

Classifying actions from videos requires extracting a set of data points, commonly
termed features, that are expected to carry the information which is useful for distin-
guishing between various actions. Existing features can be classified into two main
categories: (1) Low-level (Local) and (2) High-level (Holistic) features. Low-level
features are the most commonly used features and are extracted by either detecting
interest points or densely sampling them in a video. High-level features capture fur-
ther structured information related to the action being performed. This high-level
structure aims at gathering features such as shape [26], pose [76] or contextual infor-
mation [81]. The general goal of feature extraction is to gather features that are
generic enough and robust to backround variation. These features should be invari-
ant to changes in scale, rotation, affine transformations, illumination, and viewpoint.
However, capturing the required information while preserving the robustness to the
aforementioned issues is a challenging problem. In the following sections, we will
explore several low-level and high-level features that have performed well on UCF
Sports.

9.3.1.1 Low-Level Features

Generally, low-level feature extraction is done by detecting sparse keypoints such as
corners [24, 62], edges [8, 48], contours [49, 52], or blobs [42]. The corner detectors
usually work by finding the locations that have large gradients in all directions; to
find edges, an intensity derivative is applied in a specific direction. Contours find
local silhouettes, and blobs aim at detecting regions within an image that have dis-
tinctive color properties compared to the neighboring areas. Once the keypoints are
detected, a descriptor is formed around the point, which captures the local informa-
tion. This descriptor can be scale-invariant such as Scale-Invariant Feature Transform
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Fig. 9.6 Space-Time Interest Points (STIP) [32]: Features detected in a Football sequence when
player is heading a ball. b Hand clapping sequence. The temporal slice of space-time volume shows
that the detected events correspond to neighborhoods with high spatio-temporal variation

(SIFT) [38], texture-based [54], shape-context [5], gradient location and orientation
histogram (GLOH) [46], steerable filters using Gaussian derivatives [20], moment
invariants [73], and many more. Other useful information that local features can
extract could be color, motion, trajectories, shape descriptors, and depth cues.

The aforementioned features were initially devised for images and capture the
static information from the image. To extend this to videos and make use of tempo-
ral information, Space-Time Interest Points (STIP) [32, 33] were developed which
are based on an extension of Harris corner detector. STIP can be described as the
extention of spatial interest points into the spatio-temporal domain, where local struc-
tures which have significant local variations of image intensity values in space and
nonconstant motion in time are detected. These local spatio-temporal features often
correspond to interesting events in video data (see Fig. 9.6). Inspired by STIP, many
variants have been proposed over time such as 3D-SIFT [60], HOG3D [29], extended
SURF [80], and Local Trinary Patterns [87].

Although sparse keypoints have shown good classification performance, dense
sampling has given further improvements in the image classification task [18, 50].
Dense sampling is different from sparse interest points in the sense that points are
uniformly selected from the image, instead of using a criteria for selecting keypoints.
That way, more information is gathered which can be learned by a classifier to give
better performances in action recognition.

A more intuitive way of finding spatio-temporal characteristics is to track inter-
est points throughout the video sequence. Some recent methods [43, 45, 65, 66]
have shown improvement in action recognition performance using motion informa-
tion of trajectories. These methods obtain feature trajectories by either using KLT
tracker [39] in their approach [43, 45] or matching SIFT descriptors [38] between
consecutive frames [66].

In the following sections, we describe two main low-level features that have given
superior action recognition results on the UCF Sports dataset.
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Color Space-Time Interest Points

An extension of STIP [32] to Color-STIP [16] has been proposed recently which
gives the best performance in action recognition, compared to other sparse space-time
interest point features. This approach uses a multichannel reformulation of existing
STIP detectors and descriptors by considering different chromatic representations
derived from opponent color space. Chromaticity specifies the quality of a color and
consists of two parameters: hue and saturation. Adding Color to the temporal domain
allows for better motion estimation and temporal variation.

The approach transforms RGB space to Opponent color space and comes up with
a new photometric representation: I(ntensity), C(hromatic), N(ormalized chromatic)
and H(ue). A combination of intensity and chromatic channels is used to give a three-
channel representation: IC, IN, and IH. Multi-Channel Harris-STIP and Gabor-STIP
detectors are formulated for each photometric channel and are represented using a
Multi-Channel STIP descriptor. The Multi-Channel STIP descriptor is calculated by
incorporating chromaticity in the HOG3D [29] descriptor. The final descriptor is a
combination of two variants: (1) Channel Integration and (2) Channel Concatenation.

Many existing STIP-based approaches [32, 33] operate on image intensity, making
them sensitive to highlights and shadows. They ignore the discriminative information
by discarding chromaticity from the representation. By utilizing chromaticity in their
enhanced appearance model, Color-STIP has shown to outperform other STIP-based
methods.

Trajectories

Dense sampling of feature points and feature trajectories [39] have shown a notable
improvement in image classification [18, 50] and activity recognition [45]. Inspired
by these approaches, a recent method [77] computes dense trajectories by sampling
dense points from each frame and tracking them based on displacement information
from a dense optical flow field. By employing global smoothness constraints, dense
trajectories are made to be more robust to irregular abrupt motion as well as shot
boundaries.

Feature points are densely sampled on a grid, with uniform spacing, and tracked at
multiple spatial scales to obtain dense trajectories (see Fig. 9.7). Each point is tracked
between consecutive frames using median filtering in a dense optical flow field. These
points from subsequent frames are then linked together to form a trajectory. To avoid
the problem of drifting in trajectories, the length is limited to a fixed number of frames.
Drifting usually occurs when a trajectory moves away from the initial position during
the tracking process.

In order to encode various trajectory information, a novel descriptor is proposed
which combines trajectory shape, appearance, and motion information. The shape
of trajectory embeds local motion patterns and is described by a sequence of nor-
malized displacement vectors. The motion and appearance information is captured
by computing the descriptor within a space-time volume aligned with the trajectory.
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Fig. 9.7 Extracting Dense Trajectories [78]. Left Densely sampled feature points on each spatial
scale. Middle Tracking feature points separately on each spatial scale using median filtering for L
frames in a dense optical flow field. Right A N×N pixels neighborhood divided into nσ × nσ × nτ

grid is used to compute (HOG, HOF, MBH) descriptors along the trajectory

The volume is subdivided into a spatio-temporal grid to obtain local information.
Histogram of Oriented Gradients (HOG) [11] encoding static appearance informa-
tion, Histogram of Oriented Flow (HOF) [34] getting local motion information and
Motion Boundary Histogram (MBH) [12] capturing relative motion information, are
used as various descriptors for the trajectory volume.

Dense trajectories have shown to give better performance than Space-Time Inter-
est Points (STIP) [33], as they capture appearance and dynamic motion information
along the trajectory as compared to STIP, which uses cuboids instead. Experiments
have shown dense trajectories to be further robust to camera motion and more infor-
mative for action classification.

9.3.1.2 High-Level Features

High-level features in action recognition represent an action by detecting high-level
concepts [58] and often build upon local features [67]. The main idea is to preserve
structural information of actions. These high-level features can be a spatio-temporal
volume (STV) generated by 2D contours [88], 3D shapes induced by silhouettes [22],
motion descriptor based on smoothed and aggregated optical flow [14], kinematic
features [4] and so on.

The following sections introduce two of the recent high-level features that model
the action remarkably well under varying background conditions and yield superior
results on UCF Sports.

Spatio-Temporal Structures of Human Poses

An action can be considered as a mere articulation of parts. Hence, representing
an action as poses is intuitively meaningful and has the capability of incorporating
the variety of nonrigidness that a human body posesses when performing an action.
In this context, [76] presents a pose-based action representation which models the
spatio-temporal structures of human poses [85].
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Fig. 9.8 Representing actions with poses [76]. a A pose consists of 14 joints combined together
to form five body parts; b two spatial-part-sets showing co-occurring combinations of body parts
for a particular action; c temporal-part-sets showing co-occurring sequences of body parts; d action
representation consisting of spatial-part-sets (4) and temporal-part-sets (1–3)

Given a video, K-best pose estimations are obtained for each frame, and the best
pose is inferred using segmentation cues and temporal constraints. To obtain the
action representation, estimated joints are grouped into five body parts: Head, Left
arm, Right arm, Left leg, and Right leg (see Fig. 9.8). Efficient Contrast mining algo-
rithm is used to gather distinctive co-occurring spatial configuration of body parts,
called spatial-part-sets, and co-occurring pose sequences of body parts in temporal
domain, called temporal-part-sets. Similarly, for test videos, part-sets are detected
using estimated poses and represented using a histogram of part-sets. This histogram
is then classified using a Support Vector Machine (SVM). Representing actions in
terms of poses and part-sets gives a better visual interpretation and is compact as com-
pared to high-dimensional, low-level representations. It is also robust to variations
in body part movements since it can model the temporal movements effectively.

Shape Models

A joint shape-motion descriptor is proposed in [26], which combines shape features
from an appearance model and motion features from optical flow field to capture
distinct properties of an action. The approach represents an action as a sequence of
prototypes for flexible action matching in video sequences. In training, action interest
regions are localized and shape-motion descriptors are extracted. Using hierarchical
K-means clustering, an action prototype tree is learned in a joint shape and motion
space. The training sequences are represented as a labeled prototype sequence. In
testing, humans are detected and tracked using appearance information, while frame-
to-prototype correspondence is established by maximizing joint probability of the
actor location and action prototype by searching the learned prototype tree. Finally,
the action is recognized using dynamic prototype sequence matching.

The shape descriptor for an action interest region is represented as a feature
vector by dividing the region of interest into a square grid. Shape observations are
gathered using background subtraction or from appearance likelihood maps. For
the appearance likelihood map, an appearance model is built and is used to assign a
probability to each pixel in the specified region. An accumulation of such probabilites
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Fig. 9.9 Computing shape-motion descriptor [26]: a Raw optical flow field. b Motion-compensated
optical flow field. c Appearance likelihood map. d Motion descriptor from the raw optical flow field.
e Motion descriptor from the motion-compensated optical flow field. f Shape descriptor

for each grid square is used as a shape feature vector. The feature vector is L2
normalized to get the final shape descriptor, as seen in Fig. 9.9f.

The motion descriptor for an action interest region is represented as a feature
vector of Quantized, Blurred, Motion-compensated Flow (QBMF). The motion flow
feature is calculated similar to [14], where optical flow is computed and divided
into horizontal and vertial components and then background motion is removed by
subtracting the medians of flow fields to get median-compensated flow fields. Motion-
compensated flow fields (see Fig. 9.9b) are half-wave rectified into four nonnegative
channels and each one of them is blurred using a Gaussian Kernel to get motion
observations. The four channels are L2 normalized and concatenated to get the raw
motion descriptor. Finally, the raw motion descriptor is L2 normalized to get the final
motion descriptor. Figure 9.9d, e, shows the four channels of the motion descriptor,
where grid intensity indicates motion strength and the arrow indicates the dominant
motion orientation at that grid.

The results demonstrate good action recognition performance under moving cam-
era and dynamic background. The reason is that the approach models the correlation
between shape and motion using action prototypes in a joint feature space, which
allows the method to tolerate such complex conditions.

9.3.2 Dictionary Learning

Dictionary learning is an important step in forming the representation of actions. It
is most commonly employed in a Bag-of-Words (BoW) framework by using either
low-level features such as STIP [32, 33] or high-level features such as human poses
[76]. Typically, an unsupervised learning technique such as K-means is applied to
cluster local features, and then the features from each video sequence are mapped to
these cluster centers to get a histogram representation.

Sparse coding is also very popular and has been successfully applied to many
computer vision problems such as image classification [84], visual saliency [83],
and image restoration [55]. Sparse coding attempts to approximate an input sample
using a linear combination of a few items from an overcomplete dictionary. Dictio-
nary learning methods can be categorized into unsupervised and supervised learning.
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The dictionary learning is unsupervised when the goal is to minimize reconstruction
error of the original samples in order to build a dictionary. Supervised learning tech-
niques can form a category specific dictionary that promotes discrimination between
classes; this discriminatory term is added to the objective function which is to be
optimized.

In the following sections, we will explore new techniques for dictionary learning
that have produced notable results on UCF Sports dataset.

9.3.2.1 Multi-Task Sparse Learning

Multi-Task Sparse Learning (MTSL) [89] aims to construct a given test sample with
multiple features and very few bases. In this framework, each feature modality is
considered as a single task in MTSL to learn a sparse representation. These tasks are
generated from multiple features extracted from the same visual input (video), hence
they are interrelated. A Beta Process (BP) prior is used to learn a compact dictionary
and infer sparse structure shared across all tasks.

Each video is represented using two types of features: (1) a histogram and
(2) co-occurrence features. Histogram representation has achieved state-of-the-art
performance and is frequently used in a bag-of-words framework. However, it ignores
the geometric distribution of local features. Co-occurrence feature makes use of
spatio-temporal proximity distribution of local features in a video to utilize geomet-
ric context.

A task is generated from each modality of features coming from the same video
sequences. Each individual task is defined as learning a sparse representation of
the video in one feature space. Multi-task learning improves the performance of
each individual task by sharing information between related tasks. A target sample
y j , j = 1, . . . , J with J tasks, obtained from a video is represented in terms of a
dictionary D j , a sparse coefficient θ j and a residual error ε j . A sparse coefficient
vector is the product of a binary vector z j , defining which dictionary terms are used
to represent a sample, and a weight vector ω j . A Beta Process is used to formulate
the dictionary as well as the binary vector. A graphical model based representation
of MTSL is shown in Fig. 9.10. The bottom layer consists of individual models with
task-related parameters. In the middle layer, tasks are connected via common prior
of the tasks and the top layer is the hyperprior invoked on the parameters of the prior.
In the model, the variables are infered given the training samples. Gibbs sampling is
used to update them iteratively. All variables except the dictionary D are initialized
randomly. However, the dictionary is initialized using K-SVD [53]. K-SVD learns an
overcomplete dictionary for sparse representation. Once initialized, MTSL obtains
a compact and discriminative dictionary by Gibbs sampling. To classify a test video,
the sparse representation is obtained by MTSL model using the learned dictionary.
It is then classified using the reconstruction error accumulated over all the tasks.

This method classifies UCF Sports actions using a Leave-One-Out setup and
achieves an accuracy of 92.67 %. MTSL approach combined multiple features effi-
ciently to improve the recognition performance. Its robust sparse coding technique
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Fig. 9.10 Hierarchical
Bayesian model
representation of Multi-Task
Sparse Learning (MTSL)
approach [89]. Details of the
parameters can be found in
the paper

mines correlations between different tasks to obtain a shared sparsity pattern which is
ignored if each task is learned individually. By using the Beta Process, the reconstruc-
tion coefficient vector is sparse, and it is distinct from the widely used l1 regularized
sparseness, which has many small coefficient values, but not exactly zero.

9.3.2.2 Label Consistent K-SVD

To learn a discriminative dictionary for sparse coding, a label consistent K-SVD
(LC-KSVD) algorithm is proposed in [28]. During the dictionary learning process,
the approach uses class label information of training data and associates label infor-
mation with each dictionary item to enforce discriminability in sparse codes.

The above method presents a supervised learning algorithm to learn a reconstruc-
tive and discriminative dictionary for sparse coding. The objective function has a
reconstruction error term and has two formulations for sparsity constraints: (1) L0
norm and (2) L1 norm. It also introduces a new label consistency constraint called
“discriminative sparse code error.” This term encourages the features from the same
class to have similar sparse codes and those that belong to different classes have
different sparse codes. Each item in the dictionary is chosen in a way that it repre-
sents a subset of training features that are ideally from a single class, so that each
dictionary item can be associated to a particular label. This makes the correspon-
dence between dictionary items and the class labels. The last term in the objective
function is the classification error term. This term is a linear predictive classifier, and
enables joint dictionary and classifier construction. The objective function is efficient
and achieves a good classification performance; it also allows feature sharing among
classes. By including the classification term, the objective function enforces a label
consistency constraint on the sparse code with respect to the dictionary. It also makes
the learned dictionary adaptive to underlying stucture of the training data. Learning
the dictionary and classifier separately might make the dictionary suboptimal.
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Two different approaches are presented for dictionary learning: (1) LC-KSVD1
(2) LC-KSVD2. The objective function for LC-KSVD1 uses the reconstruction error
term and the label consistency regularization term. LC-KSVD2 has similar objective
function with a classification term added to it. This helps the algorithm jointly learn a
single overcomplete dictionary and a linear classifier. The parameters are initialized
by several iterations of K-SVD and multiple ridge regression model. The dictionary
is constructed by minimizing the error terms and satisfying the sparsity constraints.

LC-KSVD accesses the entire training set at every iteration to optimize the objec-
tive function. This can be difficult in a situation with limited memory resources.
Therefore, an incremental dictionary learning algorithm is presented that can employ
the same learning framework, but with limited memory resources.

This approach is evaluated using a Leave-One-Out experimental setup as well as
five-fold cross-validation and it achieves the accuracies of 95.7 and 91.2 %, respec-
tively. The results show that the method performs better than other sparse coding
techniques that learn the dictionary and then use a one-against-all classifier to obtain
classification results. Instead of iteratively solving subproblems to get a global solu-
tion, the proposed method is able to simultaneously learn the dictionary, discrimina-
tive sparse coding parameters, and the classifier parameters.

9.3.3 Action Classification

After passing through the stages of feature extraction and dictionary learning, the next
step is to form a video representation. Features studied in Sect. 9.3.1 are generally
used in the popular bag-of-words (BoW) [16, 77, 78] framework, where local features
are extracted from video sequences and mapped to a prelearned dictionary. The
dictionary is a collection of code words obtained by clustering features, generally
by K-means. After assigning each feature to a specific code word in a dictionary,
the video is represented using a histogram. This type of representation is simple and
efficient. Histogram representations are relatively robust to occlusion and viewpoint
changes.

Once a video representation is obtained, the final step is to classify the actions.
The technique for classification can either be generative, e.g., HMM [1, 19, 82], or
discriminative, e.g., CRF [44, 63]. It can also be as simple as a Nearest Neighbor
classifier or more complex methods such as mapping to a Grassmann manifold [23,
51]. Over the years, a variety of techniques have been proposed for performing action
classification on UCF Sports. Some of these methods are: template-based [57, 58],
hough-based [10, 21, 86], manifold learning [23], randomized trees [51], multiple
kernel learning [81], pattern mining [79], and several others. The following sections
present some of the notable techniques that show superior classification results on
UCF Sports.
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Fig. 9.11 Action MACH [57]: a Jumping Jack action from Weizmann action dataset. b 3D action
MACH filter for Jumping Jack action. c Wave2 action from Weizmann action dataset. d Normalized
correlation response for the Wave2 action using action MACH filter

9.3.3.1 Template-Based Method

Template-based matching emerged as an early solution for classifying actions.
Action Maximum Average Correlation Height (MACH) filter proposed in [57] applies
template-based matching to 3D spatio-temporal volume (video) having vector-valued
data at each pixel location. The filter is generic and embeds intraclass variability into
a single template. This capability enables the method to effectively discriminate a
wide range of actions on UCF Sports dataset.

A MACH filter uses the training instances of a class to learn a single template by
optimizing four performance metrics: Average Correlation Height (ACH), Average
Correlation Energy (ACE), Average Similarity Measure (ASM), and Output Noise
Variance (ONV). This gives a two-dimensional template which, when correlated with
a testing image using a FFT transform in frequency domain, results in a response
giving the most likely location of the object. The approach used in Action MACH
extends this filter to be applied to spatio-temporal volumes and be able to fully utilize
the temporal information.

During training, derivatives of spatio-temporal volumes, obtained from training
video sequences, are represented in frequency domain by performing a 3D FFT
transform. This 3D matrix is reshaped into a long column vector and is synthesized
by minimizing average correlation energy, average similarity measure, output noise
variance, and maximizing the average correlation height. After obtaining the 1D
vector, an inverse 3D Fourier transform gives the Action MACH filter. However, this
filter is only good for scalar values at each pixel location. To use vector-valued data,
Clifford Fourier transform is applied, which is a generalization of the traditional
scalar-valued Fourier transform.

Motion estimation in the video sequences is performed using Spatio-Temporal
Regularity Flow (SPREF) [2]. SPREF computes the directions along which the sum of
the gradients of a video sequence is minimized. Hence, a 3D vector field is generated
having three values at each location that represent the direction along which the
intensities of pixels change the least. This vector-valued data is then used to get the
final Action MACH filter by applying Clifford Fourier transform (see Fig. 9.11a, b).
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Fig. 9.12 Subspace tree construction [51]. Left Subspaces are added to a node. Middle If the node
size exceeds a threshold it is split. Right The subspaces are split and assigned to right and left child
node

To recognize an action in a test video sequence, the Action MACH filter is applied
everywhere in the spatio-temporal volume (see Fig. 9.11c, d). The peak value in the
response of the filter is compared to a threshold value and if it is greater, the video is
classified to be of that particular action class. This approach was the first one to be
applied on UCF Sports dataset and gave encouraging results.

9.3.3.2 Subspace Forest

A novel structure called Subspace Forest is introduced in [51], which proposes a ran-
domized forest based approximate nearest neighbor (ANN) method for subspaces.
This stucture is applied to action recognition, where actions are represented as sub-
spaces on a Grassmann manifold. A Subspace tree is constructed during training,
and, at testing stage, an ANN-based approach is used to classify each video sequence.

An action from a video is represented as a sequence of thumbnail-sized images
called tracklets. Each tracklet is a three-dimensional cube with height, width, and
frame as its axes. All tracklets are designed to be of an equal size. Every tracklet is
mapped as one point on the Grassmann manifold. The Grassmann manifold Gr(r,n)
can be described as a set of r-dimensional linear subspaces of the n-dimensional vec-
tor space V. Points on the Grassmann manifold are subspaces and can be identified
using orthogonal matrices. To map a tracklet on Grassmann manifold, the method
first unfolds the tracklet along one of its axes and then applies QR factorization to get
its orthogonal matrix. In this way, each tracklet is mapped onto the Grassmann man-
ifold and represented by three subspaces coming from three tensor unfoldings. The
distance between two tracklets is computed using the chordal distance by applying
the component-wise sine function to the principal angles between subspaces.

A Subspace Tree (SSTree) is defined as a tree structure to sort points on Grassmann
manifold. In this approach tracklets, obtained from video sequences, are sorted using
their orthogonal basis. The SSTree is constructed by adding samples to an initially
empty node, until the number of samples within a node become large enough to
consider splitting (see Fig. 9.12). One of the elements of the node is selected as the
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pivot and chordal distance is computed between each element and the pivot. Based
on the distance measure, i.e., greater or less than a threshold, the elements are added
to the right and left child nodes, respectively. This recursive process forms the tree
and all the samples are trickled down to the leaf nodes. The algorithm uses two
different variations for splitting a node: (1) Median spliting (2) Entropy splitting.
In median splitting, the pivot is selected randomly and the splitting threshold is
selected by computing the median chordal distance between the pivot and all the
remaining elements of the node. In entropy splitting, the pivot is also chosen randomly
and the splitting threshold is selected using entropy over normalized histogram of
distances computed between pivot and remaining elements. If the entropy falls below
a threshold, then the distances are split into two clusters and the midpoint between
cluster centers is used as a splitting threshold.

A variation of SSTree is also presented in an approach called Random Axes
SSTree (RA-SSTree). In this tree structure, every new child node randomly selects
an unfolding axes.

A Subspace Forest is defined as a collection of SSTrees. The forest size is chosen
as a multiple of three for SSTree, so that all three unfolding axes of the tracklet have
an equal number of SSTrees. In case of RA-SSTree, any number can be chosen.

To recognize the action class of a given video, first its tracklet is computed and
then unfolded along X, Y, and T dimension to get three orthogonal matrices. All the
orthogonal matrices are presented to the corresponding subspace trees in the forest
to find out the approximate nearest neighbors (ANN). The final classification is done
by the label of the K-Nearest-Neighbors (KNN) from each leaf node using a majority
voting scheme.

Using subspace forest on Grassmann manifold, the method is able to achieve supe-
rior results as compared to Action MACH. The method has the ability to scale to larger
real-world problems. It is also very simple to implement and has less parameters as
compared to bag-of-features framework.

9.4 Action Localization in Sports Videos

The task of localization involves identifying the spatio-temporal volume in which the
action is taking place. The simplest way to do this is to learn an action recognition
classifier and use a sliding window approach. This method slides in the spatio-
temporal volume of the video to select the subvolume with the maximum classifier
score. By finding the volume with the highest score, a bounding box is placed at each
frame to find the overlap with the ground truth. The label of the volume as well as the
average percentage overlap (between ground truth and predicted bounding box) over
all frames is used as a measure to judge whether the action was correctly localized.

Action recognition approaches that use a high-level representation, such as space-
time shape models [22], silhouettes [74], human poses [76] or motion history images
[7], have the potential ability to localize an action. However, this is not typically
feasible in case of global action representations, e.g., bag-of-words histogram, which
lose the spatial information.
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Fig. 9.13 Process to extract hierarchical space-time segments [40]. Each video is used to compute
a boundary map using color and motion cues. The map is used to extract hierarchical segments.
Irrelevant segments are pruned, firstly using shape and motion cues, then using foreground map to
obtain a segment tree

Some of the recent methods achieving best localization performances are elabo-
rated in the following sections.

9.4.1 Hierarchical Space-Time Segments

Representing an action by Hierarchical Space-Time Segments [40] has shown that
preserving the static and nonstatic space-time segments along with their hierarchical
relationships yields good action localization results. This approach uses a two-level
hierarchiy: first level consists of root space-time segments and second level has parts
of the root. Without utilizing bounding box annotations to train any body or body
part detector, the algorithm uses an unsupervised approach to extract hierarchical
space-time segments. Each step of the algorithm is elaborated below.

First, using color and motion information, a frame segmentation method is
designed that preserves segments of the body and its parts, while suppressing the
background. A boundary map is computed using color and motion channels to be
utilized in forming an Ultrametric Contour Map (UCM). UCM gives a hierarchical
segmentation of a video frame. The segment tree is traversed to prune irrelevant
parts using motion and shape cues. For further pruning, a foreground map is built
based on structure and global color cue over the whole video sequence, yielding a
set of candidate segment trees, (see Fig. 9.13). In the remaining segment trees, each
segment is tracked forward and backward in the video to get space-time segments.
These space-time segments are used to train a Bag-of-Words framework with linear
SVM. In testing, space-time segments are identified with a positive contribution to
the video classification (see Fig. 9.14).

Thus, by using static and nonstatic parts, the method is able to achieve good
classification and localization performance. The static information helps in extracting
body parts that are not necessarily in motion, hence resulting in better localization.
Sample results can be seen in Fig. 9.15. The method reports an accuracy of 42.1 %
measured as average Intersection-Over-Union (IOU) over a subset of frames.
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Fig. 9.14 Extracted segments from video frames [40]. Segments are outlined by yellow boxes.
Boxes within a box show child–parent relationship

9.4.2 Spatio-Temporal Deformable Part Models

A natural extension of Deformable Part Models from 2D to a 3D for action
localization is given by Spatio-Temporal Deformable Part Models (SDPM) [69]. In
this method, a separate action model is learned for each class by selecting the most
discriminative 3D subvolumes as parts and establishing spatio-temporal relations
between them. The deformity in spatio-temporal volume that this approach yields
empowers capturing the intraclass variabilities and becoming robust to background
clutter.

The model consists of a root filter and many part models. Every part is defined by
its part filter, anchor position, and coefficients of deformation cost. In the training
stage, positive instances are selected from a single box of one cycle of an action.
Negative instances are selected from positive volumes of other action classes, as well
as by randomly drawing volumes from the background at multiple scales. HOG3D
[29] features are extracted and a SVM is trained accordingly. Similarly, for training
part models, HOG3D features are extracted at twice the resolution enabling them to
capture more detail. Once SVM is applied, subvolumes having higher weights (i.e.,
more discriminative) are selected as parts, while others are ignored. After the initial
model is obtained, latent SVM is used to update the model, while treating position
of ith part as a latent variable (see Fig. 9.16)

In the testing stage, a spatio-temporal feature pyramid is built using HOG3D
features at different spatial scales for the query video. A template-based sliding
window approach is applied in 3D volume and the placement with the highest score
is chosen to be the location of the action. This placement is defined by the location
of the root and part filters (see Fig. 9.17).

Fig. 9.15 Action localization results [40]. Green area denotes the ground truth annotation, whereas
the red area shows the localization result
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Fig. 9.16 Spatio-Temporal Deformable Part Models (STPM) [69]. a Training process shows the
extraction of HOG3D features and learning the model using latent SVM. b Testing process with
the final result showing the root (yellow) and its parts (green)

This approach has shown to be effective as the parts exclude most of the back-
ground giving better localization and focus on distinctive locations within an action.
This method is different from other approaches as it explicitly models the intraclass
variability using part deformations, and by using global and part templates, it is able
to find the best location for an action in the scale, space, and time. The method
achieves state-of-the-art results on UCF Sports dataset, as shown in Fig. 9.18.

9.5 Discussion

The earlier action recognition benchmarks [6, 59] were recorded in a controlled set-
ting having static cameras with static and uncluttered backgrounds. The actions were
performed by a few selected actors and appeared without any occlusions. This was
improved by changing the source of videos to television broadcast and movies in
datasets such as UCF Sports [34, 41, 47, 57, 70]. Action videos from these types of

Fig. 9.17 SDPM [69] localization. a Root and part filter locations in a training frame for Swing-
Bench action. b Localization result in a test video. Root (yellow) and part (red, magenta, and green)
locations are shown for both train and test examples. Each column shows the middle frame of a
three temporal stage model
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Fig. 9.18 SDPM [69] results. Left ROC at 0.2 overlap threshold; compared with figure-centric
model [34]. Right Area Under Curve (AUC) for overlap threshold ranging from 0.1 to 0.6

sources presented a diversity of appearances, occlusion, and varying backgrounds.
Although these videos were recorded in an unconstrained environment, they were
produced by professional crew in favorable conditions, e.g., using selected view-
points. Later, the focus shifted toward collecting videos from online repositories,
e.g., YouTube. Videos collected from such sources were named to be videos “in
the wild” [36, 64]. Since the videos are uploaded by a diverse group of users, they
present a wide variety of challenges in a totally unconstrained environment. These
datasets have been utilized for both localizing and recognizing actions. In the rest
of this section, we discuss some of the common and crucial shortcomings in many
of the existing action recognition and localization methods which are expected to be
addressed in the future techniques.

Evaluating on temporally trimmed videos: even though the benchmarks have
evolved to be more challenging by being recorded in an unconstrained setting and
having a large number of action classes, the majority of the existing action datasets
suffer from a crucial shortcoming: the collected videos are carefully trimmed to only
contain the action of interest. Hence, the focus of the current action recognition
methods has been toward classifying actions in temporally trimmed videos which is
an unrealistic assumption. In addition, in many of the existing datasets, the action is
performed by only a single person, as compared to a group of people. This makes
these datasets even further simplistic and unrealistic compared to analyzing human
actions in a natural setting. In videos having a single actor, the main task is to identify
and recognize the motion of the actor, while separating it from background clutter.
However, realistic scenarios would have several actions being performed simulta-
neously by different actors with massive inter- and intraclass variability. Therefore,
the next generation of action recognition and localization methods are expected to
address these two major shortcomings and be able to perform their task on temporally
untrimmed videos [27] with potentially multiple actors performing various actions.

The task of recognizing multiple actions simultaneously will introduce new chal-
lenges to be explored such as: co-occurrence of actions, action-to-action occlusion,
and interclass dependencies. Potential applications which would require localization
of multiple actions include: video surveillance, automatic understanding of sports
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videos, or crowd analysis. For instance, automatic video surveillance requires detect-
ing (multiple) actions in real time, so an unwanted event can be predicted and pre-
vented. Such a system can also highlight the level of security threat of one action
over another, and therefore prioritize the localization of such actions.

Performing a forced-choice classification: thus far, action recognition has been
defined as a forced-choice classification task, which means a video has to belong to
one of the predefined action classes. Consequently, the majority of existing action
recognition methods have a poor performance when dealing with an unseen action
class or a clip which simply does not contain any particular action. A potential
alternative way of understanding actions is to describe them instead of classifying
them. Even though there exists an extremely wide variety of actions in the real world,
many of them share vast similarities in an atomic level. For example, the action of
Pole Vault can be broken down into running, jumping, landing, and then standing up.
Therefore, it is often feasible to describe an action using a universal lexicon of lower
level actions, sometimes called action attributes [17, 37]. Hence, it is a worthwhile
effort for the future action recognition techniques to understand the basic elements
of human actions and devise a simple and comprehensive description for an action
rather than a forced-choice classification.

Employing Exhaustive search as the search strategy: recently, several action
localization methods that employ mid-to-high level representations [31, 69] which
can effectively model the spatio-temporal structure of an action have been proposed.
However, many of these approaches perform an exhaustive search using a sliding
window, in temporal, spatial, or spatio-temporal domain, to find the desired location
of the action. This approach is particularly inefficient as all possible spatio-temporal
locations over different scales and aspect ratios have to be evaluated. Recently, effi-
cient search strategies, such as selective search or object proposal [3, 9, 13, 15, 72],
were shown to be more efficient than sliding window for object detection. Poten-
tially, action localization methods can also adopt a similar approach [25] and utilize
similar search strategies in order to increase the efficiency of their search in the
spatio-temporal domain.

9.6 Conclusion

In this chapter, we overviewed the prominent action localization and recognition
methods for sports videos. We adopted UCF Sports as the benchmark for evaluating
the discussed techniques, as it includes a wide range of unconstrained videos cat-
egorized into 10 different sports collected from broadcast television channels. We
provided an overview of the characteristics of UCF Sports as well as detailed sta-
tistics of the techniques evaluated on this dataset along with the evolution of their
performance over time. To provide further technical details, we decomposed action
recognition into three major steps of feature extraction, forming the video repre-
sentation using dictionary learning, and classification. For each step, we studied the
approaches which yield superior results on sports videos and discussed the reasons
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behind their success. Similarly, we presented the challenges faced in action local-
ization, elaborated the reasons behind its intricacy, and overviewed several recent
methods for this task, which have achieved promising results on sports videos. Lastly,
we presented a number of insights acquired from summarizing the discussed action
recognition and localization methods. We argued that conducting the recognition on
temporally untrimmed videos and attempting to describe an action, instead of per-
forming a forced-choice classification, are crucial for analyzing the human actions
in a pragmatic environment.
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Chapter 10
Classification of Sports Types
Using Thermal Imagery

Rikke Gade and Thomas B. Moeslund

Abstract In this chapter we propose a method for automatic classification of five
different sports types. The approach is based only on occupancy heatmaps produced
from position data and is robust to detection noise. To overcome privacy issues
when capturing video in public sports arenas we use thermal imaging only. This
image modality also facilitates easier detection of humans; the detection algorithm
is based on automatic thresholding of the image. After a few occlusion handling
procedures, the positions of people on the court are calculated using homography.
Heatmaps are produced by summarising Gaussian distributions representing people
over 10-minute periods. Before classification the heatmaps are projected to a low-
dimensional discriminative space using the principle of Fisherfaces. We test our
approach on 2weeks of video and get promising results with a correct classification
of 89.64%. In addition, we get correct classification on a publicly available handball
dataset.

10.1 Introduction

In most societies, sports is highly supported by both governments and private
foundations, as physical activity is considered a good way to obtain better health
among the general population. The amount of money invested in sports facilities
alone every year is huge, not only for new constructions, but also for maintenance
of existing facilities. In order to know how the money is best spent, it is impor-
tant to thoroughly analyse the use of these facilities. Such analyses should include
information about how many people are present at any time, where they are and
what they are doing. The first two issues are the subject of two recent papers by
Gade et al. [6, 7].
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Fig. 10.1 Example of an input image

In this chapter we present a new method for automatic classification of sports
types. We focus on the activities observed in public indoor sports arenas. In these
arenas many types of activities take place, from physical education in schools, to
elite training of a particular sport. For administrators as well as financial supporters
of the arenas it is important to gain knowledge of how the arenas are used, and use
that information for future planning and decisions on the layout of new arenas. In a
future perspective it could also be of great value for the coaches and managers of a
sports team to be able to automatically analyse when and where the certain activities
are performed by the team.

Our goal for this work is to recognise five common sports types observed in
an indoor arena; badminton, basketball, indoor soccer, handball, and volleyball. To
overcome privacy issues we apply thermal imaging, which produces images where
pixel values represent the observed temperature. Thereby, it is possible to detect
people without identification. Figure10.1 is an example of a thermal image from a
sports arena.

Our hypothesis is that it is possible to classify five different sports types using a
global approach based on position data only.

10.2 Related Work

Computer aided sports analysis has become a popular tool, particularly in team sports,
since some of the first systems were developed in the 1980s [18]. Today the computer
vision community works on a large variety of automatic solutions to replace manual
tracking systems. Many works have already focused on automatic tracking of sports
players [1]. These systems are typically used for game statistics and evaluation of
individual performances. For game analysis purposes, automatic detection of play
types or special team activities in a game is also an area of interest. With applications
mainly in football, offensive play strategies are tried classified based on player trajec-
tories [13, 14, 19]. However, in situations with a high degree of interaction between
people, like most types of sport, tracking is still an unsolved problem. Many classi-
fication systems therefore rely on manually annotated trajectories, in order to avoid
noisy data. The work of Bialkowski et al. [3] on recognising team activities in field
hockey games is related to this work in the way that they use only position data.
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Their approach is robust to noisy data and they test two different representations;
team occupancy maps using different quantisation, and team centroids.

No previous work on recognising sports types has been based on thermal imaging.
All existing works use visual cameras and a few include audio as well. For features,
some works use edges that represent court lines and players. The sports categories
can then be classified by edge directions, intensity or ratio [11, 24]. Also based on
the visual appearance of the court is a method that uses the dominating colours of
the image as features [16]. The dominant colour can also be combined with motion
features [8, 20, 21] or combined with dominant grey level, cut rate and motion
rate [17]. From the visual image SURF features [15] and autocorrelograms [22]
can be extracted and used for classification. A combination of colour, edges, shape
and texture has also been proposed by using six of the MPEG-7 descriptors [23].
One method is based only on location data and classifies sports categories by short
trajectories [12].

After feature extraction the classification methods are based on well-known
methods such as k-means and Expectation Maximization for clustering, and deci-
sion trees, SVM, Hidden Markov models, Neural Network and Naive Bayesian for
classification.

As described here, most existing works are based on colour imaging, and many of
them rely on the dominant colour of the fields aswell as detection of court lines. These
methods presume that each sports type is performed on a court designed mainly for
one specific sport. In our work we aim to distinguish different sports types performed
in the same arena, meaning that any information about the environment is not useful.
Furthermore, due to privacy issues, we have chosen to use thermal imaging, which
provides heat information only. Figure10.1 shows an example of the thermal image,
which is combined from three cameras in order to cover the entire court.

This work is based on occupancy heatmaps, which are summations of the
registered positions of people over a given time span. It is believed that a heatmap
for one sports type is unique among a limited number of sports types. This approach
is also robust to noisy data, due to the summations over time. Figure10.2 shows
examples of signature heatmaps, which are typical heatmaps for each sports type.
Two heatmaps of miscellaneous activities are also shown. Each heatmap covers a
10-minute period.

The approach of this work is to detect individual people and use a homography to
calculate their position at the court. A summation of the positions over time results
in the occupancy heatmaps. These heatmaps are classified after reducing the number
of dimensions with PCA and Fisher’s Linear Discriminant.

10.3 Image Acquisition

In order to detect individual people without occlusions, the ideal situation would be
to capture images of the scene directly from above. However, installing a camera
in the ceiling above the court is generally cumbersome and expensive and therefore



212 R. Gade and T.B. Moeslund

Fig. 10.2 Signature heatmaps of a handball, b badminton, c soccer, d basketball, e volleyball (three
courts), f volleyball (one court), g miscellaneous, h miscellaneous

not realistic for temporary installations. Therefore, it must be installed on one of the
walls or rafters around the court. A standard arena used in our experiments has a
court size of 40 × 20m, corresponding to a handball field, indoor soccer field, etc.
As the lenses of commercial thermal cameras today have a maximum field-of-view
of around 60◦, more than one camera must be used to cover the entire court. The
camera set-up used in this work consists of three thermal cameras placed at the same
location in order to limit the work load of the set-up. The cameras are adjusted to
have adjacent fields-of-view. This is illustrated in Fig. 10.3a. Figure10.3b shows a
picture of the camera box mounted in an arena.
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Fig. 10.3 a Illustration of the camera setup. b Image of the camera box mounted in an arena

Each camera is of the type Axis Q1922, which uses an uncooled microbolometer
for detection. The resolution is 640×480 pixels per camera and the horizontal field-
of-view is 57◦ per camera. This type of thermal camera is a passive sensor which
captures long-wavelength infrared radiation (8–15µm), radiated by all warm objects.
The resulting image depicts the temperature of the scene [5].

To make the software system invariant to the cameras’ set-up, the images are
stitched together before processing. This requires the cameras to be perfectly aligned
and undistorted in order to secure smooth “crossings” between two cameras. For cal-
ibration of the thermal cameras a special calibration board is made, consisting of
5 × 4 small incandescent light bulbs. A thermal image of the calibration board is
shown in Fig. 10.4. With this board it is possible to adapt the traditional methods
for estimating the intrinsic parameters of the cameras. The cameras are manually

Fig. 10.4 Calibration using a board with incandescent light bulbs
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aligned horizontally so that their pitch and roll are the same. The result mimics the
well-known panorama effect, but with three cameras capturing images simultane-
ously. An example of the resulting image is shown in Fig. 10.1.

10.4 Detection

For temperature controlled indoor environments, such as sports arenas, it is assumed
that people are warmer than the surroundings. For thermal images this implies that
people can be segmented using only thresholding of the image. Since the camera has
automatic gain adjustment, the level of pixel values can change, and a constant thresh-
old value is therefore not suitable. Instead we use an automatic threshold method.
This method calculates the threshold value that maximises the sum of the entropy
[10]. After binarising the image, ideally people are now white and everything else
in the image is black. There are, however, challenges to this assumption. Cold/wet
clothes can result in parts of people being segmented as background, meaning that
one person is represented by a number of unconnected blobs. Likewise, partial occlu-
sions will challenge the detection of individual people, as more than one person is
represented in one blob. Figure10.5 shows some examples of the challenges after
binarisation of the thermal images.

The next two sections present methods for reducing these problems.

10.4.1 Occlusion Handling

Two cases of occlusions are handled; people standing behind each other seen from
the camera and people standing close to each other horizontally, e.g., in a group. In
the first case, the detected blobs will appear taller than an object corresponding to
one person. Maximum height of a person at each position is determined during the
initialisation. If the blob exceeds the maximum height, it should be split horizontally.
Since one or more people are partly occluded in these cases, it is not trivial to find
the right place to split the blob. However, we often observe some narrowing or gap
in the blob contour near the head of the person in front, which is generally the best
point to split from. This point is found by analysing the convex hull and finding
the convexity defects of the blob. Of all the defect points, the point with the largest

Fig. 10.5 Examples of thermal sub images and the resulting binary images
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Fig. 10.6 Example of how to find the split location of tall (a) or wide blobs (b)

depth and a given maximum absolute gradient should be selected, meaning that only
defects coming from the side will be considered, discarding e.g. a point between the
legs. An example is shown in Fig. 10.6a, where the convex hull is drawn in green and
the largest convexity defect is shown in red. From the defect point the blob is split
horizontally, shown with the blue dashed line.

In the second case, wide blobs containing two or more persons standing next
to each other must be identified. The height/width ratio and the perimeter are here
considered as done in [6]. If the criteria are satisfied, the algorithm should try to split
the blob. For this type of occlusion, it is often possible to see the head of each person,
and split the blob based on the head positions. Since the head is narrower than the
body, people can be separated by splitting vertically from the minimum points of
the upper edge of a blob. These points can be found by analysing the convex hull
and finding the convexity defects of the blob as shown in Fig. 10.6b. The convex
hull is drawn with green, and the convexity defect of interest is drawn with red. The
convexity defect start and end points, shown with red crosses, must both be above
the defect point in the image, therefore other defects are discarded. The split line is
shown with the blue dashed line.

More examples of blobs to be split are shown in Fig. 10.7a, b.

10.4.2 Joining of Blobs

Another challenge to the detection of individual people is separation of one person
into several blobs. This happens when part of the body has a lower temperature, e.g.
caused by loose, wet clothes or insulating layers of clothes. In order to detect the
correct position of a person, the bottom part of the body must be identified. We adapt
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Fig. 10.7 Illustration of how blobs can be split (a), or joined (b), to single persons (c)

here themethod presented in [7]. Each detected blob is considered a person candidate,
and the probability of being a true person is tested. From the bottom position of the
blob, a bounding box of the expected height of an average person and the width
being one third of the height is generated. The probability for the candidate being
true depends on the ratio of white pixels (r ) in the rectangle. By tests it is found that
most true detections have a ratio between 30 and 50%, while less than 1% of the
true detections lie below 20% or above 70%. We choose to discard all detections
below 20% and assign a value between 0.8 and 1 to all other detections:

wp(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if r < 20%

0.8, if r > 60%

0.9, if r < 30% ‖ 50 < r < 60%

1, otherwise

(10.1)

This approach will reduce the detections of small body parts, as well as many non-
humanobjects.However, a lot of false candidateswill still exist.Manyof themcontain
part of a person and overlap in the image with a true candidate. Due to the possibility
of several candidates belonging to the same person, the overlapping rectangles must
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be considered. By tests from different locations and different camera placements, it
is found that if two rectangles overlap by more than 60%, they probably originate
from the same person, or from reflections of that person. As only one position should
be accepted per person, only one of the overlapping rectangles should be chosen.
Due to low resolution images compared to the scene depth, cluttered scenes, and
no restrictions on the posture of a person, the feet of a person cannot be recognised
from the blobs. Furthermore, due to the possibility of reflections below a person in
the image, it cannot be assumed that the feet are the lowest point of the overlapping
candidates. Instead, the best candidate will be selected on the highest ratio of white
pixels, as the probability of false candidates is lower here. The probabilities assigned
to the approved candidateswill be used later, when registering the positions of people.

Figure10.7c shows three examples of blobs being joined to one detected person.

10.4.3 Region of Interest

As spectators, coaches and other persons around the court are of no interest in this
work, the image must be cropped to the border of the court before processing. Since
each sports type has its own court dimensions, a single choice of border is not feasible.
Handball and soccer are played on a 40 × 20m court, which is also the maximum
court size in the observed arena. The volleyball court is 18 × 9m, plus a free zone
around the court, which is minimum 3m wide, and the standard basketball court is
28 × 15m. Badminton is played on up to six adjacent courts of 13.4 × 6.1m. The
court dimensions and layout in relation to each other are illustrated in Fig. 10.8. On
the arena floor all court lines are drawn on top of each other, but here we have split
it into two drawings for better visibility. Note that volleyball can be played on either
three courts without free zones or on one court including the free zone.

During basketball and volleyball matches coaches and substitutes sit within the
dimensions of the handball court, and would be unwanted detections if we cropped
only to the largest court dimensions. Considering the illustrated court dimensions it is
therefore decided to operate with two different court sizes, 40×20m and 28×15m.
In test cases it is of course not known which sport is performed and thereby not
known which court size to choose. Instead both options will be tried out for all data.
The classification process is further described in Sect. 10.5.

10.4.4 Occupancy Heat Maps

The position of each person is registered in image coordinates as the bottom centre
of the bounding box. The position then needs to be converted to world coordinates
using a homography. Since the input image is combined from three cameras, each
observing the left, middle or right part of the court, at least one homography for each
camera is needed to calculate the transformation. This assumes that the cameras are
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Fig. 10.8 The outlines of the different courts illustrated. Red volleyball, blue basketball, purple
handball (and soccer), green badminton. Drawn in two figures to increase the visibility

perfectly rectified. For better precision, we instead divide the court into 5 × 5m sq
for each of which we calculate a homography. The corresponding points in image
and world coordinates for each 5m in both x- and y-directions are found during
an initialisation. This initialisation must be performed one time for each set-up.
In addition to finding the mapping between image and world coordinates, we also
find the correlation between peoples’ real height and their height in the images,
corresponding to their distance to the camera. Furthermore, as the cameras are fixed
relative to each other in one box and then tilted downwards when mounted in arenas,
the result is that people in the image are more tilted the further they get from the
image centre along the image x-axis. This means that a person’s pixel height cannot
always be measured vertically in the image. Therefore, the calibration must include
the angle of a person standing upright at predefined positions on the court.

Figure10.9 illustrates the result of an initialisation procedure. For each position
in the 5× 5m grids a person stands upright, while the image coordinates of the feet
and head are registered, resulting in a white line in the image, which gives the angle
and height of a person. The world coordinate of the feet are also registered as well
as the person’s real height in metres.

The four corner points of each square are used to calculate the homographies,
making it possible to map all image coordinates to world coordinates. Using interpo-
lation from the corner points, an angle and maximum height are calculated for each
pixel.
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Fig. 10.9 Illustration of the initialisation process, each white line represents a standard person at
that position

Fig. 10.10 Occupancy for one single frame. Each person is represented as a Gaussian distribution

When mapping the observations to a world-coordinate view of the court we need
to represent the physical area of a person. A standard person is chosen to be rep-
resented by a three-dimensional Gaussian distribution with a standard height of 1,
corresponding to 1 person, and a radius corresponding to 1m for 95% of the vol-
ume. To take into account the uncertainty of the detections, the height of Gaussian
distributions is scaled by the probability factor wp, described in Sect. 10.4.2.

Figure10.10 shows an example of the occupancy calculated for a single frame.
Six people are detected with different certainty factors.

The final occupancy heatmaps, as shown in Fig. 10.2, are constructed by adding
up the Gaussians over time. The time span for each heatmap should be long enough
to cover a representative section of the games and still short enough to avoid different
activities to bemixed together. To decide on the time span, a study has been conducted
between 5-, 10-, 20- and 30-minutes periods. An example of four heatmaps with the
same end-time is shown in Fig. 10.11.

The comparison in Fig. 10.11 illustrates the situation where a handball team starts
with exercises and warm-up, before playing a short handball match. The end-time
for each heatmap is the same. The 30-minute period (Fig. 10.11d) is too long, the
warm-up and game is mixed together such that no activity is recognisable. Between
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Fig. 10.11 Heatmaps with same end-time and different time span: a 5min, b 10min, c 20min,
d 30min

the 5-, 10- and 20-minute periods the 10-minute period (Fig. 10.11b) shows the most
clear pattern. The same is observed in comparisons for other sports activities, there-
fore it is chosen to let each heatmap cover 10min. We will shift the starting time
5min each time, so that the periods overlap and the resolution of classifications will
be 5min.

10.5 Classification

Each heatmap is an image with a resolution of 200 × 400 pixels, thus it can be
considered a sample in an 80,000-dimensional space. Principal Component Analysis
(PCA) is a well-knownmethod for dimension reduction, but since it uses non-labeled
data and seeks the dimensionswith largest variance between all samples, there is a risk
that the differences between classes are not conserved. Fischer’s Linear Discriminant
(FLD) seeks the directions that are efficient for discrimination between classes [4].
However, using FLD introduces the small sample size problem: In order to have a
non-singular within-class scatter matrix (SW ) it is necessary to have more samples
than dimensions. As we have an 80,000-dimensional space, it is not realistic to have
a sample size of n > 80,000. In order to solve this problem we adapt the idea of
Fisherfaces for face recognition [2]: First, project the sample vectors onto the PCA
space of r dimensions, with r ≤ rank(SW ) and then compute the Fisherimage in this
PCA space.
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10.5.1 Dimensionality Reduction

Dimensionality reduction based on PCA is performed by pooling all training samples
and calculating the directions with largest variance. The PCAwill only have as many
non-zero eigenvalues as the number of samplesminus one,whichwill be significantly
less than the original 80,000 dimensions. We choose to reduce the space to the 20
dimensions with largest eigenvalues. Although this is a reduction by 4,000 times in
the number of dimensions 73% of the total variance is still preserved. All heatmaps
are projected to the new 20-dimensional space before further processing.

10.5.2 Fischer’s Linear Discriminant

The optimal projection of the data is found using Fisher’s Linear Discriminant, such
that the ratio of the between-class scatter SB and the within-class scatter SW is
maximised:

Wopt = argmax
W

∣∣W T SB W
∣∣

∣∣W T SW W
∣∣ (10.2)

where Wopt is amatrix with orthonormal columns, consisting of the set of generalised
eigenvectors of SB and SW corresponding to the m largest eigenvalues. There are at
most c − 1 non-zero generalised eigenvalues, where c is the number of classes.
The between-class scatter matrix SB and the within-class scatter matrix SW are
defined as

SB =
c∑

i=1

Ni (µi − µ)(µi − µ)T (10.3)

SW =
c∑

i=1

∑

xk∈X I

Ni (µi − µ)(µi − µ)T (10.4)

where µi is the mean image of class Xi , and Ni is the number of samples in class
Xi [2].

10.5.3 Final Classification

In the training phase, all data are projected to the new space found by FLD, and the
mean coordinate for each class is calculated. When testing a new sample, the sample
to classify is projected to the same space, and the nearest class is found using the
Euclidean distance.
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We use video from daily activities in a public sports arena, which includes a lot
of undefined activities. Besides the five traditional sports types we therefore define
a category of miscellaneous activities. This can include everything from specific
exercises and warm-up, to cleaning the floor and an empty arena. This category is
trained as a class in the same way as each sports type. Since miscellaneous contains
very different heatmaps, it could be argued that this class will end up as a mean
image of all other classes. However, by treating it as a class like the other sports
types, the FLD will take care of projecting the data to a space that, as far as possible,
discriminates the classes.

Weuse twodifferent court dimensions for tests, as described inSect. 10.4. Thefinal
classification for each time span should therefore choose between the classifications
of these twoheatmaps. If they agree on the same class, the final classification is simply
that class. If one heatmap is classified as a sports type, while the other is classified
as miscellaneous, the final classification will choose the regular sports type, as it
is assumed that it is found the correct court size. If the heatmaps are classified as
different sports types, the sample with shortest distance to the class mean will decide
the classification.

10.6 Experiments

19days of data has been captured in order to test the classification approach.
Capturing from 7am to 11pm this is a total of 304h of recordings, of which people
are present in the arena in 163 and 141h are empty. Video from the first week (7days)
is used for training data and the rest (12days) is used for test. This approach is chal-
lenging, since the variety in the play can be large between different sessions. Many
undefined activities are observed during a day, from warm-up and exercises, to more
passive activities, such as transitions between teams, “team meetings”, cleaning, etc.
Only well-known sports types performed like in matches will be used for classifica-
tion. Exercises related to a specific sport, such as practising shots at goal, will not
be considered a specific sports type, but will be counted as miscellaneous activity.
We do, however, allow variety in the play, such as different number of players and
different number of courts in use for badminton and volleyball.

The sports types that are observed during both weeks and are used in this work are
badminton, basketball, indoor soccer, handball and volleyball. As shown in Fig. 10.8,
two different layouts of volleyball courts are observed, one with only one court in
the middle of the arena (drawn on upper part of Fig. 10.8 and denoted volleyball-
1) and the other version which fit three volleyball courts playing in the opposite
direction (drawn with red on lower part of Fig. 10.8 and denoted volleyball-3). These
are treated as two different classes, both referring to volleyball. This results in seven
classes to classify, including miscellaneous.

For training and test of each sports type we use all heatmaps that are manually
labelled to be a regular performed sport. In order to have a significant representation of
the regular sports types in the total dataset we discardmost of the empty hours and use
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Table 10.1 Dataset used for
training and test

Category Training heatmaps Test heatmaps

Badminton 35 19

Basketball 16 76

Soccer 20 36

Handball 18 15

Volleyball-1 33 20

Volleyball-3 15 8

Misc. 163 212

Total 300 386

only a few heatmaps from empty periods. Furthermore, the rest of the miscellaneous
heatmaps are chosen as samples that represent the various kinds of random activities
that take place in the arena. The number of heatmaps used for each class is listed in
Table10.1.

In order to test the system under real conditions, which will be continuous video
sequences of several hours, we also perform a test on video captured on one day
continuously from 7am to 11pm. This video contains recordings of volleyball, hand-
ball and soccer, as well as miscellaneous activities. The training data described in
Table10.1 is used again for this test. Lastly, we test our algorithm on a publicly
available dataset from a handball game, while still using our own videos for training
data. This will prove the portability of our method to other arenas and set-ups.

10.6.1 Results

10.6.1.1 12 Days Test

Table10.2 shows the result for the first test with data from 12days. The ground truth
is compared with the classification.

This results in an overall true positive rate of 89.64%.This result is very satisfying,
considering that we classify seven classes based only on position data.

A low number of 14 heatmaps are wrongly classified as miscellaneous instead of
the correct sports type. Four of them are from videos where only one of the three

Table 10.2 Classification result for data samples from one week

Truth Badminton Basketball Soccer Handball Volleyball-1 Volleyball-3 Misc.

Badminton 17 0 0 0 0 0 2

Basketball 0 69 0 0 1 0 6

Soccer 0 0 30 0 4 0 2

Handball 0 0 0 15 0 0 0

Volleyball-1 0 0 0 0 20 0 0

Volleyball-3 0 0 0 0 0 4 4

Misc. 0 14 2 1 2 2 191

The number of heatmaps classified in each category
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Fig. 10.12 Comparison of ground truth and classification of video from one full day

volleyball courts is used, and this situation is not represented in the training data.
The error could therefore be reduced by capturing more training data. Of the bas-
ketball videos, a few heatmaps represent periods with unusually many players on
the court, resulting in a different activity pattern and therefore they are classified as
miscellaneous. Fourteen heatmaps manually labelled as miscellaneous are automat-
ically classified as basketball. These heatmaps are borderline situations where exer-
cises highly related to basketball are performed, and it could therefore be discussed
whether these should be labelled basketball or miscellaneous. The same happens for
a fewmiscellaneous heatmaps, classified as other sports types due to exercises highly
related to the sport. Four heatmaps representing soccer are misclassified as volley-
ball played on the centre court. Inspecting these images, there are some similarities
between the sports, depending on how they are performed.

10.6.1.2 Full Day Test

The result of classifying one full day from 7am to 10pm is illustrated in Fig. 10.12
with each colour representing a sports type and grey representing miscellaneous
activities (including empty arena). The ground truth is shown in the upper row and
automatic classification is shown in the bottom row.

The result is promising, showing that of the total of 191 heatmaps that are produced
and classified for the full day, 94.24% are correctly classified.

The green periods illustrate volleyball matches. Before these matches there is
a warm-up period, where short periods of exercises are confused with basketball
or volleyball played on the three courts. The last case is obvious, because some of
their warm-up exercises include practising volleyball shots in the same direction as
volleyball is normally played using the three courts. This test also shows like the
previous test that soccer can be misclassified as volleyball in a few situations.

The results from this test show that our approach is satisfying even for the chal-
lenging situation of a full day’s video, the true positive rate is indeed better than what
was obtained in the first test.

10.6.1.3 CVBASE Dataset

The last test performed is classification of the sport from a publicly available dataset.
In order to do that, we need a dataset with at least 10min continuous recording of one
of the five sports type considered in this paper. Furthermore, calibration data must be
available, so that positions can be obtained in world coordinates. One suitable dataset
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Fig. 10.13 Heatmap for the 10min annotated positions of the CVBASE 06 handball dataset

is found,which is the handball dataset fromCVBASE06 [9]. This includes annotation
of position data in world coordinates for seven players (one team) for 10min of a
handball match. Since we want to test the classification algorithm specifically, we
use these annotations as input data instead of modifying our detection algorithm to
work on RGB video. However, as we need position data from the players of both
teams, we flip all positions along the x-axis (longest dimension of the court) and add
these positions in order to represent the other team. The resulting heatmap for the
10-minute period is shown in Fig. 10.13.

Using the 1-week training data from our own recordings, this 10-minute period is
correctly classified as handball. This proves the portability of our approach to other
arenas and camera set-ups.

10.6.2 Comparison with Related Work

A comparison of our results with the reported results in related work is listed in
Table10.3. It should be noted that each work has its own dataset, making it hard to
compare the results directly. All related works use normal visual cameras, where we

Table 10.3 Dataset used for training and test

Reference Sports types Video length Result

Gibert et. al [8] 4 220min 93%

Mohan and Yegn. [11] 5 5h 30min 94.4%

Lee and Hoff [12] 2 Approx. 1h 94.2%

Li et. al [15] 14 114h 88.8%

Mutchima and Sanguansat [16] 20 200min 96.65%

Sigari et. al [17] 7 (104 video clips) 78.8%

Wang et. al [21] 4 (173 test clips) 88%

Wang et. al [20] 3 16h 100%

Watcha. et. al [22] 7 233min 91.1%

Xu et. al [23] 4 1,200 frames N/A

Yuan and Wan [24] 5 N/A 97.1%

Our work 5 65h 89.64%
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use thermal cameras. In addition to that, most work use video from different courts
for each sports type, where we use video from one multi-purpose indoor arena.

Our result is comparable with the related work using an equal number of sports
types. It is also seen that we test on a large amount of data compared to other works.

10.7 Conclusion

Thework presented here shows that it is possible to classify five different sports types
based only on the position data of people detected in thermal images. Heatmaps are
produced by summarising the position data over 10-minute periods. These heatmaps
are projected to a low-dimensional space using PCA and Fischer’s Linear Discrimi-
nant. Our result is an overall recognition rate for five sports types of 89.64%. This is
a promising result, considering that our work is the first to use thermal imaging for
sports classification. Furthermore, we use video from the same indoor arena,meaning
that no information about the arena can be used in the classification. Our detection
method is rather simple and the registered positions of people can be noisy, but since
the classification method relies on summarised positions over time, the approach is
robust to the noisy data.

For this work we have concentrated on sports played in match-like situations.
Problems could rise if trying to classify a video of sport played in the opposite
direction of usual, e.g. on half the court, or if trying to classify exercises related to
one sports type. To overcome these limitations the future work will investigate the
possibility of including local features. These could be clues from short trajectories,
such as speed and path length and straightness to overcome these limitations. In
relation to this, it could also be possible to extend the work to classify play types or
other shorter activities within a sports game.
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Chapter 11
Event-Based Sports Videos Classification
Using HMM Framework

Shyju Wilson, C. Krishna Mohan and K. Srirama Murthy

Abstract Sports video classification is an important application of video content
analysis. Event detection or recognition in sports video is an important task in seman-
tic understanding of video content. In this paper, we propose a framework based on
hidden Markov models (HMM) to represent a video as a sequence of core events
that occur in a particular sport. The objective is to observe a subset of (hidden) state
sequences to see whether they can be interpreted as the core events of that sport.
We propose a method for sports video classification based on the events in each
sport category. The proposed method for detection of events is based on a subset of
state sequences, unlike the traditional way of computing the likelihood as a sum or
maximum overall possible state sequences. The neighboring frames are considered
for the computation of event probability at any instant of time. We demonstrate the
application of this framework to five sport genre types, namely basketball, cricket,
football, tennis, and volleyball.

11.1 Introduction

Classification of digital video into various genres, or categories is an important task,
which enables efficient cataloging and retrieval with large video collections. Effi-
cient search and retrieval of video content have become more difficult due to the ever
increasing amount of video data. The recent statistics of popular video sharing web-
site YouTube shows that over 6 billion hours of videos are watched each month on
YouTube (50 % more than last year) and 100 h of videos are uploaded onto YouTube
every minute. This huge growth leads to the importance of efficient organization and
retrieval of video data. Semantic analysis is a natural way for video management and
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accessing. However, it remains a challenging issue. There are various approaches to
content-based classification of video data. A video clip can be classified at various
levels in the semantic hierarchy. At the highest level of hierarchy, video collections
can be categorized into broad program genres such as cartoon, sports, commercials,
news, and music. At the next level of hierarchy, domain videos such as sports can
be classified into different subcategories. At a finer level, a video sequence itself
can be segmented, and each segment can then be classified according to its seman-
tic content. In [1], sports video segments are first segmented into shots, and each
shot is then classified into playing field, player, graphic, audience, and studio shot
categories. Semantic classification of basketball segments into goal, foul, and crowd
categories [7] by using edge-based features is another work carried out at this level.
In this study, we focus on classification of sports videos into different subcategories.

We address the problem of classification of sports videos into different categories.
Each sports video category can be identified using actions in that particular sport. For
instance, the act of a bowler delivering the ball to a batsman is unique to the game
of cricket. Similarly, a player serving the ball into the opponent’s court is specific
to the game of lawn tennis. These actions help a human viewer to readily identify a
given sport. What is important here is the sequence of changes that are integral to an
action and which qualify the action. For instance, when a bowler delivers the ball, his
bowling run up, bowling action, and speed of the delivery are not so much important
as the act of delivering the ball. It is the act of delivering the ball that is significant, and
is common across different bowlers. Such acts occur within a limited time duration.
They help in uniquely characterizing a sport and can be useful for classification,
provided they can be detected automatically from the video data. In this context,
an event can be defined as any significant change during the course of the game.
An activity may be regarded as a sequence of certain semantic events. Automatic
detection of events from raw data is a challenging task, since the variations in the
raw data make it difficult to interpret a change as an event. At the level of feature too,
these changes cannot be observed by comparing low-level features across adjacent
frames due to variability and noise. Moreover, the changes may span over a sequence
of image frames. In this context, an event can be viewed as a feature at a higher level,
while an activity (sequence of events) can be viewed as a signature of a given class.
This necessitates the need to model the information present in a sequence of frames.

The problem of automatic detection of events in sports videos has been addressed
in literature by modeling events that are defined a priori for a given sport (or a
set of sports) [17, 25]. The main goal in such approaches is to classify the video
of a given sport into different semantic events. In such approaches [17, 25], video
sequences are presegmented into clips where each clip contains only one event.
Another class of approaches performs automatic segmentation of the given video into
shots. However, the detected events themselves are not used to distinguish between
different categories of sports. In this paper, the objective is to automatically detect
events from the video sequences in a generic manner without a priori knowledge of
the events and without predefining the events. Moreover, the hypothesized events
are used to distinguish between classes, since the nature of events is likely to differ
among the classes. We propose a probabilistic approach to detect the events, using
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the framework of hidden Markov model (HMM). Since the variations in the events
are reflected only indirectly through the feature vectors derived from the data, HMM
is a better choice to capture the hidden sequence from the observed sequence of
feature vectors.

Hidden Markov models have been used in the literature for identifying activities
from observation sequences [5]. Given an HMM denoted by λ and an observation
sequence O, the probability P(O/λ) that this observation sequence is generated
by the model, is calculated as either the sum or maximum overall possible state
sequences to detect the activity [12]. The optimal state sequence is not driven by
the events that occur during the activity, but by the likelihood of the observed data.
No attempt has been made to examine the sequence of states to characterize any
(hidden) activity in the sequence of events that may be present in the observed data.
This study attempts to derive/interpret the sequence of events that may be present
in a subset of (hidden) state sequences, and not from the raw data itself because the
raw data may vary too much to interpret any change as an event [2]. In the case of
sports video data, activities are characterized by certain events of interest that are
embedded in the motion information, and occur within a limited time duration. These
event probabilities obtained using the HMM framework are used to characterize the
activity in a particular game.

Methods that model temporal information in video sequences focus on the
detection of events in video sequences. These are predefined events that require
manual effort to identify frame sequences containing those events. Moreover, the
detected events are used mostly for indexing and retrieval, and not for classification.
In this context, we note that the events being specific to sports categories can be used
as features to classify a given video into one of those categories. We propose a novel
method to identify and match events in video sequences using a framework based
on hidden Markov models. Here, the events are not predefined, but hypothesized
based on the sequence latent in a given video. Once the events are identified, they
are further used for classification of a given video into one of the sports categories.

The remainder of this paper is organized as follows: Sect. 11.2 contains related
works. In Sect. 11.3, we describe a method for detection of events in the framework of
hidden Markov models. Section 11.3.1 describes the representation of motion-based
features for detection of events. Once the events are hypothesized, a measure of
similarity is required for comparison of events obtained from reference and test video
data. In Sect. 11.4, a method is proposed for the comparison of events. Section 11.5
discusses experiments on video classification using five sports categories, and the
performance of the system. Section 11.6 summarizes the study.

11.2 Related Work

In [25], an HMM-based framework is suggested to discover the hidden states or
semantics behind video signals. The objective is to arrive at a sequence of semantics
from a given sequence of observations by imposing temporal context constraints.
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The framework is then applied to detect predefined events in sports categories such
as basketball, soccer, and volleyball. An error weighted semicoupled hidden Markov
model [9] is used with as state-based bimodal alignment strategy and bayesian classi-
fier weighted scheme. For the optimal emotion recognition, audio video visual feature
pair is classified into one of the emotional class by combining decisions from the
classifier of audio and visual features. Hierarchical hidden Markov model (HHMM)
[22] is used to classify video segment based on the motion feature distribution. Video
Summarization is done through object and event detection.

Features indicating significant events are selected from video sequences [17].
These features include a measure of motion activity and orientation of edges, which
help in detection of crowd images, on-screen graphics, and prominent field lines in
sports videos. The evidence obtained by different feature detectors are combined
using a support vector machine, which then detects the occurrence of an event.
Another approach [14] models the spatio-temporal behavior of an object in a video
sequence for identifying a particular event. The game of snooker is considered and
the movement of snooker ball is tracked using a color-based particle filter. A few
events are predefined in terms of actions, where an action can be a white ball colliding
with a colored ball, or a ball being potted. An HMM is used to model the temporal
behavior of the white ball along with algorithms for collision detection.

A symbolic description of events is provided in [21], where events are described
in terms of rules using fuzzy hypotheses. These hypotheses are based on the degree
of belief of the presence of specific objects and their interrelations, extracted from
the video sequence. The method involves the extraction of main mobile objects in
video sequences, also called fuzzy predicates. The input is defined on the set of fuzzy
predicates, while the output is a fuzzy set defined on the events to be recognized. The
association between the fuzzy predicates and the set of events is represented using a
neurofuzzy structure. The approach is tested on soccer video sequences for detecting
some predetermined events. In [10], Pyramidal Motion Feature (PMF) are used for
human action recognition. The boosted keyframe, which is having more discrimina-
tive information, is selected using AdaBoost learning algorithm. The correlogram is
used to represent action sequence which will be classified by Support Vector Machine
(SVM). In [24], a multilayer framework based on HMMs is proposed for detection of
events in sports videos on the basis that sports videos can be considered as rule-based
sequential signals. At the bottom layer, event HMMs output basic hypotheses using
low-level features. The upper layers impose constraints on the predefined events in
basketball.

The deterministic approach to event detection is compared with probabilistic
approach, in [8]. While the former depends on clear description of an event and
explicit representation of the event in terms of low-level features, the latter is based on
states and state transition models whose parameters are learnt through labeled training
sequences. It is shown through automatic analysis of football coaching video, that
the probabilistic approach performs more accurately while detecting events, mainly
due to its ability to capture temporal patterns and yet, absorb small spatio-temporal
variations. Thus, a common feature of most of these approaches is the use of HMM
in a traditional framework for detection of predefined events. While the detected
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events are used for indexing, retrieval, and generation of summary/highlights, they
are rarely used for classification of video sequences.

Another approach, described in [4] constructs two hidden Markov models, from
principal motion direction and principal color of each frame, respectively. The deci-
sions are integrated to obtain the final score for classification. In [26], a multilayered
data association algorithm with graph-theoretic formulation for tracking multiple
objects that undergo switching dynamics in clutter is described. A framework for
analysis and summarization of soccer video is described in [3]. The method allows
real-time event detection by cinematic features, and further filtering of slow motion
replay shots by object-based features for semantic labeling. An automatic inter-
pretation and evolution tracking of a tennis match using standard broadcast video
sequences as input data is described in [6]. The method uses hierarchical structure
consisting of hidden Markov models. This will take low-level events as its input, and
will produce an output where the final state will indicate if the point is to be awarded
to one player or another.

The framework described in [18] covers a scalable architecture for video process-
ing and stages of shot boundary detection, salient object detection and tracking,
and knowledge-base construction for effective spatio-temporal object querying. An
approach for automatic detection of a falling person in video [20] uses both audio
and video tracks to decide a fall in video. Human motion in video is modeled using
hidden Markov models and audio information is used to distinguish a falling person
from a person simply sitting down or sitting on a floor. In [15], a tool called temporal
credal filter with conflict-based model change (TCF-CMC) is described to smooth
belief functions online in transferable belief model (TBM) framework. It is an unsu-
pervised and online criterion used in both assessment of filtering and detection of
new actions. TCF-CMC modeling is based on joint belief functions and includes
parameter adaptation.

Semantic model vectors [11], from low-level features, are used to bridge the
semantic gap between low-level visual features and events in video. Sequences of
feature are represented as string and similarities are measured by appropriate string
matching technique [27]. The Levenshtein distance has been used for comparing two
video clips with three operations viz. insertion, deletion, substitution of feature vec-
tors. After shot boundary detection and keyframe extraction, efficient near duplicate
keyframe (NDK) detection [23] is adopted to identify similar events and clustered
them to form potential events. Four properties (video set, start and end time, key
terms, representative NDK) are extracted to represent the event. Kevin Tang et al.
works with variable duration hidden Markov model to detect events in the video. The
Counter is assigned to each state and expect single state to generate several temporal
segments that can be interpreted as event [19]. In our approach, event probability is
calculated from subsequence of states rather than counting for event detection.
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11.3 Detection of Events Using HMM

An event can be defined as any significant change during the course of the game.
These changes cannot be observed at the pixel level by comparing the adjacent
frames, because the raw data may vary too much to interpret any change as an event.
At the feature level also, it may not be possible to detect the events because of the
variability in the data and the presence of noise. Hence, in this paper, we propose
a probabilistic approach to detect the events, by considering a sequence of frames,
using HMM framework. Since the variations in the events are reflected only indirectly
through the feature vectors derived from the data, HMM is a better choice to capture
the unknown hidden sequence from the observation sequence of feature vectors. The
events thus derived are associated with an event label which describes the nature of
the event and a probability value which denotes the likelihood with which the event
can occur.

Hidden Markov models are powerful tools for characterizing the temporal behav-
ior of time sequences, and have been used in various ways for content-based video
processing. The HMM is a Markov model in which the state is a probabilistic function
of observation symbol. In general, each state in the HMM is modeled as a Gaussian
mixture model. Typically, the number of states N is far less than the number of
observation symbols T . The continuous density HMM model can be described by
the parameter set λ = (A, B,Π) where

Π = {π1, π2, . . . πN } denote the initial state probability,
A = {ai j } denote the state transition matrix, and
B = {b j (k)} denote the probability distributions of individual states.

Given a large number of examples of an activity, the parameter set λ = (A, B,Π)

is estimated using the Baum-Welch algorithm [13]. Once the parameter set λ is esti-
mated, the probability of a test observation sequence O = (o1o2o3 . . . oT ) being
generated by the model λ can be computed in two ways:

1. Sum overall the possible state sequences
P(O/λ) = ∑

{q1,...,qT } P(q1, . . . , qT , o1, . . . , oT /λ),

where q1, q2, . . . , qT are the individual states and {q1, q2, . . . , qT } is the state
sequence.

2. Maximum of all the possible state sequences
P(O/λ) = max{q1,...,qT } P(q1, . . . , qT , o1, . . . , oT /λ).

The key idea in the traditional HMM formulation is that the sum or the maximum
overall possible state sequences is considered in evaluating the probabilities. But the
optimal state sequence obtained using these methods is not driven by the events that
occur during the activity rather by the likelihood of the observed data. In this kind
of formulation, there is no attempt to examine the sequence of states to characterize
any hidden activity in the form of sequence of events that may be present in the
observed data. Traditional method does not give any information regarding events.
Here, we exploit events in the activity to classify the videos. This is the novelty in
our approach.
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In this paper, we propose a method to examine a subset of sequences and explore
the possibility of interpreting them as sequence of events. The hypothesis is that,
though the state sequences themselves may look different across examples of the
same activity, certain (hidden) state transitions may be preserved in a subset of state
sequences, and we call such transitions as events.

11.3.1 Features for Detection of Events

Motion is an important cue for understanding video and widely used in semantic video
content analysis. Since features based on motion carry important information about
the temporal sequence corresponding to a given sports category, we use motion-based
features for event detection. The approach adopted here for extraction of motion
information from the video is based on the work by Roach et al. [16]. From the
video sequence, we derive the binary maps as shown in Fig. 11.1. These binary maps
are representative of moving and nonmoving areas of the video sequence, where
moving areas are highlighted in white. The binary maps are extracted by pixel-wise
differencing of consecutive frames. We divide each frame into four subimages of
equal size in order to capture the location specific information. The motion feature
is computed as follows:

M(t) = 1

w × h

w∑

x=1

h∑

y=1

Pt (x, y), 0 < t ≤ N , (11.1)

where

Pt (x, y) =
{

1, if |It (x, y) − It−1(x, y)| > β

0, otherwise.
(11.2)

In the above equation, N is the total number of frames in the video clip, It (x, y) and
It−1(x, y) are the pixel values at location (x, y) in t th and (t − 1)th frames, respec-
tively. Here β is the threshold, and w and h are width and height of the subimage,
respectively. A 4-dimensional feature vector is derived from each pair of consecutive
frames. Thus, the sequence of 4-dimensional feature vectors derived from a video
clip of a particular sports category forms one observation symbol sequence for that
category.

11.3.2 Exploring Events in Sequence of States

Let a given sports video clip be represented by an observation symbol sequence
O = (o1o2o3 . . . oT ). Suppose that the underlying activity responsible for the
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Fig. 11.1 Examples of binary maps for different sports categories. Each row shows two consecutive
frames and the corresponding binary map for five different sports, namely, a basketball. b Cricket.
c Football. d Tennis. and e Volleyball

production of the observation symbol sequence can be described by a sequence
of events occurring at different time instances. So, to represent this activity, we need
to detect the number of events, the nature of events, and the time instants at which
they occur. As these events are localized in time, it is reasonable to expect that an
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event at time t is affected by observations in its immediate neighborhood. Hence, we
define a variable η

p
t (i, j) as given by [2]

η
p
t (i, j) = P(qt−p = i, qt−p+1 = i, . . . , qt = i,

qt+1 = j, qt+2 = j, . . . , qt+p+1 = j/O, λ), (11.3)

where 2p + 2 frames around t are considered. The superscript p refers to support
of p frames used on either side of the time instant t in order to detect an event. The
η

p
t (i, j) can be written as

η
p
t (i, j) =

(
P(qt−p = i, qt−p+1 = i, . . . , qt = i, qt+1 = j,

qt+2 = j, . . . qt+p+1 = j, O/λ)
)

÷ P(O/λ),

=
(
αt−p(i)a

p
ii bi (ot−p+1) . . . bi (ot )ai j b j (ot+1) . . .

b j (ot+p)a
p
j jβt+p( j)

)
÷ P(O/λ), (11.4)

where α and β are forward and backward variables [12], respectively. We define one
more variable ep

t , similar to the one that is used in Viterbi maximization, as

ep
t (k, l) = max

i, j
η

p
t (i, j) i �= j, (11.5)

where
(k, l) = arg max

i, j
η

p
t (i, j) i �= j. (11.6)

Here ep
t (k, l) represents the probability with which there can be a transition from

stable state k to stable state l, with a support of p frames for stable states, at the time
instant t . At every instant of time, we hypothesize an event, and evaluate the event
probability ep

t (i, j). Large values of ep
t indicate the presence of an event, and the

corresponding (k, l) pair indicates the state transition responsible for the event. The
nature of the event is specified by state pair (k, l), and the intensity of the event is
specified by the value of ep

t .
For every symbol ot in the given observation symbol sequence O = {o1, o2, . . . ,

oT }, an event probability value ep
t and a state transition (k, l) are associated. The

value of p determines the support given to the stable states on either side of the
transition. A small value of p results in too many spurious events, whereas a large
value of p might result in missing an event of interest totally. Hence, the value of p
is determined by using the domain knowledge and some preliminary experimental
studies. The event probability sequence ep

t and the corresponding state transitions
(k, l) form the signature for the activity in a particular sports category.
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Test
Feature HMM for Event Event Score

matchingdetectionextraction

Reference dictionary of

events for category

clip
category N

N

Fig. 11.2 Block diagram of the proposed video classification system using HMM framework

11.4 Matching of Events

We now describe a method for matching of events between a test video sequence and
a reference video sequence. The block diagram of the proposed sports video classi-
fication system using HMM framework is shown in Fig. 11.2. Given L1 observation
symbols of a video category, a five state ergodic HMM model with one Gaussian
per state is trained with motion features extracted from the video frames. The events
(event probabilities and corresponding state transition) corresponding to the refer-
ence examples are obtained. These reference event sequences are used to create a
dictionary of events for the given sports category. The distribution of the event proba-
bility values corresponding to a particular state transition (k, l) in the reference events
is approximated by a Gaussian density N (μkl , σkl), where μkl and σkl denote mean
and variance of the density function, respectively, given by

μkl = 1

L1

L1∑

t=1

ep
t (k, l) (11.7)

and

σkl =
√√√√ 1

L1

L1∑

t=1

(ep
t (k, l) − μkl)2. (11.8)

So, every state transition is assigned a mean and a variance which represents the
probabilities with which the event ep

t (k, l) occurs in that category. For a test video
clip not presented during training, the events are obtained using a reference HMM. Let
us denote by ê p

t (k, l), the event probability corresponding to the state transition (k, l)
at time t , when a test sequence of observation symbols is presented to a reference
model. Let L2 denote the number of observation symbols in the test sequence. A
similarity score s between the test video clip and the reference model is given by
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s = 1

L2

L2∑

t=1

1√
2πσkl

exp

[
− (ê p

t (k, l) − μkl)
2

2σ 2
kl

]
. (11.9)

There exists a possibility that two different categories may have similar distributions
of event probabilities, i.e., two models may have the same score. In such a case, it
is difficult to classify the videos without the sequence knowledge. But in practice,
probability of occurring this kind of situation is very rare. In our approach, events
are detected but not assigned label to the events.

11.5 Experiments and Performance Analysis

Experiments were carried out on about 5 1
2 h of video data (1,000 video clips, 200 clips

per sports category, and each clip of 20 s duration) comprising of cricket, football,
tennis, basketball, and volleyball categories. The video clips were captured at a rate
of 25 fps, at 320 × 240 pixel resolution, and stored in AVI format. The data were
collected from different TV channels in various sessions and ensure independence
among videos in the same class. For each sports video category, 100 clips were used
for training and the remaining 100 clips were used for testing.

11.5.1 Experimental Results

One HMM model is chosen for each category of sport for our study. The HMM
model is trained using Baum-Welch algorithm for ten iterations. The choice of the
number of states (N ) of HMM is critical. It is difficult to arrive at the number of
states from the physical process, since the process is not explicit. Hence, N needs
to be determined experimentally by observing the classification performance. The
classification performance was observed by varying N between 3 and 10. The values
N = 7 and N = 9 were chosen based on the performance of classification. Also,
the choice of the value of p is critical since it determines the support given to the
stable states on either side of the transition. A small value of p results in too many
spurious events, whereas a large value of p might miss an event of interest. Hence,
the value of p is determined by using some preliminary experimental studies.

An ergodic HMM model is built for each class using 4-dimensional motion feature
vectors. The performance of the event-based HMM classifier is given in Table 11.1 for
the case with number of states N = 7 and number of mixtures M = 1. In Table 11.1,
the entries in parenthesis denote the classification performance for N = 7 and M = 2.
The classification performance for N = 9 and M = 1, 2 is given in Table 11.2. It
is observed that the average performance for N = 7 is better for all sports except
football. When N = 9, performance of football is increased very much. This can
be attributed to the continuous motion in the football video compared to frequent
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Table 11.1 Performance of correct video classification for N = 7 and M = 1 (in %)

Basketball Cricket Football Tennis Volleyball Avg. perf.

p=5 92 (62) 68 (56) 76 (58) 78 (80) 96 (96) 82.0 (70.4)

p=7 90 (66) 58 (52) 80 (62) 78 (84) 98 (96) 80.8 (72.0)

p=10 82 (66) 56 (32) 88 (72) 78 (80) 98 (80) 80.4 (66.0)

p=13 72 (46) 56 (20) 90 (62) 80 (88) 98 (58) 79.2 (54.8)

p=15 60 (34) 48 (20) 92 (60) 74 (90) 98 (62) 74.4 (53.2)

p=17 48 (20) 42 (18) 92 (56) 74 (92) 98 (70) 70.8 (51.2)

The entries in parenthesis denote the performance for N = 7 and M = 2. The parameter p denotes
the number of frames provided as support on either side of the time instant t . Entries in the last
column denote the average performance of classification

Table 11.2 Performance of correct video classification for N = 9 and M = 1 (in %)

Basketball Cricket Football Tennis Volleyball Avg. perf.

p=5 94 (68) 56 (06) 96 (98) 60 (60) 82 (74) 77.6 (61.2)

p=7 84 (58) 48 (06) 98 (98) 60 (62) 78 (48) 73.6 (54.4)

p=10 76 (22) 36 (08) 98 (98) 60 (64) 82 (10) 70.4 (40.4)

p=13 58 (04) 34 (10) 98 (98) 60 (62) 88 (06) 67.6 (36.0)

p=15 44 (04) 38 (08) 98 (98) 60 (62) 86 (09) 65.2 (35.6)

p=17 44 (04) 24 (10) 96 (98) 60 (62) 84 (02) 61.6 (34.8)

The entries in parenthesis denote the performance for N = 9 and M = 2. The parameter p denotes
the number of frames provided as support on either side of the time instant t . Entries in the last
column denote the average performance of classification

changes in other categories. These continuous variations in the videos are better
modeled using more number of states. This continuous variation also necessitates
the choice of two mixtures per state (M = 2) for improved classification in the case
of football category as shown in Table 11.2.

The confusion matrix for the best average classification performance (N = 7 or 9,
M = 1, and p = 5) is given in Table 11.3. The relatively poorer performance for
cricket and Tennis categories can be attributed to the inability of the models to detect
the events. This is because basketball and volleyball videos have normally close-
range view compared to other video categories, whereas the most parts of the videos
of football, cricket, and tennis have taken from long-range view. But football is
showing good performance because it is having continuous motion in the field and
it can be captured well by increasing number of states. Both football and basketball
have continuous motion because single camera is used to follow players or area of
interest most of the times unlike the switching between multiple cameras in other
cases. Another possibility of the relatively poorer performance of cricket and tennis
is that the number of examples of a given event may be less in the training data,
leading to poor representation of events.

Using the above method, we could detect significant changes in each sports cat-
egory using motion information. The significant changes are considered as events
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Table 11.3 The confusion matrix for the best classification performance (in %) (M = 1, and
p = 5)

Basketball Cricket Football Tennis Volleyball

Basketball (N = 9) 94 00 00 02 04

Cricket (N = 7) 02 68 16 12 04

Football (N = 9) 00 02 96 02 00

Tennis (N = 7) 00 06 16 78 00

Volleyball (N = 7) 00 04 00 00 96

which occurred repeatedly in the videos used for training. Some of the detected
events are mentioned below. In the cricket, detected events are bowler releasing the
ball, batsman hitting the ball, fielder picking up the ball, and fielder throwing the ball,
etc. Two such cases events, of bowler releasing the ball and fielder picking the ball,
are shown in Fig. 11.3. In the football, detected events are kicking the ball, change
in the number of players in the field, etc. Goal is an important event in football, but
it is unable to detect the goal as an event because occurring goal in football is very
rare. In the basketball, detected events are catching ball, throwing ball, etc. In the
volleyball, detected events are hitting ball, servicing ball, etc. In the tennis, detected
events are servicing ball, hitting ball, etc.

11.5.2 Performance Analysis

We compare our proposed method with the traditional HMM. In traditional HMM
method, the sum or the maximum of overall possible state sequences are considered
in evaluating the probabilities, but it is not considering sequence of states to identify
events in the activity. The proposed method is able exploit subsequence of states to
identify events which helps to improve the classification performance. The Table 11.4
shows classification performance of sports videos (basketball, cricket, football, ten-
nis, and volleyball) using traditional HMM with same features used in the proposed
method. Most of the football videos are misclassified as cricket in the traditional
method, but detection of sequence of events in our method plays important role to
the classification of football videos. When the value of p increases, performance of
football videos also increases. It means whenever more neighboring frames are con-
sidered for the detection of events, football can be classified well. This is attributed
to the continuous motion in the football videos.

Basketball and volleyball videos are close-range videos compared to other cat-
egories and motion is also high in these categories. These common factors may be
the reason for the misclassification of most of the volleyball videos as basketball
in the traditional HMM. But in the proposed method, volleyball videos are clas-
sified correctly with high accuracy rate because events detected in volleyball help
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Fig. 11.3 Sequence of image frames (from top to bottom) of two events of cricket category where
the event of a bowler releasing the ball and b fielder picking up the ball are detected. The detected
events are marked by a circle

to improve its classification. The overall performance of proposed method is better
when compared to the traditional HMM.
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Table 11.4 The confusion matrix for the classification performance using traditional HMM method
(in %)

Basketball Cricket Football Tennis Volleyball

Basketball (N = 9) 95 00 00 02 03

Cricket (N = 7) 03 80 02 01 04

Footbal (N = 9) 00 57 43 00 00

Tennis (N = 7) 00 21 04 75 00

Volleyball (N = 7) 48 07 00 00 45

N is number of states in each model of the category

11.6 Conclusion

We have presented a technique for classification of sports videos using events to
represent class-specific information. The events were detected using a framework
based on hidden Markov models. Each sports video category can be identified using
actions in that particular sport. Activities are characterized by a sequence of semantic
events that are embedded in the motion, and occur within a limited time duration. The
event probabilities were used to characterize the activity. Value of p affects frequent
or delayed changes of scene in the videos, it leads to the problem in the detection
of events. Video classification is highly applicable in Content-Based Video Indexing
and Retrieval. Our method works well with videos which is having well-defined
events. Finally, the video classification was performed based on the similarity score
obtained by matching the events. Whenever two categories have same distribution of
events, it may not be possible to classify the videos without sequence knowledge. It
is still challenging task to obtain sequence knowledge to improve the classification
performance. This is our future work.
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What's Going on?



Chapter 12
Representing Team Behaviours from Noisy
Data Using Player Role

Alina Bialkowski, Patrick Lucey, Peter Carr, Sridha Sridharan
and Iain Matthews

Abstract Due to their unobtrusive nature, vision-based approaches to tracking
sports players have been preferred over wearable sensors as they do not require the
players to be instrumented for each match. Unfortunately however, due to the heavy
occlusion between players, variation in resolution and pose, in addition to fluctuat-
ing illumination conditions, tracking players continuously is still an unsolved vision
problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and
false player detections) is problematic as it generates discontinuities in the input
data stream. One method of circumventing this issue is to use an occupancy map,
where the field is discretised into a series of zones and a count of player detections
in each zone is obtained. A series of frames can then be concatenated to represent a
set-play or example of team behaviour. A problem with this approach though is that
the compressibility is low (i.e. the variability in the feature space is incredibly high).
In this paper, we propose the use of a bilinear spatiotemporal basis model using a role
representation to clean-up the noisy detections which operates in a low-dimensional
space. To evaluate our approach, we used a fully instrumented field-hockey pitch
with 8 fixed high-definition (HD) cameras and evaluated our approach on approxi-
mately 200,000 frames of data from a state-of-the-art real-time player detector and
compare it to manually labeled data.
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12.1 Introduction

As the sophistication of analysis increases in professional sport, more organisations
are looking at using player tracking data to obtain an advantage over their competi-
tors. For sports like field-hockey, the dynamic and continuous nature makes analysis
extremely challenging as game-events are not segmented into discrete plays, the
speed of play is very quick (e.g. the ball can move at 125 km/h), and the size of the
field is very large, with each player free to occupy any area at any time. A com-
mon approach to this problem is to use each player’s x, y position in every frame
to recognise team events [19, 20, 23]. However, as reliably tracking players in this
environment over relatively long periods of time (i.e. >1 min) remains an unsolved
computer vision problem, often large amounts of tracking data contains “holes” or
“gaps” making analysis very difficult.

For tasks such as automatic event annotation (e.g. goals, corners, free-kicks),
representations that describe the global pattern of team behaviours such as team-
centroids or occupancy can be utilised on noisy detections. While these macroscopic
representations can pick up on the global patterns, specific information such as indi-
vidual player behaviours may be ignored which could be important for more specific
events or retrieval tasks. As such, a microscopic representation (i.e. continuous tracks
of each player) is preferred but this requires human intervention for long tracks. An
example of this is shown in Fig. 12.1.

As player motion and position (i.e. proximity to teammates and opponents) is
heavily linked to game-context and where the action on the field is taking place,
these contextual features can be used to fill in the gaps of missed tracks caused by
missed or false detections. In team sports, an important contextual feature is char-
acterised by a formation: a coarse spatial structure which the players maintain over
the course of the match. Additionally, player movements are governed by physical
limits, such as acceleration, which makes trajectories smooth over time. These two
observations suggest significant correlation (and therefore redundancy) in the spa-
tiotemporal signal of player movement data. A core contribution of this work is to
recover a low-dimensional approximation for a time series of player locations. The
compact representation is critical for understanding team behaviour. First, it enables
the recovery of a true underlying signal from a set of noisy detections. Second, it
allows for efficient clustering and retrieval of game events.

A key insight of this work is that even perfect tracking data is not sufficient for
understanding team behaviour, and an appropriate representation is necessary. A for-
mation implicitly defines a set of roles or individual responsibilities which are then
distributed amongst the players by the captain or coach. In dynamic games like field
hockey, it may be opportunistic for players to swap roles (either temporarily or perma-
nently). As a result, when analysing the strategy of a particular game situation, players
are typically identified by the role they are currently playing and not necessarily by
an individualistic attribute like name. In this paper, we present a role representa-
tion which provides a more compact representation compared to player identity, and
allows us to use subspace methods such as the bilinear spatiotemporal basis model [3]
to “denoise” noisy detections (which is common from a vision system).
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Fig. 12.1 (Top) Detecting and tracking players over long-periods of time is challenging and often
results in missed detections (highlighted in red) and false detections. (Bottom) In this paper, we
evaluate two representations which are robust to false and missed detections: (1) an occupancy map
(left), which is formed by quantising the field into discrete areas, and (2) a bilinear spatiotemporal
model, which can be used to estimate continuous player tracks (right) from detection data and
compactly represent spatiotemporal patterns

To enable this research we used player detection data captured via 8 fixed high-
definition (HD) cameras, across seven complete field-hockey matches (over 8 h of
match data for each camera). We utilise a state-of-the-art real-time player detector [9]
to give player positions at every frame, affiliate detection results into teams using
a colour histogram model, and then compare two approaches for representing the
team behaviours: an occupancy map representation and a bilinear spatiotemporal
basis model, which models the movement of players by role.

12.2 Related Work

Due to the host of military, surveillance and sport applications, research into
recognising group behaviour has recently increased dramatically. Outside of the
sports realm, most of this work has focussed on dynamic groups, where individual
agents can leave and join groups over the period of observation. An initial approach
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was to recognise the activities of individual agents and then combine these to infer
group activities [5]. Sukthankar and Sycara [33, 34] recognised group activities as
a whole but pruned the size of possible activities by using temporal ordering con-
straints and agent resource dependencies. Sadilek and Kautz [30] used GPS locations
of multiple agents in a “capture the flag” game to recognise low-level activities such
as approaching and being at the same location. All of these works assume that the
position and movements of all agents are known, and that all behaviours can be
mapped to an activity within the library. Recently, Zhang et al. [37] used a “bag of
words” and Support Vector Machine (SVM) approach to recognise group activities
on the Mock Prison dataset [10].

Sports related research mostly centres on low-level activity detection with the
majority conducted on American Football. In the seminal work by Intille and
Bobick [18], they recognised a single football play pCurl51, using a Bayesian net-
work to model the interactions between the players trajectories. Li et al. [24], mod-
elled and classified five offensive football plays (dropback, combo dropback, middle
run, left run, right run). Siddiquie et al. [31], performed automated experiments to
classify seven offensive football plays using a shape (HoG) and motion (HoF) based
spatio-temporal features. Instead of recognising football plays, Li and Chellapa [23]
used a spatio-temporal driving force model to segment the two groups/teams using
their trajectories. Researchers at Oregon State University have also done substantial
research in the football space [15, 16, 32] with the goal of automatically detecting
offensive plays from a raw video source and transferring this knowledge to a simula-
tor. For soccer, Kim et al. [20] used the global motion of all players in a soccer match
to predict where the play will evolve in the short-term. Beetz et al. [6] developed
the automated sport game models (ASPOGAMO) system which can automatically
track player and ball positions via a vision system. Using soccer as an example, the
system was used to create a heat-map of player positions (i.e. which area of the field
did a player mostly spend time in) and also has the capability of clustering passes
into low-level classes (i.e. long, short etc.), although no thorough analysis was con-
ducted due to a lack of data. In basketball, Perse et al. [28] used trajectories of player
movement to recognise three type of team offensive patterns. Morariu and Davis [27]
integrated interval-based temporal reasoning with probabilistic logical inference to
recognise events in one-on-one basketball. Hervieu and Bouthemy [14] also used
player trajectories to recognise low-level team activities using a hierarchical parallel
semi-Markov model.

It is worth noting that an enormous amount of research interest has used broadcast
sports footage for video summarisation in addition to action, activity and highlight
detection [6, 12, 13, 17, 22, 25, 26, 36], but given that these approaches are not
automatic (i.e. the broadcast footage is generated by humans) and that the telecasted
view captures only a portion of the field, analysing groups has been impossible
because some individuals are normally out of frame. Although similar in spirit to the
research mentioned above, our work differs as: (1) we rely only on player detections
rather than tracking, and (2) we compare across many matches.
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12.3 Detection Data

12.3.1 Field-Hockey Test-Bed

In this work, we investigate the behaviours of several international field-hockey teams
from player tracking data. To enable this research, we recorded video footage from
a recent field-hockey tournament using eight stationary HD cameras which provide
complete coverage of the 91.4 × 55.0 m playing surface, as displayed in Fig. 12.2.

12.3.2 Player Detection and Team Affiliation

For each camera, player image patches are extracted using a real-time person
detector [9], which detects players by interpreting background subtraction results
in terms of 3D geometry, where players are coarsely modelled as cylinders of height
1.8 m. This equates to 40–100 pixels height in the image depending on the distance

Fig. 12.2 View of the field-hockey pitch from the 8 fixed HD cameras
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Fig. 12.3 a We detect players using a real-time person detector, and b represent the colours of each
image patch using histograms of the foreground pixels in LAB colour space. c An image patch is
then assigned to the closer of the two team histogram models (or “other” if the distance to each
model exceeds a threshold)

from the camera, so for scale invariance, we normalise the image patches to a fixed
size of 90 × 45 pixels. The image patches are then classified into teams using colour
histograms of the foreground pixels, as illustrated in Fig. 12.3. The LAB colour space
is used for representing the colours of each image patch, ignoring the luminance chan-
nel as it is affected by illumination changes. Nine bins are used for each dimension,
and the histograms are normalised to sum to one.

Models for the two teams are learnt using k-means clustering from a training
set of approximately 4,000 training histograms, and the Bhattacharyya coefficient is
used as the comparison metric. A detected image patch is then classified to the closer
of the two team models, or if it falls outside a threshold, it is classified as “others”
(i.e. noise, referees, goalies). In our dataset, teams wear contrasting colours, so colour
histograms are sufficient for distinguishing between the two teams. Detections from
the eight cameras are then aggregated by projecting the player positions to field co-
ordinates using each camera’s homography, and merging player detections based on
proximity (Fig. 12.4).

The performance of the detector and team classification compared to ground truth
annotated frames using precision and recall metrics is shown in Table 12.1. From this
table, it can be seen that while recall is high, the team classification has quite low
precision in some matches. The poor performance is mainly attributed to non-team-
players (referees, goalies, and false-positive player detections caused by background
clutter) being misclassified into one of the teams, as they contain a combination of
team colours. A more sophisticated representation could be used for modelling the
teams as well as non-team image patches, and online learning of the colour models to
adapt with changes in illumination would further improve results. From these results,
it is evident that our team behaviour representation must be able to deal with a high
degree of noise.
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Team A Team B Refs, Goalies

Fig. 12.4 (Left) We detect players in each camera using a real-time person detector and project
these into real world co-ordinates. (Right) We then classify the detections into one of the two teams
(or others) and aggregate the detections from each camera to extract the state of the game at each
time instant

Table 12.1 Precision and recall values of the player detector and team affiliation classifier, after
aggregating all cameras

Match code No. of
Frames

Precision Recall

Detector
(%)

Team A
(%)

Team B
(%)

Detector
(%)

Team A
(%)

Team B
(%)

10-USA-RSA-1 14,352 81.1 67.2 77.7 89.0 98.3 98.4

24-JPN-USA-1 20,904 89.5 91.7 90.0 87.5 95.2 97.4

24-JPN-USA-2 7,447 85.8 72.4 79.7 90.0 97.6 97.0

12.4 Modelling Team Behaviours from Detections

An intuitive representation of team behaviours in sports would be to track all players
(maintaining their identity) and the ball. For field-hockey, this would result in a 42
dimensional signal per frame (i.e. 21 objects with x and y coordinates—10 field
players excluding the goalie × 2 teams, and the ball). However, since we cannot
reliably and accurately track the player and ball over long durations, an alternative
is to represent the match via player detections.

Player detection data can be modelled as a series of observations O, where each
observation consists of an (x, y) ground location, a timestamp t , and a team affiliation
estimate τ ∈ {α,β}. At any given time instant t , the set of detected player locations
Ot = {xA, yA, xB , yB , . . . } is of arbitrary length because some players may not have
been detected and/or background clutter may have been incorrectly classified as a
player. Therefore, the number of player detections at any given frame is generally
not equal to the actual number of players 2P , where P = 10 players per team.

By representing the detections at each frame, we overcome the issue of tracking,
but as a consequence we remove the player identity component of the signal and
need another method to maintain feature correspondences. We propose to employ
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an occupancy map descriptor, which is formed by breaking the field into a series of
spatial bins and counting the number of players that occupy each of the bins.

12.4.1 Team Occupancy Maps

The team occupancy descriptor, xo
t , is a quantised occupancy map of the player

positions on the field for each team represented at time t . Given we have the locations
of players from the player detector system and have assigned team affiliation, an
occupancy map can be constructed for each frame by quantising the 91.4 × 55.0 m
field into K bins, and counting how many player detections for that team fall within
each location. The dimensionality of the formation descriptor is equal to twice the
number of bins (i.e. K × 2) so that both teams A and B are accounted for, resulting
in xo

i = [a1, . . . , aK ; b1, . . . , bK ], where ak and bk are the player counts in bin k for
teams A and B respectively. Such an occupancy map can then be used to represent
team activities by concatenating frames.

Depending on the level of complexity of the activity that we wish to recognise, we
can use varying descriptor sizes (coarse/fine). We evaluate five different descriptor
sizes: K = 2(2 × 1), K = 8(4 × 2), K = 32(8 × 4), K = 135(15 × 9) and
K = 540(30×18), with examples illustrated in Fig. 12.5. The different quantisations
represent how much tolerance there is in player’s positions (e.g. in 15×9 quantisation,
each player is assigned to an area of approximately 6 m2).

12.4.2 Recognising Team Activities

To evaluate the different occupancy map representations, we conducted a series of
isolated activity recognition experiments. We use the occupancy maps to recognise
five activities, corresponding to important game states in field-hockey, shown in
Fig. 12.6. As these activities coincide with a single event (e.g. the ball crossing the
out line, or a goal being scored), they do not have distinct onset and offset times.

2x1 4x2 8x4 15x9 30x18

Fig. 12.5 Example team occupancy maps for different descriptor sizes
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(b)(a)

(e)

(d)(c)

Fig. 12.6 Diagrams and examples of structured plays that occur in field-hockey. a Faceoff. b
Penalty corner. c Long corner. d Defensive corner. e Goal

To account for this, we used the event as the start of the activity and went forward
10 s as the offset time, which gave us a series of 10 s play clips.

Since an activity can occur for either team, we compare the template descriptors
in both orientations (xo = [a, b]T , and xo = [brot , arot ]T , where arot represents
a rotation of the field by 180◦ for team a’s formation descriptor, so that the new
descriptor is given by arot [k] = a[K + 1 − k], for k = 1, 2, . . . , K ). We calculate
the distance to the template in both orientations, and take the minimum as the distance
measure.

Seven full matches (corresponding to over 8 hours of game play), were annotated
with the 5 activities of interest: face-offs, penalty corners, goals, long corners and
defensive corners as shown in Table 12.2. The annotated activities were split into
testing and training sets using a leave-one-out cross-validation strategy, where one
match half was used for testing and the remaining halves for training. We used a
k-Nearest Neighbour classification approach, taking the mode activity label of the
closest k examples in the training set, using L2 as our distance measure. Confusion
matrices using k = 10 are presented in Fig. 12.7.

Most activities are well recognised, however goals are often misclassified as the
other activities because they are less structured, with a lot of variability possible.
Defensive corners and long corners are sometimes confused with one another as the
main difference is the team which maintains possession, which is not discernible from
the occupancy descriptors. The best accuracy was achieved using an 8×4 descriptor
with an accuracy of 78.2 %. Quantising at a finer level beyond this, resulted in a
slightly reduced accuracy, which can be explained by players not aligning to the
exact locations in the training activity templates, due to variability in activities (and
our distance metric only compares corresponding field locations between occupancy
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Table 12.2 Frequency of the annotated activities in each match half

Face off Penalty corner Goal Long corner Defensive corner

(L) (R) (L) (R)

1-JPN-USA-1 3 2 2 11 5 4 4

1-JPN-USA-2 2 6 1 4 10 7 3

2-RSA-SCO-1 2 4 2 11 4 3 3

2-RSA-SCO-2 3 9 2 3 12 4 3

5-USA-SCO-1 3 4 2 7 4 1 7

5-USA-SCO-2 3 8 2 3 3 2 2

9-JPN-SCO-1 2 4 2 8 7 5 2

9-JPN-SCO-2 1 1 0 10 10 6 0

10-USA-RSA-1 5 9 5 5 5 8 0

10-USA-RSA-2 6 4 5 6 7 4 1

23-ESP-SCO-1 3 4 2 7 6 1 1

23-ESP-SCO-2 3 7 2 9 5 2 1

24-JPN-USA-1 4 3 3 9 6 5 1

24-JPN-USA-2 2 2 1 5 9 7 6

Total 42 67 31 98 93 59 34
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Fig. 12.7 Confusion matrices for isolated activity recognition using different occupancy map
descriptor sizes

maps). A more coarse descriptor is able to represent the activity with tolerance for
player position variations. This indicates that the annotated activities can be described
by the distribution of the players on a relatively macroscopic scale rather than the
exact positions approximated with the finer descriptors.

Despite their simplicity, it is evident that occupancy maps can be used to recognise
important game states in the presence of noise and without any tracking information.
However, if we wish to recognise the fine behaviours of teams (i.e. at the level of
individual player behaviours), an occupancy map representation requires a very high
dimensionality feature vector (e.g. a grid of 30×18 requires 540 feature dimensions
per frame to represent player locations to a precision of ∼3 m2). In addition, when
modelling longer term behaviours, occupancy map descriptors are not very compress-
ible in the temporal domain, because they do not directly model player movements
(which are smooth) but occupancies in different zones of the field, which are discrete
and do not vary smoothly or predictably in time, particularly with noisy detections.



12 Representing Team Behaviours from Noisy Data Using Player Role 257

In order to model individual behaviours in team sports compactly, we need a method
to clean-up noisy detections and a representation which exploits the high degree of
correlation between players. Player tracks could allow this, but we must overcome
the issue of noisy detections (i.e. missed and false detections).

12.5 Representing Adversarial Movements

The task of tracking players across time is equivalent to generating a vector of ordered
player locations pτ

t = [x1, y1, x2, y2, . . . , xP , yP ]T for each team τ from the noisy
detections Ot at each time instant. The particular ordering of players is arbitrary, but
must be consistent across time. Therefore, we refer to pτ

t as a static labeling of player
locations. It is important to note that pτ

t is not simply a subset of Ot . If a player was
not detected, an algorithm must somehow infer the location of the unseen player.

We focus on generic team behaviours and assume any observed arrangement of
players from team α could also have been observed for players from team β. As a
result, there is a 180◦ symmetry in our data. For any given vector of player locations

pτ
t , there is an equivalent complement

�
p

τ

t from rotating all (x, y) locations about the
centre of the field and swapping the associated team affiliations.

12.5.1 Formations and Roles

In the majority of team sports, the coach or captain designates an overall structure or
system of play for a team. In field hockey, the structure is described as a formation
involving roles or individual responsibilities (see Fig. 12.8). For instance, the 5:3:2
formation defines a set of roles R = {left back (LB), right back (RB), left halfback

LB

RB

LH

RH

CH

LW

RW

CF

IL

IR

Fig. 12.8 The dynamic nature of the game requires players to switch roles and responsibilities on
occasion, for example, the left halfback LH overlaps with the inside left IL to exploit a possible
opportunity
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Table 12.3 We manually
labelled player location,
identity and role at each
frame for parts of four games
from an international
field-hockey tournament

Match code No. of frames

10-USA-RSA-1 3,894

10-USA-RSA-2 8,839

24-JPN-USA-1 4,855

24-JPN-USA-2 7,418

(LH), center halfback (CH), right halfback (RH), inside left (IL), inside right (IR), left
wing (LW), center forward (CF), right wing (RW)}. Each player is assigned exactly
one role, and every role is assigned to only one player at any instant in time. Due to
the dynamic nature of team sports, roles are generally not fixed and players will swap
roles throughout a match, temporarily adopting the responsibilities of another player.
Mathematically, assigning roles is equivalent to permuting the player ordering pτ

t .
We define a P × P permutation matrix xτ

t at time t which describes the players in
terms of roles rτ

t
rτ

t = xτ
t pτ

t (12.1)

By definition, each element xτ
t (i, j) is a binary variable, and every column and

row in xτ
t must sum to one. If xτ

t (i, j) = 1 then player i is assigned role j . In contrast
to pτ

t , we refer to rτ
t as a dynamic labeling of player locations.

Because the spatial relationships of a formation are defined in terms of roles (and
not individualistic attributes like name) and players swap roles during the game, we
expect the spatiotemporal patterns in {rτ

1 , rτ
2 , . . . , rτ

T } to be more compact compared
to {pτ

1, pτ
2, . . . , pτ

T }. Additionally, we expect a team to maintain its formation while
moving up and down the field. As a result, position data r̃τ

t expressed relative to the
mean (x, y) location of the team should be even more compressible. To test these
conjectures, we manually tracked all players over 25,000 time-steps (which equates
to 8 × 25,000 = 200,000 frames across 8 cameras), and asked a field hockey expert
to assign roles to the player locations in each frame. A breakdown of the manually
labelled data is given in Table 12.3.

For brevity, we explain the analysis in terms of roles rτ
t since the original player

ordering pτ
t is just a special non-permuted case xτ

t = I. We ran PCA on the temporal

data series produced by both teams {rτ
1 , rτ

2 , . . . , rτ
25,000,

�
r

τ

1,
�
r

τ

2, . . . ,
�
r

τ

25,000}. This
was to measure how well the low-dimensional representation r̂τ

t matches the original
data rτ

t using the L∞ norm of the residual Δr = r̂τ
t − rτ

t

‖Δr‖∞ = max(‖Δr(1)‖2, . . . , ‖Δr(P)‖2) (12.2)

where ‖Δr(p)‖2 is the L2 norm of the pth x and y components of Δr. We chose
the L∞ norm instead of the L2 norm because large deviations may signify very
different formations, e.g. a single player could be breaking away to score. Figure 12.9
illustrates how both pτ

t and rτ
t are quite compressible on the training data. However,

when we test on unseen data (with role labels), the dynamic role-based ordering rτ
t
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Fig. 12.9 Plot showing the reconstruction error as a function of the number of eigenvectors used to
reconstruct the signal using the L∞ norm for original and mean-removed features for both identity
and role representations on training data (left) and unseen test data (right)

is much more compressible than the static ordering pτ
t . Relative positions are more

compressible than absolute positions in both orderings.

12.5.2 Incorporating Adversarial Behaviour

A player’s movements are correlated not only to teammates but to opposition players
as well. Therefore, we anticipate that player location data can be further compressed
if the locations of players on teams A and B are concatenated into a single vector
rAB

t = [rA
t , rB

t ]T.
In Fig. 12.10, we show the mean formations for the identity and role representa-

tion. We can see that the role representation has a more uniform spread between the
players, while the identity representation has a more crowded shape, which high-
lights the constant swapping of roles during a match. In terms of compressibility,
Table 12.4 shows that using an adversarial representation gains better compressibility
for both cases, and that using both a role and adversarial representation yields the
most compressibility.

LB

RW

CF

IR

IL
LH

CH

RH

RB

LB

RW

LW

CF

IR

ILLH
CH

RH

RB

LW

Fig. 12.10 Examples showing the difference between the mean formations using the: (left) identity
and (right) role representations on one of the matches
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Table 12.4 Showing the compressibility of different representations. Compressibility in this con-
text refers to the percentage of features required to represent 95 % of the original signal

Representation Compressibility

Identity (%) Role (%)

Single team 30 25

Adversarial teams 20 15

12.6 Cleaning-Up Noisy Data

12.6.1 Spatiotemporal Bilinear Basis Model

The representation of time-varying spatial data is a well-studied problem in computer
vision (see [8] for overview). Recently, Akhter et al. [3], presented a bilinear spa-
tiotemporal basis model which captures and exploits the dependencies across both
the spatial and temporal dimensions in an efficient and elegant manner, which can
be applied to our problem domain. Given we have P players per team, we can form
our role-based adversarial representation, r, as a spatiotemporal structure S, given
2P total players sampled at F time instances as

SF×2P =
⎡

⎢⎣
r1

1 . . . r1
2P

...
...

r F
1 . . . r F

2P

⎤

⎥⎦ (12.3)

where r i
j denotes the j th index within the role representation at the i th time instant.

Thus, the time-varying structure matrix S contains 2F P parameters. This representa-
tion of the structure is an over parameterization because it does not take into account
the high degree of regularity generally exhibited by motion data. One way to exploit
the regularity in spatiotemporal data is to represent the 2D formation or shape at each
time instance as a linear combination of a small number of shape basis vectors b j

weighted by coefficients ωi
j as si = ∑

j ωi
j b

T
j [7, 11]. An alternative representation

of the time-varying structure is to model it in the trajectory subspace, as a linear com-
bination of trajectory basis vectors, θ i as s j = ∑

i a j
i θ i , where a j

i is the coefficient
weighting each trajectory basis vector [1, 35]. As a result, the structure matrix can
be represented as either

S = ΩBT or S = ΘAT (12.4)

where B is a P × Ks matrix containing Ks shape basis vectors, each representing a
2D structure of length 2P , and Ω , is an F × Ks matrix containing the corresponding
shape coefficients ωi

j ; and Θ is an F × Kt matrix containing Kt trajectory basis
as its columns, and A is a 2P × Kt matrix of trajectory coefficients. The num-
ber of shape basis vectors used to represent a particular instance of motion data is
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Ks ≤ min{F, 2P}, and Kt ≤ {F, 2P} is the number of trajectory basis vectors
spanning the trajectory subspace.

Both representations of S are over parameterisations because they do not capitalise
on either the spatial or temporal regularity. As S can be expressed exactly as S = ΩBT

and also S = ΘAT , then there exists a factorization

S = ΘCBT (12.5)

where C = ΘT Ω = AT B is a Kt × Ks matrix of spatiotemporal coefficients. This
equation describes the bilinear spatiotemporal basis, which contains both shape and
trajectory bases linked together by a common set of coefficients.

Due to the high degree of temporal smoothness in the motion of humans, a prede-
fined analytical trajectory basis can be used without significant loss in representation.
A particularly suitable choice of a conditioning trajectory basis is the Discrete Cosine
Transform (DCT) basis, which has been found to be close to the optimal Principal
Component Analysis (PCA) basis if the data is generated from a stationary first-
order Markov process [29]. Given the high temporal regularity present in almost all
human motion, it has been found that the DCT is an excellent basis for trajectories
of faces [2, 3] and bodies [4]. Figure 12.11 shows that due to the highly structured
nature of the game, and the fact that human motion over short periods of time is very
simple, we can gain enormous dimensionality reduction especially in the temporal
domain. From this, we can effectively represent 5 s plays with no more than Kt = 3
and Ks = 33 with a maximum error of less than 2 m. In terms of dimensionality
reduction, this means we can represent temporal signals using 3 × 33 = 99 coef-
ficients. For 5 s plays, this means a reduction of over 60 times. We found greater
compressibility could be achieved on longer plays.
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Fig. 12.11 Plot showing the mean reconstruction error of the test data as the number of temporal
basis (Kt ) and spatial basis (Ks ) vary for 5 s plays (i.e. Ktmax = 150). We magnified the plot to
show the first 10 temporal basis to highlight that only Kt = 3 is required to represent coarse player
motion
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12.6.2 The Assignment Problem

In the previous section, roles were specified by a human expert. We now address the
problem of automatically assigning roles to an arbitrary ordering of player locations
pτ

t . Assuming a suitably similar vector r̂τ of player locations in role order exists, we
define the optimal assignment of roles as the permutation matrixxτ�

t which minimises
the square L2 reconstruction error

xτ�
t = arg min

xτ
t

‖r̂τ − xτ
t pτ

t ‖2
2. (12.6)

This is the linear assignment problem where an entry C(i, j) in the cost matrix is
the Euclidean distance between role locations

C(i, j) = ‖r̂τ (i) − pτ
t ( j)‖2. (12.7)

The optimal permutation matrix can be found in polynomial time using the Hun-
garian (or Kuhn-Munkres) algorithm [21].

12.6.3 Assignment Initialization

To solve the assignment problem, we need a reference formation to compare to. Using
the mean formation (see Fig. 12.10) is a reasonable initialization as the team should
maintain that basic formation in most circumstances. However, in different areas of
the field there are subtle changes in formation due to the what the opposition are
doing as well as the game-state. To incorporate these semantics, we used a codebook
of formations which consists of every formation within our training set. However,
this mapping is difficult to do as the input features have no assignment. Given we have
the assignment labels of the training data, we can learn a mapping matrix W from
the mean and covariances of the training data to its assignment labels via the linear
transform X = WT Z. Given N training examples, we can learn W by concatenating
the mean and covariance into an input vector zn , which corresponds to the labeled
formation xn . We compile all these features into the matrices X and Z, and given
these, we use linear regression to learn W by solving

W = XZT (ZZT + λI)−1 (12.8)

where λ is the regularization term. Using this approach, we can estimate a labelled
formation from the training set which best describes the current unlabeled one. In
terms of assignment performance on the test set, this approach works very well
compared to using the mean formation for both the identity and role labels as can be
seen in Table 12.5. Figure 12.12 shows the confusion matrices for both Team A and
Team B for both representations. It is worth noting that the role representation gave far
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Table 12.5 Accuracy of the
assignment using a mean
formation as well as a
codebook of possible
formations

Prototype Hit rate

Team A Team B

Identity Mean formation 38.36 29.74

Codebook 49.10 37.15

Role Mean formation 49.47 50.30

Codebook 74.18 69.70

better results than the identity representation, which is not surprising seeing that only
spatial location is used. In terms of the role representation (bottom two plots), it can
be seen that there is little confusion between the 3 defenders (LB, CH, RB) and the 3
forwards (LW, CF, RW). However, the midfield 4 (LH, RH, IL, IR) tend to interchange
position a lot causing high confusion. Noticeably, there is a discrepancy between
Team A and Team B which is understandable in this case as Team B interchanges
positions more than twice the amount than Team A upon analysis of the ground-truth.
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Fig. 12.12 Confusion matrix showing the hit-rates for correctly assigning identity (top row) and
role (bottom) for Team1 (left) and Team 2 (right) on the test set
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12.7 Interpreting Noisy Data

In practice, we will not obtain perfect data from a vision-system so our method has to
be robust against both missed and false detections. Given the four annotated matches
(presented in Table 12.3), the precision and recall rates for the detector and the team
affiliation are given in the left side of Table 12.6. In this work, we consider a detection
to be made if a player was within 2 m of a ground-truth label.

12.7.1 Assigning Noisy Detections

To determine whether or not we should make the assignment or discard the detection,
some type of game context feature is required (e.g. the part of the field most of the
players are located). To do this, we employed a similar strategy to the one we proposed
in Sect. 12.6.3. However, instead of learning the mapping from the clean features Z,
we learn from the noisy features Znoisy. As the player detector has systematic errors
(there are some “black-spots” on the field due to reduced camera coverage, or game
situations where players bunch together), we include the number of players detected
from the system as well as the mean and covariance in our noisy game context feature
znoisy, which we can then use to learn Wnoisy. We are able to do this as we make
the assumption that the clean centroid is a good approximation to the noisy centroid
which was found to be a valid assumption as can be seen in Fig. 12.13. Using this
assumption, we can obtain a reasonable prototypical formation to make our player
assignments.

Using the estimated prototype, we then make the role assignments using the
Hungarian algorithm. This is challenging however, as we may have missed or false
detections which alters the one-to-one mapping between the prototype and input
detections. To counter this, we employed an “exhaustive” approach, where if we
have fewer detections than the number of players in the prototype, we find all the
possible combinations that the labels could be assigned then use the combination
which yielded the lowest cost from the assignments made. Conversely, if we had
more detections than the number of players, we find all the possible combinations
that the detections could be and then use the combination of detections which had
the lowest cost.

For example, given we have only 9 detections for a team, we first find the
10 possible combinations that prototype could be (i.e. [1, . . . , 9], [2, . . . , 10],

Table 12.6 Precision-Recall
rates for the raw detections
(left) and with the initialised
assignments (right)

Raw detections With assignment

Precision Recall Precision Recall

Detections 77.49 89.86 91.90 80.46

Team A 72.54 86.14 86.69 74.17

Team B 79.84 89.66 92.91 82.85
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Fig. 12.13 As the centroids of both the clean (solid) and noisy (dashed) of both teams (blue =
team1, red = team2) are roughly equivalent, we learn a mapping matrix using linear regression to
find a formation from the training set which can best describe the noisy test formation

[1, 2, 4, . . . , 10], [1, 2, 3, 5, . . . , 10] etc.). For each one of these combinations, we
then perform the Hungarian algorithm and calculate the cost of the made assign-
ments. After we have exhaustively gone through all possible combinations, we make
the assignment based on the combination with the lowest cost. Or given we have 11
detections for a team, we first find the 11 possible combinations that the detections
could be, find the cost for each set and choose the one with the lowest cost. How-
ever, sometimes we get false positives which means that even though we may get
10 detections for a team we may only have 7 or 8 valid candidates. Employing this
approach greatly improves the precision rate, while the recall rate decreases which
is to be expected (see right side of Table 12.6). Even despite the drop in recall, we
still assign role reasonably well (over 55 % compared to 66 % on the clean data) as
can be seen in Table 12.7.

Table 12.7 Detection rates assigning roles to the noisy data. The column on the far right gives the
effective hit-rate (i.e. missed detections omitted) of the correct assignments

Correct Incorrect Missed Hit rate

Team A 41.89 32.89 25.22 56.02

Team B 45.92 35.56 18.53 56.36
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12.7.2 Denoising the Detections

While our precision and recall rates from the detector are relatively high, to do
useful analysis we need a continuous estimate of the player label at each time step
to do formation and play analysis. This means that we need a method which can
de-noise the signal—i.e. a method which can impute missing data and filter out false
detections. Given the spatial bases, the bilinear coefficients and an initial estimate
of the player labels, we can use an Expectation Maximization (EM) algorithm to
denoise the detections. The approach we use is similar to [3]. Using this approach,
the expectation step is simplified to making an initial hard assignment of the labels
which can be gained by finding the initial assignments using the method described
in the previous section. From this initialization, we have an initial guess of Ŝ. In the
maximization step, we can calculate C = ΘT ŜB, and then estimate S from our new
C as well as our spatial and temporal basis B and Θ . An example of the cleaned up
detections using this approach is shown in Fig. 12.14.

As the recall rate of the denoised data is 100 %, we are interested to see how
precise our method is in inferring player position based on their label. To test this,
we calculated the precision rate for the detections and the denoised detections against
a distance threshold—that is, the minimum distance a player had to be to ground-truth
to be recognised as a correct detection). The results are shown in Fig. 12.15. As can
be seen from these figures, the detections from the player detector are very accurate
and do not vary with respect to the error threshold (i.e. it either detects a player very
precisely or not at all). Conversely, the denoised data is heavily smoothed due to the
bilinear model, so we lose some of the finer detail to gain a continuous signal.
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Fig. 12.14 Given our noisy detections (black), using our bilinear model we can estimate the tra-
jectory of each player over time. We can see our estimate (red) is close to the ground-truth (blue)
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Fig. 12.15 Precision accuracy versus the distance threshold from ground truth (in metres) (left)
the overall detections, (right) the detections based on team affiliation. The solid lines refer to the
raw detections and the dashed lines refer to the denoised signal

12.8 Summary

Accurately tracking players over long durations of time is an unsolved computer
vision problem, and prevents automated analysis of team sports using traditional rep-
resentations based on player tracks. In this paper, we instead directly modelled team
behaviours from raw player detections, and compared two representations which
are robust to missed and false detections: (1) occupancy maps and (2) a bilinear-
spatiotemporal basis model. We demonstrated that occupancy map features can accu-
rately represent global group behaviours, and can be used to recognise group activities
corresponding to important game states from raw player detections, without player
tracking or ball information. However, one of the challenges of an occupancy map
representation is that high dimensionality is required, and it is difficult to model team
behaviours at the level of individual players. To overcome this, we proposed the use
of a bilinear spatiotemporal basis model using a role representation to clean-up the
noisy detections which operates in a low-dimensional space. This provides a very
compact representation of group behaviours, and can facilitate tasks such as cluster-
ing and retrieval. We evaluated our approach on approximately 200,000 frames of
field-hockey data from a state-of-the-art real-time player detector.
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Chapter 13
Recognizing Team Formation
in American Football

Indriyati Atmosukarto, Bernard Ghanem, Mohamed Saadalla
and Narendra Ahuja

Abstract Most existing software packages for sports video analysis require manual
annotation of important events in the video. Despite being the most popular sport in
the United States, most American football game analysis is still done manually. Line
of scrimmage and offensive team formation recognition are two statistics that must
be tagged by American Football coaches when watching and evaluating past play
video clips, a process which takes manyman hours per week. These two statistics are
the building blocks for more high-level analysis such as play strategy inference and
automatic statistic generation. In this chapter, we propose a novel framework where
given an American football play clip, we automatically identify the video frame in
which the offensive team lines in formation (formation frame), the line of scrimmage
for that play, and the type of player formation the offensive team takes on. The
proposed framework achieves 95% accuracy in detecting the formation frame, 98%
accuracy in detecting the line of scrimmage, and up to 67%accuracy in classifying the
offensive team’s formation. To validate our framework, we compiled a large dataset
comprising more than 800 play-clips of standard and high definition resolution from
real-world football games. This dataset will be made publicly available for future
comparison.
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13.1 Introduction

Sports coaches and analysts often analyze large collections of video to extract patterns
and develop strategies in their respective sport. Before any extensive video analysis
can be conducted, these sports expertsmust annotate the video data to provide context
to the video clips. It is quite natural for humans to commit errors during annotation
due to the high visual similarity, repetitive nature, and sheer volume of video data. If
they have the budget, which few do, American Football teams employ highly experi-
enced staff (video coaches) specifically for video annotation. Even dedicated video
coaches are prone to error when manually annotating football clips and extracting
important details from them. Automatic annotation of important events and statistics
in American Football videos will save tremendous time and resources for the teams
and the coaches, thus allowing coaches more time doing what they love best, being
on the field training their teams.

Automated annotation of American football videos has many potential users,
including coaches and players, but also sports analysts, content providers such
as sports broadcasting companies, mobile service providers, and even end users.
Coaches will use the automatic annotations to learn about the strengths and weak-
ness of their own and other teams. To optimize video streaming over limited mobile
bandwidth, cell phone companies want to detect significant events of a game for
optimal streaming. Advertising companies want to automatically insert advertise-
ments at the most significant points in a game. Broadcast companies want to enrich
the game content with other materials to retain audiences and improve audiences’
game watching experience. Sport analysts want to enrich their interpretation of the
game and accumulate more detailed statistics that would not be possible with manual
processing.

American football (hereafter referred to as ‘football’) is a very structured game
where players move according to a number of set plays. A football play is defined
as an offense’s attempt to advance the ball forwards. There are two general football
play types: offense/defense (o/d) and special teams. In this paper, we concentrate
on two important details which must be recorded in every o/d play, namely the line
of scrimmage and offensive formation type. The line of scrimmage is an imaginary
line along the width of the field, upon which the ball is placed before the beginning
of each play. A formation is defined as the spatial configuration of a team’s players
before a play starts. Before each play starts, the players go to a pre-determined place
on the field on their side of the line of scrimmage. This is when a team is said
to be in ‘formation’. The play begins when a player lifts the ball off the ground
(‘snaps’) and ends when the player with the ball either scores or is brought to the
ground (‘tackled’). Automatically detecting the line of scrimmage in a play clip is
a challenging computer vision problem primarily due to high player occlusion and
appearance similarity. Automatically detecting the offense formation in a play clip
is difficult primarily due to significant occlusion, intra-class variation, inter-class
similarity, and player appearance similarity.



13 Recognizing Team Formation in American Football 273

Detecting the line of scrimmage and the offensive team formation are two
fundamental building blocks without which any future action recognition and play
understanding work is incomplete. The results of this solution can be used for more
extensive analysis of football games such as offensive and defensive personnel detec-
tion, play detection, and ultimately playbook inference. A playbook is essentially a
notebook that contains the collection of description and diagrams of all possible
plays for a team.

In this chapter, we propose a novel framework to automatically identify the line
of scrimmage and offensive team formation in football (refer to Fig. 13.1) [1]. The
proposed framework uses the gradient information of the video frames projected onto
the field using the method proposed in [13]. Projecting the frames not only removes
camera motion but also allows player locations to be normalized on to the field of
play irrespective of the view recorded by the camera. This solution is robust enough
to identify features from any video as it is agnostic to colour information.

Our proposed framework consists of four components described as follows: (1)
we automatically identify the frame in which the formation occurs, (2) we use the
identified formation frame to automatically estimate the line of scrimmage, (3) we
use the estimated line of scrimmage to differentiate players from the two teams and
automatically identify which team is on offense, and (4) we use features extracted
from the offensive side of the line of scrimmage to classify the offensive team’s
formation in the play clip.

The rest of the chapter is organized as follows. We discuss some existing work
on sports video analysis in general and play analysis and formation detection in
American football. In Sect. 13.3, we illustrate our proposed framework and describe
each of the framework modules in detail. In Sect. 13.4, we validate our framework
by extensively testing our methods on different American football play datasets. We
conclude our chapter in Sect. 13.5 by summarizing our work and discussing ideas
for future work.

Fig. 13.1 The goal of our work is to automatically recognize and label offensive team formation
that occur at the beginning of an American football play
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13.2 Related Work

Work on sports video analysis mainly focus on specific sports domain, thus allowing
research and development to leverage upon the specific domain knowledge and
structure of the particular sport being analyzed. There has been extensive work in the
soccer domain focused on predicting important events in soccer games [11, 16, 23,
28, 30, 34–36, 39, 42, 47, 53, 56]. Zhu et al. [56] constructed a novel trajectory-based
representation constructed based on multiple trajectories of players and the ball
to recognize events such goal, side or center attacks, group or individual attacks.
Zawbaa et al. [53] applied machine learning techniques such as neural network and
SVM classifiers to detect important regions in the game such as goal posts and
goal nets. Similarly, Saba and Altameem [42] applied similar artificial intelligence
techniques to detect important events in soccer games.

Some work have focused on visualization of the games to enrich the experience of
the audiences and fans of the sport [15, 21, 25, 40, 43]. Hilton et al. [21] presented
a framework and prototype system for stereo 3DTV and free viewpoint production
and visualization of soccer games. Hamid et al. [15] presented a framework for
visualization of virtual offside line in soccer games. Ren et al. [40] used motion
cues and temporal information of the ball trajectory from multiple fixed cameras to
reconstruct its trajectories in 3D. Visualization of the ball trajectory in 3D will also
enrich the experience of fans watching the game. Kim et al. [25] used motion fields
to predict the play evolution in the game of soccer. Predicting regions of interest in
dynamic scenes such as soccer has many applications, including automatic camera
control, summary highlights and rich sports visualization and analysis.

Recently, some work have started to focus on automated soccer video analysis
aimed as a teaching and training tools for coaches and players [3, 50]. Some of
the work proposed to recognize soccer team strategies [14, 31, 32]. In other sports
domains, work in tennis video analysis have focused on event detection and recog-
nition (e.g. service or net playing) [17]. Another theme of research in sports video
analysis have been on team activity analysis in group sports such as handball [10] or
basketball [6, 26, 38, 55]. Lastly, many researchers working on sports video analysis
have focused on automatic highlight detection and summarization [37, 41, 51, 52].

Work in American football video analysis have focused mostly on action and
multi-agent activity recognition, specifically on recognizing and classifying the dif-
ferent types of football plays. Work in this domain can be categorized into tracking-
based and non-tracking based methods. Swears and Hoogs [46] avoids the need to
specifically track players in football plays. They present a framework tomodel multi-
agent activities in the context of football plays. The goal of their work is to determine
as early as possible the play type the offensive team is executing. The temporal inter-
actions of the players (agents) are modeled using a Non-Stationary Kernel HMM
(NSK-HMM). Their approach uses supervised learning to learn a playbook model
based on exemplars from the different play types. Siddiquie et al. [44] used a different
approach that does not make use of tracking, instead they utilized spatio-temporal
features to represent shape and motion of the players. In addition, they propose a
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newMultiple Kernel Learning (MKL) formulation to combine different features and
identify the discriminative features for play type classification. In the other tracking-
based category, Varadarajan et al. [48] addressed a similar play type classification
problem and modeled offense plays with the help of supervised topic models and
player tracking [54]. Li and Chellappa [29] used probabilistic generative model
to characterize players’ motion, while Intille and Bobick[22] used Bayesian net-
work model to model players’ activities. Stracuzzi et al. [45] developed a complete
framework that automatically learned plays from videos and then transferred the
knowledge to be applied to new views for execution of plays in a simulated environ-
ment. Lazarescu and Venkatesh [27] and Fan [12] avoided the use of player or ball
tracking and used camera motion information to classify different American football
play types. Other type of work on event detection in football includes automatically
detecting the start of an American football play in videos, an event called ‘moment of
snap’ [33]. Their framework include a novel representation of motion changes based
on quantization of motion in the video, which they denoted as Variable Threshold
Images. Kim et al. [24] detected and predict regions of interest in dynamic scenes
based on the global motion tendency and Gaussian process regression.

Little work has been done in automated offensive team formation recognition.
Given a formation image, Hess et al. [19, 20] used a mixture-of-parts pictorial struc-
ture model (MoPPS) to localize and identify football players in order to recognize
the formation in the image. Pictorial structures are graphical models representation
that encodes the formation as a set of parts with deformable connections between the
parts. The parts are described by their local appearances while the connections are
described by their location. The best formation is essentially the pictorial structure
assignment that minimizes the overall cost of the graphical model. Their work was
tested on a limited dataset, the learning method for MoPPS model was computation-
ally expensive and parameters of the model were hand-coded. In addition, their work
assumes that the formation image is given. In most cases, video coaches work with
play clips, and in essence a video coach has to go through the whole play clip to find
the formation image. Selecting the formation image can be tedious and subjective as
the differences between consecutive frames may not be noticeable to human eyes.
Our work automatically finds the formation frame in the play clip, identifies the line
of scrimmage, and labels the formation in the detected formation frame.

There has been some existing work on soccer team formations [2, 3, 49]. Visser
et al. [49] used grid-based position of the players on the field as input vector to a
neural network, while Ayanegui-Santiago [2] used a similar neural network model
that took into consideration the relations between the players. However, work on
soccer team formation tend to not be directly applicable to the American football
domain as soccer tends to be more fluid and dynamic, changing over the course of
the game, while American football games tend to be more structured and inherently
repetitive.
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13.3 Proposed Framework

Our proposed solution aims to identify the formation of the team playing offense
in a game of football. Figure13.2 shows the block diagram of our overall proposed
framework. The input to our framework is a single football video play clip. The
proposed approach consists of two major modules: pre-processing of the play video
clip and formation recognition of the offensive team in the play clip. This chapter
will mostly discuss the formation recognition module.

Given a registered play clip, the framework will first identify the frame in which
the two teams are lined up in formation. Once this frame is detected, the field line that
separates the two teams at formation time (otherwise known as the line of scrimmage)
is determined in the formation frame. We utilize the spatial distribution of the two
teams to identify the offensive team. Finally, we extract features from the offense
region to train a linear SVM to classify the different offensive formations.

13.3.1 Pre-processing

Pre-processing of a given play clip includes registering the video to the reference
field image and foreground/background identification. We use the robust registra-
tion method in [13] to map each frame of each play clip to the field image (refer to
Fig. 13.2 (Pre-Processing module)). Since camera motion (zoom, pan and tilt) and
viewpoint vary between plays and within the same play, registering frames unto the
same coordinate system (the overhead field image) is crucial for formation recogni-
tion. The registration method matches entire images or image patches. The matching
process computes an optimal homography between every pair of frames in the play

Fig. 13.2 Overall framework for automatic offensive team formation recognition in American
football play
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clip by assuming that outlier pixels are sufficiently sparse in each frame. For a given
play clip, an overhead view of the playing field is not necessarily given, which
precludes matching any frame of the clip to the reference. In this case, user interac-
tion is required to register a single frame to the reference, whereby the user selects
at least four corresponding pairs of points between the two images. Coupling this
homography with the homographies computed between consecutive frames of the
clip, we can register the entire play clip unto the reference field image. Note that user
interaction is only required once for each different field.

After registering the clip to the field, we proceed to discriminate and extract the
foreground (players) from the background (e.g. field patterns such as markers, lines,
and logos). One way this can be done is through player detection and classification
(as in [4]), where a classifier’s confidence at each region of each frame designates the
likelihood that a player exists at that region. However, this process requires training
samples for players from different teams and from different camera viewpoints. Also,
since the video frames are captured from far-field, the player resolution is usually
low, so learning appearance-based classifiers leads to substantial false positives,
especially at markers and mid-field logos. So, to avoid view dependent classification
from far-field, we resort to background subtraction after all the frames of a play
clip are registered to the same field image. This process can also be viewed as video
stitching, where the panoramic generated by the stitch is the background with the rest
constituting the foreground. Although many background subtraction methods exist
in the literature (e.g. [8, 9]), the majority assume that the camera to be static and thus
do not address the problem of camera motion. In our case, since frames are registered
in the same coordinate system, conventional background subtraction methods can be
applied; however, special care has to be taken because not all pixels are necessarily
visible in all frames. Instead, we proceed to extend the robust registration work in
[13] to allow for robust video stitching in the presence of incomplete data and sparse
error. This sparse error corresponds to pixels that do not satisfy the homography
mapping, specifically pixels belonging to players on the field. Sparsity here is a
valid assumption, since the frames are imaged in the far-field and players generally
constitute a small fraction of the pixels in a frame.

13.3.1.1 Robust Video Stitching

To mathematically formalize the stitching problem, we are given a set of F frames
of a play clip registered to the field image. The projection of the kth frame into the
reference frame is denoted as ik ∈ R

M . As such, each of the mapped frames into the
reference cover a subset of the whole panoramic view of the field. This panoramic
image contains M pixels. We denote this panoramic image (sometimes known as the
intrinsic image) in vector form as v. The goal of our analysis is to reconstruct the
panoramic v in the presence of sparse error and frame-to-frame global illumination
change,modeled byu ∈ R

F+. To solve for v, we formulate the video stitching problem
as a rank-1 matrix completion problem with sparse error. This problem is stated in
Eq. (13.1), where I ∈ R

F×M is the concatenation of all the mapped frames (refer
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Fig. 13.3 Robust video stitching for foreground/background estimation. Each frame in the play clip
is projected into the overhead field reference using the registration method in [13]. The projection of
frame j ( j th row of I) constitutes a small part of the panoramic image v and contributes sparse error
( j th row of E). The visible pixels of the panoramic in each frame of the clip are defined in a binary
matrix W. The global illumination variation in the clip is addressed by the positive coefficients u

to Fig. 13.3 for an illustration), W ∈ R
F×M is the concatenation of pixel weights

(weighted observable supports) for all the mapped images in the reference image,
and E ∈ R

F×M is the sparse error matrix. Here, we denote W ◦ I as the Hadamard
product between the two sparse matrices W and I. In the simplest case W is a
sampling matrix, where each element is a binary value indicating whether or not
the pixel is visible in that frame. More generally, W can be considered a weighting
matrix for each frame or even for each pixel of each frame in the clip.

min
u,v,E

‖E‖1,1 (13.1)

subject to: W ◦ I = W ◦
(

uvT + E
)

In fact, Eq. (13.1) can be viewed as the rank-1 version of robust PCA (RPCA [5]).
Apart from being a valid assumption for video, where frame-to-frame lighting vari-
ations are not significant, the rank-1 model for W ◦ I precludes the computational
infeasibility of RPCA on such large scale data, especially since RPCA involves
expensive SVD operations. To put this in context, F is usually on the order of
hundreds of frames, while M is in the order of 105–106 pixels. Equation (13.1) is
non-convex due to the non-convex equality constraint. In this way, the formulated
optimization problem is similar to GRASTA [18], except there is no tracking of
an orthonormal subspace basis. Ideally, without illumination change due to camera
settings, we have u = 1. Therefore, to solve Eq. (13.1), we resort to an alternating
descent approach, which alternates between fixing u and updating E and v via the
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inexact augmented Lagrangian method (IALM) and fixing v and E and updating u
using a similar method. Although in general, this strategy does not guarantee the
global solution (and a local solution at best); however, for most cases when the
image sequences are captured by the same camera over time, the local solution that
is obtained by initializing u = 1 leads to a reasonable solution. For the case of spa-
tially varying illumination change from image to image, there is a need to produce a
higher rank approximation to the error-less I, which can be approximated greedily
by recursively solving Eq. (13.1) with I replaced by I − uvT.We do this to keep the
computational complexity of the stitching process to a minimum. It is easily shown
that each IALM iteration only involves simple and highly parallelizable matrix oper-
ations (e.g. matrix subtraction and addition) and no SVD operations are needed. As
compared to RPCA, one interesting property of this solution is that it can be executed
both in batch (all frames together) and incremental (e.g. one frame at a time) modes.

In Fig. 13.4, we show an example of applying robust video stitching to a football
play clip, where the different frames are stitched together to generate the panorama
and their respective sparse errors. Clearly, the error values are high at player locations
and low in the background. As a result, the video stitching method is able to weigh
each pixel in a frame as either background or foreground, thus essentially identifying
only the moving objects or players in the play clip. This is especially useful for

Fig. 13.4 Robust video stitching for foreground/background estimation. The top row shows the
stitched panoramic v (or background) computed by solving Eq. (13.1). A frame in the play clip
and its corresponding error (or foreground) are shown in the bottom row. Colder colors designate
smaller error values
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removing large mid-field logos and field markers, which tend to be misclassified
as moving players. It is worthwhile to note that the background is separated from
the foreground even though the foreground is static for many frames, especially at
the beginning of the play. As such, the output of the registration/stitching module
is subsequently used in the formation recognition module to weigh pixels in the
registered field, as described in the next sub-section.

13.3.2 Formation Frame Detection

The first task in the formation recognition module is to identify the frame in which
the teams position themselves in a predefined formation before the start of play.
Intuitively, the formation frame is the frame with the least player motion. At this
frame, the frame-to-frame pixel displacement in the formation frame has the least
motion magnitude among all other frames in the play. Given that the video frames
are registered to a reference field image, the frame with the least motion magnitude is
easily identified by calculating the frame-to-frame mean-squared error (MSE) for all
pixels across the entire video sequence followed by a 5 tap median filter. We identify
the formation frame as the last frame after which the MSE values are substantial and
monotonically increasing. This is done to ensure that the motion of players in the
frames is due to all players moving and not due to man-in-motion events (usually
known as ‘audible’ in football) that may occur before the actual start of the play.
Man-in-motion is defined as the eventwhere a player on offense ismoving backwards
or parallel to the line of scrimmage right before the snap. In American football, only
one offensive player can be in motion at any one time, the player cannot move
toward the line of scrimmage at the snap, and may not be a linesmen (player who
is on the line of scrimmage). To formalize, we build an SVM classifier on the MSE
differences between frames of a play and learn its parameters using a small set of
formation frames labelled by a sports expert. In Fig. 13.5 (top), we plot MSE values
of all the frames in a given play clip. The index of the formation frame is marked
by the red line. Figure13.5 (bottom) shows the detected formation frame in the clip
and its projection on the field respectively. In what follows, the detected formation
frame is used to detect the line of scrimmage and recognize the play formation of
the offensive team.

13.3.3 Line of Scrimmage Detection

Using our pre-processing robust video stitching technique (Sect. 13.3.1), we reduce
the effect of background pixels including the logos on the field. As a result, player
(foreground) density is highest at the line of scrimmage relative to any other area
in the projected formation frame. We exploit this information to identify the line of
scrimmage. Colour can be seen as a feature for identifying players on offense, since
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Fig. 13.5 Formation frame detection. MSE values of all frames in a sample play clip are plotted in
the top row. The index of the formation frame is designated in red. The detected formation frame
and its projection onto a reference field image are shown in the bottom row

the two teams wear opposing colored jerseys. A possible way to identify the team
on offense would be to require the user to label at least one offensive player per play
clip. However, most standard techniques for identifying players using colour models
such as hue and saturation would fail to identify the players alone, owing to the fact
that hue and saturation values also exist on the field leading to a number of false
positives. Over and above that, opposing teams wear complementary colours such
as a black jersey with white shorts and white jersey with black shorts making even
semi-supervised methods ineffective in identifying players on offense. In this paper,
we take a color agnostic approach and exploit the fact that the line of scrimmage is
the region of the field in the formation frame that has the highest player density. In
our case, this means that the line of scrimmage is the region where the image gradient
density of the foreground is highest. Figure13.6 shows the gradient intensity of the
projected formation frame, weighted by the foreground (error) values obtained in the
pre-processing step. Note that we only use the gradient information in the y-(vertical)
direction as this would avoid including the gradient information from vertical lines
such as that of yard lines. A sliding window approach is used to find the region with
the highest density in the gradient image.
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Fig. 13.6 Example of a formation frame (left) and its corresponding weighted gradient information
(right)

After each play, the ball is placed somewhere in the middle of the width of the
field closest to where the previous play ended. As such, to account for the variation
in the offensive team position at the beginning of a play, we use a sliding window.
The window’s size was set to cover the offensive team and changes according to
the size of the field image. For our experiments on the standard definition dataset,
we set the window size to be 20 × 160 pixels respectively for field size image of
800 × 400. The window slides across the entire length of the projected formation
frame region, not across the whole field. We calculate the sum of gradient intensities
in each window in Eq. (13.2) and determine the line of scrimmage in Eq. (13.3).
Figure13.7 (left) shows an example of the sliding window, while Fig. 13.7 (right)
shows the detected line of scrimmage marked in red.

Dens(y) =
Mw∑

i=1

Nw∑

j=1

∣∣∣∣
∂ Iw

∂x

∣∣∣∣ (13.2)

line-of-scrimmage = argmaxy Dens(y) (13.3)

Fig. 13.7 A sliding window (shown in red on the left) is used to calculate the density of gradient
intensity. The corresponding detected line of scrimmage is marked in red on the right
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13.3.4 Offensive Team Identification

Football presents many technical hurdles for analysis. This is especially due to
frequent and substantial player occlusion. However, football is highly repetitive and
structured in nature. We exploit this repetition to distinguish offense from defense.
The offensive team tends to be compactly positioned at the line of the scrimmage
when in formation. There are at least five offensive players near the ball (‘offensive
line’) in close proximity in front of the quarterback. The defense on the other hand, is
usually more spread out, especially along the line of scrimmage. Therefore, the team
on offense is determined as the side of the line of scrimmage (left or right) where
the spatial distribution of players (foreground) on that side has minimum variance.
The foreground distribution on either side of the line of scrimmage is estimated by
a spatial pmf as shown in Eq. (13.4). Here, we model the probability that a player
exists at pixel (x, y) as a function of the gradient intensity and foreground (error)
value at (x, y).

p(x, y|d) = ∂ I (x, y)/∂x∑
(x,y)∈d ∂ I (x, y)/∂x

; [d ∈ {left, right}] (13.4)

The side d with the minimum variance is determined to be offense.

o = argmin
d∈{left,right}

σ (p(x, y|d)) (13.5)

13.3.5 Formation Classification

At this stage, the formation frame, line of scrimmage, and the offensive team of a
given play clip have been extracted. We proceed to learn a discriminative model to
classify a play clip as one of five major formation types for offense. These formation
types (classes) and the ground truth labeling of a play clip dataset are obtained from
a football expert. We implemented and tested two classification schemes to compare
and obtain the best classification performance. Results of the different classification
schemes are presented in the next section.

In the first classification scheme,we distinguish between the five formation classes
by learning a multi-class linear SVM classifier on a training subset of the play clip
dataset. The feature used to learn the SVM is the spatial distribution of gradient inten-
sity for the offensive side of the line of scrimmage. Since the location of an offensive
team can vary on the field, we make the feature translation invariant by centering the
spatial distribution at the field pixel (on the offensive side) with maximum gradient
intensity. Note that we reflect the formation frame about the line of scrimmage to
ensure that the offensive team is always on the left side of the line of scrimmage. The
SVM classifier parameters are learned using a popular and publicly available SVM
solver.
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Due to the inherent hierarchical properties of the formation labels, in our second
classification scheme we learn a structured SVM classifier. While SVM classifier
supports binary, multi-class classification, and regression, structured SVM allows
structured output labels such as trees. To learn the structured SVMmodel, we extract
multi-scale Histogram Of Oriented Gradient(HOG) [7] applied on the error maps
obtained the Robust Video Stitching method (Sect. 13.3.1). We begin by extracting
the HOG of the whole error map and then subdivide the map into sub-maps and
extract HOG descriptor for each of the submaps. The final feature vector is formed
by concatenating the HOG across all scales and divisions. To reduce dimensionality
complexities, we apply Principal Component Analysis (PCA) to the feature vector
before learning our structural SVM model.

13.4 Experimental Results

In this section, we present experimental results that validate the effectiveness of our
formation recognition framework.We tested our approach on three separate datasets.
We provide both quantitative and qualitative results on these datasets.

13.4.1 Datasets

We evaluate the performance of our detection and classification framework by
applying it to real-world football videos. There is no publicly available dataset that
accurately represents video captured and used by American Football teams. Typi-
cally, a football coachwould segment the video of awhole game into single play clips,
identify their respective formation frames, and then classify the formation type. To
evaluate our framework, we test it on three separate datasets, two of which we com-
piled ourselves and plan to make publicly accessible. To the best of our knowledge,
our dataset is the largest dataset for American football plays.

The two datasets we compiled are denoted SD (standard definition) dataset
and HD (high definition) dataset. They comprise 274 and 541 distinct offensive
plays respectively. In both cases, the football game videos were collected from sev-
eral college and show the sideline view of the game. The videos were recorded by
the teams. The videos were manually segmented such that each clip shows a sin-
gle play. In dataset SD, play clips are standard resolution 640 × 480. In dataset
HD, they are high-definition 1,440 × 1,080 resolution. All play clips were regis-
tered to the football field reference image using the video registration and stitching
method discussed in Sect. 13.3.1. The groundtruth data for the formation frame,
line of scrimmage, and formation label were annotated by a sports domain expert
with more than 6years of experience in studying and analyzing football games. The
third dataset, denoted OSU dataset, was obtained from the Oregon State University



13 Recognizing Team Formation in American Football 285

Table 13.1 Hierarchy of the
formation classes in the
dataset

Top level label Second level label # instances

Ace Ace.3WR 30

IForm IForm.2WR 40

IForm.3WR 19

Shotgun Shotgun.2WR.1RB 21

Shotgun.3WR.1RB 110

Shotgun.3WR.2RB 85

Shotgun.4WR.1RB 106

Shotgun.5WR 26

Digital Scout Project [20]. This dataset consists of 51 formation frame images and
their corresponding homography matrices for projection to the reference field image.

There exist more than a hundred known formation types (class labels in our case)
in the sport of football. However, due to the limited amount of data available, we cate-
gorize the plays in each dataset into two different levels of categorization. Table13.1
shows the hierarchy of the formation classes. At the coarse level of classification, the
plays were classified into three different categories: Ace, IForm, or ShotGun. These
top labels in the taxonomy were determined by the location of the quarterback (QB)
and running backs (RB). Ace formation means there is one running back directly
behind the quarterback, who is very close to the ball. IForm is similar to Ace, except
there are two running backs directly behind the quarterback instead of one. In Shot-
gun formation, the quarterback is several yards away from the ball at the start of
the play. At the second level, the classes were determined by the number of running
backs (RB) and wide receivers (WR). The Ace formation consists of one subclass:
Ace.3WR.The IForm class is subdivided into IForm.2WRand IForm.3WR,while the
ShotGun formation consists of five subclasses: Shotgun.2WR, Shotgun.3WR.1RB,
Shotgun.3WR.2RB, Shotgun.4WR.1RB, and Shotgun.5WR. The small inter-class
variability in the datasets makes formation classification a challenging problem.
Figure13.8 shows examples of the different formations.

13.4.2 Quantitative Results

We tested and evaluated each of the modules in our framework separately.

13.4.2.1 Formation Frame Detection

To evaluate the performance of our formation frame detection method described
in Sect. 13.3.2, a formation frame is marked as accurately labelled if the detected
formation frame is within 1 s (30 frames) of the groundtruth formation frame index.
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Fig. 13.8 Examples of 5 offensive team formation classes (red bounding box). It can be seen that
the inter-class variation between the different formations is very small, making the classification
problem a challenging task

This evaluation criterion was deemed acceptable by the sports expert. In this setup,
the formation frame was accurately detected 94.53% of the time on the SD dataset
using 274 play clips. We could not test this module on the OSU dataset as the dataset
consists only of frame images and not play video clips.

13.4.2.2 Line of Scrimmage Detection

After identifying the formation frame, we use the foreground (error) values for
each pixel in the projected formation frame (computed in our pre-processing stage
described in Sect. 13.3.1) as well as the gradient intensity to automatically detect
the line of scrimmage, as described in Sect. 13.3.3. In fact, weighting the pixels of
the formation frame with the foreground values significantly reduces false positive
detection arising from regions of high gradient density such as field logos or markers.

To test our automatic line of scrimmage detection method, we use the groundtruth
formation frame in the datasets. For the SD dataset, we achieve 97.5% accuracy in
detecting the line of scrimmage within 10 pixels of its actual location on the field.
This translates to within a yard accuracy. The detection results improve significantly
on the HD dataset, where we achieve a 97.9% detection accuracy within 3 pix-
els on an HD reference field. This translates to a 6 in. accuracy on the physical
field. As mentioned earlier, the OSU dataset only contains formation images and
no play clips. Hence, we could not directly apply the robust registration/stitching
method in Sect. 13.3.1 to obtain the per-pixel foreground values in the formation
frame. Instead, we apply the video stitching method on the given formation frames
in the dataset to generate an overhead panoramic stitching of the field. The resulting
panoramic imageof theOSUfield is shown inFig. 13.4 (top). This image is subtracted
from each of the projected formation frames to produce the foreground error values



13 Recognizing Team Formation in American Football 287

(i.e. background subtraction). We obtained a detection accuracy of 90.2% on the
OSU dataset.

13.4.2.3 Formation Classification

To validate our formation classification method (described in Sects. 13.3.4 and
13.3.5), we test on the union of the three datasets. Special care has to be taken
because of the imbalance in the combined dataset. We adopt the oversampling par-
adigm to alleviate this imbalance. The hierarchy of the classes and the number of
instances in each class are reported in Table13.1.

All classification model training and testing are performed using fivefold cross
validation. In our first classification scheme, we trained a multi-class linear SVM
classifier. We perform two levels of classification. For top level classification, we
train the classifier to classify formations into one of three super classes: Ace, IForm,
and ShotGun. The classification rate for the top level classification is 67.1%. At the
next level of classification, we train two classifiers, one each for labeling the IForm
and ShotGun formations into their subclass labels respectively. The classification rate
for labeling IForm formations into two subclasses, IForm.2WR and IForm.3WR, is
65.01%, while the classification rate for classifying ShotGun formations into the
5 different subclasses is 36.43%. Figure13.9 shows the confusion matrix for clas-
sification of the ShotGun formations into the subclasses. The classification rate is
lower compared to the classification of the IForm formation due to the fact that
the differences between the subclasses are very subtle with the distinction being
just the placement of one player in the formation. We also compared the perfor-
mance of the hierarchical classifier to a simple multi-class classifier. When using a
flat multi-class classifier, we obtained an overall classification accuracy of 31.1%.
The confusion matrix is shown in Fig. 13.10. Again the confusion mainly occurs
within the ShotGun formation as the difference between the classes is very subtle.

Fig. 13.9 Confusion matrix for classification of ShotGun formations into five subclasses
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Fig. 13.10 Confusion matrix for simple multi-class classification using all 8 formation classes

Fig. 13.11 Confusion matrix for the overall classification using all 8 formation classes and struc-
tured SVM. The results show an improvement over the linear SVM classification performance

Using our structured SVM classifier, we saw an improvement of at least 3% in both
levels of classification. When performing top level classification where we trained
the structured SVM to classify the formations into one of the three upper classes,
the structured SVM classifier achieved accuracy of 71%. The overall classification
accuracy for all 8 classes improved to 39%. Figure13.12 shows the confusion matrix
for the top level classification using structured SVM, and Fig. 13.11 shows the con-
fusion matrix for the overall classification scheme using all 8 formation classes with
structured SVM.The classification performancemay further improve aswe addmore
training data to ensure a more balanced dataset.
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Fig. 13.12 Confusion
matrix for the top-level
classification using the 3 top
formation classes and
structured SVM. The results
show an improvement over
the linear SVM classification
performance

13.5 Conclusion

In this chapter, we propose a framework for automatic recognition of offensive team
formation in American football plays. We show promising results that our method
is able to automatically label formations on three different datasets. The framework
that we have developed serves as a building block that is part of our tool prototype for
automatic analysis of American football games. Future work utilizing this formation
classification framework include automatic personnel identification or identifying all
players that are on the field, automatic play classification, and strategical playbook
inference of a team.
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Chapter 14
Real-Time Event Detection
in Field Sport Videos

Rafal Kapela, Kevin McGuinness, Aleksandra Swietlicka
and Noel E. O’Connor

Abstract This chapter describes a real-time system for event detection in sports
broadcasts. The approach presented is applicable to a wide range of field sports.
Using two independent event detection approaches that work simultaneously, the
system is capable of accurately detecting scores, near misses, and other exciting
parts of a game that do not result in a score. The results obtained across a diverse
dataset of different field sports are promising, demonstrating over 90% accuracy for
a feature-based event detector and 100% accuracy for a scoreboard-based detector
detecting only scores.

14.1 Event Detection in Sports

Sport has always been one of the most popular of television broadcasts [1, 2].
Sports broadcast viewing figures are consistently high, particularly for events like
the Olympics and national or regional finals of nationally popular games. Given
such wide appeal and popularity, there has been significant interest in algorithms
for automatic event detection in sports broadcasts [3]. This is motivated by potential
applications such as automatic highlight generation for summarization for emerg-
ing second screen applications, indexing for search, and retrieval in large archives,
mobile content delivery either offline or as an added value in-stadiumuser experience.
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Manyof these applications either require orwould benefit significantly from real-time
event detection, however, this aspect has been largely overlooked to date in the rel-
evant literature.

14.1.1 Sport Event Detection Approaches

A range of event detection algorithms have been presented in recent years, taking
into account the broad diversity of different sports. It has been shown in [4] that
about 97% of interesting moments during a game are followed by a close-up shot
presenting a player who scored or who caused some interesting action. In addition,
features like end of a pitch, audio activity, or crowd shot detection have been shown
to be very useful in event detection [4]. The system present in [4] was proven to work
with different sports such as soccer, rugby, field hockey, hurling, and Gaelic football.
A Support Vector Machine (SVM) was used as a event classifier. However, the
algorithm was too computationally expensive for real-time implementation, mainly
due to the use of the Hough transform.

Avery similar approachwas presented in [5]. Todetect an event the authors declare
so-called “plays” where mainly a color histogram is calculated and some heuristics
are applied about the regions of histogram detection. An event is categorized using
HiddenMarkovModels (HMM) based on the sequence of camera shots. In this work
events were detected in baseball, American football, and Japanese sumo wrestling.
Another example of this kind of approachwas presented in [6]where, based on simple
visual features like pitch orientation and close-up detection, the authors achieved
good accuracy. However, computation time is not evaluated in the paper and there is
a large drop in accuracy when the SVM is trained on the samples that do not belong
to the same game.

It is worth noting that the three approaches described above [4–6] are capable
of extracting not only goals but also other exciting moments like penalties and near
misses. In [7], very simple features like pixel/histogram change ratio between two
consecutive frames, grass ratios, and background mean and variation in addition
to time and frequency domain audio features were used to detect events in soccer
games. The authors report high-accuracy using simple features, but again do not
discuss computation time performance.

Although the acceptance of the MPEG-7 standard in the community has been
rather low, there are approaches based onMPEG-7 descriptors. In [8] a goal detection
system based only on MPEG-7 audio descriptors was proposed. Some implementa-
tions of the proposed feature extraction process are very fast and make the system
applicable in real-time scenarios. However, the system is designed for soccer games
alone, does not detect anything other than goals, and was tested on very few test
samples (only 8 goal scenarios).

One event detection technique extensively investigated for broadcast videos is
replay detection, since replays already contain interesting moments selected by a
director. Some examples of these techniques for either slow or normal motion replay



14 Real-Time Event Detection in Field Sport Videos 295

detections are presented in [9–11]. Although all of these feature very good precision
and recall (from about 60 to 100%), event detection based on replay extraction
techniques are not really appropriate for real-time applications (i.e., they occur after
the real event and a specific one may occur several times during a game so this
approach requires building some sort of indexing system to store andmatch following
scenes).

Finally, in [12, 13], very different approaches are taken. The former utilizes the
information produced by people during a game and tweeted by the popular Twitter
website to detect events in different games (soccer and rugby were tested). The latter
approach usesweb-casted text for the same purpose. These are, at first sight, universal
approaches, however they can suffer from quite large false positive detection rates,
need constant connection to the Internet and introduce some ambiguity in the form
of delay between detected and real events making the detection of event boundaries
more difficult.

14.1.2 Field Sports as a Specific Genre of Team Sports

In general, from a content analysis point of view, sport broadcasts can be classified
into two main categories [3]: a single/dominant camera or multipoint/view camera
capture broadcasts. In sports like tennis or badminton, there is typically one camera
view that dominates the broadcast (e.g., the full court in tennis) and contains almost
all the semantically meaningful elements required to analyze the game. Yet in sports
like football, hurling, soccer, baseball, hockey, basketball, there is no such well-
defined camera view that dominates the course of play. This is mainly due to the fact
that the playing field is too large to present all the necessary details with a single
camera broadcast.

Most existing event detection algorithms focus on a particular type of sport (e.g.,
tennis, soccer, cricket) and are not robust for other types of sports, thereby limiting
their applicability. This reflects the fact that different sports present different charac-
teristics either in the rules for that sport or the manner in which they are captured for
broadcast. So far there have been very few attempts to make event detection more
general so that the same system/algorithm could be used for more than just a single
sport. Although this may seem to be complex and challenging it could be very conve-
nient from the perspective of a sports broadcaster, avoiding the need for development
and deployment of multiple different algorithms and systems. For this reason, in this
chapter we focus on a generic subset of all sports that can be designated as “field
sports”, a term originally introduced in [4] to refer to any sport played on a grass
pitch (soccer, rugby, field hockey, etc.) featuring two teams competing for territorial
advantage. In this work, however, we extend this definition to include other sports
that exhibit similar characteristics but that are not necessarily played on a grass pitch.
Specifically, we extend the definition of field sports to include sports played in a play-
ing arena that features some kind of scoring posts (e.g., goal post in soccer or basket
in basketball), whereby the overall objective is territorial advancement with a view to
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obtaining a score. Since most field sports have similar characteristics, broadcasters
use the same scene compilation techniques to present the action on the field to the
viewer. Thus, once a robust and accurate algorithm is developed, it can be applied to
different kinds of field sports without any modification.

14.2 The Architecture of the Event Detection System

The top-view architecture of the system is presented in Fig. 14.1. After video decod-
ing the stream analysis is split into two independent threads. The first, termed the
scene thread, works on extracted video frames and audio packets. The second, the
scoreboard thread needs only video frames. The common data is stored in a shared
buffer in order to simplify the processing flow. The two threads are described in
more detail in the following sections. All their features are presented in the bottom-
up approach—we start with a description of the low-level modules that gather the
data extracted by feature detectors. All these data are then sent to the mid-level mod-
ules where, depending on the processing thread, it is either used to detect the text
(scoreboard) region or predict what kind of scene is presented to the viewer. The top
module gathers the events from both threads, summarizing the description of the sys-
tem. The inputs (i.e., recognized score change or specific—event related sequence of
shots) to this module are treated separately which means that there are two kinds of
event markers at the system output. In general the primary design constraint was the
latency introduced by the modules working at all levels throughout the system. This
is reflected in the following sections, where time efficiency is the main parameter
investigated in each module. The two threads are described in detail below.

Fig. 14.1 The block schematic of the system—the two parallel threads are responsible for the
analysis of the specific aspects of the video stream in order to determine if the particular part of the
video is interesting from the user’s point of view
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14.3 Feature-Based Event Detection System

The scene analysis thread is responsible for detection of events that can subsequently
be observed on the scoreboard (i.e., goals) but also situations like close-misses or
any other actions that can be classified as interesting from the viewer’s point of view.
It belongs to the class of the algorithms that analyze the sequence of shots presented.
Earlier works on event detection state that 97% of the interesting moments are
followed by close-up shots (i.e., shots that present a player) [4]. If we add to this the
information about where the action has taken place (e.g., end of pitch/court—close
to the goal-post/basket) before the close-up shot occurred, we can more precisely
distinguish between usual and unusual events.

The scene analysis thread utilizes extracted video frames and audio packets in
order to detect the events. Most of the information needed for this task is stored in
visual data. For this reason we have chosen 14 different classes that represent most
of the situations presented on the field/court during a match. In order to evaluate the
generalization properties of the algorithm some of the classes were split into three
subclasses: shot with simple background (a dominant color easily distinguishable),
shot with complex background (no dominant color in the background) and a mixture
of the two—Table14.1.

However, we have also included simple audio analysis for better robustness of the
algorithm. The reason for this was that we have observed how usually the interesting
moment in the game is followed with increased audio activity intervals (e.g., round
of applause or excitation of the commentator). From a real-time perspective audio
track analysis does not introduce significant overhead in processing time since the
decoder does audio extraction in parallel to the analysis of the video stream and
moreover, we are only calculating a temporal energy of the audio signal which is a
relatively simple operation.

Table 14.1 The abbreviations of descriptors used in the system

Abbreviation Descriptor focus

CLHS Close up shot head with simple background

CLHC Close up shot head complex background

CLH Close up shot head mixture background

CLWUS Close up shot waist up simple background

CLWUC Close up shot waist up complex background

CLWU Close up shot waist up mixture background

SPS Short distance shot presenting player(s) simple background

SPC Short distance shot presenting player(s) complex background

SP Short distance shot presenting player(s) mixture background

SS Short distance shot presenting spectators

LC Long distance shot presenting center of the field

LR Long distance shot presenting right side of the field

LL Long distance shot presenting left side of the field

LS Long distance shot presenting spectators
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14.3.1 Feature Detection

As mentioned in the introduction, to date there have been many features proposed
to detect different scenes in a game. However, the majority of these approaches are
either not suitable for real-time analysis of the game or, taking into account that we
deal with not only one type of the sport, too simple to distinguish robustly between
the type of the scenes. For these reasons we had to propose our own scene detection
techniques [14] or simplify the existing ones to meet the real-time requirement.

In [14] we compared state-of-the-art image description techniques and proposed
a dataset of images especially chosen for this task. The mentioned dataset meets two
very important requirements in order to provide a tool for unique categorization of
scene detection algorithms:

• it contains variety of field sports (specifically, soccer, rugby, Gaelic football, hurl-
ing, basketball, and cricket);

• provides a representative variety of images that can be assigned to particular classes
(i.e., 14 types of scenes ranging from head close-up shots to shots with long
perceptive distance to the players).

Our work in [14] shows that local feature detection algorithms like Scale Invari-
ant Feature Transform (SIFT) [15] and Histogram of Oriented Gradients (HoG) [16]
algorithms, that are characterizedwith the highest accuracy are too slow to be part of a
system that has towork under real-time constraints.More recent local feature descrip-
tors have been proposed, similar to SIFT and Speeded-Up Robust Features (SURF),
which are much faster to compute as they produce a binary output (e.g., to produce
the response, the algorithm only has to compare a fixed number of region intensi-
ties around the key-point). These include: Binary Robust Independent Elementary
Features (BRIEF) [17], Fast Retina Keypoint (FREAK) [18], Binary Robust Invari-
ant Scalable Keypoints (BRISK) [19] and An Efficient Dense Descriptor Applied to
Wide Baseline Stereo (DAISY) [20]. Depending on the descriptor length and local
region filtering they could be from several up to several tens of times faster than
the SURF local descriptor [21, 22]. The fastest is BRIEF (up to sixty times faster
than SURF) ensuring at the same time an acceptable recognition rate [22]. Note, that
a scene description algorithm for sport videos does not need to provide scale and
rotation invariance for two reasons:

• the broadcasted videos always present non-rotated scenes;
• we want to distinguish between long and close-up shots of the players and the
field/court, thus the scale invariance has to be restrained to some, albeit relatively
small, range.

As the BRIEF descriptor satisfies the above considerations and is computationally
efficient, it was chosen for this application scenario.
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14.3.2 Feature Aggregation

Once a set of binary local descriptors have been extracted for a frame, a method is
needed to aggregate these into a single fixed-length descriptor that can be used for
classification. The most widely known technique is the bag of visual words method,
in which a histogram of local descriptors is created from a pre-trained codebook
where each bin represents a cluster of similar local descriptors. This very simple
and effective algorithm is also suitable for binary data and outperforms, in terms
of computational complexity, other state-of-the-art techniques, for example, Fisher
kernels [23] or VLAD [24].

Bag of visual word aggregation is usually implemented using k-means to generate
the code book.However, clustering binary datawith k-means algorithm is not straight
forward as descriptors should be compared using Hamming distances rather than
Euclidean, and substituting Euclidean distances may lead to unexpected results [25].
We therefore took a different approach for cluster generation. The algorithm is as
follows:

1. Calculate local descriptors for all images from the training set.
2. For each of these, find N nearest neighbors based on Hamming distance (based

on a number of experiments we noticed that N should be equal to 2–5% of the
number of descriptors, in our case N = 150). The sum of all the distances to a
particular node is an estimate of a local density around it.

3. Sort the list by the local density estimate.
4. Choose a vector from this list, either from the top, bottom, or randomly, and store

it as a cluster.
5. Remove the vector that produced the cluster and all its neighbors.
6. Repeat points 4–5 until all clusters are selected.

Intuitively therewould be tendency to pick only clusters from the top, but experiments
show that also selecting random vectors and vectors from the bottom has a positive
effect on accuracy. Accuracy is improved because the candidates with less neighbors
simply represent the regions of lower densities. Experimental results are presented
in the Sect. 14.5.

We applied a moving window approach where the average of the SVM responses
over a fixed time period is calculated when detecting the 14 classes defined in
Sect. 14.3. Then these 14 values and the audio intensity descriptor are sent to the
event recognition module.

14.3.3 Event Recognition

Figure14.2 shows an example of the behavior of the description vectors (outputs
from scene recognition SVMs). For a close-up shot one can observe that all the
descriptors prefixed with CL (close-up) are dominant, whereas in a long-distance
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Fig. 14.2 Example of the behavior of visual descriptors (averaged responses from SVMs)
a a close-up shot; b long-distance shot

shots the LL (long-left) descriptor is dominant with the additional feedback that
some players/spectators detected could be at a short perceived distance to the camera.
Note, that the difference between short and long type of shots is quite fuzzy (e.g., in
basketball long type of shot presents players at a scale analogous to short distance
shots in soccer, Gaelic football, or hurling). However, this does not negatively impact
on effective event recognition.

Intuitively, an initial approach would be to train a deterministic classifier like an
SVM to take all the responses of scene classifiers and detect if the shot presented
belongs to an event class. Our experiments, however, show that we also need an
additional input about previous SVMs responses and also responses from the event
classifier.

14.3.3.1 State Machine

A state machine can be one of the simplest ways of singling out all of the important
scenes from the given game. Tha main difficulty in this case is however the optimal
choice of the number of states. After analysis of the correlation between the values
of the descriptors and the ground-truth probes we have chosen four states:

A—an interesting event has been detected, e.g. there was a goal;
B—an interesting event just happened;
C—an idle state, when all the descriptors have values less than 0.5;
D—all other situations.

We assumed that the most interesting moments of the game take place at the end
of the arena, so state A occurs when the descriptor of the end of the field or court
is higher than 0.8, plus very often after an event, there is a close-up shot. This is
reflected by keeping track of an upward trend of the set of close-up descriptors.
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After analyzing the amount of transitions between the proposed states it is obvious
that the biggest probability of transition is between the same states. This unfortunately
leads to insufficient accuracy of around 46%. This is caused by the fact that the state
machine usually stays in the same state, and breaking the loop is almost impossible.
This is unacceptable since we can of course reduce the number of states to two
and propose a random classifier with an accuracy better than 46%. As a conclusion
of this analysis, these results forced us to look for other solutions and to consider
dependency between descriptors at a higher level than just their values.

14.3.3.2 Decision Tree

Because of the real-time requirement on the system, using a decision tree for event
detection was a natural choice to investigate. Also, going deeper into the analysis of
values of each descriptor we decided to think about constructing a decision tree that
would give the information about the significance of a single frame. We started with
an analysis of the end-of-pitch/court descriptor since most of the events begin with
this kind of scene and then they are followed with a close-up shot. Note, that from
an event detection point of view we do not need to have the information about left or
right side of a pitch/court. For this reason we shortened the number of elements in the
description vector to nine values. The new one encompasses the following features:
LLR equal to maximum of LL and LR; LC, LS, SP, SS, CLH, CLHS, CLHC, audio
activity (AA).

Thus, for the end-of-pitch/court descriptor we can have two situations: the video
sequence comprises or does not comprise an event. Table14.2 shows both situations,
where the first nine values refer to the audiovisual descriptors and the last one gives
the informationwhether this frame belongs to an event or not. As can be seen, the first
situation ensures that this scene is taking place at the end of the court but the value
notifying about an event is false, which means that nothing interesting has happened.
In the second case we have the opposite situation—a scene is not happening at the
end of the arena but the frame belongs to an event. Accordingly, we can easily find
two lines, where values of descriptors are exactly the same but can be distinguished
by the event flag. This was a reason to create two separate decision trees. The first
one assumes nine descriptors as values that classify each frame independently and
the second one eighteen descriptors, including also the previous time instant.

Constructing the tree manually would result in a tree that has 11(N − 1) · 101
nodes, where N stands for the length of the input vector. We would start with the first
descriptor and consider all possible eleven values (i.e., the average of ten previous

Table 14.2 The disambiguation between scene descriptors

LLR LC LS SP SS CLH CLHS CLHC AA EVENT

1.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 1.0 False

0.0 0.0 0.9 0.2 0.9 0.0 0.0 0.4 0.4 True
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SVM 0/1 responses), each going to the next node representing the next descriptor
which would also has eleven possible branches, etc. Then the last tree level would
have 101 branches since this is the number of all possible values for audio descriptor.
To avoid this and create an efficient decision tree we used the algorithm described
in [26], based on the Gini diversity index, which measures the node impurity and is
given with a formula:

g (n) = 1 −
∑

i

n2
i

N 2 (14.1)

where n = (n1, n2, . . . , nk) is a vector of non-negative real numbers representing
the number of examples of each class and

N =
∑

i

ni (14.2)

represents the total number of examples at a given node. A node with just one class
(a pure node) has the Gini index zero, otherwise the Gini index is positive. The
algorithm is also available in MATLAB [26].

Depending on the amount of data and on the number of descriptors (9 or 19) the
constructed tree has 2,000–2,500 nodes. In the case, with 9 descriptors we reached
94% accuracy and with 18–99% (see the Sect. 14.5 for details).

14.3.3.3 Artificial Neural Networks

An artificial neural network, thanks to its auto-associative memory capabilities, also
seems to be an appropriate solution for the detection of interesting events since they
can track regularities that occur in the sequences of values of descriptors, which are
practically impossible to dowith the naked eye. Optimizing this kind of classification
method, since many local minima exist, is a non-convex problem but thanks to
choosing a fixed but random starting point it gives good results and can be treated as
a deterministic method.

We naturally considered at first a feedforward structure, where we simply used
values of nine descriptors on the input and the network was trained to recognize if
a given frame belongs to the event segment of a video. The structure of this neural
network assumed 18 neurons and linear activation function in the hidden layer and
a sigmoid activation function in the output layer. We used the Levenberg-Marquardt
algorithm [27, 28] for training and the gradient of error function reached a minima
after 10 iterations. Fast convergence indicates that the neural network was able to
learn the classification task. We can assume this because fast convergence implies
that the network was able to recognize quickly all the learning data not causing a
divergence in the validation error at the same time. This is also a clue based on which
we can say that the positive and negative training datasets are not overlapping each
other. The accuracy reached around 65% on average for all sports. More details on
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how we split the dataset to train and test subsets is given in Sect. 14.5. We therefore
experimented with a more sophisticated recursive network structure.

The natural choice was the Elman neural network [29], which assumes the recur-
sion from a chosen number of neurons in the hidden layer. In this case we decided
to consider two structures of the neural network:

• based only on nine values of descriptors at a certain moment of time;
• based on nine values of descriptors at a certain moment of time, values of descrip-
tors at a moment preceding the considered moment of time and the information
about whether the previous moment/frame was considered to be an event or not.

In the hidden layer we used 20 neurons where ten had a feedback to the input layer.
Linear and sigmoid activation functions were used in hidden and output layer respec-
tively. The Levenberg-Marquardt algorithm was used also for training, which was
able to train the whole network in only 30 iterations. After a number of simulations,
the architecture with 19 inputs appeared to be the most effective. The accuracy of
this network was above 90% for all sports in our dataset.

14.4 Scoreboard-Based Event Detection

The detection of an event in sport video broadcasts may seem to be an easy task.
Very often there is a scoreboard in one of the corners on the screen to notify the
viewers that an event occurred. So naturally a first approach would be to analyze this
region of the screen to detect any interesting moments in a game. However, this is
not an easy task from a computer vision point of view, taking into account the variety
of shapes, fonts, and behaviors of these regions. For sports with relatively simple
scoring systems, like soccer, Gaelic football, hurling, and rugby, the scoreboards
tend to share some characteristics. There is usually information about the teams,
points that they have scored, and the remaining/elapsed time. However, even in this
case there is significant diversity in the possible layouts. Figure14.3 shows some
examples of the scoreboards in our dataset.

Fig. 14.3 Sample scoreboards: a top-bottom scoreboard with highlighted score region; b Gaelic
football scoreboard with big/small points; c low bitrate soccer scoreboard; d Olympic basketball
scoreboard; e side-by-side scoreboard with highlighted score regions; f the same scoreboard during
a transition effect
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These are just representatives of the vast range of scoreboards possible. Examples
Fig. 14.3a shows the top-bottom layout of the scoreboard. Note, that the gap between
the two scores and digits in the same score on the scoreboard Fig. 14.3a is very small,
which significantly affects the digit segmentation/extraction process. Since the score
region can be highlighted, the process that finds the digits needs to be invariant to
different backgrounds and complex objects like country flags in the region where text
is detected Fig. 14.3d. Scoreboard Fig. 14.3b represents a Gaelic football scoreboard
where the score for both teams can be further split into big and small points. Another
issue in text detection and recognition in the images is the quality of the image itself.
Example Fig. 14.3c represents a scoreboard region extracted from the video of very
low bitrate or resolution. Note, that even if the text region is correctly recognized the
score itself is almost invisible, or at least very difficult to extract. These aspects that
make the extraction of the score difficult are exacerbated by the fact that almost every
broadcaster has implemented a different style of the scoreboard behavior that can be
changed at short notice. There are two major features that can vary from broadcaster
to broadcaster:

• the amount of time the scoreboard is visible on the screen (even when the score is
recognized, due to the fact that in replays usually this information is invisible, it
is not possible to simply assume that it will be there every time we need it);

• transition effects cause changes such as color change or some additional graphical
effects Fig. 14.3e, f.

Clearly, the implementation of the scoreboard-based event detection system is not a
straightforward task.

14.4.1 Scoreboard Detection

The scoreboard/text region detection process is run independently on each of the
three channels of the RGB color space, and then merged into a single text region
image representation in a logical AND manner presented with Eq. (14.3).

I text = I R ∧ I G ∧ I B (14.3)

Note, that in order to perform logical AND, I i where i = R, G, B has to be a binary
image.

Every channel is a logicalOR combination of present and past video frameswhere
text features are calculated with respect to the Eq. (14.4):

I i = I i
t,t−τ ∨ I i

t,t−2τ ∨ I i
t−τ,t−2τ (14.4)

where i = {R, G, B}, t is an actual timestamp and τ is a fixed delay. In our exper-
iments τ is equal to one second which is a tradeoff between the delay needed to
detect a change by the algorithm and delay needed for the scoreboard to apply the
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text transition effect. As it can be seen, we take three different pairs resulting from
all different combinations of an actual frame and two frames from the past delayed
by the same amount of the time between each of them. For every pair we calculate
following formula (note, that for clarity we drop the i index) (14.5):

It0,t1 = I colt0,t1 I var I edgt0,t1 (14.5)

Equation (14.5) shows the three features extracted for text region detection:

I colt0,t1 = |I colt0 − I colt1 |

I var = 1

L

L∑

p=1

(
px,y − Īx,y

)2

Īx,y = 1

L

L∑

p=1

px,y

I edgt0,t1 = |I edgt0 − I edgt1 |
I edgt = max

(
I verticalt , I horizontalt , I diagonalt

)

where px,y is a pixel of x, y coordinates, L is the number of pixels in the local

variance mask and I verticalt , I horizontalt , I diagonalt are vertical, horizontal, and diagonal
gradients of a frame t . These kind of gradients are proven to work well in text
detection process [30].

Taking all the above into account a text region is a region where:

1. The color distribution does not change (even if it is transparent to some extent)
and the font color does not change.

2. Text is a region of a high edge density that also usually does not change between
the two frames.

3. Local variance of a text region is big.

This is always true for all three RGB channels. Figure14.4 shows a sample soccer
video frame and a response from text region identification algorithm. It can be seen
that the presented algorithm works for multiple regions that have different charac-
teristics (i.e., different colors, partially transparent background, etc.).

The next step after finding the text candidate regions is to create consistent text
regions on which the digit identification algorithm can run. This is done by a project
and split algorithm that works in the following manner:

1. Project the text candidate images horizontally onto the y axis (projection axis
number 1 in Fig. 14.5);

2. Based on the projection curve detect consistent regions of values above a thresh-
old, equal to 5 in our experiments—a good tradeoff between noise removal and
small text region extraction (regions 1 and 2 in Fig. 14.5);
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Fig. 14.4 Sample video frame from a basketball game (a) and its text region candidates (b)
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Fig. 14.5 Project and split algorithm

3. Store all the region candidates in memory;
4. Take region candidate from the queue;
5. Project region in the opposite direction (projection axis number 2 in Fig. 14.5);
6. Based on the projection curve detect consistent regions of values above threshold

(regions 3 and 4 in Fig. 14.5);
7. If the detected region width/height is equal to the original width/height before

projection store ready text region in the memory;
8. Go to step 4.

The above procedure can be implemented using recursion. The first few steps are
shown in Fig. 14.5.

14.4.2 Event Detection

Figure14.6 shows the processing flow in the scoreboard-based event detection task.
The input to the algorithm are the extracted text regions described in the previous
section. The following stages are described herein.
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Fig. 14.6 The flow of scoreboard-based event detection

14.4.2.1 Digit Detection

Since the scoreboard region is typically designed for better visibility with high con-
trast we assume that either the text color is very dark or very bright. This approach
allows us to deal with the challenge of different font colors (Fig. 14.3a). Based on
this assumption, the detection phase is performed twice: the first time it seeks black
digits on white background and second, white digits on black background. The digit
identification algorithm finds foreground objects, extracts their features, and applies
a cascade classifier to detect if the region contains a digit and, if so, what digit. The
levels of the classifier validate the following features:

• region height;
• region width/height ratio;
• region no. foreground pixels to no. background pixels ratio;
• a Support Vector Machine (SVM) response.

An SVM is trained to recognize digit/non-digit image blocks based on con-
catenated horizontal and vertical projections of this block [31]. A feed-forward
artificial neural network trained on the same input as in the SVM is then used to
distinguish between digits. A dataset of figures containing differently shaped dig-
its and non-digits was created to train both an SVM and ANN. Figure14.7 shows
some exemplary images from this dataset. It contains 5,000 images distributed
equally between different digit and non-digit classes. We have chosen an ANN for
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Fig. 14.7 Samples of digit images used to train SVM and ANN in digit detection and recognition
tasks: a exemplary digits; b exemplary non-digits

multi-class digit recognition since thanks to its auto-associative characteristics it per-
formed better than multi-class SVMs trained on the same dataset. Both classifiers
obtained an accuracy of around 98%.

14.4.2.2 Digit Thresholding

The digit identification algorithm works for every foreground object and is repeated
for varying thresholds. This is due to the fact that the video compression process
softens the edges, thus, making the digits’ shapes less sharp, connected to other dig-
its or the background. Introducing a loop where the input region is thresholded with
increasing threshold value assures that in some range of this value the extracted digit
will be recognized correctly. After a set of experiments we decided to implement
ten thresholds with spacing equal to ten (0–100 for black digits, 150–250 for white).
Based on experiments we performed, this is a more robust and efficient solution than
thresholding with adaptive threshold value which is not very robust to quantization
noise or performing image segmentation based on a Gaussian mixture model where
the number of Gaussians is unknown. For every iteration of the loop the digit recog-
nition result is remembered and a voting is performed afterwards so that the output
of this algorithm is a digit with the highest number of votes.

14.4.2.3 Digit Linking and Digit Group Creation

The first of these two processes looks for digits that are in close proximity and links
them together. The idea behind this process is to link the digits that comprise a single
score or the time information in the scoreboard. Note, that the distance between
two digits to be linked has to be adaptive and is a function of a region height and
font characteristics. The second process takes all the links into consideration and
performs digit grouping, i.e., a single group consists of the digits that were linked
together. Note, that a particular digit in a digit group does not have links with all
the members in the group (transitional links are allowed). Each group is assigned a
specific number called the usefulness which stands for the number of digit changes
within the group.
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14.4.2.4 Digit Group Merging and Changes Evaluation

If at least one digit group was detected in the text region candidate the procedure
assigns a scoreboard candidate flag to this region and tries to find any equiva-
lent results (scoreboard candidates and digit groups) from the previously processed
frames. The features taken into account are the dimensions, location, and number of
digit groups in the scoreboard candidates. If the first two match then the scoreboard
candidates are merged together. During the merge process the recognized digits and
usefulness scores are updated. If there was a digit change this information is sent to
the following step where changes evaluation takes place. During this process the use-
fulness of the scoreboard candidate and digit group where the change was detected
are taken into account. First, since there was a change, digit group usefulness is
decreased. If the usefulness of a digit group and its parent (scoreboard candidate)
are sufficiently high an event detected flag is set. If not, the algorithm updates the
usefulness of a scoreboard region.

Figure14.8 shows an example scoreboard recognized by our approach. After the
digits are detected (yellow bounding boxes) and grouped into digit groups (blue
bounding boxes) a text region becomes a scoreboard region. This is visualized with
a green bounding box. Scoreboard region and digit groups are given usefulness para-
meters visualized with numbers at the upper left corners. The pictured situation was
captured after few seconds from the beginning of the video and it shows that the
regions that change often (e.g., time region) are marked with negative usefulness
whereas score digit groups and their parent (scoreboard region) have all high useful-
ness numbers.

Fig. 14.8 Exemplary scoreboard region (greenboundingbox)with detecteddigits (yellow bounding
boxes), digit groups (blue bounding boxes)
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14.5 Event Detection Results

This section presents results obtained from testing our event detection algorithms on
datasets proposed especially for this task. We discuss the accuracy and the time per-
formance separately. Results obtained from both investigations allow us to conclude
that the system is capable of extracting the interesting events in a real-time.

14.5.1 Accuracy

The dataset comprises 40h of basketball, soccer, rugby, cricket, Gaelic football, and
hurling videos. The duration of the videos in each sport group is balanced equally in
order to avoid biasing the obtained results. Also accuracy, precision, and recall are
calculated for each sport to show that exactness/quality and completeness/quantity of
results are consistent. For every sport the ground-truth dataset is split into submodules
in order to detect three types of events:

1. Goal event—an event that ends with a change of the game score;
2. Exciting event—an event that could be extremely exciting to the viewer, e.g.,

skillful dribble before the goal or a close-miss;
3. General event—type of an event that includes both previous events, plus addi-

tional, less exciting moments.

In Tables14.3, 14.4 and 14.5 we present calculated values of accuracy, precision
and recall for the three possible scenarios presented above. All the abbreviations used
in the above tables are as follows:

SM—state machine;
DT—decision tree;
MLP—multi-layer perceptron neural network;
ENET—Elman neural network.

Table 14.3 Accuracy, precision, and recall calculated for six different games for the classification
of the general event scenario

Accuracy Precision Recall

SM DT MLP ENET SM DT MLP ENET SM DT MLP ENET

Rugby 0.66 0.92 0.74 0.99 0.63 0.66 0.17 0.98 0.36 0.97 0.04 0.98

Soccer 0.58 0.95 0.79 0.98 0.7 0.77 0.21 0.95 0.51 0.97 0.04 0.96

Basketball 0.74 0.99 0.85 0.99 0.62 0.95 0.17 0.92 0.32 0.91 0.19 0.92

Cricket 0.42 0.95 0.9 0.99 0.7 0.67 0.1 0.93 0.26 0.73 0.04 0.97

Gaelic
football

0.59 0.98 0.92 0.99 0.3 0.81 0.18 0.97 0.39 0.92 0.05 0.97

Hurling 0.44 0.95 0.8 0.99 0.79 0.77 0.36 0.99 0.73 0.98 0.08 0.99
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Table 14.4 Accuracy, precision, and recall calculated for six different games for the classification
of the goal scenario

Accuracy Precision Recall

SM DT MLP ENET SM DT MLP ENET SM DT MLP ENET

Rugby 0.55 0.96 0.94 0.99 0.22 0.61 0.01 0.88 0.4 0.73 0.00 0.99

Soccer 0.56 0.95 0.83 0.96 0.72 0.75 0.23 0.81 0.5 0.92 0.07 0.96

Basketball 0.53 0.99 0.67 0.99 0.62 0.95 0.02 0.82 0.47 0.98 0.22 0.93

Cricket 0.8 0.96 0.96 0.94 0.33 0.59 0.07 0.57 0.42 0.79 0.03 0.97

Gaelic football 0.78 0.98 0.85 0.98 0.57 0.77 0.09 0.71 0.6 0.73 0.1 0.97

Hurling 0.59 0.94 0.68 0.99 0.46 0.59 0.55 0.92 0.46 0.96 0.05 0.99

Table 14.5 Accuracy, precision, and recall calculated for six different games for the classification
of the exciting event scenario

Accuracy Precision Recall

SM DT MLP ENET SM DT MLP ENET SM DT MLP ENET

Rugby 0.44 0.97 0.65 0.94 0.52 0.48 0.83 0.88 0.72 0.99 0.28 0.74

Soccer 0.73 0.97 0.82 0.95 0.48 0.75 0.27 0.82 0.51 0.99 0.53 0.8

Basketball 0.58 0.99 0.93 0.99 0.32 0.97 0.52 0.71 0.72 0.99 0.17 0.95

Cricket 0.41 0.95 0.27 0.96 0.41 0.34 0.73 0.78 0.36 0.99 0.19 0.72

Gaelic football 0.46 0.99 0.26 0.98 0.77 0.49 0.14 0.22 0.39 0.76 0.75 0.78

Hurling 0.74 0.99 0.57 0.99 0.6 0.52 0.48 0.7 0.4 0.93 0.24 0.78

The training was performed with use of probes collected only from one game
(in this case—basketball) and simulated on six different games: rugby, football,
basketball, cricket, Gaelic football, and hurling. In order to figure out the optimal
split between training and testing subclasses of the given data we ran a number of
experiments. Naturally, we tried a training dataset that is equally distributed among
all classes and sports but this did not give the most effective results. Surprisingly
the optimal division seems to be in the case when we take most of the samples from
one game and train the classifier and test it on the remaining data points. This is due
to the fact that a large training dataset from one sport only will cover most of the
situations that the system could deal with and are simply impossible or at least very
difficult to analyze by a human. Concluding, as the training data we used 70% of
probes collected from the basketball game, which is around 19,600 frames.

It can be seen from the results that the system’s accuracy in the case of a decision
tree classifier is usually above 95% and never lower than 92%. The results for the
Elman neural network are between 96 and 94%. This proves, that both classifiers
are well trained and are capable of recognizing event sequences from videos or even
sports that they have never seen before.

Regarding the efficiency of the scoreboard-based event detection (which can
only detect scores), once the scoreboard is detected correctly, as was presented in
Sect. 14.4.2 it is just a matter of tracking the changes inside this region. If the change
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Fig. 14.9 Exemplary
scoreboard region
highlighting detected
scoreboard-based event

detected score event

appears in the digit region that does not change often and the digits present a number
that is reasonably similar to the probable score of the game we say that there was a
goal/event. Note, that the system is not constrained to count a score from zero since
otherwise it would have to analyze every video from the beginning of the game.
Figure14.9 shows an exemplary visualization performed by the system when the
change in the score is detected.

The only feature of the video that can affect this process is the perceptual quality
of the scoreboard which is dependent on video bitrate and resolution. For example
in our tests the system could easily recognize scoreboards in videos of resolution
640 × 480 whereas this was not the case for videos of resolution 768 × 76 due to
a specific font used However, for videos where scoreboard regions can be clearly
recognized by subjective viewing (about 80% in our dataset) its effectiveness was
always 100%.

14.5.2 Time Performance

Given the classification methods presented in Sects. 14.3.3 and 14.4.2 it is important
to highlight the time performance of the proposed detection techniques. Given the
low accuracy of the state machine we do not take it into consideration.

As mentioned, the accuracy of the decision tree and Elman neural network are
always higher than 92%whichmakes them good candidates for the final event detec-
tor. Looking more closely at the two classification algorithms, the main differences
that make them the best candidate for this task would be a train/predict time perfor-
mance and the nature of the algorithm itself. The decision tree algorithm needs less
than a second to create a tree (either in the case of nine or eighteen descriptors) while
the Elman neural network needs more than a minute to perform the training. The pre-
diction time is very similar for both cases: 0.0219s for the decision tree and 0.0269s
for the neural network. Since training can be done offline it is not particularly crucial
unless the system is required to change its behavior or gain some additional knowl-
edge about events in interactive mode training time is very important. In addition,
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the great disadvantage of the neural network is that as a non-deterministic algorithm
it will always give different results for every training, while it always starts with dif-
ferent values of weights. Thus, it is very unpredictable and each has to be validated
separately. Moreover, the output of the neural network is a value between 0 and 1,
and setting up the threshold for event detection can be a difficult task.

Figure14.10 shows the breakdown of the time performance of the feature-based
event detection algorithm. This is the time needed to prepare data for the final clas-
sifier (decision tree or Elman neural network). As can be seen, keypoint detection,
feature extraction andmatching (i.e., assigning all the descriptors to particular nodes)
consume the most time, whereas creation of bag-of-words histogram and SVM pre-
diction can almost be disregarded.

The time performance of the scoreboard-based event detection significantly
depends on the behavior of the scoreboard region. In general it can be split, according
to Fig. 14.6 into the following stages: preprocessing, digit detection, digit linking,
digit grouping, group merging, evaluation/event detection. All stages except the last
one are done only a few times at the beginning of each game unless the behavior
of the scoreboard prevents the algorithm from detecting a stable scoreboard region
(e.g., when scoreboard appears only for a few seconds after the score changes). The
times for particular stages are as follows:

• preprocessing—30ms;
• digit detection—135ms;
• digit linking—6µs;
• digit grouping—30µs;
• group merging—250µs;
• evaluation/event detection—55µs.

So after the scoreboard is detected and digit groups are recognized the scoreboard-
based event detection algorithm only needs 55µs to detect an event. Finally, it should
be noted, that the given times for scoreboard-based and feature-based event detection
are not cumulative since both techniques work in parallel with no interdependency.

Fig. 14.10 Breakdown of
processing time in the
various stages of the
feature-based event detection
algorithm; all times are given
in µs



314 R. Kapela et al.

14.6 Summary

This chapter describes a real-time field sports video event detection system that is
capable of detecting goals/scores, close-misses, and also other exciting moments
with high accuracy across multiple sports. Unlike previous work in sports scene
classification, we pay particular attention to computational requirements, deriving
an algorithm that is comparablewith the state of the art in terms of accuracy, butwhich
requires significantly less computational resources. For concreteness, our experimen-
tal evaluation focuses on field sports video as this covers multiple individual sports
such as basketball, soccer, rugby, football, all genres of hockey, etc.; however, as our
descriptor avoids using sports video specific mid-level features, like grass ratios, it
is sufficiently general to be applicable in other contexts. The system is composed of
two event detection modules that work in parallel performing complementary event
detection tasks.

The first one is based on audio-visual low-level features and can be trained for
different events such as goals, or very interesting moments such as a close miss. A
feature of the approach is minimal ambiguity, as its response is considered in terms
of event probability rather than a deterministic response. We also validated different
event classification techniques and present results (accuracy, precision and recall)
for each of them with respect to different sport videos processed by the system.
The simplest approach is to use a state machine. However, the results showed that
this solution does not give satisfactory results. To overcome this, we evaluated more
sophisticated methods like deterministic decision trees or non-deterministic artificial
neural networks. Both these solutions give good results, the difference is mainly
in training time. It is important to notice that training either the decision tree or
the Elman neural network based on the probes from one game only does not have
negative influence on accuracy for any other game, which is always higher than
92%. Using mixed values from different games could result in overfitting since it is
very hard to judge if the game events encoded with low-level features are similar or
not. For this reason we think it is better to use most of one game to train the event
classifier since we can be sure it covers most of the possible cases on the field/court.
The second, independent thread complements the first mentioned and is capable
of detecting scoring events with 100% accuracy with high resolution footage. The
detection process is based on detection of changes in the score presented on the
scoreboard on the screen. In this case, time performance is not constant during the
video analysis and takes more time at the beginning where the scoreboard area has
to be detected in order to track changes in the scores of the teams played.
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