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Stereo Vision Algorithms Suited to Constrained
FPGA Cameras

Stefano Mattoccia

Abstract The advent of cheap RGBD active 3D sensors, such as those based on
structured light (e.g., the Microsoft Kinect) or those based on time-of-flight technol-
ogy, has significantly increased the interest in computer vision applications based
on depth data that, in most cases, enables higher robustness compared to solutions
based on traditional 2D images. Unfortunately, active techniques are quite noisy
or even completely useless in outdoor environments (in particular under sunlight).
An effective and well-known technique to infer depth suited to indoor and outdoor
environments is passive stereo vision. Nevertheless, despite the frequent deployment
of this technology in many research projects since the 1960s, stereo vision is often
perceived, especially in consumer applications, as an expensive technology due to
its high demanding computation requirements. In this paper, we will review a subset
of state-of-the-art stereo vision algorithms that have the potential to fit with a basic
computing architecturemade of a low-cost field-programmable gate arrays (FPGAs),
without additional external devices (e.g., FIFOs, DDR memories, etc.) excluding a
USBorGigaEthernet communication controller. Compared tomore complex designs
based on expensive FPGAs coupled with additional external memory devices, clear
advantages of the outlined simplified computing architecture are the reduced design
and manufacturing costs as well as the reduced power consumption. Another signif-
icant advantage consists in better code portability as well as in improved robustness
with respect to obsolescence of electronic devices being almost the whole design
self-contained into the FPGA logic. On the other hand, mapping stereo vision algo-
rithms into a similar low-power, low-cost architecture poses a very challenging task
and only a subset of existing algorithms appropriately modified are suited to this con-
strained computing platform. Nevertheless, we believe that devices based on such
a proposed simplified computing architecture would make RGBD sensors based on
stereo vision suitable to a wider class of application scenarios not yet fully addressed
by this technology.
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5.1 Introduction

In recent years,with thewidespread diffusion of 3D sensors, there has been increasing
interest in consumer and research applications based on dense range data. Some of
these sensors provide a depthmap and an RGB (ormonochrome) image of the sensed
scene and, for this reason, they are often referred to as RGBD (RGB plus Depth)
sensors. A well-known and representative example of such devices is the Microsoft
Kinect, a cheap and accurate RGBD sensor based on structured light technology.
Since its presentation in 2010, it has been deployed in many scientific and consumer
applications. This technology, developed by Prime Sense, relies on a standard color
camera, an infrared projector, and an infrared camera. The projected pattern is sensed
by the infrared camera and analyzed according to a patented technology in order to
infer depth. The Kinect enables the user to obtain accurate depth maps and images
at VGA resolution in indoor environments. Another interesting technology that in
recent years gained popularity is Time of Flight (ToF). In this case, the sensor emits
a modulated light and, by measuring the time required to receive the bounced light,
it infers depth. In most cases, this technology also provides a monochrome image of
the sensed scene and hence belongs to the class of RGBD sensors. However, com-
pared to the Kinect technology, ToF currently provides depth maps and images at a
reduced resolution compared to structured light sensors as well as to stereo vision
based sensors. Nevertheless, Microsoft recently presented for its new gaming con-
sole an evolution of the original Kinect based on time-of-flight technology enabling
increased resolution compared to other time-of-flight sensors currently available.
Active technologies have specific strengths and limitations [25]; however, they are
ill-suited to environments flooded with sunlight (the Kinect in particular becomes
useless in these circumstances). On the other hand, it is worth observing that, in
stereo vision technology, depth and image resolutions are only constrained by the
computational requirements of the stereo matching algorithm. For these reasons,
especially for the limitations concerned with ToF sensors, there have been attempts
to improve resolution and effectiveness of active sensors by means of sensor fusion
techniques (e.g., [6]). These approaches combine the depth maps provided by active
sensors with registered images and depth maps provided by high-resolution stereo
vision systems.

Stereo vision is a well-known technology for inferring depth and, excluding
projection-based approaches, it is a passive technology based on standard imaging
sensors. Stereo vision systems infer dense depth maps by identifying corresponding
projections of the same3Dpoint sensed by twoormore cameras in different positions.
This challenging task, often referred to as the correspondence problem, can be tack-
led with many algorithms (the Middlebury stereo evaluation website [28] provides a
quite updated list and evaluation of stereo vision algorithms) and consequently pro-
duces different outcomes in terms of accuracy and computational requirements. This
means that, in stereo vision, the algorithm aimed at tackling the correspondence prob-
lem plays a major role in the overall technology and, in recent years, there has been
a dramatic improvement in this area. Another important factor that has made stereo
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vision more suitable to a wider range of applications has been the recent availability
of low-cost powerful computing platforms such as FPGAs, GPUs, and CPUs with
DPS capabilities. Of course, stereo vision technology intrinsically provides RGB or
monochrome images, and thus belongs to the class of RGBD sensors. Compared to
active technologies such as structured light or ToF, stereo vision may provide unreli-
able results in regions where the correspondence problem becomes ambiguous (e.g.,
in poorly textured regions or in presence of repetitive patterns along image scan-
lines). However, compared to active technologies, it is well suited to both indoor and
outdoor environments, as well as to close-range and long-range depth measurements
by simply changing the relative position of the digital imaging sensors and/or their
optics. Finally, being a passive technology, multiple stereo vision sensors sensing the
same area do not interfere with each other enabling multicamera setups. Neverthe-
less, despite these positive aspects and a widespread deployment in many research
applications in the last few decades, stereo vision is often perceived as a bulky and
expensive technology not suited to mainstream or consumer applications. In this
paper, we will try to address this concern by outlining a simple and cheap computing
architecture mainly based on low-cost FPGAs. We will also review a subset of state-
of-the-art stereo matching algorithms that have the potential to entirely fit within this
constrained architecture without other external device (e.g., FIFOs, DDRmemories,
etc.), with the exception of a high-speed communication controller. In some cases,
the constraints imposed by such simplified computing architecture require modi-
fications to the original algorithms that will be discussed in the remainder of this
chapter. The topic addressed in this paper is related to an ongoing research activity
aimed at developing a cheap, accurate, self-powered RGBD sensor based on stereo
vision technology, deploying as a computing platform only the reconfigurable logic
available in standard low-cost FPGAs. This choice has several advantages and also
some limitations that will be discussed in the remainder of this chapter.

Figure5.1 reports preliminary experimental results, computed on a frame of the
KITTI dataset [10], concerned with three algorithms discussed in this chapter and
implemented on the constrained computing architecture. Additional and updated
results can be found here.1

5.2 Related Work

Dense stereo vision has been a widely researched topic for decades [31] and, due to
its highly demanding computational requirements, many different computing plat-
forms (e.g., CPUs, GPUs, DSPs, FPGAs, ASICs, etc.) have been deployed to obtain
depth maps (hopefully) in real time. However, some of these computing architec-
tures, such as those based on standard CPUs or GPUs, are currently ill-suited to

1 Videos and applications of the 3D camera are available at this links:
http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
http://www.vision.deis.unibo.it/smatt.

http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
http://www.vision.deis.unibo.it/smatt
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Fig. 5.1 Preliminary experimental results for three algorithms implemented in the target computing
architecture. Disparity maps are concerned with frame �66 of the KITTI dataset [10], using a
simple x-Sobel filter as prefiltering step. From top to bottom rectified reference image, disparity
map computed by the FW implementation, disparity map computed by a modified version of the
[5] algorithm using two paths, and disparity maps computed by a modified version of the SGM [13]
algorithm using four paths. Additional experimental results are available at this link: http://www.
youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw

consumer/embedded applications due to their high power requirements, cost, and
size. Computing architectures, such as those based on high-end FPGAs, are often
too expensive as well, while solutions based on custom application specific inte-
grated circuits (ASICs), despite the limitations regarding their reconfigurability and
time to market compared to FPGAs, represent a less expensive solution in large
volumes. Finally, we point out that interesting low-power, low-cost, reconfigurable
architectures for real-time dense stereo vision are represented by embedded CPUs
coupled with integrated DSPs, such as the OMAP platform [11], extensively used for
stereo vision. A recent and detailed review of stereo vision algorithms for different

http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
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computing architectures can be found in [33]. In this chapter, we will consider a sim-
ple computing architecture based entirely on low-cost FPGAs that, in our opinion,
represent an optimal solution to design compact, low-cost, low-power 3D sensors
based on stereo vision.

5.2.1 Field-Programmable Gate Arrays

FPGAs can be configured, and in most cases reconfigured many times, by means
of hardware description languages (HDLs) such as VHDL or Verilog. The inter-
nal structure of an FPGA consists of a large amount of logic cells, each contain-
ing a small amount of elementary logic blocks (e.g., Flip-Flops, multiplexers, and
lookup tables). Distributed into the FPGA, there are also small multiport memories,
often referred to as block RAM, with fast access time. Moreover, modern low-cost
FPGAs often integrate configurable DSPs for efficient arithmetic operations, clock
managers, and high-speed transceivers. All these components can be configured by
programmers/designers according to their specific requirements by means of HDLs.
For instance, considering a Xilinx Spartan 6 Model 45 FPGA, we can find roughly
44,000 logic cells, 116 dual-port block RAMs (18Kb each), 58 DSPs, 4 clock man-
agers, and 358 configurable I/O pins. It is worth noting that the reconfigurable logic
of an FPGA can be configured/programmed with HDLs at a higher level of abstrac-
tion using a behavioral programming methodology. However, mapping computer
vision algorithms on the reconfigurable logic with HDLs is not as simple as mapping
the same algorithms on CPUs with traditional high-level programming languages.
Nevertheless, recent years have seen the appearance of effective high-level synthe-
sis (HLS) tools that enable the automatic conversion of code written in a standard
programming language, such as C/C++ or Matlab, into HDLs. Despite these facts,
being the hardware resources of the reconfigurable logic highly constrained, a clear
understanding of the overall FPGA architecture and of the available resources is
crucial for writing optimized code with HDLs as well as with HLS tools. The key
advantage, compared to most other computing architectures, is that FPGAs, thanks
to their complete reconfigurability, can be programmed to massively exploit paral-
lelism and tailored to specific application requirements enabling one to obtain the
optimal performance/Watt.

5.2.2 Stereo Vision

Stereo vision [31] is a technique aimed at inferring dense or sparse depth maps from
two or more views of the same scene observed by two or more cameras. Although
increasing the number of cameras has the potential to improve accuracy and reliabil-
ity, the binocular setup (i.e., deploying two imaging sensors) is frequently deployed
in practice. Due to the many applications that can take advantage of dense depth data,
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this topic has received a constant research interest in the last decades, and significant
algorithmic improvements have been proposed [15, 31]. However, most dense stereo
vision algorithms are computationally demanding, and parallel computing architec-
tures are in most cases mandatory if one is to obtain dense depth measurements in
real time. Not surprisingly, for this reason, FPGAs have attracted the interest of many
researchers working in this field [33].

5.3 Overview of the Constrained Computing Architecture

Our target computing architecture is aimed at minimizing cost, power consumption,
and at enabling better portability with respect to future evolutions of the FPGA core
that, in our case, currently relies on the Xilinx Spartan 6 family. The design strategy
adopted here would easily enable the porting of algorithms to FPGA devices pro-
vided by different manufacturer to high-end devices manufactured by Xilinx, such
as devices belonging to the high-end Virtex class as well as to new computing archi-
tecture made of multicore and programmable logic such as those recently proposed
by Altera or Xilinx (e.g., the Zynq platform for Xilinx). In particular, these latter
hybrid architectures, made of ARM cores tightly coupled with powerful reconfig-
urable logic, would perfectlymatch our strategy enabling the design of self-contained
smart cameras with a very simplified and almost standard hardware design.

A brief overview of our current computing architecture is depicted in Fig. 5.2. It
is based on a single FPGA and aims to obtain dense depth maps at more than 30+ fps
processingWVGA (752× 480) stereo pairs sensed bymonochrome or color sensors.
These specific imaging sensors, manufactured by Aptina (specifically the MT9V034
model adopted for our evaluation), provide some interesting features well suited to
smart cameras for computer vision applications. In fact, these imaging sensors have
global shutter capability, are available in monochrome or color (based on the Bayer
pattern) format, have a maximum frame rate of 60 fps, provide an optional LVDS
data communication between sensors and the device (the FPGA in our case) that
manages the video streams and also enable simultaneous acquisition by means of
hardware synchronization. Nevertheless, it is worth pointing out that our design is
not constrained to this specific imaging sensor and other devices could be used in
place with minimal modifications to the overall design. Observing Fig. 5.2, we can
notice that the two synchronized color or monochrome imaging sensors are con-
nected, through two low-voltage differential signaling (LVDS) channels for clocks
and data, to the FPGA. This choice, plus the additional LVDS link between the two
imaging sensors, enables us to put the sensors and the computing platform in arbi-
trary positions, even at distances of meters, in order to deal with different setups
according to different application requirements. For instance, in gesture recognition
applications, the baseline is typically very small (few centimeters), while for systems
aimed at autonomous navigation, the baseline can be significantly larger (50cm or
more). Both cases would be easily handled by the depicted solution. Despite this
important fact, other crucial design goals in our project were minimal power require-
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Fig. 5.2 Basic architecture of the target computing platform. The overall design contains the
imaging sensors (e.g., at WVGA resolution), a low-cost FPGA (e.g., a Spartan 6 Model 45 or
better), and an external high-speed communications controller (e.g., USB 2.0 or 3.0, GigaEthernet).
The overall processing pipeline, including the FIFO aimed at handling transfers to/from the high-
speed communications controller and a softcore that supervises the whole system, is synthesized
into the reconfigurable logic of the FPGA

ment, compactness, and reduced bill of materials. Concerning power requirements,
the overall design has a power consumption of about 2.0W supplied by a standard
USB 2.0 data connector. The overall size of the computing platform depicted in
Fig. 5.2, excluding the imaging sensors modules, has an area smaller than a credit
card. Finally, the bill of materials can be summarized by considering a small amount
of inexpensive hardware devices. Namely, it results in the FPGA, the imaging sen-
sors and the external USB or GigaEthernet controller plus some standard electronic
components such as clocks and passive devices. According to this overview, it is clear
that the considered computing platform is not equipped with any external memory
device such as a SRAMor aDDR. This choice simplifies the overall design (enabling
power, area, and costs reduction) but, on the other hand, enforces strong constraints
to the processing capabilities of such a processing platform that will be thoroughly
discussed in the remainder of this chapter.

Observing Fig. 5.2, we can also notice that our design contains a softcore synthe-
sized into the FPGA logic; this is a small RISC processor mainly aimed at handling
communications with the host computer in order to change camera parameters, such
as the frame rate or other features of the imaging sensors, by means of standard
serial communication protocols (e.g., I2C). The softcore, by means of software com-
mands issued by the host, also allows us to select, among those available within the
processing pipeline, the video streams actually required by the user. For video stream
configuration, the softcore is tightly coupled with the Data/Video manager unit as
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depicted in the figure. In fact, this module manages the video streams processed by
the pipeline and other data available inside the FPGA according to the configuration
commands issued by the host. Optionally, the hardware design could be equipped
with an Inertial Measurement Unit (IMU) made of a gyroscope, an accelerometer
and other additional digital devices such as a GPS receiver or a digital compass. The
IMU can be useful for robotic applications in order to integrate the measurements
provided by a visual odometry module based on SLAM (Simultaneous Localization
And Mapping) techniques. Another optional component of the camera, managed by
the softcore, is the Motor controller unit. This module enables control of multiple
stepper motors according to software commands issued by the host and can be useful,
for instance, for handling pan and tilt.

The upper side of Fig. 5.2 summarizes the main steps executed by the vision
processing pipeline. Once the raw images provided by the image sensors are sent to
the FPGA, they are rectified in order to compensate for lens distortions. Moreover,
the raw stereo pair is put in standard form (i.e., epipolar lines are aligned to image
scanlines). Both steps require a warping for each image of the stereo pair, which
can be accomplished by knowing the intrinsic and extrinsic parameters of the stereo
system [31]. Both parameters can be inferred by means of an offline calibration
procedure. Once the rectified images are in standard form, potential corresponding
points are identified by the stereo matching module as will be discussed in the next
sections. Unfortunately, since not all of the correspondences found by the previous
module are reliable, a robust outlier detection strategy is crucial. This step typically
consists ofmultiple tests aimed at enforcing constraints to the inferred disparitymaps
(e.g., left–right consistency check, uniqueness constraint, analysis of the cost curve,
etc.), the input images, or the matching costs computed by the previous matching
engine according to specific algorithmic strategy. The filtered disparity map is then
sent to the Data/Video manager. This unit contains a small FIFO synthesized in the
FPGA logic, and it is mainly focused on packaging selected video streams and other
relevant data. This data is then sent to the communication front end implemented
in the FPGA logic and directly connected to the external communication controller
that in the current prototype is an USB 2.0 controller manufactured by Cypress.

The host computer, once it has received the disparity map, will compute depth
by triangulation according to the parameters inferred by the calibration procedure.
Although in this paper, we will focus our attention on the stereo matching module,
the overall goal consists in mapping all the blocks depicted in Fig. 5.2 into a low-
cost FPGA. As previously pointed out, a similar design would allow for small cost,
size, weight, power requirements, and reconfigurability. Moreover, the upgrade of
the whole project to newer FPGAs (typically cheaper and with better performance in
terms of speed and power consumption compared to previous generation) is almost
straightforward. Finally, we point out that, with the availability of integrated solu-
tions based on reconfigurable logic, plus embedded processors such as the Xilinx
Zynq [44], a self-contained FPGA module would make feasible the design of a fully
embedded 3D camera with complete onboard processing without any additional
external host computer.
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5.4 Stereo Vision: Analysis of Memory Footprint and Bandwidth

Stereo vision algorithms are well-known for their demanding computational require-
ments that sometimes even do not enable their deployment in practical applications
with real-time constraints. This limitation in standard computing architecture such
as CPUs or GPUs is often concerned with number crunching capabilities. However,
when it comes to consider highly constrained computing architectures such as that
previously outlined, major limitations typically consist in the massive memory foot-
print and/or bandwidth requirements within the memory and the processing unit.
Let us consider these facts by analyzing the simplest stereo matching algorithm
that evaluates, within a prefixed disparity range D with disparity d ∈ [dmin, dmax],
the matching costs C(x, y, d) computed, on a point basis, between each point in
the reference image at coordinate R(x, y) and each potential corresponding pixel
T (x − d, y), d ∈ [dmin, dmax] in the target image. Many effective cost functions
have been proposed in the literature and among these, the absolute difference of
pixel intensity (AD) or its truncated version, often referred to as truncated absolute
difference (TAD), that saturates the cost to an upper threshold T, Census transform
coupled with Hamming distance [47] and its variants such as the mini-Census [4]
or the more robust ternary based approach proposed [30] are widely adopted by
algorithms implemented into FPGAs. In fact, AD- and Census-based approaches,
compared to other cost functions such as squared differences (SD), normalized cross-
correlation (NCC) or zero-mean normalized cross-correlation (ZNCC), robust cost
functions computed on rectangular patches, or mutual information (MI) [41], are
certainly less demanding in terms of reconfigurable logic required for their hard-
ware implementation. In terms of robustness, the nonparametric local transform [47]
makes this approach robust to strong photometric variations, although in its original
formulation, it is quite noisy in uniformly textured region. Concerning AD, in order
to increase its robustness to photometric distortions that frequently occur in practical
application scenarios, a transformation that reduces the low-frequency components
(e.g., LoG (Laplacian of Gaussian ) or Sobel filter) is often applied to the stereo
pair before AD computation. For the reasons outlined so far, AD- and Census-based
approaches are frequently deployed by stereo vision algorithms implemented into
FPGAs. Sometimes, such as in [22], different cost functions (in [22], AD andCensus)
are combined to increase robustness. Finally, there are approaches [37] that rely on
direct edge detectionmechanism to improve computational efficiency. An exhaustive
review and evaluation of cost functions suited to practical stereo vision systems, not
restricted to FPGA implementation, can be found in [14].

Considering the previous example, from the memory point of view, stacking each
C(x, y, d) for each point and for each disparity within the disparity range would
result in the 3D memory structure depicted in Fig. 5.3 and often referred to DSI
(Disparity Space Image). However, in most effective algorithms adopted in practi-
cal applications, the matching cost evaluated to determine the best disparity value
consists in aggregated pointwise matching costsC(x, y, d), accumulated costs along
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Fig. 5.3 Disparity Space Image, the 3D structure containing the pointwisematching costC(x, y, d)

for each point and for each disparity value within the disparity range D

scanlines in order to enforce smoothing constraints on the disparitymaps or bymeans
of other strategies.

Some algorithms, as will be discussed in the remainder, require to store in a mem-
ory structure the whole DSI depicted in Fig. 5.3. Unfortunately, even with standard
image resolution and disparity range, this is a significant amount of data that typi-
cally exceeds the memory available in most current FPGAs and for this reason, an
external memory would be mandatory in these cases. For instance, by considering
images at 752 × 480, a disparity range of 64 and 16 bit for each matching cost
C(x, y, d), the DSI consists of 44MB. Although a similar amount of data seems not
critical deploying external memory devices such as DDR memory or SRAM mem-
ory, there is a more critical constraint concerned with memory bandwidth. In fact,
FPGAs, despite their reduced clock frequency, compared to other parallel computing
devices such as GPUs, can be effective with respect to such devices by exploiting
their potential massive parallel capabilities by means of tailored internal logic recon-
figurations. Nevertheless, to this aim and in order to provide a throughput of (at least)
one disparity per clock cycle to keep pace with the pixels provided by the imaging
sensors, there is a strong memory pressure when intermediate results (for instance,
as typically occurs, the D values concerned with the point under examination or D
values for intermediate results (sometimes even k × D values) must be read within
a single clock cycle. This case is summarized in Fig. 5.4.

For instance, by considering our previous configuration, D = 64 and size of each
matching cost C(x, y, d) 2 bytes, with a pixel clock frequency of 30MHz (appropri-
ate for imaging sensors similar to those deployed in our camera), the memory band-
width required turns out to be higher than 3.5GB/s. In most cases, for each clock, this
amount of data must be read, processed/updated, and then written back to memory,
thus doubling the overall required memory bandwidth highlighted. Of course, with
higher resolution imaging sensors, typically clocked at higher frequency, moving
data back and forth between FPGA and memory further emphasizes the memory
bandwidth bottleneck.
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Fig. 5.4 Moving data back and forth between FPGA and external memory can easily lead to exceed
the available bandwidth

Fig. 5.5 The overall memory bandwidth can be increased by adding to the design multiple memory
devices

According to the previous analysis, since the memory bandwidth required can
exceed that available in current memory devices, a straightforward solution to over-
come this problem would consist in using multiple memory devices as outlined in
Fig. 5.5. However, although the strategy depicted in the figure could solve memory
bandwidth issues, this strategy would have on the other hand some disadvantages.
In particular, using multiple memory devices to increase the overall memory band-
width would lead to increased costs, power consumption, overall complexity, and
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area. Moreover, such a solution would also increase the overhead, in terms of recon-
figurable logic and memory controllers, required by the FPGA for handling multiple
external memory devices.

For the reasons outlined so far, in our design, we decided to avoid external mem-
ory devices at all. Although this choice enables to overcome some of the problems
previously outlined, it alsomeans that we can rely only on the fast, yet small, memory
available inside the FPGA. As should be clear, this choice imposes very strong con-
straints on the algorithms that can be implemented on such a computing architecture.
Nevertheless, as we will show in the next sections, following specific algorithmic
methodologies, very effective results can be obtained adopting this simplified design
strategy.

5.5 Stereo Vision Algorithms Suited to the Constrained
Computing Architecture

A computing architecture similar to that outlined in the previous section poses signif-
icant constraints to the computational structure of the algorithms that can be imple-
mented. In fact, considering a representative case study of theXilinx Spartan 6 FPGA
family [44], we can see that the overall block memory available is about 261 KB
for the Model 45 (and about 600KB for the most powerful device of this family, the
Model 150). In betweenmodels 45 and 150, there are two devices, 75 and 100,with an
amount of logic cells close to, respectively, 75,000 and 100,000 and with an amount
of block memory, respectively, of about 400KB and 600 KB. This means that, ignor-
ing other requirements, we would not even be able to store a stereo pair at WVGA
resolution (about 720 KB) in the most complex 150 device. This observation, plus
the limited overall reconfigurable logic available (about 43,000 and 147,000 logic
cells for the Model 45 and 150, respectively), dictates that stream processing [2] is
mandatory for our purposes. This technique consists of processing pixels as soon as
they are available from the imaging sensors, with minimal buffering requirements.
Of course, for the same reason, the resulting output cannot be entirely stored into
the FPGA and must be sent to the communications controller as soon as it is made
available by the processing pipeline. We also point out that other relevant constraints
are concerned with the overall reconfigurable logic available for processing (e.g.,
about 55,000 flip-flops for the Model 45 and 185,000 flip-flops for the Model 150)
and the maximum distributed RAM available (e.g., about 50KB for Model 45 and
about 17KB forModel 150). More details concerned with these devices are available
in [44].

In the next sections, we will consider some relevant stereo vision algorithms
potentially suited to this constrained target architecture. For this purpose, we will
adopt the classification proposed in [31], where algorithms are classified into two
major categories, local approaches and global approaches, making a further distinc-
tion when dealing with approaches not completely described by these two broad
categories.
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Fig. 5.6 Support windows, of size M × N , for cost aggregation in local algorithms at disparity d.
In the reference image, the support window is centered on point (x), while in the target image, the
support windows are centered on points [x, x − dmax]

5.5.1 Local Algorithms

Local algorithms process each point independently ignoring relationship between
neighboring disparity values. For this reason, they do not enforce an explicit smooth-
ness constraint on the target disparity map, and typically for each disparity candidate
within the disparity range D, compute the matching cost by aggregating neighbor-
ing pixels (often on rectangular patches referred to as support windows, as depicted
in Fig. 5.6). Cost aggregation is often explicitly obtained by summing up, accord-
ing to different strategies, each pointwise matching cost within the support window,
as depicted in Fig. 5.6. However, it is worth noting that some recent approaches
implicitly aggregate costs in constant time, independently of the size of the support
[7, 27].

More generally, cost aggregation performed by most local algorithms can be fig-
ured out, as depicted in Fig. 5.7, as a filtering [15] of the DSI data structure according
to different strategies. Examples of filtering operations applied to the DSI are aver-
aging/sum, bilateral filtering [46], approximated bilateral filtering [19], guided filter
[12], etc. Since local algorithms completely ignore relationships between neighbor-
ing points and different disparity values within the disparity range, from the com-
putational point of view, this means that D filtering operations can be applied in
parallel to the DSI in order to aggregate matching cost for each disparity candidate.
Adopting for the processing pipeline the same clock of imaging sensors, the com-
putation of the D filtering operations for each point should hopefully finish within a
single (pixel) clock cycle. This fact potentially enables a high degree of parallelism
(multiplied by a factor D compared to the sequential case) but at the same time it
imposes that all the data required in the DSI (highlighted in the DSI depicted in
Fig. 5.7), or a subset of this data centered in the point under examination, must be
accessed in parallel. Therefore, at least the portion of data highlighted in Fig. 5.7
should be carefully managed, by means of appropriate data structures and buffering
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Fig. 5.7 In most local algorithms, cost aggregation is carried out by filtering the DSI according to
different strategies

techniques implemented in the internal logic of the FPGA, in order to enable parallel
access required to sustain parallelism. Of course, in the outlined constrained com-
puting architecture, the overall portion of the DSI highlighted in the figure must be
stored in the internal memory of the FPGA, typically in the block RAM. Neverthe-
less, with WVGA imaging sensors (even with imaging sensors at higher resolution)
and typical disparity range deployed in practical applications, this amount of data
becomes compatible with the internal memory made available by FPGAs similar to
those previously examined.

In local algorithms, the best disparity for each point is often identified according
to a simple winner-takes-all (WTA) strategy by finding the candidate with the best
aggregated cost. For the reasons previously outlined, local algorithms are inherently
parallel, and hence are ideal candidates for FPGA implementation. Detailed reviews
and evaluations of local stereo algorithms can be found in [15, 31, 33, 36, 42].

5.5.1.1 Fixed Window Algorithm

In spite of their simplicity and intrinsic parallel nature of local algorithms, even the
mapping of the simplest approach to the constrained target architecture outlined in
previous sections should be carefully planned. The simplest local algorithm is often
referred to as fixed window (FW) or block matching and simply sums up/averages
all the matching costs within the support window. Although this algorithm has some
well-known limitations, such as inaccurate depth reconstruction near depth disconti-
nuities and, as most local algorithms, problems in uniformly textured regions of the
sensed scene, it is often deployed in several practical applications, thanks to its over-
all robustness in determining the rough 3D structure of the scene and to its simple
algorithmic structure.
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Fig. 5.8 Multiple filters applied to the reference and target images for cost aggregation. The number
of filter is equal to the disparity range (dmax + 1 in the figure)

According to Fig. 5.7, in this case filtering consists in summing/averaging within
the support, for each disparity value, the matching costs in the DSI. From a different
point of view, this operation consists in applying multiple instances of the same
filter (sum/average filter for FW) between reference and target image as illustrated
in Fig. 5.8.

With a support of size M × N and a disparity range of [0, dmax], the number
of arithmetic operations for the brute force approach is proportional to M × N ×
(dmax + 1). Considering that plausible values for these parameters could be M =
15, N = 15, and dmax = 63, the number of arithmetic operations required might
exceed the hardware resources available in the target FPGA. Nevertheless, this num-
ber of operations can be significantly reduced by adopting well-known incremental
calculation schemes such as box-filtering [21] or integral images [40]. The former
in particular, as outlined in Fig. 5.9, is particularly suited for FPGA implementation
of the FW algorithm.

The figure shows that the overall cost aggregation for the supports depicted in
the upper side of the figure can be obtained more efficiently by deploying the 1D
optimization depicted in the middle of the same figure. In fact, the aggregate costs
required by the operations in the upper side of Fig. 5.9 can be reduced by observing
that the overall cost for the central point can be obtained by updating the overall cost
computed in the previous position along the scanline, adding the aggregated costs of
the rightmost columns, and subtracting the aggregated costs of the leftmost columns.



124 S. Mattoccia

Fig. 5.9 Incremental techniques, referred to as box-filtering, aimed at reducing to a constant value
the number of basic operations required for cost aggregation in fixedwindow.Top, full cost computa-
tion.Middle, incremental optimization along horizontal direction (number of elementary operations
reduced by a factor N). Bottom, vertical optimization required to compute the sum of the vertical
stripes shown in the middle of the figure. In this latter case, the full cost for each disparity value, is
computed with a fixed number of operations involving the four points highlighted at the bottom of
the figure in reference and target images

In deploying this 1D optimization strategy, the number of operations is reduced by a
factor N, manageable with the logic included in most FPGAs. Nevertheless, a further
reduction of operations can be obtained by deploying a 2D incremental scheme that
stores intermediate results for each column as depicted in the bottom of the figure.
In this case, the number of operations per window is constant and independent of the
size of the support, though compared to the brute force approach depicted at the top
of the figure, at the expense of a higher memory footprint for buffering intermediate
results required to sustain the additional 2D incremental calculation.
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Several implementations of the FW algorithm, and its variants, suited for FPGA
were proposed in the literature with different degrees of algorithmic complexity and
hence with different resources used. Some recent representative approaches in this
field are [17, 39, 50]. In Sect. 5.6, we report experimental results concerned with
our implementation of the FW algorithm on the constrained hardware architecture
previously outlined.

5.5.1.2 Local Algorithms Based on Adapting Weights and Constrained
Supports

Although the FW approach is widely used in many practical applications, it is clearly
outperformed by more recent local approaches based on cost aggregation techniques
that aggregate costs according to weights assigned by examining the image content
[15, 19, 23, 36, 46]. In these approaches, differently by the simple average score
computed by FW, the overall score is given by a weighted sum/average of the costs
computedwithin each supportwindow [18]. Thekey idea behind this strategy consists
of weighting each cost according to its relevance with respect to the point under
examination (i.e., the central points of the supports).

Many methodologies to assign weights have been proposed in the literature and
an effective rationale is that inspired by bilateral filtering [26, 34] applied to the
stereo matching by the AW (Adaptive Weights) algorithm [46]. That is, points with
similar intensity with respect to the central point should be more influential in the
weighted sum. Moreover, points closer to the central point should also be more
relevant according to [46]. This strategy is similar to the weight computation strategy
used by bilateral filtering and, in stereo, weights are often computed within the
support window of reference and target images (this strategy is often referred to as
joint or symmetric). In the strategy based on segmentation [35], the original bilateral
filtering weight computation was relaxed by removing the proximity constraint.

Afirst optimization [15, 23] consists of asymmetrically computingweights, exam-
ining only the image points belonging to the reference image. Although this strategy
significantly reduces weight computation by a factor of dmax, the number of opera-
tions required for cost aggregation is always proportional to M × N × (dmax + 1)
and may exceed the resources available in the target FPGA. However, simplified yet
effective strategies based on the computation of weights and/or costs and/or overall
weighted costs only in sampled points may help to further reduce the number of
elementary operations per point, maintaining high accuracy. These approaches also
exploit massively incremental calculation schemes for cost computation, similar to
those outlined for FW. An approach that efficiently computes weights, on a sparse
regular grid, and aggregated costs on a block basis, by means of [21], is the Fast
Bilateral Stereo (FBS) algorithm [19]. This approach represents a link between the
traditional fixedwindow approach andAW. Figure5.10 shows for the Tsukuba stereo
pair, the results obtained by FW,AW, and FBS. Compared to AW, FBS obtains equiv-
alent resultswith a fraction (about 10%) of operationsmaking it suitable for hardware
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Fig. 5.10 Top left, original reference image of the Tsukuba stereo pair [28, 29]. Top right, disparity
map obtained by the FW approach. Bottom left, disparity map obtained by the AW algorithm [46].
Bottom right, disparity map obtained by the Fast Bilateral Stereo algorithm [19]

implementation. Observing the figure, we can also notice that algorithms based on
the adapting weights strategy are much more accurate near depth discontinuities.

In [23], further optimizations compared to FBS have been devised, including a
preselection of potential candidate disparities and asymmetric weight computations
making also this algorithm a candidate for hardware implementation.

Zhang et al. [48] described a different and effective strategy for cost aggregation
based on two orthogonal cost aggregation phases. As formany previousmethods, this
approach heavily relies on incremental calculation schemes for fast cost aggregation.

A different two-phase strategy to reduce the computational burden of the original
AW approach consists in the two-pass aggregation described in [43]. In this method,
originally deployed within a Dynamic Programming framework, the nonseparable
weighted cost computation of AW is approximated with a vertical cost aggregation,
followed by an horizontal aggregation of the costs computed during the first phase
(i.e., vertical cost aggregation). Compared to AW, this simplified strategy enables to
obtain similar results reducing significantly the number of operations from O(n2) to
O(n), with n the cardinality of the support window.

Finally, it is worth noting that some recent local algorithms [7, 27] filter the DSI
according to the guided filtering technique [12], thus enabling weighted cost aggre-
gation in constant time. Such approaches massively exploit incremental calculation
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Fig. 5.11 The four paths used to compute permeability terms and aggregated cost for algorithm
[5]

techniques [21] potentially suited to the constrained FPGA architecture, thanks to the
reduced (and constant) number of operations required with respect to explicit cost
aggregation approaches inspired by bilateral filtering. Despite these positive facts,
the results provided by these constant time algorithms are comparable to those based
on explicit cost aggregation, and hence these algorithms are potentially suited for
implementation in the outlined target platform.

Concerning FPGA implementations based on adaptive weights strategy, [8]
reported a hardware friendly implementation of the original AW approach [46].
In [24], a further simplification of the AW approach based on simpler binary weights
was devised. A method based on the mini-census transform for cost computation
and the two-pass approach [43] for cost aggregation is [4] while [49] used, with the
same cost function, the two pass orthogonal cost aggregation strategy proposed in
[48]. An FPGA implementation of a cost aggregation strategy based on segmenta-
tion is reported in [38]. Finally, an interesting method based on adaptive weight cost
aggregation, identification of reliable points and disparity refinement, by means of
an effective method aimed at enforcing local consistency [20] of the disparity field,
was proposed in [16].

5.5.1.3 Algorithms Based on Unconstrained Supports

According to the taxonomy provided in [29], the algorithms reviewed in the previous
sections clearly belong to the class of local algorithms. However, there are some
local algorithms that significantly diverge from traditional approaches, in particular
for what concerns the support regions used for cost aggregation.

An interesting local approach, referred to as Permeability, was proposed in [5].
This technique performsmultiple 1Dcost aggregations constrained by an information
permeability term (see [5] for a detailed explanation) computed along horizontal or
vertical scanlines, as shown in Fig. 5.11, without enforcing any explicit smoothness
term. The permeability term, computed along the horizontal scanline from left to
right is defined as follows:
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WLR(x, y) = e− |I (x,y)−I (x−1,y)|
σ (5.1)

with I (x, y) and I (x − 1, y) the pixel intensity at coordinate (x, y) and (x − 1, y),
respectively, in the reference image and σ an appropriate empirically determined
constant value. The aggregated cost computed along the same horizontal scanline
anddirection, from left to right in the considered example, is then computed according
to:

CLR(x, y, d) = C(x, y, d) + WLR(x − 1, y) · CLR(x − 1, y, d) (5.2)

This strategy, applied to both horizontal directions depicted in Fig. 5.11 and along
both vertical directions on horizontally aggregated costs, efficiently enables to adap-
tively perform cost aggregation on unconstrained 2D support windows. More pre-
cisely, cost aggregation is initially independently performed along horizontal scan-
lines (from left to right (LR) and right to left (RL)). Then, a similar approach is applied
along vertical directions (from top to bottom (NS) and bottom to top (SN)) to the
summed aggregated matching cost computed along horizontal paths. In practice, in
this method, the support window implicitly consists of the entire image. Although
this strategy requires us to store the entire image and matching costs, a simplification
of the original approach restricted to a subset of scanlines (e.g., from left to right,
from right to left, and from top to bottom) is certainly feasible for the constrained
target computing architecture outlined.We report in Sect. 1.6, results concerned with
our hardware friendly implementation of the Permeability algorithm based on two
single directions. Another implementation suited to FPGAs was proposed in [1].

Finally, a different and effective algorithm that, similarly to the previous method,
does not explicitly define a fixed support window was proposed in [45]. In this
approach, the matching costs are aggregated using as weights the minimum intensity
distance between any two points in the reference image. These weights are stored
in a tree structure and, to this aim, a MST (Minimum Spanning Tree ) containing a
number of nodes equal to the number of image points is created. This enables to very
efficiently and in constant time obtain for each point the aggregated weighted cost
computed on the whole image. Nevertheless, although this method is very fast and
effective on traditional CPU or GPU architectures, in its original formulation, it, due
to the memory footprint required to store the MST, seems inappropriate to a target
computing architecture without being provided with external memory devices, such
as DDR memory.

5.5.2 Global and Semiglobal Approaches

Although local algorithms described so far yield excellent results, they are often out-
performed by approaches that explicitly enforce a smoothness term on the resulting
disparity map. These methods solve the correspondence problem in terms of a pixel-
labeling assignment of disparities, determining the disparity field D that minimizes

http://dx.doi.org/10.1007/978-3-319-09387-1_1
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the energy term (5.3):

E(D) = Edata(D) + Esmooth(D) (5.3)

The data term Edata in (5.3) encodes how well the disparity assignment fits with
the stereo pair, and often it is the sum of per-pixel data costs C(D(p)) between one
point in the reference image R and the supposed homologous point in the target
image T :

Edata(D(p)) =
∑

p∈R

C(D(p)) (5.4)

In (5.3), the smoothness term Esmooth(D) enables to enforce a piecewise disparity
field D by modeling the interaction between each point p and its neighboring points
q ∈ N (p). In fully global approaches, N (p) includes points in vertical and hori-
zontal directions (typically, the four nearest neighbors of p on the pixel grid) while
in 1D approaches, based on Scanline Optimization (SO) or Dynamic Programming,
the smoothness term is enforced only in one direction (typically N (p) includes
only one point along a scanline). The former disparity optimization methods are
typically referred to as 2D. In general, 2D methods perform better as they enable the
enforcement of inter and intra scanline smoothness assumptions.

Unfortunately, when deploying a 2D approach, minimization of (5.3) turns out to
be anN P-hard problem. Therefore, global approaches typically rely, under partic-
ular hypotheses [32] on (5.3), on efficient energy minimization strategies typically
based on Graph Cuts (GC) or Belief Propagation (BP). However, the iterative nature
of these energy minimization strategies and their high memory footprint typically
render these approaches inappropriate for devices with limited resources such as for
our target architecture.

Nevertheless, a subclass of these algorithms that enforces disparity constraints on
1D domains by means of dynamic programming such as [43] or multiple scanline
optimization [13] represents, for the outlined target computing architecture, a viable
and effective alternative to local approaches. In particular, the semiglobal matching
algorithm [13] computes multiple energy terms by means of the SO technique [29],
independently enforcing 1D smoothness constraints along different paths (typically
8 or 16 from all directions as depicted in Fig. 5.12 for 8 paths).

The 1Denergy terms independentlyminimized bymeans of the scanline optimiza-
tion approach are then summed up and the best disparity is determined by means of
the same WTA strategy adopted by local algorithms. Figure5.13 shows, at top and
middle, the disparity maps concerned with two 1D minimizations, independently
computed along paths 0 and 5, and, at the bottom of the figure, the result of the
multiple 1D optimization computed along eight paths. Observing the figure, we can
notice that, although single scanline optimizations are not very accurate, their com-
bination by means of the method proposed in [13] turns out to be very effective as
can be seen, using eight paths, at the bottom of Fig. 5.12.
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Fig. 5.12 The semiglobal algorithm [13], on each path, performs independent 1D disparity opti-
mizations. The figure considers only eight paths

The strategy adopted by SGM enables fast implementations on CPUs and GPUs
and it is very effective. For these reasons, SGM is frequently deployed in many
practical applications. However, in its original formulation, due to its high memory
footprint (it requires the entire DSI), it is not well suited to a computing architecture
without a large amount of fast externalmemory.Moreover, in its original formulation,
the SGM algorithm scans reference and target images two times (from top to bottom
and then from bottom to top) making unfeasible the stream processing methodology
required by our target architecture.

Nevertheless, by deploying a subset of the original paths (e.g., only four paths),
the SGM algorithm becomes suitable with acceptable performance degradation for
our target platform. We report in Sect. 5.6 experimental results concerned with our
implementation of the SGM algorithms adopting this strategy.

ConcerningFPGA implementations of theSGMalgorithm,Gehrig et al. [9] imple-
mented the original algorithm proposed in [13] by means of a two-pass approach on
downscaled half resolution input images (originally at 680) using 8 paths. Differ-
ently, Banz et al. [3] proposed a simplified version of the SGMalgorithm for hardware
implementation aimed at reducing memory constraints using 4 paths (0, 4, 2 and 7
in Fig. 5.13).

5.6 Experimental Results

In this section, we report preliminary experimental results concerned with the imple-
mentation of three stereo vision algorithms—belonging to the three classes defined
in the previous section—in the outlined computing architecture made of a sin-
gle FPGA without additional external devices, with the exception of a high-speed
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Fig. 5.13 Top, 1D scanline optimization along scanline 1—Middle, 1D scanline optimization along
scanline 4—Bottom, result of the SGM algorithm performing multiple 1D scanline optimizations
along the eight paths shown at the left

communications controller as depicted in Fig. 5.2. Each of these algorithms, as well
as all of the other blocks depicted in the figure, was mapped on a Spartan 6 FPGA 45
and delivers depthmaps at 30+ fps when processing stereo pairs atWVGA resolution
as those deployed by our camera.

Specifically, the algorithms currently implemented in our target architecture are:
FW using the optimization strategies previously outlined, a modified version of
the Permeability algorithm [5] using two paths and a modified version of SGM
[13] using four paths. Each implementation of these algorithms also includes image
rectification, a prefiltering step based on the x-Sobel filter, and a postprocessing
step aimed at filtering outliers by detecting uniformly textured regions as well as
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by detecting unreliable disparity candidates analyzing their local distribution. The
design also mapped into the FPGA also includes the internal FIFO and all the other
modules depicted in Fig. 5.2.

For evaluation purposes, we provide in Fig. 5.1 experimental results concerned
with the three implemented algorithms processing frame �66 of the KITTI dataset
[10]. Observing the figure, where in the disparity maps brighter greyscale levels
encode closer points and darker levels farther points, we can see that all three algo-
rithms enable us to obtain dense and fairly accurate disparitymaps of this challenging
stereo pair. Observing the trees in the right side of the reference frame, we can notice
that the SGM algorithms seems less noisy compared to the two local algorithms. In
the same figure, we can also notice the most unreliable (e.g., occlusions) and uniform
regions (e.g., shadows) are correctly detected by the postfiltering modules.

At this link http://www.youtube.com/watch?v=KXFWIvrcAYo is available a
video2 concerned with an outdoor sequence processed by our modified version of the
SGM algorithm implemented on the outlined constrained target architecture. In this
case, the stereo camera, based on a Spartan 6 Model 75, was configured with a very
short baseline of about 4cm. Observing this video, we can notice that the camera
provides, at high frame rate, very accurate and dense depth maps processing stereo
pairs at 640× 480 resolution. In the video, we can also notice that the outlier detec-
tion module implemented into the FPGA correctly detects most unreliable disparity
measurements.

5.7 Conclusions

In this chapter, we have reviewed stereo vision algorithms that, with appropriate
modifications, are suited for implementation on a basic computing architecture made
of a single low-cost FPGA without additional external devices. Algorithms mapped
on such architecture provide accurate and dense depth maps in real time enabling to
obtain a small, low-power, and low-cost RGBD stereo vision sensor self-contained
into an FPGA.
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