
Chapter 4
Computer Vision for Micro Air Vehicles

Roland Brockers, Martin Humenberger, Yoshi Kuwata, Larry Matthies
and Stephan Weiss

Abstract Autonomous operation of small UAVs in cluttered environments requires
three important foundations: fast and accurate knowledge about position in the world
for control; obstacle detection and avoidance for safe flight; and all of this has to
be executed in real-time onboard the vehicle. This is a challenge for micro air vehi-
cles, since their limited payload demands small, lightweight, and low-power sensors
and processing units, favoring vision-based solutions that run on small embedded
computers equipped with smart phone-based processors. In the following chapter,
we present the JPL autonomous navigation framework for micro air vehicles to
address these challenges. Our approach enables power-up-and-go deployment in
highly cluttered environments without GPS, using information from an IMU and a
single downward-looking camera for pose estimation, and a forward-looking stereo
camera system for disparity-based obstacle detection and avoidance. As an exam-
ple of a high-level navigation task that builds on these autonomous capabilities, we
introduce our approach for autonomous landing on elevated flat surfaces, such as
rooftops, using only monocular vision inputs from the downward-looking camera.

4.1 Introduction

Miniature rotorcrafts are an ideal platform for exploration and reconnaissance
missions, since they can operate in highly cluttered environmentsforest, close to
the ground) or confined spaces (indoors, collapsed buildings, caves) and allow with

R. Brockers (B) · Y. Kuwata · L. Matthies · S. Weiss
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
e-mail: roland.brockers@jpl.nasa.gov

Y. Kuwata
e-mail: kuwata@alumni.mit.edu

L. Matthies
e-mail: lhm@jpl.nasa.gov

S. Weiss
e-mail: stephan.weiss@ieee.org

M. Humenberger
AIT Austrian Institute of Technology, Vienna, Austria
e-mail: martin.humenberger@ait.ac.at

© Springer International Publishing Switzerland 2014
B. Kisačanin and M. Gelautz (eds.), Advances in Embedded Computer Vision,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-3-319-09387-1_4

73

74 R. Brockers et al.

their hovering ability to position a sensor payload in 3D space only constrained by
the mission profile. However, in order to be deployable, a human–machine interface
which allows an operator to easily control such a platform is key. The ingredient
that most facilitates operation is autonomy, since autonomous vehicles can execute
high-level commands without any further human interaction.

Thus, it requires the vehicle to know its position within the environment, and
to have a capability to avoid collisions in flight and during takeoff and landing.
All processes enabling such autonomy have to be implemented onboard, without
requiring any external sensor input.

Miniature rotorcrafts (e.g., quadrotors) offer very high maneuverability and agility
but require high rate of control because of their natural instability. Subsequently, sen-
sor signals and images used for accurate pose estimation and for control input need
to be processed fast. Since the platform has to be self-contained and payload capac-
ities on micro air vehicles (MAVs) are in general very limited, only light-weight
and low-power sensors and processing units can be used on-board the vehicle. This
favors vision-based solutions that use small light-weight cameras and microelectro-
mechanical systems (MEMS) inertial sensors. As recent developments in multicore
smartphone processors are driven by the same size, weight, and power (SWaP) con-
straints, MAVs can directly benefit from new products that provide more computa-
tional resources at lower power budgets and low weight. This enables miniaturization
of aerial platforms that are able to perform navigation tasks fully autonomously. In the
subsequent sections, we introduce our autonomous navigation framework with focus
on pose estimation, collision avoidance, and an example for a high-level navigation
task that builds on these lower level functions: autonomous landing.

Viable solution for GPS-independent pose estimation from visual and inertial sen-
sor inputs have been proposed in the literature [29, 41]. However, a major algorithmic
challenge is to process sensor information at high rate to provide vehicle control and
high-level tasks with real-time information about position and vehicle states.

In Sect. 4.2, we approach the issue of processing the vast camera information in
real-time, rendering the camera a 6 degrees of freedom (DoF) pose sensor or a 3DOF
velocity sensor. We discuss two methods representing two flavors of vision-based
MAV state estimation. The first is a map-based approach using feature matches
over long periods. The second is a map free and thus inherently fail-safe approach
without using any kind of feature history. We will discuss that the first approach is
more suitable for local drift-free navigation, while the latter is useful as a fall-back
to keep the MAV airborne if a map corruption occurs. We will show that such an
approach can quickly stabilize a thrown MAV and keep it at a constant heading and
distance to the scene even though only two consecutive images and no feature history
are used.

Once pose estimation is available, higher level autonomous navigation tasks which
leverage and require this information can be executed. Examples for such tasks
are: obstacle avoidance, autonomous landing, ingress, surveillance, exploration, and
other.

In order to maneuver safely in highly cluttered environments and at low altitude,
a MAV needs the ability to detect and avoid obstacles in its flight path autonomously.

4 Computer Vision for Micro Air Vehicles 75

Sophisticated solutions using active sensors (lidar, radar, etc.) exist for large aircraft,
but they are in general unsuitable for small platforms with limited power, payload,
and computational resources. To cope with these limitations, we developed a novel
stereo vision-based obstacle avoidance approach, that is especially suited for onboard
implementation on small aerial vehicles. Our approach is inspired by bird vision [36],
using a forward-looking stereo camera system to provide depth information in the
direction of flight, that can be expanded by range estimates from peripheral monoc-
ular optical flow. In Sect. 4.3, we explain our stereo vision-based obstacle avoidance
system, that is designed for fast execution with small memory footprint by using: (1)
a polar-perspective world representation in disparity space; (2) configuration space
(C-space) expansion in image space; and implements (3) collision checking as a
z-buffer like operation in disparity space. For motion planning, we use a closed-loop
RRT approach that incorporates a vehicle model to plan local avoidance maneuvers
in full 3D, which we believe to be scalable for flights at higher speeds.

As an example for a high-level navigation task, we explain autonomous landing
with our MAV platform in Sect. 4.4. Autonomous landing is especially important not
only for safety reasons, but also for mission endurance. Small rotorcrafts inherently
suffer from overall short mission endurance, since payload restrictions do not allow
carrying large batteries. For surveillance or exploration tasks, endurance can be
greatly improved by not requiring the platform to be airborne at all time. Instead,
such tasks may even favor a steady quiet observer at a strategic location (e.g., high
vantage points like rooftops or on top of telephone poles)—still with the ability to
move if required—which also could include recharging while in sleep mode (e.g.,
from solar cells).

4.1.1 Embedded Hardware Platforms

To evaluate the performance of our algorithms on an embedded system, we tested our
framework with two different MAV platforms: an Asctec Pelican quadrotor equipped
with an Asctec Mastermind flight computer (Core2Duo, 2 × 1.86 GHz CPU [4]) (total
weight: ∼1.3 kg), and an Asctec Hummingbird quadrotor equipped with either an
Odroid-X2 or a modified Odroid-U2 flight computer (total weight: ∼500 g; Fig. 4.1).

Both Asctec MAV platforms share the same low-level autopilot boards that include
a MEMS IMU, and were equipped with a downward-looking Matrix Vision cam-
era (mvBlueFOX-MLC200wG, CMOS, 752 × 480, grayscale, global shutter, up to
90 fps, 18.3 g with 100 FOV lens) that is connected to the flight computer.

The Odroid board (manufactured by Hardkernel [21]) is based on the Samsung
Exynos 4412 system-on-a-chip (SoC)— a quadcore microcontroller for mobile appli-
cations that provides four ARM-cortex A9 for parallel computation, while only con-
suming 2.2 W (CPU only). For our implementation, we removed all non-necessary
hardware components from the U2 in order to save weight, which included various
connectors and the original heat sink. The final weight of the U2 flight computer was
12 g including the SD card which hosts the operation system.

76 R. Brockers et al.

Fig. 4.1 Asctec Hummingbird with Odroid-U2 flight computer mounted on top

4.2 Pose Estimation

We start with explaining our pose estimation framework that is running onboard our
quadrotors only using inputs from a camera and an IMU. We first present the related
work followed by the detailed description of our two approaches and conclude with
experimental results using the embedded hardware.

4.2.1 Related Work

Autonomous flights in unknown environments exclude the use of motion capture
systems for MAV pose estimation as done for example in [39]. Furthermore, using
GPS is not always reliable due to effects such as shadowing or multipath propagation
in city-like environments. Therefore, commonly used sensors for GPS-independent
MAV state estimation are stereo [38] and monocular cameras [63] as well as laser
scanners [57]. Since heavy sensors cannot be used on low SWaP platforms and addi-
tional payload directly reduces endurance, monocular visual-inertial state estimators
might be the most viable choice for MAVs.

Processing the vast information of the camera is a computationally complex task
and cannot be processed at high rate. Multicopter MAVs require fast and precise con-
trol (and thus state estimates) at all times because the systems are inherently unstable.
Hence, we propose to fuse the visual information with high-rate inertial cues from an
IMU. We can categorize such a fusion into loosely-coupled and tightly-coupled. The
loosely-coupled philosophy treats the inertial and visual units as two separate mod-
ules running at different rates and exchanging information, while the tightly-coupled
paradigm combines both sources of information into a single, optimal filter. In gen-
eral, loosely-coupled approaches are much less computationally expensive, since
they use the low-dimensional processed visual information as measurement rather
than every single feature. For this reason, we discuss a loosely-coupled Extended
Kalman Filter (EKF) approach in this work. Among the loosely-coupled approaches
are the works of [2, 3, 15, 19, 42, 51, 67], while among the tightly-coupled ones
are those of [8, 13, 24, 27–29, 33, 34, 47, 58].

4 Computer Vision for Micro Air Vehicles 77

A filter-based approach not only allows to estimate the pose of the vehicle for
control but also can estimate calibration parameters such as IMU biases, camera-IMU
extrinsics, and visual drifts. Such self-calibration is crucial for long-term missions
and renders the system power-up-and-go without the need of pre-mission calibration
procedures. With a map-free inherently fail-safe vision module as we discuss below,
it is further possible to eliminate the visual initialization procedure and failure modes.
This literally renders the MAV throw-and-go as the MAV can be powered on and
immediately be thrown in the air to deploy it.

4.2.2 Visual-Inertial State Estimation Approaches

A camera can be used in various ways to compute its pose in 3D space. We will
discuss two approaches which can be classified into two main categories which we
call map-based and map free. The first is a key frame-based visual odometry approach
using a local map to estimate the arbitrarily scaled 6DoF of the camera. The second
approach does not use temporal information or features (i.e., a local map) but only
uses the current optical flow measurement to estimate the 3DoF arbitrarily scaled
camera velocity vector, 3DoF attitude of the MAV, and distance to the current scene.

4.2.2.1 Map-Based Approach

The first approach is described in detail in [63, 67] which shows that, fusing with an
IMU, we can navigate a MAV in large environments and high altitude with visual
and inertial cues only. Because of robustness, real-time performance, and position
accuracy, the keyframe-based solution proposed in [31] was selected and tailored to
run on our embedded architecture. Our implementation uses a downward-looking
camera and executes a sliding-window, vision-based self localization and mapping
(VSLAM) feature tracking approach to extract pose estimates from visual inputs,
maintaining constant computational complexity. This method is viable for large out-
door environments and long missions—only limited by the battery lifetime and not
by processing power nor memory. We show how the proposed algorithm in [63] can
be implemented on a 12 g, 5 W processing unit while still running at 50 Hz. This
renders even a very light-weight MAV truly power-on-and-go.

The 6DOF pose of the VSLAM algorithm is fused with the inertial measurements
of an IMU using an Extended Kalman Filter (EKF). More details are given in [63, 67].
An EKF framework consists of a prediction and an update step. The computational
load required by these two steps is distributed among the different units of the MAV
as described in [64]. The state of the filter is composed of the position pi

w, the attitude
quaternion q i

w, and the velocity vi
wof the IMU in the world frame. The gyroscope

and accelerometer biases bω and ba as well as the missing-scale factor λ are also
included in the state vector. For completeness, the extrinsic calibration parameters
describing the relative rotation qs

i and position ps
i between the IMU and the camera

78 R. Brockers et al.

frames were also added. This yields a 24-element state vector X :

X = {piT
w v iT

w q iT
w bT

ω bT
a λ ps

i qs
i }. (4.1)

Details about the EKF prediction and update equations can be found in [63]. A
nonlinear observability analysis [62] reveals that all state variables are observable,
including the intersensor calibration parameters ps

i and qs
i . Note that the VSLAM

pose estimates are prone to drift in position, attitude, and scale with respect to the
world-fixed reference frame. Since these quantities become observable when fus-
ing with an IMU (notably roll, pitch, and scale), gravity-aligned metric navigation
becomes possible even in long-term missions. This is true as long as the robot excites
the IMU accelerometer and gyroscopes sufficiently as discussed in [29]. Additionally,
since the gravity vector measured by the IMU is always vertically aligned during hov-
ering, the MAV will not crash due to gravity misalignment—even during long-term
operations.

4.2.2.2 Map-Free Approach

The map-based approach described above is locally drift free. However, it requires
to redetect the same features over several camera frames. This is prone to failure and
mismatches, and can lead to corrupting the local map which in turn can lead to a
crash of the MAV because of a wrong state estimate based on the corrupted map.

In [65, 66], we present an approach which only uses two consecutive camera
images and inertial cues for MAV navigation. This inertial-optical flow (IOF)-based
approach does not use any kind of history that can be corrupted and does not require
to find the same features in later frames. In [66], we show that we still can estimate the
metric velocity of the MAV, its metric distance to the scene, and its full attitude (roll,
pitch, yaw) drift free while maintaining a self-calibrating system. That is, in addition
to the states used for control, we can estimate the IMU biases and the camera-IMU
extrinsics, and do not need specific calibration steps prior to launch. In fact, in this
work, we show that this state estimation is robust and fast enough such that the MAV
can be deployed by simply tossing it into the air rendering it a throw-and-go system.
The state vector

χ = {pi
wvi

w q i
w bω ba Λ pc

i qc
i α} (4.2)

contains the IMU-centered MAV position pi
w, velocity vi

wand attitude q i
wwith

respect to the world frame. It also contains the IMU biases on gyroscopes bω and
accelerometers ba, the common visual scale factor Λ and the 6D transformation
between the IMU and the camera in translation pc

i and rotation qc
i . The system can

additionally estimate the inclination α of the scene plane it currently observes (see
Fig. 4.2).

A nonlinear observability analysis reveals that all states are observable except two
dimensions in position. This is expected since optical flow and inertial measurements

4 Computer Vision for Micro Air Vehicles 79

Fig. 4.2 Frame setup and state definition for the EKF framework. Without loss of generality, we
can lock the gravity-aligned world y-axis along the terrain plane. The terrain plane normal vector
can then be described as nwtp = [cos(α) 0 sin(α)]T in the world frame. The red values are states
estimated in the EKF framework, whereas the blue values are the scaled visual measurements
normalized with our proposed approach aid of the terrain plane

only allow to estimate the distance to the scene. If this scene is inclined with respect
to gravity, the system additionally can estimate the vehicle’s heading with respect
to the scene. Motion in parallel to the scene plane, however, is unobservable. We
could overcome this issue and implement position hold by a place recognition or
feature-tracking method. However, this would include a feature history and would
defeat the purpose of a fail-safe algorithm.

Without having any type of history, an erroneous measurement will get rejected
in the EKF update but would not corrupt a map, i.e., the next measurement will
be independent of the previous one which is in line with the EKF assumptions.
Such an inherently fail-safe approach allows the MAV to move very quickly and in
an agile way since erroneous measurements get rejected and simply the next good
measurement is taken into the filter process.

4.2.3 Embedded Implementation

While the previous sections described our algorithms, this section focuses on their
implementation, parameter selection, and design choices on the embedded comput-
ing architecture on a MAV. To evaluate performance differences and the influence of
weight reduction, we implemented our algorithms on the two different MAV plat-
forms mentioned in Sect. 4.1.1, an Asctec Pelican quadrotor equipped with an Asctec
Mastermind flight computer and an Asctec Hummingbird quadrotor equipped with
an Odroid-U2 flight computer (Table 4.1). This renders even a very lightweight MAV
truly throw-and-go.

80 R. Brockers et al.

Table 4.1 SWaP performance of tested computing platforms

Platform Size
(footprint)
(mm)

Weight
(g)

Power
consumption
(W)

Cores Vision
front-end
frame rate
(Hz)

CPU load
(%)

Workload
(%)

Asctec
mastermind

144 × 135 300 30 2 30 59 30

Odroid-X2 dev.
board (4412)
including heat
sink

90 × 94 122 8 4 30 125 31

Odroid-U2
(4412) stripped
down version

48 × 52 12 5 4 30 125 31

Fig. 4.3 System overview of the vision-aided pose estimation frame work

4.2.3.1 Map-Based Approach

Figure 4.3 gives an overview of the distributed implementation of our approach on
the vehicle. All computational-expensive components are executed on the high-level
flight computer, which includes VSLAM and pose filter update (EKF-update) as well
as landing site detection. The EKF-update is passed down to the prediction loop that
is executed on the autopilot board for efficiency reasons: the prediction loop, which
includes IMU integration, and the position controller that uses the estimated pose to
control the vehicle, both run at 1 kHz on a dedicated ARM7 microcontroller.

4 Computer Vision for Micro Air Vehicles 81

We ported the initial estimator implementation from the Asctec Mastermind to
the U2 by using system specific changes in order to speed up the execution on the
SoC. We used a highly ARM-customized Ubuntu version as operating system and
Robot Operating System (ROS) [49] for interprocess communication. Our VSLAM
implementation primarily consist of a tracking and a mapping part which we enforce
to be executed on separate cores. Tracking is the most critical part, since it yields
instantaneous pose measurements which are used to generate filter updates. There-
fore, running this part on a dedicated core ensures uninterrupted pose handling at all
time. Mapping is responsible for pose refinement and windowed bundle adjustment,
and is thus less time critical. Note that the adjustments are refinements and we do
not use global loop closure techniques. This avoids large and abrupt pose changes.
Since the mapping task runs at a lower frequency and is less time critical, it shares
its dedicated core with other system tasks. After optimization, the vision front end
produced visual pose estimates at a stable 50 Hz rate.

4.2.3.2 Map-Free Approach

Our inertial-optical flow (IOF)-based approach is designed to keep the MAV airborne
at all times in a fail-safe manner. Thus, it has to have low-computational cost requiring
low system resources and it has to be fail safe.

We implement IOF on our 12 g Odroid-U2 platform and use similar NEON
optimization instructions than for the above explained map-based approach. We use
the same (FAST) feature extraction method but simplified the matching process by
not warping patches. Since we only use two consecutive images at high frame rate,
the distortion is small and warping is not required.

Computing the normalized camera velocity vector requires normalizing all optical
flow vectors with their scene depth. As detailed in [65], this normalization uses
a computational complex SVD per feature i including the optical flow ẋi (t), the
feature direction vector xi (t), and the camera velocity direction vector v(t). The
unknowns are the feature scale factor and scale factor change λ̇i (t), λi (t) and velocity
normalization factor η:

λ̇i (t)xi (t) + λi (t)ẋi (t) = ηv(t). (4.3)

which can be stacked to a feature×features matrix M containing optical flow and
velocity vector measurements (xi (t), ẋi (t), v(t)) and λ is the solution vector con-
taining a scale factor per feature (λ̇i (t), λi (t)) and a scale factor η for the velocity
vector. λ is a solution up to an arbitrary global scale (which will be estimated in the
EKF using the IMU). Thus without loss of generality, we can set η = 1 and use the
block sparsity of M to efficiently compute the SVD in a block-wise parallel fashion
on the Odroid-U2. The optimized code runs at 50 Hz with an image resolution of
572 × 480 (WVGA) on the Odroid-U2 using only about 20 % of the overall compu-
tation capacity of system.

82 R. Brockers et al.

-0.2

-0.1

0

0.1

-0.3-0.2-0.100.10.20.3
y [m]

x
[m

]

Pelican + Core2Duo

-0.2

-0.1

0

0.1

-0.3-0.2-0.100.10.20.3
y [m]

x
[m

]

Hummingbird + X2

-0.2

-0.1

0

0.1

-0.3-0.2-0.100.10.20.3
y [m]

x
[m

]

Hummingbird + U2

(a) (b) (c)

Fig. 4.4 Hover performance of the Pelican with Mastermind (a), the Hummingbird with a heavier
Odroid-X2 evaluation board (b), the Hummingbird with modified U2 (c)

4.2.4 Experimental Evaluation: Map Based

To evaluate the influence of the reduced weight on the control stability of the platform,
we executed a position hold maneuver with all three vehicle/flight computer con-
figurations, where the MAV was controlled only with position estimates from our
pose estimation software (the vision front end was again executed at a frame rate of
30 Hz).

Neglecting the influence of different flight performances of the two quadrotor
systems, the reduced gross weight resulted in significantly better control perfor-
mance: the hovering ellipse was reduced from ±35 cm for the heavy Asctec Pelican
with Mastermind (RMS(x y z) = [8.3 cm 15.8 cm 1.5 cm]) to about ±15 cm for the
Hummingbird with the X2 (RMS(x y z) = [5.4 cm 5.7 cm 1 cm]) and to ±7 cm for
the Hummingbird with the final stripped down version of the U2 (RMS(x y z) =
[2.9 cm 3.0 cm 0.8 cm]) (Fig. 4.4). Extensive tests in different environments were
done in [63].

4.2.5 Experimental Evaluation: Map Free

We showed in [66] that we can control the MAV with IOF drift free in metric velocity,
full attitude, and metric scene distance. Being able to keep the MAV constant in
heading and scene distance is crucial for automatic initialization of more powerful
algorithms (e.g., VSLAM) to control the vehicle in full 6DoF pose. Our IOF approach
is sufficiently robust to estimate the vehicle pose even in drastic motion as it occurs
when tossing the MAV in the air.

We start our IOF-based state estimation at t = 38 s and toss it at t = 42. The 4 s of
“initialization” are sufficient to stabilize the MAV after the throw. After about 1 s the
vehicle stabilizes already in attitude and in velocity. The convergence of the scene
depth requires about 6 s longer. This is due to the wrong initialization of the metric
scale factor which generally converges slower than the other states in the system.

Once all states are converged and the vehicle fully stabilized (after about 7 s in the
test in Fig. 4.5), we have time to initialize a full VSLAM system as shown in [65].

4 Computer Vision for Micro Air Vehicles 83

40 45 50 55 60

0

10

20

ac
ce

le
ra

tio
n

[m
/s

2]

time [s]
40 45 50 55 60

-2

0

2

gy
ro

sc
op

e
[r

ad
/s

ec
]

time [s]

40 45 50 55 60

-1

0

1

2

ve
lo

ci
ty

 [m
/s

]

time [s]
40 45 50 55 60

1

1.2

1.4

sc
en

e
di

st
an

ce
 [m

]

time [s]

Fig. 4.5 Acceleration and velocity in x (blue), y (green) and z (red) when throwing the MAV in
the air. At the throw, the MAV experiences an acceleration of 16.5 m/s2 (top left). The angular
velocities when throwing the MAV rise to 190 ◦/s (top right). And the velocity rises up to 2.3 m/s
(bottom left). The scene depth is estimated correctly at all times (bottom right) and that the MAV
can maintain it drift free after convergence. This allows good initialization of a subsequent, more
powerful VSLAM algorithm

4.3 Obstacle Detection and Avoidance

The ability to sense obstacles and avoid collisions autonomously is a critical safety
component for MAVs flying in cluttered environment and at low altitude (Fig. 4.6).
Driven by payload and processing constraints and the requirement to accurately detect
every obstacle within collision range, new algorithms have to be developed that reflect
the limited capabilities of such small platforms. In the following section, we present
our obstacle avoidance subsystem that uses stereovision for range perception, and a
polar-perspective, inverse-range world representation (disparity space) for collision
checking. The perception system is used by a closed-loop RRT motion planner, to
navigate around detected obstacles, incorporating vehicle dynamics.

4.3.1 Related Work

Significant progress has been made recently on deliberative obstacle avoidance using
active optical range sensors, such as single-axis scanning lidar and RGB-D structured
light [5, 56]. The lack of a second axis for scanning lidar is a significant limitation
and structured light sensors are ineffective in sunlight. Very compact, electronically
beam-steered radar with large maximum range is under development for this appli-
cation, but again has a single-axis scan [52]. Optical flow can cover a wide field
of view and has been used for reactive obstacle avoidance [14, 25]; however, this

84 R. Brockers et al.

Fig. 4.6 Asctec Pelican quadrotor flying through forest

only provides information when the aircraft is moving, and poor estimation of time
to collision near the focus of expansion limits the ability to perceive obstacles in
the direction of motion. Stereo vision can provide 3D perception around the focus
of expansion whether the aircraft is moving or not, but so far with relatively short
look-ahead distance [18]. Stereo and optical flow have been used together in purely
reactive obstacle avoidance based on sparse perception with point features [23].

The most common obstacle representations for MAV are image space data
products that serve reactive obstacle avoidance [14, 25, 50] and Cartesian voxel
data structures that serve deliberative planning [5, 18, 56]. Reactive obstacle avoid-
ance with image space data structures use very little memory and computation, but
have limited ability to reason about 3D structure and vehicle dynamics. Cartesian
voxel data structures enable much greater 3D reasoning, have mature temporal fusion
algorithms for error reduction, and have been used to plan high speed, aggressive
maneuvers [48]; however, they use much more memory and computing time. Uniform
voxel sizes are also problematic for representing both very near and very far objects,
which can lead to more complex, multiresolution data structures. Polar representa-
tions parameterized by azimuth and range have been used in a few efforts because
they naturally capture range-dependent variations in angular and range resolution
[7, 68]; however, these efforts were only tested in simulation and [68] only repre-
sented sparse, discrete obstacles. Some stereo vision-based navigation systems for
ground vehicles have had characteristics that are interesting for MAVs. A simple ver-
sion of collision testing and path planning with the stereo disparity image was done
in [44]. A 2D polar grid-based representation in the ground plane was used in [6],
where the radial axis was parameterized as inverse range; this matched the angular
and range resolution characteristics of stereo and gave a compact representation of
all space from a minimum range to infinity. This was used to represent and reason
about distant obstacles, while a 2D Cartesian map was used for nearby obstacles.
Inverse range is equivalent to nearness fields that have been used for reactive MAV
obstacle avoidance with optical flow [25].

4 Computer Vision for Micro Air Vehicles 85

Reactive obstacle avoidance controllers have been based on image space nearness
fields computed from optical flow [25] and trained from human behavior via imitation
learning [50]. Recent deliberative planners have used techniques including anytime,
incremental A* for nonsymmetric vehicles moving slowly in cluttered spaces [35]
and RRT* with path optimization [48] and lattice search with precomputed motion
primitives [45] for fast, aggressive maneuvers.

4.3.2 Vision-Based Autonomous Navigation System

Traditional deliberative motion planning approaches usually implement a 3D
grid-based world representation to expand trajectories and check for collisions [5,
18, 56], and more or less assume that a planned trajectory would be accurately fol-
lowed by a relatively slow moving vehicle. Applying such an approach to a micro
air vehicle generates several issues. Computational resources usually do not permit
processing large 3D grid representations in reasonable time, and the agility of the
system requires a complex planning approach which incorporates additional vehicle
states to reflect fast vehicle dynamics. In our approach, we introduce two key features
to mitigate these issues. To reduce complexity of path verification, our system uses an
image-based world representation generated from stereo vision with a fixed memory
footprint, and to allow planning in a low-dimensional planning space, trajectories
are planned over closed-loop vehicle dynamics.

Figure 4.7 gives an overview of our system architecture. 3D perception follows
a stereo vision pipeline. When images are acquired with a forward-looking stereo
camera head, a stereo disparity map is calculated with a real-time stereo algorithm,
and then expanded into configuration space (C-space), which is used for collision
checking. Stereo, C-space expansion, and collision checking all take place within
an image-based representation: 3D world points are characterized by their polar-
perspective image coordinates in the frame of the reference camera and an assigned
stereo disparity value (disparity space). The resulting 2.5D inverse-depth representa-
tion is very well suited for fast obstacle avoidance: close range where accurate object

image
acquisition

pose
estimation

motion
planner

vehicle
controller

stereo
disparity

C-space
expansion

collision
checker

disparity space (2.5D) world space (3D)

goal

Fig. 4.7 Autonomous navigation system architecture

86 R. Brockers et al.

reconstruction is essential, is resolved with the highest accuracy, whereas accuracy
for far distances decreases. At the same time, the polar-perspective character of an
image-based representation significantly reduces the memory foot print of a world
representation, making this method suitable for small hardware platforms.

The vehicle navigation system follows a standard control loop scheme: the motion
planner module plans 3D vehicle trajectories in world space based on vehicle pose
and a predefined goal input, and issues control commands to a vehicle controller,
which maneuvers the vehicle. For collision checking, 3D trajectory segments are
projected into disparity space and verified using the C-space map.

In our simulated experiments, we use simulated vehicle positions as pose esti-
mation inputs. Our onboard implementation uses a vision-aided pose estimation
approach [65] to provide pose. As any pose estimation framework on a real system
will incorporate pose errors, we evaluate the robustness of our planning approach in
Sect. 4.3.7.

In the following, we describe the individual parts of the approach in more detail.

4.3.3 Image-Based Collision Checking

For efficiency reasons, collision checking is performed directly in disparity space.
When a new disparity image is obtained from stereo, C-space expansion is applied
in the disparity domain, allowing to treat the MAV as a single point in space for
planning purposes. During motion planning, small trajectory segments are verified
by projecting them into disparity space and comparing the reconstructed disparity
values along the segment with the corresponding C-space disparity values to detect
collisions.

4.3.3.1 C-Space Expansion

C-space expansion is implemented as an image processing function (Fig. 4.8). To
illustrate this operation, we first project a pixel of the stereo disparity map p(u, v, d)

into world coordinates using the stereo base bs and the focal length f (in pixels),
assuming rectified images and a disparity map that corresponds to the left camera
view:

zw = − f bs/d (4.4)

P(xw, yw, zw) = [uzw/ f, vzw/ f, zw]T (4.5)

Considering an expansion sphere S around P(xw, yw, zw) with the expansion radius
rv, we calculate the position of the rectangle that perfectly hides the sphere from the
viewpoint of the camera (Fig. 4.9) and assign to it a disparity value that corresponds
to the distance to the point on S that is closest to the camera origin.

4 Computer Vision for Micro Air Vehicles 87

Fig. 4.8 C-space expansion in disparity space: original left view image (a), stereo disparity map
(b), C-space expanded disparity map (c), pixels with warmer colors are located closer to the observer

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
ZY view

S

P

z

y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 XZ view

x

z
S

P

(a) (b)

Fig. 4.9 C-space expansion example: The expansion square covers the expansion sphere from the
camera view point (0, 0, 0) completely—its disparity is constant. a side view in ZY plane, b top
down view in XZ plane

Technically, this expansion operation increases the expansion volume around
a world point, since the correct projection of a sphere into the image is a circle,
but this method has the advantage that the operation now is separable into two 1D
operations—a horizontal expansion along image scan lines and a vertical expansion
along image columns—reducing computational cost significantly.

The horizontal and vertical expansion limits depend on the viewing angle of each
pixel and the expansion radius rv. The horizontal viewing angle α to a point P in
world coordinates is defined as

α = tan−1(zw/xw) (4.6)

and the horizontal angular field of view γ of the expansion sphere S around P is
defined by the distance of P from the camera origin and the expansion radius rv

γ = 2α1 = 2 sin−1
(

rv/

√
z2

w + x2
w

)
(4.7)

88 R. Brockers et al.

Projecting the two rays r1 and r2 along the viewing angles α + α1 and α − α1 back
into the image defines the horizontal extension of the expansion sphere in the image

r1 = [r1x , r1y , r1z] = [zw/ tan(α + α1), yw, zw]
u1 = f r1x /r1z

(4.8)

r2 = [r2x , r2y , r2z] = [zw/ tan(α − α1), yw, zw]
u2 = f r2x /r2z

(4.9)

The vertical extension can be calculated similarly:

β = tan−1(zw/yw) (4.10)

β1 = sin−1
(

rv/

√
z2

w + y2
w

)
(4.11)

r3 = [r3x , r3y , r3z] = [xw, zw/ tan(β + β1), zw]
v1 = f r3y /r3z

(4.12)

r4 = [r4x , r4y , r4z) = (xw, zw/ tan(β − β1), zw]
v2 = f r4y /r4z

(4.13)

To determine the new disparity of the rectangular defined by the image coordinates
u1, u2, v1 and v2 the expansion radius rv is subtracted from the z-component of P
and transformed into a disparity value:

znew = zw − rv (4.14)

dnew = − f bs/znew (4.15)

To calculate the full C-space map, (4.6)–(4.15) are applied to every pixel in the
stereo disparity image. Each (u, v, d) triplet defines a rectangular image region
(u1, v1, u2, v2) with a constant disparity dnew, that is written into an output map.
Individual pixels are only updated if the new disparity is larger than the previous
disparity value that was generated by a different (u, v, d) triplet.

4.3.3.2 Implementation Aspects

Equations (4.6)–(4.15) can be precalculated over the disparity space volume. Since
the calculation of u1 and u2 in (4.6)–(4.9) is independent of the y coordinate it
suffice to precalculate a look-up table to store the values of u1 and u2 for each
defined (x, d) combination. Similarly, a look-up table for v1 and v2 is calculated
for each (y, d) combination, and finally, the values for dnew can be precalculated

4 Computer Vision for Micro Air Vehicles 89

for all valid disparities. Because of this separability, the C-space expansion can
be implemented very efficiently. In a first step, an intermediate disparity image is
generated by horizontally expanding all disparity values from the stereo disparity
map using the u1/u2 look-up table. In a second step, each pixel in the intermediate
disparity image is expanded vertically using the v1/v2 look-up table and the expansion
column is stored with a new disparity value from the dnew look-up table in the final
C-space disparity map.

4.3.4 Collision Checking in Disparity Space

The queries from the motion planner come as a sequence of short linear 3D trajectory
segments. The collision checker module takes each segment that is defined through
its start and end point, projects it into the current C-space disparity map Dcm, and
checks all pixels that are located on the straight line between the projected start
and end point for collision. Collision checking itself depends on the reconstructed
disparity value d(ps) of a point ps on the segment and the actual disparity of the
underlying pixel pcm in the C-space map. If the disparity of ps is larger than the
disparity of pcm, the pixel is classified as safe. If the disparity of ps is smaller than
pcm the point on the trajectory is located behind an obstacle, and it is classified
depending on the disparity difference

d(ps) > d(pcm) : SAFE
d(ps) < d(pcm) ∧ d(ps) − d(pcm) < k : COLLISION
d(ps) < d(pcm) ∧ d(ps) − d(pcm) ≥ k : OCCLUDED

ps /∈ Dcm : OUTSIDE
d(pcm) = invalid : NO_DATA

(4.16)

If the difference is smaller than a threshold, a collision occurred. If it is larger,
the trajectory point is labeled as occluded as shown in Fig. 4.10. If the C-space
map contains no valid disparity data at a checked pixel location pcm, the trajectory
segment is labeled as no_data—which can be caused, e.g., by a nontextured surface
when applying a real-time stereo approach.

How the planner uses these different trajectory classifications is explained in the
following section.

4.3.5 Motion Planning over Closed-Loop Dynamics

Motion planning of aerial vehicles has several challenges. First, the state space is
high dimensional—6DOF position and orientation, and their time derivatives (veloc-
ity/angular velocity, etc.), resulting in at least 12 states. Second, the system is very
agile and consequently has poor stability, and naively propagating the open-loop vehi-

90 R. Brockers et al.

camera center

OUTSIDE

OCCLUDED

COLLISION

SAFE

object surface

Safe

camera
origin

Collision
Occlusion
Outside

obstacle

viewing
direction

(a) (b)

Fig. 4.10 Collision checking logic: a trajectory segments inside the viewing volume of the camera
are classified as: SAFE if unobstructed (green), COLLISION if directly behind an object surface
(red), and OCCLUDED if behind on object; b test trajectories in a simulation: collision checking
result for a set of nine horizontal trajectories

cle dynamics quickly results in undesirable trajectories. Third, the dynamics become
highly nonlinear especially when performing aggressive maneuvers. To address these
challenges, we deploy a motion planning approach that incorporates vehicle dynam-
ics by forward-simulating vehicle responses to waypoint control inputs, which effec-
tively reduces the planning space to only 3D.

We extended an approach that was previously used for autonomous urban driving
[31] to 6DOF motion with agile vehicle dynamics.

Our planner deploys a closed-loop RRT approach (CL-RRT) to grow a tree of
waypoint inputs that are used in a feedback loop to estimate flight trajectories
using a low-level controller and the quadrotor model described by How et al. [22].
The low-level controller consists of two layers: a linear feedback controller and
a waypoint tracker. The waypoint tracker keeps track of which waypoint to visit
next, and when to switch to the next waypoint segment (Fig. 4.11). It also com-
putes the reference position/velocity and the position/velocity tracking errors. Given
these tracking errors, the feedback controller computes the vehicle inputs ucollective,
uroll, upitch, and uyaw to maneuver the vehicle along the trajectory using regular PID
controllers for each channel.

The output of the control loop are the predicted vehicle states which define
trajectory segments that are used for collision checking. Note, that the planner simul-
taneously grows a tree of controller inputs (straight lines connecting the controller
input of a selected node to a sample, which forms an input to the forward simulation)
and a tree of collision-free dynamically feasible trajectories (output of the forward
simulation) as illustrated in Fig. 4.12.

4 Computer Vision for Micro Air Vehicles 91

Switch to the
next waypoint

v = 0

Start
slowing

down

e

Vehicle

v = v2
v = v 1

Waypoint 0

Waypoint 2

Waypoint 1

Fig. 4.11 Waypoint tracking logic. A cross-track controller minimizes the cross-track tracking error
e⊥, while an along-track controller maintains a commanded velocity along the lines that connect
waypoints. The tracker switches waypoints when the along-track distance to the next waypoint
becomes smaller than a threshold. Waypoints are marked with ×

Controller input

Predicted
trajectory

Start states

Start
slowing
down

Root

Fig. 4.12 RRT with closed-loop dynamics. The red lines represent the input to the controller, which
are constructed by connecting a sample (marked with ×) to the tree. The blue lines represent the
predicted vehicle trajectory, which is computed by the forward simulation

The main steps of the RRT algorithm are

1. Randomly sample the 3D world space.
2. Select a node in the tree.
3. Form a controller input from the selected node to the sample.
4. Forward simulate the closed-loop dynamics from the selected node, using the

controller input generated in step 3, and obtain a dynamically feasible trajectory.
5. Check if the predicted trajectory collides with or is occluded by obstacles

(Sect. 4.3.3). If there is a collision, or the occlusion is in a close range, discard
the sample and go to step 1.

6. Add a sample and associated propagated trajectory to the tree. Also generate
intermediate nodes on the trajectory, so that it can branch off to another trajectory
for future samples.

92 R. Brockers et al.

4.3.6 Motion Planning Strategies

When the low-level controller executes the planned waypoints, different real-world
considerations require specific execution strategies.

First, our planner is designed to maintain a safety invariance while the vehicle is
flying [54] by adapting vehicle velocities such that the vehicle can come to a hover
from the current state without collision. Note, that hovering is an invariant state of
the quadrotor—once the vehicle is in a hover state, it can theoretically remain in
hover without collision indefinitely in a static environment. Second, paths planned a
certain distance behind a perceived obstacle are considered as feasible, which allows
to plan into potentially free space behind obstacles. The maintained safety invariance
ensures an early replanning should this space not be free. Space with no available
data is treated similarly, since we expect that obstacles will have enough surface
texture to be captured in the collision checking process.

Third, the predicted trajectory and the actual trajectory flown are generally
close [32]. To account for nonzero prediction errors and changes in the environments,
the planner repropagates the latest states and changes the trajectory accordingly to
ensure collision-free flight from the current position.

Last, if the collision checker rejects a trajectory because it ends in occluded space
or outside the field of view, we retain the feasible portion of such a trajectory in the
tree, so that RRT can quickly connect future samples and grow trees from it.

4.3.7 Experimental Results

To evaluate our approach, we implemented our navigation algorithm both in a
simulation environment (Fig. 4.13) and on a Asctec Pelican quadrotor system
(Fig. 4.6). The simulation environment mimics a quadrotor within a virtual 3D world
that is composed of cuboids.

At the beginning of a simulated flight, the quadrotor is placed at a starting position
above the ground and the planner is executed a few seconds ahead of the controller to
allow the construction of an initial tree of decent size. Figure 4.13 gives an example
of such a step, where the stationary vehicle has planned trajectories toward the goal
at the top of the scene. When the controller is started, the vehicle begins to execute
the planned trajectory, replanning simultaneously during flight. As the position of the
vehicle changes, new parts of the scene come into view, and trajectories are updated
accordingly, until the goal is reached. To verify the robustness of our approach, we
repeatedly executed a simulated flight for several example scenes. One standard
scenario for performance evaluation of planning stability is the flight through a
vertical opening in a wall (Figs. 4.14 and 4.15), which we use to measure the influence
of a corrupted pose on the planning approach. In a Monte Carlo simulation, we
commanded the vehicle to pass the vertical opening with noise added to the pose
estimate and recorded the flown flight paths for 100 flights for each experiment.

4 Computer Vision for Micro Air Vehicles 93

Fig. 4.13 Simulated flight through virtual forest: a Initial flight trajectory from the vehicle posi-
tion at the bottom toward the goal at the top with overlaid 3D C-space point positions (red); the
horizontal red lines in front of the vehicle correspond to C-space points above the ground; b top-
down view during traverse with overlaid current view of the vehicle

Fig. 4.14 Flying through a door opening with added pose noise: Scene view from the starting
position with overlaid C-space point cloud (red)

With no pose noise added, the vehicle was able to fly safely through the opening
on each run (Fig. 4.15a). Figure 4.15b illustrates the same flight experiment, where
limited white noise (η ∈ [−15 cm, 15 cm]) was added to the position of the collision
sensor (stereo camera system) prior to each planning cycle. When treating the pose of
the collision sensor (with noise overlay) as true vehicle pose, all node positions on
the RRT-tree become erroneous, simulating the effect of a noisy pose estimate on the
planning process. In this case, collision checking invalidates additional tree branches,
due to the added noise, forcing the vehicle to re-plan a valid trajectory when needed.
As shown in Fig. 4.15b, additive noise affects the planning result only marginally.
The vehicle was able to execute all runs properly and pass the opening at all times,
since the added noise had zero mean (no drift).

94 R. Brockers et al.

02 51 01 5 0 5− 01− 51− 02−

y[m]

Accumulated trajectories

Goal

Start
0

5

10

15

20

25

30

35

40

45

x[
m

]

02 51 01 5 0 5− 01− 51− 02−

y[m]

Accumulated trajectories

Goal

Start
0

5

10

15

20

25

30

35

40

45

x[
m

]
02 51 01 5 0 5− 01− 51− 02−

y[m]

Accumulated trajectories

Goal

Start
0

5

10

15

20

25

30

35

40

45

x[
m

]

(a) (b) (c)

Fig. 4.15 Door experiment: top-down view of Monte Carlo simulation with 100 runs with a no
pose noise, b additive white noise in x and y (≤15 cm), c random walk bias in x and y (13.4 cm/s,
random direction for each run)

This changed when a drifting pose estimate was simulated as shown in Fig. 4.15c.
To simulate a random walk bias on the position estimates, a fixed position offset of
1.3 cm (a 10 % drift when operating at maximum speed of 1.3 m/s with a 100 Hz sim-
ulation rate) in a random direction within the x/y plane was defined at the beginning
of each run, and added as a pose offset prior to each planning step. In this experiment,
the vehicle kept a stable orientation to maintain correct heading, which we assume
closely related to real flight experiments, since roll and pitch would be stabilized
around a drift-free gravity vector and yaw can be assumed to be measured locally
drift free by an onboard magnetometer or a vision-aided pose estimation approach.
Since all world point coordinates drift with the amount of bias on pose, the goal
cannot be reached and serves as a desired flight direction indicator.

The vehicle was able to pass the obstacle without a collision in 96 % of all cases.
Collisions only occurred when the vehicle was already within the opening and drifting
sideways, so that the camera could not see the closing in obstruction.

Figure 4.16 illustrates the performance of our navigation system in a real-world
scenario. We implemented our algorithm onboard an Asctec Pelican quadrotor which
was equipped with an Intel Core2Duo, 1.86 GHz processor and conducted flight
experiments in a test forest (Fig. 4.6).

Our system setup used the sensor fusion approach from [63] for pose estimation.
It fuses IMU and position updates from a visual SLAM algorithm (Parallel Tracking
and Mapping (PTAM) [30]) that uses images from a downward-looking camera (752
× 480, grayscale, 100 FOV).

To generate stereo disparity maps, we mounted a stereo camera system [20] on top
of the quadrotor that included an embedded OMAP3730 to off-load the calculation
of real-time disparity maps (376 × 240, 25 Hz, 12 cm baseline, 110 FOV) from the
main processor, which only performed postprocessing of disparity maps within the
stereo vision pipeline.

In this setup, the pose estimation framework used 59 % of the total resource
(camera and PTAM (30 Hz) 48 %, pose filter (30 Hz) 11 %), stereo postprocessing

4 Computer Vision for Micro Air Vehicles 95

Fig. 4.16 Flying under tree canopy: a top to bottom: left rectified stereo camera view; disparity
map; C-space map with expansion size of 60 cm; b top–down view of flown trajectory (red) with
overlaid accumulated C-space point clouds (green) that are generated from subsampled C-space
disparity maps; only points are shown that are more than 2.5 m above the ground and not farther
away from the vehicle than 2 m. The inset shows a view from behind the vehicle in an upright view,
illustrating flight below a tree branch

used 9 %, and motion planning used 65 % (RRT planner 60 %, trajectory server 5 %),
generating motion plans at 2 Hz. On average, 6.51 % of the time used by the RRT
planner was spent on C-space expansion, and 8.19 % on collision checking, which
demonstrates the effectiveness of our approach. Additionally, C-space expansion and
collision checking required less than 1.5 MB of memory for processing 376 × 240
disparity images from the stereo system. In total, the navigation frame work used
133 % of the available 200 % processing power of our two core CPU.

Figure 4.16a gives an example of the viewing volume that is used for motion
planning when approaching a tree. Figure 4.16b illustrates the flight trajectory of a
representative experiment in a top-down view. The vehicle started at the left of the
image and was commanded to fly to the right, avoiding four different trees on its
traverse.

At the beginning of each experiments, we started generating motion plans at an
altitude of 4 m and restricted the planning volume to sample 3D points between 2
and 5 m altitude. The vehicle was able to avoid obstacles autonomously and plan
its motion around tree branches. This included a portion of the trajectory where the
vehicle flew correctly below an overhead branch (tree 2, Fig. 4.16b).

96 R. Brockers et al.

4.4 Autonomous Landing

In this section, we introduce autonomous landing as a high-level navigation
application. Even if autonomous landing is a specific task, its single parts can easily
be adapted to a series of different applications. Our approach comprises two research
topics, dense monocular 3D reconstruction and visual surface analysis. First, we will
describe the related work, then introduce our landing algorithm, followed by the
embedded implementation, and concluded with experimental results.

4.4.1 Related Work

Most prior work on autonomous landing of unmanned aerial vehicles addresses
landing on terrain, instead of finding elevated perches like rooftops. Due to the
severe constraints on size, weight, and power (SWaP) for especially micro aerial
vehicles, applicable methods must use much lighter, lower performance sensing
and computing resources than available on larger scale systems [53]. Approaches
amenable to these SWaP constraints frequently employ monocular [10, 26, 40, 60]
and binocular stereo [37, 61] camera systems to map and analyze terrain. Most
approaches perform some form of 3D terrain reconstruction, then assess planarity
and slope of appropriately-sized terrain patches. Binocular stereo vision approaches
are, due to the fixed intercamera geometry, algorithmically simpler, but are limited
by the fixed interocular baseline and also heavier due to the additional camera.
Three monocular approaches are particularly relevant here. The first tracks point
features to estimate homographies from image pairs for predominantly planar terrain,
then analyzes correlation coefficients for dense matches to segment in-plane and
out-of-plane pixels [10]. The second uses a recursive filter at each pixel, image
matching via gradient descent with intensity derivatives, and a plane plus parallax
formulation of structure from motion to estimate dense elevation maps from image
sequences [60]. Both of these address finding landing sites on the ground. The third
uses multiplanar homography alignment with tracked features to segment a planar
ground-level surface from an elevated, planar landing site [11].

In the last couple of years, significant progress has been made in dense monocular
3D reconstruction as well. Recently published approaches use Bayesian and varia-
tional estimation models with known camera motion [43, 46, 59]. All of them use
powerful processing hardware, such as GPUs, to achieve real-time capability. An
overview about earlier work can be found in [55].

4.4.2 Algorithm Description

Our approach can find flat landing platforms everywhere in the 3D model and is
not limited to dominant planes. The presented algorithm consists of three parts,
whereas the whole approach is designed to achieve reasonable short and constant
processing time even on limited computing hardware. First, we use a dense motion

4 Computer Vision for Micro Air Vehicles 97

stereo method to determine a 3D model of the scene beneath the MAV. We present a
frame list approach with variable baseline which enables arbitrarily selection of depth
accuracy of the 3D model as long as the motion between an image pair could be found
correctly. The scale can be determined from any metric pose estimator or altitude
sensor. Here, we use the pose estimator presented in Sect. 4.2. Second, we analyze
the 3D model in order to find potential landing candidates. Most of the mentioned
work uses the dimensions of the MAV, the size, the planarity, and slope of the landing
spot as main criterion of landability. We reduce all these criterions to simple steps
which enable efficient onboard implementation. Third, we pick the most promising
candidate and approach it, e.g., with a two-waypoint trajectory. Figure 4.17 illustrates
the processing pipeline of our autonomous landing approach. Besides experiments
where we actually land autonomously in a controlled environment, we present more
detailed analysis about the system performance with hand-labeled ground truth data.

4.4.2.1 3D Reconstruction

Dense motion stereo is based on the same principle as conventional stereo, with
the difference that the two views of the captured scene are generated by a single
moving camera instead of a rigid stereo bar. The extrinsic parameters (rotation R and
translation t between the two camera positions) have to be determined for each image
pair individually. Translation can be estimated up to scale using visual information
only. We assume the intrinsic parameters do not change and calibrate them in advance.
We use a CAHVORE camera model [17] to model lens effects and to generate
linearized camera models that describe the perspective projection.

For selection of a proper image pair, we maintain a frame list of the last n images.
Each element of the frame list consists of camera image, camera pose in the world
frame, extracted features (STAR [1], MSURF [9]), and a feature track list to record
how often each feature has been found in the frame list. Given this data, we can select
image pairs using two criteria. First, since depth accuracy is a function of the stereo
baseline, we look for images that are an appropriate distance apart to achieve enough
depth accuracy (at ground level) at the current altitude of the MAV. Second, we chose
the image which exceeds a minimum number of successive feature matches with the
current image. As soon as an image pair is found, we estimate R and t between
the images with a multiplanar homography alignment approach [12]. Since we can
estimate translation only up to scale from pure visual information (without some
metric context), the translation vector is then scaled with the real-world baseline
from the visual-inertial state estimator described in Sect. 4.2. Having R and t , stereo
rectification can be applied. The quality of the motion estimation strongly depends
on the accuracy of the feature locations and, thus, is scene dependent. To discard
poor motion estimates in order to prevent wrong 3D reconstruction, we calculate the
average 3D reprojection error of the feature pairs and accept only image pairs with
an error in subpixel range. Finally, we use a real-time sum of absolute difference
stereo matching algorithm to estimate a disparity map from which we generate a 3D
point cloud to model the captured scene beneath the MAV.

98 R. Brockers et al.

Rectification

Stereo Processing & 3D Reconstr.

Landing map Calculate Waypoints

Feature extraction & matching
Ground removal

(Pixels bellow
height threshold)

Surface analysis
(Surface flat
enough and

no obstacles?)

Spatial analysis
(Does the

vehicle fit?)

Framelist

if |T|>b

waypoint 1

waypoint 2

latest input
image

distortion
removal

0 0

-1 -1

-3 -3

s , p

s , p

s , p

s , p-2 -2

Fig. 4.17 Autonomous landing overview: New input images are stored in a frame list, together
with detected features, and camera poses. For selected image pairs, camera motion is estimated,
and the 3D model is determined. The result of the landing site detection is a landing map which
labels all pixels as: green (ground level), red (on rooftop but unsafe), orange (insufficient space),
or blue (safe landing area). The location with the highest confidence is labeled by ×

4.4.2.2 Landing Site Detection

After 3D reconstruction, the next step is to find potential landing candidates. We
define the following requirements for a suitable landing site: (a) A landing site has
to be planar, close to parallel to the ground plane, and free of obstacles and hazards,
(b) it has to be large enough to fit the MAV, and (c) it has to provide enough free
space around it for a safe approach.

To fulfill these requirements, we developed an efficient multistep algorithm which
uses the determined range data to reduce the problem to a basic probabilistic model.
Since our application is targeted to land on elevated surfaces for surveillance, we first
remove all candidates close to the ground level. Then we calculate the standard devi-
ation of the disparity map because the variance of the disparity map along the gravity

4 Computer Vision for Micro Air Vehicles 99

vector, after projection into world frame, corresponds to the planarity of the landing
surface. The smaller the standard deviation in the disparity map, the more planar
the corresponding area and, thus, the higher the landing site confidence (normalized
standard deviation). Standard deviation is calculated in an adaptive neighborhood

n(d, h) = r zacc f

h2 d (4.17)

which depends on the disparity values d and the MAV’s altitude h. The size of the
MAV (r is the radius), the focal length f , and the target depth accuracy zacc are
constant. The target depth accuracy is the first derivative of z (here h) in respect
to the disparity. The needed space for the MAV is its size divided by the lateral
resolution. These two equations combined result in Eq. 4.17. In fact, we make sure
that the window size (in pixels) for the standard deviation corresponds to the size
(in meters) the MAV needs to land. The result of the algorithm is a landing map
which labels all pixels (i.e., landing sites) as whether or not they are safe to land. A
confidence map assigns each landing candidate a quality value which can further be
used to pick the final landing target.

4.4.3 Embedded Implementation

We initially implemented our landing framework on a standard PC and then ported
the software to the processing board (see Sect. 4.1.1). First, we applied thorough soft-
ware optimization techniques to make sure that no redundant calculations are done
and all data structures can be accessed fast. Additional software optimization steps
were including NEON and ARM specific instruction sets. We also reduced of image
resolution to 376 × 240 which increased the processing speed significantly, while
still maintaining sufficient resolution. The decreased depth and lateral resolution,
which come along with the smaller image resolution, are not an issue: For depth,
our approach compensates this by automatically choosing a larger baseline and the
lateral resolution turned out to still be high enough, even for a flight altitude of above
10 m. When running the landing site detection algorithm in parallel with our pose
estimation frame work on the Hummingbird/U2, we achieved a frame rate of 1 Hz
for landing map updates. Our experiments showed that this frame rate is reasonable
for fully autonomous landing site detection.

4.4.4 Experimental Evaluation

To evaluate proper system performance, we ran three indoor experiments and one
outdoor experiment. All indoor experiments were conducted with the Asctec Hum-
mingbird carrying the modified U2 flight computer and all outdoor experiments were

100 R. Brockers et al.

outer box shape inner box
safe zone

(a) (b)

Fig. 4.18 First indoor experiment: a Box as surrogate rooftop; b hand-labeled landing map, outer
box shape is the edge of the box surface, inner box safety zone is the box surface without the 13 cm
border region

conducted with the Asctec Pelican carrying the Asctec Mastermind flight computer.
Even if the whole processing pipeline runs onboard, for the presented experiments,
we recorded the data and processed it offline.

4.4.4.1 Indoor Evaluation

The first indoor experiment was designed to generate quantitative error metrics from
hand-labeled ground truth data. We fly our quadrotor system at three different alti-
tudes over a box (57×57×27 cm3, Fig. 4.18) to simulate a rooftop landing scenario.
In all experiments, the vehicle radius was set to 13 cm to allow for a sufficiently-sized
valid landing area in the middle of the box, and the arbitrary ground-level cut off
threshold was set to 20 cm. For ground truth, the true landing area in the middle of the
box surface was marked by corner marks that were located at 13 cm distance from the
box edges, and these were manually identified in the input images (see Fig. 4.18b).
The first three rows of Table 4.2 give an overview of the evaluation results. Altitude,
baseline, and feature reprojection error during image alignment correspond to the
average value for each experiment. For this evaluation, we only considered frames
where the box surface was completely visible in the disparity image to avoid bor-
der effects, and were valid stereo results could be calculated (enough baseline and
more than 40 feature matches for image alignment) (“frames visible”). Within these
frames, we defined a successful detection (“frames successful”) as frames where at
least one valid landing location was detected on the box and no landing location was
detected falsely on the ground. For these successful frames, we also calculated false
positives (FP) rates (pixels that were classified as valid landing area that are located
in the border area), false negatives (FN) rates (not as landing area classified pixels
that were located in the correct center area of the box). Note that we only consider
pixels with valid disparity values in this metric.

4 Computer Vision for Micro Air Vehicles 101

Table 4.2 Evaluation of landing site detection

Altitude (m) Baseline (m) Reprojection Number of frames FP (%) FN (%)

error (pixel) Visible Successful

1.47 0.39 0.21 116 106 91.4 % 0.028 39.34

2.19 0.86 0.20 63 62 98.4 % 0.046 43.57

3.34 2.00 0.18 67 63 94.0 % 0.0026 53.14

6.51 1.16 0.28 337 325 96.3 %

10.15 2.28 0.22 480 433 90.2 %

Row 1–3 Indoor experiment at three different altitudes (r = 13 cm, depth accuracy at ground
level = 3 cm), Row 4–5 outdoor experiment (depth accuracy at ground level = 20 cm)

Fig. 4.19 Second indoor experiment: a box height calculation for valid landing point with highest
confidence. b Feature reprojection error of feature matches and estimated baseline (depth accuracy
3 cm)

Our approach is able to robustly detect the landing zone with a success rate of more
than 90 % in all experiments and a false positive rate below 0.05 %. The false positive
(FP) and false negative (FN) rates are largely defined by the quality of the disparity
input. Border-fattening effects (caused by our correlation-based stereo matching)
usually increase the FP rate, whereas missing disparity pixels on top of the target
increase the FN rates, since we treat missing data as unsafe. To mitigate these two
effects, we introduced two thresholds to maximize safety: (1) at disparity edges, we
disable all pixels that are located within half a correlation window size to the edge,
and (2) we use a percentage threshold which defines the minimum number of pixels
with valid disparity around a landing site (98 % in our experiments).

In the second experiment, in order to verify the accuracy of our 3D reconstruction,
we plotted the height of the landing point with the highest confidence for one of
the sequences (Fig. 4.19). The error follows the expected depth accuracy of 3 cm
(min. depth acc.) within the true box height of 27.5 cm. The low average feature
reprojection error confirms valid motion estimation results.

The third indoor landing experiment consisted of landing site detection and target
approach. In this indoor experiment, the landing target also consisted of a cardboard
box to simulate an elevated landing surface. We commanded the quadrotor to fly

102 R. Brockers et al.

Fig. 4.20 Third indoor experiment: The MAV is commanded to take off autonomously and rise
up to 1.5 m. Then we continuously set waypoints to explore the environment (the solid line follows
the flight trajectory). Once a valid landing spot is detected, the two approach waypoints are generated
(stars) which are used by the MAV for the landing maneuver. Note that each waypoint includes a
tolerance radius (the trajectory does not hit the red star at 1.5 m altitude exactly). We reduced this
tolerance for the actual landing spot on the surface to enable high-precision landing

over the landing zone by defining manual waypoints, which were approached by the
vehicle autonomously while executing the landing site detection algorithm to analyze
the area beneath the MAV. As soon as an appropriate landing spot was detected,
the two approach waypoints were submitted and executed by the vehicle (Fig. 4.18a).

Figure 4.20 depicts the 3D point cloud of the reconstructed box and ground surface
together with the flight trajectory and the issued approach waypoints. The vehicle took
off to the left of the illustrated scene and landed correctly on top of the box. Example
scene views, together with a resulting landing map are illustrated in Fig. 4.17. All
pixels in the middle of the box have been labeled correctly as safe to land (blue),
whereas pixels close to the edges of the box are detected as either unsafe (red) or
provide not enough space to land on (orange).

4.4.4.2 Outdoor Evaluation

For the outdoor experiments, we conducted overflights over a one story building
(Fig. 4.21) and recorded image sequences from the downward-looking camera
together with pose data for offline analysis. A quantitative evaluation for two differ-
ent overflights is given in Table 4.2 row 3–4. The average altitude of the first flight
was 6.5 m which lead to an average required baseline of 1.16 m. The second over-
flight was at a higher altitude of approximately 10.15 m requiring a slightly higher
minimum baseline of 2.28 m on average. From all frames, were at least a part of the
safe landing zone on top of the building was visible in the disparity images, we could
successfully identify a valid landing target in over 90 % for both flights.

4 Computer Vision for Micro Air Vehicles 103

Take-off
point

Flight pathLanding
target

(a)

(b)

(c) (d)

Fig. 4.21 Outdoor experiment environment and data set images. a Aerial view of the flight area
and target building; b the flat area on the roof is the landing target; c raw input image with good
texture on roof; d image with saturation area which leads to missing stereo data

4.5 Conclusion and Future Work

Vision-based navigation algorithms have the potential to become an enabling
technology for micro air vehicle autonomy. With the advent of small, low-power
processing units and miniature camera modules from the cell-phone sector, low
SWaP computing for vision applications is ready to be deployed, enabling fully
autonomous navigation of very small platforms for the first time. In this chapter,
we presented three different fundamental building blocks for platform autonomy:
vision-based pose estimation, onboard obstacle avoidance, and autonomous landing.
Fast pose estimation that is independent of external sensor inputs is the basis for
safe MAV operations. Our approach fuses accurate map-based localization with a
fast map-free approach to estimate vehicle velocities in emergency situations when
a map-based approach might fail.

Obstacle avoidance is a key capability for flights in highly cluttered environment
or close to the ground. We use frontal stereo vision approach which provides a
polar-perspective, inverse-range world representation for obstacle detection and col-
lision checking with low computational complexity, and deploy a closed-loop motion

104 R. Brockers et al.

planning approach that plans collision-free trajectories while accounting for vehicle
dynamics.

Our autonomous landing approach finds elevated landing surfaces by executing
a dense structure from motion approach, and searching for safe landing zones in the
reconstructed terrain.

We implemented all three algorithms on our quadrotor platforms and demonstrated
autonomous flights using only onboard resources.

In the future, we plan to further integrate our embedded platform components
towards ultimately having a fully capable avionics package (flight computer, cam-
era, and IMU) under 15 g. This will enable fully autonomous control of ultra-small
quadrotor systems (as, e.g., the 15 cm, 25 g Bitcraze miniature quadrotor system [16])
that can be operated in highly cluttered environment or confined spaces, indoor and
outdoor.

Acknowledgments This work was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration.

References

1. Agrawal M, Konolige K, Blas MR (2008) Censure: center surround extremas for realtime
feature detection and matching. Computer vision ECCV 2008. Lecture Notes in Computer
Science, vol 5305. Springer, Berlin, pp 102–115

2. Armesto L, Tornero J, Vincze M (2007) Fast ego-motion estimation with multi-rate fusion of
inertial and vision. Int J Robot Res 26(6):577–589

3. Armesto L, Chroust S, Vincze M, Tornero J (2004) Multi-rate fusion with vision and inertial
sensors. In: Proceedings of the IEEE international conference on robotics and automation, New
Orleans, US

4. Ascending Technologies GmbH. http://www.asctec.de/uav-applications/research/products/
asctec-mastermind/

5. Bachrach A, Prentice S, He R, Henry P, Huang AS, Krainin M, Maturana D, Fox D, Roy N
(2012) Estimation, planning and mapping for autonomous flight using an RGB-D camera in
GPS-denied environments. Int J Robot Res 31(11):1320–1343

6. Bajracharya M, Howard A, Matthies L, Tang B, Turmon M (2009) Autonomous off-road
navigation with end-to-end learning for the LAGR program. Field Robot 26(1):3–25

7. Bakolas E, Tsiotras P (2008) Multiresolution path planning via sector decompositions com-
patible to on-board sensor data. In: AIAA guidance, navigation, and control conference

8. Baldwin G, Mahony R, Trumpf J (2009) A nonlinear observer for 6 DOF pose estimation from
inertial and bearing measurements. In: Proceedings of the IEEE international conference on
robotics and automation, Kobe

9. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (surf). Comput Vis
Image Underst 110(3):346–359

10. Bosch S, Lacroix S, Caballero F (2006) Autonomous detection of safe landing areas for an
uav from monocular images. In: Proceedings of the IEEE/RSJ international conference on
intelligent robots and systems, pp 5522–5527

11. Brockers R, Susca S, Zhu D, Matthies L (2012) Fully self-contained vision-aided navigation
and landing of a micro air vehicle independent from external sensor inputs. In: Proceedings of
the SPIE, 8387:83870Q-1–83870Q-10

http://www.asctec.de/uav-applications/research/products/asctec-mastermind/
http://www.asctec.de/uav-applications/research/products/asctec-mastermind/

4 Computer Vision for Micro Air Vehicles 105

12. Cheng Y (2010) Real-time surface slope estimation by homography alignment for spacecraft
safe landing. In: Proceedings of the IEEE international conference on robotics and automation,
pp 2280–2286

13. Chroust SG, Vincze M (2004) Fusion of vision and inertial data for motion and structure
estimation. J Robot Syst 21(2):73–83

14. Conroy J, Gremillion G, Ranganathan B, Humbert J (2009) Implementation of wide-field
integration of optic flow for autonomous quadrotor navigation. Auton Robot 27(3):189–198

15. Corke P (2004) An inertial and visual sensing system for a small autonomous helicopter. Int J
Robot Syst 21(2):43–51

16. Crazyflie Micro Quadrotor. http://www.bitcraze.se/crazyflie/
17. Di K, Li R (2004) CAHVOR camera model and its photogrammetric conversion for planetary

applications. J Geophys Res 109:E04004
18. Fraundorfer F, Heng L, Honegger, D, Lee GH, Meier L, Tanskanen P, Pollefeys M (2012)

Vision-based autonomous mapping and exploration using a quadrotor MAV. In: IROS, pp
4557–4564

19. Gemeiner P, Einramhof P, Vincze M (2007) Simultaneous motion and structure estimation by
fusion of inertial and vision data. Int J Robot Res 26(6):591–605

20. Goldberg SB, Matthies L (2011) Stereo and IMU assisted visual odometry on an OMAP3530
for small robots. In: 2011 IEEE computer society conference on computer vision and pattern
recognition workshops (CVPRW), pp 169–176

21. Hardkernel. http://www.hardkernel.com
22. How JP, Bethke B, Frank A, Dale D, Vian J (2008) Real-time indoor autonomous vehicle test

environment. IEEE Control Syst Mag 28(2):51–64
23. Hrabar S, Sukhatme GS, Corke P, Usher K, Roberts J (2005) Combined optic-flow and stereo-

based navigation of urban canyons for a uav. In: IROS
24. Huster A, Frew EW, Rock SM (2002) Relative position estimation for AUVs by fusing bear-

ing and inertial rate sensor measurements. In: Proceedings of the oceans conference, vol 3.
MTS/IEEE, Biloxi, pp 1857–1864

25. Hyslop AM, Humbert JS (2010) Autonomous navigation in three-dimensional urban environ-
ments using wide-field integration of optic flow. Guid Control Dyn 33(1):147

26. Johnson A, Montgomery J, Matthies L (2005) Vision guided landing of an autonomous heli-
copter in hazardous terrain. In: Proceedings of the IEEE international conference on robotics
and automation, pp 3966–3971

27. Jones E (2009) Large scale visual navigation and community map building. PhD thesis, Uni-
versity of California at Los Angeles

28. Jones E, Soatto S (2010) Visual-inertial navigation, mapping and localization: a scalable real-
time causal approach. Int J Robot Res 30:407–430

29. Kelly J, Sukhatme GS (2011) Visual-inertial sensor fusion: localization, mapping and sensor-
to-sensor self-calibration. Int J Robot Res (IJRR) 30(1):56–79

30. Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspaces. In: Pro-
ceedings of the 2007 6th IEEE and ACM international symposium on mixed and augmented
reality, ISMAR’07. IEEE Computer Society, p 110

31. Kuwata Y, Teo J, Fiore G, Karaman S, Frazzoli E, How JP (2009) Real-time motion planning
with applications to autonomous urban driving. Trans Control Syst Tech 17(5):1105–1118

32. Luders B, Karaman S, Frazzoli E, How J (2010) Bounds on tracking error using closed-loop
rapidly-exploring random trees. In: American control conference, Baltimore, MD, pp 5406–
5412

33. Lupton T, Sukkarieh S (2008) Removing scale biases and ambiguity from 6DoF monocu-
lar SLAM using inertial. In: International conference on robotics and automation, Pasadena,
California

34. Lupton T, Sukkarieh S (2009) Efficient integration of inertial observations into visual SLAM
without initialization. In: IEEE/RSJ international conference on intelligent robots and systems,
St. Louis

http://www.bitcraze.se/crazyflie/
http://www.hardkernel.com

106 R. Brockers et al.

35. MacAllister B, Butzke J, Kushleyev A, Pandey H, Likhachev M (2013) Path planning for
non-circular micro aerial vehicles in constrained environments. In: ICRA, pp 3918–3925

36. Martin GR (2009) What is binocular vision for? a birds eye view. J Vis 9(11):245–267
37. Meingast M, Geyer C, Sastry S (2004) Vision based terrain recovery for landing unmanned

aerial vehicles. In: Proceedings of the IEEE conference on decision and control, vol 2. pp
1670–1675

38. Mei C, Sibley G, Cummins M, Newman P, Reid I (2009) A constant time efficient stereo SLAM
system. In: Proceedings of the British machine vision conference (BMVC)

39. Mellinger D, Kumar V (2011) Minimum snap trajectory generation and control for quadrotors.
In: Proceedings of the IEEE international conference on robotics and automation (ICRA)

40. Montgomery J, Johnson A, Roumeliotis S, Matthies L (2006) The jet propulsion laboratory
autonomous helicopter testbed: a platform for planetary exploration technology research and
development. J Field Robot 23(3–4):245–267

41. Mourikis AI, Roumeliotis SI (2007) A multi-state constraint Kalman filter for vision-aided iner-
tial navigation. In: Proceedings of the IEEE international conference on robotics and automation
(ICRA)

42. Mourikis AI, Trawny N, Roumeliotis SI, Johnson AE, Ansar A, Matthies L (2009) Vision-aided
inertial navigation for spacecraft entry, descent, and landing. IEEE Trans Robot 25(2):264–280

43. Newcombe RA, Lovegrove JS, Davison AJ (2011) Dtam: dense tracking and mapping in real-
time. In: IEEE international conference on computer vision (ICCV), pp 2320–2327

44. Otte MW, Richardson SG, Mulligan J, Grudic G (2009) Path planning in image space for
autonomous robot navigation in unstructured outdoor environments. Field Robot 26(2):212–
240

45. Pivtoraiko M, Mellinger D, Kumar V (2013) Incremental micro-UAV motion replanning for
exploring unknown environments. In: ICRA

46. Pizzoli M, Forster C, Scaramuzza D (2014) Remode: probabilistic, monocular dense recon-
struction in real time. In: Proceedings of the IEEE international conference on robotics and
automation

47. Qian G, Chellappa R, Zheng Q (2002) Bayesian structure from motion using inertial informa-
tion. In: International conference on image processing, Rochester, New York

48. Richter C, Bry A, Roy N (2013) Polynomial trajectory planning for quadrotor flight. In: RSS
workshop on resource-efficient integration of perception, control and navigation

49. Robot Operating System, (ROS). http://www.ros.org
50. Ross S, Melik-Barkhudarov N, Shankar KS, Wendel A, Dey D, Bagnell JA, Hebert M (2013)

Learning monocular reactive uav control in cluttered natural environments. In: ICRA, pp 1757–
1764

51. Roumeliotis SI, Johnson AE, Montgomery JF (2002) Augmenting inertial navigation with
image-based motion estimation. In: Proceedings of The IEEE international conference on
robotics and automation, Washington, pp 4326–4333

52. Sarabandi K, Vahidpour M, Moallem M, East J (2011) Compact beam scanning 240 GHz radar
for navigation and collision avoidance. In: SPIE, vol 8031

53. Scherer S, Chamberlain L, Singh S (2012) Autonomous landing at unprepared sites by a full-
scale helicopter. Robot Auton Syst 60(12):1545–1562

54. Schouwenaars T, De Moor B, Feron E, How J (2001) Mixed Integer Programming for Multi-
Vehicle Path Planning. In: Proceedings of the European control conference, Porto, Portugal

55. Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evalua-
tion of multi-view stereo reconstruction algorithms. In: IEEE computer society conference on
computer vision and pattern recognition, 2006, pp 519–528

56. Shen S, Michael N, Kumar V (2011) 3d indoor exploration with a computationally constrained
mav. In: Robotics science and systems

57. Shen S, Michael N, Kumar V (2011) Autonomous multi-floor indoor navigation with a compu-
tationally constrained MAV. In: Proceedings of the IEEE international conference on robotics
and automation

http://www.ros.org

4 Computer Vision for Micro Air Vehicles 107

58. Strelow D, Singh S (2003) Online motion estimation from image and inertial measurements.
In: Workshop on integration of vision and inertial sensors (INERVIS), Coimbra, Portugal

59. Stühmer J, Gumhold S, Cremers D (2010) Real-time dense geometry from a handheld camera.
In: Proceedings of the 32nd DAGM conference on pattern recognition, pp 11–20

60. Templeton T, Shim DH, Geyer C, Sastry SS (2007) Autonomous vision-based landing and
terrain mapping using an MPC-controlled unmanned rotorcraft. In: Proceedings of the IEEE
international conference on robotics and automation, pp 1349–1356

61. Theodore C, Rowley D, Hubbard D, Ansar A, Matthies L, Goldberg S, Whalley M (2006)
Flight trials of a rotorcraft unmanned aerial vehicle landing autonomously at unprepared sites.
In: Forum of the American helicopter society, Phoenix

62. Weiss S (2012) Vision based navigation for micro helicopters. PhD thesis, ETH Zurich, March
2012

63. Weiss S, Achtelik MW, Lynen S, Achtelik MC, Kneip L, Chli M, Siegwart R (2013) Monoc-
ular vision for long-term micro aerial vehicle state estimation: a compendium. Field Robot
30(5):803–831

64. Weiss S, Achtelik MW, Chli M, Siegwart R (2012) Versatile distributed pose estimation and
sensor self-calibration for an autonomous MAV. In: IEEE International conference on robotics
and automation (ICRA)

65. Weiss S, Achtelik MW, Lynen S, Chli M, Siegwart R (2012) Real-time onboard visual-inertial
state estimation and self-calibration of MAVs in unknown environments. In: IEEE International
conference on robotics and automation (ICRA)

66. Weiss S, Brockers R, Matthies L (2013) 4dof drift free navigation using inertial cues and
optical flow. In: IEEE/RSJ International conference on intelligent robots and systems (IROS),
pp 4180–4186

67. Weiss S, Siegwart R (2011) Real-time metric state estimation for modular vision-inertial sys-
tems. In: Proceedings of the IEEE International conference on robotics and automation (ICRA)

68. Yu H, Beard RW (2013) A vision-based collision avoidance technique for miniature air vehicles
using local-level frame mapping and path planning. Auton Robots 34(1–2):93–109

	4 Computer Vision for Micro Air Vehicles
	4.1 Introduction
	4.1.1 Embedded Hardware Platforms

	4.2 Pose Estimation
	4.2.1 Related Work
	4.2.2 Visual-Inertial State Estimation Approaches
	4.2.3 Embedded Implementation
	4.2.4 Experimental Evaluation: Map Based
	4.2.5 Experimental Evaluation: Map Free

	4.3 Obstacle Detection and Avoidance
	4.3.1 Related Work
	4.3.2 Vision-Based Autonomous Navigation System
	4.3.3 Image-Based Collision Checking
	4.3.4 Collision Checking in Disparity Space
	4.3.5 Motion Planning over Closed-Loop Dynamics
	4.3.6 Motion Planning Strategies
	4.3.7 Experimental Results

	4.4 Autonomous Landing
	4.4.1 Related Work
	4.4.2 Algorithm Description
	4.4.3 Embedded Implementation
	4.4.4 Experimental Evaluation

	4.5 Conclusion and Future Work
	References

