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Preface

Advances in Embedded Computer Vision

This book offers a fresh look at the advances that the field of embedded computer
vision has made in recent years. It is similar in structure to the similarly named
book, Embedded Computer Vision, published in 2008 also by Springer, but the
content is all new.

What Is Embedded Computer Vision?

If you are new to this field, think of Embedded Computer Vision as the art of doing
computer vision, with its complex algorithms and high computational and data
bandwidth requirements, on processing platforms with serious constraints in terms
of power, size, and cost, what we typically call embedded systems. These con-
straints come from specific requirements in which such systems are used: mobile
devices (such as smart phones and tablets), robots, cars, micro air vehicles, remote
cameras, etc.

Can It Be Done?

Oh, yes, it can be done! It is not easy, and that is why our field is still dominated by,
in the language of The LEGO Movie, master builders. In Part I we present a number
of success stories, in Part II we have descriptions of recent developments in our
field, and in Part III we take a look at what the future challenges might be.
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Target Audience

This book is meant for researchers, both in academia and industry, practitioners,
and innovation managers interested in embedded computer vision. It offers insights
at a variety of different levels: historical perspective, markets, technologies, sys-
tems, algorithms, embedded implementation, tools, and future developments.

The book can be used in academic teaching and research in various ways. It
could be used as reading material for specialized advanced courses, for example, to
introduce students of a computer vision course into state-of-the-art problems and
applications of embedded vision technologies. To help with that, the chapters in the
book are self-contained and could be assigned to students as individual reading
material in seminar courses. The book may also provide an inspiring source of
information for students and supervisors who are looking for promising and
industry-relevant topics for Master and Ph.D. theses in the field of embedded
vision.

Organization of the Book

Each chapter is a self-contained unit describing a particular topic. The chapters are
grouped into three parts:

Part I: Success Stories—with detailed descriptions of three major success stories
in our field—the optical mouse, robotic vision, and vision for automotive safety.

Part II: State of the Art—with seven chapters on the recent work in embedded
3D vision, unmanned aerial vehicles, automotive vision, mobile vision, and
augmented reality.

Part III: Future Challenges—with three chapters that provide a peek into some
of the future research directions.

Overview of Chapters

Before we briefly describe each chapter in the book, we would like to emphasize
two areas of research that experienced a significant growth in the last few years.

The embedded realization of 3D vision technologies is of high relevance for a
variety of applications including robotics and automotive safety, and it is currently
receiving increased attention with the growing availability of stereo cameras on
mobile devices such as tablets and smart phones. Especially in outdoor scenarios,
with bright sunlight and varying imaging distances, stereo cameras offer advantages
compared to other 3D sensors such as Microsoft’s Kinect or time-of-flight sensors.
The importance of embedded stereo matching algorithms that enable the
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computation of high-quality depth maps in real-time on resource-limited systems is
well reflected by several contributions in the book.

A recent trend towards the development of small unmanned aerial vehicles
(UAVs) increases the demand for light-weight and low-power sensors and pro-
cessing units that can be used on-board the moving platform. The embedded
implementation of image and video processing algorithms for fast and reliable self-
localization, collision avoidance, and object recognition is a basic requirement for
envisioned applications such as search and rescue tasks.

Part I: Success Stories

• In Chap. 1, “The Optical Mouse: Early Biomimetic Embedded Vision,” Dick
Lyon recalls his 1980 work on the development of the Xerox optical mouse
integrated circuit. He emphasizes the mouse’s bio-mimetic vision architecture
and connections to other things going on in the vision and integrated circuit fields
at the time.

• In Chap. 2, “Consumer Robotics: A Platform for Embedding Computer Vision in
Everyday Life,” authors Mario E. Munich, Phil Fong, Jason Meltzer, and Ethan
Eade describe their work in robotic vision. They present a graph-based SLAM
approach designed to operate on computationally constrained platforms using
monocular vision and odometry.

• In Chap. 3, “Embedded Vision in Advanced Driver Assistance Systems,” Zoran
Nikolić tells us about applications of computer vision in advanced driver assis-
tance systems—automotive vision.

Part II: State of the Art

• In Chap. 4, “Computer Vision for Micro Air Vehicles,” authors Roland Brockers,
Martin Humenberger, Yoshi Kuwata, Larry Matthies, and Stephan Weiss show
us how their autonomous flight navigation framework for micro air vehicles
addresses the challenges of low-power, small size solution for navigation in
cluttered environments where these small unmanned aerial vehicles have to
operate.

• In Chap. 5, “Stereo Vision Algorithms Suited to Constrained FPGA Cameras,”
Stefano Mattoccia reviews stereo vision algorithms suited for FPGA-based
cameras. In particular, this chapter deals with the implementation of such algo-
rithms on embedded camera systems with constrained hardware resources.

• In Chap. 6, “Plane Sweeping in Eye-gaze Corrected, Tele-immersive 3D Video
Conferencing,” authors Maarten Dumont, Patrik Goorts, and Gauthier Lafruit
extend the stereo disparity estimation towards multiple cameras. Targeting high-
quality image post-processing applications, they describe a view interpolation
system, synthesizing new intermediate viewpoints for application in tele-im-
mersive 3D video conferencing.

• In Chap. 7, “Challenges in Embedded Vision for Augmented Reality,” authors
Rajesh Narasimha, Norbert Stöffler, Darko Stanimirović, Peter Meier, and
Markus Tremmel give us a broad overview of augmented reality applications.
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• In Chap. 8, “Tic-Tac-Tandroid: A Tic-Tac-Toe Mobile Vision App,” authors
Milena Djordjević-Kisačanin, Vinjai Vale, and Branislav Kisačanin present an
8th grade science fair project in which an Android app was created for smart
phones that can play the game of tic-tac-toe by “seeing” a hand-drawn board, and
“thinking” of the next best move.

• In Chap. 9, “Vehicle Detection Onboard Small Unmanned Aircraft,” authors
Mathias Kölsch and Robert Zaborowski present their work on ground vehicle
detection from a small flight platform.

• In Chap. 10, “Vision-based Lane Analysis: Exploration of Issues and Approaches
for Embedded Realization,” authors Ravi Kumar Satzoda and Mohan M. Trivedi
give us insight into their latest algorithmic approaches for efficient automotive
vision.

Part III: Future Challenges

• In Chap. 11, “Distributed Smart Cameras in the Age of Cloud Computing and the
Internet-of-Things,” Marilyn Wolf surveys development in embedded computer
vision systems related to the Internet of Things. The chapter considers algo-
rithms, software architectures, and hardware platforms.

• In Chap. 12, “Data-driven Stream Mining Systems for Computer Vision,”
authors Shuvra S. Bhattacharyya, Mihaela van der Schaar, Onur Atan, Cem
Tekin, and Kishan Sudusinghe discuss their ideas about how the huge volumes of
image data coming from networks with large numbers of cameras can be pro-
cessed in a systematic and efficient framework.

• In Chap. 13, “Designing Vision Systems that See Better,” authors Sek Chai,
Sehoon Lim, and David Zhang present a summary of their work on computa-
tional sensing. This chapter introduces the reader to a branch of computer vision
that deals with computationally improving captured imagery by fundamentally
changing how light is sensed, captured, and processed.

How This Book Came About

As organizers of the ninth Embedded Vision Workshop in 2013 (these workshops
have been held almost every year at IEEE CVPR conferences), we were in a unique
position to help satisfy the need for a focused, comprehensive overview of recent
developments in embedded computer vision. We invited a number of authors who
contributed to recent Embedded Vision Workshops and the result of that collabo-
ration is in front of you!

Plano, TX, USA, August 2014 Branislav Kisačanin
Vienna, Austria Margrit Gelautz
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Chapter 1
The Optical Mouse: Early Biomimetic
Embedded Vision

Richard F. Lyon

Abstract The 1980 Xerox optical mouse invention, and subsequent product, was a
successful deployment of embedded vision, as well as of the Mead–Conway VLSI
design methodology that we developed at Xerox PARC in the late 1970s. The design
incorporated an interpretation of visual lateral inhibition, essentially mimicking biol-
ogy to achieve a wide dynamic range, or light-level-independent operation. Con-
ceived in the context of a research group developing VLSI design methodologies,
the optical mouse chip represented an approach to self-timed semi-digital design,
with the analog image-sensing nodes connecting directly to otherwise digital logic
using a switch-network methodology. Using only a few hundred gates and pass tran-
sistors in 5µ nMOS technology, the optical mouse chip tracked the motion of light
dots in its field of view, and reported motion with a pair of 2-bit Gray codes for x
and y relative position—just like the mechanical mice of the time. Besides the chip,
the only other electronic components in the mouse were the LED illuminators.

1.1 Early Mice

At Xerox PARC, wheel mice and ball mice went through several generations in the
1970s, and when Xerox first delivered their commercial workstation product—the
Xerox “Star” 8010 Information System—in the early 1980s, it shipped with a ball
mouse. But the optical mouse that I first designed in 1980 made it to product a few
years later, and displaced the ball mouse in favor of this less expensive and more
reliable technology based on a single-chip VLSI sensor with logic (see the chip
photo, Fig. 1.1).

The early mechanical mice worked well when they were clean, but tended to
gum up over time. They did not have removable balls like the later Apple Macintosh
mice, so had to be disassembled and cleaned by a technician. Due to these difficul-
ties, several researchers at PARC had worked on developing no-moving-part optical
alternatives. I had the advantage of being able to review several different previous

R.F. Lyon (B)

Google Inc., Mountain View, CA, USA
e-mail: dicklyon@acm.org

© Springer International Publishing Switzerland 2014
B. Kisačanin and M. Gelautz (eds.), Advances in Embedded Computer Vision,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-3-319-09387-1_1
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4 R.F. Lyon

Fig. 1.1 The Xerox optical mouse chip in its injection-molded dual-inline package (DIP) of clear
plastic, with pins stuck into a conductive packaging foam. The bond wires connecting the chip’s
pads to the lead frame are (barely) visible

Fig. 1.2 TheWinter 1982 XeroxWorld internal magazine cover featuring the Electronics Division
and their three-button mechanical and optical mouse developments, among other electronic devel-
opments. The three-button mouse shipped on SmallTalk and Lisp machines, but the 8010 and 6085
office systems used a two-button version [18]
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Fig. 1.3 This 1985 product brochure shows the two-button Xerox optical mouse on its special
mouse pad. The corner of the mouse pad not shown in this image is detailed in Fig. 1.4

attempts that had resulted in the filing of invention proposals, but no prototypes or
patents, as well as the advantage of having the new custom VLSI chip prototyping
system available (we had developed this capability in Lynn Conway’s VLSI Sys-
tems Group). The previous optical mouse attempts were based on good concepts
for one-dimensional motion sensing, but the attempted extensions to 2D were not
workable.

At the same time as my optical mouse chip, Steve Kirsch independently invented
a way to make two one-dimensional trackers work together, using two different LED
colors and a mouse pad with special colors of orthogonal stripes. In this design, the
mouse’s coordinate system was in the gridded pad; for this reason, Jack Hawley,
maker of the X063X ball mouse for Xerox, called Kirsch’s devices “pseudo mice”
[28]. My design that Xerox pursued was truly two-dimensional, with coordinates
relative to the mouse body, like a mechanical mouse.

Kirsch’s mouse was a big success, being adopted for early Sun workstations, but
was not really an embedded vision system; it had a few photosensors, but no imaging
array. The Xerox mouse, on the other hand, had a 2D imaging array (4× 4 pixels)
with simple correlation-based spot tracking, and was an embedded vision system in
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Fig. 1.4 The mouse pad was paper, sold in packs of 25 sheets. The pattern was a hexagonal array
of light dots in a dark field, shown here at approximately actual size. Effective mouse pads could
be made by a copier

that sense. Further, it was specifically neuromorphic and biomimetic in the way it
incorporated lateral inhibition in its imager.

Xerox’s optical mouse development was celebrated on the cover of their internal
Xerox World magazine in 1982, as shown in Fig. 1.2. The Xerox optical mouse
was sold with a range of office workstations, such as the 6085 shown in Fig. 1.3, as
well as with Xerox Lisp machines, Tektronics SmallTalk machines, and high-end
copier/duplicator products—none of which were high-volume products. Xerox was
not successful in their attempts to sell licenses to their optical mouse patents, even
after the market for mice exploded on the introduction of the Apple Macintosh with
its low-cost ball mouse in 1984.

This chapter reviews the ideas that went into the optical mouse’s very application-
specific embedded vision system.

1.2 Image Sensing with Lateral Inhibition

The elementary light detector in an nMOS process is a PN photodiode, with the P
region being the substrate and the N region being a diffusion region, as shown in
Fig. 1.5 (a “green” area aswe taught it in the red/green/blue/black scheme at the time).
As shown in Fig. 1.6, a reset transistor back-biases the photodiode to an initial high
voltage, and the voltage decays as the diode collects photoelectrons. The photodiode
voltage can be used as an input to digital logic (shown in the figure as an inverter),
provided the logic is designed to tolerate the intermediate analog values that the
voltage will necessarily go through slowly.

The imaging strategy in the optical mouse relies heavily on an engineering inter-
pretation of lateral inhibition as a nonlinear scheme for arriving at a stable image,
independent of light level. In the simplest example, as shown in Fig. 1.7, a two-pixel
imager uses mutual inhibition in a form that forces the system to decide which one
of the two pixels receives more light than the other.

In systems ofmore than two pixels, each pixel can inhibit, and be inhibited by, pix-
els within some radius. For example, in the four-pixel imager of Fig. 1.8, pixels at dis-
tance 1 and 2mutually inhibit, but the end pixels, at a distance of 3, do not inhibit each
other. This radius-of-inhibition idea has an obvious extension into two dimensions.
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Fig. 1.5 The photodiode is an n-type region in an nMOS process. These and other diagrams are
scanned from my 1981 PARC optical mouse report [24]

Fig. 1.6 The photodiode was incorporated as a dynamic node, going directly into a logic gate, just
as other switched dynamic nodes were used in the methodology we had been teaching [9, 10]

The stable images from the four-pixel imager, that is, imageswhere nomore pixels
can change from “dark” to “light,” are just three: 1001, 0100, 0010. These patterns
are ideally suited to imaging and tracking light lines spaced at about 3 pixels, in a
dark background, as shown in Fig. 1.9. Figure1.8 also shows logic for comparing
successive images, by local binary cross-correlation, and keeping track of position
by a counter, under control of the timing logic of Fig. 1.10.

When I studied the literature on lateral inhibition in the 1970s, based mostly on
the compound eye of the horseshoe crab Limulus, it seemed to be based mostly on
a linear systems view, with subtraction from neighboring sensor elements resulting
in a bandpass or highpass filtering effect. In his 1967 book Sensory Inhibition, von
Békésy [36] explored the effects of lateral inhibition in various sensory systems,
including vision, hearing, touch, and taste, in essentially linear systems terms, for
“sharpening” the response to stimuli. Papers argued that the effect could be very
accurately modeled as linear. For example, while Knight et al. [19] noted that crab
eyewas quite compressive,with a “graded response to awide range of light intensities
(to a factor of about 107 in intensities forLimulus),” they also said that “the response to
an intensity decrement is the close mirror image of the response to the corresponding
increment. This suggests that we are dealing with a so-called ‘time-invariant linear’
system.” In most subsequent analysis, the locally short-time approximately linear
filtering behavior was modeled as if it were accurate, and the extremely nonlinear
large-scale long-time adaptive behavior was ignored, so the important property of
lateral inhibition as a strategy for normalizing the response across a wide dynamic
range was missed. Barlow finally forcefully explained why lateral inhibition is a key
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Fig. 1.7 The circuit and logic diagrams for a two-pixel imager. Through the cross-coupled feedback,
each pixel inhibits the other. It is essentially a flip-flop, with two known stable states, that can hang
for a while in an unstable all-dark state after being reset to that state (like an RS flip-flop with both
set and reset asserted at the same time). The gates on the right detect “Ready” when the “Reset”
signal has put the imager into the unstable state (Pixel-Light-1 and Pixel-Light-2 both low), and
“Done” when light discharging one or both photodiodes has allowed the flip-flop to commit to one
of the stable states (Pixel-Light-1 or Pixel-Light-2 high)

part of the strategy for wide dynamic range vision [3]: “If critical limiting factors are
emphasized one says that lateral inhibition, color opponency, and the gain changes
of light and dark adaptation, are necessary to transmit information about the light
intensities in subdivisions of the visual image, because the available information has
a much wider dynamic range than can be transmitted directly down a nerve fiber in
a reasonable time interval.” It may be that I had already inferred that from some of
his pre-1981 writings, though they were not as clear on this point.

My original chip layout, done “by hand” on a Xerox Alto with a mouse and the
ICARUS IC editor [14], is shown in Fig. 1.11. I had no idea how much light would
be needed, or what the contrast ratio of the imaged surface would be, so I used lateral
inhibition to make the logical function independent of overall light level. I did no
calculations of photodiode capacitance, photon flux, noise margins, or any of the
things that I had to learn about decades later, designing image sensors at Foveon.
I just wanted to make sure it would work, and generate trackable binary patterns, at
any light level. It was very clear that a linearly responding sensor system would be
useless, but I saw the way to use the well-studied networks of lateral inhibition for
their nonlinear normalizing effects. This approach is nowmore common, in concepts
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Fig. 1.8 A four-pixel version of the imager scheme of Fig. 1.7, with timing and motion detection
logic. This linear imaging array has each pixel inhibiting neighbors up to two pixels away, but the
extreme end pixels do not inhibit each other, illustrating the idea of a radius of inhibition. The
done-detection logic is looking for every pixel to either be indicating light, or be inhibited by one
that is light; such states are stable

such as “contrast gain control”—an idea proposed in 1978 by Shapley and Victor
[34] for better modeling the cat retina. It is sometimes implemented as “divisive gain
control,” dividing by a neighborhood average as a way to control the local gain [32].
In the mouse sensor, the lateral inhibition implements a source of a race in time; the
first sensor channel to get enough signal inhibits its neighbors, and if there is a near
tie, they inhibit each other in a positive feedback loop until one wins.

I initially investigated lateral inhibition for robust automatic gain control in hearing
models, starting at Xerox before the optical mouse work; I have continued to use the
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Fig. 1.9 Light lines in a dark
background can be imaged as
shown here, and tracked using
a linear array of just four
pixels, using the circuit of
Fig. 1.8

concept this way inmy current work onmachine hearing [22]. Another interpretation
of nonlinear lateral inhibition, rather than as gain control, is as sparse coding—which
is essentially what the mouse sensor does. To arrive at most outputs being zero due to
inhibition, and only one or a few outputs being active, a competitive or comparative
dynamic process operates on initially small differences, resulting in awinner-take-all
effect. This concept was later used in the silicon retina [21]. Variations on sparse
coding and winner-take-all coding have become popular in computer vision in recent
decades.

1.3 Symmetric Mutual Inhibition

The two-pixel and four-pixel examples show symmetric patterns ofmutual inhibition:
if pixel A inhibits pixel B, then pixel B inhibits pixel A. This is not the only kind of
logical inhibition pattern that can be built, but it has the useful property that it leads
to a set of stable states that are easy to enumerate, and it is easy to build logic to
determine when a stable state has been reached.

Networks with symmetric inhibitory connections came to be known as Hopfield
networks, and were valued for these properties [1]. I recognized the value of the final
states being stable, and of being able to predict, enumerate, and detect stable states,
when working on extending the one-dimensional tracking idea to two dimensions.
In this sense, I was building both a Hopfield network, though not of the scale or
application envisioned by John Hopfield [16], and also a silicon retina, though not
of the scale or generality envisioned by Carver Mead [29]. The imager with lateral
inhibition was a nonlinear dynamical system, before that concept was popularized
with the notion of chaotic attractors; but the attractors in the mouse imager are stable
by design, not chaotic or periodic.

In Fig. 1.8, the column of four NOR gates on the left, with feedback from their
outputs to the inputs of others, is the Hopfield network. The rest of the circuitry is
for resetting it, determining when it is reset, determining when it reaches a stable
state, repeating that sequence indefinitely, and tracking the motion implied by the
successive states. Comparable lateral inhibitory connections of limited range are
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Fig. 1.10 The “Ready” and “Done” signals from an imaging array with lateral inhibition, such as
that in Fig. 1.8, cooperate with this nonoverlapping-clock generation circuit to yield a free-running
self-timed imaging system. The synchronous digital logic parts of the system use the two-phase
nonoverlapping clocking methodology that we were teaching for digital system design as part of
the Mead–Conway VLSI design revolution [30]. The duration of the “long” clock phase would be
whatever time was needed for the imager to reach a stable binary state—faster at high light levels,
slower at low light levels

found in real retinas, involving horizontal cells and amacrine cells [11], and in silicon
retinas [13].

1.4 Metastability

The ability of the Hopfield network to fall into a stable state depends on positive
feedback. A multi-stable system also has metastable states, or saddle points, where
it can hang for a long time before deciding which side to fall toward. The mouse’s
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Fig. 1.11 The layout of the first-generation Xerox optical mouse chip, which I did quickly toward
the end of 1980, had the lateral inhibition, done-detection, and image storage logic distributed in the
pixel cell array, along with image cross-correlation logic. The arrays at the bottom were essentially
programmed logic arrays (PLAs), programmed as the timing generator, the counters, and the logic
that converted the sensed move directions, or image cross-correlations, to counter increments. Six
of the bond pads are cross-coupled inverter pairs, to debounce the SPDT switch contacts of the
three mouse buttons. Of the eleven output pads, four are for the motion encoding and seven are for
observing internal timing signals

done-detection logic waits to see when it has committed, but this strategy only works
if the metastable states are static, not oscillatory.

Oscillatory metastable states were well known to us in the 1970s, having been
reported by Chaney andMolnar [7], who showed the oscillatory metastable behavior
of a pair of cross-coupled TTL logic gates; Fig. 1.12 shows random samples of a
flip-flop output being put into and exiting its metastable state. Charlie Molnar had
workedwith us at Caltech during the early VLSI developments, andwas influential in
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Fig. 1.12 Chaney and Molnar showed in 1973 that a pair of cross-coupled TTL NAND gates had
an oscillatory metastable state

Fig. 1.13 Chaney and
Rosenberger showed, at the
1979 Caltech Conference on
VLSI, that cross-coupled
nMOS NOR gates would exit
the metastable point via a
simple exponential
divergence

our thinking about system timing, as described in Chuck Seitz’s chapter in theMead–
Conway book [33]. In my initial report, I credited Seitz for the done-detection idea:

Note that we do not use the inhibition NOR gate output itself for done-detection, but a
buffered version of it after a high threshold buffer (inverter pair); this is the easiest way to
prevent false done-detection during a metastable condition (Seitz 1980). The buffered signal
is not used for inhibition, since that would make it participate in the metastable condition,
and because the extra delay would cause oscillatory metastable states.

Chaney and Rosenberger had shown that the metastable state of a pair of cross-
coupled nMOS NOR gates, like that of the two-pixel imager of Fig. 1.7, would be
a simple unstable equilibrium, which would diverge exponentially toward a stable
state, without oscillation [8]; Fig. 1.13 shows their model and analysis from the 1979
Caltech Conference on VLSI. This was the behavior I needed, and I had reasoned
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that with one capacitance per node, a multinode generalization, such as the one in
Fig. 1.8, or the larger one in the full 2D imager, would have similar dynamics in
exiting its metastable states. Yet I had no proof.

Hopfield showed in 1984 that with symmetric interconnection weights, such a
network can be characterized by an energy function, and that any state change
reduces the energy, until it settles into a stable state, a local minimum [17]. Hop-
field’s differential equation formulation with one state variable per node exactly
describes the network of interconnected nMOS NOR gates in the optical mouse
imager, so we can be sure, in retrospect, that the metastable states of that cir-
cuit are nonoscillatory. The cross-coupled TTL gates that Chaney and Molnar
analyzed had extra internal (not symmetrically interconnected) nodes with their
own state and delay, which is why the metastable states in that case could be
oscillatory.

1.5 Two Dimensions

The idea of a 1D line tracker such as that of Fig. 1.9 has various possible extensions
into two dimensions. Extensions that use axis-aligned patterns of lines or dots have
problems when the mouse is rotated, which is why pre-1980 attempts at PARC did
not get very far. Using the idea of a radius of inhibition in two dimensions, I set
about finding a way to track less rigid patterns of light dots in a dark field. An ideal
pattern seemed to be a close-packed hexagonal array of dots, allowing the imager
at arbitrary angles to treat the dots as being randomly arrayed, with a characteristic
distance between them.

After evaluating various radii of inhibition and imager sizes, I found that a 4× 4
array with a “3.0 special” radius of inhibition would yield a set of stable images
containing either one light dot in the central 2× 2 area, or two light dots on oppo-
site edges—a total of 30 possible state binary images, as shown in Fig. 1.14. Here
“special” means that pixels at a distance of exactly 3.0 pixel spaces will inhibit each
other if they are corners, but not otherwise; this scheme eliminates patterns of 3
and 4 dots, but allows patterns of dots on opposite edges, so that motion can be
detected, much as with the lines on opposite ends of the linear array of 4. In the
2D case, a pattern of light dots in a hexagonal array, as shown in Fig. 1.15, works
well.

When the radius of inhibition exceeds 2
√
2, a light spot in an image cannot be

adjacent or diagonally adjacent to two different spots in a previous or subsequent
image, so we will not have any ambiguity of which direction a spot moved. Further-
more, with the 3.0 special inhibition pattern, since there can only be at most two
spots (as shown in Fig. 1.14), there will be at most two motion directions involved
in a correlation of one image with the next. Computing the average of two moves
is easy, using a half-step bit in a position counter: when an old image and a new
image each have two spots, with different apparent move directions, their average
can still be represented in terms of half steps. The logic to drive the half and full steps
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Fig. 1.14 Inhibition patterns
and spot patterns for a range
of radii of inhibition. The
3.0 s inhibition yields a useful
set of 30 stable images with
one or two spots each

Fig. 1.15 How a 4× 4-pixel
imager might see one, two,
three, or four light dots when
viewing a hexagonal array.
For the inhibition pattern we
chose, the three- and four-dot
versions are not allowed, so
only two of the dots on
opposite edges (and not on
adjacent corners) will be seen
in those cases

from the detected correlations is shown in Fig. 1.16, to control the output quadrature
signals shown in Fig. 1.17.

The clocked logic does not have much state besides the sensor pixels themselves:
just one 16-bit old image to be compared with a new image, and a pair of three-bit
counters for x and y positions; compare the 4-bit image register and single counter of
the one-dimensional version in Fig. 1.8. Only two bits per dimension are taken as out-
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Fig. 1.16 This programmed logic array (PLA) converts the cross-correlation bits to counter-control
signals. If an image has no light pixel adjacent to one in the previous frame, the “Jump” output is
asserted to signal this exception, and the counters are not moved, by not asserting either “Half” or
“Full” as the increment size

Fig. 1.17 Four-phase quadrature encoding, or 2-bit Gray code, is reported in each dimension.
Motion in one direction makes square waves in quadrature (90 ◦ out of phase with each other)
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put, using a quadrature encoding, also known as a two-bit Gray code. This is the same
encoding that ball mice generated by a pair of shaft encoders (optical shaft encoders
in some designs). It assures that a device receiving the signals asynchronously will
not get an error from two bits switching at not quite the same time.

1.6 Dynamic Logic

The two-phase nonoverlapping-clock pass-transistor-based dynamic logic used in
the Mead–Conway nMOS VLSI methodology was almost a good match to the self-
timed optical sensor approach. But since the duration of the long phase was not
bounded, dynamic nodes set on the short phase could have decayed away, espe-
cially due to light falling on the chip, during that time. This potential problem was
anticipated and was easily avoided by adding gated positive feedback to those nodes
during the long phase, so that all data was held statically during those times. With
this simple addition to the usual two-phase latches, and with the short phase being
less than a microsecond, the logic was robust enough that no light shielding was
needed.

1.7 Testing

I tested the first mouse chip by wiring it into the mouse port of my Xerox Alto com-
puter and projecting patterns onto it. When I got the cursor to move in all directions,
I declared success. Unfortunately, more rigorous testing was complicated by the fact
that I had forgotten to give the chip any electrical input paths. With my team-mate
Martin Haeberli, we soon set about designing the next version, with a more compact
pixel array better suited to a short optical path, and with inputs that would allow
selectively discharging any set of photodiodes, so that all the logic could be tested
on a standard electronic chip tester [26]. The resulting product chip layout is shown
in Fig. 1.18, and the cover of the magazine that featured it is shown in Fig. 1.19.

1.8 Going Meta

My manager at the time, Lynn Conway, always had (and ever since has) encour-
aged me to “go meta” with my ideas, which is why my original optical mouse
report included the subtitle “and an Architectural Methodology for Smart Digital
Sensors.” A condensed version of the report, with the same title, was created to go
with my invited opening talk at the 1981 VLSI Systems and Computation meeting at
CMU [20]. The methodology was basically to combine the Mead–Conway digital
design methods, including concepts of self-timed logic, with analog sensors such as
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Fig. 1.18 The layout of the second-generation Xerox optical mouse chip, completed by Martin
Haeberli and Robert Garner after I left Xerox, incorporated more regular arrays outside the more
compact photodiode array, which was a more efficient use of space. This new version also incor-
porated testability features; a second connection to each photodiode allowed it be discharged elec-
trically, simulating light falling on it

photodiodes, in a way that leads to simple and elegant semi-digital designs that could
be prototyped on a by-then-standard MOS fabrication service based on Conway’s
simplified design rules [25].

The 1981 patent filing (see Fig. 1.20) did not go very meta; it was divided into
an imaging array with predetermined stable output states (… each of said cells
coupled with several of said neighboring cells in said array to alter the output of said
neighboring cells resulting in the recognition of said intermediary pattern as being
one of a limited plurality of predetermined such patterns …), and a cursor control
device using it.

In 1982, I presented the optical mouse design at the Physics of Computation class
thatMead, Hopfield, and Feynmann were jointly running at Caltech. This connection
led tomy joining the Caltech faculty as visiting associate for 13 years, where I helped
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Fig. 1.19 The redesigned optical mouse chip with testability features was featured—via Charles
Bragg’s 1966 painting Salute—on the cover of VLSI Design magazine in 1982 [26]. The caption
reads “There are times when your mouse must be able to see. A single chip may be the solution.”

Mead and his students with a wide range of neuromorphic vision and hearing chips.
The mouse design influenced the development of some of their silicon retina ideas,
such as motion sensing chips [35], and the winner-take-all and the address-event
schemes for sparse digitization of analog signals [21, 27], as well as silicon cochlea
chips [23, 37]. Researchers elsewhere took the ideas in different directions, such as
a 60× 60 binary smart imager in CMOS [15].

The small size of the optical, as opposed to mechanical, motion sensor allowed
researchers to experiment with other configurations, such as following up the sug-
gestion in my original report that “a pen-like device with a big base that keeps it
from falling over might be desirable” [6]; and a 93-pixel analog motion tracker chip
developed for the Logitech Marble [2], a trackball version of my suggested “device
that watches a golfball-like pattern of dots on a rolling ball.”

The optical mouse implements a simple version of what in modern vision sys-
tems is called visual odometry—essentially, a notion of self tracking by imaging
the environment. Gary Bishop credited the inspiration for his 1984 “self-tracker”
invention this way [5]: “The inspiration for this research came from Leandra Vicci
of the UNC Computer Science Microelectronic Systems Laboratory, who suggested
that we could track in three dimensions using something similar to Richard Lyon’s
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Fig. 1.20 The optical mouse
patents—Cursor Control
Device and Imaging
Array—did not issue until
1985; a lifetime of 17 years
after issue means they may
have been in force until 2002

Optical Mouse, imaging the room rather than special paper.” Modern papers on
insect-inspired robot odometry continue to refer to inspiration from my optical
mouse [12].

The optical mouse has been described as an inspiration in the books Vision Chips
[31] and Smart Cameras [4] among others. Mostly, though, the Xerox mouse was
largely forgotten before the optical mouse was re-invented at Hewlett Packard and
released by their spin-out Agilent in 1999 as a high-resolution high-computation
imager/correlator for tracking the details of arbitrary surfaces, such as the fibers in
paper. They list as one of their 1999 milestones, “Release of Agilent’s optical mouse
sensor eliminates need for mouse pads, and allows for creation of a more precise and
longer lasting computer mouse” [38]. Microsoft used the Agilent chips in their 1999
Intellimouse, and Apple used them in their 2000 Pro Mouse.

1.9 Conclusion

The optical mouse was a successful union of ideas in VLSI design, vision, and neural
networks. In hindsight, it was a smart camera and an embedded vision system before
those concepts were invented. It was a silicon retina before Carver Mead coined
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that term, and a Hopfield network before John Hopfield invented that concept, and
a self-tracker before Gary Bishop came up with visual odometry. It did this all with
only 16 pixels, so it was simple, rather than powerful or general. The chip was at the
LSI level of complexity, but was a teaching vehicle and popular example for methods
of digital VLSI system design that it embodied.

I enjoyed lecturing on this development at universities all around the world, and
I still have my viewgraphs, printed on the world’s first color laser printer (Gary
Starkweather’s “Puffin”) in 1981, in case anyone would like to hear a rerun.
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Chapter 2
Consumer Robotics: A Platform
for Embedding Computer Vision
in Everyday Life

Mario E. Munich, Phil Fong, Jason Meltzer and Ethan Eade

Abstract Consumer robotic devices provide a platform for embedded computer
vision algorithms in applications for everyday life. The consumer market is very
price-sensitive, so robots must be developed with a single task in mind, aiming
to provide the best performance at the lowest cost. Computational resources in
consumer robotics are scarce given cost constraints, forcing the design of novel
algorithms that elegantly incorporate such constraints. We present a graph-based
SLAMapproach designed to operate on computationally constrained platforms using
monocular vision and odometry. When computation and memory are limited, visual
tracking becomes difficult or impossible, and costs for map representation and updat-
ing must remain low. Our system constructs a map of structured views using only
weak temporal assumptions and performs recognition and relative pose estimation
over the set of views. We fuse visual observations and differential measurements
in an incrementally optimized graph representation. Using variable elimination and
constraint pruning, graph complexity and storage is kept linear in explored space
rather than growing over time. We evaluate performance on sequences with ground
truth and also compare to a standard graph-SLAM approach.

2.1 Introduction

Over the past decade, computer vision algorithms have transitioned from the lab to
the marketplace. Improvements in processors, memory density, and image sensor
technology enable the deployment of sophisticated algorithms. The introduction
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of smartphones and tablets has accelerated the pace of this trend. These mobile
devices include powerful processors, ample memory, and high-resolution cameras.
Coupled with high-level operating systems such as iOS and Android, these enable
the quick development of computer-vision-based applications. One can argue that
these devices provide a conduit for the deployment of embedded computer vision in
the consumer electronics market. However, these devices are fairly expensive, which
allow them to provide the resources computation- and memory-hungry computer
vision applications require.

Consumer robotic devices, on the other hand, face severe constraints on the cost
of computation. The mass consumer market is very price-sensitive, so the retail cost
of the robot is key for the success of the product. The consumer electronics industry
standard suggests a retail price for the product that is 3–5 times the cost of parts
(bill of materials, or BOM). In other words, for a $300 MSRP robot, the BOM
should be between $60 and 100, including all mechanical parts, electrical parts,
battery, processor, memory, motors, assembly, packaging, user manuals, and miscel-
laneous items! These strict cost constraints translate into a reduced availability of
computational resources, requiring the development of particularly lean algorithms.
Consumer robotics thus serves as an important platform for deploying embedded
computer vision applications.

Another interesting factor that distinguishes the smartphone from the robotic use
case is autonomy. Unlike in a smartphone app, the vision system in a robot must
work reliably with no user assistance, continuously and for long periods of time.
There is no opportunity for a user to correct an error or ignore a defect; if the vision
system fails, the effectiveness of the overall system is reduced.

Visual localization and mapping is attractive for low-cost robotics applications
since cameras are data rich, low power, and inexpensive. The challenge lies in design-
ing an algorithm that can efficiently extract relevant information from this high-rate
visual data stream. Despite Moore’s Law, low-cost embedded platforms are still
constrained by limited processing power, memory, and storage. Many state-of-the-
art approaches to visual SLAM rely on interframe tracking, which requires high
frame rate processing. Additionally, common constraint graph SLAM methods for
agglomerating sensor information often incur computation and storage costs that
grow with time rather than with space explored. For a robot operating for extended
periods within a limited spatial area—typical of practical applications—this is an
undesirable trade-off.

This chapter describes the development of a localization system that can enable
systematic navigation of domestic robots in a household environment. The target
application is a mobile domestic robot with a price lower than $1000, and ideally
below $500. We present an approach to visual localization and mapping designed
for a low-cost robotic platform equipped with simple odometry and a single camera.
Operating primarily as a recognition engine, the visual measurement subsystem
requires only occasional, weak assumptions on processing rate, and intrinsically
provides robust loop closing when previously-mapped areas are revisited. Visual
measurements and odometry are fused in a graph representation and optimized incre-
mentally. Important novel features of this system include techniques for bounding the
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SLAM graph complexity during operation, using variable elimination and constraint
pruningwith heuristic schedules. Thesemethods keep optimization and storage costs
commensurate with explored area rather than with time of exploration while causing
minimal loss in mapping and localization accuracy.

An instantiation of the approach is demonstrated on real datasets with planar
ground-truth reference. The system operates successfully even at frame rates below
2Hz. Comparing the results with and without complexity reduction demonstrates
that the reduced graph yields similar localization accuracy at a small fraction of the
computational cost.

2.2 Related Work

2.2.1 View Recognition for SLAM

View recognition engines have proven attractive components for SLAM systems
because they permit robust and flexible loop closing. Instead of making correspon-
dences between individual features ormeasurements, visual or otherwise, view recog-
nition engines typically match constellations of features or entire images without
requiring feature tracking.

Williams et al. [20] rely on tracking for normal EKF SLAM operation, but use
view recognition to recover from failure. Several features are matched to the existing
map using appearance and structure constraints in order to reinitialize tracking.

The Parallel Tracking andMapping(PTAM) [10] system also employs view recog-
nition for recovery from tracking failure. Instead of using feature-based methods for
identifying candidate views, the system performs image-to-image correlation using
heavily blurred, low-resolution versions of the reference and query images. A crude
pose estimate is deduced from the result of the inverse-compositional matching,
following which tracking resumes.

Eade andDrummond [4] group subsets of features into localmaps during tracking-
based SLAM. Correspondences are made between local maps to connect them or
to recover from tracking failures. The image-to-map matching first selects a subset
of local maps to consider using a bag-of-words ranking, and then performs local
matching to determine feature-to-feature correspondences. This two-step process is
common to many view recognition systems, often instantiated as a bag-of-words
prefilter followed by re-ranking using geometric constraints [17].

The above approaches rely on tracking and use view recognition as an out-of-
band method for failure recovery. Our approach instead performs recognition at
every time step as the primary source of observations. The system of Karlsson et al.
[9] is similar, constructing landmarks out of constellations of SIFT [14] features
and employing nearest neighbors and a simple Hough transform as the recognition
algorithm. The system is further refined by Eade et al. [5] by replacing the particle-
filter back end with a graph SLAM back end that is described in further detail in
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the following sections. The work of Cummins et al. [2] takes a more sophisticated
approach to recognition, building a visual vocabulary offline, and approximating
the joint probability distribution of visual words with a Chow-Liu tree. Each view’s
appearance model is updated upon recognition.

Our view recognition front end bears many similarities to the view-based maps
of Konolige et al. [12]. That system constructs views from stereo images and per-
forms two-step recognition using first a vocabulary tree and then a geometric match-
ing stage. Views (called skeleton frames) are constructed from the output of visual
odometry, which requires a frame rate sufficient for tracking.We require onlymonoc-
ular imagery, constructing structured appearance models from two matched views
of the same scene. While Konolige et al. use randomized tree signatures for feature
matching, we use a simple variant on SIFT features and local and global feature
databases.

2.2.2 Graph-Based SLAM

Storing observations and poses in a constraint graph is now awell-explored technique
for localization and mapping. The graph formulation provides a straightforward and
flexible representation of the underlying Gaussian Markov random field (GMRF)
problem that SLAM attempts to solve. The general framework is described in [18],
including a description of a graph relaxation procedure identical to batch bundle
adjustment in photogrammetry [19]. Relaxation algorithms for SLAM graphs have
received much attention, especially with online operation in mind. Olson et al. [16]
suggest a stochastic gradient descent method, and Grisetti et al. [7] review that and
related methods for incremental graph optimization.

The system of Eade and Drummond [3] forms a graph where each node is a joint
distribution over a local map, and the relative nonlinear constraints between nodes
are derived from shared features. The graph is relaxed by imposing cycle constraints
using preconditioned gradient descent. The network constructed by PTAM is effec-
tively a graph of relative constraints between keyframes, though the optimization,
performed asynchronously to the primary tracking task, acts on individual structure
elements.

The view-based mapping of Konolige et al. [12] constructs a reduced graph of
poses by consolidating consecutive frames tracked by visual odometry into skeleton
frames. Then the constraint graph over skeleton frames is incrementally relaxed using
the Toro method [8].

While existing graph-based SLAM methods employ incremental graph optimiz-
ers to allow online operation, the number of poses in the graph continues to growwith
time. One technique suggested for bounding this growth is that the robot be occasion-
ally virtually “kidnapped,” disconnecting its current pose in the graph from previous
poses and re-inserting it in using only recent observations [8]. This assumes both that
the recent observations are sufficiently accurate to allow relocalization, and that the
effective uncertainty of these observations is zero. These assumptions are routinely
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violated in practice, especially in visual systems, where the accuracy and uncertainty
of relative pose estimates depends heavily on viewpoint and scene structure.

We instead apply probabilistically sound graph reduction methods that limit the
complexity of the graph to a linear factor of the complexity of the explored space. Past
poses of the robot that are not used for view recognition can bemarginalized out of the
estimation, and their incident constraints are collapsed back into the graph. The mar-
ginalization procedure, equivalent to the update step of the Kalman filter or the vari-
able elimination step of the GraphSLAMalgorithm, is described byKonolige in [11].

Marginalization is used to systematically limit graph complexity in Kretzschmar
et al. [13], which employs an approximation rather than exact marginalization. The
approximate form is used to bound edge connectivity in the graph. Carlevaris–Bianco
and Eustice [1] propose an alternative via generic linear constraint node removal. In
contrast, we selectively prune edges incident to nodes of high degree, removing their
constraints from the GMRF in a conservative manner. The adaptive application of
marginalization and edge removal, discussed in Sect. 2.8, is a significant feature of
this system.

2.3 System Overview

The input to the system is a sequence of images from the camera and a sequence
of differential motion estimates, derived from wheel odometry measurements or
other differential sensors. We refer to these differential measurements collectively
as odometry. The system outputs an incrementally updated estimate of the device’s
current pose (localization) and estimates of a subset of its previous poses during
operation (mapping).

Two high-level components constitute the system: the visual recognition front end
and the constraint graphSLAMback end (Fig. 2.1). The front-end processes the video
stream, yielding a global appearance database, a set of structured local appearance

Fig. 2.1 System structure overview
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models called views, and a sequence of pose estimates relative to these models.
The back end fuses the relative pose and differential motion estimates together in a
graph representation, incrementally optimizing and distilling it synchronously with
updates. The graph nodes include estimates of current and selected previous poses
of the robot.

The front end inherently yields 6DoF relative pose estimates and 3D structured
views; the back end can be instantiated in 3DoF for planar robot motion or 6DoF in
the general case. This chapter shows results for the 3DoF case (Sect. 2.9).

2.4 Viewpoint Invariant Features

The view recognition engine identifies previously constructed appearance models
from novel viewpoints based on correspondences between image features. Thus,
the image features themselves must have a representation robust to viewpoint and
lighting changes. Any efficient feature detector/descriptor combination providing
these properties is suitable for this purpose.

We employ Difference-of-Gaussian (DoG) interest points and reduced-
dimensionality SIFT [14] descriptors. Our descriptors are computed in a manner
similar to 128D SIFT descriptors, but using a 3 × 3 spatial grid and four angular
histogram bins per cell, instead of the 4×4 grid and eight angular bins of the standard
configuration. We have determined empirically through recognition tasks that these
36D descriptors perform nearly as well as the higher-dimensional variants, but with
reduced memory and computational costs.

The detection and description algorithms can be implemented efficiently. Table2.1
shows the computational viability of our implementation on different platforms.

2.5 View Creation

The view creation process extracts from the image sequence a set of structured
appearance models. These consist of estimated 3D feature locations and associated
appearance descriptors. These sets of features are accessible through a database for
use by the view recognition process.

Table 2.1 Timings for SIFT feature computation

Task Core2 Atom ARM9

(2.4GHz) (1.6GHz) (266MHz)

Pyramid (ms) 2.0 9.1 42

Detector (ms) 0.6 2.0 8.9

Descriptors (µs/desc) 14 81 219
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Robust Matching Structure/Motion Estimation Database Update

Fig. 2.2 View creation process

View creation proceeds in three steps (see Fig. 2.2):

1. Robust matching: Correspondences are established between features in two or
more temporally local images, while enforcing geometric constraints.

2. Structure estimation: From the feature correspondences, three-dimensional point
structure is estimated and stored. The (optional) differential motion estimate is
used to determine the common scale of the structure.

3. Database management: The appearance model of the view (comprising a set of
feature descriptors) is added to a global database for later recognition.

2.5.1 Robust Matching

The interframe matching procedure for view creation first establishes putative corre-
spondences then partitions these correspondences into inliers (correct matches) and
outliers (incorrect matches) using geometric constraints.

Putative correspondences can be generated using only the feature descriptors, or
by taking advantage of any differential motion estimates supplied by other sensors,
such as wheel odometry. In the first case, each feature in the current image is paired
with the feature in a recent older image according to distance in the feature descriptor
space using a brute-force or approximate nearest neighbors (ANN) method. In the
second case, a motion estimate constrains the search for putative correspondences.
The nearest feature in descriptor space that also satisfies the corresponding epipolar
constraint is taken as a putative correspondence to the older feature.

Given a set of putative correspondences, geometric constraints are applied iter-
atively to eliminate outliers. If no prior on camera motion is provided, a starting
point for the procedure can be computed using RANSAC [6] and the five-point
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algorithm [15]. This yields an estimate of camera motion (up to scale) and a set of
inlier correspondences. When a prior differential motion estimate is available, it is a
sufficient starting point for iteration.

The iteration proceeds as follows:

1. An error threshold factor r̃ is chosen as a multiple of the desired final acceptance
threshold r .

2. Inliers are selected by finding all putative correspondences whose matches fall
within a threshold distance of the epipolar line, whose descriptor distances are
low, and whose depth estimates are positive. The epipolar threshold distance
for a feature with scale s is given by r̃ · s, modeling larger location uncertainty
associated with larger-scale features.

3. The motion estimate is refined by nonlinear maximum-likelihood estimation over
the current set of inlier correspondences.

4. The threshold factor r̃ is decreased multiplicatively, and the process is repeated
from step 2 until r̃ ≈ r .

Weuse this approximation to a standardM-estimator scheme (e.g., iterated reweighted
least squares with Tukey weighting) in order to reduce the computational cost on
embedded platforms.

2.5.2 Structure Estimation

Given feature correspondences between two views, bundle adjustment [19] is per-
formed over the reprojection objective function to yield joint estimates on structure
and camera motion. The scale is left unconstrained by the feature correspondences,
so the gauge freedom is eliminated by fixing the camera translation to unit mag-
nitude while performing the optimization. The scale is assigned to the view using
the differential odometry between the two views used for estimation. Further views
can be added to the optimization either at the point of view creation or upon later
observation. In this case of upgrading the structure, the camera translationmagnitude
is constrained only between the first two views, and all six degrees of freedom vary
among the others. The previously computed parameter values are used as a starting
point in the new, larger optimization.

2.5.3 Database Management

A global appearance database is maintained to aid view recognition. When a new
view is created, its appearance model is added to this database.

The global database could take one of many forms, depending on the desired
appearance model representation. We describe a simple but effective approach here.
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The database contains descriptors for features in all views in a collection of kd-
trees for efficient ANN searches. The time required to add new views to the global
database is bounded: upon view creation, all descriptors in the view are added to the
current kd-tree, which is then rebalanced. If the number of descriptors in the tree
exceeds a predetermined constant bound, a new tree is added to the collection and
becomes the current tree. ANN searches of the forest are described below in Sect. 2.6.

In addition to the global database update, a local appearance model is also con-
structed for each view. The localmodel supportsANN searches over only the descrip-
tors present in the view, and is queried for the second stage of view recognition.

2.6 View Recognition

The view recognition process yields relative pose estimates between single images
and existing views. The recognition approach is hierarchical, first performing appear-
ance matching in a global database, and then applying structure constraints at the
view-local level.

The input to the view recognition algorithm is a set of viewpoint invariant features
extracted from an image, and a global appearance model as described in Sect. 2.5.3.
The output is zero, one, or multiple relative pose estimates to existing views.

The recognition method proceeds as follows (see Fig. 2.3).

1. Features in the query image are looked up in the global appearance model data-
base.

2. The results of the database lookup are used to rank potential views by visual
similarity, and the m top-ranked views are chosen as candidates (we use m = 3
throughout).

3. For each candidate view, correspondences are established between query features
and the features in the view.

4. Geometric constraints are applied to these correspondences, using reprojection
constraints and the estimated view structure to reject outliers. This yields a rough
relative pose estimate.

5. The relative pose and structure estimates are refined using by optimizing over
the inlier correspondences and internal correspondences of the view, yielding
maximum-likelihood relative pose with covariance.

6. The view’s stored structure estimate is optionally updated using the optimization
results.

2.6.1 Recognition Candidate Selection

The top k nearest neighbors in the global database for each query feature are deter-
mined using ANN search (typically k = 2). Then, the putative matches are grouped
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Fig. 2.3 View recognition process

by view.At this point, crude structure constraints can be applied, using aHough trans-
form or RANSAC to enforce a loose similarity, affine, homography, or reprojection
transformation. The views are then ranked by the number of matches satisfying the
constraints. The m highest ranked views are kept as candidates.

2.6.2 Robust Matching and Pose Estimation

For each of the m candidate views chosen by the appearance matching stage, the
query features are matched to the view’s features using the local view appearance
model. Each view feature has an associated three-dimensional structure estimate,
allowing the three-point pose algorithm [6] to be applied within a standard RANSAC
hypothesize-and-test framework. If enough inliers result from this process, they are
passed to the pose estimation stage, along with the relative pose estimate given by
the three-point algorithm.

The pose estimation stage takes correspondences between query features and
view features, and computes the relative camera pose between the query image and
the view’s base coordinate frame (the first image of the view pair). The relative pose
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estimate is represented by mean and covariance in the Lie group SE(3) of rigid 6DoF
transformations. The covariance is represented by a quadratic form in the tangent
space se(3).

The maximum-likelihood estimation is performed using Levenberg–Marquardt
iteration. The camera motion between the existing view frames is assumed fixed and
known, and the feature structure estimates and relative pose to the novel viewpoint
are permitted to vary. The data matrix at the point of convergence is taken as the
information matrix (inverse covariance) of the optimum, as per the Cramer–Rao
lower bound. The structure parameters are marginalized out of this representation,
and the resulting 6×6 matrix is inverted to yield an estimate of the covariance on the
relative pose parameters. If the information matrix is singular or poorly conditioned,
the pose estimate is under-constrained, and the view recognition is discarded.

2.7 Graph Construction and Optimization

The SLAM back end encodes view observations and robot motion in a graph repre-
sentation of a Gaussian Markov random field (GMRF). The graph is constructed as
the robot moves and processes video frames. The graph is continuously and incre-
mentally optimized to improve the state estimate of view and robot poses.

2.7.1 Graph Representation

The SLAM graph [18] consists of nodes and directed edges between pairs of nodes.
Each node represents the pose of the robot at a certain time. Edges encode constraints
between nodes, arising from differential motion estimates (odometry), view obser-
vations, and combinations thereof. All poses and transformations are parametrized
in the Lie group SE(2) (for robot pose in 2D space) or SE(3) (for robot pose in 3D
space), and any covariances or information matrices are expressed in the respective
tangent spaces.

Each node stores the estimated pose of the robot at a certain time. The pose
describes the coordinate transformation from the common global frame to the frame
of the robot at the specified time. Nodes are created for every timestep when a view
is recognized or created. Nodes corresponding to the robot pose at view coordinate
frames are called view nodes and nodes corresponding to the robot pose at any other
times are called pose nodes.

Each edge stores a rigid transformation estimate, with covariance, describing a
constraint between its source and destination endpoint. The constraint means and
covariances are represented in the Lie group and algebra, respectively. Edges that
encode only differential motion constraints (from odometry) are calledmotion edges,
and connect temporally consecutive nodes. Edges that encode relative pose estimates
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from view recognitions are called observation edges. Edges that are formed by com-
bining other edges (described below in Sect. 2.8.2) are called hybrid edges.

2.7.2 Graph Construction

After each image is processed by the front end, the graph representation is updated:

• A new pose node is added for the current pose, and the new node is connected to
the preceding pose node by a motion edge, encoding the accumulated differential
motion estimate between the two poses.

• If an existing view has been observed, an observation edge is created from the
observed view node to the pose node, encoding the observation constraint. When
the back end is operating in SE(2), the relative pose estimate (in SE(3)) is first
projected into SE(2) before creating the observation edge.

• If a new view has been created, one of the recent pose nodes corresponding to the
view is promoted to a view node.

2.7.3 Incremental Optimization

The graph flexibly represents the GMRF corresponding to the SLAM estimation
problem. The negative log-likelihood of the parameter estimates (encoded by the
nodes) is the sum residuals of the edges. Denote the edge set by E = {ei }. For an
edge e ∈ E , the source and destination are given by s(e) and d(e) respectively. The
edge’s constraint mean is denoted by μ(e) and the covariance by Σ(e). Then the
negative log-likelihood −L of the graph (up to a constant offset) is given in terms of
the residuals vi by

vi ≡ μ(ei ) · s(ei ) · d(ei )
−1 (2.1)

−L =
∑

i

vT
i

(
Σ(ei )

−1
)

vi (2.2)

When the node pose estimates better satisfy the constraints encoded in the edges,
the negative log-likelihood−L is lower. Graph optimization increases the likelihood
of the GMRF parameters by minimizing the negative log-likelihood as function of
the node parameters.

Because computation time must be bounded and the graph is continually grow-
ing and changing, any feasible graph optimization technique must be incremental.
Several methods are described in, e.g., [7]. Any general method for incremental
nonlinear optimization can be applied successfully to the graph.

We employ spanning tree and blob-based optimizations, which are run for a fixed
number of iterations at each time step following the graph update.
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2.8 Graph Complexity Reduction

2.8.1 Complexity Growth

The SLAM graph grows every time a view is created or observed. Even when the
robot stays within a bounded space, the views there are observed repeatedly, adding
pose nodes and edges to the graph and thus increasing the complexity with time. The
storage requirements and graph optimization costs grow with the graph complexity,
so in order to control these costs, the graph complexity must be bounded.

The view nodes correspond to elements of the front end relative to which pose
estimates can be computed. Further, the spatial density of view nodes is bounded
by the front end (as existing views will be recognized from nearby viewpoints), so
operation within a fixed spatial region implies a bounded number of view nodes. The
pose nodes, on the other hand, represent past robot poses that are not directly useful
in subsequent operation, except as a data structure for encoding constraints on other
nodes. The number of pose nodes grows with the number of observations, instead of
with the number of views. The graph complexity can be bounded by removing pose
nodes and limiting node connectivity to keep the complexity of the graph linear in
the number of views and thus linear in the amount of space explored.

2.8.2 Pose Node Marginalization

The graph represents a GMRF over past poses of the robot, so nodes can be removed
in statistically consistent manner by marginalizing out the corresponding pose vari-
ables from the GMRF state. The graph directly encodes the Markov property of the
system: a node is conditionally independent of all nodes to which it is not directly
connected. Thus marginalizing out a node’s state involves only the Markov blanket
of the node (all of the nodes within one hop in the graph). Further, because the mar-
ginal distributions of a Gaussian are also Gaussians, the graph resulting from the
removal exactly encodes the appropriate Gaussian distribution over the remaining
variables [11].

Removing a node by marginalization induces pairwise constraints between all
pairs of nodes connected to the removed node. If a constraint (edge) already exists
between such a pair, the new constraint is combined with the existing constraint by
multiplication of their Gaussians. A few operations on edges are needed to define
the node marginalization procedure:

2.8.2.1 Edge Reversal

An edge e represents an uncertain rigid transformation between its two endpoint
nodes, given by a mean and covariance (μ,Σ) in the appropriate Lie group and Lie
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algebra respectively. The adjoint operator in a Lie group allows elements of the Lie
algebra to bemoved from the right tangent space of a transformation to the left. Thus,
the reversed edge e−1, pointing in the opposite direction in the graph but encoding
the same transformation constraint, is given by

e−1 =
(

μ−1,Adj
[
μ−1

]
· Σ · Adj

[
μ−1

]T
)

(2.3)

2.8.2.2 Edge Composition

Given an edge e0 = (μ0,Σ0) from node a to node b and an edge e1 = (μ1,Σ1)

from node b to node c, the two edges may be composed into one edge from a to c
by composing the uncertain transformations, as in a Kalman filter motion update:

e1 · e0 =
(
μ1 · μ0,Σ1 + Adj [μ1] · Σ0 · Adj [μ1]

T
)

(2.4)

2.8.2.3 Edge Combination

Given two edges e0 = (μ0,Σ0) and e1 = (μ1,Σ1) connecting the same two nodes
in the same direction, their constraints may be combined by multiplying the asso-
ciated Gaussian distributions together to yield the resulting Gaussian. Because the
exponential map from the tangent space to the transformation manifold is nonlinear,
the combination procedure for the mean is iterative. The combined covariance ΣC

is computed by summing the information of the two edges:

ΣC =
(
Σ−1

0 + Σ−1
1

)−1
(2.5)

Let the initial estimate of the combined mean be the first edge’s mean:

μ0
C = μ0 (2.6)

Then the combined transformation is updated by taking the information-weighted
average between the two transformations and exponentiating the correction into the
Lie group:

vi
j = ln

(
μi

C · μ−1
j

)
, j ∈ {0, 1} (2.7)

δi = ΣC ·
(
Σ−1

0 · vi
0 + Σ−1

1 · vi
1

)
(2.8)

μi+1
C = exp (δi ) · μi

C (2.9)
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This update is iterated until convergence (usually three or four iterations), yielding
the combined edge:

eC =
(
μk

C ,ΣC

)
(2.10)

Node Removal

Consider a node nr to be removed by marginalization, with incident edges Er =
{e0, . . . , em}. Each pair of such edges (ei , e j ) is composed into e(i, j) according to
the following cases:

e(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ei · e j s(ei ) = d(e j ) = nr

ei · e−1
j s(ei ) = s(e j ) = nr

e−1
i · e j d(ei ) = d(e j ) = nr

e j · ei d(ei ) = s(e j ) = nr

(2.11)

The resulting composed edge is added to the graph between the two incident nodes
that are not nr . If such an edge already exists, the edges are combined, reversing the
composed edge if necessary. Finally, all incident edges Er are deleted from the graph
along with the node nr . An example is shown in Fig. 2.4.

2.8.3 Edge Pruning

While the node marginalization procedure always decreases the number of graph
nodes and attempts to decrease the number of edges, it might fail to bound the
degrees of nodes and thus the complexity of the graph. Indeed, marginalizing out
all pose nodes results in a completely connected graph over view nodes, with edge
cardinality quadratic in the number of views.

Fig. 2.4 Graph reduction by marginalizing out a node. In this example, the number of edges in the
graph is unchanged
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To limit the edge complexity of the graph, edges need to be heuristically pruned
during operation. Removing an edge from the graph is equivalent to discarding the
information represented by the edge, as though the observation or measurement had
never been made.

One simple approach to limiting the number of edges is to maintain a priority
queue of nodes with degrees exceeding a fixed, predetermined bound. This queue
needs to be updated only when edges are added to the graph (measurements or node
removals). Edges are removed from each node in the queue until no node degrees
exceed the bound.

The heuristic operates as follows: the edges of a high-degree node n are examined
one at a time. If the opposite endpoint through edge e is not connected to n through a
path that excludes e, with length under a predetermined bound, then e is not eligible
for removal, as the graph would be potentially disconnected. The eligible edge with
the least residual is deleted. Of the edges incident to n, such an edge is in least
disagreement with the current state of the graph, and thus its removal should least
affect the graph optimum.

This simple, greedy heuristic does not consider the collective effect of removing
multiple edges in series. Nonetheless, our evaluation shows that it performs ade-
quately.

2.9 Evaluation

We use three indoor sequences (Seq1, Seq2, Seq3) to evaluate the performance
of the system and the effects of graph complexity reduction. Seq1 and Seq2 were
collected using an Evolution Robotics Scorpion, and Seq3 with an iRobot Roomba.
In each instance, the robot was equipped with a web camera and wheel odometry.
Fiducials placed in the environment were observed by a SICK NAV200 laser range
finder mounted on the robot to provide ground truth.

The sequence parameters are described in Table2.2, and example images are
shown in Fig. 2.5. The ground truth trajectories are shown in Fig. 2.6.

Table 2.2 Test sequences

Seq1 Seq2 Seq3

Environment Warehouse Home Office

Frame rate (Hz) 1.5 1.5 3.0

Timesteps 1,035 1,822 3,896

Extent (m) 24 × 12 20 × 9 19 × 10

Views created 41 103 140
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Fig. 2.5 Example images from the Seq2 (left) and Seq3 (right). The reflector beacons are NAV200
fiducials used for ground truth estimation

2.9.1 Metrics

We measure both the accuracy of the incrementally estimated trajectory and of the
final view map. The view map is the set of poses of view nodes in the graph at the
end of the run, including incremental optimization but without any post-processing.

Comparing the trajectory to the reference reflects localization accuracy during
the run. Comparing the map to the appropriate subset of the reference indicates
how well the system can be expected to localize in the same environment given
subsequent operation. Though the lattermetric ismore common, and generally shows
smaller errors compared to the reference, it does not necessarily reflect how useful
the localization is during online operation.

The estimated and ground truth trajectories are compared by first finding the
rigid transformation between them that minimizes sum-squared position error, using
RANSAC and least squares. The view map corresponds to a subset of the total robot
trajectory, so the same method is used to compute the view map error over that
subset.

2.9.2 Results

Figure2.7 shows a portion of the graph computed for Seq2 with and without reduc-
tion. The node and edge density is significantly lower in the latter.

Table2.3 shows error metrics and graph complexity for full and reduced graphs.
In the “Full” columns, the graph is heavily optimized and no nodes or edges are
removed. The “Reduced” columns show the same metrics when the number of pose
nodes is bounded by the number of views plus ten, and the maximum permitted node
degree is eight. The graph complexity is greatly reduced with little or no loss of
localization accuracy. As expected, the error of the view map is smaller than that of
the causally estimated trajectory consisting of the best estimate at each timestep, as
the map has incorporated all the information up to the end of the run.
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Fig. 2.6 Ground truth trajectories for the test sequences

Fig. 2.7 Detail from middle of full and reduced graphs for Seq2. View nodes are (red) circles,
pose nodes are (green) squares, and edges are (blue) lines. Note the reduced density on the right
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Table 2.3 Metrics for full and reduced complexity graphs

Error (cm) Seq1 Seq2 Seq3

Odom. RMS 281 331 469

Odom. max 773 667 852

Error (cm) Full Reduced Full Reduced Full Reduced

Traj. RMS 45 44 23 28 59 59

Traj. max 109 105 81 74 138 149

Map RMS 24 18 21 20 43 47

Map max 41 32 47 46 98 103

Number of nodes 709 92 897 216 2,491 290

Number of edges 1,471 155 1,810 414 5,154 501
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Fig. 2.9 Graph complexity over time for Seq1, with and without reduction. The two regions
bounded by vertical dotted lines are periods of revisitation, during which views are reobserved
rather than created. The reduced graph complexity remains constant unless new views are created.
Note the difference in vertical scale

Figure2.8 overlays the trajectories computed using the heavily optimized, fully
complex graphswith those computed using reduced graphs. The qualitative similarity
of the results reflects the quantitative similarity of the errors to ground truth. The
deviation between the two traversals of the large loop in Seq3 occurs because the
robot traverses in opposite directions, so views are not reobserved.

Figure2.9 shows the growth in number of graph nodes over time for Seq1, with
and without reduction. Reduction keeps the complexity linear with number of views
rather than time.

2.10 Conclusion

This view-based monocular SLAM system minimizes the computation required for
vision-based processing and actively manages the complexity of the SLAM graph to
permit operation on constrained computational platforms. Our results show that the
complexity reduction methods significantly limit graph node and edge cardinality,
while only negligibly affecting localization accuracy. The system uses inexpensive
sensors, has low computational requirements, and high reliability, all of which are
ideal for low-cost robotic applications.
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Chapter 3
Embedded Vision in Advanced Driver
Assistance Systems

Zoran Nikolić

Abstract Throughout history, advances in transportation systems have had large
economic and cultural impact. Mobility has changed the way people live and auto-
mobiles continue to evolve by becoming smarter and by leveraging cutting-edge tech-
nologies. Over the last three decades, wewitnessed a tremendous growth of computer
vision knowledge through research in academia and industry. More recently, in the
last decade, we are finally seeing exciting applications of computer vision. Computer
vision plays a fundamental role in the advanced driver assistance systems (ADAS),
a field which is of particular interest to the evolution of transportation systems. For
example, forward-facing driver assistance functions (such as road sign detection,
lane departure warning, and autonomous emergency braking) are heavily relying on
information received from a camera. The systems capture video data at high frame
rate and process this information in order to warn the driver that the car is moving
faster than the posted speed limit or to tell the driver of an unintentional lane drift.
The goal of this chapter is to outline key components of ADAS, show how computer
vision fits in the system, and describe its contribution to success of ADAS.

3.1 Introduction

Over the course of the twentieth century, automobiles evolved from an expensive
toy with a 0.55kW (less than 1 horsepower) engine and three wire-spoke wheels
[1] into, we might say, a basic need of modern life. Today, automobiles dominate
passenger travel. The total distance traveled by vehicles in the US increased by 155%
from 1970 to 2010 [2]. In 2013, about 87 million vehicles were produced worldwide,
22 million of those for the Chinese market [3]. The development of the automobile
continues to drive economic, environmental, and cultural trends.

Mobility enhances quality of life but this comes at a high price. For example,
approximately 1.24 million people died on roads around the globe in 2010 [4]. Even
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though number of fatalities per kilometer driven has fallen by a factor of three since
1980, the growth of transportation still has an unfortunate impact on the modern
society in terms of loss of life and property. Half of all road traffic deaths are among
pedestrians, cyclists, and motorcyclists. Motor vehicle crashes are ranked number
nine among top ten leading causes of death in the world [5] and are the number one
cause of death among children between ages 2 and 14 in the US [56].

Thankfully, cars are becoming smarter by leveraging the latest technologies, mak-
ing driving safer and more enjoyable. Electronic systems promise to make roads
nearly accident free. Active safety systems that are engaged prior to an accident (such
as antilock braking system, electronic stability system, collision warning/avoidance,
or adaptive cruise control) and passive safety systems which are engaged during
the accident (such as passenger safety cell, seat belts, air bags, etc.) are helping to
achieve this goal.

Advanced driver assistance systems (ADAS) are designed to increase driver situa-
tional awareness and safety by providing essential information, automating repetitive
or complex tasks, and taking actions to reduce the severity of an accident. Human
drivers are fallible: we send text messages while crawling in slow traffic, we forget
to check surroundings before changing the lane, or get drowsy while driving at night.
By reducing the amount of information to which a driver must react, or even taking
over some of the tasks, such as braking or steering, ADAS technology is advancing
toward a smart car that eliminates the errors we humans make. According to recent
industry reports, ADAS market is one of the fastest growing segments in automotive
electronics.

Driver assistance systems are focus of large joint research projects. Car manufac-
turers and research groups work together to solve the driver assistance challenges,
by participating in projects such as CARSENSE (2000–2002) [57], INVENT(2001–
2005) [58], and PREVENT(2004–2008) [59].

Embedded vision, along with radar and lidar, is at the forefront of technologies
that enable the growth of ADAS. In the next generation of driver assistance systems,
they will reduce the incidence of low-impact collisions and allow vehicle autonomy
at lower speeds.

In this chapter, we focus primarily on ADAS building blocks based on embedded
vision. We first give an overview of ADAS applications, compare different sensor
types used inADAS, and then focus on camera-based systems. InSect. 3.4,wediscuss
the main components that make today’s vision-based ADAS systems successful.

3.2 Analysis of Key ADAS Sensors

In order to provide support for advanced driver assistance applications, a sensor
system must collect timely and relevant information about the environment. Typical
sensor types that are used in ADAS are:
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• Mono camera sensors. The imaging sensors are covering vision and near-infrared
spectrum and have flexible field of view (FOV). Most ADAS functions require
imaging sensor dynamic range of at least 115dB, i.e., more than 19 bits per pixel.
Typical frame rate for imaging sensor in driver assistance is 15 or more frames/s.

• Stereo camera pair has the capability of generating scene depth map based on
disparity between the views from two cameras. Stereo camera is the most complex
and complete sensor for driving assistance.

• Time-of-flight sensors that give accurate depth information by measuring the time
it takes for the emitted energy to return to the sensor:
– Long-range radar with range of 1–200m and a response time of about 40ms.
Long-range radar is suitable for detection of objects in a highway environment.

– Short-range radar with working range of 0–80m. Short-range radars are suitable
for near-range detection of vehicles in crowded urban scenarios.

– Lidar (light detection and scanning) scanner is used in combination with camera
for object detection and tracking in functions such as Adaptive Cruise Control,
Collision Warning, or Pedestrian Detection).

– Ultrasound sensors are used for park assist functions (to calculate distances to
objects to assist the driver in parking the car).

• Near- and far-infrared sensors are used for night vision.

Camera or Radar?
Camera-based systems have the ability to offermultiple convenience and safety func-
tions, including steering control and automatic emergency breaking, thus offering
a cost advantage over radar- or lidar-based systems. Camera-based systems have a
maximum range of about 50–100m (depending on function) and wider field of view
compared to long-range radar systems. Imaging technology can categorize type, esti-
mate size of objects, and its wider FOV enables better tracking. Radar is vulnerable
to false positives, especially around road curves, due to its inability to recognize
object type, therefore in harsh weather conditions, with poor visibility, the radar’s
might give the driver false sense of security.

Mono cameras also have their limitations. Imaging sensors give 2D perspective of
the 3D scene, losing the valuable depth information in the process (depth information
offers valuable clues for separating objects from the background). Obtaining 3D
information from a single camera is an ill-posed problem which can be solved by a
stereo camera pair. In stereo camera systems, depth uncertainty is a quadratic function
of distance, while distance is not affecting accuracy of radar and lidar systems.
Relative vibrations between the cameras and large temperature swings drive need
for online dynamic stereo camera system calibration when vehicle is moving. This
online calibration needs to work without test patterns, needs to run in the background
while system is operating, and must be guaranteed for the lifetime of the vehicle.
Small calibration errors should not have impact on disparity estimation.

Radar offers advantages such as long detection range, resolution, and sensing
performance necessary for higher speed systems. Radar can operate off-road and
under extreme weather conditions.
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Camera and Radar?
Sensor fusion combines the strengths of multiple sensing technologies. Daytime
strengths of visible light sensors can be combined with nighttime capabilities of IR
sensors. Range information from low angular resolution time-of-flight sensors can be
combined with high resolution of imaging sensors to get depth information at higher
resolution. When making the high-level safety decisions in automatic emergency
breaking systems (AEB), radar or lidar can provide a second source of sensing
confirmation.

Combining the results of different sensor types—sensor fusion (i.e., radar, lidar,
vision, and ultrasound)—provides a more effective and reliable solution than using
one technology in isolation. Sensor fusion can be achieved by either using sequential
or parallel configuration. In sequential configuration, radar (or lidar) sensor is used
to detect potential candidates in the attention-focusing phase. During the second
phase, candidates generate areas of interest in image data for algorithms to verify the
target presence. In parallel configuration, inputs frommultiple sensors are processed
independently and then object data is fused using a decision mechanism [6].

3.3 Camera-Based ADAS Applications

There are multiple imaging sensors around a vehicle, each providing data to one
or more ADAS functions. Front-facing imaging sensors provide inputs for lane,
traffic sign recognition, forward collision warning, intelligent adaptive front-lighting
system, and pedestrian recognition. Rear facing image sensor provides input for
parking assistance, object detection, and rear collision warning. Laterally facing
imaging sensors provide inputs for surround view systems, blind spot detection, and
can be used to replace side mirrors. Imaging sensors inside the vehicle cabin perform
occupancy sensing and detect alertness of the driver.

ADAS must operate under all weather and lighting conditions and system should
be smart enough to cope with direct sunlight, heavy fog, or snow. In case of sensor
occlusion (i.e., mud, sun, etc.) or failure, the system should be auto-disabled and it
should warn the driver that it is nonoperational.

Advanced driver assistance systems are spreading across multiple application
areas and Fig. 3.1 illustrates main ADAS functions, sensor types, and their typical
locations.

The front view camera system is mounted between the rearview mirror and wind-
shield facing forward and typically incorporates camera and lidar. These camera-
based sensor platforms now commonly add functionality such as lane keeping assist
(LKA) to lane departure warnings (LDW) they supported since their introduction. In
addition to LDW/LKA, the front view camera system may include application func-
tions such as forward collision warning/avoidance (FCW), traffic sign recognition
(TSR), intelligent adaptive front-lighting system (AFS), and pedestrian detection
(PD).
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Fig. 3.1 Key application areas for Advanced Driver Assistance (ADAS). Sensor type and position
are indicated using different colors

LDW/LKA
According to National Highway Traffic Safety Administration’s (NHTSA) data [7],
64.4% of all single-vehicle accidents in the USA are caused by running off from the
road. Among such crashes, 95.1% of the critical reasons were driver related. Lane
keep assist technology is based on input from camera and it can warn the driver
when vehicle is about to deviate from its traffic lane. The system can also work in
combination with automatic cruise control to help driver steer and keep the vehicle
on course.

Typically, lane keep assist has two functions: the lane departurewarning (alerts the
driver with sound when the car starts to deviate from its lane) and lane keeping assist
(helps the car stay on course near the center of the lane by continuously applying
a small amount of countersteering force). Vision algorithms can recognize the road
lines and structures (yellow lines/white lines, Botts’ dots, etc.) and based on vehicle’s
driving situation, the system can control the electronic power steering (EPS).

The world’s first lane departure warning was introduced by Nissan in 2001. Toy-
ota and Honda followed by introducing their lane monitoring systems in 2002 and
2003, respectively. Two years later, Toyota added a lane keep assist to their system.
Lexus introduced a stereo camera system with multimode lane keep assist and more
sophisticated object recognition processors in 2006. In Europe, Citroen was first to
offer lane assist feature in 2005. This system used infrared sensors to monitor lane
markings on the road surface, and a vibration mechanism in the seat to alert the
driver of deviations. Two years later, Audi offered its lane keep assist feature on Q7.
The system was camera based and used the steering wheel vibrations to warn the
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driver. The same year BMW launched its lane departure warning system on the new
5 series. GM introduced its lane departure warning in 2008 and Mercedes-Benz in
2009.

FCW/Collision Avoidance
Forward collision warning function of the front view camera system can detect and
alert the driver about an imminent accident. Once an imminent collision is detected,
the systems can either alert the driver or take autonomous braking or steering action
(or both), without driver input and even prepare vehicle for the crash by precharging
the brakes, adjusting the seats for added support, or tensioning the seat belts and
rolling windows up and closing the sunroof. The system typically uses combination
of radar and camera and sometime laser to detect imminent collisions.

The first production forward collision warning system was radar-based pre-
collision system (PCS) introduced by Toyota in 2003. In order to improve accuracy
of the system, Toyota added to the radar a single digital camera sensor in 2004. Two
years later, the system was further improved by using a stereo camera pair and a
more sensitive radar to detect pedestrians and animals (the system also supported
lane keep assist function). Volvo introduced its first collision warning with autobrake
in 2007. The system fused information from radar and camera to provide a warning
through a Heads-Up Display that visually resembles brake lamps. Later versions of
this system were capable of automatically applying the brakes to minimize pedes-
trian impacts. In 2008, Subaru introduced their forward collision warning system to
the Japanese market. Unlike radar-based systems, this system used stereo front view
camera. This system also offered adaptive cruise control and lane departure warning
functions. The first Audi forward collision warning (pre sense front plus) released to
the market in 2010 and 2011 combined information from the front radars with data
from a windscreen-mounted front camera to calculate the likelihood of an impact.
Ford’s collision warning with brake assist was introduced in 2009. The system was
relying on a mix of sensors including the front view camera.

TSR
Speed limit and end of speed limit signs are detected by traffic sign recognition
function of the front view camera system. Traffic sign function notifies the driver
about speed limit by presenting the information on the cluster display.

AFS
The intelligent AFS function of the front view camera system collects illumination
data from vehicle surroundings to control distribution of the front lights. A camera
detects lights fromoncoming traffic and cars ahead and systemadjusts the distribution
of light from the high beams to mask specific area. This function is also sometimes
called Intelligent Headlight Control (IHC).

PD
The pedestrian detection function of the front camera system assists the driver in
avoiding pedestrian collision accidents. The assistance can span the range from alert-
ing the driver with a warning signal to taking over control of braking in order to avoid
collision with a pedestrian.
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In 2013,Mercedes-Benz introduced a stereo front camera system,which in combi-
nation with radar offers pedestrian collision warning by autonomous braking, LKA,
autonomous driving at low speeds in traffic jams, and an active braking assistance
reacting to crossing traffic [55].

Surround View
The surround view system with multiple cameras, mounted at the center of the
front grill, under the side mirrors and rearview camera in the back, can be used to
check hard-to-view areas by visualizing information about vehicle’s surroundings on
navigation display. The camera mounted at the center of the front grill provides the
driver a better view at intersections with unclear visibility and T-shaped junctions.

Rearview
Entry level rearview/backup camera system supports only park assist function. In
addition to park assist, the smart rearview camera supports functions such as rear
collision warning and obstacle/object detection.

Blind Spot
Detection of cars in the blind spot can be carried out by using a camera-based system.
The system is mounted in the lateral mirrors of a car with the goal to visually detect
cars that are located in the blind spot.

In November 2006, Volvo won the safety and technology award from the British
“Autocar Magazine” with the driver assistance system for camera-based blind spot
monitoring in the exterior mirror. It was one of the first driver assistance systems
which automatically recognize moving objects using electronic image processing.

Night Vision
Night vision systems are used to extend the driver’s ability to see beyond the vehicle’s
headlights at night or in bad weather by using information obtained from near- or
far-infrared sensors.

Toyota introduced Night View based on near-infrared light in 2002 and 2003.
In late 2004, Honda developed an intelligent night vision system, which highlights
pedestrians in front of the vehicle by alerting the driver with an audible chime and
visually displaying them via Heads-Up Display. In 2008, Toyota added a night
view pedestrian detection feature which highlights pedestrians and presents them
to the driver on a display. BMW and Mercedes-Benz introduced to the market their
first night vision systems that detect and highlight pedestrians in 2008 and 2009,
respectively. Volvo introduced a collision mitigation system for pedestrians based on
monocular vision and radar in 2010.

Driver Monitoring
Imaging sensors mounted inside the passenger cabin are used to gather data such as
driver movements, eyeblink pattern, and respiration. This data can be combined with
information from LDW/LKA systemmeasuring the number and level of the steering
corrections the driver uses to keep the car in its lane. By combining this data, the
system can assess driver state and assist with tasks such as steering or maintaining
the following distance and alert the drivers if they are not paying close attention to
the road.
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In the 2007 model year, Toyota unveiled the first driver monitoring system in the
world on the Lexus LS. The system monitors the driver and if driver’s head turns
away from the road and a frontal obstacle is detected, the system will warn the driver
by sound and, if necessary, tighten the safety belts and precharge the brakes. Driver
monitoring system released in 2008 added the ability to detect the driver’s level of
alertness by monitoring the driver’s eyes. The system was designed to function even
in challenging situations if the driver is wearing sunglasses or at night.

Emerging ADAS Functions
Emerging applications such as mirror replacement camera bring several advantages
over conventional mirrors. The advantages include vehicle weight reduction result-
ing in lower fuel consumption and CO2 emissions, greater freedom in car design,
savings onmirror adjustment switches andmotors, and removal of the blind spot. The
camera monitor systems (CMS) also open potential path for inclusion of embedded
vision analytics features. Standardization of CMS is ongoing under ISO16505 with
participation of all European OEMs.

3.3.1 Front View Camera Systems

At the simplest level, front view camera system offers intelligent AFS. The intelli-
gent AFS can adjust the vehicle headlights according to ambient light level or it can
detect presence of oncoming vehicles and turn the vehicle’s main beams on and off
appropriately at night.

At the next level of processor performance, the front view camera system can
also detect road lanes and provide functions such as lane departure warning or lane
keep assist. This is typically mono camera system shown in left panel of Fig. 3.2.
The embedded processor (the number cruncher) receives high dynamic range video
input from a megapixel imaging sensor at 30 frames per second.

The system relies onvehicleCANbus to receive information such as vehicle speed,
steering wheel angle, yaw rate, etc., and to send output which can be either warning
to the driver or control command to steering/braking subsystems. The processor
connects to the vehicle CAN bus via the external microcontroller (MCU). The MCU
in the system typically conforms to high level of functional safety.

Further increase in the processor compute power enables functions such as pedes-
trian detection, FCW, and TSR. Strong interest in TSR in Europe is driven by diffi-
culty for drivers to keep track of the actual speed limit in effect—as some European
countries adopted variable speed limits that change at various time of the day or night
in order to reduce traffic noise or improve safety at busy intersections.

Vision-based object detection and classification is a key problem in driver assis-
tance. Functions such as detection and classification of objects (i.e., cars, motorcy-
cles, and trucks) and pedestrians require substantial compute power. Adding second
imaging sensor to the front camera system improves detection reliability since dense
stereo can provide additional cues for pedestrian recognition. The depth information
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Fig. 3.2 Left panel Mono front view camera system; Right panel Stereo front camera system. At
a higher cost, stereo system is capable to detect objects more reliably. Preprocessing stages (image
rectification and disparity calculation) in stereo camera system are typically done in an FPGA or
ASIC

makes stereo camera system more accurate and robust than a mono camera system.
Typical block diagram of a front view stereo camera system is shown in right panel
of Fig. 3.2.

In today’s front camera stereo vision systems preprocessing (such as rectification
and disparity calculation) is typically hardwired and performed on an ASIC or FPGA
before moving data to the processor.

Although stereo front camera system comes at additional cost (increases overall
complexity of the system), the two imaging sensors provide means to calculate scene
depth which is crucial for reliable object detection.

System size reduction drives a constant demand for higher system integration
maximizing number of functions running on a single processor. This drives the need
for more compute performance. On the other hand, compute performance increase
must come without compromising overall system cost. The system needs to be pack-
aged in a miniature enclosure and must deliver maximum compute performance,
while dissipating minimum heat in order to operate at the extreme temperatures of
severe desert heat or Arctic freezing cold. The opposing requirements create a very
challenging environment.

3.3.2 Rearview Camera Systems

Passive backup video cameras are gaining popularity in the USA, especially on
large vehicles such as minivans, pick-up trucks, and SUVs. The rearview camera is
designed to help the driver avoid a backup collision while reversing the vehicle.
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Fig. 3.3 Left panel Rearview camera; Right panel Smart rearview camera data flow. Optional
functions are shown in light shade of gray

The imaging sensor is typically pointed at a downward angle and has 190◦ field
of view which allows the camera to see potential obstacles from one rear corner to
the other. Entry level rearview camera provides only visual feedback to the driver.
In a ‘smart’ rearview camera, an image sensor provides incoming video frames to a
processor to analyze the video content for people and object detection.

Block diagram of rearview camera is shown in left panel of Fig. 3.3.
The system is sending video output (NTSC, digital via LVDS, or compressed

video viaEthernet) to be displayed to the driver alongwith potential obstaclewarning.
Typical processing stages in the rearview camera system are shown in right panel
of Fig. 3.3. In case of imaging sensor with raw output, the video frame needs to
be converted to YUV format before the lens distortion correcting (LDC) step. The
Image Signal Processor (ISP) processing pipe on the entry level rearview system is
tuned to maximize viewing quality when converting the raw input into a standard
video format to be displayed to the driver (viewing optimized processing pipe).

There is a constant demand for size reduction of the rearview camera system. The
miniaturization trend creates even more challenging thermal environment compared
to the front camera system.

3.3.3 Surround View Camera Systems

Surround view systems (SVS) present to the driver—a real-time 360◦ view around
the vehicle, as well as park assist and bird’s-eye view. The system operates with
minimum glass-to-glass latency and allows the driver to be fully aware of vehicle’s
surroundings. For example, the system could allow a driver to see a toy that has
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been left behind a parked car or it can show how close the vehicle is getting to other
vehicles when trying to park in a tight spot. In fully automated systems, the vehicle
is able to use this information to actually park itself. The surround view system
cameras typically have 190◦ field of view and stream video to the central processor
either as analog NTSC, digital uncompressed via LowVoltage Differential Signaling
(LVDS/FPD-Link), or compressed (MJPEG or H.264 format) via Ethernet (using
Ethernet AVB protocol [8]). The camera streams can then be stitched together to
form a cohesive and seamless view around the outside of the car. Outputs from the
surround vision system are sent to a console atVGAor higher resolution. This display
makes it easy for the driver to recognize and react to any hazards surrounding the
car. Additionally, 3D graphic rendering could be used for highly realistic surround
views. A high-level block diagram LVDS/FPD-Link-based surround view system is
shown in Fig. 3.4.

In this example, four satellite cameras are sending video over LVDS link to the
central processor. The surround view central processor is synchronizing the satellite
cameras via back channel LVDS communication. Simplified data flow for surround
view central processor is shown in right panel of Fig. 3.4. Prior to frame photometric
matching and stitching, video captured from the satellite cameras is corrected for
lens distortion. Optionally, the system can use incoming video to check for objects
around the vehicle and to give cross traffic alerts to the driver.

By connecting the camera system directly to the central processor via LVDS link
(or though analog connection), the video streams cannot be exploited by other sys-
tems in the vehicle. To address this challenge, it is possible to use an in-vehicle
Ethernet-based network architecture. In this case, each system connected to the net-
work is capable of receiving data from any camera distributing compressed and
packetized bit stream across the network.

Fig. 3.4 Left panel Block diagram of LVDS-based surround view system; Right panel Simplified
data flow in LVDS-based surround view system. Optional processing steps are presented in light
shade of gray
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Fig. 3.5 Left panel Block diagram of Ethernet-based surround view system;Right panel Simplified
data flow in Ethernet-based surround view system. Optional processing steps are shown in light
shade of gray

Ethernet-based version of surround view system is presented in the left panel of
Fig. 3.5. The satellite cameras, if needed, convert imaging sensor output from raw
format to YUV, and then compress the video frames by either using MJPEG or
H.264 before sending them via Ethernet to the central surround view processor. In
this case, Ethernet AVB protocol is used for synchronization of satellite cameras and
to minimize overall system latency. The compressed video streams from the satellite
camera are decoded on the central ECU.

Simplified data flow for the Ethernet-based surround view central processor is
shown on right panel of Fig. 3.5. With exception of the very first step (video decode),
the data flow looks very similar to the one from LVDS-based surround view central
processor.

Video compression artifacts in the Ethernet-based system might influence perfor-
mance of the embedded vision algorithms. Some work is being done on assessing
impact of the video compression on night vision pedestrian detection [9], automotive
optical flow algorithms [10], and on stereo matching [11].

3.4 Key Components of Vision-Based ADAS

Powerful, energy-efficient systems-on-chip (SOC), along with low-cost wide
dynamic range imaging sensors, enabled the spread of embedded vision in ADAS.
Vision-based driver assistance systems require a variety of processors and image



3 Embedded Vision in Advanced Driver Assistance Systems 57

sensors operating at different resolutions, frame rates, under different lighting con-
ditions, and with different optics. Embedded vision algorithms are the “brains” of
ADAS along with components such as software framework, real-time operating sys-
tem, and tools.

The development of advanced driver assistance system starts with a definition of
the requirements outlining functions and operational constraints. Hazard and risk
analysis is then performed in order to determine the system safety requirements.

These key components of the vision-based driver assistance systems are discussed
in this section.

3.4.1 Functional Safety

Advanced driver assistance systems can take over elements of driving such as steering
or braking where undetected dangerous failure can be catastrophic. When designing
a vision system for ADAS, how can we provide the evidence that risks have been
minimized? Functional safety has immense implications on all components in ADAS
and safety must be embedded in the culture of every organization and the supply
chain. For example, offset error of just one pixel when calculating disparity could
generate a wrong assessment of distance between the car and a pedestrian, resulting
in a disaster.

The development of ADAS systems is governed by international safety standard
for road vehicles ISO 26262. Implementing ISO 26262 allows leveraging a com-
mon standard to measure how safe a system will be in service. The ISO 26262
standard provides regulations and recommendations throughout the product devel-
opment process from conceptual development through decommissioning. It details
how to assign an acceptable risk level to a system or component and document the
overall testing process. ISO 26262 also contains detailed guidance on software tool
qualification. The objective of tool qualification is to provide evidence that a software
tool is suitable for use in the development of safety-related software according to the
standard.

In order to classify risk level and to quantify the degree of rigor that should be
applied in development, implementation, and verification, the ISO 26262 defines
Automotive Safety Integrity Levels (ASIL). There are four ASIL levels identified by
the standard: A, B, C, and D. ASIL A dictates the lowest integrity requirements on
the product while ASIL D dictates the highest safety requirements. The ASIL level is
established by performing a risk analysis of a potential hazard by looking at severity,
exposure, and controllability of the vehicle operating scenario.

ASILs can be decomposed over a system and high ASILs can be met by multiple
redundant components working together, each with lower ASIL.
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3.4.2 Imaging Sensors

Driving force behind the perfection of CMOS-based imagers were high volume and
relatively short product life cycle applications such as mobile telephones, tablets,
and PCs. The technical specifications required by automotive suppliers for imaging
sensors targeted toward ADAS market are different and very application specific.
High dynamic range and low light performance, wide operating temperature range,
fast motion, support for functional safety, and device cost are five most important
parameters for imaging sensors in ADAS.

The requirements for an automotive imaging sensor are challenging as device
needs to produce reliable image output under rapidly changing illumination level
conditions at extreme temperatures.

The human eye has a wide dynamic range of about 200dB. The eye has three
mechanisms to achieve such a wide dynamic range: two types of photoreceptor
cells (rods and cones) with different photosensitivities, logarithmic photoreceptor
response, and shift of the response curve according to the ambient light level. The
front camera system must exhibit extremely high optical dynamic range to capture
scene details and detect objects in very bright and very dark parts of frame (>115dB
for front view camera applications). To achieveWide Dynamic Range (WDR), auto-
motive imaging sensor suppliers typically use different techniques [12, 13] such as:
skimming WDR, staggered multicapture WDR, down-sampling WDR, split pixel
WDR, and log sensors.

Although imaging sensors with global shutter offer elimination ofmotion artifacts
through simultaneous capture of the entire frame, this advantage comes at the expense
of increased pixel noise and reduced light sensitivity. Today majority of automotive
imaging sensors use a rolling shutter and algorithms are designed to deal with motion
artifacts.

Unlike the human eye, all imaging sensors aremonochromatic. To obtain the color
information, a color mosaic filter is placed over the sensor pixels, which typically
cuts spatial resolution of a color sensor in half compared to grayscale. As they offer
nearly double the spatial resolution of a color sensor, grayscale sensors are much
more sensitive to variations in brightness.

Development life cycle timeline of ADAS sets pace for automotive imaging sen-
sor road maps. Typically automotive imager resolution increases every three to four
years. Downside of frame resolution increase is lower sensitivity to light due to
reduction of pixel size. To combat reduced pixel light sensitivity imaging sensor sup-
pliers are introducing ‘clear pixels’ without color filter. In addition to monochrome
and Bayer color pattern, the imaging sensors in ADAS support different arrange-
ments of color filters, such as RCBC (Red-Clear-Blue-Clear), RGBC (Red-Green-
Blue-Clear), RGBIr (Red-Green-Blue-InfraRed), and RCCC (Red-Clear). Typically
a specialized ISP is required to convert this raw output from an imaging sensor to
a format that can be used by embedded vision algorithms. Low-resolution imaging
sensors typically integrate the ISP functionality on the die.
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Crossing image resolution boundary beyond 1Mpix has processing and connec-
tivity implications on architecture of the embedded processor in ADAS. At these
resolutions, size of the ISP logic starts to dominate which is pushing the ISP func-
tions off the sensor die to either embedded processor or to a separate ISP companion
device. Secondly, the increase of resolution and frame rate drives demand for a more
effective hardware interface offering higher data bandwidth between the imaging
sensor and the embedded processor. The MIPI CSI2 interface is emerging as a solu-
tion to data bandwidth and pin count challenges of the parallel camera interface used
in all legacy driver assistance systems.

3.4.3 Embedded Processors

Constant demand for higher resolution, higher frame rate, algorithm robustness,
and lower processing latency is driving an exponential increase in processing and
memory bandwidth requirements. Embedded processor for ADAS needs to deliver
high performance, while dissipating minimum amount of heat and at the same time
must meet strict low-cost requirements.

A compromising solution satisfying the conflicting requirements lays somewhere
between two extreme architectures: dedicated hardwired accelerators on one end
and general purpose CPUs on the other. The hardwired acceleration offers high
performance at low cost but gives lowflexibility. Programmability of general purpose
CPUs gives them high flexibility, while impacting their performance or their energy
efficiency.

In order to meet the challenging compute targets while dissipating minimum
power, ADAS architects have to embrace the power of heterogeneous computing,
where each of the heterogeneous elements has a unique strength allowing it to excel
on specific types of processing. A flexible architecture is required to cover many
functions and to maximize reuse across different product lines.

Most, if not all vision algorithms start off with processing characterized by repet-
itive operations at pixel level with high computational requirements and memory
bandwidth (low-level processing). Typical examples of low-level vision processing
functions are image filtering, gradient calculation, edge detection, corner detection,
image pyramids, etc. Low-level processing is typically best served by applying sin-
gle instruction on multiple data (SIMD). Next processing stage has focus on certain
objects or regions of interest that meet particular classification criteria (mid-level
processing). Typical examples of mid-level vision processing functions are integral
image, feature calculation, classification, optical flow, Hough transform, etc. Mid-
level vision is typically best served by using some combination of SIMDandmultiple
instructions on multiple data (MIMD). High-level processing is typically responsi-
ble for final decision-making and tracking and takes input from previous processing
stages. High-level vision includes algorithms with high variability in processing and
data accesses characterized by highly conditional processing [14].
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Antagonistic requirements to increase compute performancewhile keeping power
dissipation at same (or even lower) level can be met by off-loading some of low- and
mid-level vision processing to a hardware accelerator. They can be broadly divided
in two groups: hardwired/fixed and programmable.

Hardwired Hardware Accelerators—Selection of processing primitives to
accelerate in fixed hardware acceleration is not a trivial task as the industry lacks
standards for embedded vision processing algorithms. To preserve flexibility across
different systems, the best candidates for fixed hardware acceleration are low- and
mid-level processing kernels. Some examples of fixed hardware accelerators for
vision include: Pipelined Vision Processor (PVP) on Analog Devices Processors
[15], image processing accelerators on Toshiba Visconti 3 (affine, filter, histogram,
histogram of gradients, and matching) [16] or PW and CE engines on MobilEye
EyeQ2 processor [17].

Programmable Hardware Accelerators—Programmable hardware accelera-
tors give more flexibility than fixed hardware acceleration. To address challenges
of low- and mid-level vision processing, the most deeply embedded vision applica-
tions have used proprietary programmable hardware accelerator architectures with a
strong DSP pedigree, such as the NEC IMAPCAR [18], Image processor IMP2-X2
on Renesas SH7766 device [19, 20], VMP2 onMobileye EyeQ2 [17],Media Proces-
sor Engine (MPE) on Toshiba Visconti-3 [16], GPU [21], Cognivue Apex [22], and
Texas Instruments EVE [14, 60] architectures, augmented by FPGAs for blocks with
extreme compute requirements.

General Purpose Programmable Processors—General purpose CPU such as
ARM Cortex A8, A9, A15, or A53 processors and DSP architectures are best fit for
high-level vision processing. The internal processor architecture, number and preci-
sion of computational units, cache architecture, number and size of the internal and
external data paths all play an instrumental role in how fast the taskwill be carried out
[23]. Hardware support for functional safety helps to relieve the embedded proces-
sor from running periodic system and memory checks leaving more programmable
resources for analytics. Large internal memory helps reduce system latencies and
lower power dissipation by minimizing number of accesses to the external double
data rate (DDR) memory.

While each architecture has its own strengths and weaknesses, TDA2x SOC is the
only one in the industry that offers automotive vision developers both a state-of-the-
art DSP along with multiple instances of a fully programmable vision accelerator an
unparalleled level of programmable vision analytics performance.

TDA2x SOC ADAS processor architecture is shown in Fig. 3.6:
The TDA2x SoC [24] incorporates a scalable architecture that includes a mix of

TI’s fixed and floating-point TMS320C66x digital signal processor (DSP) genera-
tion cores, Vision AccelerationPac (EVE), ARM Cortex-A15 and dual-Cortex-M4
processors. The integration of a video accelerator for decoding multiple compressed
videos treams received over an Ethernet AVB network, alongwith the graphics accel-
erators (SGX544) for rendering virtual views, and enables a 3D viewing experience
for surround view applications.
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Fig. 3.6 SOC ADAS heterogeneous architecture

The dual core A15’s on TDA2x run at 750 MHz with an out-of-order superscalar
pipeline with a tightly coupled low-latency level-2 cache with additional improve-
ments in floating point and NEONTM. The dual core Cortex M4, is an efficient
controller engine for streaming image capture. TI’s IVA-HD core is an imaging and
video codec accelerator that runs at 532 MHz to enable full HD video encode and
decode. Even with all of this compute power, vision analytics is still critically depen-
dent on the TMS320C66x DSP for high-level vision and Vision AcceleratorPAC
EVE for low- and mid-level vision to meet the challenging requirements.

The Vision AccelerationPac (EVE) is an accelerator purposely built for computer
vision, fully programmable in a high-level language environment, which delivers
more than eight times improvement in compute performance for advanced vision
analytics than existing ADAS systems at same power levels. The Vision Accel-
erationPac for this family of products includes multiple embedded vision engines
(EVEs) offloading the vision analytics functionality from the application processor
while also reducing the power footprint.

Today’s SOC architectures enable further efficiencies by integrating all of the
peripherals necessary for a complete video/image processing system within a single
chip. Given the lack of interoperability specification for lidar, laser, radar, and video
data in the car network and that today the industry is using multiple data communi-
cation standards (i.e., camera, display, Ethernet AVB, LVDS, CAN, etc.) the SOC
must support a swarm of interfaces to ensure adoption across a broad spectrum of
possible use cases.
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3.4.4 Vision Building Blocks

3.4.4.1 Common Preprocessing and Feature Detection

Computer vision has entered the mainstream of ADAS. Computer vision algorithms
detect road lanes, objects, and pedestrians, anticipate and augment driver’s actions.
There are no industry standards for embedded vision processing algorithms (unlike
for video codecs used for video compression) and if we ask ten different people to
develop a forward collision warning, we will end up with ten different solutions.

To properly capture images of moving objects, exposure time and shutter type
are critical. Concurrent algorithms/functions running in the system typically require
different exposure settings and some functions such as TSR require more than one
exposure setting.To accommodate these requirements typicalADAS imaging sensors
have high dynamic range and output multiple exposures.

Some common preprocessing steps in the driver assistance systems based on
the embedded vision are: custom image signal processing (ISP); various filtering,
creation of image pyramids; integral image; and feature extraction. The ISP block
is typically taking a raw high dynamic range input from an imaging sensor and
converting to a format used by the algorithms.

Surround view and rearview systems rely on cameras with wide field of view
at a cost of large distortion. Lens distortion correction is typically one of the first
processing steps in these systems. Depending on situation, the software can change
viewing angle (i.e., render top view image) before displaying video to the driver. The
most efficient way to handle this homographic transform is via look-up table.

Surround view systems combine inputs frommultiple satellite cameras positioned
around car in one 360-degree image (Figs. 3.1, 3.4, and 3.5). In computer vision,
extensive work has been done in the field of image stitching and photogrammet-
ric matching. During image registration features (using feature descriptors such as
SIFT, ORB, SURF [54] etc.) are extracted from each view, and matched to fea-
tures in the other overlapping views. Random sampling consensus (RANSAC) of
matched features is used in order to remove any mismatched points and to estimate
the homography between overlapping views.

Key components of lane detection are: extraction of road markings; road model-
ing; post processing; and position tracking. Edge-based techniques for road marking
extraction give good results on solid and segmented lines, but they typically fail in
situations which contain many nonessential lines. Different approaches have been
proposed to overcome this limitation [25]. To improve estimates, it is necessary to
include a priori knowledge of the road in the postprocessing steps. The most com-
mon tracking technique used in lane-position-detection systems is Kalman filtering.
A survey of vision-based lane detection can be found in [25].

In some systems, color is required for traffic sign recognition algorithms, while
in most cases vision-based ADAS functions rely purely on monochrome imaging
sensors as they offer higher light sensitivity compared to color sensors. Traffic sign
recognition is a classic example of rigid object detection although road signs differ
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from country to country across shape, color, text font, and language. For detection of
circular road signs Zelinski Transform [26] gives good results, while an effective way
to capture general traffic shape information is histogram of gradients (HOG) [27].

3.4.4.2 Estimating Depth and Motion and Pedestrian Detection

Pedestrians are the most vulnerable participants in traffic and vision-based recogni-
tion of pedestrians is a key problem of smart vehicles. Pedestrian detection requires a
variety of features (i.e., Haar wavelets, HOG, CoHOG, LRF, etc.) and classification
methods (i.e., Adaboost, SVM). A number of related surveys exist on pedestrian
detection [6, 28–30, 39, 40].

In most cases, precise and robust estimation of depth and motion is a key ele-
ment for pedestrian detection and obstacle avoidance functions in automotive driver
assistance [31]. In order to maximize knowledge about the scene ahead, every sensor
pixel should be utilized. By calculating position and motion of every frame pixel,
the front view camera system can anticipate more accurately pedestrian behavior.
Therefore, it is very beneficial to obtain dense disparity and dense optical flow. On
the other hand, optical flow and stereo vision are extremely challenging algorithms
for embedded environment due to their compute and bandwidth requirements.

The perception of motion is instrumental for ADAS. The optical flow algorithm
is a key building block for ADAS functions such as estimation of vehicle egomotion,
obstacle/pedestrian detection, detection of cars in the blind spot and structure from
motion. Optical flow used in advanced driver assistance environment must cope
with weakly textured areas, large displacements, and constant change of illumination
conditions caused by either scene change or unanticipated and unknown adjustments
of camera parameters such as exposure time.

Most variation-based optical flow algorithms use the brightness constancy con-
straint between successive frames, which is often violated in real-world scenes while
driving. Second serious limitation of typical optical flow methods suggested in liter-
ature is that they can only cope with small displacements, while typical real-world
scenes exhibit large motion vectors especially in curves or areas near the vehicle. A
quantitatively different approach was suggested in [32], where the Census Transform
was used to represent small image patches and the primitives were matched using
a table based indexing scheme. Another approach to improve robustness to change
in brightness is to replace the simple gray value illumination constancy constraint
from classical optical flow approaches by Hamming distances between different
census signatures [33]. To overcome large displacement challenge, integration of
rich descriptors into the variational optical flow setting is suggested in [34]. Use
of Rudin-Osher-Fatemi (ROF) denoising scheme [35] to achieve resistance to illu-
mination change is proposed by several authors [36]. While the method improves
resistance to illumination change it is computationally intensive and struggles with
large displacements evenwhen a pyramid scheme is used.Adifferent approachwhich
explicitly models the varying illumination by adding an additional scalar function is
proposed in [37]. The function is estimated in a joint optimization of the optical flow
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field and since this function must be smooth on image domain, the method requires
number of iterations which is computationally expensive and might not be friendly
for a real-time implementation.

Including additional information into a variational scheme can improve optical
flow results. In stereo camera systems information such as depth and vehicle ego-
motion can be used in variational approach to regularize the optical flow estimate
[38].

Obstacle detection involving stereovision typically uses different approaches and
various simplifications of the classic problem in order to achieve real-time perfor-
mance [30]. There are two main algorithm approaches depending on the domain
where calculation is performed: 3D space based and disparity based. Disparity
based algorithms are more popular as they operate directly on output from stereo
reconstruction—on disparity map. Due to limitation in resolution of the imaging
sensors and the stereo camera baseline constraints precise subpixel interpolation is
required in stereo based driver assistance camera systems.

Most of conventional stereo engines use local correlation methods that search
for pixel matches between two rectified views by comparing small patches along
the epipolar line [41]. Contrasting approach are global methods which exploit the
fact that the scene consist of smooth structures with very little discontinuities and
formulate the stereo problem in terms of energy function. The energy function typ-
ically includes data and smoothness terms and is then subject of optimization such
as graph-cuts, belief propagation or semi-global matching (SGM) [42]. The global
methods perform global disparity optimization, so chance of gross errors which
would cause unnecessary emergency breaking scenarios is minimized compared to
local correlation-based approaches which estimate disparity based on a small local
neighborhood.

SGM method calculates optimum disparity map by using dynamic programming
onmultiple one-dimensional paths crossing each pixel [42]. The global stereomethod
requires substantial compute andmemorybandwidth resources. First real-time imple-
mentation of SGM was published on FPGA in 2009 [43]. To obtain real-time SGM
performance on the CPU the key design choices are: parallelization of the most time-
consuming blocks, image subsampling, and result reuse for full resolution computa-
tion [44].

In some systems, the depth map is first segmented and then detected objects are
tracked over time and their velocity is estimated. In these systems, performance of
the detection heavily depends on the correctness of the segmentation. The segmenta-
tion step might merge moving object to a nearby stationary object and fail to detect a
pedestrian or cyclist moving in front of parked minivan. A solution to this challeng-
ing problem was proposed in [45]. The basic idea for detection is to use not only the
depthmap but also to include 3Dmotion field information. The 3Dmotion field infor-
mation is calculated by tracking points with known depth over multiple consecutive
frames.
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3.4.5 Software

All processes and components used to build ADASmust be safe, secure, and reliable,
including software development process, software itself, tools, and operating system.

Development of safety-related electronics products such as ADAS not only
requires SPICE (ISO/IEC 15504) compliant process but also needs to fulfill process
development requirements specified by ISO 26262 functional safety standard [50].

In order to facilitate code safety, reliability, and portability in the context of embed-
ded systems, Motor Industry Software Reliability Association (MISRA) formulated
a software development standard for C programming language. Published in March
2013, the latest version of MISRA standard (MISRA-C:2012) includes a number of
improvements that can reduce the cost and complexity of compliance, while aiding
consistent, safe use of C in critical systems. There is also a set of guidelines for
MISRA C++.

To meet low-latency processing time requirements and minimize any delays
caused byoperating system,ADAS typically use real timeoperating systems (RTOS).
The RTOS in ADAS is not just responsible for memory partitioning, context switch-
ing, task scheduling, event handling, and lockingmechanisms, but also for controlling
the entire program flow, including safety mechanisms. For these reasons, the kernel
requirements, design, implementation, and tests must include functional safety as
one of key components along with minimal interrupt latency and minimal thread
switching latency.

Ideally, RTOS for ADAS should be developed for seamless integration into
AUTOSAR environment. Some of RTOS that are certified for highest ISO 26262
ASIL D tool qualification level D are: Green Hills Integrity, ElectroBit Tresos Auto-
Core OS, and Microsar OS SafeContext from Vector.

3.4.6 Development Flow

TheADAS algorithm development usually starts on a PC orworkstationwhich offers
‘unlimited’ compute performance,memory, andmemory bandwidth.Algorithmopti-
mization is a critical component of the cost reduction effort because optimized code
can achieve real-time operation on less expensive embedded processors. In order
to map the algorithms to an embedded platform with very restricted resources an
embedded vision system typically requires optimization on three levels that are not
always orthogonal to each other [23, 46–49]: algorithmic, software, and system level
optimization.

A typical vision application can run ten or more times faster when critical algo-
rithms are called fromahighly optimized library than if they are implementedwithout
much regard for the internal processor architecture. Use of computer vision libraries
such as OpenCV could be suitable in most cases as a proof of concept but in the
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end, optimization for the target processor architecture will significantly improve the
system performance.

The algorithmdevelopment represents only a small fraction inADASdesign cycle
as the major challenge in the development of these systems is to take into account the
variety of traffic scenarios. Extensive test and validation is an enormous undertaking
and the most challenging aspect of ADAS development, especially when it comes to
the vision systems. In an effort to test all scenarios and to achieve 100% accuracy and
zero false positives, under all possible conditions, thousands of hours of video clips
must be gathered and run in regression test database. As the test databases would not
be able to cover all test cases, suppliers spend years of testing and validating systems
and performing real-world field trials.

3.5 Conclusion

Wehave come a longway since first demonstration of an autonomous car atNewYork
World’s Fair in 1939.Newkinds of sensors and state-of-the-art embedded processors,
with sufficient compute power to support rapid growth of computer vision, are factors
catalyzing growth of camera-based advanced drivers systems.

Regulationwill further drive the proliferation ofmultifunction cameras to themost
cost-sensitive segment of the automotive market, which is also the most crash vul-
nerable segment. The propagation is led by New Car Assessment Program (NCAP)
changes inEurope, but introduction of cameras in themainstreamvehicles is expected
to become noticeable in theUSA too, driven by theNational Highway Transportation
Safety Administration (NHTSA), the National Transportation Safety Board (NTSB),
and the Insurance Institute for Highway Safety (IIHS).

In order to reduce the number of backover injuries and deaths and to improve
visibility when a car is backing out of a driveway or parking space, NHTSA issued a
rule which mandates use of rear view cameras in all new vehicles in the US starting
fromMay 2018. The regulation, depending on final performance requirements,might
stimulate spread of passive or active rearview camera systems.

Projects such as Prometheus, ARGO [51], and DARPA Urban Challenge, were
instrumental in helping Google’s driverless vehicle come to life. Today, many major
automotive manufacturers including Mercedes-Benz, BMW, Audi, Volkswagen,
Ford, GM, and Toyota are testing driverless cars.

Eventually, wemight see a circuit fail and that one defect in one billion could cause
a fatal crash. Who is responsible when things go wrong? How should the cars with
such systems be tested? The number of electronic components networked together
in vehicles together with communication systems between cars, creates opportuni-
ties that could potentially be exploited by a malicious attacker. Cyber security is a
concern and several researchers have shown possible ways to compromise security
of automobiles and hijack functions such as steering or braking by exploiting a broad
range of attack vectors, including CD players, Bluetooth, and cellular radio [52, 53].
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There are many challenges and obstacles on the path toward autonomous cars,
but we expect that they are solvable. Consumer acceptance and demand will drive
us on our way to autonomous vehicle and embedded vision will keep us safe on this
journey.
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14. Sankaran J,Nikolić Z (2014)TDA2x, anSOCoptimized for advanceddriver assistance systems.

In: ICASP
15. ADSP-BF606/ADSP-BF607/ADSP-BF608/ADSP-BF609 Technical Data
16. Toshiba TMPV7528XBG Press Release, Dusseldorf, Germany, March 2013
17. http://www.mobileye.com/technology/processing-platforms/eyeq2/
18. Kyo S, Okazaki S, Koga T, Hidano F (2008) A 100GOPS in-vehicle vision processor for pre-

crash safety system based on a ring connected 128 4-WayVLIW processing elements. In: IEEE
symposium on VLSI circuits, Honolulu

19. Hamasaki H, Hoshi Y, Nakamura A, Yamamoto A (2010) SOC for car navigation system with
a 55.3GOPS image recognition engine. In: 15th Asia and South Pacific design automation
conference (ASP-DAC), Taipei

20. http://am.renesas.com/applications/automotive/adas/surround/sh7766/index.jsp
21. http://www.nvidia.com/object/tegra-k1.html
22. http://www.cognivue.com/technology.php
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automotive vision applications. In: Proceedings of the 2009 DSP for in-vehicle systems and
safety workshop
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Chapter 4
Computer Vision for Micro Air Vehicles

Roland Brockers, Martin Humenberger, Yoshi Kuwata, Larry Matthies
and Stephan Weiss

Abstract Autonomous operation of small UAVs in cluttered environments requires
three important foundations: fast and accurate knowledge about position in the world
for control; obstacle detection and avoidance for safe flight; and all of this has to
be executed in real-time onboard the vehicle. This is a challenge for micro air vehi-
cles, since their limited payload demands small, lightweight, and low-power sensors
and processing units, favoring vision-based solutions that run on small embedded
computers equipped with smart phone-based processors. In the following chapter,
we present the JPL autonomous navigation framework for micro air vehicles to
address these challenges. Our approach enables power-up-and-go deployment in
highly cluttered environments without GPS, using information from an IMU and a
single downward-looking camera for pose estimation, and a forward-looking stereo
camera system for disparity-based obstacle detection and avoidance. As an exam-
ple of a high-level navigation task that builds on these autonomous capabilities, we
introduce our approach for autonomous landing on elevated flat surfaces, such as
rooftops, using only monocular vision inputs from the downward-looking camera.

4.1 Introduction

Miniature rotorcrafts are an ideal platform for exploration and reconnaissance
missions, since they can operate in highly cluttered environmentsforest, close to
the ground) or confined spaces (indoors, collapsed buildings, caves) and allow with

R. Brockers (B) · Y. Kuwata · L. Matthies · S. Weiss
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
e-mail: roland.brockers@jpl.nasa.gov

Y. Kuwata
e-mail: kuwata@alumni.mit.edu

L. Matthies
e-mail: lhm@jpl.nasa.gov

S. Weiss
e-mail: stephan.weiss@ieee.org

M. Humenberger
AIT Austrian Institute of Technology, Vienna, Austria
e-mail: martin.humenberger@ait.ac.at

© Springer International Publishing Switzerland 2014
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their hovering ability to position a sensor payload in 3D space only constrained by
the mission profile. However, in order to be deployable, a human–machine interface
which allows an operator to easily control such a platform is key. The ingredient
that most facilitates operation is autonomy, since autonomous vehicles can execute
high-level commands without any further human interaction.

Thus, it requires the vehicle to know its position within the environment, and
to have a capability to avoid collisions in flight and during takeoff and landing.
All processes enabling such autonomy have to be implemented onboard, without
requiring any external sensor input.

Miniature rotorcrafts (e.g., quadrotors) offer very high maneuverability and agility
but require high rate of control because of their natural instability. Subsequently, sen-
sor signals and images used for accurate pose estimation and for control input need
to be processed fast. Since the platform has to be self-contained and payload capac-
ities on micro air vehicles (MAVs) are in general very limited, only light-weight
and low-power sensors and processing units can be used on-board the vehicle. This
favors vision-based solutions that use small light-weight cameras and microelectro-
mechanical systems (MEMS) inertial sensors. As recent developments in multicore
smartphone processors are driven by the same size, weight, and power (SWaP) con-
straints, MAVs can directly benefit from new products that provide more computa-
tional resources at lower power budgets and low weight. This enables miniaturization
of aerial platforms that are able to perform navigation tasks fully autonomously. In the
subsequent sections, we introduce our autonomous navigation framework with focus
on pose estimation, collision avoidance, and an example for a high-level navigation
task that builds on these lower level functions: autonomous landing.

Viable solution for GPS-independent pose estimation from visual and inertial sen-
sor inputs have been proposed in the literature [29, 41]. However, a major algorithmic
challenge is to process sensor information at high rate to provide vehicle control and
high-level tasks with real-time information about position and vehicle states.

In Sect. 4.2, we approach the issue of processing the vast camera information in
real-time, rendering the camera a 6 degrees of freedom (DoF) pose sensor or a 3DOF
velocity sensor. We discuss two methods representing two flavors of vision-based
MAV state estimation. The first is a map-based approach using feature matches
over long periods. The second is a map free and thus inherently fail-safe approach
without using any kind of feature history. We will discuss that the first approach is
more suitable for local drift-free navigation, while the latter is useful as a fall-back
to keep the MAV airborne if a map corruption occurs. We will show that such an
approach can quickly stabilize a thrown MAV and keep it at a constant heading and
distance to the scene even though only two consecutive images and no feature history
are used.

Once pose estimation is available, higher level autonomous navigation tasks which
leverage and require this information can be executed. Examples for such tasks
are: obstacle avoidance, autonomous landing, ingress, surveillance, exploration, and
other.

In order to maneuver safely in highly cluttered environments and at low altitude,
a MAV needs the ability to detect and avoid obstacles in its flight path autonomously.
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Sophisticated solutions using active sensors (lidar, radar, etc.) exist for large aircraft,
but they are in general unsuitable for small platforms with limited power, payload,
and computational resources. To cope with these limitations, we developed a novel
stereo vision-based obstacle avoidance approach, that is especially suited for onboard
implementation on small aerial vehicles. Our approach is inspired by bird vision [36],
using a forward-looking stereo camera system to provide depth information in the
direction of flight, that can be expanded by range estimates from peripheral monoc-
ular optical flow. In Sect. 4.3, we explain our stereo vision-based obstacle avoidance
system, that is designed for fast execution with small memory footprint by using: (1)
a polar-perspective world representation in disparity space; (2) configuration space
(C-space) expansion in image space; and implements (3) collision checking as a
z-buffer like operation in disparity space. For motion planning, we use a closed-loop
RRT approach that incorporates a vehicle model to plan local avoidance maneuvers
in full 3D, which we believe to be scalable for flights at higher speeds.

As an example for a high-level navigation task, we explain autonomous landing
with our MAV platform in Sect. 4.4. Autonomous landing is especially important not
only for safety reasons, but also for mission endurance. Small rotorcrafts inherently
suffer from overall short mission endurance, since payload restrictions do not allow
carrying large batteries. For surveillance or exploration tasks, endurance can be
greatly improved by not requiring the platform to be airborne at all time. Instead,
such tasks may even favor a steady quiet observer at a strategic location (e.g., high
vantage points like rooftops or on top of telephone poles)—still with the ability to
move if required—which also could include recharging while in sleep mode (e.g.,
from solar cells).

4.1.1 Embedded Hardware Platforms

To evaluate the performance of our algorithms on an embedded system, we tested our
framework with two different MAV platforms: an Asctec Pelican quadrotor equipped
with an Asctec Mastermind flight computer (Core2Duo, 2 × 1.86 GHz CPU [4]) (total
weight: ∼1.3 kg), and an Asctec Hummingbird quadrotor equipped with either an
Odroid-X2 or a modified Odroid-U2 flight computer (total weight: ∼500 g; Fig. 4.1).

Both Asctec MAV platforms share the same low-level autopilot boards that include
a MEMS IMU, and were equipped with a downward-looking Matrix Vision cam-
era (mvBlueFOX-MLC200wG, CMOS, 752 × 480, grayscale, global shutter, up to
90 fps, 18.3 g with 100 FOV lens) that is connected to the flight computer.

The Odroid board (manufactured by Hardkernel [21]) is based on the Samsung
Exynos 4412 system-on-a-chip (SoC)— a quadcore microcontroller for mobile appli-
cations that provides four ARM-cortex A9 for parallel computation, while only con-
suming 2.2 W (CPU only). For our implementation, we removed all non-necessary
hardware components from the U2 in order to save weight, which included various
connectors and the original heat sink. The final weight of the U2 flight computer was
12 g including the SD card which hosts the operation system.



76 R. Brockers et al.

Fig. 4.1 Asctec Hummingbird with Odroid-U2 flight computer mounted on top

4.2 Pose Estimation

We start with explaining our pose estimation framework that is running onboard our
quadrotors only using inputs from a camera and an IMU. We first present the related
work followed by the detailed description of our two approaches and conclude with
experimental results using the embedded hardware.

4.2.1 Related Work

Autonomous flights in unknown environments exclude the use of motion capture
systems for MAV pose estimation as done for example in [39]. Furthermore, using
GPS is not always reliable due to effects such as shadowing or multipath propagation
in city-like environments. Therefore, commonly used sensors for GPS-independent
MAV state estimation are stereo [38] and monocular cameras [63] as well as laser
scanners [57]. Since heavy sensors cannot be used on low SWaP platforms and addi-
tional payload directly reduces endurance, monocular visual-inertial state estimators
might be the most viable choice for MAVs.

Processing the vast information of the camera is a computationally complex task
and cannot be processed at high rate. Multicopter MAVs require fast and precise con-
trol (and thus state estimates) at all times because the systems are inherently unstable.
Hence, we propose to fuse the visual information with high-rate inertial cues from an
IMU. We can categorize such a fusion into loosely-coupled and tightly-coupled. The
loosely-coupled philosophy treats the inertial and visual units as two separate mod-
ules running at different rates and exchanging information, while the tightly-coupled
paradigm combines both sources of information into a single, optimal filter. In gen-
eral, loosely-coupled approaches are much less computationally expensive, since
they use the low-dimensional processed visual information as measurement rather
than every single feature. For this reason, we discuss a loosely-coupled Extended
Kalman Filter (EKF) approach in this work. Among the loosely-coupled approaches
are the works of [2, 3, 15, 19, 42, 51, 67], while among the tightly-coupled ones
are those of [8, 13, 24, 27–29, 33, 34, 47, 58].
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A filter-based approach not only allows to estimate the pose of the vehicle for
control but also can estimate calibration parameters such as IMU biases, camera-IMU
extrinsics, and visual drifts. Such self-calibration is crucial for long-term missions
and renders the system power-up-and-go without the need of pre-mission calibration
procedures. With a map-free inherently fail-safe vision module as we discuss below,
it is further possible to eliminate the visual initialization procedure and failure modes.
This literally renders the MAV throw-and-go as the MAV can be powered on and
immediately be thrown in the air to deploy it.

4.2.2 Visual-Inertial State Estimation Approaches

A camera can be used in various ways to compute its pose in 3D space. We will
discuss two approaches which can be classified into two main categories which we
call map-based and map free. The first is a key frame-based visual odometry approach
using a local map to estimate the arbitrarily scaled 6DoF of the camera. The second
approach does not use temporal information or features (i.e., a local map) but only
uses the current optical flow measurement to estimate the 3DoF arbitrarily scaled
camera velocity vector, 3DoF attitude of the MAV, and distance to the current scene.

4.2.2.1 Map-Based Approach

The first approach is described in detail in [63, 67] which shows that, fusing with an
IMU, we can navigate a MAV in large environments and high altitude with visual
and inertial cues only. Because of robustness, real-time performance, and position
accuracy, the keyframe-based solution proposed in [31] was selected and tailored to
run on our embedded architecture. Our implementation uses a downward-looking
camera and executes a sliding-window, vision-based self localization and mapping
(VSLAM) feature tracking approach to extract pose estimates from visual inputs,
maintaining constant computational complexity. This method is viable for large out-
door environments and long missions—only limited by the battery lifetime and not
by processing power nor memory. We show how the proposed algorithm in [63] can
be implemented on a 12 g, 5 W processing unit while still running at 50 Hz. This
renders even a very light-weight MAV truly power-on-and-go.

The 6DOF pose of the VSLAM algorithm is fused with the inertial measurements
of an IMU using an Extended Kalman Filter (EKF). More details are given in [63, 67].
An EKF framework consists of a prediction and an update step. The computational
load required by these two steps is distributed among the different units of the MAV
as described in [64]. The state of the filter is composed of the position pi

w, the attitude
quaternion q i

w, and the velocity vi
wof the IMU in the world frame. The gyroscope

and accelerometer biases bω and ba as well as the missing-scale factor λ are also
included in the state vector. For completeness, the extrinsic calibration parameters
describing the relative rotation qs

i and position ps
i between the IMU and the camera
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frames were also added. This yields a 24-element state vector X :

X = {piT
w v iT

w q iT
w bT

ω bT
a λ ps

i qs
i }. (4.1)

Details about the EKF prediction and update equations can be found in [63]. A
nonlinear observability analysis [62] reveals that all state variables are observable,
including the intersensor calibration parameters ps

i and qs
i . Note that the VSLAM

pose estimates are prone to drift in position, attitude, and scale with respect to the
world-fixed reference frame. Since these quantities become observable when fus-
ing with an IMU (notably roll, pitch, and scale), gravity-aligned metric navigation
becomes possible even in long-term missions. This is true as long as the robot excites
the IMU accelerometer and gyroscopes sufficiently as discussed in [29]. Additionally,
since the gravity vector measured by the IMU is always vertically aligned during hov-
ering, the MAV will not crash due to gravity misalignment—even during long-term
operations.

4.2.2.2 Map-Free Approach

The map-based approach described above is locally drift free. However, it requires
to redetect the same features over several camera frames. This is prone to failure and
mismatches, and can lead to corrupting the local map which in turn can lead to a
crash of the MAV because of a wrong state estimate based on the corrupted map.

In [65, 66], we present an approach which only uses two consecutive camera
images and inertial cues for MAV navigation. This inertial-optical flow (IOF)-based
approach does not use any kind of history that can be corrupted and does not require
to find the same features in later frames. In [66], we show that we still can estimate the
metric velocity of the MAV, its metric distance to the scene, and its full attitude (roll,
pitch, yaw) drift free while maintaining a self-calibrating system. That is, in addition
to the states used for control, we can estimate the IMU biases and the camera-IMU
extrinsics, and do not need specific calibration steps prior to launch. In fact, in this
work, we show that this state estimation is robust and fast enough such that the MAV
can be deployed by simply tossing it into the air rendering it a throw-and-go system.
The state vector

χ = {pi
wvi

w q i
w bω ba Λ pc

i qc
i α} (4.2)

contains the IMU-centered MAV position pi
w, velocity vi

wand attitude q i
wwith

respect to the world frame. It also contains the IMU biases on gyroscopes bω and
accelerometers ba, the common visual scale factor Λ and the 6D transformation
between the IMU and the camera in translation pc

i and rotation qc
i . The system can

additionally estimate the inclination α of the scene plane it currently observes (see
Fig. 4.2).

A nonlinear observability analysis reveals that all states are observable except two
dimensions in position. This is expected since optical flow and inertial measurements
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Fig. 4.2 Frame setup and state definition for the EKF framework. Without loss of generality, we
can lock the gravity-aligned world y-axis along the terrain plane. The terrain plane normal vector
can then be described as nwtp = [cos(α) 0 sin(α)]T in the world frame. The red values are states
estimated in the EKF framework, whereas the blue values are the scaled visual measurements
normalized with our proposed approach aid of the terrain plane

only allow to estimate the distance to the scene. If this scene is inclined with respect
to gravity, the system additionally can estimate the vehicle’s heading with respect
to the scene. Motion in parallel to the scene plane, however, is unobservable. We
could overcome this issue and implement position hold by a place recognition or
feature-tracking method. However, this would include a feature history and would
defeat the purpose of a fail-safe algorithm.

Without having any type of history, an erroneous measurement will get rejected
in the EKF update but would not corrupt a map, i.e., the next measurement will
be independent of the previous one which is in line with the EKF assumptions.
Such an inherently fail-safe approach allows the MAV to move very quickly and in
an agile way since erroneous measurements get rejected and simply the next good
measurement is taken into the filter process.

4.2.3 Embedded Implementation

While the previous sections described our algorithms, this section focuses on their
implementation, parameter selection, and design choices on the embedded comput-
ing architecture on a MAV. To evaluate performance differences and the influence of
weight reduction, we implemented our algorithms on the two different MAV plat-
forms mentioned in Sect. 4.1.1, an Asctec Pelican quadrotor equipped with an Asctec
Mastermind flight computer and an Asctec Hummingbird quadrotor equipped with
an Odroid-U2 flight computer (Table 4.1). This renders even a very lightweight MAV
truly throw-and-go.
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Table 4.1 SWaP performance of tested computing platforms

Platform Size
(footprint)
(mm)

Weight
(g)

Power
consumption
(W)

Cores Vision
front-end
frame rate
(Hz)

CPU load
(% )

Workload
(% )

Asctec
mastermind

144 × 135 300 30 2 30 59 30

Odroid-X2 dev.
board (4412)
including heat
sink

90 × 94 122 8 4 30 125 31

Odroid-U2
(4412) stripped
down version

48 × 52 12 5 4 30 125 31

Fig. 4.3 System overview of the vision-aided pose estimation frame work

4.2.3.1 Map-Based Approach

Figure 4.3 gives an overview of the distributed implementation of our approach on
the vehicle. All computational-expensive components are executed on the high-level
flight computer, which includes VSLAM and pose filter update (EKF-update) as well
as landing site detection. The EKF-update is passed down to the prediction loop that
is executed on the autopilot board for efficiency reasons: the prediction loop, which
includes IMU integration, and the position controller that uses the estimated pose to
control the vehicle, both run at 1 kHz on a dedicated ARM7 microcontroller.
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We ported the initial estimator implementation from the Asctec Mastermind to
the U2 by using system specific changes in order to speed up the execution on the
SoC. We used a highly ARM-customized Ubuntu version as operating system and
Robot Operating System (ROS) [49] for interprocess communication. Our VSLAM
implementation primarily consist of a tracking and a mapping part which we enforce
to be executed on separate cores. Tracking is the most critical part, since it yields
instantaneous pose measurements which are used to generate filter updates. There-
fore, running this part on a dedicated core ensures uninterrupted pose handling at all
time. Mapping is responsible for pose refinement and windowed bundle adjustment,
and is thus less time critical. Note that the adjustments are refinements and we do
not use global loop closure techniques. This avoids large and abrupt pose changes.
Since the mapping task runs at a lower frequency and is less time critical, it shares
its dedicated core with other system tasks. After optimization, the vision front end
produced visual pose estimates at a stable 50 Hz rate.

4.2.3.2 Map-Free Approach

Our inertial-optical flow (IOF)-based approach is designed to keep the MAV airborne
at all times in a fail-safe manner. Thus, it has to have low-computational cost requiring
low system resources and it has to be fail safe.

We implement IOF on our 12 g Odroid-U2 platform and use similar NEON
optimization instructions than for the above explained map-based approach. We use
the same (FAST) feature extraction method but simplified the matching process by
not warping patches. Since we only use two consecutive images at high frame rate,
the distortion is small and warping is not required.

Computing the normalized camera velocity vector requires normalizing all optical
flow vectors with their scene depth. As detailed in [65], this normalization uses
a computational complex SVD per feature i including the optical flow ẋi (t), the
feature direction vector xi (t), and the camera velocity direction vector v(t). The
unknowns are the feature scale factor and scale factor change λ̇i (t), λi (t) and velocity
normalization factor η:

λ̇i (t)xi (t) + λi (t)ẋi (t) = ηv(t). (4.3)

which can be stacked to a feature×features matrix M containing optical flow and
velocity vector measurements (xi (t), ẋi (t), v(t)) and λ is the solution vector con-
taining a scale factor per feature (λ̇i (t), λi (t)) and a scale factor η for the velocity
vector. λ is a solution up to an arbitrary global scale (which will be estimated in the
EKF using the IMU). Thus without loss of generality, we can set η = 1 and use the
block sparsity of M to efficiently compute the SVD in a block-wise parallel fashion
on the Odroid-U2. The optimized code runs at 50 Hz with an image resolution of
572 × 480 (WVGA) on the Odroid-U2 using only about 20 % of the overall compu-
tation capacity of system.
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Fig. 4.4 Hover performance of the Pelican with Mastermind (a), the Hummingbird with a heavier
Odroid-X2 evaluation board (b), the Hummingbird with modified U2 (c)

4.2.4 Experimental Evaluation: Map Based

To evaluate the influence of the reduced weight on the control stability of the platform,
we executed a position hold maneuver with all three vehicle/flight computer con-
figurations, where the MAV was controlled only with position estimates from our
pose estimation software (the vision front end was again executed at a frame rate of
30 Hz).

Neglecting the influence of different flight performances of the two quadrotor
systems, the reduced gross weight resulted in significantly better control perfor-
mance: the hovering ellipse was reduced from ±35 cm for the heavy Asctec Pelican
with Mastermind (RMS(x y z) = [8.3 cm 15.8 cm 1.5 cm]) to about ±15 cm for the
Hummingbird with the X2 (RMS(x y z) = [5.4 cm 5.7 cm 1 cm]) and to ±7 cm for
the Hummingbird with the final stripped down version of the U2 (RMS(x y z) =
[2.9 cm 3.0 cm 0.8 cm]) (Fig. 4.4). Extensive tests in different environments were
done in [63].

4.2.5 Experimental Evaluation: Map Free

We showed in [66] that we can control the MAV with IOF drift free in metric velocity,
full attitude, and metric scene distance. Being able to keep the MAV constant in
heading and scene distance is crucial for automatic initialization of more powerful
algorithms (e.g., VSLAM) to control the vehicle in full 6DoF pose. Our IOF approach
is sufficiently robust to estimate the vehicle pose even in drastic motion as it occurs
when tossing the MAV in the air.

We start our IOF-based state estimation at t = 38 s and toss it at t = 42. The 4 s of
“initialization” are sufficient to stabilize the MAV after the throw. After about 1 s the
vehicle stabilizes already in attitude and in velocity. The convergence of the scene
depth requires about 6 s longer. This is due to the wrong initialization of the metric
scale factor which generally converges slower than the other states in the system.

Once all states are converged and the vehicle fully stabilized (after about 7 s in the
test in Fig. 4.5), we have time to initialize a full VSLAM system as shown in [65].
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Fig. 4.5 Acceleration and velocity in x (blue), y (green) and z (red) when throwing the MAV in
the air. At the throw, the MAV experiences an acceleration of 16.5 m/s2 (top left). The angular
velocities when throwing the MAV rise to 190 ◦/s (top right). And the velocity rises up to 2.3 m/s
(bottom left). The scene depth is estimated correctly at all times (bottom right) and that the MAV
can maintain it drift free after convergence. This allows good initialization of a subsequent, more
powerful VSLAM algorithm

4.3 Obstacle Detection and Avoidance

The ability to sense obstacles and avoid collisions autonomously is a critical safety
component for MAVs flying in cluttered environment and at low altitude (Fig. 4.6).
Driven by payload and processing constraints and the requirement to accurately detect
every obstacle within collision range, new algorithms have to be developed that reflect
the limited capabilities of such small platforms. In the following section, we present
our obstacle avoidance subsystem that uses stereovision for range perception, and a
polar-perspective, inverse-range world representation (disparity space) for collision
checking. The perception system is used by a closed-loop RRT motion planner, to
navigate around detected obstacles, incorporating vehicle dynamics.

4.3.1 Related Work

Significant progress has been made recently on deliberative obstacle avoidance using
active optical range sensors, such as single-axis scanning lidar and RGB-D structured
light [5, 56]. The lack of a second axis for scanning lidar is a significant limitation
and structured light sensors are ineffective in sunlight. Very compact, electronically
beam-steered radar with large maximum range is under development for this appli-
cation, but again has a single-axis scan [52]. Optical flow can cover a wide field
of view and has been used for reactive obstacle avoidance [14, 25]; however, this
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Fig. 4.6 Asctec Pelican quadrotor flying through forest

only provides information when the aircraft is moving, and poor estimation of time
to collision near the focus of expansion limits the ability to perceive obstacles in
the direction of motion. Stereo vision can provide 3D perception around the focus
of expansion whether the aircraft is moving or not, but so far with relatively short
look-ahead distance [18]. Stereo and optical flow have been used together in purely
reactive obstacle avoidance based on sparse perception with point features [23].

The most common obstacle representations for MAV are image space data
products that serve reactive obstacle avoidance [14, 25, 50] and Cartesian voxel
data structures that serve deliberative planning [5, 18, 56]. Reactive obstacle avoid-
ance with image space data structures use very little memory and computation, but
have limited ability to reason about 3D structure and vehicle dynamics. Cartesian
voxel data structures enable much greater 3D reasoning, have mature temporal fusion
algorithms for error reduction, and have been used to plan high speed, aggressive
maneuvers [48]; however, they use much more memory and computing time. Uniform
voxel sizes are also problematic for representing both very near and very far objects,
which can lead to more complex, multiresolution data structures. Polar representa-
tions parameterized by azimuth and range have been used in a few efforts because
they naturally capture range-dependent variations in angular and range resolution
[7, 68]; however, these efforts were only tested in simulation and [68] only repre-
sented sparse, discrete obstacles. Some stereo vision-based navigation systems for
ground vehicles have had characteristics that are interesting for MAVs. A simple ver-
sion of collision testing and path planning with the stereo disparity image was done
in [44]. A 2D polar grid-based representation in the ground plane was used in [6],
where the radial axis was parameterized as inverse range; this matched the angular
and range resolution characteristics of stereo and gave a compact representation of
all space from a minimum range to infinity. This was used to represent and reason
about distant obstacles, while a 2D Cartesian map was used for nearby obstacles.
Inverse range is equivalent to nearness fields that have been used for reactive MAV
obstacle avoidance with optical flow [25].
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Reactive obstacle avoidance controllers have been based on image space nearness
fields computed from optical flow [25] and trained from human behavior via imitation
learning [50]. Recent deliberative planners have used techniques including anytime,
incremental A* for nonsymmetric vehicles moving slowly in cluttered spaces [35]
and RRT* with path optimization [48] and lattice search with precomputed motion
primitives [45] for fast, aggressive maneuvers.

4.3.2 Vision-Based Autonomous Navigation System

Traditional deliberative motion planning approaches usually implement a 3D
grid-based world representation to expand trajectories and check for collisions [5,
18, 56], and more or less assume that a planned trajectory would be accurately fol-
lowed by a relatively slow moving vehicle. Applying such an approach to a micro
air vehicle generates several issues. Computational resources usually do not permit
processing large 3D grid representations in reasonable time, and the agility of the
system requires a complex planning approach which incorporates additional vehicle
states to reflect fast vehicle dynamics. In our approach, we introduce two key features
to mitigate these issues. To reduce complexity of path verification, our system uses an
image-based world representation generated from stereo vision with a fixed memory
footprint, and to allow planning in a low-dimensional planning space, trajectories
are planned over closed-loop vehicle dynamics.

Figure 4.7 gives an overview of our system architecture. 3D perception follows
a stereo vision pipeline. When images are acquired with a forward-looking stereo
camera head, a stereo disparity map is calculated with a real-time stereo algorithm,
and then expanded into configuration space (C-space), which is used for collision
checking. Stereo, C-space expansion, and collision checking all take place within
an image-based representation: 3D world points are characterized by their polar-
perspective image coordinates in the frame of the reference camera and an assigned
stereo disparity value (disparity space). The resulting 2.5D inverse-depth representa-
tion is very well suited for fast obstacle avoidance: close range where accurate object

image
acquisition

pose
estimation

motion
planner

vehicle
controller

stereo 
disparity

C-space
expansion

collision
checker

disparity space (2.5D) world space (3D)

goal

Fig. 4.7 Autonomous navigation system architecture
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reconstruction is essential, is resolved with the highest accuracy, whereas accuracy
for far distances decreases. At the same time, the polar-perspective character of an
image-based representation significantly reduces the memory foot print of a world
representation, making this method suitable for small hardware platforms.

The vehicle navigation system follows a standard control loop scheme: the motion
planner module plans 3D vehicle trajectories in world space based on vehicle pose
and a predefined goal input, and issues control commands to a vehicle controller,
which maneuvers the vehicle. For collision checking, 3D trajectory segments are
projected into disparity space and verified using the C-space map.

In our simulated experiments, we use simulated vehicle positions as pose esti-
mation inputs. Our onboard implementation uses a vision-aided pose estimation
approach [65] to provide pose. As any pose estimation framework on a real system
will incorporate pose errors, we evaluate the robustness of our planning approach in
Sect. 4.3.7.

In the following, we describe the individual parts of the approach in more detail.

4.3.3 Image-Based Collision Checking

For efficiency reasons, collision checking is performed directly in disparity space.
When a new disparity image is obtained from stereo, C-space expansion is applied
in the disparity domain, allowing to treat the MAV as a single point in space for
planning purposes. During motion planning, small trajectory segments are verified
by projecting them into disparity space and comparing the reconstructed disparity
values along the segment with the corresponding C-space disparity values to detect
collisions.

4.3.3.1 C-Space Expansion

C-space expansion is implemented as an image processing function (Fig. 4.8). To
illustrate this operation, we first project a pixel of the stereo disparity map p(u, v, d)

into world coordinates using the stereo base bs and the focal length f (in pixels),
assuming rectified images and a disparity map that corresponds to the left camera
view:

zw = − f bs/d (4.4)

P(xw, yw, zw) = [uzw/ f, vzw/ f, zw]T (4.5)

Considering an expansion sphere S around P(xw, yw, zw) with the expansion radius
rv, we calculate the position of the rectangle that perfectly hides the sphere from the
viewpoint of the camera (Fig. 4.9) and assign to it a disparity value that corresponds
to the distance to the point on S that is closest to the camera origin.
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Fig. 4.8 C-space expansion in disparity space: original left view image (a), stereo disparity map
(b), C-space expanded disparity map (c), pixels with warmer colors are located closer to the observer
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Fig. 4.9 C-space expansion example: The expansion square covers the expansion sphere from the
camera view point (0, 0, 0) completely—its disparity is constant. a side view in ZY plane, b top
down view in XZ plane

Technically, this expansion operation increases the expansion volume around
a world point, since the correct projection of a sphere into the image is a circle,
but this method has the advantage that the operation now is separable into two 1D
operations—a horizontal expansion along image scan lines and a vertical expansion
along image columns—reducing computational cost significantly.

The horizontal and vertical expansion limits depend on the viewing angle of each
pixel and the expansion radius rv. The horizontal viewing angle α to a point P in
world coordinates is defined as

α = tan−1(zw/xw) (4.6)

and the horizontal angular field of view γ of the expansion sphere S around P is
defined by the distance of P from the camera origin and the expansion radius rv

γ = 2α1 = 2 sin−1
(

rv/

√
z2

w + x2
w

)
(4.7)
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Projecting the two rays r1 and r2 along the viewing angles α + α1 and α − α1 back
into the image defines the horizontal extension of the expansion sphere in the image

r1 = [r1x , r1y , r1z ] = [zw/ tan(α + α1), yw, zw]
u1 = f r1x /r1z

(4.8)

r2 = [r2x , r2y , r2z ] = [zw/ tan(α − α1), yw, zw]
u2 = f r2x /r2z

(4.9)

The vertical extension can be calculated similarly:

β = tan−1(zw/yw) (4.10)

β1 = sin−1
(

rv/

√
z2

w + y2
w

)
(4.11)

r3 = [r3x , r3y , r3z ] = [xw, zw/ tan(β + β1), zw]
v1 = f r3y /r3z

(4.12)

r4 = [r4x , r4y , r4z ) = (xw, zw/ tan(β − β1), zw]
v2 = f r4y /r4z

(4.13)

To determine the new disparity of the rectangular defined by the image coordinates
u1, u2, v1 and v2 the expansion radius rv is subtracted from the z-component of P
and transformed into a disparity value:

znew = zw − rv (4.14)

dnew = − f bs/znew (4.15)

To calculate the full C-space map, (4.6)–(4.15) are applied to every pixel in the
stereo disparity image. Each (u, v, d) triplet defines a rectangular image region
(u1, v1, u2, v2) with a constant disparity dnew, that is written into an output map.
Individual pixels are only updated if the new disparity is larger than the previous
disparity value that was generated by a different (u, v, d) triplet.

4.3.3.2 Implementation Aspects

Equations (4.6)–(4.15) can be precalculated over the disparity space volume. Since
the calculation of u1 and u2 in (4.6)–(4.9) is independent of the y coordinate it
suffice to precalculate a look-up table to store the values of u1 and u2 for each
defined (x, d) combination. Similarly, a look-up table for v1 and v2 is calculated
for each (y, d) combination, and finally, the values for dnew can be precalculated
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for all valid disparities. Because of this separability, the C-space expansion can
be implemented very efficiently. In a first step, an intermediate disparity image is
generated by horizontally expanding all disparity values from the stereo disparity
map using the u1/u2 look-up table. In a second step, each pixel in the intermediate
disparity image is expanded vertically using the v1/v2 look-up table and the expansion
column is stored with a new disparity value from the dnew look-up table in the final
C-space disparity map.

4.3.4 Collision Checking in Disparity Space

The queries from the motion planner come as a sequence of short linear 3D trajectory
segments. The collision checker module takes each segment that is defined through
its start and end point, projects it into the current C-space disparity map Dcm, and
checks all pixels that are located on the straight line between the projected start
and end point for collision. Collision checking itself depends on the reconstructed
disparity value d(ps) of a point ps on the segment and the actual disparity of the
underlying pixel pcm in the C-space map. If the disparity of ps is larger than the
disparity of pcm, the pixel is classified as safe. If the disparity of ps is smaller than
pcm the point on the trajectory is located behind an obstacle, and it is classified
depending on the disparity difference

d(ps) > d(pcm) : SAFE
d(ps) < d(pcm) ∧ d(ps) − d(pcm) < k : COLLISION
d(ps) < d(pcm) ∧ d(ps) − d(pcm) ≥ k : OCCLUDED

ps /∈ Dcm : OUTSIDE
d(pcm) = invalid : NO_DATA

(4.16)

If the difference is smaller than a threshold, a collision occurred. If it is larger,
the trajectory point is labeled as occluded as shown in Fig. 4.10. If the C-space
map contains no valid disparity data at a checked pixel location pcm, the trajectory
segment is labeled as no_data—which can be caused, e.g., by a nontextured surface
when applying a real-time stereo approach.

How the planner uses these different trajectory classifications is explained in the
following section.

4.3.5 Motion Planning over Closed-Loop Dynamics

Motion planning of aerial vehicles has several challenges. First, the state space is
high dimensional—6DOF position and orientation, and their time derivatives (veloc-
ity/angular velocity, etc.), resulting in at least 12 states. Second, the system is very
agile and consequently has poor stability, and naively propagating the open-loop vehi-
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Fig. 4.10 Collision checking logic: a trajectory segments inside the viewing volume of the camera
are classified as: SAFE if unobstructed (green), COLLISION if directly behind an object surface
(red), and OCCLUDED if behind on object; b test trajectories in a simulation: collision checking
result for a set of nine horizontal trajectories

cle dynamics quickly results in undesirable trajectories. Third, the dynamics become
highly nonlinear especially when performing aggressive maneuvers. To address these
challenges, we deploy a motion planning approach that incorporates vehicle dynam-
ics by forward-simulating vehicle responses to waypoint control inputs, which effec-
tively reduces the planning space to only 3D.

We extended an approach that was previously used for autonomous urban driving
[31] to 6DOF motion with agile vehicle dynamics.

Our planner deploys a closed-loop RRT approach (CL-RRT) to grow a tree of
waypoint inputs that are used in a feedback loop to estimate flight trajectories
using a low-level controller and the quadrotor model described by How et al. [22].
The low-level controller consists of two layers: a linear feedback controller and
a waypoint tracker. The waypoint tracker keeps track of which waypoint to visit
next, and when to switch to the next waypoint segment (Fig. 4.11). It also com-
putes the reference position/velocity and the position/velocity tracking errors. Given
these tracking errors, the feedback controller computes the vehicle inputs ucollective,
uroll, upitch, and uyaw to maneuver the vehicle along the trajectory using regular PID
controllers for each channel.

The output of the control loop are the predicted vehicle states which define
trajectory segments that are used for collision checking. Note, that the planner simul-
taneously grows a tree of controller inputs (straight lines connecting the controller
input of a selected node to a sample, which forms an input to the forward simulation)
and a tree of collision-free dynamically feasible trajectories (output of the forward
simulation) as illustrated in Fig. 4.12.
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Fig. 4.12 RRT with closed-loop dynamics. The red lines represent the input to the controller, which
are constructed by connecting a sample (marked with ×) to the tree. The blue lines represent the
predicted vehicle trajectory, which is computed by the forward simulation

The main steps of the RRT algorithm are

1. Randomly sample the 3D world space.
2. Select a node in the tree.
3. Form a controller input from the selected node to the sample.
4. Forward simulate the closed-loop dynamics from the selected node, using the

controller input generated in step 3, and obtain a dynamically feasible trajectory.
5. Check if the predicted trajectory collides with or is occluded by obstacles

(Sect. 4.3.3). If there is a collision, or the occlusion is in a close range, discard
the sample and go to step 1.

6. Add a sample and associated propagated trajectory to the tree. Also generate
intermediate nodes on the trajectory, so that it can branch off to another trajectory
for future samples.
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4.3.6 Motion Planning Strategies

When the low-level controller executes the planned waypoints, different real-world
considerations require specific execution strategies.

First, our planner is designed to maintain a safety invariance while the vehicle is
flying [54] by adapting vehicle velocities such that the vehicle can come to a hover
from the current state without collision. Note, that hovering is an invariant state of
the quadrotor—once the vehicle is in a hover state, it can theoretically remain in
hover without collision indefinitely in a static environment. Second, paths planned a
certain distance behind a perceived obstacle are considered as feasible, which allows
to plan into potentially free space behind obstacles. The maintained safety invariance
ensures an early replanning should this space not be free. Space with no available
data is treated similarly, since we expect that obstacles will have enough surface
texture to be captured in the collision checking process.

Third, the predicted trajectory and the actual trajectory flown are generally
close [32]. To account for nonzero prediction errors and changes in the environments,
the planner repropagates the latest states and changes the trajectory accordingly to
ensure collision-free flight from the current position.

Last, if the collision checker rejects a trajectory because it ends in occluded space
or outside the field of view, we retain the feasible portion of such a trajectory in the
tree, so that RRT can quickly connect future samples and grow trees from it.

4.3.7 Experimental Results

To evaluate our approach, we implemented our navigation algorithm both in a
simulation environment (Fig. 4.13) and on a Asctec Pelican quadrotor system
(Fig. 4.6). The simulation environment mimics a quadrotor within a virtual 3D world
that is composed of cuboids.

At the beginning of a simulated flight, the quadrotor is placed at a starting position
above the ground and the planner is executed a few seconds ahead of the controller to
allow the construction of an initial tree of decent size. Figure 4.13 gives an example
of such a step, where the stationary vehicle has planned trajectories toward the goal
at the top of the scene. When the controller is started, the vehicle begins to execute
the planned trajectory, replanning simultaneously during flight. As the position of the
vehicle changes, new parts of the scene come into view, and trajectories are updated
accordingly, until the goal is reached. To verify the robustness of our approach, we
repeatedly executed a simulated flight for several example scenes. One standard
scenario for performance evaluation of planning stability is the flight through a
vertical opening in a wall (Figs. 4.14 and 4.15), which we use to measure the influence
of a corrupted pose on the planning approach. In a Monte Carlo simulation, we
commanded the vehicle to pass the vertical opening with noise added to the pose
estimate and recorded the flown flight paths for 100 flights for each experiment.
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Fig. 4.13 Simulated flight through virtual forest: a Initial flight trajectory from the vehicle posi-
tion at the bottom toward the goal at the top with overlaid 3D C-space point positions (red); the
horizontal red lines in front of the vehicle correspond to C-space points above the ground; b top-
down view during traverse with overlaid current view of the vehicle

Fig. 4.14 Flying through a door opening with added pose noise: Scene view from the starting
position with overlaid C-space point cloud (red)

With no pose noise added, the vehicle was able to fly safely through the opening
on each run (Fig. 4.15a). Figure 4.15b illustrates the same flight experiment, where
limited white noise (η ∈ [−15 cm, 15 cm]) was added to the position of the collision
sensor (stereo camera system) prior to each planning cycle. When treating the pose of
the collision sensor (with noise overlay) as true vehicle pose, all node positions on
the RRT-tree become erroneous, simulating the effect of a noisy pose estimate on the
planning process. In this case, collision checking invalidates additional tree branches,
due to the added noise, forcing the vehicle to re-plan a valid trajectory when needed.
As shown in Fig. 4.15b, additive noise affects the planning result only marginally.
The vehicle was able to execute all runs properly and pass the opening at all times,
since the added noise had zero mean (no drift).
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Fig. 4.15 Door experiment: top-down view of Monte Carlo simulation with 100 runs with a no
pose noise, b additive white noise in x and y (≤15 cm), c random walk bias in x and y (13.4 cm/s,
random direction for each run)

This changed when a drifting pose estimate was simulated as shown in Fig. 4.15c.
To simulate a random walk bias on the position estimates, a fixed position offset of
1.3 cm (a 10 % drift when operating at maximum speed of 1.3 m/s with a 100 Hz sim-
ulation rate) in a random direction within the x/y plane was defined at the beginning
of each run, and added as a pose offset prior to each planning step. In this experiment,
the vehicle kept a stable orientation to maintain correct heading, which we assume
closely related to real flight experiments, since roll and pitch would be stabilized
around a drift-free gravity vector and yaw can be assumed to be measured locally
drift free by an onboard magnetometer or a vision-aided pose estimation approach.
Since all world point coordinates drift with the amount of bias on pose, the goal
cannot be reached and serves as a desired flight direction indicator.

The vehicle was able to pass the obstacle without a collision in 96 % of all cases.
Collisions only occurred when the vehicle was already within the opening and drifting
sideways, so that the camera could not see the closing in obstruction.

Figure 4.16 illustrates the performance of our navigation system in a real-world
scenario. We implemented our algorithm onboard an Asctec Pelican quadrotor which
was equipped with an Intel Core2Duo, 1.86 GHz processor and conducted flight
experiments in a test forest (Fig. 4.6).

Our system setup used the sensor fusion approach from [63] for pose estimation.
It fuses IMU and position updates from a visual SLAM algorithm (Parallel Tracking
and Mapping (PTAM) [30]) that uses images from a downward-looking camera (752
× 480, grayscale, 100 FOV).

To generate stereo disparity maps, we mounted a stereo camera system [20] on top
of the quadrotor that included an embedded OMAP3730 to off-load the calculation
of real-time disparity maps (376 × 240, 25 Hz, 12 cm baseline, 110 FOV) from the
main processor, which only performed postprocessing of disparity maps within the
stereo vision pipeline.

In this setup, the pose estimation framework used 59 % of the total resource
(camera and PTAM (30 Hz) 48 %, pose filter (30 Hz) 11 %), stereo postprocessing
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Fig. 4.16 Flying under tree canopy: a top to bottom: left rectified stereo camera view; disparity
map; C-space map with expansion size of 60 cm; b top–down view of flown trajectory (red) with
overlaid accumulated C-space point clouds (green) that are generated from subsampled C-space
disparity maps; only points are shown that are more than 2.5 m above the ground and not farther
away from the vehicle than 2 m. The inset shows a view from behind the vehicle in an upright view,
illustrating flight below a tree branch

used 9 %, and motion planning used 65 % (RRT planner 60 %, trajectory server 5 %),
generating motion plans at 2 Hz. On average, 6.51 % of the time used by the RRT
planner was spent on C-space expansion, and 8.19 % on collision checking, which
demonstrates the effectiveness of our approach. Additionally, C-space expansion and
collision checking required less than 1.5 MB of memory for processing 376 × 240
disparity images from the stereo system. In total, the navigation frame work used
133 % of the available 200 % processing power of our two core CPU.

Figure 4.16a gives an example of the viewing volume that is used for motion
planning when approaching a tree. Figure 4.16b illustrates the flight trajectory of a
representative experiment in a top-down view. The vehicle started at the left of the
image and was commanded to fly to the right, avoiding four different trees on its
traverse.

At the beginning of each experiments, we started generating motion plans at an
altitude of 4 m and restricted the planning volume to sample 3D points between 2
and 5 m altitude. The vehicle was able to avoid obstacles autonomously and plan
its motion around tree branches. This included a portion of the trajectory where the
vehicle flew correctly below an overhead branch (tree 2, Fig. 4.16b).
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4.4 Autonomous Landing

In this section, we introduce autonomous landing as a high-level navigation
application. Even if autonomous landing is a specific task, its single parts can easily
be adapted to a series of different applications. Our approach comprises two research
topics, dense monocular 3D reconstruction and visual surface analysis. First, we will
describe the related work, then introduce our landing algorithm, followed by the
embedded implementation, and concluded with experimental results.

4.4.1 Related Work

Most prior work on autonomous landing of unmanned aerial vehicles addresses
landing on terrain, instead of finding elevated perches like rooftops. Due to the
severe constraints on size, weight, and power (SWaP) for especially micro aerial
vehicles, applicable methods must use much lighter, lower performance sensing
and computing resources than available on larger scale systems [53]. Approaches
amenable to these SWaP constraints frequently employ monocular [10, 26, 40, 60]
and binocular stereo [37, 61] camera systems to map and analyze terrain. Most
approaches perform some form of 3D terrain reconstruction, then assess planarity
and slope of appropriately-sized terrain patches. Binocular stereo vision approaches
are, due to the fixed intercamera geometry, algorithmically simpler, but are limited
by the fixed interocular baseline and also heavier due to the additional camera.
Three monocular approaches are particularly relevant here. The first tracks point
features to estimate homographies from image pairs for predominantly planar terrain,
then analyzes correlation coefficients for dense matches to segment in-plane and
out-of-plane pixels [10]. The second uses a recursive filter at each pixel, image
matching via gradient descent with intensity derivatives, and a plane plus parallax
formulation of structure from motion to estimate dense elevation maps from image
sequences [60]. Both of these address finding landing sites on the ground. The third
uses multiplanar homography alignment with tracked features to segment a planar
ground-level surface from an elevated, planar landing site [11].

In the last couple of years, significant progress has been made in dense monocular
3D reconstruction as well. Recently published approaches use Bayesian and varia-
tional estimation models with known camera motion [43, 46, 59]. All of them use
powerful processing hardware, such as GPUs, to achieve real-time capability. An
overview about earlier work can be found in [55].

4.4.2 Algorithm Description

Our approach can find flat landing platforms everywhere in the 3D model and is
not limited to dominant planes. The presented algorithm consists of three parts,
whereas the whole approach is designed to achieve reasonable short and constant
processing time even on limited computing hardware. First, we use a dense motion
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stereo method to determine a 3D model of the scene beneath the MAV. We present a
frame list approach with variable baseline which enables arbitrarily selection of depth
accuracy of the 3D model as long as the motion between an image pair could be found
correctly. The scale can be determined from any metric pose estimator or altitude
sensor. Here, we use the pose estimator presented in Sect. 4.2. Second, we analyze
the 3D model in order to find potential landing candidates. Most of the mentioned
work uses the dimensions of the MAV, the size, the planarity, and slope of the landing
spot as main criterion of landability. We reduce all these criterions to simple steps
which enable efficient onboard implementation. Third, we pick the most promising
candidate and approach it, e.g., with a two-waypoint trajectory. Figure 4.17 illustrates
the processing pipeline of our autonomous landing approach. Besides experiments
where we actually land autonomously in a controlled environment, we present more
detailed analysis about the system performance with hand-labeled ground truth data.

4.4.2.1 3D Reconstruction

Dense motion stereo is based on the same principle as conventional stereo, with
the difference that the two views of the captured scene are generated by a single
moving camera instead of a rigid stereo bar. The extrinsic parameters (rotation R and
translation t between the two camera positions) have to be determined for each image
pair individually. Translation can be estimated up to scale using visual information
only. We assume the intrinsic parameters do not change and calibrate them in advance.
We use a CAHVORE camera model [17] to model lens effects and to generate
linearized camera models that describe the perspective projection.

For selection of a proper image pair, we maintain a frame list of the last n images.
Each element of the frame list consists of camera image, camera pose in the world
frame, extracted features (STAR [1], MSURF [9]), and a feature track list to record
how often each feature has been found in the frame list. Given this data, we can select
image pairs using two criteria. First, since depth accuracy is a function of the stereo
baseline, we look for images that are an appropriate distance apart to achieve enough
depth accuracy (at ground level) at the current altitude of the MAV. Second, we chose
the image which exceeds a minimum number of successive feature matches with the
current image. As soon as an image pair is found, we estimate R and t between
the images with a multiplanar homography alignment approach [12]. Since we can
estimate translation only up to scale from pure visual information (without some
metric context), the translation vector is then scaled with the real-world baseline
from the visual-inertial state estimator described in Sect. 4.2. Having R and t , stereo
rectification can be applied. The quality of the motion estimation strongly depends
on the accuracy of the feature locations and, thus, is scene dependent. To discard
poor motion estimates in order to prevent wrong 3D reconstruction, we calculate the
average 3D reprojection error of the feature pairs and accept only image pairs with
an error in subpixel range. Finally, we use a real-time sum of absolute difference
stereo matching algorithm to estimate a disparity map from which we generate a 3D
point cloud to model the captured scene beneath the MAV.
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Fig. 4.17 Autonomous landing overview: New input images are stored in a frame list, together
with detected features, and camera poses. For selected image pairs, camera motion is estimated,
and the 3D model is determined. The result of the landing site detection is a landing map which
labels all pixels as: green (ground level), red (on rooftop but unsafe), orange (insufficient space),
or blue (safe landing area). The location with the highest confidence is labeled by ×

4.4.2.2 Landing Site Detection

After 3D reconstruction, the next step is to find potential landing candidates. We
define the following requirements for a suitable landing site: (a) A landing site has
to be planar, close to parallel to the ground plane, and free of obstacles and hazards,
(b) it has to be large enough to fit the MAV, and (c) it has to provide enough free
space around it for a safe approach.

To fulfill these requirements, we developed an efficient multistep algorithm which
uses the determined range data to reduce the problem to a basic probabilistic model.
Since our application is targeted to land on elevated surfaces for surveillance, we first
remove all candidates close to the ground level. Then we calculate the standard devi-
ation of the disparity map because the variance of the disparity map along the gravity
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vector, after projection into world frame, corresponds to the planarity of the landing
surface. The smaller the standard deviation in the disparity map, the more planar
the corresponding area and, thus, the higher the landing site confidence (normalized
standard deviation). Standard deviation is calculated in an adaptive neighborhood

n(d, h) = r zacc f

h2 d (4.17)

which depends on the disparity values d and the MAV’s altitude h. The size of the
MAV (r is the radius), the focal length f , and the target depth accuracy zacc are
constant. The target depth accuracy is the first derivative of z (here h) in respect
to the disparity. The needed space for the MAV is its size divided by the lateral
resolution. These two equations combined result in Eq. 4.17. In fact, we make sure
that the window size (in pixels) for the standard deviation corresponds to the size
(in meters) the MAV needs to land. The result of the algorithm is a landing map
which labels all pixels (i.e., landing sites) as whether or not they are safe to land. A
confidence map assigns each landing candidate a quality value which can further be
used to pick the final landing target.

4.4.3 Embedded Implementation

We initially implemented our landing framework on a standard PC and then ported
the software to the processing board (see Sect. 4.1.1). First, we applied thorough soft-
ware optimization techniques to make sure that no redundant calculations are done
and all data structures can be accessed fast. Additional software optimization steps
were including NEON and ARM specific instruction sets. We also reduced of image
resolution to 376 × 240 which increased the processing speed significantly, while
still maintaining sufficient resolution. The decreased depth and lateral resolution,
which come along with the smaller image resolution, are not an issue: For depth,
our approach compensates this by automatically choosing a larger baseline and the
lateral resolution turned out to still be high enough, even for a flight altitude of above
10 m. When running the landing site detection algorithm in parallel with our pose
estimation frame work on the Hummingbird/U2, we achieved a frame rate of 1 Hz
for landing map updates. Our experiments showed that this frame rate is reasonable
for fully autonomous landing site detection.

4.4.4 Experimental Evaluation

To evaluate proper system performance, we ran three indoor experiments and one
outdoor experiment. All indoor experiments were conducted with the Asctec Hum-
mingbird carrying the modified U2 flight computer and all outdoor experiments were
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Fig. 4.18 First indoor experiment: a Box as surrogate rooftop; b hand-labeled landing map, outer
box shape is the edge of the box surface, inner box safety zone is the box surface without the 13 cm
border region

conducted with the Asctec Pelican carrying the Asctec Mastermind flight computer.
Even if the whole processing pipeline runs onboard, for the presented experiments,
we recorded the data and processed it offline.

4.4.4.1 Indoor Evaluation

The first indoor experiment was designed to generate quantitative error metrics from
hand-labeled ground truth data. We fly our quadrotor system at three different alti-
tudes over a box (57×57×27 cm3, Fig. 4.18) to simulate a rooftop landing scenario.
In all experiments, the vehicle radius was set to 13 cm to allow for a sufficiently-sized
valid landing area in the middle of the box, and the arbitrary ground-level cut off
threshold was set to 20 cm. For ground truth, the true landing area in the middle of the
box surface was marked by corner marks that were located at 13 cm distance from the
box edges, and these were manually identified in the input images (see Fig. 4.18b).
The first three rows of Table 4.2 give an overview of the evaluation results. Altitude,
baseline, and feature reprojection error during image alignment correspond to the
average value for each experiment. For this evaluation, we only considered frames
where the box surface was completely visible in the disparity image to avoid bor-
der effects, and were valid stereo results could be calculated (enough baseline and
more than 40 feature matches for image alignment) (“frames visible”). Within these
frames, we defined a successful detection (“frames successful”) as frames where at
least one valid landing location was detected on the box and no landing location was
detected falsely on the ground. For these successful frames, we also calculated false
positives (FP) rates (pixels that were classified as valid landing area that are located
in the border area), false negatives (FN) rates (not as landing area classified pixels
that were located in the correct center area of the box). Note that we only consider
pixels with valid disparity values in this metric.
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Table 4.2 Evaluation of landing site detection

Altitude (m) Baseline (m) Reprojection Number of frames FP (%) FN (%)

error (pixel) Visible Successful

1.47 0.39 0.21 116 106 91.4 % 0.028 39.34

2.19 0.86 0.20 63 62 98.4 % 0.046 43.57

3.34 2.00 0.18 67 63 94.0 % 0.0026 53.14

6.51 1.16 0.28 337 325 96.3 %

10.15 2.28 0.22 480 433 90.2 %

Row 1–3 Indoor experiment at three different altitudes (r = 13 cm, depth accuracy at ground
level = 3 cm), Row 4–5 outdoor experiment (depth accuracy at ground level = 20 cm)

Fig. 4.19 Second indoor experiment: a box height calculation for valid landing point with highest
confidence. b Feature reprojection error of feature matches and estimated baseline (depth accuracy
3 cm)

Our approach is able to robustly detect the landing zone with a success rate of more
than 90 % in all experiments and a false positive rate below 0.05 %. The false positive
(FP) and false negative (FN) rates are largely defined by the quality of the disparity
input. Border-fattening effects (caused by our correlation-based stereo matching)
usually increase the FP rate, whereas missing disparity pixels on top of the target
increase the FN rates, since we treat missing data as unsafe. To mitigate these two
effects, we introduced two thresholds to maximize safety: (1) at disparity edges, we
disable all pixels that are located within half a correlation window size to the edge,
and (2) we use a percentage threshold which defines the minimum number of pixels
with valid disparity around a landing site (98 % in our experiments).

In the second experiment, in order to verify the accuracy of our 3D reconstruction,
we plotted the height of the landing point with the highest confidence for one of
the sequences (Fig. 4.19). The error follows the expected depth accuracy of 3 cm
(min. depth acc.) within the true box height of 27.5 cm. The low average feature
reprojection error confirms valid motion estimation results.

The third indoor landing experiment consisted of landing site detection and target
approach. In this indoor experiment, the landing target also consisted of a cardboard
box to simulate an elevated landing surface. We commanded the quadrotor to fly
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Fig. 4.20 Third indoor experiment: The MAV is commanded to take off autonomously and rise
up to 1.5 m. Then we continuously set waypoints to explore the environment (the solid line follows
the flight trajectory). Once a valid landing spot is detected, the two approach waypoints are generated
(stars) which are used by the MAV for the landing maneuver. Note that each waypoint includes a
tolerance radius (the trajectory does not hit the red star at 1.5 m altitude exactly). We reduced this
tolerance for the actual landing spot on the surface to enable high-precision landing

over the landing zone by defining manual waypoints, which were approached by the
vehicle autonomously while executing the landing site detection algorithm to analyze
the area beneath the MAV. As soon as an appropriate landing spot was detected,
the two approach waypoints were submitted and executed by the vehicle (Fig. 4.18a).

Figure 4.20 depicts the 3D point cloud of the reconstructed box and ground surface
together with the flight trajectory and the issued approach waypoints. The vehicle took
off to the left of the illustrated scene and landed correctly on top of the box. Example
scene views, together with a resulting landing map are illustrated in Fig. 4.17. All
pixels in the middle of the box have been labeled correctly as safe to land (blue),
whereas pixels close to the edges of the box are detected as either unsafe (red) or
provide not enough space to land on (orange).

4.4.4.2 Outdoor Evaluation

For the outdoor experiments, we conducted overflights over a one story building
(Fig. 4.21) and recorded image sequences from the downward-looking camera
together with pose data for offline analysis. A quantitative evaluation for two differ-
ent overflights is given in Table 4.2 row 3–4. The average altitude of the first flight
was 6.5 m which lead to an average required baseline of 1.16 m. The second over-
flight was at a higher altitude of approximately 10.15 m requiring a slightly higher
minimum baseline of 2.28 m on average. From all frames, were at least a part of the
safe landing zone on top of the building was visible in the disparity images, we could
successfully identify a valid landing target in over 90 % for both flights.
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Fig. 4.21 Outdoor experiment environment and data set images. a Aerial view of the flight area
and target building; b the flat area on the roof is the landing target; c raw input image with good
texture on roof; d image with saturation area which leads to missing stereo data

4.5 Conclusion and Future Work

Vision-based navigation algorithms have the potential to become an enabling
technology for micro air vehicle autonomy. With the advent of small, low-power
processing units and miniature camera modules from the cell-phone sector, low
SWaP computing for vision applications is ready to be deployed, enabling fully
autonomous navigation of very small platforms for the first time. In this chapter,
we presented three different fundamental building blocks for platform autonomy:
vision-based pose estimation, onboard obstacle avoidance, and autonomous landing.
Fast pose estimation that is independent of external sensor inputs is the basis for
safe MAV operations. Our approach fuses accurate map-based localization with a
fast map-free approach to estimate vehicle velocities in emergency situations when
a map-based approach might fail.

Obstacle avoidance is a key capability for flights in highly cluttered environment
or close to the ground. We use frontal stereo vision approach which provides a
polar-perspective, inverse-range world representation for obstacle detection and col-
lision checking with low computational complexity, and deploy a closed-loop motion
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planning approach that plans collision-free trajectories while accounting for vehicle
dynamics.

Our autonomous landing approach finds elevated landing surfaces by executing
a dense structure from motion approach, and searching for safe landing zones in the
reconstructed terrain.

We implemented all three algorithms on our quadrotor platforms and demonstrated
autonomous flights using only onboard resources.

In the future, we plan to further integrate our embedded platform components
towards ultimately having a fully capable avionics package (flight computer, cam-
era, and IMU) under 15 g. This will enable fully autonomous control of ultra-small
quadrotor systems (as, e.g., the 15 cm, 25 g Bitcraze miniature quadrotor system [16])
that can be operated in highly cluttered environment or confined spaces, indoor and
outdoor.

Acknowledgments This work was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration.
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Chapter 5
Stereo Vision Algorithms Suited to Constrained
FPGA Cameras

Stefano Mattoccia

Abstract The advent of cheap RGBD active 3D sensors, such as those based on
structured light (e.g., the Microsoft Kinect) or those based on time-of-flight technol-
ogy, has significantly increased the interest in computer vision applications based
on depth data that, in most cases, enables higher robustness compared to solutions
based on traditional 2D images. Unfortunately, active techniques are quite noisy
or even completely useless in outdoor environments (in particular under sunlight).
An effective and well-known technique to infer depth suited to indoor and outdoor
environments is passive stereo vision. Nevertheless, despite the frequent deployment
of this technology in many research projects since the 1960s, stereo vision is often
perceived, especially in consumer applications, as an expensive technology due to
its high demanding computation requirements. In this paper, we will review a subset
of state-of-the-art stereo vision algorithms that have the potential to fit with a basic
computing architecturemade of a low-cost field-programmable gate arrays (FPGAs),
without additional external devices (e.g., FIFOs, DDR memories, etc.) excluding a
USBorGigaEthernet communication controller. Compared tomore complex designs
based on expensive FPGAs coupled with additional external memory devices, clear
advantages of the outlined simplified computing architecture are the reduced design
and manufacturing costs as well as the reduced power consumption. Another signif-
icant advantage consists in better code portability as well as in improved robustness
with respect to obsolescence of electronic devices being almost the whole design
self-contained into the FPGA logic. On the other hand, mapping stereo vision algo-
rithms into a similar low-power, low-cost architecture poses a very challenging task
and only a subset of existing algorithms appropriately modified are suited to this con-
strained computing platform. Nevertheless, we believe that devices based on such
a proposed simplified computing architecture would make RGBD sensors based on
stereo vision suitable to a wider class of application scenarios not yet fully addressed
by this technology.
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5.1 Introduction

In recent years,with thewidespread diffusion of 3D sensors, there has been increasing
interest in consumer and research applications based on dense range data. Some of
these sensors provide a depthmap and an RGB (ormonochrome) image of the sensed
scene and, for this reason, they are often referred to as RGBD (RGB plus Depth)
sensors. A well-known and representative example of such devices is the Microsoft
Kinect, a cheap and accurate RGBD sensor based on structured light technology.
Since its presentation in 2010, it has been deployed in many scientific and consumer
applications. This technology, developed by Prime Sense, relies on a standard color
camera, an infrared projector, and an infrared camera. The projected pattern is sensed
by the infrared camera and analyzed according to a patented technology in order to
infer depth. The Kinect enables the user to obtain accurate depth maps and images
at VGA resolution in indoor environments. Another interesting technology that in
recent years gained popularity is Time of Flight (ToF). In this case, the sensor emits
a modulated light and, by measuring the time required to receive the bounced light,
it infers depth. In most cases, this technology also provides a monochrome image of
the sensed scene and hence belongs to the class of RGBD sensors. However, com-
pared to the Kinect technology, ToF currently provides depth maps and images at a
reduced resolution compared to structured light sensors as well as to stereo vision
based sensors. Nevertheless, Microsoft recently presented for its new gaming con-
sole an evolution of the original Kinect based on time-of-flight technology enabling
increased resolution compared to other time-of-flight sensors currently available.
Active technologies have specific strengths and limitations [25]; however, they are
ill-suited to environments flooded with sunlight (the Kinect in particular becomes
useless in these circumstances). On the other hand, it is worth observing that, in
stereo vision technology, depth and image resolutions are only constrained by the
computational requirements of the stereo matching algorithm. For these reasons,
especially for the limitations concerned with ToF sensors, there have been attempts
to improve resolution and effectiveness of active sensors by means of sensor fusion
techniques (e.g., [6]). These approaches combine the depth maps provided by active
sensors with registered images and depth maps provided by high-resolution stereo
vision systems.

Stereo vision is a well-known technology for inferring depth and, excluding
projection-based approaches, it is a passive technology based on standard imaging
sensors. Stereo vision systems infer dense depth maps by identifying corresponding
projections of the same3Dpoint sensed by twoormore cameras in different positions.
This challenging task, often referred to as the correspondence problem, can be tack-
led with many algorithms (the Middlebury stereo evaluation website [28] provides a
quite updated list and evaluation of stereo vision algorithms) and consequently pro-
duces different outcomes in terms of accuracy and computational requirements. This
means that, in stereo vision, the algorithm aimed at tackling the correspondence prob-
lem plays a major role in the overall technology and, in recent years, there has been
a dramatic improvement in this area. Another important factor that has made stereo
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vision more suitable to a wider range of applications has been the recent availability
of low-cost powerful computing platforms such as FPGAs, GPUs, and CPUs with
DPS capabilities. Of course, stereo vision technology intrinsically provides RGB or
monochrome images, and thus belongs to the class of RGBD sensors. Compared to
active technologies such as structured light or ToF, stereo vision may provide unreli-
able results in regions where the correspondence problem becomes ambiguous (e.g.,
in poorly textured regions or in presence of repetitive patterns along image scan-
lines). However, compared to active technologies, it is well suited to both indoor and
outdoor environments, as well as to close-range and long-range depth measurements
by simply changing the relative position of the digital imaging sensors and/or their
optics. Finally, being a passive technology, multiple stereo vision sensors sensing the
same area do not interfere with each other enabling multicamera setups. Neverthe-
less, despite these positive aspects and a widespread deployment in many research
applications in the last few decades, stereo vision is often perceived as a bulky and
expensive technology not suited to mainstream or consumer applications. In this
paper, we will try to address this concern by outlining a simple and cheap computing
architecture mainly based on low-cost FPGAs. We will also review a subset of state-
of-the-art stereo matching algorithms that have the potential to entirely fit within this
constrained architecture without other external device (e.g., FIFOs, DDRmemories,
etc.), with the exception of a high-speed communication controller. In some cases,
the constraints imposed by such simplified computing architecture require modi-
fications to the original algorithms that will be discussed in the remainder of this
chapter. The topic addressed in this paper is related to an ongoing research activity
aimed at developing a cheap, accurate, self-powered RGBD sensor based on stereo
vision technology, deploying as a computing platform only the reconfigurable logic
available in standard low-cost FPGAs. This choice has several advantages and also
some limitations that will be discussed in the remainder of this chapter.

Figure5.1 reports preliminary experimental results, computed on a frame of the
KITTI dataset [10], concerned with three algorithms discussed in this chapter and
implemented on the constrained computing architecture. Additional and updated
results can be found here.1

5.2 Related Work

Dense stereo vision has been a widely researched topic for decades [31] and, due to
its highly demanding computational requirements, many different computing plat-
forms (e.g., CPUs, GPUs, DSPs, FPGAs, ASICs, etc.) have been deployed to obtain
depth maps (hopefully) in real time. However, some of these computing architec-
tures, such as those based on standard CPUs or GPUs, are currently ill-suited to

1 Videos and applications of the 3D camera are available at this links:
http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
http://www.vision.deis.unibo.it/smatt.

http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
http://www.vision.deis.unibo.it/smatt
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Fig. 5.1 Preliminary experimental results for three algorithms implemented in the target computing
architecture. Disparity maps are concerned with frame �66 of the KITTI dataset [10], using a
simple x-Sobel filter as prefiltering step. From top to bottom rectified reference image, disparity
map computed by the FW implementation, disparity map computed by a modified version of the
[5] algorithm using two paths, and disparity maps computed by a modified version of the SGM [13]
algorithm using four paths. Additional experimental results are available at this link: http://www.
youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw

consumer/embedded applications due to their high power requirements, cost, and
size. Computing architectures, such as those based on high-end FPGAs, are often
too expensive as well, while solutions based on custom application specific inte-
grated circuits (ASICs), despite the limitations regarding their reconfigurability and
time to market compared to FPGAs, represent a less expensive solution in large
volumes. Finally, we point out that interesting low-power, low-cost, reconfigurable
architectures for real-time dense stereo vision are represented by embedded CPUs
coupled with integrated DSPs, such as the OMAP platform [11], extensively used for
stereo vision. A recent and detailed review of stereo vision algorithms for different

http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
http://www.youtube.com/channel/UChkayQwiHJuf3nqMikhxAlw
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computing architectures can be found in [33]. In this chapter, we will consider a sim-
ple computing architecture based entirely on low-cost FPGAs that, in our opinion,
represent an optimal solution to design compact, low-cost, low-power 3D sensors
based on stereo vision.

5.2.1 Field-Programmable Gate Arrays

FPGAs can be configured, and in most cases reconfigured many times, by means
of hardware description languages (HDLs) such as VHDL or Verilog. The inter-
nal structure of an FPGA consists of a large amount of logic cells, each contain-
ing a small amount of elementary logic blocks (e.g., Flip-Flops, multiplexers, and
lookup tables). Distributed into the FPGA, there are also small multiport memories,
often referred to as block RAM, with fast access time. Moreover, modern low-cost
FPGAs often integrate configurable DSPs for efficient arithmetic operations, clock
managers, and high-speed transceivers. All these components can be configured by
programmers/designers according to their specific requirements by means of HDLs.
For instance, considering a Xilinx Spartan 6 Model 45 FPGA, we can find roughly
44,000 logic cells, 116 dual-port block RAMs (18Kb each), 58 DSPs, 4 clock man-
agers, and 358 configurable I/O pins. It is worth noting that the reconfigurable logic
of an FPGA can be configured/programmed with HDLs at a higher level of abstrac-
tion using a behavioral programming methodology. However, mapping computer
vision algorithms on the reconfigurable logic with HDLs is not as simple as mapping
the same algorithms on CPUs with traditional high-level programming languages.
Nevertheless, recent years have seen the appearance of effective high-level synthe-
sis (HLS) tools that enable the automatic conversion of code written in a standard
programming language, such as C/C++ or Matlab, into HDLs. Despite these facts,
being the hardware resources of the reconfigurable logic highly constrained, a clear
understanding of the overall FPGA architecture and of the available resources is
crucial for writing optimized code with HDLs as well as with HLS tools. The key
advantage, compared to most other computing architectures, is that FPGAs, thanks
to their complete reconfigurability, can be programmed to massively exploit paral-
lelism and tailored to specific application requirements enabling one to obtain the
optimal performance/Watt.

5.2.2 Stereo Vision

Stereo vision [31] is a technique aimed at inferring dense or sparse depth maps from
two or more views of the same scene observed by two or more cameras. Although
increasing the number of cameras has the potential to improve accuracy and reliabil-
ity, the binocular setup (i.e., deploying two imaging sensors) is frequently deployed
in practice. Due to the many applications that can take advantage of dense depth data,
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this topic has received a constant research interest in the last decades, and significant
algorithmic improvements have been proposed [15, 31]. However, most dense stereo
vision algorithms are computationally demanding, and parallel computing architec-
tures are in most cases mandatory if one is to obtain dense depth measurements in
real time. Not surprisingly, for this reason, FPGAs have attracted the interest of many
researchers working in this field [33].

5.3 Overview of the Constrained Computing Architecture

Our target computing architecture is aimed at minimizing cost, power consumption,
and at enabling better portability with respect to future evolutions of the FPGA core
that, in our case, currently relies on the Xilinx Spartan 6 family. The design strategy
adopted here would easily enable the porting of algorithms to FPGA devices pro-
vided by different manufacturer to high-end devices manufactured by Xilinx, such
as devices belonging to the high-end Virtex class as well as to new computing archi-
tecture made of multicore and programmable logic such as those recently proposed
by Altera or Xilinx (e.g., the Zynq platform for Xilinx). In particular, these latter
hybrid architectures, made of ARM cores tightly coupled with powerful reconfig-
urable logic, would perfectlymatch our strategy enabling the design of self-contained
smart cameras with a very simplified and almost standard hardware design.

A brief overview of our current computing architecture is depicted in Fig. 5.2. It
is based on a single FPGA and aims to obtain dense depth maps at more than 30+ fps
processingWVGA (752× 480) stereo pairs sensed bymonochrome or color sensors.
These specific imaging sensors, manufactured by Aptina (specifically the MT9V034
model adopted for our evaluation), provide some interesting features well suited to
smart cameras for computer vision applications. In fact, these imaging sensors have
global shutter capability, are available in monochrome or color (based on the Bayer
pattern) format, have a maximum frame rate of 60 fps, provide an optional LVDS
data communication between sensors and the device (the FPGA in our case) that
manages the video streams and also enable simultaneous acquisition by means of
hardware synchronization. Nevertheless, it is worth pointing out that our design is
not constrained to this specific imaging sensor and other devices could be used in
place with minimal modifications to the overall design. Observing Fig. 5.2, we can
notice that the two synchronized color or monochrome imaging sensors are con-
nected, through two low-voltage differential signaling (LVDS) channels for clocks
and data, to the FPGA. This choice, plus the additional LVDS link between the two
imaging sensors, enables us to put the sensors and the computing platform in arbi-
trary positions, even at distances of meters, in order to deal with different setups
according to different application requirements. For instance, in gesture recognition
applications, the baseline is typically very small (few centimeters), while for systems
aimed at autonomous navigation, the baseline can be significantly larger (50cm or
more). Both cases would be easily handled by the depicted solution. Despite this
important fact, other crucial design goals in our project were minimal power require-
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Fig. 5.2 Basic architecture of the target computing platform. The overall design contains the
imaging sensors (e.g., at WVGA resolution), a low-cost FPGA (e.g., a Spartan 6 Model 45 or
better), and an external high-speed communications controller (e.g., USB 2.0 or 3.0, GigaEthernet).
The overall processing pipeline, including the FIFO aimed at handling transfers to/from the high-
speed communications controller and a softcore that supervises the whole system, is synthesized
into the reconfigurable logic of the FPGA

ment, compactness, and reduced bill of materials. Concerning power requirements,
the overall design has a power consumption of about 2.0W supplied by a standard
USB 2.0 data connector. The overall size of the computing platform depicted in
Fig. 5.2, excluding the imaging sensors modules, has an area smaller than a credit
card. Finally, the bill of materials can be summarized by considering a small amount
of inexpensive hardware devices. Namely, it results in the FPGA, the imaging sen-
sors and the external USB or GigaEthernet controller plus some standard electronic
components such as clocks and passive devices. According to this overview, it is clear
that the considered computing platform is not equipped with any external memory
device such as a SRAMor aDDR. This choice simplifies the overall design (enabling
power, area, and costs reduction) but, on the other hand, enforces strong constraints
to the processing capabilities of such a processing platform that will be thoroughly
discussed in the remainder of this chapter.

Observing Fig. 5.2, we can also notice that our design contains a softcore synthe-
sized into the FPGA logic; this is a small RISC processor mainly aimed at handling
communications with the host computer in order to change camera parameters, such
as the frame rate or other features of the imaging sensors, by means of standard
serial communication protocols (e.g., I2C). The softcore, by means of software com-
mands issued by the host, also allows us to select, among those available within the
processing pipeline, the video streams actually required by the user. For video stream
configuration, the softcore is tightly coupled with the Data/Video manager unit as
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depicted in the figure. In fact, this module manages the video streams processed by
the pipeline and other data available inside the FPGA according to the configuration
commands issued by the host. Optionally, the hardware design could be equipped
with an Inertial Measurement Unit (IMU) made of a gyroscope, an accelerometer
and other additional digital devices such as a GPS receiver or a digital compass. The
IMU can be useful for robotic applications in order to integrate the measurements
provided by a visual odometry module based on SLAM (Simultaneous Localization
And Mapping) techniques. Another optional component of the camera, managed by
the softcore, is the Motor controller unit. This module enables control of multiple
stepper motors according to software commands issued by the host and can be useful,
for instance, for handling pan and tilt.

The upper side of Fig. 5.2 summarizes the main steps executed by the vision
processing pipeline. Once the raw images provided by the image sensors are sent to
the FPGA, they are rectified in order to compensate for lens distortions. Moreover,
the raw stereo pair is put in standard form (i.e., epipolar lines are aligned to image
scanlines). Both steps require a warping for each image of the stereo pair, which
can be accomplished by knowing the intrinsic and extrinsic parameters of the stereo
system [31]. Both parameters can be inferred by means of an offline calibration
procedure. Once the rectified images are in standard form, potential corresponding
points are identified by the stereo matching module as will be discussed in the next
sections. Unfortunately, since not all of the correspondences found by the previous
module are reliable, a robust outlier detection strategy is crucial. This step typically
consists ofmultiple tests aimed at enforcing constraints to the inferred disparitymaps
(e.g., left–right consistency check, uniqueness constraint, analysis of the cost curve,
etc.), the input images, or the matching costs computed by the previous matching
engine according to specific algorithmic strategy. The filtered disparity map is then
sent to the Data/Video manager. This unit contains a small FIFO synthesized in the
FPGA logic, and it is mainly focused on packaging selected video streams and other
relevant data. This data is then sent to the communication front end implemented
in the FPGA logic and directly connected to the external communication controller
that in the current prototype is an USB 2.0 controller manufactured by Cypress.

The host computer, once it has received the disparity map, will compute depth
by triangulation according to the parameters inferred by the calibration procedure.
Although in this paper, we will focus our attention on the stereo matching module,
the overall goal consists in mapping all the blocks depicted in Fig. 5.2 into a low-
cost FPGA. As previously pointed out, a similar design would allow for small cost,
size, weight, power requirements, and reconfigurability. Moreover, the upgrade of
the whole project to newer FPGAs (typically cheaper and with better performance in
terms of speed and power consumption compared to previous generation) is almost
straightforward. Finally, we point out that, with the availability of integrated solu-
tions based on reconfigurable logic, plus embedded processors such as the Xilinx
Zynq [44], a self-contained FPGA module would make feasible the design of a fully
embedded 3D camera with complete onboard processing without any additional
external host computer.
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5.4 Stereo Vision: Analysis of Memory Footprint and Bandwidth

Stereo vision algorithms are well-known for their demanding computational require-
ments that sometimes even do not enable their deployment in practical applications
with real-time constraints. This limitation in standard computing architecture such
as CPUs or GPUs is often concerned with number crunching capabilities. However,
when it comes to consider highly constrained computing architectures such as that
previously outlined, major limitations typically consist in the massive memory foot-
print and/or bandwidth requirements within the memory and the processing unit.
Let us consider these facts by analyzing the simplest stereo matching algorithm
that evaluates, within a prefixed disparity range D with disparity d ∈ [dmin, dmax],
the matching costs C(x, y, d) computed, on a point basis, between each point in
the reference image at coordinate R(x, y) and each potential corresponding pixel
T (x − d, y), d ∈ [dmin, dmax] in the target image. Many effective cost functions
have been proposed in the literature and among these, the absolute difference of
pixel intensity (AD) or its truncated version, often referred to as truncated absolute
difference (TAD), that saturates the cost to an upper threshold T, Census transform
coupled with Hamming distance [47] and its variants such as the mini-Census [4]
or the more robust ternary based approach proposed [30] are widely adopted by
algorithms implemented into FPGAs. In fact, AD- and Census-based approaches,
compared to other cost functions such as squared differences (SD), normalized cross-
correlation (NCC) or zero-mean normalized cross-correlation (ZNCC), robust cost
functions computed on rectangular patches, or mutual information (MI) [41], are
certainly less demanding in terms of reconfigurable logic required for their hard-
ware implementation. In terms of robustness, the nonparametric local transform [47]
makes this approach robust to strong photometric variations, although in its original
formulation, it is quite noisy in uniformly textured region. Concerning AD, in order
to increase its robustness to photometric distortions that frequently occur in practical
application scenarios, a transformation that reduces the low-frequency components
(e.g., LoG (Laplacian of Gaussian ) or Sobel filter) is often applied to the stereo
pair before AD computation. For the reasons outlined so far, AD- and Census-based
approaches are frequently deployed by stereo vision algorithms implemented into
FPGAs. Sometimes, such as in [22], different cost functions (in [22], AD andCensus)
are combined to increase robustness. Finally, there are approaches [37] that rely on
direct edge detectionmechanism to improve computational efficiency. An exhaustive
review and evaluation of cost functions suited to practical stereo vision systems, not
restricted to FPGA implementation, can be found in [14].

Considering the previous example, from the memory point of view, stacking each
C(x, y, d) for each point and for each disparity within the disparity range would
result in the 3D memory structure depicted in Fig. 5.3 and often referred to DSI
(Disparity Space Image). However, in most effective algorithms adopted in practi-
cal applications, the matching cost evaluated to determine the best disparity value
consists in aggregated pointwise matching costsC(x, y, d), accumulated costs along
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Fig. 5.3 Disparity Space Image, the 3D structure containing the pointwisematching costC(x, y, d)

for each point and for each disparity value within the disparity range D

scanlines in order to enforce smoothing constraints on the disparitymaps or bymeans
of other strategies.

Some algorithms, as will be discussed in the remainder, require to store in a mem-
ory structure the whole DSI depicted in Fig. 5.3. Unfortunately, even with standard
image resolution and disparity range, this is a significant amount of data that typi-
cally exceeds the memory available in most current FPGAs and for this reason, an
external memory would be mandatory in these cases. For instance, by considering
images at 752 × 480, a disparity range of 64 and 16 bit for each matching cost
C(x, y, d), the DSI consists of 44MB. Although a similar amount of data seems not
critical deploying external memory devices such as DDR memory or SRAM mem-
ory, there is a more critical constraint concerned with memory bandwidth. In fact,
FPGAs, despite their reduced clock frequency, compared to other parallel computing
devices such as GPUs, can be effective with respect to such devices by exploiting
their potential massive parallel capabilities by means of tailored internal logic recon-
figurations. Nevertheless, to this aim and in order to provide a throughput of (at least)
one disparity per clock cycle to keep pace with the pixels provided by the imaging
sensors, there is a strong memory pressure when intermediate results (for instance,
as typically occurs, the D values concerned with the point under examination or D
values for intermediate results (sometimes even k × D values) must be read within
a single clock cycle. This case is summarized in Fig. 5.4.

For instance, by considering our previous configuration, D = 64 and size of each
matching cost C(x, y, d) 2 bytes, with a pixel clock frequency of 30MHz (appropri-
ate for imaging sensors similar to those deployed in our camera), the memory band-
width required turns out to be higher than 3.5GB/s. In most cases, for each clock, this
amount of data must be read, processed/updated, and then written back to memory,
thus doubling the overall required memory bandwidth highlighted. Of course, with
higher resolution imaging sensors, typically clocked at higher frequency, moving
data back and forth between FPGA and memory further emphasizes the memory
bandwidth bottleneck.
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Fig. 5.4 Moving data back and forth between FPGA and external memory can easily lead to exceed
the available bandwidth

Fig. 5.5 The overall memory bandwidth can be increased by adding to the design multiple memory
devices

According to the previous analysis, since the memory bandwidth required can
exceed that available in current memory devices, a straightforward solution to over-
come this problem would consist in using multiple memory devices as outlined in
Fig. 5.5. However, although the strategy depicted in the figure could solve memory
bandwidth issues, this strategy would have on the other hand some disadvantages.
In particular, using multiple memory devices to increase the overall memory band-
width would lead to increased costs, power consumption, overall complexity, and
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area. Moreover, such a solution would also increase the overhead, in terms of recon-
figurable logic and memory controllers, required by the FPGA for handling multiple
external memory devices.

For the reasons outlined so far, in our design, we decided to avoid external mem-
ory devices at all. Although this choice enables to overcome some of the problems
previously outlined, it alsomeans that we can rely only on the fast, yet small, memory
available inside the FPGA. As should be clear, this choice imposes very strong con-
straints on the algorithms that can be implemented on such a computing architecture.
Nevertheless, as we will show in the next sections, following specific algorithmic
methodologies, very effective results can be obtained adopting this simplified design
strategy.

5.5 Stereo Vision Algorithms Suited to the Constrained
Computing Architecture

A computing architecture similar to that outlined in the previous section poses signif-
icant constraints to the computational structure of the algorithms that can be imple-
mented. In fact, considering a representative case study of theXilinx Spartan 6 FPGA
family [44], we can see that the overall block memory available is about 261 KB
for the Model 45 (and about 600KB for the most powerful device of this family, the
Model 150). In betweenmodels 45 and 150, there are two devices, 75 and 100,with an
amount of logic cells close to, respectively, 75,000 and 100,000 and with an amount
of block memory, respectively, of about 400KB and 600 KB. This means that, ignor-
ing other requirements, we would not even be able to store a stereo pair at WVGA
resolution (about 720 KB) in the most complex 150 device. This observation, plus
the limited overall reconfigurable logic available (about 43,000 and 147,000 logic
cells for the Model 45 and 150, respectively), dictates that stream processing [2] is
mandatory for our purposes. This technique consists of processing pixels as soon as
they are available from the imaging sensors, with minimal buffering requirements.
Of course, for the same reason, the resulting output cannot be entirely stored into
the FPGA and must be sent to the communications controller as soon as it is made
available by the processing pipeline. We also point out that other relevant constraints
are concerned with the overall reconfigurable logic available for processing (e.g.,
about 55,000 flip-flops for the Model 45 and 185,000 flip-flops for the Model 150)
and the maximum distributed RAM available (e.g., about 50KB for Model 45 and
about 17KB forModel 150). More details concerned with these devices are available
in [44].

In the next sections, we will consider some relevant stereo vision algorithms
potentially suited to this constrained target architecture. For this purpose, we will
adopt the classification proposed in [31], where algorithms are classified into two
major categories, local approaches and global approaches, making a further distinc-
tion when dealing with approaches not completely described by these two broad
categories.
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Fig. 5.6 Support windows, of size M × N , for cost aggregation in local algorithms at disparity d.
In the reference image, the support window is centered on point (x), while in the target image, the
support windows are centered on points [x, x − dmax]

5.5.1 Local Algorithms

Local algorithms process each point independently ignoring relationship between
neighboring disparity values. For this reason, they do not enforce an explicit smooth-
ness constraint on the target disparity map, and typically for each disparity candidate
within the disparity range D, compute the matching cost by aggregating neighbor-
ing pixels (often on rectangular patches referred to as support windows, as depicted
in Fig. 5.6). Cost aggregation is often explicitly obtained by summing up, accord-
ing to different strategies, each pointwise matching cost within the support window,
as depicted in Fig. 5.6. However, it is worth noting that some recent approaches
implicitly aggregate costs in constant time, independently of the size of the support
[7, 27].

More generally, cost aggregation performed by most local algorithms can be fig-
ured out, as depicted in Fig. 5.7, as a filtering [15] of the DSI data structure according
to different strategies. Examples of filtering operations applied to the DSI are aver-
aging/sum, bilateral filtering [46], approximated bilateral filtering [19], guided filter
[12], etc. Since local algorithms completely ignore relationships between neighbor-
ing points and different disparity values within the disparity range, from the com-
putational point of view, this means that D filtering operations can be applied in
parallel to the DSI in order to aggregate matching cost for each disparity candidate.
Adopting for the processing pipeline the same clock of imaging sensors, the com-
putation of the D filtering operations for each point should hopefully finish within a
single (pixel) clock cycle. This fact potentially enables a high degree of parallelism
(multiplied by a factor D compared to the sequential case) but at the same time it
imposes that all the data required in the DSI (highlighted in the DSI depicted in
Fig. 5.7), or a subset of this data centered in the point under examination, must be
accessed in parallel. Therefore, at least the portion of data highlighted in Fig. 5.7
should be carefully managed, by means of appropriate data structures and buffering
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Fig. 5.7 In most local algorithms, cost aggregation is carried out by filtering the DSI according to
different strategies

techniques implemented in the internal logic of the FPGA, in order to enable parallel
access required to sustain parallelism. Of course, in the outlined constrained com-
puting architecture, the overall portion of the DSI highlighted in the figure must be
stored in the internal memory of the FPGA, typically in the block RAM. Neverthe-
less, with WVGA imaging sensors (even with imaging sensors at higher resolution)
and typical disparity range deployed in practical applications, this amount of data
becomes compatible with the internal memory made available by FPGAs similar to
those previously examined.

In local algorithms, the best disparity for each point is often identified according
to a simple winner-takes-all (WTA) strategy by finding the candidate with the best
aggregated cost. For the reasons previously outlined, local algorithms are inherently
parallel, and hence are ideal candidates for FPGA implementation. Detailed reviews
and evaluations of local stereo algorithms can be found in [15, 31, 33, 36, 42].

5.5.1.1 Fixed Window Algorithm

In spite of their simplicity and intrinsic parallel nature of local algorithms, even the
mapping of the simplest approach to the constrained target architecture outlined in
previous sections should be carefully planned. The simplest local algorithm is often
referred to as fixed window (FW) or block matching and simply sums up/averages
all the matching costs within the support window. Although this algorithm has some
well-known limitations, such as inaccurate depth reconstruction near depth disconti-
nuities and, as most local algorithms, problems in uniformly textured regions of the
sensed scene, it is often deployed in several practical applications, thanks to its over-
all robustness in determining the rough 3D structure of the scene and to its simple
algorithmic structure.
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Fig. 5.8 Multiple filters applied to the reference and target images for cost aggregation. The number
of filter is equal to the disparity range (dmax + 1 in the figure)

According to Fig. 5.7, in this case filtering consists in summing/averaging within
the support, for each disparity value, the matching costs in the DSI. From a different
point of view, this operation consists in applying multiple instances of the same
filter (sum/average filter for FW) between reference and target image as illustrated
in Fig. 5.8.

With a support of size M × N and a disparity range of [0, dmax], the number
of arithmetic operations for the brute force approach is proportional to M × N ×
(dmax + 1). Considering that plausible values for these parameters could be M =
15, N = 15, and dmax = 63, the number of arithmetic operations required might
exceed the hardware resources available in the target FPGA. Nevertheless, this num-
ber of operations can be significantly reduced by adopting well-known incremental
calculation schemes such as box-filtering [21] or integral images [40]. The former
in particular, as outlined in Fig. 5.9, is particularly suited for FPGA implementation
of the FW algorithm.

The figure shows that the overall cost aggregation for the supports depicted in
the upper side of the figure can be obtained more efficiently by deploying the 1D
optimization depicted in the middle of the same figure. In fact, the aggregate costs
required by the operations in the upper side of Fig. 5.9 can be reduced by observing
that the overall cost for the central point can be obtained by updating the overall cost
computed in the previous position along the scanline, adding the aggregated costs of
the rightmost columns, and subtracting the aggregated costs of the leftmost columns.
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Fig. 5.9 Incremental techniques, referred to as box-filtering, aimed at reducing to a constant value
the number of basic operations required for cost aggregation in fixedwindow.Top, full cost computa-
tion.Middle, incremental optimization along horizontal direction (number of elementary operations
reduced by a factor N). Bottom, vertical optimization required to compute the sum of the vertical
stripes shown in the middle of the figure. In this latter case, the full cost for each disparity value, is
computed with a fixed number of operations involving the four points highlighted at the bottom of
the figure in reference and target images

In deploying this 1D optimization strategy, the number of operations is reduced by a
factor N, manageable with the logic included in most FPGAs. Nevertheless, a further
reduction of operations can be obtained by deploying a 2D incremental scheme that
stores intermediate results for each column as depicted in the bottom of the figure.
In this case, the number of operations per window is constant and independent of the
size of the support, though compared to the brute force approach depicted at the top
of the figure, at the expense of a higher memory footprint for buffering intermediate
results required to sustain the additional 2D incremental calculation.
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Several implementations of the FW algorithm, and its variants, suited for FPGA
were proposed in the literature with different degrees of algorithmic complexity and
hence with different resources used. Some recent representative approaches in this
field are [17, 39, 50]. In Sect. 5.6, we report experimental results concerned with
our implementation of the FW algorithm on the constrained hardware architecture
previously outlined.

5.5.1.2 Local Algorithms Based on Adapting Weights and Constrained
Supports

Although the FW approach is widely used in many practical applications, it is clearly
outperformed by more recent local approaches based on cost aggregation techniques
that aggregate costs according to weights assigned by examining the image content
[15, 19, 23, 36, 46]. In these approaches, differently by the simple average score
computed by FW, the overall score is given by a weighted sum/average of the costs
computedwithin each supportwindow [18]. Thekey idea behind this strategy consists
of weighting each cost according to its relevance with respect to the point under
examination (i.e., the central points of the supports).

Many methodologies to assign weights have been proposed in the literature and
an effective rationale is that inspired by bilateral filtering [26, 34] applied to the
stereo matching by the AW (Adaptive Weights) algorithm [46]. That is, points with
similar intensity with respect to the central point should be more influential in the
weighted sum. Moreover, points closer to the central point should also be more
relevant according to [46]. This strategy is similar to the weight computation strategy
used by bilateral filtering and, in stereo, weights are often computed within the
support window of reference and target images (this strategy is often referred to as
joint or symmetric). In the strategy based on segmentation [35], the original bilateral
filtering weight computation was relaxed by removing the proximity constraint.

Afirst optimization [15, 23] consists of asymmetrically computingweights, exam-
ining only the image points belonging to the reference image. Although this strategy
significantly reduces weight computation by a factor of dmax, the number of opera-
tions required for cost aggregation is always proportional to M × N × (dmax + 1)
and may exceed the resources available in the target FPGA. However, simplified yet
effective strategies based on the computation of weights and/or costs and/or overall
weighted costs only in sampled points may help to further reduce the number of
elementary operations per point, maintaining high accuracy. These approaches also
exploit massively incremental calculation schemes for cost computation, similar to
those outlined for FW. An approach that efficiently computes weights, on a sparse
regular grid, and aggregated costs on a block basis, by means of [21], is the Fast
Bilateral Stereo (FBS) algorithm [19]. This approach represents a link between the
traditional fixedwindow approach andAW. Figure5.10 shows for the Tsukuba stereo
pair, the results obtained by FW,AW, and FBS. Compared to AW, FBS obtains equiv-
alent resultswith a fraction (about 10%) of operationsmaking it suitable for hardware
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Fig. 5.10 Top left, original reference image of the Tsukuba stereo pair [28, 29]. Top right, disparity
map obtained by the FW approach. Bottom left, disparity map obtained by the AW algorithm [46].
Bottom right, disparity map obtained by the Fast Bilateral Stereo algorithm [19]

implementation. Observing the figure, we can also notice that algorithms based on
the adapting weights strategy are much more accurate near depth discontinuities.

In [23], further optimizations compared to FBS have been devised, including a
preselection of potential candidate disparities and asymmetric weight computations
making also this algorithm a candidate for hardware implementation.

Zhang et al. [48] described a different and effective strategy for cost aggregation
based on two orthogonal cost aggregation phases. As formany previousmethods, this
approach heavily relies on incremental calculation schemes for fast cost aggregation.

A different two-phase strategy to reduce the computational burden of the original
AW approach consists in the two-pass aggregation described in [43]. In this method,
originally deployed within a Dynamic Programming framework, the nonseparable
weighted cost computation of AW is approximated with a vertical cost aggregation,
followed by an horizontal aggregation of the costs computed during the first phase
(i.e., vertical cost aggregation). Compared to AW, this simplified strategy enables to
obtain similar results reducing significantly the number of operations from O(n2) to
O(n), with n the cardinality of the support window.

Finally, it is worth noting that some recent local algorithms [7, 27] filter the DSI
according to the guided filtering technique [12], thus enabling weighted cost aggre-
gation in constant time. Such approaches massively exploit incremental calculation
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Fig. 5.11 The four paths used to compute permeability terms and aggregated cost for algorithm
[5]

techniques [21] potentially suited to the constrained FPGA architecture, thanks to the
reduced (and constant) number of operations required with respect to explicit cost
aggregation approaches inspired by bilateral filtering. Despite these positive facts,
the results provided by these constant time algorithms are comparable to those based
on explicit cost aggregation, and hence these algorithms are potentially suited for
implementation in the outlined target platform.

Concerning FPGA implementations based on adaptive weights strategy, [8]
reported a hardware friendly implementation of the original AW approach [46].
In [24], a further simplification of the AW approach based on simpler binary weights
was devised. A method based on the mini-census transform for cost computation
and the two-pass approach [43] for cost aggregation is [4] while [49] used, with the
same cost function, the two pass orthogonal cost aggregation strategy proposed in
[48]. An FPGA implementation of a cost aggregation strategy based on segmenta-
tion is reported in [38]. Finally, an interesting method based on adaptive weight cost
aggregation, identification of reliable points and disparity refinement, by means of
an effective method aimed at enforcing local consistency [20] of the disparity field,
was proposed in [16].

5.5.1.3 Algorithms Based on Unconstrained Supports

According to the taxonomy provided in [29], the algorithms reviewed in the previous
sections clearly belong to the class of local algorithms. However, there are some
local algorithms that significantly diverge from traditional approaches, in particular
for what concerns the support regions used for cost aggregation.

An interesting local approach, referred to as Permeability, was proposed in [5].
This technique performsmultiple 1Dcost aggregations constrained by an information
permeability term (see [5] for a detailed explanation) computed along horizontal or
vertical scanlines, as shown in Fig. 5.11, without enforcing any explicit smoothness
term. The permeability term, computed along the horizontal scanline from left to
right is defined as follows:
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WLR(x, y) = e− |I (x,y)−I (x−1,y)|
σ (5.1)

with I (x, y) and I (x − 1, y) the pixel intensity at coordinate (x, y) and (x − 1, y),
respectively, in the reference image and σ an appropriate empirically determined
constant value. The aggregated cost computed along the same horizontal scanline
anddirection, from left to right in the considered example, is then computed according
to:

CLR(x, y, d) = C(x, y, d) + WLR(x − 1, y) · CLR(x − 1, y, d) (5.2)

This strategy, applied to both horizontal directions depicted in Fig. 5.11 and along
both vertical directions on horizontally aggregated costs, efficiently enables to adap-
tively perform cost aggregation on unconstrained 2D support windows. More pre-
cisely, cost aggregation is initially independently performed along horizontal scan-
lines (from left to right (LR) and right to left (RL)). Then, a similar approach is applied
along vertical directions (from top to bottom (NS) and bottom to top (SN)) to the
summed aggregated matching cost computed along horizontal paths. In practice, in
this method, the support window implicitly consists of the entire image. Although
this strategy requires us to store the entire image and matching costs, a simplification
of the original approach restricted to a subset of scanlines (e.g., from left to right,
from right to left, and from top to bottom) is certainly feasible for the constrained
target computing architecture outlined.We report in Sect. 1.6, results concerned with
our hardware friendly implementation of the Permeability algorithm based on two
single directions. Another implementation suited to FPGAs was proposed in [1].

Finally, a different and effective algorithm that, similarly to the previous method,
does not explicitly define a fixed support window was proposed in [45]. In this
approach, the matching costs are aggregated using as weights the minimum intensity
distance between any two points in the reference image. These weights are stored
in a tree structure and, to this aim, a MST (Minimum Spanning Tree ) containing a
number of nodes equal to the number of image points is created. This enables to very
efficiently and in constant time obtain for each point the aggregated weighted cost
computed on the whole image. Nevertheless, although this method is very fast and
effective on traditional CPU or GPU architectures, in its original formulation, it, due
to the memory footprint required to store the MST, seems inappropriate to a target
computing architecture without being provided with external memory devices, such
as DDR memory.

5.5.2 Global and Semiglobal Approaches

Although local algorithms described so far yield excellent results, they are often out-
performed by approaches that explicitly enforce a smoothness term on the resulting
disparity map. These methods solve the correspondence problem in terms of a pixel-
labeling assignment of disparities, determining the disparity field D that minimizes

http://dx.doi.org/10.1007/978-3-319-09387-1_1
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the energy term (5.3):

E(D) = Edata(D) + Esmooth(D) (5.3)

The data term Edata in (5.3) encodes how well the disparity assignment fits with
the stereo pair, and often it is the sum of per-pixel data costs C(D(p)) between one
point in the reference image R and the supposed homologous point in the target
image T :

Edata(D(p)) =
∑

p∈R

C(D(p)) (5.4)

In (5.3), the smoothness term Esmooth(D) enables to enforce a piecewise disparity
field D by modeling the interaction between each point p and its neighboring points
q ∈ N (p). In fully global approaches, N (p) includes points in vertical and hori-
zontal directions (typically, the four nearest neighbors of p on the pixel grid) while
in 1D approaches, based on Scanline Optimization (SO) or Dynamic Programming,
the smoothness term is enforced only in one direction (typically N (p) includes
only one point along a scanline). The former disparity optimization methods are
typically referred to as 2D. In general, 2D methods perform better as they enable the
enforcement of inter and intra scanline smoothness assumptions.

Unfortunately, when deploying a 2D approach, minimization of (5.3) turns out to
be anN P-hard problem. Therefore, global approaches typically rely, under partic-
ular hypotheses [32] on (5.3), on efficient energy minimization strategies typically
based on Graph Cuts (GC) or Belief Propagation (BP). However, the iterative nature
of these energy minimization strategies and their high memory footprint typically
render these approaches inappropriate for devices with limited resources such as for
our target architecture.

Nevertheless, a subclass of these algorithms that enforces disparity constraints on
1D domains by means of dynamic programming such as [43] or multiple scanline
optimization [13] represents, for the outlined target computing architecture, a viable
and effective alternative to local approaches. In particular, the semiglobal matching
algorithm [13] computes multiple energy terms by means of the SO technique [29],
independently enforcing 1D smoothness constraints along different paths (typically
8 or 16 from all directions as depicted in Fig. 5.12 for 8 paths).

The 1Denergy terms independentlyminimized bymeans of the scanline optimiza-
tion approach are then summed up and the best disparity is determined by means of
the same WTA strategy adopted by local algorithms. Figure5.13 shows, at top and
middle, the disparity maps concerned with two 1D minimizations, independently
computed along paths 0 and 5, and, at the bottom of the figure, the result of the
multiple 1D optimization computed along eight paths. Observing the figure, we can
notice that, although single scanline optimizations are not very accurate, their com-
bination by means of the method proposed in [13] turns out to be very effective as
can be seen, using eight paths, at the bottom of Fig. 5.12.
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Fig. 5.12 The semiglobal algorithm [13], on each path, performs independent 1D disparity opti-
mizations. The figure considers only eight paths

The strategy adopted by SGM enables fast implementations on CPUs and GPUs
and it is very effective. For these reasons, SGM is frequently deployed in many
practical applications. However, in its original formulation, due to its high memory
footprint (it requires the entire DSI), it is not well suited to a computing architecture
without a large amount of fast externalmemory.Moreover, in its original formulation,
the SGM algorithm scans reference and target images two times (from top to bottom
and then from bottom to top) making unfeasible the stream processing methodology
required by our target architecture.

Nevertheless, by deploying a subset of the original paths (e.g., only four paths),
the SGM algorithm becomes suitable with acceptable performance degradation for
our target platform. We report in Sect. 5.6 experimental results concerned with our
implementation of the SGM algorithms adopting this strategy.

ConcerningFPGA implementations of theSGMalgorithm,Gehrig et al. [9] imple-
mented the original algorithm proposed in [13] by means of a two-pass approach on
downscaled half resolution input images (originally at 680) using 8 paths. Differ-
ently, Banz et al. [3] proposed a simplified version of the SGMalgorithm for hardware
implementation aimed at reducing memory constraints using 4 paths (0, 4, 2 and 7
in Fig. 5.13).

5.6 Experimental Results

In this section, we report preliminary experimental results concerned with the imple-
mentation of three stereo vision algorithms—belonging to the three classes defined
in the previous section—in the outlined computing architecture made of a sin-
gle FPGA without additional external devices, with the exception of a high-speed
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Fig. 5.13 Top, 1D scanline optimization along scanline 1—Middle, 1D scanline optimization along
scanline 4—Bottom, result of the SGM algorithm performing multiple 1D scanline optimizations
along the eight paths shown at the left

communications controller as depicted in Fig. 5.2. Each of these algorithms, as well
as all of the other blocks depicted in the figure, was mapped on a Spartan 6 FPGA 45
and delivers depthmaps at 30+ fps when processing stereo pairs atWVGA resolution
as those deployed by our camera.

Specifically, the algorithms currently implemented in our target architecture are:
FW using the optimization strategies previously outlined, a modified version of
the Permeability algorithm [5] using two paths and a modified version of SGM
[13] using four paths. Each implementation of these algorithms also includes image
rectification, a prefiltering step based on the x-Sobel filter, and a postprocessing
step aimed at filtering outliers by detecting uniformly textured regions as well as
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by detecting unreliable disparity candidates analyzing their local distribution. The
design also mapped into the FPGA also includes the internal FIFO and all the other
modules depicted in Fig. 5.2.

For evaluation purposes, we provide in Fig. 5.1 experimental results concerned
with the three implemented algorithms processing frame �66 of the KITTI dataset
[10]. Observing the figure, where in the disparity maps brighter greyscale levels
encode closer points and darker levels farther points, we can see that all three algo-
rithms enable us to obtain dense and fairly accurate disparitymaps of this challenging
stereo pair. Observing the trees in the right side of the reference frame, we can notice
that the SGM algorithms seems less noisy compared to the two local algorithms. In
the same figure, we can also notice the most unreliable (e.g., occlusions) and uniform
regions (e.g., shadows) are correctly detected by the postfiltering modules.

At this link http://www.youtube.com/watch?v=KXFWIvrcAYo is available a
video2 concerned with an outdoor sequence processed by our modified version of the
SGM algorithm implemented on the outlined constrained target architecture. In this
case, the stereo camera, based on a Spartan 6 Model 75, was configured with a very
short baseline of about 4cm. Observing this video, we can notice that the camera
provides, at high frame rate, very accurate and dense depth maps processing stereo
pairs at 640× 480 resolution. In the video, we can also notice that the outlier detec-
tion module implemented into the FPGA correctly detects most unreliable disparity
measurements.

5.7 Conclusions

In this chapter, we have reviewed stereo vision algorithms that, with appropriate
modifications, are suited for implementation on a basic computing architecture made
of a single low-cost FPGA without additional external devices. Algorithms mapped
on such architecture provide accurate and dense depth maps in real time enabling to
obtain a small, low-power, and low-cost RGBD stereo vision sensor self-contained
into an FPGA.
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Chapter 6
Plane Sweeping in Eye-Gaze Corrected,
Teleimmersive 3D Videoconferencing

Maarten Dumont, Patrik Goorts and Gauthier Lafruit

Abstract A teleimmersive videoconferencing system for autostereoscopic 3D
displays is presented. Eye contact between participants is restored by synthesizing
novel, interpolated views frommultiple surrounding cameras, effectively emulating a
capturing camera position behind a virtually transparent display. Nonuniform, adap-
tive plane sweepingwith dynamic workload balancing yields real-time performances
on low-cost embedded GPU platforms.

6.1 Introduction

Imagine a world with perfect immersive teleconferencing, where people are able to
communicate remotely with an intense sense of human awareness that would be vir-
tually indistinguishable from real-life social communication. People would be able
to communicate seamlessly with their friends and family thousands of miles away.
Face-to-face meetings would be enabled without the need to travel, and telecollabo-
ration would reach the holy grail of The Office Of The Future [22] with a high level
of immersion.

And yet, in spite of all the work already done in immersive teleconferencing and
the high level of quality reached in today’s video capturing and rendering technology,
this ultimate dream remains unrealized. What are the potential causes and how can
technology provide a solution to this problem?
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Fig. 6.1 Restoring eye contact by synthesizing a virtual view in between the surrounding camera
views

Gaze awareness and stereoscopic perception are actually important factors to
provide a high level of realism needed to feel oneself immersed in a natural social
environment [33]. Unfortunately, since cameras and displays cannot possibly occupy
the same spatial position simultaneously, videoconferencing participants are unable
to look each other in the eyes: a person who stares at the display will be captured by
the cameras as looking away at a slightly diverging angle.

An elegant way to solve this problem is to synthesize a virtual view in between the
surrounding camera views, as if it would be rendered by a camera positioned right
behind the screen, effectively restoring the correct head position and eye contact
[25], as shown in Fig. 6.1.

Synthesizing a multitude of such nearby views even supports stereoscopic
(Fig. 6.1, top right anaglyph) and glasses-free automultiscopic 3D displays (Fig. 6.2),
where tens of nearby virtual views are projected in different directions, allowing the
viewer’s eyes to capture two parallax-correct images at any position in space for a
natural 3D perception.

This chapter presents a robust method for multicamera view synthesis for eye-
gaze correction and natural 3D video rendering, based on seminal work in plane
sweeping [7, 8, 13, 14]. Important improvements are proposed to target embedded
vision applications on GPU-accelerated platforms.
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Fig. 6.2 A plethora of multicamera and lenticular display technology, providing all means to
natural eye-gaze corrected and 3D video communication, is available on the market today. In
automultiscopic 3D displays, tens of nearby virtual views are projected in different directions, so
that the viewer’s eyes always capture two parallax-correct images at any position in space, hence
providing glasses-free, natural 3D perception

6.2 View Synthesis Prior Art

Early solutions in handling the problem of eye-gaze correction in videoconferencing
applied model-based approaches [28, 31] using a detailed head 3D model, which
is projected in the virtual viewpoint direction. This solution often lacks in natural
impression with participants talking to humanoid-looking avatars.

More advanced techniques therefore focus on image-based rendering approaches
(IBR) [1, 4], where a virtual view is synthesizedwith depth-based imagewarping and
in painting techniques [20, 26].Depth is hereby often recovered from stereomatching
[24] on a pair of sanline rectified images. The limited amount of 3D scene parallax
and associated depth information often results in visual artifacts in the synthesized
views. Solutions such as the ones of [2, 25] overcome this limitation at the cost of
using expensive dedicated hardware and/or unpractical camera setups.

On the other hand, plane sweeping is a method that uses a multitude of cameras
and that by design ismuchmore robust to camera illuminationmismatches, misalign-
ments, etc. It recovers scene depth by sweeping over multiple depth plane hypotheses
for each pixel in the camera view that is to be reconstructed, hence its name plane
sweeping. In principle, plane sweeping does not need to explicitly extract depth for
handling view synthesis, though depth extraction helps in image postprocessing for
boosting the natural perception of the virtual views.
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Fig. 6.3 Concept of stereo vision. A scene is captured using two rectified cameras. Stereomatching
attempts to estimate the apparent movement of the objects across the images. A large apparent
movement (i.e., parallax) corresponds to close objects (a low depth value)

Let’s first introduce the high-level concepts of these techniques, in order to better
understand the advantages of our full system prototype in Sect. 6.3.

6.2.1 Stereo Matching

Stereomatching uses a pair of images to estimate the apparentmovement of the pixels
from one image to the next. This apparent movement is more specifically known as
the parallax effect as demonstrated in Fig. 6.3, where two objects are shown, placed
at different depths in front of a stereo pair of cameras.

When moving from the left to the right camera view, an object undergoes a
displacement—called the disparity—which is inversely proportional to the object’s
depth in the scene. Objects in the background (the palm tree) have a smaller disparity
in comparison to objects in the foreground (the blue buddy). The goal of stereomatch-
ing is to compute a dense disparity map by estimating each pixel’s displacement.

6.2.2 Plane Sweeping

To conceptually grasp the concept of plane sweeping, let us take a look at Fig. 6.4.
Here, camerasC1 toC3 are real cameras in an arbitrary configuration,whereas camera
Cv is the virtual camera view of which we wish to reconstruct the color image and
the scene depth.
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Fig. 6.4 Plane sweeping conceptually: deprojecting real camerasCi (i = 1 . . . 3) on different depth
planes Di for virtual camera Cv causes a nonfocused ghosting artifact, depending on whether or
not the scene object in question is present at depth Di

Any voxel f in 3D space at, e.g., depth plane D1 is projected onto the 2D pixels pi
on the image plane of the respective camera views. Conversely, inversely projecting
(i.e., deprojecting) the pixels pi into 3D space will have them match at one single
voxel f at the corresponding depth plane D1. On all other depth planes Dj ( j �= 1)
the pixels pi deproject on points fi that do not coincide, as illustrated on depth
plane D2. Visually, reprojecting these points fi back into the virtual camera view Cv
causes a nonfocused ghosting artifact in the resulting image, as can be observed in
the projected images ID2.

For instance, for the two-person scene of Fig. 6.4, the person answering the phone
at the desk in the foreground is in focus at depth D1 (as can be seen in the projected
images ID1), whereas the person walking by in the background is out of focus at the
same hypothesized depth D1. The background person in turn is in focus on depth
plane D2 (as can be seen in the projected images ID2), hence suggesting that his
corresponding voxels are indeed at depth D2. Looking even deeper into the scene, the
whiteboard in the far background is de- and reprojected in focus at its corresponding
depth plane, say D4, and is now in fact readable (projected images ID4).

6.3 A System Prototype

We present a fully functional prototype that corrects the eye gaze of the videoconfer-
encing peers by using multiple cameras, using the plane sweeping method reviewed
in the previous section. The proposed sixfold camera setup is easily integrated into
the monitor frame of Fig. 6.1 [7, 8].
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Fig. 6.5 Data flow and overview of our system architecture

Our software framework harnesses the powerful computational resources inside
the Graphics Processing Unit (GPU), achieving over real-time performance for Full
HD resolution images. Furthermore, although depicted as such in Fig. 6.4, the dis-
tribution of the depth planes is not required to be uniform, which we elaborate on in
Sect. 6.4 for further computational complexity savings.

In comparison, competitive solutions such as the system of [6] implement their
framework on commodity CPUs, resulting in a very low frame rate when sufficient
visual quality is required. Others optimize only parts of the application, such as
multicamera video coding [5, 16] for efficient data communication and real-time
view synthesis [9, 21, 29] on graphics hardware, but neither of them integrate and
optimize the end-to-end performance for eye-gaze corrected video chat.

The core functionality of our system is visualized in Fig. 6.5 and consists out of five
consecutive processingmodules that are completely running on theGPU. In an initial
step (Sect. 6.3.1), the camera sensor Bayer patterns ι1, . . . , ιN are captured from a
total of N cameras C1, . . . , CN that are fixed on a custom built metal frame which
closely surrounds the screen (see Fig. 6.1). The first module computes the RGB-
images I1, . . . , IN , based on the method of [12, 19], and performs lens correction
and image segmentation, as a form of preprocessing. The preprocessing module is
specifically designed to enhance both the quality and speed of the consecutive view
interpolation, and to ensure a high arithmetic intensity in the overall performance.

The secondmodule (Sect. 6.3.2) interpolates an image Iv, as itwould be seenwith a
virtual cameraCv that is positioned behind the screen. The image Iv is computed as if
cameraCv captures the image through a completely transparent screen. Furthermore,
the view interpolation module produces a joint depth map Zv, providing dense 3D
information of the captured scene.

The synthesized image still contains a number of noticeable artifacts in the form
of erroneous patches and speckle noise. The third module (Sect. 6.3.3) is therefore
specifically designed to tackle these problemsbydetecting photometric outliers based
on the generated depth map.
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Following the depth refinement, the image pixels are recolored using the filtered
depth information (Sect. 6.3.4). Our system currently supports recoloring of the syn-
thesized image using all N cameras, or selecting the color from the camera which
has the highest confidence of accurately capturing the required pixel.

In a final step, the depth map Zv is also analyzed to dynamically adjust the system
and thereby avoiding heavy constraints on the user’s movements. This optimization
is performed in the plane distribution control module (movement analysis) and, as
previously mentioned, discussed in its dedicated Sect. 6.4.

Besides the main processing on the graphics hardware that synthesizes Iv, the
virtual camera Cv needs to be correctly positioned to restore eye contact between
the participants. An eye tracking module (Sect. 6.3.5) thereby concurrently runs on
CPU and determines the user’s eye position that will be used for correct placement
of the virtual camera at the other peer.

By sending the eye coordinates to the other peer, the input images ι1, . . . , ιN do
not have to be sent over the network (Sect. 6.3.6), but can be processed at the local
peer. This results in a minimum amount of required data communication—i.e., the
eye coordinates and the interpolated image—between the two participants.

6.3.1 Preprocessing

Our system inputs Bayer patterns ι1, . . . , ιN , i.e., the direct camera sensor inputs
(see Fig. 6.6a). The RGB-colored images I1, . . . , IN are consistently computed by
using the method of [19], which is based on linear FIR filtering. This is depicted in
Fig. 6.6b. Uncontrolled processing that would normally be integrated into the camera
electronics is therefore avoided, guaranteeing the system’s optimal performance.

Camera lenses, certainly when targeting the low-budget range, induce a radial
distortion that is best corrected. Our system relies on the use of the Brown–Conrady
distortion model [3] to easily undistort the input images on the GPU.

Each input image Ii with i ∈ {1, . . . , N } is consequently segmented into a binary
foreground silhouette Si (see Fig. 6.6c), to allow the consecutive view interpolation
to adequately lever the speed and quality of the synthesis process. Two methods of

Fig. 6.6 The preprocessing module performs demosaicing, undistortion, and segmentation of the
input images
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segmentation are supported; Green screening according to Eq.6.1, where RIi , G Ii ,
and BIi are the red, green, and blue components of Ii. For clarity the pixel location
(x, y) has been omitted.

Si =
{
1 : G Ii > τg · (RIi + G Ii + BIi)

0 : G Ii ≤ τg · (RIi + G Ii + BIi)
(6.1)

The second method is able to subtract a real-life background [18] according to
Eq.6.2, where IBi is the static background picture and τg, τf, τb, τa are experimentally
determined thresholds which are subjected to parameter fine tuning. For shadow
removal, the cosine of the angle ̂Ii IBi between the color component vectors of the
image pixel Ii(x, y) and the static background pixel IBi(x, y) is determined. As a
final step, the silhouette is further enhanced by a single erosion and dilation [30].

Si =

⎧
⎪⎪⎨

⎪⎪⎩

1 : ∥∥Ii − IBi

∥∥ > τf or∥∥Ii − IBi

∥∥ ≥ τb and cos(̂Ii IBi) ≤ τa
0 : ∥∥Ii − IBi

∥∥ < τb or∥∥Ii − IBi

∥∥ ≤ τf and cos(̂Ii IBi) > τa

(6.2)

Both methods are evaluated on a pixel basis and require very little processing
power, while still being robust against moderate illumination changes.

6.3.2 View Interpolation

To interpolate the desired viewpoint, we adopt and slightly modify a plane sweeping
approach based on the method of [32]. As depicted in Fig. 6.7a, the 3D space is
discretized into M planes {D1, . . . , DM } parallel to the image plane of the virtual
camera Cv. For each plane Dj, every pixel fv of the virtual camera image Iv is
backprojected on the plane Dj by Eq.6.3, and reprojected to the input images Ii
according to Eq.6.4. Here, Tj is a translation and scaling matrix that defines the
depth and extent of the plane Dj in world space. The relationship between these
coordinate spaces is represented in Fig. 6.7b.

f = V−1
v × P−1

v × Tj × fv (6.3)

fi = Pi × Vi × f (6.4)

Points on the plane Dj that project outside a foreground silhouette in at least one
of the input images, are immediately rejected—e.g., point g in Fig. 6.7a—and all
further operations are automatically discarded by the GPU hardware. This provides
a means to lever both speed and quality because noise in the segmentation masks
will, with a high probability, not be available in all N cameras. Otherwise, the mean
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Fig. 6.7 Concept of the plane sweep algorithm

(i.e., interpolated) colorψ and a jointly defined custommatching cost κ are computed
as in Eq.6.5.

ψ =
N∑

i=1

Ii
N

, κ =
N∑

i=1

‖ψ − Ii‖2
3N

(6.5)

As opposed to [32], we propose the use of all input cameras to compute the
matching cost. The plane is swept for the entire search range {D1, . . . , DM }, and
the minimum cost—together with the corresponding interpolated color—is per pixel
selected on a winner-take-all basis, resulting in the virtual image Iv (see Fig. 6.8a)
and a joint depth map Zv (see Fig. 6.8b).

6.3.3 Depth Refinement

The interpolated image calculated in the previous section still contains erroneous
patches (see Fig. 6.9a) and speckle noise due to illumination changes, partially
occluded areas, and natural homogeneous texturing of the face. These errors are
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Fig. 6.8 The view interpolation module generates a virtual image and joint depth map

Fig. 6.9 Depth refinement and recoloring module concept

even more apparent in the depth map Zv and we therefore propose a photometric
outlier detection algorithm that detects and restores the patches in Zv.

To suppress the spatial high frequency speckle noise, we finally run a low-pass
Gaussian filter over the depth map.

6.3.3.1 Erroneous Patch Filtering

To detect erroneous patches, we propose a spatial filter kernel λ, as depicted in
Fig. 6.10a. For every pixel zv of depth map Zv, a two-dimensional depth consistency
check is performed according to Eq.6.6, where ε is a very small constant to represent
the depth consistency, λ thereby defines the maximum size of patches that can be
detected.

‖Zv(x − λ, y) − Zv(x + λ, y)‖ < ε or
‖Zv(x, y − λ) − Zv(x, y + λ)‖ < ε

(6.6)
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Fig. 6.10 a The proposed filter kernel, and b–d the outlier detection concept

If the area passes the consistency check in one of the dimensions, the depth pixel
zv—and therefore the joint image pixel fv—is flagged as an outlier if zv does not
exhibit the same consistency by exceeding a given threshold τo. Equation6.7 shows
the outlier test when a depth consistency is noticed in the X -dimension, an analogous
test is used in case of consistency in the Y -dimension.

∥∥∥∥Zv(x, y) − Zv(x − λ, y) + Zv(x + λ, y)

2

∥∥∥∥ > τo (6.7)

After performing the proposed filter kernel, the patch centers are detected, as
conceptually represented in Fig. 6.10b, c. Consistently, a standard morphological
grow algorithm is executed, which causes the detected center to grow only if the
neighboring pixels exhibit the same depth consistency as the initial outliers. As
depicted in Fig. 6.9c, d, the complete patch is thereby detected. As a final step for
the patch filtering, the morphological grow is reversed and the detected patch is
filled with reliable depth values from its neighborhood. Since all of these opera-
tions are implemented on a pixel basis, they are inherently appropriate for imple-
mentation on a GPU, achieving a tremendous speedup compared to a generic CPU
algorithm.

6.3.3.2 Speckle Noise Filtering

Due to the nature of the human face, a significant amount of large homogeneous
texture regions are present. As indicated by [24], these areas cause the depth map to
contain spatial high frequency speckle noise. The noise is most effectively filtered
by a low-pass filter, but this eliminates the geometrical correctness of the depth map.
A standard 2D isotropic Gaussian filter is applied on the depth map and thanks to
its separable convolution properties, it can even be highly optimized on graphics
hardware [11].
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6.3.4 Recoloring

All of the previous refinement steps involve changing the depth map Zv, which is
normally—due to the plane sweep—jointly linked to the image color in Iv. To restore
this link, the refined depth map is used to recolor the interpolated image with the
updated depth values. As opposed to other more geometrically correct approaches
[17], we thereby significantly enhance the subjective visual quality. The system is
currently able to recolor the image in two different approaches, each having their
particular effect on the resulting quality.

6.3.4.1 N-Camera Recoloring

The simplest and fastest recoloring solution is similar to the plane sweeping mech-
anism because it recomputes each pixel of the image Iv with an updated Tj matrix
(Eq.6.3) according to the refined depth information. The interpolated pixel color is
then again obtained by averaging all N cameras.

This approach generates very smooth transitions of the input images in the syn-
thesized result, at the expense of loss of detail (see Fig. 6.9e).

6.3.4.2 Confident Camera Recoloring

For each pixel fv of the image Iv, the second recoloring solution determines which
input camera Ci is closest in angle to the virtual camera Cv, and stores the camera
index in a color map Hv according to Eq.6.8, where hi = f Ci is the vector from f
to Ci, and hv = f Cv.

Hv = arg max
i∈{1...N } cos(

̂hv hi) (6.8)

We assume Ci to represent the optical image center of the camera, and f is the
image point fv backprojected to world space according to Eq.6.3, again with an
updated Tj matrix. This recoloring scheme is illustrated in Fig. 6.9f, with depicted
color map Hv.

Selecting the color from a single camera defined in Hv, ensures a sharply detailed
synthesized image. However, the quality is sensitive to deviating colors between
input cameras due to variations in illumination and color calibration (see Fig. 6.9f).

6.3.5 Concurrent Eye Tracking

To restore the eye contact between the video chat participants, the cameraCv needs to
be correctly positioned. Eye tracking can be performed robustly and more efficiently
on CPU, and is therefore executed concurrently with the main processing of the
system.
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The 3D eye position is then mirrored toward the screen, resulting in the correct
virtual viewpoint that is needed to restore the eye contact between the system users.
The two screens are placed in a common coordinate space, as if they were pasted
against each other. Hence, this creates the immersive effect of a virtual window into
the world of the other participant.

6.3.6 Networking

Our prototype system sends the eye coordinates over the network, and therefore
the requested image Iv can be computed locally at the peer that captures the rele-
vant images. These cross computations bring the required network communication
to a minimum, by avoiding the transfer of N input images. The total peer-to-peer
communication thereby exists out of the synthesized images and the eye coordinates.

6.4 Complexity Control

The previously discussed plane sweeping method is an efficient method to create
novel viewpoints. Nevertheless, we can increase performance even more by reduc-
ing the number of depth hypotheses. We propose 2 methods: an adaptive uniform
plane distribution method where the nearest and farthest depth values are adapted to
the scene, and an adaptive nonuniform plane distribution method, where the depth
planes themselves are redistributed in space to move computational power to the
places where there are actually objects. Bothmethods have other applications besides
videoconferencing and are discussed below.

6.4.1 Adaptive Uniform Plane Distribution

Most of the time, the head of a single person is visible in the camera views. To avoid
heavy constraints on theparticipant’smovement, a largedepth rangehas to be scanned
to keep the complete head in the virtual view. This actually infers a lot of redundant
computations, since the head of the user only spans a small depth range.We therefore
propose to dynamically limit the effective depth range to {Dmin, . . . , Dmax} (similar
to [10, 23]) through a movement analysis on the normalized depth map histogram.
This implicitly causes a quality increase of the plane sweep, as the probability of a
mismatch due to homogeneous texture regions is significantly reduced.Moreover, all
M depth planes can be focused as {D1 = Dmin, . . . , DM = Dmax}, which leverages
the dynamic range and thereby significantly increases the accuracy of the depth scan.
Three separate cases can be distinguished, as the user moves in front of the screen:
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• Forward: If the user moves forward, he will exit the active scanning range. There-
fore, the histogram will indicate an exceptionally large number of detected depth
pixels toward Dmin.

• Stable: The histogram indicates a clear peak in the middle, this resolves to the fact
that the user’s head remains in the same depth range.

• Backward: Analog to forward movement of the user, the depth histogram will
indicate a peak toward Dmax.

As depicted in Fig. 6.11a, b, we fit a Gaussian distribution function G (μ, σ )

with center μ and standard deviation σ on the histogram. The effective depth range
is updated according to Eqs. 6.9 and 6.10, where b1, b2 are constant forward and
backward bias factors that can be adopted to the inherent geometry of the scanned
object. D′

min represents the previous minimal depth, and Δ = D′
max − D′

min for
denormalization.

D1 = Dmin = D′
min + (μ − b1 · σ)Δ (6.9)

DM = Dmax = D′
min + (μ + b2 · σ)Δ (6.10)

As the user performs forward or backwardmovement, the centerμ of theGaussian
fit changes and dynamically adapts the effective scan range of the system. The image
will briefly distort in this unstable case, but will quickly recover as the depth scan
is adapted for every image iteration. A real-time high frame rate therefore increases

Fig. 6.11 The depth histogram-based movement analysis in normalized coordinates
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the responsiveness of the system, and is able to achieve fast restabilization. Normal
moderate speed movement will thereby not be visually noticed by the participants.

6.4.2 Adaptive Nonuniform Plane Distribution

This method of changing the nearest and farthest depth plane is very powerful for
videoconferencingwith one person. There are, however, situationswhere thismethod
will not work, for example, when multiple people are standing and walking around.
Therefore, we present an optimization where the distribution of the planes is adapted
to the actual scene content, instead of only the nearest and farthest depth.

A histogram is calculated of the resulting depth map. This histogram guides the
plane distribution for the next temporal frame. This will redistribute computational
power to the more dense regions of the scene, and consequently increase the quality
of the interpolation by reducing mismatches and noise.

When the scene consists of a limited range of depths between Dmin and Dmax,
some processing resources are allocated to depth planes where no objects are present.
This can be in between other objects. This is demonstrated in Fig. 6.12a. Here, a lot of
planes are placed in the scene where no objects are positioned. This wastes resources
and introduces more noise due to mismatches between the cameras. Therefore, we
rearrange the distribution of the depth planes to provide less planes in depth ranges
with less objects, and more, dense planes in scene regions with more objects. We
determine the interest of a depth by analyzing the previous frame in a temporal
sequence. The method works best when the movement of the scene is limited, such
as moving people or scenes with many static objects.

After the interpolation step, we generate the histogram of the depth map using
the well-known occlusion querying method [15] on GPU, allowing fast processing.
The histogram can be seen in Fig. 6.12b. The occurrence of every depth value, as
determined by the depth of the depth planes in the depth map, is counted. The
histogram has discrete depth values between Dmin and Dmax, represented by the

Fig. 6.12 a Uniform plane distribution. b Histogram of the depth values
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Fig. 6.13 a Resulting histogram. b Corresponding cumulative histogram H(x)

depth plane numbers. Scene depths of high interest will contain more depth values
than depths of low interest. If there are depths in the scene where no objects are
present, few of this depth valueswill be available in the depthmap and this is reflected
in the histogram. In the next frame, we want to provide more planes in depth ranges
where a lot of depth values can be found, thus where there are large values in the
depth histogram. The depth planes are not necessarily uniformly distributed, thus the
histogram uses the depth plane number as the bin value, instead of the depth directly.

To use the depth distribution information, we convert the histogram to its cumula-
tive version, as shown in Fig. 6.13. Here, we do not count the number of occurrences
per depth value, but we rather include the number of occurrences lower than this
depth. Furthermore, we rescale the depth values from [Dmin, Dmax], as represented
by the depth plane numbers, to [0, 1]. This transforms the nonuniform distribution
of the depth planes to actual normalized depth values between 0 and 1. This transfor-
mation generates a monotonically increasing function H(x) = y, where x ∈ [0, 1]
is a normalized depth value and y is the number of values in the rescaled depth
map smaller or equal to x . For values of x where there are a lot of corresponding
values in the depth map, H(x) will be steep. For values of x with a low number of
occurrences, H(x) will be flat. Because of the nonuniform depth plane distribution
as input, H(x) will be constant at some points where there were no depth planes for
the corresponding normalized depth value.

We use the cumulative histogram to determine a mapping of a plane number m
with 0 ≤ m < M to a depth value Dm with Dmin ≤ Dm ≤ Dmax. For a uniform
distribution, this would be:

Dm = Dmin + m

M
(Dmax − Dmin) (6.11)

We adapt this uniform distribution method.When using the cumulative histogram
to determine the distribution, we calculate a fraction τm ∈ [0, 1] based on the plane
number m, applied as follows:

Dm = Dmin + τm(Dmax − Dmin) (6.12)

The fraction τm is determined by the cumulative histogram. The Y -axis is divided
in M cross sections, with a distance λ from each other, where λ = max(H)/M . Each
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Fig. 6.14 Detail of the cumulative histogram with discrete values. τ is calculated by determining
xσm and xσm + 1, such that H(xσm) ≤ σm and H(xσm + 1) > σm , where σm represents a depth
plane number

cross section represents a depth plane m. The actual depth fraction τm for each cross
section σm , i.e., a depth plane, is calculated by first determining the depth value
xσm where H(xσm) ≤ σm and H(xσm + 1) > σm . This is demonstrated in Fig. 6.14.
Because the depth values x in the cumulative histogram are discrete, finding a value
xσm where H(xσm) = σm is unlikely, and not desirable when generating planes
that are dense, i.e., closer together, than the depth values provided in the cumulative
histogram.

Once xσm is determined, τm is calculated as follows:

ξ = mλ − H(xσm)

H(xσm + 1) − H(xσm)
(6.13)

τm = ξ(xσm + 1) + (1 − ξ)(xσm) (6.14)

Figure6.13b shows the transformation from a uniform depth plane distribution to
a nonuniform distribution based on the cumulative histogram. In region (1), where
the cumulative histogram is steep, there is a dense plane distribution, as can be seen
at (1*).When the cumulative histogram is flat, a sparse plane distribution is acquired,
as can be seen at (2*).

Using τm , an actual depth for every plane m (0 ≤ m < M) is determined and
used in the plane sweeping step:

Dm = Dmin + τm(Dmax − Dmin) (6.15)

This is depicted inFig. 6.15.Here, the planes are redistributed using the cumulative
histogram of Fig. 6.13b. More planes are available for determining the depth of the
objects, and less planes are available in empty space. It is desirable to include some
planes in the empty spaces between objects to allow the appearance of objects in
dynamic scenes. To allow this, all the values in the histogram are increased with a
fixed number, based on the number of pixels. This way, the cumulative histogram is
less flat in less interesting regions, allowing some planes here.
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Fig. 6.15 Redistributed depth planes

6.5 Implementation and Optimizations

The use of carefully selected and adapted algorithms allows us to exploit the GPU for
general-purpose computations, a technique that is often referred to as general-purpose
GPU computing. Our framework harnesses the powerful computational resources of
the graphics hardware, and maximizes the arithmetic intensity of the algorithm to
ensure real-time performance.

The algorithm execution is further accelerated by elevating the processing granu-
larity from pixels to tiles, configured in a set of well-defined granularity parameters.
The processing is hereby only performed on the vertices (i.e., corner points) of the
tiles, and therefore approximates—by inherent linear interpolation—the result of
pixels inside the tile.

6.5.1 Improved Camera Data Transfer

Experimental profiling shows that downloading RGB-colored input images to the
graphics card causes a threefold increase in the data transfer time due to the memory
bandwidth bottleneck of PCI express, i.e., the bus connection between the mother-
board northbridge controller and the GPU. This severely reduces the frame rate to
two-third of its maximum capacity.

This bottleneck is effectively tackled by transferringBayer-pattern images directly
to the video memory. By inserting an additional demosaicing processing step, more
computations are introduced, but only one-third of input image data has to be sent,
effectively increasing the performance over 30%. The reason is that graphics hard-
ware benefit high arithmetic intensity kernels, as they process computations signifi-
cantly faster than transferring data.
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6.5.2 Acceleration by Elevated Granularity

By elevating the processing granularity from pixels to tiles, the algorithm execution
speed can be drastically accelerated. In general, the computational complexity of the
processing is inversely proportional to the granularity of the tessellation. If the tile
size is chosen wisely, the speed can be significantly increased without noticeable
visual quality impact. Our system uses three optimization schemes based on these
speed versus quality trade-offs.

Tiled Undistortion Standard lens distortion is generally corrected on a pixel-
basis level, but can be approximated by applying an equivalent geometrical undistor-
tion to small image tiles using a resolution factor 0 < ρtu ≤ 1. Since a GPU pipeline
exists out of a geometry and pixel processing stage, the lens correction can hence
be ported from the pixel to the geometry stage. The pixel processing stage becomes
clear to perform the consecutive segmentation processing in a single pipeline pass,
which significantly leverages the GPU utilization.

Tiled Tallying in Reduced Bins For themovement analysis, themultiresolution
capabilities of the GPU are used to tally tiles instead of pixels in the histogram bins.
This sampling resolution is expressed by a factor 0 < ρs ≤ 1,whereρs is proportional
to the granularity of the tiles.

Evidently, it is of no use to have more histogram bins than the number of planes
in the sweep. However, the essential part is deriving the parametersμ and σ to adjust
the dynamic range of the depth scan. As depicted in Fig. 6.11c, d, we are able to
approximate the histogram by reducing the number of bins, without a large impact
on the Gaussian parameters. Therefore, the number of bins are defined proportional
to the number of planes M , with factor 0 < ρb ≤ 1. Heavily reducing the number
of bins (see Fig. 6.11d) causes the center μ to become less accurate, as it is shifted
toward the center of the effective scan range. An optimal trade-off point can therefore
be defined, since the accuracy loss will cause the responsiveness of the system to
decrease.

Tiled Splatting Identical to the tiled undistortion, the depth map can be tes-
sellated with a factor 0 < ρts ≤ 1 to form a mesh for splatting tiles instead of
pixels. This technique can significantly accelerate the confident camera recoloring,
by interpolating angles between the tile corners.

6.6 Results

We demonstrate our previously discussed methods using a prototype setup. Our pro-
totype setup is builtwith N = 6 auto-synchronizedPointGrayResearchGrasshopper
cameras mounted on an aluminum frame, which closely surrounds the screen (see
Fig. 6.1, top right). The presented camera setup avoids large occlusions, and has the
potential to generate high quality views since no image extrapolation is necessary.
We have used the Multicamera Self-Calibration toolbox [27] to calibrate the camera
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Fig. 6.16 Eye-gaze corrected images using a N-camera versus b confident camera recoloring

setup offline, but a built-in camera setup into the screen would avoid this procedure
due to fixed calibration parameters. Our software framework runs on an Intel Xeon
2.8GHz, equipped with 2GB system memory and an NVIDIA GeForce 8800GTX
graphics card. Communication with the GPU is done through OpenGL, and it is
programmed with the high-level GPU language Cg.

6.6.1 Visual Quality

Final quality results using N-camera view recoloring are shown in Fig. 6.16a, and the
results using confident camera recoloring are depicted in Fig. 6.16b. These results
are generated under moderate variable illumination conditions, but with a fixed set of
fine tuned practical system parameters summarized in Table6.1. In Fig. 6.16a, some
small artifacts along the ears and chin, together with minor ghosting around the neck,
can still be noticed due to limitations of the depth refinement. The results generated
with the confident camera recoloring are much more detailed and sharp, however
some minor artifacts can be noticed due to abrupt camera transitions in the color
map Hv. Nevertheless, the images maintain their integrity and are regarded as high
subjective visual quality, while they convincingly seem to be making eye contact
with the reader.
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Table 6.1 Set of optimized
system parameters

Module Parameter Value

Preprocessing τg 0.355

τf 0.010

τb 0.002

τa 0.998

ρtu 0.2

View interpolation N 6

M 35

Depth refinement λ 20

ε 0.2

τo 0.3

Confident camera recoloring ρts 0.2

Movement analysis b1 2.0

b2 2.0

ρb 0.4

ρs 0.5

Fig. 6.17 Detailed workload profiling of the end-to-end optimized processing chain
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Fig. 6.18 a Depth map with a uniform depth plane distribution. A low number of planes (50) is
used. b Depth map with a nonuniform depth plane distribution. A low number of planes (50) is
used. c Depth map with a uniform depth plane distribution. A high number of planes (256) is used

6.6.2 Performance

A detailed workload profiling for the main processing modules—using confi-
dent camera recoloring—can be seen in Fig. 6.17, with input cameras and output
resolutions of 800 × 600 pixels. By using online demosaicing, the arithmetic inten-
sity can be kept relatively high, and even results in a higher execution speed than
our previous implementation [7] using N-camera recoloring. The adaptive uniform
plane distribution method was used to reduce computational complexity.
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Summing up the different timings of the individual modules, we reach a con-
fident speed of 27 fps for Full HD resolution, but our experimental setup is lim-
ited by 15Hz support in the cameras and Firewire controller hardware. The current
implementation speed allows for further quality optimization by advancing the
algorithm and computational complexity.

6.6.3 Adaptive Nonuniform Plane Distribution

To demonstrate the validity of the adaptive nonuniform plane distribution system in
multiple scenes, we created separate datasets with moving persons. We tested the
method on different scenes and compared image quality and planes required.

The experiment shows that the quality is higher when a low number of planes is
available, compared to the same number of planes using a uniform plane distribution.
To increase the overall quality in both methods, we use foreground–background
segmentation. Figure6.18a shows the result for a uniform depth plane distribution.
Artifacts caused by the sparse plane distribution can be clearly seen; the depth map
shows clear outliers. The depth map when using a nonuniform plane distribution,
based on the histogram of the first depth map, can be seen in Fig. 6.18b. Less noise
and outliers in the depth values can be perceived. Furthermore, the silhouette is
more distinct and the features of the persons are clearer. Using the nonuniform plane
distribution increases the quality of the depth map using a low number of planes,
therefore increasing overall performance.

Figure6.18c shows the result for a high number of planes. Here, some noise and
unclear edges can be perceived. These artifacts are effectively filtered out using the
nonuniform plane distribution. The depth planes generating vague edges and noise
are not used and cannot contribute to the depth map, and therefore to the noise and
artifacts.

To demonstrate the effect of the cumulative histograms, Fig. 6.19 shows an input
image of a video sequence (a), the corresponding cumulative histogram of the depth
map of the preceding frame (b) and the corresponding fraction τ from Eq.6.13 (c).
When only one dominant depth can be perceived, such as in Fig. 6.19 (top), one
steep section in the cumulative histogram is visible. This part is transformed to a flat
value of τ , thus increasing the density of the planes in the corresponding region in
the sweeping space. Flat sections of the cumulative histogram correspond to steep
values in the graph of τ , resulting in a sparse plane distribution.

When multiple dominant depths are available in the scene, the cumulative his-
togram shows multiple steep sections (see Fig. 6.19, bottom). This results in multiple
dense regions in the plane distribution, as reflected by the values of τ .
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Fig. 6.19 Results for 1 person (top) and 2 persons (bottom). a Input image with one person.
bCumulative histogram of the depthmap. c New depth plane distribution. d Corresponding fraction
τ for a given plane number
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6.7 Conclusions

In this chapter, we presented a prototype for 3D videoconferencing with eye-gaze
correction. A virtual camera is placed behind the display, and its image is synthe-
sized with image-based rendering from multiple real cameras around the display,
using a modified plane sweeping algorithm. A GPU implementation yields real-time
performances at high visual quality.

Performance is even further increased, thanks to algorithmic complexity reduction
approaches. We presented a method to reduce the computational requirements by
adapting the depth range and reducing the number of hypothesis depth planes in the
search space, redistributing them to places with a high object density. This results in a
substantial processing performance increase without impeding on the visual quality
of the view synthesis.
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Chapter 7
Challenges in Embedded Vision for Augmented
Reality

Rajesh Narasimha, Norbert Stöffler, Darko Stanimirović, Peter Meier
and Markus Tremmel

Abstract AugmentedReality (AR) applications hold great promise formobile users
in the near future, but mobile devices cannot yet deliver on this promise. Even the
quite substantial processing capabilities of modern mobile devices are not at the
level needed for running the latest object recognition, tracking, or rendering meth-
ods. Furthermore, the resultant power consumption drains the battery fast. To ensure
a great user experience, AR algorithms have to cope with real-world conditions like
illumination, jitter, scale, rotation, and noise. The fusion of different optimized AR
technologies like 2D or 3D feature tracking, edge detection, gravity awareness, or
SLAM should be able to handle these issues to the satisfaction of the end-user but
current mobile devices cannot handle these complex algorithms running in real-time
and in an “always on–always Augmented mode”. With the “always on–always Aug-
mented” scenario, AR applications need to work on various devices such as smart-
phones, tablets, PC, etc., and at different form factors such as wearables and head
mounted displays. Additionally, technology enablers such as dedicated hardware to
accelerate feature tracking and matching that keep the power consumption to an
acceptable level, along with easy-to-use software tools and user interfaces designed
for non-experts would be the key to provide a low-cost and high volume AR solu-
tion. The “always on–always Augmented” scenario also needs considerable cloud
support to offload computations and provide a seamless AR experience. To imple-
ment these technologies, hardware (HW) architectures have to evolve in parallel to
provide efficient resources that can keep power consumption at an acceptable level.

R. Narasimha (B) · P. Meier · N. Stöffler · D. Stanimirović · M. Tremmel
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In this chapter we discuss the challenges and solutions in embedded processing for a
seamless AR user experience in the context of the “always on–always Augmented”
use case.

7.1 Introduction to Augmented Reality (AR)

7.1.1 Definition of Augmented Reality (AR)

Augmented Reality (AR) deals with adding virtual content into the real world and
aims to develop new user interfaces that combine the real world and the user inter-
faces in a natural way. AR places the data where it actually belongs—into the real
world, rather than showing information on isolated displays. This allows for the cre-
ation of simple yet intuitive user interfaces for complex use cases. According to the
Reality–virtuality continuum proposed by Milgram [14] as shown in Fig. 7.1, AR is
one possible manifestation of Mixed Reality (MR), which brings together real and
virtual within a single display.

According to the definition provided by Azuma [1] an AR system has to fulfill
three requirements:

1. Combine the real and virtual
2. Be registered in the real world in 3D
3. Be interactive in real-time.

The first requirement is a fundamental concept of AR, where in it is combined
the real world with virtual content. The second requirement requires that the virtual
content being rendered must be registered in 3D within the real world and thus
separates AR from the more general concepts of mixed Reality. The third and final
requires the system to react to the user and update in real-time, distinguishing AR
from all offline augmentation scenarios.

In this chapter we focus on how AR can be made suitable as a mass-market user
interface and hence we focus on the challenges and possible solutions to make this
happen. We highlight the requirements for AR to be a mass commodity as follows:

Robust Tracking: This is one of the basic requirements of any AR system. The
tracking should be simple, fast, and robust to illumination, jitter, noise, scale, and
rotation which are the important real-world parameters the AR system has to tackle.

Fig. 7.1 Milgram’s Reality–virtuality continuum
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Virtual Content Creation: The AR system needs to have an easy-to-use and
intuitive content creator engine with plenty of assets for various use cases. Also,
with intuitive interface and development tools, it should enable rapid prototyping
capabilities for the developer community so the time to market for the apps can be
minimal.

Always On Always Augmented: This means that the AR solution should work
on various devices such as smartphones, tablets, PC, etc., and at different form factors
such as wearables and head mounted displays.

Additionally, for AR to reach a mass market, the applications should be able to
run on mobile devices that invariably would need dedicated hardware to acceler-
ate feature tracking and matching to keep the power consumption at an acceptable
level. Moreover, the success and adaptability of AR depends on easy-to-use software
tools and user interfaces designed for non-experts. All the above factors would be
key to providing a low-cost and high volume AR solution. The “always on always
Augmented” needs to access data continuously and save battery power by offloading
expensive computations. Therefore, AR coupled with cloud technology can provide
a seamless AR experience.

7.1.2 Short Evolution of AR

Although AR appears to be a recent phenomenon, it has been an active area of
research and application for decades now. There is a plethora of information on the
web on AR (please see [3] and the references therein). Hence we provide a brief
history of AR in this chapter. AR has been a staple of sci-fi films throughout the first
decade of the twenty-first century, but has much deeper roots than that. The birth of
AR could be considered to be in 1962, when the Sensorama Stimulator (the so-called
“Experience Theatre”) was patented. Researchers had already begun investigations
into augmenting Reality in the 1950s, but this invention in particular provided a
simulation of an experience by using visual images, breezes, and vibrations.

“There are increasing demands today for ways and means to teach and train
individuals without actually subjecting the individuals to possible hazards of par-
ticular situations,” the inventor Morton Heilig wrote in his patent application [8].
Further into the 1960s, Ivan Sutherland invented “The Sword of Damocles,” the
first head-mounted display system. Suspended from a ceiling, the device fed the
viewer (rudimentary) computer generated graphics. Subsequent gradual develop-
ments occurred over the years until the 1990s when the term “Augmented Reality”
was first coined, and virtual Reality was brought to television audiences through
popular media. In 1994 the article “Augmented Reality: A class of displays on
the Reality–virtuality continuum” was published by Milgram and associates [14]
and in 1999 Hirokazu Kato’s ARToolkit [5] sparked great interest in the research
community.

In early 2000, thefirst commercial spinoffs such as fromBoeing [19] anddedicated
AR companies were founded likeMetaio [22] and Total Immersion [9]. All early AR
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Fig. 7.2 Example of marker based augmentation

applications were PC-based and highly specialized, often using markers as shown in
Fig. 7.2 or expensive tracking systems from Virtual Reality.

The varied uses of Augmented Reality-in manufacturing, research and develop-
ment, medical, and mechanical operations as well as in entertainment were further
manifested later that decade. The first Augmented Reality software was invented in
Japan in the 2000s and combined virtual graphics with real-life imagery, using video
tracking to overlay computer graphics onto a video feed.

In 2005, Metaio [22] built the first commercial marker-less 3D tracking system
published at ISMAR 2006. In 2008, ARwent mobile for the first time as documented
in the PhD dissertation of Daniel Wagner “Handheld Augmented Reality” [4]. In
2009, Augmented Reality Browsers emerged such as Wikitude [23], Layar [21] and
Junaio [20]. The first two browsers focused on location-based AR using 2D tracking
and Junaio featured location-based AR using both 2D and 3D tracking.

In recent years, Augmented Reality has become a playground for enthusiastic
developers from all over the world. The technology has emerged from the “test
phase” and is now a serious field with numerous applications across a wide variety
of industries. The wide variety of the latest camera form factors, screens, CPUs,
GPUs, and sensors sparked new innovations and a massive increase in data traffic
and usage. In 2011, Metaio [6] published “Gravity-Aware Handheld Augmented
Reality” [12] that used an inertial sensor for the first time to improve the performance
of 3D tracking. Today, AR is used in print, automotive manufacturing, trade fair
exhibitions, and in advertisement to name just a few applications of the technology.
Next, we discuss the various AR use cases in detail.

7.2 Augmented Reality Use Cases

AR use cases can be divided into two broad categories—micro and macro. Micro
covers the recognition and tracking of smaller rigid objects and superimposing small
areas around you with virtual content. Macro, on the other hand, deals with the
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Fig. 7.3 Augmented Reality use cases starting at the bottom from simplest to complex on the top

identification, tracking, and mapping of an indoor or outdoor environment. This
use-case is gaining immense interest because 3D depth cameras are being introduced
at smaller form factors. As in the figure, from bottom to top we have the main use
case segments in AR. Starting with the most basic one is “Virtual Information,” the
overlay of text, graphics, or video onto real objects like a virtual instruction manual.
This currently is the most common AR use case (Fig. 7.3).

Examples of Virtual Information overlay are in print media, where the docu-
ments and manuals are overlaid with virtual content. Several examples are shown
in Fig. 7.4 and in the top left image of Fig. 7.5. The AUDI Interactive manual from
Metaio [6] provides information about the operation when a smartphone is pointed

Fig. 7.4 Examples of overlaying text, graphics and video using AR marker
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Fig. 7.5 Virtual information overlay, virtual fitting, and retail AR applications

at a dashboard component. The app snapshot shown in the top right image of Fig. 7.4
recognizes over 300 individual elements of Audi A3, from the insignia on the wind-
shield wipers and entertainment system to actual engine components under the hood.
It also returns relevant how-to information or even virtual overlays of maintenance
instructions, animated in real-time and in 3D [15]. Cloud-based architecture pushes
digital information directly to the device, meaning the user will never have to update
the app. Using 2D and 3D tracking technology, the user positions the camera of the
mobile device directly over the individual vehicle elements, instantly detecting and
returning information on the desired subject. For example, after scanning the engine
compartment, the app returns information and an animated overlay showing how to
locate the engine coolant and refill it to the appropriate level.

One step up in complexity is Virtual Fitting like apps where the augmentation has
to be really precise and to scale. Examples are shown in Figs. 7.5, 7.6 and 7.7. To
fit 3D furniture models to scale into a real home environment 3D feature tracking
and monocular SLAM is used as shown in the third image in the top row of Fig. 7.5.
With the inclusion of 3D depth cameras this application will be better and precise
due to the accurate scale and occlusion information as shown later in Fig. 7.12. The
application shown in the bottom left image of Fig. 7.5 relies on 2D image tracking
approach to recognize the different LEGO boxes and visualizes the 3D animations to
the corresponding LEGO model. Children can now hold LEGO packaging up to the
“digital box” and watch a 3D animation of the product from any angle and in every
detail—all in their hands. The technology not only creates a fascinating technical
experience, but also gives retailers a unique selling pitch while helping to inform
interested customers.Examples of carmaintenance applications are shown inFig. 7.6.
For reliable project planning, the installation of the new engine needs to be simulated
in advance, saving time and money. Using AR visualization in the virtual positioning
and mounting of the new engine as shown in the top right image in Fig. 7.7 is based
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Fig. 7.6 Industrial AR application examples based on markers

Fig. 7.7 Industrial AR application examples based on markers. Examples include factory floor
planning, maintenance, and remodeling

on the images of the current factory environment. Engineers simulate the geometric
bonding between the engine and gear using Augmented Reality. Furthermore, the
spatial requirements for maintenance can be evaluated and different concepts for the
installations of exhaust gas treatment can be visualized.

In the automotive industry, robot facilities have been growing in use.As it happens,
up to 10 different car models are integrated in a facility during a span of 15–20years.
The required modifications need to be realized “within runtime.” This means that
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the integration work takes place within the short downtime on weekends or company
holidays, while the production continues as usual and without incidents. But the
quality of the related CAD documentation at the beginning of every project can be
unreliable, creating a risk. If plans are based on incorrect data, significant issues will
appear during a new car model’s integration. In worst case scenarios, production has
to be moved. To minimize this risk, data verification takes place in preparation of the
planning. The current status of a facility is analyzed and compared to existing virtual
information with the goal of verifying positions of equipment within the workspace.
The superimposition of images in the facility with the related CADmodels enables a
visual comparison as depicted in the top left image in Fig. 7.7. Based on the alignment
data, quality can be determined immediately. The biggest challenge is to find a
common coordinate system which is overcome in the following manner. A special
adapter is used to set the master marker in direct relation to a known coordinate
system of the analyzed facility. With the measurement the deviations between real
and virtual equipment are determined and transferred into the CAD software. This
eliminates the need for 3D scanning when evaluating the current status of facility.

In recent years, the complexity of maintenance and service operations in the
automotive industry has risen significantly. A wide variety of cars partly exist with
a small number of copies, which usually require specific maintenance processes
based on abstract and complex user manuals. One key to increase the efficiency of
service and maintenance procedures is to support the technicians effectively during
task performance. This requires an improvement of traditional repair instructions,
which guide the technician step-by-step through the maintenance task while provid-
ing all necessary information (e.g., description of task, tools to use). A use case of
air conditioner maintenance is shown in the bottom left image in Fig. 7.7 and for
car maintenance in the bottom right image in Fig. 7.8. The “Window to the World”
application shown in the bottom right image in Fig. 7.7 combines the physical and
the virtual world in a very precise way. The system consists of a movable Augmented
Reality screen between the user and the object to be analyzed. Variants can be shown
or virtual parts not yet produced can be added to the physical prototype. The visu-
alization is even more realistic if the CAD model is enhanced using lighting effects
and reflections. In order to achieve very high and robust tracking, the system needs to
be based on the Infrared Tracking System, within flexible and high-volume working
spaces. A precisely calibrated camera is placed behind a monitor, in such a way that
the user literally looks through the monitor into the real-world.

Due to the need for shorter product life cycles and the rising complexity in
automotive construction and design, ease of comparison between actual prototypes
and CAD 3D models is key to reducing time and cost. Using AR as shown in the
top row of Fig. 7.8, one can superimpose virtual 3D models directly onto the related
prototype. The camera system is calibrated optically and mounted directly to the
measuring arm. By knowing the position of the camera and aligning the measuring
arm with the prototype, an accurate superimposition of the CAD data and 3D model
can be created. Examples of AR in education are shown in Fig. 7.9.
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Fig. 7.8 Examples of CAD model-based AR and car maintenance applications

Fig. 7.9 Examples of AR applications in Education

For all the above-mentioned purposes an Augmented Reality solution can provide
advanced support for the employee. 3D contents, such as CADmodels or animations,
are visualized in superimposition with real objects—directly at the location of inter-
est. Thus, objects can be highlighted or actions to perform can be shown. While
superimposed 3D animations show the employee directly which action to perform
and how to do it, further descriptions, warnings, and hints are provided for the tech-
nician in the form of text, images, and drawings.
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Fig. 7.10 AR navigation examples

Thus, an Augmented Reality solution can improve traditional service and main-
tenance processes by providing the following features:

• Interactive and intuitive step-by-step guidance through maintenance and service
procedures.

• Superimposition of 3D models to highlight construction parts on the real object.
• Superimposition of 3D animations to show tasks to perform on the real object.
• Attachment of annotations and digital labels (e.g., pictures, sketches) to real com-
ponents in order to provide object-specific information and hints.

• “Maintenance and employee generated” marking of regions on real assemblies to
support textual instructions and warnings.

• Linking of comments, hints, and warnings to specific construction parts.

Onemore level up in complexity is theVirtual Interaction (Fig. 7.3) which enables
the user to touch, speak, or otherwise interact with the virtual objects to enable
multiple levels of augmentation. The Virtual UI establishes an Augmented UI which
can be interacted with and also controls the real object via a Bluetooth or Wifi
backchannel. AR Navigation shown in Fig. 7.10 is the final vision where every real
object will have associated virtual content, which will teach and guide us. Examples
of Augmented city/navigation are shown in Fig. 7.10.

7.2.1 Tracking

A typical AR pipeline performs either marker-based tracking or feature-based track-
ing and is ideal for mobile platform since they include advanced graphics rendering
and high definition displays, computation and memory, various sensor support, and
wireless capabilities for cloud content access. The caveat is that the AR application
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needs to run at real-time frame rates and with the “always on–always Augmented”
use case, the power usage of the mobile device becomes a major challenge since the
battery may drain out within approximately one hour. Next we look into some of the
AR technologies that are commonly used.

Marker-based Tracking: In order to obtain the camera pose in real-time, marker-
based techniques are used. One example of marker-based tracking is the IKEA app
fromMetaio that uses tracking andmonocular simultaneous localization andmapping
(SLAM) algorithms. The marker is used to obtain the scale of the room. Markers are
easily detected in the image due to their unique color and pattern. The high contrast
combination of black-and-white square block pattern used along with four known
marker points provides accurate calculation of camera pose. The issue is that the
marker should always be visible in the camera frame of view and is susceptible to
illumination variation.

Marker-less Tracking: The typical “marker-less” pipeline takes a video frame,
extracts features like corners, describes them in a descriptor vector, and matches
them against a database of reference object descriptors, which have been previously
recorded. After the objects are detected they are tracked frame by frame. The key for
a robust, accurate and fast 3D feature tracking pipeline is to find the right balance
between number of features, pyramid scaling, and recording the ‘right’ information
in the descriptors. This task requires a lot of experience, real-life expertise, and
validation. Thus, notmany really good 3D feature trackers are available in themarket.
The amount of detected feature points depends on the size and complexity of the
object or environment to be detected and tracked. Typically, for a single 3D object,
the algorithm has to deal with 1,000–2,000 feature points, for small rooms about
5,000 features, and for outdoor scenarios 10,000–20,000 features. These reference
features have to be matched with all the new detected features estimated every at
30 fps, resulting in more than 200 GOPS for the detection or initialization phase,
whereas the tracking phase is less demanding. SLAM on the other hand tries to
localize the camera in the mapped environment and then estimates the camera pose
relative to themapped environment. The betterwe canmap the environment, themore
precise is the camera pose and vice versa. The common feature detectors can extract
corners, blobs, patches, and edges and only a few feature detectors such as FAST [16]
are suitable for embedded real-time processing. In some scenarios, dense tracking
is needed to compute structure from motion and Lucas Kanade feature tracking is
widely used. Feature matching is performed from frame to frame or key to frame to
frame using template-based or feature descriptors. These algorithms require a large
amount of computation and memory bandwidth which has a direct impact on the
power requirement.

Edge-based Tracking: Currently, tracking and mapping approaches based on
distinctive feature points are the most common algorithms employed for AR pur-
poses. Usually, 2D points in images are selected and represented using the standard
computer vision detector-descriptor scheme. Positive features of point-based track-
ing approaches are the following:

• high level of invariance to rotation and translation;
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• moderate level of invariance to illumination changes and perspective distortion;
• availability of point matching algorithms based on extracted descriptors, facilitat-
ing automatic camera pose initialization.

These advantageous properties drove the adoption of point-based tracking algorithms
in a wide range of AR scenarios.

However, point-based approaches do not perform well with sparsely textured
or specular objects. Further, a high level of illumination changes could lead to
the inability to correctly establish correspondences between previously mapped fea-
ture points and currently observed points.Moreover, any significant change in texture
will also lead to failed correspondence search. The reason for this is that the feature
point description most often relies exclusively on surrounding texture in the image.
In order to overcome these problems, edge-based approaches can be utilized for
camera pose initialization and tracking. The benefit of using edges is their stability
in the image with regard to illumination changes, existence of specular reflections,
and texture changes, given the assumption that edges originating from textures are
used for neither initialization nor tracking.

Next, we provide details on edge-based camera pose initialization use case. A
goal of this algorithm is to establish a pose of the camera with regard to a known
3D object. It is required to provide an accurate edge model of the 3D object, which
contains the most distinctive 3D lines of the object that are visible in the images.
Further, it is also necessary to provide a surface model of the 3D object. Due to
the low level of information contained in simple 3D lines, as opposed to the rich
descriptions of texture available in the state of the art, it is often necessary to provide
an approximate initial pose of the camera. For e.g., in the outdoor case, the initial
pose can be computed using the GPS, compass and gyroscope, assuming availability
of these sensors. Once the camera pose is successfully initialized, it is possible
to proceed with camera pose tracking, with regard to the 3D object. Camera pose
tracking can be performed using only edges, only feature points, or combining both
information cues in a hybrid approach. Further, tracking can be performed on a
single-frame basis, with or without bundle adjustment of camera poses, and mapped
edge or point features. Alternatively, it can be performed in a filter-based SLAM
framework.

The main challenge inherent to state-of-the-art edge-based approaches is the
camera pose limited convergence basin. This implies that to correct camera pose
can be computed only when the initial pose is similar enough. The maximal
pose difference, allowing for accurate camera pose initialization depends mostly
on the 3D model appearance characteristics, the edge-model accuracy, and “dis-
tinctiveness”. This leads to another disadvantage of edge-based approaches, which
is strict edge-model requirements. First, extracted edges should be visible in the
image in a wide range of illumination intensities, and also from a wide range of
viewpoints. Further, since the majority of edge-based approaches determine corre-
spondences between edges based on the image gradient magnitude and orientation,
extracted edges should preferably be uniquewith regard to their spatial surroundings.
In most cases, an edge-model is extracted using the provided surface model, which



7 Challenges in Embedded Vision for Augmented Reality 175

Fig. 7.11 Edge-based tracking examples

also includes texture information. However, even in this case, for many objects it is
difficult to extract an edge-model that will guarantee good camera pose initialization
in the wide range of initial viewpoints. The tracker requires two models to work: a
surface model and an alien model as shown in Fig.7.11. The surface model (left-
most image in the center row) is required for occlusion tests and for initialization
and assisting the Markerless 3D tracking. The line model (green lines in top row
images) is what is used to determine the correct pose in the camera image. The
more distinctively the lines of the model can be found as edges in the image, the
better the initialization will be. Surface model and line model, before (red) and after
initialization (green) are shown in Fig.7.11 (rightmost image in the center row).

7.2.2 3D Vision and Augmented Reality

In all the above cases, real-world parameters such as illumination, jitter, noise,
scale, and rotation play a vital role in the quality of user AR experience. The
end-user/consumer, however, expects that an AR application works all the time
without the need of any special knowledge or complex user interface. To achieve
this there is a need for additional technologies that help to improve accuracy of the
AR experience. The AR application can render virtual objects onto a plane and hence
real-world objects need precise scale, distance from camera, and occlusion informa-
tion for seamless AR experience. 3D sensing with depth cameras can help to get AR
technology over this hurdle. Kinect [7] has already shown that depth information
can be used robustly for detecting and tracking of humans and the Kinect Fusion
project has demonstrated the capabilities for the reconstruction of rooms and objects
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Fig. 7.12 Examples where 3D depth sensing would improve AR applications. Image sources
structure.io

as shown in Fig. 7.12. With 3D depth sensing readily available one can perform (a)
precise measurements of the environment, (b) creation of a 3D model of the phys-
ical spaces, (c) extract accurate object scale and shape information, (d) occlusion
handling so that AR content can be seamlessly integrated into the physical world,
(e) generation of CAD models for 3D printing, and (f) easy content generation for
the cloud in the form of cad models to perform 3D object recognition, matching,
tracking, rendering, etc. As discussed above, depth cameras will enable three major
features for seamless AR experience:

1. Easy content generation
2. Easy mapping and measurement of the real world
3. More robust detection and tracking of the real worlds.

In the coming years, multiple 3D sensors will be introduced in the mobile space
similar to Kinect-like cameras for smartphones and tablets and the benefits of this
technology will then be available for an average user. The Google “project Tango” is
one of the examples [10]. The arrival of depth-based cameras in a mobile device will
enable a quantum leap in AR user experience. The next interesting sensor technology
that comes right after depth cameras are array cameras. Arrays of CMOS image
sensors, either in a 2× 2 form factor at the beginning, and 4× 4 or more as the
technology matures will enable computational photography in really tiny form factor
featuring all focus, low light, and depth video streams which can further enhance AR
use experience. Unfortunately, point cloud processing has a large footprint in terms
of memory, power, and computation. Power consumption, in particular, of 3D depth
sensing and of those arrays, together with the required additional image processing
will be a major challenge that needs to be addressed and hence hardware acceleration
of key hot spots in the depth sensing pipeline would help in alleviating this challenge
(Fig. 7.13).
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Fig. 7.13 Future AR application using 3D sensing. Image sources www.hao-li.com, www.pcl.org
and www.3ders.org

7.3 Challenges in AR

As described in the earlier sections, AR applications hold great promise for mobile
users in the near future but mobile devices cannot yet deliver on this promise. But to
implement the technologies discussed earlier, hardware (HW) architectures have to
evolve in parallel to provide efficient resources that can keep power consumption at
an acceptable level. One answer is an embedded heterogeneous system (HMP) with
highly specialized HW blocks and dedicated data buses and memory architectures,
like the AR Engine, hardware IP designed by Metaio [6, 17, 18]. Although an HMP
is a great solution on the HW level, it has to be complemented by intelligent program-
ming frameworks for scheduling and resource management. Combining optimized
tracking technologies with efficient HW IP and easy-to-use software development
tools is the foremost challenge of the decade for AR, and has to be solved to ensure
seamless application development for various AR applications and across multiple
mobile platforms.

7.3.1 AR Hardware IP (AR Engine)

As shown in Fig. 7.14, feature extraction, descriptor building, matching, and
tracking are the key hotspots in the AR pipeline. The most critical prerequisite for
anyAR application is the exact knowledge of the camera pose (pose being the combi-
nation of position and viewing direction, together 6 degrees of freedom (DOF)). This
pose defines a fixed coordinate system in the real world that can be used for seamless
rendering of content from the virtual world. If the camera pose is not known from
other sources, it has to be determined by computer vision techniques. Figure7.14
shows a typical AR pipeline. In the first half of the pipeline, the captured images are
processed for camera pose estimation. In the second half, the camera pose is used

www.hao-li.com
www.pcl.org
www.3ders.org
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Fig. 7.14 Key hotspots highlighted in the tracking pipeline

for rendering. The captured images are stored together with other available sensor
information. These additional sensors can provide initial estimates for the camera
orientation and position. Examples would be inertial sensors and GPS. Then images
are preprocessed and converted to a suitable color space. Although color is a very
useful source of information, most feature-based systems such as SIFT [13], SURF
[2], etc., use only the image intensity today, i.e., gray value images. The blocks high-
lighted in the figure are computationally the most expensive steps in the algorithm.
Feature points are extracted from the entire image or in a scale space consisting of
several images of different resolution.

Next, a descriptor is calculated that can be used to identify the features in
databases or key frames. Features are also tracked from frame to frame by
KLT-tracking or other tracking algorithms. Finally, all the recovered information
is used for pose estimation. Now that the world coordinate system is available, 3D
objects (i.e. the virtual objects) can be rendered with a standard rendering pipeline,
e.g., utilizing a GPU and OpenGL ES. The captured images are reused for image
composition, leading to the final “Augmented Reality” impression. The augmenta-
tion is performed by rendering the virtual world superimposed on the real images.
This can be accomplished by two approaches. Typical display controllers already
offer a blending of several layers during display. The blending factor is determined
by a global or pixel-wise “alpha” blending. If this type of blending is unavailable,
OpenGL itself can also be used. Finally, the captured image is uploaded as a “texture”
that is placed onto a virtual background polygon. If scene models or depth maps are
available, occlusions between real and virtual world can also be handled with ease.
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Fig. 7.15 Data locality of the feature tracking pipeline

Figure7.15 shows the data locality in parts of the feature tracking pipeline shown
in Fig. 7.14. Feature points are extracted from the entire image using a small neigh-
borhood that can be either (n+1)*(n+1), where n is an even number. For e.g., in a
3× 3 neighborhood case every image line contributes three times to the calculation,
once as upper line, once as center line, and once as lower line. For an implementation
that is efficient in terms of external memory bandwidth, four line buffers should be
kept in local memory and operated as a ring buffer. Three lines contribute to the
current calculation and the fourth line is fetched in parallel by a DMA controller.
Feature descriptor calculations require a lot of random accesses in a larger area of
pixels around the feature point of interest. Here, the most effective implementation is
to store entire regions in local buffers. As the set of points is previously known from
the earlier step, the region that will be processed can be preloaded into an available
free buffer. Also, the memory accesses during full search in a database are deter-
ministic and can be exploited for effective prefetching of data by a DMA controller.
This means while comparing query to entry[i] one can already prefetch entry[i+1].
When this data management is implemented properly, all the data are accessed once,
and thus computations will never have to be in the wait state for the data.

7.3.2 Memory Complexity

The memory subsystems of mobile system on chip (SoCs) are limited in terms of
bandwidth, due to limited pin count to connect to the external SDRAMs and due to
the priority to save power, which is mainly achieved by lower clock rates to external
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DRAMICs. The complexity of application processor SoCswithmany internal clients
‘competing’ for external memory resources slows down the access. The large amount
of client memory requests has to be buffered and has to go through multi-level of
interconnect networks to ensure consistency and arbitration. As a result there is a long
latency for fetching data from external memory into the processing engines. Thus
while designing and implementing AR and CV functions one should understand
the bottlenecks and reduce bandwidth as much as possible. Hence, AR and CV
algorithms and implementations must take these limitations into account. Next, we
highlight some of the rules that can be followed to improve throughput and reduce
memory bandwidth.

The most important rule is to avoid reading data multiple times and instead to
move chunks of data into local memories, and apply as many operations as possible
to the local data. This is similar to the working of the graph model in the OpenVX
framework [11]. Intermediate data nodes in the graph are stored in local memory.
Other optimization options are to compress data during transfer to and from external
SDRAMor to hide large latencies by prefetching data. In case deterministic access is
mandatory, double buffered data transfers byDMAare performed into local memory.
The first buffer waits for data and the other buffer is processed without wait-states.
When moving from 2D or 3D sparse features to full 3D dense point clouds, data-
bases are huge and hence more effort is required to manage external memory access
efficiently. Matching or comparison of one large database (e.g., point cloud) against
another (e.g., using Iterative Closest Point (ICP)) cannot be performed by exhaustive
search since it would lead to O(n2) complexity. This will need index structures such
as binary trees to reduce the complexity to O(n log(n)). But this leads to another
challenge: the data access becomes non-deterministic and prefetching is not possible
anymore. This can be solved using another method which is implemented by GPUs.
The GPUs make use of caches and run a large number of tasks in parallel. Tasks that
have to wait while their data are fetched from external memory pass their compu-
tation unit to the next task that is ready. If enough tasks are initiated, the memory
latencies become hidden and all available computation units can be fully utilized.

Figure7.17 shows the architecture of the Metaio AR Engine. According to the
considerations stated in previous sections, accelerator blocks only access local mem-
ory. Ideally, they can be accessed with zero cycle delay. The buffers are prefilled and
emptied by an autonomous DMA controller. As the matcher typically runs in parallel
to other algorithms and has to access big databases in external memory, it has its
own interface to the memory controller. To keep the maximal flexibility in stream-
lining data flows for the individual application, a programmable core has been added
as embedded control unit. It is software programmable and sets up all the individ-
ual operations and data transfers. This flexibility also allows the implementation of
an OpenVX-like graph model of the data flow between the individual units. The
engine can operate completely autonomously. It communicates with the host CPU
(an ARM core typically) by interrupts and through a dedicated host interface. The
host can access parts of the internal memories of the engine to set up parameters and
commands. To get to an optimum AR user experience, HW and SW have to evolve
so that they cause all processing resources available on an application processor. For
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Fig. 7.16 Processor architecture gains in performance per power consumption

AR, themost performance-consuming algorithms, aswe have seen before, are related
to 3D object detection, matching, and tracking, which highly benefits from parallel
processing. Different processor architectures enable different gains in performance
per power consumption (MIPS/mW) as shown in Fig. 7.16. It is highly desirable to
have a SIMDVector processor or a dedicated HW engine available for AR algorithm
processing to get to the needed performance/power level and to keep the GPU free
for rendering the virtual overlays (Fig. 7.17).

Fig. 7.17 Architecture of the Metaio AR Engine
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Fig. 7.18 Power consumption for a tracking application on Samsung Galaxy S4

7.3.2.1 Processor Architecture

The dedicated ARHWacceleration engine discussed above is a small HW IPmodule
that is less than 1mm2 in size at 28nm CMOS technology, and runs the full AR 3D
pipeline at 30 fps. The module consumes less than 10mW, compared to an ARM
CA15 CPU running at 4–5 fps consuming around 1W as shown in Fig. 7.18. The
figure depicts a tracking application on a Samsung Galaxy S4 that drains roughly in
the order of ∼1A at 3.8V leading to a power consumption of 3.8W. Subtracting the
1.8W that the camera app consumes results in 2W for processing on the ARM (also
includes rendering one polygon with the camera image as texture). This example
clearly shows the need for HW acceleration of the key hotspots of the AR pipeline
for a longer battery life, which enables the always on always augmented use case.

7.4 Concluding Remarks

AR will be the digital User Interface of choice for everybody in the future as it
will bridge the gap between real world and digital world more efficiently than any
other technology. AR will be “See it—understand it—control it,” the perfect self-
contained UI. It launches itself when needed; it can explain itself on the fly and
offers the appropriate controls in real time-Instant seamless and relevant! But to
make this happen, AR, especially the CV part of AR, needs to be available all the
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Fig. 7.19 Augmented city

timewith outstanding user experience, running 24/7 on your personal mobile device.
On current mobile devices this is not possible due to limited performance and battery
resources. Dedicated HW resources for CV and AR are required to get to the needed
performance and power efficiency. Additionally, theywould offload the CPU tomake
it available for pure application-related tasks. Running AR with instant and robust
recognition and tracking at 30 fps at around 10mWwill enable full day AR use cases,
which are needed to make AR applications like visual navigation, AR gaming, and
real-time AR UI useful to the end-user. To reach this goal, the full AR detection
and tracking pipeline needs to be fully implemented in HW and optimized at system
level. The AR engine fromMetaio [6] is an early example for such optimization and
acceleration (Fig. 7.19).
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Chapter 8
Tic-Tac-Tandroid: A Tic-Tac-Toe Mobile Vision
App that Can “See” and “Think”

Milena Djordjević-Kisačanin, Vinjai Vale and Branislav Kisačanin

Abstract We present our work on a mobile Android app that can play the game of
tic-tac-toe by using (1) computer vision to “see” the current situation on the hand-
drawn board and (2) artificial intelligence to “think” of the best next move. The
app displays the next best move on the device display. In order for the app to be
usable on mobile devices, such as smart phones and tablets, the vision part of the app
uses computationally and power-efficient version of gradients of the camera image
to determine the location of the tic-tac-toe board and the cells within it. We then
use averages of gradients in the cells as well as in much smaller boxes around the
centroids to determine whether the contents of the cells are empty, X, or O. After this
our AI algorithm analyzes the situation on the board and determines the next best
move. In both the vision and the AI part of the app we could have used a variety of
approaches to achieve the same goal. In order to get the best possible performance,
we determined through experimentation which particular approaches work best. We
document the limitations of the system, discuss similarities and differences between
embedded and mobile vision, and look at how this and other mobile vision apps will
benefit from mobile vision accelerators and developments in OpenVX.

8.1 Introduction

The game of tic-tac-toe is played on a 3×3 grid. Players can chose to be “X” or “O”
and place their symbols in one of the “cells” of the grid. Tic-tac-toe has been popular
throughout history. An early variant called Terni Lapalliwas played inAncient Rome
around the 1st century BC [1]. Here is the version of the rules that we used (Fig. 8.1):

• X always goes first
• The players alternate placing their symbols
• The objective of the game is to get three symbols in a row
(vertically, horizontally, or diagonally)
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Fig. 8.1 A sample tic-tac-toe
game in which X wins

Tic-tac-toe has been the topic of choice for many interesting projects in the past.
In 1952, it became one of the first video games—the EDSAC computer could play
it flawlessly against a human opponent. In 1975, MIT students created a tic-tac-toe
computer [2] almost entirely out of Tinkertoy pieces (a type of wooden construction
set for children) that could play a perfect tic-tac-toe game. As far as we know, there
has been no prior work to combine vision and AI for a game of tic-tac-toe.

The objective of this project was to create an Android app that plays tic-tac-toe
against an opponent or against itself. The app should be able to do the following:

• “See” the tic-tac-toe board hand-drawn on a sheet of paper
• “Understand” the visual input
• “Think” of the most optimal next move
• Report the result to the user

The human user then writes the move on the game paper and the game goes on.

8.2 Vision Algorithms with a Mobile Twist

In this section, we explain how our choice of vision algorithms for the Tic-Tac-
Tandroid app was influenced by mobile environment constraints.

In many ways, the mobile environment is more restrictive for vision applications
than the embedded vision in general. This is because in embedded vision, we gen-
erally have at least some control over which processor is used for vision, how much
memory, what kinds of optics are designed in, etc. In mobile environment, we are
constrained by what processor is the common denominator for all supported plat-
forms, such as smart phones and tablets, and have to rely on operating systems to
assignmemory to our app.Considering howdata-intensive vision is, these can be seri-
ous impediments in achieving real-time operation. There are not many high-profile
mobile vision apps around, so it may be worth mentioning a few:

• Sudoku Grab [3], which reads a Sudoku puzzle before solving it.
• EyesOnRoad [4], an app that can assist drivers and improve road safety.
• Many developments around the Google Project Glass [5], a platform that opens
up many possibilities for using vision for augmented reality and human-computer
interaction.
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As the mobile platform in this project we use the HTC Inspire 4G, a smart phone
with a single core, 1GHz Qualcomm Snapdragon S2 MSM8255 application proces-
sor. ItsmainCPUhasQualcomm’sScorpion architecture, similar to theARMCortex-
A8 andCortex-A9CPU cores. The device is runningAndroid version 2.3.3.While its
camera produces images with 8 mega pixel resolution, we used the preview images
which are 240× 320.

8.2.1 Edge Detection

Inspired by biological vision [6–8], in which edge detection has a fundamental role
[9], we started by looking at the ways we could apply gradients to accomplish our
goal of giving our app the power of “seeing.” Since we were focusing on a mobile
implementation, we startedwith the computationally least expensive implementation
of gradients. If the camera image is given by matrix A, its x- and y-gradients are
conveniently defined as [10]:

Gx (i, j) = A(i, j + 1)− A(i, j − 1)

G y(i, j) = A(i + 1, j)− A(i − 1, j)

In order to continue the analysis with the minimum computational complexity,
instead of the standard L2 gradientmagnitude (which involves square roots,which are
computationally expensive on a mobile device and use more power than necessary),
we focused on an alternative, L1 magnitude gradient:

Gm = |Gx| + |Gy|

Another approximation we applied in order to save on computations and battery
life was the use of the green image component provided by the camera instead of
calculating the luminance. This approximation works well as long as the ink in
the game is not bright green and thus, practically indistinguishable from the white
background in the green channel.

8.2.2 Tic-Tac-Tandroid Vision

Board detection. The first vision block specific to tic-tac-toe is the detection of the
game board, which is composed of four lines—two vertical and two horizontal. This
simple arrangement, along with manageable camera distortion and nicely thick (but
not too thick) lines, allowed us to locate the tic-tac-toe board and its cells in a fairly
simple manner, as illustrated in the screenshot in Fig. 8.2:
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Fig. 8.2 Segmentation in action

1. Sum all of the gradients in the x-direction and find the two maximum values.
The two greatest horizontal gradient sums indicate where the horizontal lines are
located and we label these locations y1 and y2. To find these two maximum gra-
dient sums, we use non-maximum suppression: after finding the first maximum,
we zero out the values next to the first maximum. This allows us to accurately
find the second peak, corresponding to the second horizontal line. By zeroing out
the pixels around the first maximum, we can prevent the issue of accidentally
mistaking a double peak as the second line.

2. Similarly, sum up all the gradients in the vertical-direction to obtain the two
maximum vertical sums (again using non-maximum suppression) so that, we
know the location of the vertical lines. We name the lines x1 and x2.

3. Finally, we find the intersections of the four lines and can now access the contents
of the board cells.

Cell locations. Once we determine the location of the four lines, we can use their
intersection points to find the nine cells. We first look at the central cell, with x1,
x2, y1, and y2 as its four bounding lines. We then find the rest of the tic-tac-toe cells
around the central cell.

“Empty” versus “full” detection. Before we determine if a cell contains an X or
anO, we have to determine if it is empty or full. To that goal, we average the gradients
in each cell separately. If the gradient average is greater than an experimentally
determined threshold, the boxmust be full. If not, it is empty.Weuse gradients instead
of luminance in order to improve the robustness to global illumination changes.
If luminance was used for this purpose, the threshold would have to change as
illumination changes (Fig. 8.3).

“X” versus “O” detection. Once we determine that a cell is full, we need to know
which symbol is inside it.We do this by determiningwhere its centroid is (represented
by a blue dot on the display). Then, after we find the centroid, we consider a small box
around it, and average the gradients inside that box. The centroid, naturally, appears
close to the center of the shape, whether the box contains an X or an O, because both
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Fig. 8.3 “Empty” versus “full” detection

Fig. 8.4 “X” versus “O” detection

shapes are symmetric. So we recognize an X if the box is full of gradients, or an O
if it has little or no gradients (Fig. 8.4).

8.2.3 Tic-Tac-Tandroid AI

Priority-based algorithm. In order to compute the best next move from the infor-
mation deduced by the vision block, we devised a priority-based algorithm. The first
step in any zero-sum game like tic-tac-toe is to check if someone is about to win.
If the computer is about to win, then its first priority should be to play the winning
move. If it is not about to win, but the opponent is, it should try to block the opponent.
If neither the computer nor the opponent is about to win, we need a third option. The
computer should not just play randomly; then it is possible for the opponent to force
a win. To do this systematically, we dynamically assign a “priority number” to each
cell in the grid, and we pick the one with the highest priority to play in.
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Fig. 8.5 The cell numbering

Before we can define the priority number of a cell, we must first define the cell
layout and what a winning combination is. The cells are labeled as shown (Fig. 8.5):

Note that there are eight winning combinations on the board—that is, eight three-
in-a-rows:

• 0, 1, 2 (top row)
• 3, 4, 5 (middle row)
• 6, 7, 8 (bottom row)
• 0, 3, 6 (left column)
• 1, 4, 7 (middle column)
• 2, 5, 8 (right column)
• 0, 4, 8 (main diagonal)
• 2, 4, 6 (other diagonal)

One possible approach to determining the priority number of a cell labeled n, Pn, is
to add the number of winning combinations that share cell n, Wn, and the number of
tokens currently on the board that share a winning combination with cell n, T n:

Pn = Wn + Tn

This is a plausible approach because:

• The number of winning combinations that share cell n indicates the overall “use-
fulness” of the cell

• The number of tokens that share a winning combination with cell n indicates the
current usefulness of the cell, for both forming 3-in-a-row and for blocking the
opponent’s 3-in-a-row

Alternatively,wewanted to try aweighted formulawhichwould playmore aggres-
sively, inwhich the alternate priority number of cell n, denoted by Qn , is theweighted
sum of the number of ‘my’ tokens currently on the board that share winning combi-
nations with cell n, Mn, and the number of opponent’s tokens currently on the board
that share winning combinations with cell n, denoted by On:

Qn = 2Mn + On

This approach is plausible because:
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• The “winning potential” of the cell, the number of CPU tokens currently on the
board that share winning combinations with the cell, is weighted so the algorithm
favors cells that contribute to a win.

• The “blocking potential” of the cell, the number of player tokens currently on
the board that share winning combinations with cell n, is unweighted so that the
algorithm pays less attention to a block, but still counts it in the overall priority
number.

8.3 Experimental Evaluation

In this section, we present the results of experimental determination of the optimal
cell detection box size in the vision block and evaluation of the two AI approaches
described above.

8.3.1 Vision Experiments

Although we tried to minimize detection error in our vision block, the performance
was still less than perfect. We found the major culprits to be the following:

• If outer cell boxes are too small, they sometimes cut off parts of the cell content
• If outer cell boxes are too big, they can accidentally capture parts of the grid,
causing incorrect results

In order to determine the optimal outer cell size, we devised an experiment that
would find what cell detection box size would yield the most accurate results. For
each of five different scale factors (the center cell scaled up by 1, 1.125, 1.25, 1.375,
or 1.5) we made a separate app and tuned its thresholds on a set of five tic-tac-toe
boards written in different styles and handwritings. Then we used additional ten
tic-tac-toe boards, not seen by the app during the tuning process, to evaluate the
detection error as a function of the scale factors.

In Table8.1, we present the number of errors for each cell size: V1, V2, V3, V4,
and V5 denote the app version with outer cell scale factors 1, 1.125, 1.25, 1.375, and
1.5, respectively.

We see that the scaling factor of 1.25 used in V3 can be chosen as the optimal
value which is neither too big nor too small.

Table 8.1 Vision block
accuracy with different cell
sizes

Number of errors V1 V2 V3 V4 V5

X detect 2 0 0 4 2

O detect 0 1 0 4 2

E detect 0 0 0 0 0
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Table 8.2 AI block accuracy
with different priority number
approaches

Algorithm type Unweighted Weighted

Number of correct answers 17 20

8.3.2 AI Experiments

In order to evaluate which priority number approach produces better results we
collected 20 tic-tac-toe situations to use as test input. As a reference, we manually
determined the optimal moves for each situation. We presented the test inputs to
both approaches and compared their results to the reference results. Table8.2 lists
the number of correct results produced by the two AI algorithms.

We see that the weighted algorithm worked the best. In the cases where only
the weighted algorithm worked properly, the app had multiple options. One option
allowed the program to possibly win while the other always resulted in a draw. So,
the more “aggressive” weighted approach chose the winning moves and won those
games.

8.4 App Integration and Testing

We integrated our app using standard Java SDK tools for Android development [11].
As a starting point we used the Stanford EE368 Viewfinder [12], which provided
us with the code for using the Android camera and the images in the memory. The
Viewfinder also demonstrates a few useful techniques: how to access the image in
the memory and how to display graphics on the screen. We added our vision and AI
code to the Viewfinder and modified its display routines to accommodate our needs.
The result can be seen in our YouTube video [13].

We played with the app extensively, identified and fixed a number of small bugs,
and concluded that the app is fairly robust to global illumination changes. In fact, in
our regional science fair demonstration we had to work in very dark conditions and
our app still worked great.

In Fig. 8.6 we show the final appearance of the device display when our app is
running. As indicated by the yellow circle, the recommended next move is X in the
lower right corner. It is a good move because it blocks O from winning and opens
up the opportunity to win on that diagonal.

A video demonstration of our app can be found on YouTube:
www.youtube.com/watch?v=TCoBJy_W1ms.

www.youtube.com/watch?v=TCoBJy_W1ms.
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Fig. 8.6 The final app making the next move recommendation

8.5 Vision Acceleration on Mobile Devices

In this section, we describe what we learned about acceleration of vision algorithms
on mobile devices, such as smart phones and tablets. Our app, as written in Java,
runs at around five frames per second, fast enough to allow seamless user interface.
Therefore, we can say we achieved real-time operation. However, we can imagine
that other, more complex vision apps with more stringent real-time requirements,
would have much more difficulty achieving real-time operation, so we wanted to
learn about how vision apps can be accelerated on mobile devices. We used the Tic-
Tac-Tandroid as a proxy application—our experience can be extrapolated to other
vision apps.

Mobile devices, such as smart phones and tablets, commonly have application
processors based on ARM Cortex architecture, which includes a SIMD (single
instruction multiple data) media accelerator called Neon [14]. Particular devices
commonly have other processors, such as DSPs and GPUs, however, at this time
the mobile operating systems such as Android, do not offer access to them because
each of these accelerators requires special-purpose code, contrary to the expecta-
tion of writing code once and running it on any device. Therefore, we focused on
acceleration using Neon.

Acceleration with Neon. All ARM Cortex-A8 devices and many Cortex-A9
devices, commonly used on recent smart phones and tablets, include a media accel-
erator known as Neon [14]. It is a 16-way SIMD (single instruction multiple data)
accelerator that can perform 8-, 16-, 32-, and 64-bit integer operations as well as
32-bit (single precision) floating-point operations. Having Neon available on most
Android smartphones opens up the possibility to accelerate many low-level vision
operations [15]. These include lens distortion correction, color conversion, image
filtering, pyramid building, gradient computations, etc.

Code Profiling. In order to decide where to start with vision optimization, we
first measured the execution times of various parts of our code as they executed in
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Table 8.3 Tic-Tac-Tandroid
code profiling

Tic-Tac-Tandroid code blocks Average execution

times in Java [ms]

Image color formatting 18.0

Luma extraction (Green) 3.3

Gradients (Sobel, L1) 25.6

Board segmentation 7.5

Symbol detection 8.5

AI 0.1

Graphics and display 4.1

Other 145.5

Java. Table8.3 contains the results of code profiling, presenting the averages over
100 frames of steady-state operation. The camera images we use have a resolution
of 240× 320.

From this information we concluded that the best candidate for initial experiments
withNeonvision acceleration is the block that calculates gradients, because this block
is SIMD-friendly and is the longest pole in the tent among vision blocks.

UncannyCV Neon Library. In order to avoid reinventing the wheel, we looked
for available vision libraries for Neon and found the UncannyCV library by Uncan-
nyVision [16]. We obtained an evaluation copy and learned that this library offers
a wide range of low-level vision functions accelerated on Neon: convolution ker-
nels for various data types, morphological operations, image resizing, rotation, and
transpose, color conversions, integral image, Sobel and Canny edge detection, lens
distortion correction, Hough transform for lines, Harris corners, etc.

Comparing Performance on ARM and Neon. Next we present the measure-
ment results of average and minimum execution times for the edge detection kernels
processing a 240×320-pixel image. The reason we include the minimum times is to
provide additional data to those researchers whomay be able to prevent the operating
system from interrupting the image processing tasks.We also present the average exe-
cution times for each video frame at the app level. We called UncannyCV functions
using the Java SDK tools, which is different from what was originally intended—to
be called from theAndroidNDK tools. This probably explains the difference between
the anticipated execution time of Sobel on a 240× 320 image (0.5ms) [16] and the
execution times we measured: on average 11.4ms, and the minimum was 1.9ms. In
the following tables we present the results of our measurements. We measured the
performance of Roberts and Sobel edge detection in Java SDK on ARM and Sobel
and Canny edge detection using UncannyCV Neon code when called from Java
SDK. We measured average execution times (Table8.4), minimum execution times
(Table8.5), and average app execution times (Table8.6) as the app uses different
approaches and different cores to calculate the results.

In conclusion, thanks to the generous support from Uncanny Vision, we were
able to demonstrate the benefits of implementing gradients on Neon instead on the
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Table 8.4 Average kernel
execution times (ms)

Roberts Sobel Canny

Java on ARM 15.2 25.6 −
Uncanny CV on Neon − 11.4 15.4

(called from Java)

Table 8.5 Minimum kernel
execution times (ms)

Roberts Sobel Canny

Java on ARM 11.0 19.5 −
Uncanny CV on Neon − 1.9 4.4

(called from Java)

Table 8.6 Average
application execution times
(ms)

Roberts Sobel Canny

Java on ARM 202.6 212.6 −
Uncanny CV on Neon − 198.2 202.4

(called from Java)

main CPU. On average, the gradients block executes more than two times faster,
and sometimes up to 10 times faster, while the acceleration at the app level was, on
average, 7%.

This conclusion naturally extends to other low-level vision blocks, such as fil-
tering, color space conversions, and image pyramid calculation, all of which are
SIMD-friendly.

Another important realization we had about vision on Android is that the oper-
ating system interrupts the processor frequently and execution time measurements
show a lot of variability. This leads to another advantage of using Neon—it is not
interrupted by the operating system and can give faster and more reliable real-time
guarantees.

Other accelerators. Most application processors used in smart phones and tablets
have additional processing elements that can be used to accelerate vision operations.
They includeDSPandGPUprocessorswhich offer a lot of computational horsepower
particularly useful for acceleration of low-level vision. The problem, however, is that
these accelerators are specific to chipmanufacturer and currently cannot be efficiently
used by Android apps, which are written in hardware-agnostic fashion. It is possible
to circumvent the Android protection mechanisms and to write efficient code that
uses these accelerators, but that code will run only on devices that have the same
accelerator, not on all smart phones and tablets as preferred by Android.

The promise of OpenVX. This issue will be addressed by the OpenVX initiative
by Khronos, which aims to standardize the APIs for many commonly used vision
functions. The implementation on the accelerator that is available on a particular
device will be provided by chip manufacturers so the same code will efficiently run
regardless of the underlying hardware specifics, thus achieving the hardware-agnostic
coding typical for Android apps (Figs. 8.7 and 8.8).
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Fig. 8.7 Our app “looking” at a tic-tac-toe board

Fig. 8.8 Our app making a recommendation

8.6 Conclusions

Our contributions. Our project turned out to be a great combination of engineering
and scientific methods. We started from the Stanford EE368 Viewfinder (it gave us
Android camera access), but the rest of the code, both computer vision and AI, is a
novel contribution. We had a great presentation at our regional science fair and have
qualified to the state competition.
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Robustness. We are very happy with our Android app and its performance. We
played with it a lot to ensure that it runs robustly (and it does!). For example, it does
not require special illumination—it works well in a variety of lighting conditions as
long as there are no sharp shadows on the board.

Real-time operation. Although it was written in Java under Android and runs on
an ARM (a small processor in a smartphone), our app runs at about five frames per
second. This is fast enough to ensure smooth interaction with the user and so we can
call it a “real-time” operation.

Limitations. We tested our app in many situations and found that the major
drawbacks are:

• The phone must be held carefully to capture only the tic-tac-toe board and nothing
else

• The phone must be held at a distance of about 10–30cm from the tic-tac-toe board
because the app does not have auto-focus. This distance dictates that the size of
the board needs to be about 10cm on a side

• The lines must be drawn almost entirely straight, otherwise the cells may be incor-
rectly detected

• The X’s and O’s must be fairly symmetric because the algorithm relies on the
centroids of these symbols

• The appworkswell despite global illumination changes (we tried it in low and high
room light) but if there are local illumination changes (such as sharp shadows),
the system may give incorrect results.
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Chapter 9
Vehicle Detection Onboard Small Unmanned
Aircraft

Mathias Kölsch and Robert Zaborowski

Abstract This book chapter presents a system and experiments for on-aircraft
detection of ground vehicles. The focus is on the steps for creating an embedded real-
time system that met operator desires despite the limitations of the computer vision
methods, the communication network, and the small flight platform. Detailed exper-
imentation was essential for planning and coordinating the hardware and software
components to achieve real-time performance and the most benefit to the operators.
A fast object detection method was repeatedly trained and evaluated until it achieved
the desired speed and accuracy. The fault-tolerant client–server architecture deliv-
ered the most relevant information even despite severe netword degradation. The
demonstrated content-aware filtering of imagery elevated the human analyst’s task
from vehicle detection to detection verification, presumably a much less repetitive,
fatiguing, and error-prone task. The system was successfully demonstrated as part
of a Search And Rescue operation.

9.1 Essential Embedded Analysis

Old wisdom in project management says that you can have it done fast, well, or inex-
pensively, but never all three of those. Obtaining imagery from an unmanned aerial
vehicle (UAV, also called “drone”) in real-time apparently follows a similar law: you
can stream high quality video, fly a small and inexpensive communication package,
or transmit further than about a kilometer, but never all three of those. Directed
antennae or satellite radios allow high bandwidth links for tens of kilometers or even
globally, but they come at a cost of increased payload size, weight, and expense.
Signals in the 0.3–30MHz range can be sent beyond line of sight, but the available
bandwidth is grossly insufficient for image transmission. However, if the quality of
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Fig. 9.1 Picture of the Sig Rascal 110 ARF remote-controlled aircraft and a view into the payload
bay with the PC-104 board

the transmission can be improved without increasing the bandwidth, then payload
cost and communication distance do not have to be sacrificed. Aggressive image and
video compression already reduce the bandwidth dramatically, but depending on the
application, further reduction by several orders of magnitude is possible.

This chapter describes a UAV system that produced “actionable information”
through embedded computer vision where a traditional system would have been
limited by image quality or operating range. Figure9.1 shows the UAVwith its com-
mercial off-the-shelf (COTS) and custom payload (see Sect. 9.2.1). The embedded
video analysis (see Sect. 9.3) prioritized image regions of interest (ROI) for transmis-
sion based on content and thereby reduced the bandwidth requirements by a factor of
500 without impeding its operational “quality” (see Sect. 9.5.6). This was possible
because searching for a specific object—vehicles—was the primary goal for flying
the UAV. This is a common need during desaster recovery, for search and rescue, and
in military operations: operators are searching for people, vehicles, or ships lost at
sea, for example. If likely image areas of such objects can be identified on the aircraft
or satellite, these areas of interest can be transmitted with higher priority and/or with
higher resolution (see Wilcox [1]) than the rest of the image.

It might even suffice to merely send the coordinates of a detection, a tiny frac-
tion of the size of an image. In tactical military operations, timeliness of “actionable”
information determines the usefulness of aUAVsensor and can determine the success
of a mission. Yet the above-stated “law” limits either availability (due to cost, size,
or logistics), range of operation, or image quality. Additionally, to benefit from tech-
nological improvements to the sensors (camera resolution and speed are increasing
rapidly), the downlink bandwidth would have to keep pace. Storing data on the UAV
is an option for some applications, but when timeliness or information sensitivity (in
case the UAV is lost) are issues, streaming is preferable over storing.

Most remote-controlled aircraft for hobby use differ in several ways. Most impor-
tantly, they do not send high-resolution imagery or video to the operator, only what’s
required for navigation and control. That is, an operational restriction that the system
described here attempts to remove: images had to either be small, low resolution,
or be transmitted with growing latency or even downloaded after UAV recovery.
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The experience was often frustratingly slow transmission of the large image files,
which resulted in a continuously growing backlog of imagery waiting to be transmit-
ted. The ground station computer that processed (or merely displayed) the imagery
was often waiting while the UAV continued to collect more imagery.

9.2 Embedded System Overview

The embedded system consisted of hardware and software components, some COTS
and some custom-built. Only the tight coupling of these components permitted effi-
cient and fault-tolerant operation in face of large amounts of imagery data, inter-
mittent and weak connectivity, and low-latency requirements for getting crucial
information to the operators.

9.2.1 System Architecture

The ground control station (GCS) desktop computer (Windows XP, Intel Core 2
Quad Core, 2.40GHz, 3GB RAM) was connected to the UAV via a Wave Relay1

mobile ad hoc network, specifically, through several low-gain sector antennae on
the ground (approx. 9dBi, 2.3–2.5GHz, 600mW) and low-gain (approx. 1.8dBi),
omnidirectional antennae on the aircraft. The UAVwas a customized Sig Rascal 110
ARF remote-controlled aircraft, shown in Fig. 9.1, and maintained by the Center for
AutonomousVehicle Research (CAVR) at theNaval Postgraduate School. A separate
VHF control and navigation link were dedicated to the Piccolo flight control system.

Prior to this configuration, the compute-payload consisted of two PC-104 boards
(ADL MSM800XEV, 500MHz AMD processor, 256 MB memory), where one PC-
104 board was dedicated to flight and navigation tasks, and the other performed all
camera operations [2]. Careful requirements analysis suggested that a single-board
solution is more capable yet consumes less battery than two boards (see Sect. 9.5.4).
Some services had to be ported from Windows to a Linux OS.

Hence, the payload consisted of a powerful PC-104 board (Advanced Digital
Logic ADL945PC-T7400 with Intel Core 2 Duo, 2.16GHz, 4M cache) and a Cannon
G9 PowerShot still image (12MP) camera, mounted on a custom-built 2-DOF gimbal
(twodegrees of freedom: pitch and roll). The gimbal pointed the camera straight down
irrespective of aircraft attitude in order to collect nadir imagery.

Payload capabilities had to be carefully balanced: aircraft jitter, gimbal stabil-
ity, and image sensor sensitivity determined exposure time and image resolution.
Higher resolution is advantageous for detection, but also requires more memory and
processing resources, and in turn more battery, more weight, more heat dissipation,
and reduced flight time. The chosen boards were selected for their sweet spot in terms

1 www.persistentsystems.com.

www.persistentsystems.com
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of computational power and power consumption: for further CPU speed increase, the
increase in power consumption was significantly larger. The optimal solution was
found to be a PC-104 board with a dual-core CPU. Its power consumption was less
than that of a single-core CPU board that offered a marginal increase in CPU speed.

9.2.2 Software Architecture

The PC-104 hardware was booted into a Linux operating system (OS) via a solid-
state USB hard drive (SSD). Several modules ran independently and communicated
via custom network messages: navigation, flight control (autopilot), GPS, camera
sensor, and gimbal control. Some of the modules needed to be time-synchronized
or perform timestamp interpolation for data fusion. The sensor module talked to
the camera via another USB connection. It controlled several camera parameters,
released the shutter, processed the images, and fused the metadata from GPS and
gimbal information.

The communication to the GCS relied on a standard web server and HTTP mes-
sages. A dynamic page at a fixed address contained status information including
the available imagery data, which was also pulled via HTTP. The client initiated
download of cropped areas and full-size imagery based on a priority queue that
could be modified through user input. The cropped areas from the vehicle detection
process were given higher priority than the full-size imagery, unless preempted by an
explicit full-size image request by a human operator. Within each priority group, the
most recent images were given the highest priority. The server was state-free with
respect to the GCS client, which permitted easy restart of the service since no state
information had to be saved.

The time- and compute-intensive image analysis was performed in a separate
process to permit load balancing with the navigation process and the image cap-
ture process. While not strictly a real-time system on a real-time OS, this division
into processes along with process prioritization (with nice) proved effective in
maintaining system responsiveness and to give sufficient cycles often enough to the
navigation and capture processes. The image analysis task was optimized with the
Intel Thread Building Block (TBB) library to implement thread safe containers and
control the processing.

For development and troubleshooting purposes, clients could connect to the plane
via SSH connection and perform in-flight software maintenance, power cycle the
camera, and so forth.

The Ground Control Station (GCS) also ran several processes: A downloader
sequentialized the image pull requests to avoid link overload. A standard Windows
(File) Explorer served as a COTS user interface display that presented all vehicle
detections to a human operator who would drag positive detections into a dedicated
file folder. Another process listened on this folder for confirmations of objects-of-
interest and triggered Search and Rescue actions based on the location information
of the target (metadata) [3].
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Fig. 9.2 Overview of the aircraft systems and the multihop communication link to the ground
control station (GCS)

9.3 Object Detection

Key to the success of the embedded image analysiswas the careful crafting to its oper-
ational objective that required a vehicle detector that was invariant to illumination,
background, motion, scale, and in-plane rotation, that was flexible with the types of
vehicles found, and that could analyze the images fast enough on the available hard-
ware. Feature-based methods (e.g., SIFT and SURF, [4, 5]) are invariant to rotation,
but not general enough for detecting vehicles, and also not particularly fast. This
section briefly introduces the vision method used, then describes two approaches for
overcoming the method’s inherent shortcomings and how the operational require-
ments were met (Figs. 9.2 and 9.3).

9.3.1 Viola–Jones Style Detector

Cascaded detectors in the style ofViola and Jones [6] are fast, sufficiently generic, and
can be tuned for the desired recall or precision, but they are not rotation invariant.
Their proven performance with objects with rather uniform appearance [7] stems
from multiple processing stages, each composed of several weak classifiers, can
improve object discrimination while maintaining recall performance. The detectors
for these experiments were trained on human-annotated positive (near-nadir vehi-
cles) and negative images (no vehicles) that were previously collected Rascal UAV
imagery.
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Fig. 9.3 Partial training set for OpenCV’s Viola–Jones style training algorithm for the “aligned”
cascade

A common obstacle is rotational invariance, because the positive images are typi-
cally aligned in the same direction to allow for the most representative features to be
extracted by the training software. For this detector this means that all cars would be
facing the same direction. Vehicles appearing in the near-nadir aspect, as they will
be in the images obtained by the UAV, can be in any orientation in the image plane.
Two methods of overcoming this obstacle were examined, the faster of the two was
used for the ground station and onboard processing experiments.

9.3.2 Rotation Invariance Through Image Rotation

The first method trains a detector on vehicles in one orientation and detects rotated
vehicles by repeatedly rotating the image before applying the detector. For the
machine learning to focus on similarities, the training set was resized with the same
margin by percentage of the detection’s dimensions for all positive training images.
The training set was aligned with all vehicles facing left to standardize all images.

With the aligned training detector the vehicles need to be facing the samedirection.
To achieve rotational invarianceduringdetection time, all test images had to be rotated
within the functional tolerance of the trained detector before the detector is applied
to search for vehicles. This real-time process incurs additional processing time.
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Fig. 9.4 This shows one of the rotated test images as provided to the detector trained with the
“aligned” training set

Figure9.4 shows the rotated image as it is applied to the aligned detector. This
enlarges the size of the image, increases the number of searchwindows, and increases
the computational cost of vehicle detection by adding the step of several image
rotations before applying the detector repeatedly.

9.3.3 Rotation Invariance Through Rotated Training Set

The secondmethod attempts to learn a detector that is rotationally invariant so that the
detector has to be applied only once, irrespective of vehicle orientation. The rotated
training set consists of multiple transformations of each image in the aligned training
set: each image is rotated through 360◦ in 5◦ increments. To maintain a consistent
size for all rotational increments during detector training, all images are the same
square dimensions.

Figure9.5 shows an example of the rotation performed for one of the training set
images. This increased the size of the positive training image set from 200 images
to 14,400 images.
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Fig. 9.5 An example of one positive image rotated in 5◦ increments

9.3.4 Vision Algorithm Tuning

The hardware specifications including camera optics, gimbal specifications, and
flight altitude were chosen at a sweet spot of resolution on the ground, seamless
area coverage, and motion blur. The core computer vision method placed additional
constraints on the required number of pixels on target, view angle (close to nadir),
and processing time. Sufficiently fast processing speeds and robust accuracy were
achieved through cascade tuning, incremental training with negative images, tuning
of detector parameters on a desktop computer, and scale restrictions at runtime.

Aside from thepreviously discussedorientation experiments, the detectionmethod
was trained with several sets of training data representing different mixes of natural
environments (dirt roads with vegetation around) and city streets (pavement and
buildings nearby). These data were presented to the training algorithm at various
(cascade) stages in an attempt to optimize the speed performance while achieving
the same accuracy. Proper selection of the positive training set improved recall, and
with experimentation it was seen that the negative training set required additional
samples to reduce the false positives. The object size was also varied during training
and subsequent evaluation before settling on 30× 30 pixels.

The runtime restrictions amounted to specifying the minimum and maximum
scale values and the size-increment factor between scales for the scanning window
detection approach. This reduced the false positive rate and processing times for each
image. These parameters were set in a configuration file which allowed settings to be
modified on the UAV while it was in flight. (This could be automated by calculating
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the expected pixel size of vehicles based on camera parameters and altitude. Still,
as GPS is not without error, and small UAVs are subject to environment and control
system complications, additional experimentation was needed with real-life test data
to select the optimal minimum and maximum scale factors and the step size over
which to move between the factors.)

9.4 Parts-Based Detection

One notices that the different vehicle corners look very similar to each other (see
Fig. 9.5). To capitalize on this similarity for speed reasons, a separate detector was
built that first detects any of the corners, or “parts,” in any orientation and then looks
for part “constellations” (orientations and locations) that are indicative of an entire
vehicle. (For more details, see Zaborowski [8]). Parts-based detection has several
benefits: the parts are faster to detect than the whole object, parts can be detected
even if the object is partially occluded, and multiple parts can be detected in parallel,
possibly even in hardware.

Partswere detectedwith amodifiedViola–Jonesmethod. Instead of binary results,
it scored detections as the number of successfully passed stages divided by the total
number of cascades of the detector.

After nonmaximum suppression, the scored locations of part detections were then
analyzed with a structural model that was trained on pairwise combinations of part
detections. The pair detectors were binary weak classifiers, but with a learned part
score threshold. A second iteration over all training samples determined the predicted
result of every weak classifier for all samples. These predictions were the input to
an AdaBoost algorithm that generated a decision tree.

Figure9.6 showsdetection scores for four parts. Thebottompart are the discretized
maps, and highlighted with a pair of circles is one feature of the structural model.
Detection is done in a multiscale scanning window approach.

9.5 Experiments and Results

Several experiments addressed the following questions:

1. Verification: Does the algorithm work as expected, in terms of accuracy and
speed?

2. Which rotation-invariant method works better?
3. What is the usable throughput of the Wave Relay radios?
4. Is the PC-104 board fast enough to keep up with the computer vision tasks along

with the normal aviation workload?
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Fig. 9.6 Graphical illustration of how the four corner detectors are applied to an image

5. Does the algorithm integrate well into the rest of the system? Is the system archi-
tecture (hardware and software) able to produce the expected data, at the expected
quality?

6. Validation: Is the produced information (vehicle detections with the actual, not
ideal, performance) of value to the operators?

After preliminary tests in the lab, all actual flight tests were performed at the Camp
Roberts US Army base in California. Six flights were made in total over five days,
with a gap of several months between the first four and the last two flights. Over 3,100
images were taken that contained over 2,600 depictions of vehicles. Vehicles present
in more than one image were counted each time. Those were manually annotated
with bounding boxes around the vehicles (“ground truth”). A detection was scored
a match only if at least 50% of the respective bounding boxes overlapped.

9.5.1 Vehicle Detection in Aerial Imagery

The goal of this experiment was to demonstrate the feasibility to recognize vehicles
in aerial imagerywith a Viola–Jones style detector as described in Sect. 9.3.3 (trained



9 Vehicle Detection Onboard Small Unmanned Aircraft 209

Table 9.1 Detector performance on four flights, with true positives PT, false negatives NF, false
positives PF, and the false positive rate (FPR) per image

Flight Images Vehicles PT NP PF Recall FPR

2010-08-08 714 715 433 282 321 0.6056 0.4496

2010-08-11a 760 95 82 13 69 0.8632 0.0966

2010-08-11b 719 19 16 3 59 0.8421 0.0826

2010-08-12 414 9 7 2 147 0.7778 0.2058

Overall 2,607 838 538 300 596 0.7721 0.2086

with rotated positive samples). Table9.1 shows the results of processing the images
from four flights on the GCS. All flights are designated by the date they were flown
in year–month–day format. In the case of multiple flights on the same day, the first
flight is denoted as “a” with the second flight on that day denoted as “b”.

Postprocessing combined nearby detections, so any one reported area may be
a collection of multiple detections. Therefore, detection areas containing multiple
vehicles were counted as the number of vehicles they contained. Recall R is the ratio
of true positives PT to vehicles present V , R = PT

V and was found to be 77.21%.
The average false positive rate (FPR) per image was 0.21. Flights 2010-08-11a and
2010-08-11b had significantly lower false positive rates and higher recall compared
to the other two flights; it is unclear why.

Reading an image fromdisk on theGCS took, on average, 514.89ms (±64.12ms),
the vehicle detection algorithm itself about 1,487.50ms (±166.77ms). Over
14GByte of jpg-compressed images were captured and processed in four flights. The
cropped areas from detections amounted to just under 30MByte (see also Table9.3).

9.5.1.1 Discussion

Although the time of day, above ground level altitude, and detector settings were
constant across all pictures, the UAV itself does not always exhibit consistent flight
and camera platform parameters. For example, the gimble may be in motion while
a picture is being taken, which could result in both blur and a viewing aspect that is
not consistent with the training samples provided to the detector.

The observed recall and FPR are not as good as recent face detectors including
the method this implementation was based on [6]. However, recall much better than
chance (realize there are 10,000s of areas tested with scanning window approach),
and FPR low enough to not swamp network connection. Themeasured speed showed
a limit of processing an image about every other second.
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Fig. 9.7 The graph above shows the performance as test images are rotated in 5◦ increments. Solid
lines represent the detector trained with an aligned positive imagery set, dashed lines represent the
detector trained with a rotated positive imagery set

9.5.2 Performance of Rotation Invariance

Comprehensive evaluation determined the two detection methods’ invariance to in-
image-plane rotations. 100 images from the four flights were annotated with vehicle
rotation information and subsequently rotated in 5◦ increments for a total of 7,200
test images. Figure9.7 shows the results of processing these 72 series of images with
the detector that had been trained on aligned training images (see Sect. 9.3.2) and
with the detector trained on rotated training images (Sect. 9.3.3).

9.5.2.1 Discussion

Vehicles rotated beyond 5◦ in either direction cannot be detected well with the
“aligned” detector (Fig. 9.7, solid lines), confirming prior analysis of the Viola–
Jones method [9]. This suggests that a training set rotated in 5◦ increments would
yield superior results. Indeed, the detector trained on rotated images is significantly
more robust toward rotated vehicle detections (dashed lines in Fig. 9.7).
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Training a detector with the additional samples (14,400 positive samples in 72
orientations versus the 200 positive samples used for the aligned detector) results in a
modest increase in off-line training time. This training technique produces classifiers
with more features, and therefore requires more CPU cycles to process an image.
However, the dashed ROC curves in Fig. 9.7 indicate that the recall across the range
of in-plane rotations was consistently higher compared to that of the aligned training
set. The rotated training set enabled building a rotation-invariant detector, meaning
it can find vehicles in all orientations in only one pass, thereby eliminating the need
to perform multiple passes over incrementally rotated test images. Given the com-
putational runtime expense of image rotation, the possible introduction of artifacts
caused by the interpolationmethod, and the increased pixel count from the additional
black areas (see Fig. 9.4), the rotated training set yielded the preferred method.

9.5.3 Bandwidth Performance of Wave Relay

The available bandwidth between the Rascal UAV and the GCS over Wave Relay
varies with the number of network users, with vehicle distance, altitude, and the
exact relative orientation of the (omnidirectional) antenna. In tests with few users
the throughput for a realistic data set (sending a large, JPG-compressed images to
the GCS) was determined to be around 200kB/s typically. Throughput decreased
roughly linearly with altitude. At that rate, a 12 MPixel image, compressed to 4MB,
took about 20 s to download.

9.5.3.1 Discussion

For the desired coverage and ground resolution, given jitter and vehicle speed, the
sweet spot for vehicle altitude and focal length identified 0.5Hz as the necessary
shooting speed. The download speed therefore is one order of magnitude too slow
to keep up with a high-resolution image every other second.

9.5.4 From GCS to Embedded Processing

After profiling and parameter evaluationwith existing systems, and after procurement
of appropriate embedded hardware, the performance of the algorithms was evaluated
on the embedded hardware during a live flight. Between experiments, a new detector
had been trained with an increased negative training set to reduce false detections
that frequently occurred on the runway and other rectangular objects. Both detectors
had been trained with rotated imagery.

Table9.2 gives the detection results. The average recall was 47.02% at a FPR of
50.17%. There were large differences between the two flights. While the four flights
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Table 9.2 Detector performance during testing at Camp Roberts in conjunction with TNT 11-3

Flight Images Vehicles PT NP PF Recall FPR

2011-05-06 113 461 339 122 291 0.7354 0.2051

2011-05-07 398 1,414 290 1,124 570 0.2051 0.7983

Overall 511 1,875 629 1,246 861 0.4702 0.5017

Table 9.3 Detector speed performance on the ground station (top, GCS), and the embedded PC-104
(bottom)

Flight Image size Cropped size μ (σ ) access μ (σ ) processing

2010-08-08 3,914,757 18,656 504.40 (46.17) 1,494.11 (149.55)

2010-08-11a 4,242,232 4,198 542.70 (122.92) 1,532.57 (156.56)

2010-08-11b 4,165,580 2,394 500.65 (41.36) 1,473.77 (155.13)

2010-08-12 2,532,752 4,589 511.79 (46.04) 1,449.56 (205.83)

Overall GCS 14,855,321 29,839 514.89 (64.12) 1,487.50 (166.77)

2011-05-06 472,171 17,167 548.73 (73.98) 3,020.46 (353.45)

2011-05-07 2,015,450 20,700 667.02 (551.67) 3,093.87 (395.62)

Overall PC-104 2,487,621 37,867 607.87 (312.82) 3,057.16 (374.54)

Image sizes are cumulative for the entire flight and measured in kB. Times are reported in ms

from TNT 10-4 (Table9.1) and the first flight from TNT 11-3 were performed at the
same altitude with only small deviations, the second flight from TNT 11-3 exhibited
frequent and pronounced altitude changes. The raw images of the second flight had
more blur, probably partially due to crosswinds and partially due to the rapid position
and attitude changes of the aircraft during image exposure. Additionally, therewas no
feedback from the gimbal to the PC-104 so the camerawould only take a picturewhen
the gimbal is stable. Changing altitudes was an attempt to find reduced crosswinds
to stabilize the flight and to reduce the blur. As the UAV flew higher, the vehicle
images were smaller, and smaller vehicles reduce the number of features available
to the detector. This leaves less room for error and causes a reduction in detection
performance.

For the purpose of comparison, the same parameters were used for all test flights.
However, reducing the required number of neighboring detections or scaling the
scanningwindowwith a smaller scale factor (closer to 1) could improve performance.
Naturally, this would increase the total number of windows searched and hence the
processing time. This time might be reduced by accounting for the smaller detection
sizes and reducing the maximum detector scale. The implementation tested here did
not incorporate a feedback for UAV altitude into the detector settings.

Table9.3 shows the speed performance for embedded vehicle detection. Themean
processing time was 3,057ms, with no large discrepancy between the mean process-
ing time of the two flights. The mean access time was 607.87ms.
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9.5.4.1 Discussion

Embedded processing achieved accuracy performance in the same rough order of
magnitude as GCS processing. The file access time was unchanged, but the image
processing time approximately doubled. The PC-104’s reduced on-chip cache size
is a probably culprit for this unsurprising increase. The PC-104 also performed both
flight control and detection.

Reviewing the imagery, there appears to be some halo and blurring around the
edges of the vehicles that was not present to the same extent on the first five flights.
Object boundaries and edges contain a lot of information, and many potential fea-
tures for a haar-like feature-based detector to utilize. This, combined with additional
blurring of the imagery, is most likely the cause of the reduced recall.

9.5.5 Embedded System Operation

The overall system as described in Sect. 9.2.1 worked as desired: the sensors reported
to software processes which were granted sufficient resources by the hardware plat-
form to effectively act as a true real-time system. Combining flight control and
payload processing on the same PC-104 board resulted in space and power sav-
ings without incurring negative effects. The CPU load was measured in two instru-
mented flights. As expected, the image analysis task was demanding on the CPU, but
only intermittently. Presumably, image transfer and load operations alternated with
processing on the CPU, giving other processes sufficient time to run.

9.5.6 Operational Results

The embedded image analysis enabled longer range communication, continued oper-
ation despite severely degraded network performance, more rapid availability of crit-
ical information, and filtering of excessive data. Had the network bandwidth been
sufficient to transmit all images at full resolution, a single human operator likely
would not have been able to thoroughly search a 4,000× 3,000 pixel image every
other second for tiny vehicles. A person reviewing these images would have to zoom
in and pan over the 12-megapixel images as each is larger than the screen size. The
repetitious task also bears the danger of operator fatigue and complacency. With-
out embedded analysis, most images would not be available until after landing the
aircraft. With embedded analysis, only the most pertinent information was imme-
diately downloaded, which at the same time reduced the human operator load to a
very manageable level: inspect a few cropped areas every few seconds. Compared to
downloading full-size images, embedded processing yielded a bandwidth reduction
by a factor of 500. The reduced bandwidth and reduced operator load meant that
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the embedded analysis system met the operational objectives–directing search and
rescue efforts [3].

While full motion video (FMV) offers more fidelity, it is currently not possible to
recover the data lost during a network outage until after the UAV has landed. When
sending cropped detections, on the other hand, the data is small enough that a small
backlog from network congestion or outage can be overcome. Embedded, onboard
processing “at the edge” of the network facilitates more efficient network utilization
by passing limited amounts of processed information in place of large amounts of
raw data.

9.6 Conclusions

Embedded, onboard analysis of imagery presents a solution to the bandwidth limita-
tions of small unmanned vehicles and their steadily improving camera capabilities.
Prerequisites are an automated detection method for the object or scene of interest
and the ability to discard unimportant image or full motion video (FMV) areas. Still,
adopting a computer vision algorithm for use in an embedded environment involved
detailed planning and customizations:

• Analysis of flight and platform characteristics (nadir shooting possible, flight alti-
tude, jitter, required image resolution, available bandwidth, etc.),

• Selection of a suitable computer vision method, based on speed and accuracy,
• Method training, modifications, and tuning (e.g., for rotation invariance),
• Selection of embedded hardware that meets payload demands (USB ports, power
consumption, heat dissipation, CPU speed, memory),

• System integration (connections to hardware and software components), including
adaptations for the specific hardware and operating system, and

• Validation of the entire system as part of the operational workflow.

While smaller bandwidth needs are advantageous even in a fully functional and
reliable network, onboard processing dramatically increases information throughput
when the network is only intermittently available, and preserves the real-time value
of the UAV.

The advantages of the described system extend beyond network aspects into
human performance. The human image analysts’ responsibility changes from a repet-
itive, error-prone detection task to a lower volume, less taxing detection verification
task. The demonstrated prefiltering elevates the operator to make decisions based
on the information passed from the UAV. While these experiments took place on a
UAV in still video, this could easily be extended to embedded analysis of full motion
video.
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Chapter 10
Vision-Based Lane Analysis: Exploration
of Issues and Approaches for Embedded
Realization

Ravi Kumar Satzoda and Mohan M. Trivedi

Abstract Vision-based lane analysis has been investigated to different degrees of
completeness. While most studies propose novel lane detection and tracking meth-
ods, there is some research on estimating lane-based contextual information using
properties and positions of lanes. According to a recent survey of lane estimation
in [7], there are still open challenges in terms of reliably detecting lanes in varying
road conditions. Lane feature extraction is one of the key computational steps in lane
analysis systems. In this paper, we propose a lane feature extraction method, which
enables different configurations of embedded solutions that address both accuracy
and embedded systems’ constraints. The proposed lane feature extraction process is
evaluated in detail using real-world lane data to explore its effectiveness for embed-
ded realization and adaptability to varying contextual information such as lane types
and environmental conditions. Accuracy of more than 90% is obtained during the
evaluation of the proposed method using real-world driving data.

10.1 Introduction

Intelligent driver assistance systems (IDAS) are increasingly becoming a part ofmod-
ern automobiles. Reliable and trustworthy driver assistance systems require accurate
and efficient means for capturing states of vehicle surroundings, vehicle dynamics
as well as state of the driver in a holistic manner [23].

Trivedi et al. [23] describe a Looking-in Looking-out (LiLo) framework for
computer-vision-based active vehicle safety systems, which aim at bringing together
the three components of overall IDAS,which are the environment, the vehicle, and the
driver. It is shown that sensing and contextualizing all the three components together
is critical and efficient in an IDAS. The role of vision sensors, complemented by
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other sensors such as vehicle controller area network (CAN) data, etc., in such a
framework is explained in detailed in [23], wherein vision systems that enhance
safety of the driver by looking-in and looking-out of the vehicle are proposed. It is
established that it is not only important to sense the environment outside the vehicle
such as obstacles (vehicles, pedestrians), but also monitor the dynamics of the driver
(and possibly other passengers) inside the vehicle. Having such a holistic sensing
would also enable in predicting driver intentions and take the necessary control/alarm
actions well in time and mitigate dangerous situations [4].

The vehicle surround analysis modules include operations such as lane analy-
sis [19] and vehicle detection [20], which are the front end modules in terms of
capturing and analyzing the vehicle surroundings. The information from these mod-
ules are then further analyzed to assess the criticality of the situation and predict
driver intentions and behavior before the driver takes any decision or maneuver [21,
22] This assessment and prediction can either be used to warn/alert the driver of
any unsafe maneuvers or otherwise, or input to automatic control systems such as
Adaptive Cruise Control (ACC) systems. Therefore, the vehicle surround analysis
modules play a vital role in deciding the effectiveness of the IDAS because they are
the primary modules that sense and analyze data from outside and inside the vehicle
to extract meaningful information for the rest of the IDAS.

Among the different modules for active driver safety framework, lane analysis
using monocular cameras contributes to its efficiency in multiple ways. Firstly, lane
analysis, i.e., lane estimation and tracking, aids in localizing the ego-vehicle motion,
which is the one of the very first and primary steps in most IDAS such as lane
departure warning (LDW), lane change assistance, etc. [11, 23]. Next, lane analysis
is also shown to aid other vehicle surround analysis modules. For example, in [17],
lanes are used to detect vehicles more robustly because vehicles are assumed to be
localized to their ego-lanes. Similarly, lane detection is shown to play a significant
role in predicting driver intentions before lane changes occur [11, 23], etc.

By lane estimation, we refer to the process of detecting and tracking lanemarkings
that define the lanes in a road scene. A detailed survey of various lane estimation
techniques is presented in [7, 10]. Though a number of lane estimation methods
have been proposed in literature [1, 2, 5, 7, 8, 10, 16], the variations in the road
scene makes lane estimation a challenging process [5, 7, 10] such as shadows from
trees, vehicles, etc., presence of skid marks, varying tar color and road surfaces,
varying ambient lighting conditions, etc. Figure10.1 shows someof these challenging
scenarios.

The lane estimation methods in [1, 5, 7, 8, 10, 16] usually comprise three main
steps: (1) lane feature extraction, (2) outlier removal, and (3) lane tracking [10].
Lane feature extraction techniques are usually based on the properties of lanes like
directionality, intensity gradients, texture, and color. Techniques like steerable filters
[3, 10, 16], adaptive thresholding [1, 12], Gabor filters [8], etc. are used to extract
lane features. Learning based approaches are also employed in [5] to extract lane
features. The detected lane features are further filtered for outliers in the second
step of lane estimation process. This step usually involves fitting the detected lane
features into a known road/lane model, thereby eliminating nonlane features. This
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Fig. 10.1 Challenging road scenes to detect lanes: different types of lane markings—dashed lanes
and circular reflectors, tar color changes, tire skid marks, shadows of trees, vehicles, infrastructure,
etc.

step includes algorithms such as RANSAC [1, 16], Hough transform [1, 10, 14],
etc. Finally trackers like Kalman filters [10] or particle filters [5] are used to model
the tracking of lanes. This is inspired from the fact that there is a predictability of
the lane positions in every frame based on the information from past frames and the
knowledge of the vehicle dynamics.

The computing algorithms in thesemethods can be closely related to some aspects
of the human visual system’s (HVS’) perception of lanes. In [10, 16], lane features
are extracted using steerable filters, which detect directional gradients. This can
be related to the HVS’ perception of lanes as being directionally pointed toward the
vanishing point and having higher intensities than the background. Similar reasoning
is used to extract lane features using Gabor filter kernels in [8]. Another way that
the HVS uses is the changes in the gray level intensities of the lane markings. This
kind of perception is used in [12] to extract lanes where lanes are detected as straight
lines of constant width and having a specific range of gray level intensities. Though
this model works well for lanes in near-view, the straight model of the lanes may fail
to capture lanes in far-view of the ego-vehicle. However, the work presented in [12]
uses other modalities like stereo vision, GPS, etc., to model the digital map of the
ego-vehicle. A more general model using the same gray level perception property
is employed by Borkar et al. in [1], in which an adaptive thresholding method is
proposed to extract the brighter lanes from darker road surface. A temporal averaging
is also employed in [1], which averages the dashed lane markings over time, so that
a continuous line is seen in every frame instead of dashed lanes. This follows from
the HVS’ perception that the lanes are actually straight lines but spatially sampled
along the road, which gives a dashed appearance. In addition to these methods based
on perception of visual properties of lanes, a learning-based approach is presented
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in [5], wherein an Adaboost-based learning algorithm is used to extract lane features
in challenging road scenarios.

The detected lane features are further sent for outlier removal. This is done by
employing roadmodels and clustering algorithms on the lane features extracted from
the first step, and are applied on two different domains. Firstly in the image domain
with perspective effect, HVS perceives lanes as usually straight (and then curved
if they are curving in far-view from the host vehicle), and are directed toward a
vanishing point. Second domain is the inverse perspective map (IPM) view, which
is the top view of the road, where the lanes are perceived to be parallel lines which
are either straight or following a clothoid model [10]. These visual perceptions are
translated into computer vision algorithms such as Hough transform, which is a
straight line detector [1, 10], and RANSAC, which is a outlier detection algorithm
based on a road model [1]. The third step in lane estimation process is lane tracking,
which is usually performed using techniques like Kalman filters and particle filters
[1, 5, 10, 16]. Lane tracking follows the HVS’ perception that positions of lanes
can be predicted in the current frame based on the history of lane positions in the
previous frames and the vehicle dynamics. In addition to these three steps, other
visual perception cues are also used for efficient lane estimation. For example, in
[16], vehicle detection was used to robustly locate lanes as an additional cue. This is
inspired from the HVS’ perception process that vehicles are expected to be in lanes
and hence lanes could be localized nearby the vehicles.

Although there are a number of computer-vision-based lane analysis methods
reported in literature as shown in recent works [1, 5–7, 10], most of these works
address the robustness of the vision algorithms in different road scenarios. However,
as pointed by Stein in [18] titled, “The challenge of putting vision algorithms into a
car,” there is a need to explore lane analysis approaches for embedded realization.
Attempts have been made to realize embedded solutions for lane estimation and
tracking [9, 15], etc., but as indicated in [9], most of them have been architectural
translations of some parts of existing lane detection algorithms.

In this paper, we propose a lane feature extraction method that addresses some of
these issues related to embedded realization.

10.2 Lane Analysis and Embedded Vision

Different variants of lane analysis techniques have been proposed in literature such
as [1, 5, 10] as shown in (Table 10.1). A detailed survey of lane analysis methods
is presented in [10] and [7]. An effective lane analysis method [7, 10] comprises of
three main steps: (1) lane feature extraction, (2) outlier removal or postprocessing,
and (3) lane tracking. Pixel level filtering operations such as steerable filters, etc.,
are applied on the entire image or regions of interest (usually the lower half of the
input image) to extract lane features. A further postprocessing and outlier removal is
performed using techniques like RANSAC [1], Hough transform [13], etc., in order
to improve the robustness. Inverse perspective mapping (IPM) of the input image is
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also performed to transform the input image into world coordinate system (WCS)
[10]. In addition, lane models and vehicle dynamics from CAN data are used to track
lanes across time using Kalman filtering, etc.

Considering that IDAS are implemented on battery-powered embedded platforms
inside a car, attempts have beenmade to implement lane detection systems on embed-
ded platforms in [9, 15], etc. However, as indicated previously, most of these are par-
tial systems with the exception of the full system implemented in [9]. For example,
in [15], lane detection is implemented using steerable filters on an FPGA platform.
However, this is only the lane feature extraction module of a comprehensive and
robust lane analysis method called VioLET in [10]. One of the very few complete
lane analysis systems is reported in [9], which includes a pipelined architecture for
lane feature extraction, lanemodel fitting and tracking, and implemented on an FPGA
platform using DSP48 cores of Spartan FPGAs.

In [18], different kinds of embedded constraints are elaborated that decide the
feasibility of employing a computer vision task in a car, which is an excellent example
of a complex embedded system. These constraints bring together the requirements
from two different disciplines—computer vision and embedded engineering. In other
words, robustness is the key performance index for a computer vision algorithm but
real-time operation, limited hardware resource utilization, energy efficiency are the
key metrics for embedded realization. With the two together in active driver safety
framework, the reliability and dependability of computer vision algorithms that run
on resource constrained computing platforms is another challenge that needs to be
satisfied.

10.3 Feature Extraction Method for Context-Aware Lane
Analysis

Lane feature extraction is one of the key steps in real-time lane analysis, which
includes both lane estimation and tracking. The robustness of the entire lane analysis
system depends directly on reliable lane features that need to be extracted from the
road scene. This also implies that there is a direct relationship between the efficiency
of lane feature extraction process and the robustness of the system. Adding more
computer vision algorithms for lane feature extraction in order to improve robustness
can directly impact the efficiency of the system. Also, the robustness, and hence the
efficiency, of this feature extraction step is dependent on vehicle surround conditions
like road types,weather conditions such as fog,wet roads etc., environmental changes
in road scene like shadows, road surface, etc., and the availability of other data
sources like road maps, etc. These factors—application requirements (e.g., safety
critical systems demand higher robustness), environmental and weather conditions,
road information, lane types, etc., constitute the context in which lane analysis is
to be performed. Therefore, this context plays an important role in the robustness
and efficiency of the lane feature extraction step. A detailed exploration of the lane
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feature extraction step that can cater to such contextual information is worthy of
further study.

It can be seen that E+ and E− have nonlane features also. We now propose shift
and match technique to extract lane features and eliminate nonlane features from
each band. In order to do this, we compute the horizontal projection vectors p+
and p− for E+ and E− as shown in Fig. 10.3. Peaks are formed in these projection
vectors where there are clusters of pixels in E+ and E−. Since the dark→light and
light→dark transitions in a lane marking are separated by δ pixels in the IPM image
IW , the peaks corresponding to the lane edges in p+ and p− are also separated by
a small δ. In order to capture these pairs of transitions of lanes, p+ is shifted by δ

places to the left and multiplied with p− resulting in the vector KBi for scan band
Bi , i.e.,

K = (p+ � δ) � p− (10.1)

where � represents pointwise multiplication. Figure10.3 shows the result of the
shift and match operation performed on p+ and p− for the upper band selected in
Fig. 10.2. It can be seen that we get peaks in KBi in Fig. 10.3 at the same locations
as the left edge of each lane marking in the upper band in Fig. 10.2. The locations of
the peaks in KBi for each scan band Bi are then used along with the road model to
eliminate outliers.

In this paper, for the sake of illustration and simplicity, we limit the discussion to
a simple straight road model in the IPM domain, i.e., we assume the road is straight
(deviated only by a few pixels). Considering that input images are calibrated with
WCS in IPM image, the lane marking positions can be predicted in a deterministic
manner. Let us take the case of ego-lane. After calibration, if xL and xR correspond to
the lane positions of the left and right lanemarkings of the ego-lane, the lanemarkings
are expected to be in the vicinity of these lane positions. The peaks positions in KBi

from each scan band are mapped to the predicted lane markings xL and xR. This

Fig. 10.2 Generating steerable filter output from bands
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Fig. 10.3 Illustrating shift and match operation for band Bi

mapping will eliminate any outliers that may be picked during the shift and match
operation. The lane estimation output is shown in Fig. 10.3.

In order to cater for higher curvatures of the lanes, lane models such as clothoid
model can be also be used on the peak positions obtained in KBi to estimate curved
lanes and also eliminate the outliers. Furthermore, lane tracking using Kalman filters
using vehicle dynamics like yaw rate and steering angle information [10] increases
the robustness of outlier removal tremendously.

Figure10.4a shows the overall lane analysis method using the proposed lane
feature extraction method. Figure10.4b, c show two possible design options enabled
by the proposed scan band based lane feature extraction. The filtering operation and
shift-match operation that are applied on each scan band can be ported as a processing
element (PE). A parallel architecture with each scan band being processed by one
PE gives a parallel design option as shown in Fig. 10.4b.

The second option shown in Fig. 10.4c is a pipelined option,which can offer awide
variety of design implementations. If one PE is used, we get a serial implementation,
where each band is processed serially. The number of pipeline stages can be increased
depending on the number of PEs that are used. This pipelined design option can also
be used to control/predict the lane feature positions in each subsequent PE. In other
words, if PE0 detects lane features at specific positions, this information can be
relayed to the PE1 as positions around which lane features are expected. Vehicle
dynamics and road model information can further aid in the overall robustness and
efficiency of this implementation.
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Fig. 10.4 Design options possible for the lane analysis method: a lane analysis using the proposed
scan band based lane feature extraction method, b parallel architecture with each PE catering to
each scan band and extracting from all scan bands in parallel, c pipelined architecture with each PE
also acting as a controller to predict positions in the next PE

10.4 Experimental Studies

In this section, we present a detailed study of the proposed lane feature extraction
method to address robustness and the constraints posed by embedded platforms [18].
We present the possible scenarios and trade-offs between robustness and metrics for
embedded realization that are possible using the proposed technique.We also present
the different configurations that can be explored for different conditions and user
requirements. As indicated previously, lane tracking is not considered in the scope
of evaluations and is considered for future work. Therefore, for the study presented
in this paper, lanes are assumed to be detected if the lanes are present in the ground
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Table 10.2 Dataset description

Set 1 Freeway Set 2 Freeway with
lanes vehicles

Set 3 Freeway Set 4 Freeway
concrete circular
surface reflectors

Set 5 Urban road
with shadows

truth and the proposed technique is able to determine the lane features in “correct”
positions in the frame. The proposed technique is evaluated using the test video
datasets obtained by LISA-Q testbed [10]. The results are presented for five different
test image sequences that are listed in Table10.2, each dataset having a minimum of
250 image frames that are captured at 10–15 frames a second.

10.4.1 Accuracy Analysis

First, Fig. 10.5 shows some sample imageswith lanes that are extracted from complex
road scenes by applying the proposed lane feature extraction method on input images
from the datasets listed in Table10.2. It can be seen that the proposed algorithm is able
to extract lanes in varying lane conditions, such as cracks (Fig. 10.5a–d), presence
of vehicles (Fig. 10.5e), presence of strong shadows (Fig. 10.5e–h). The proposed
method is also able to extract lanes with circular reflectors as shown in Fig. 10.5f, g.

Figure10.6 shows detection accuracy results of the lanes in datasets 1, 2, and 3,
in which we are evaluating the detection of dashed lane markings (i.e., no circular
reflectors or solid lane boundaries). The effect of changing the number of scan bands
and the scan band width on detection accuracy is shown in Fig. 10.6. It is evident that
reducing the number of scan bands will reduce the detection accuracy of the lane
features because depending on the position of the lane marker and the speed of the
vehicle, the scan band at a particular coordinate may fail to detect the lane marking
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Fig. 10.5 Sample results of the proposed lane analysis method showing lane detection is the
complex road scenes: a and b curved road with linear edges and lane like markings, c and d uneven
road surface with linear features along the lane markings, e presence of overtaking vehicles, f
circular reflectors and shadows, g circular reflectors and faint lanes under heavy shadow, h lanes
on urban roads with frequent shadows
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Fig. 10.6 Detection rate versus number of scan bands for scan band width = 10 and 5

(whichwe consider as failed detection). Therefore, havingmore scan bands increases
the detection rate as seen in Fig. 10.6 for both cases of the scan bandwidth, i.e., 10 and
5 pixels. The detection accuracy with 8 scan bands is over 90% in all test datasets.
This is an important observation because this implies that for the IPM images of
size 360 × 500, processing just 8 scan lines with 10 pixels each is sufficient to get a
detection rate of 95%, instead of processing the entire 360×500 sized image (which
is usually the case in most conventional methods). This figure also plots the detection
accuracy for varying scan band width, i.e., wB = 10 and 5 in Fig. 10.6. A higher
scan width captures more information, implying better detection rate. Therefore, it is
expected that bands with width of 5 pixels have lesser detection rate. However, it is
noteworthy that as the scan lines increase to 8, the detection rate is nearing 90–95%
in both the cases of scan band width. The implication of this on computation cost
will be discussed later.

It can also be seen that for a band width of 10 pixels, the difference in accuracy
between nB = 8 and 4 is less than 20% in each dataset. Therefore, one can decide
to go for 4 scan bands instead of 8, trading off accuracy by less than 20% for half
the number of processors.

10.4.2 Computational Complexity Analysis

Let us now consider themain operations involved in the proposedmethod. Each k×k
filtering operation involves k2 multiplications, k2 − 1 additions and 1 comparison.
Assuming all operations are of equal complexity (simplifiedmodel), the total number
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operations in filtering nB scan bands of width wB each and length Nw is equal to
2nBwBNwk2. The next step involves horizontal projections in each band, which is
wBNwnB addition operations. The shift and add operation involves Nw multiplica-
tions and comparisons per band resulting in a total of 2NwnB operations. Therefore,
the total number of operations for lane feature extraction in the proposed method is
given by

Nprop = 2nBwBNw(k2 + 1) (10.2)

This is a simplified model but it is sufficient to evaluate qualitatively the effect of
scan bands on the overall computation cost efficiency. Figure10.7 shows a scatter
plot between number of operations Nprop and the detection rate for different possible
number of scan bands and scan band widths. The top left corner in the graph, i.e.,
high accuracy but less number of operations, is the ideal place to be in and we can
see in Fig. 10.7 that using eight scan bands of width wB = 5 gives similar detection
rate as eight bands of wB = 10 but at 50% lesser number of operations. Also,
when compared to conventional methods wherein the entire image is processed for
filtering alone, the proposedmethod gives orders of magnitude savings in the number
of operations. Other constraints for embedded realization such as total computation
cycles, latency, energy cost, total memory accesses, etc., are also directly related to
the number of operations by different factors.

Fig. 10.7 Number of operations versus detection rate for different scan band widths in Set 1 and
Set 2
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Fig. 10.8 Detection rate versus number of scan bands for Set 4 with circular reflectors

The effectiveness of the proposed technique to detect circular reflectors using the
proposed scan band based lane feature extraction is illustrated in Fig. 10.8. It can
be seen that a detection accuracy of 85% is obtained using 8 scan bands with each
band of 10 pixels. A comparison on the effect of reducing the scan bands and their
width is also shown in Fig. 10.8. It can be seen that reducing the scan band width
also reduces the detection rate. For the same number of scan bands but scan band
width reduced to 5 pixels, the detection rate has been reduced to about 40%. This is
because thinner scan bands fail to completely and conclusively capture the circular
reflectors. Therefore, having wider scan bands and more number of scan bands to
sample as many reflectors as possible is desirable to get higher accuracy.

An experimentwas also conducted to see the effect of changing the scan band sizes
across different scan bands in a single frame. The scan bands nearer to the ego-vehicle
were given higher weight by having thicker bands (wB = 10) as compared to farther
scan bands withwB = 5. Different permutations were used to find if such hybrids can
give better detection accuracy for lesser number of operations. Figure10.9 shows the
scatter plot with some of these varying options. The optionVARY_5_5_5 _10_10_10
is one particularly interesting design option. It gives a detection accuracy of nearly
90%, which is the same as design options with nB = 8 processors for scan band
widths wB = 5 and 10 both. However, it uses only 6 processors instead of 8. In terms
of number of operations, the design option with wB = 5 is better, but this varying
scan band width design option is better choice if we want to reduce the number of
processors.
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Fig. 10.9 Detection rate versus number of operations with varying band sizes of different scan
bands in the same frame

Fig. 10.10 Detection rate for urban lane scenario with solid lane in Set 5

Figure10.10 shows the detection rates for varying scan bands to detect solid right
lane in urban road context (Set 5). It can be seen that detection rates of over 90% are
achieved for all band widths and any number of scan bands. Also, the dataset was
chosen such that there are heavy shadows of trees in the images (which usually is the
case in most urban road scenarios). These detection rates imply that it is an overkill
if more than 2 processors are running when the system is detecting solid lanes.

InTable10.3,wepresent possible recommendations of the different configurations
that are possible based on the user requirements, road and environmental conditions.
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Table 10.3 Design configurations by varying nB and wB

nB ↓ nB ↓ nB ↑ nB ↑
wB ↓ wB ↑ wB ↓ wB ↑

Lane types

Solid
√ √

Dashed
√ ↔ √

Circular reflectors
√

bot dots

Environmental

Sunny day Depends on lane types above

Night scene
√a

Foggy conditions
√a

Rainy conditions
√a

Embedded constraints

Parallel processing
√ √

Low area constraint
√ √

Pipelining
√ √

Low memory resources
√ √

Timing Depends on hardware configuration
a This also depends on placement of scan bands

First, we consider the types of lane markings and what combination of scan band
size wB and number nB could give acceptable detection rates. For example, solid
lanes require minimal number of scan bands and can also work with smaller band
sizes. However, circular reflectors need higher number and wider band sizes also.
Similarly, certain combinations of nB and wB are suited for specific environmental
conditions. For example, in foggy and rainy conditions, it is desirable to extract lanes
from the road surface closest to ego-vehicle. Therefore, lesser number of bands but
wider bands closer to the vehicle are sufficient for robust extraction.

In the next part of Table10.3, we consider the different configurations for nB and
wB that comply with certain embedded constraints/requirements. A combination of
the selections between the different categories can be used to give a user-constrained
embedded realization of an accurate lane feature extraction system.

10.5 Conclusions

In this paper, we proposed a lane extraction method that is shown to provide a
way to explore the different configurations for embedded realization, based on the
user requirements and the context in which the lane analysis is to be done. It is
shown that the two design parameters, i.e., number of scan bands and width of
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scan bands can be used to get an embedded vision system that caters to robustness
as well as computation cost efficiency. The proposed technique enables to further
study a possible adaptable lane analysis solution that takes into account the road and
environmental conditions.
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Chapter 11
Distributed Smart Cameras in the Age of Cloud
Computing and the Internet-of-Things

Marilyn Wolf

Abstract This chapter considers the implications of cloud-oriented, Internet-of-
Things systems for distributed smart cameras. Advances in smart camera design
enable new applications and capabilities. Advances in middleware and software sup-
port for distributed algorithms on smart camera networks have resulted in improved
software platforms, but work still needs to be done. A variety of network-level algo-
rithms and services are now possible and are starting to be developed.

11.1 Introduction

The term Internet-of-Things (IoT) has become current as an overarching term for
physical objects that have cyber identities. A variety of specific meanings have been
applied to IoT, ranging from simple tagging, through inventorymanagement, through
active sensing. One of the enablers of IoT is cloud computing—cloud databases and
computing services tie together individual things into a coordinated system.

Smart camera networks can play several roles in the IoT universe. On the one
hand, smart camera networks can be used to observe physical objects and systems;
they can provide either primary or corroborative information about the state of the
physical objects. On the other hand, a smart camera network itself is an IoT. Smart
camera systems can leverage IoT and cloud technology to improve the performance,
reliability, and scalability of their services. A network of smart cameras can also
provide useful IoT services, such as crowdsourcednewsor physical location scouting.

In this chapter, we consider several technological trends that contribute to the
move toward cloud-oriented IoT architecture for distributed smart cameras. We start
with potential improvements in camera nodes. Smaller, cheaper, lower-energy, and
higher performance smart cameras can open up new deployment opportunities. We
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survey recent results in both high-performance and low-power camera nodes.We also
look at distributed middleware for distributed camera networks that provide a more
powerful platform for smart camera developers. Finally, we consider algorithms and
services at the network level.

11.2 High-Performance Camera Nodes

Multimedia has been a major driver for system-on-chip development for several
decades; this effort has served as a foundation for embedded vision platforms. A CV-
aware platform is traditionally designed with several goals in mind. High throughput
is important, not just on integer data but also on floating-point operations. Numerical
precision is also an important characteristic, with some interesting trade-offs possible
between accuracy and other system objectives. Low energy operation is a critical
parameter for modern SoCs, which must operate without fans and may operate on
battery power. These platforms are also engineered for relatively low cost compared
to desktop processors. The combination of low energy and low cost has driven many
platform designs to heterogeneous multiprocessors [31].

Small form factor cameras open up a wide range of new applications. Small
cameras can fit into a variety of physical positions that provide new views of the
subject, particularly if the camera does not require cables. Retail is one example
of a field that can use cameras installed in product displays to monitor customer
behavior. Low-power cameras are often cheap, which puts them into the budgets of
more potential users. However, cameras designed to fit into small spacesmust operate
at low power levels to avoid generating excessive heat. Many users also appreciate
the privacy gained by performing in-camera analysis and not transmitting video.

We now know a great deal about how to accelerate video compression, but
we still have something to learn about accelerating computer vision algorithms.
Vision algorithms differ from compression algorithms in that they generally require
higher numerical precision. Numerical representations provide a rich set of trade-
offs between algorithmic accuracy, energy consumption, and area but these trade-offs
need careful evaluation by the designer. Like compression, vision algorithms often
have complex control flows. However, whilemany compression algorithms are pixel-
oriented, many later-stage vision algorithms make greater use of data structures.

Semiconductor manufacturers continue to refine the design of hardware platforms
for vision applications, many of which are heterogeneous multiprocessor systems-
on-chips (MPSoCs). EVE (embedded vision/vector engine) [25] is a co-processor
for embedded vision. It includes a RISC core, a vector core, a DMA engine, a custom
memory switch, and several specialized memories. The DMA engine supports ping-
pong buffering in which the DMA engine fills one side of the buffer for the next
round of operations, while the processors operate on the other side of the buffer. The
vector unit provides scatter/gather memory access to provide additional flexibility
for mid-level vision algorithms with data-dependent regions. The fact that computer
vision systems have not been standardized in the way that video compression has
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beenmakes it more difficult for chip manufacturers to identify accelerators for vision
processors—different software implementations may want to see different interfaces
to the accelerator. A number of semiconductor manufacturers are now creating vision
accelerators. In addition, the semiconductor intellectual property (IP) providers are
developing vision accelerators that can be integrated into new designs. We should
expect to see a great deal of innovation inMPSoCs for vision over the next few years.
OpenVX (http://www.khronos.org/openvx) is being developed as a standard API for
hardware accelerators for computer vision.

GPUs are widely used in desktop and laptop systems; smaller GPUs are now
common in cell phones. Some work has explored the use of GPUs for computer
vision. Fung et al. [14] developed the OpenVIDIA library for nVidia-based GPU-
based computer vision. Their library map the GPU’s vertex processor, rasterizer,
and fragment processor onto various vision kernels. Their approach takes advantage
of fragment shader programs, which can be used to perform filtering on pixels; the
results of one filtering pass can be saved as a texture and used to perform another
filtering pass. Nagendra [24] developed an automotive vision system using GPUs.
The GPU implementations of the vision system, which used Viola and Jones object
detection as well as morphological filters, showed speedups of several times over a
3GHz CPU, but noted the significant power consumption of the GPUs used for the
experiment. Li et al. [17] implemented Haar transform-based face detection on an
Intel Sandy Bridge processor, which combines CPU cores and a GPU. Their results
showed an average speedup for the CPU-GPU combination of 3X over the CPU-only
implementation.

FPGAs provide powerful capabilities for the design of customized hardware plat-
forms for computer vision. Matai et al. [20] designed a complete face detection and
recognition system on an FPGA. The first stage of processing performed face detec-
tion using a design byCho et al. [4]. That architecture is based onAdaBoost and com-
putes Haar classifiers to detect faces. Jacobsen et al. [21] designed an FPGA-based
system for accelerating online boosting for multi-target tracking. At each tracking
step, a region around the last known location is searched to find a new location and
new positive and negative training examples are selected. The classifier is used to
generate training data for the next step. This approach requires sequential passes
through the image data to first find the new location, then identify training exam-
ples. Classification is performed using Haar-like features that consist of between two
and six non-adjacent rectangles. The FPGA implementation could track 57 indepen-
dent targets at 30 frames/s. Gudis et al. [11] built FPGA-based vision systems based
on a crossbar-connected set of accelerators, a DRAM controller, and an ARM host
processor. The accelerators can be accessed via a C++ API.

Floating point is an important aspect of any embedded vision platform. Float-
ing point computation is used in higher level classifiers and also in some more
pixel-oriented algorithms such as optical flow. It is particularly important for FPGA-
based systems because floating point is one of the aspects that provides the biggest
cost/accuracy/performance trade-offs. IEEE compliant floating-point is not always
necessary and not always an asset. The ability to control the accuracy of number
representation is a basic consideration in platform design. The algorithm used to

http://www.khronos.org/openvx
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Table 11.1 Comparison of vision processor approaches

Architecture Pros Cons

GPU Good floating-point performance Specialized programming model,
complex memory system

MPSoC High performance at low power Can’t mix and match pieces

FPGA High performance, leverages special-
ized numerical designs

Requires hardware expertise

compute division can play a key role in the cost/accuracy/performance trade-off
analysis. The VFloat library [28] provides a library of configurable floating-point
units for reconfigurable computing fabrics. The modules parameters can be used by
the designer to vary the accuracy and implementation cost of the generated module.

Table11.1 summarizes some of the key differences between these approaches.
GPUs have high performance, particularly for floating-point algorithms, but have
a non-standard programming model and complex memory systems. MPSoCs have
good performance/power but the system designer must choose among platforms that
may vary widely in the accelerators they offer. FPGAs provide high performance,
particularly for specialized numerical algorithms, but their design requires hardware
expertise.

Platformdesign also needs efficient and scalableways to integrate accelerators and
processors.Networks are required for high-performance physical transport thatmeets
the high bandwidth demands of computer vision. Firmware and software interfaces
are crucial to the development and portability of systems based on such platforms.
Gudis et al. [11] developed a service-oriented framework for integrating accelerators
into heterogeneous processors. Video devices are connected by a crossbar. Vision
accelerators shared the same memory space with the ARM host processor. A vision
service framework provides abstractions for the accelerators and managing their
communication. Farabet et al. [9] used a dataflow style for accelerators connected in
a 2-D mesh. It uses a smart DMA unit as a memory controller.

11.3 Low-Power Camera Nodes

Low-power, small form factor cameras are increasingly available. The camera mod-
ules for hobbyist platforms such as Raspberry Pi are examples of the impressive
combinations of optics, image sensors, computers, and networks that we can build.
Researchers are also developing self-powered image sensors that can operate from
scavenged energy. Low-power camera nodes have several characteristics that influ-
ence the vision algorithms deployed on them. They may provide relatively low reso-
lution. They will almost certainly operate at small apertures to avoid focusing; this in
turn limits their low-light capabilities. They may have relatively simple processors,
largely due to limitations on the amount of heat they will be allowed to dissipate. If
they are self-powered, they will not always be on.
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The sensor network community has developed several camera nodes. Rahimi
et al. [23] describe the Cyclops imager for wireless sensor networks. The image
sensor provides a maximum resolution of CIF quality (352 × 288). The camera
module can perform demosaicing, image scaling, color correction, tone correction,
and color space conversion. An 8-bit ATMEL ATmega128L processor controls the
camera. AXilixnCPLDoperates as a lightweight, low-power frame grabber. Cyclops
provides 64kB of SRAM and 512kB of flash. Chen et al. [3] designed the CITRIC
camera for low-bandwidth wireless sensor network applications. The device includes
a 1280 × 1024 pixel image sensor, a mono microphone with sample rates ranging
of 8–48 ks/s, an Intel XScale PXA270 processor with scalable clock frequencies,
64MB RAM and 16MB ROM; it is designed to connect to the TelosB sensor node
board with dimensions of about 2′′ × 2′′. They measured the power consumption of
CITRIC running a background substraction algorithm at 970mW at a clock speed
of 520MHz. They reported the execution time of several vision algorithms: 340ms
for a Canny edge detector using the Intel Integrated Performance (IPP) primitives;
140ms for a median filter not using IPP and 34ms for a median filter using IPP.

Several sensors have been developed with on-sensor image analysis. These analy-
sis circuits are generally analog functions that perform simple, relatively fixed oper-
ations at very low energy and high speed. Liu et al. [16] describe a CMOS image
sensor with on-chip motion detection. Their sensor operates in three modes. Event
generation mode identifies events by computing frame-to-frame luminance differ-
ences; a given number of pixels exceeding a difference threshold generates an event.
Motion tracking mode uses 1-D Gaussian filters to smooth the image to generate
row and column events. Video output mode provides full-resolution and compressed
image output of the region of interest. Dubois et al. [6] designed a 64 × 64 CMOS
image sensor that can perform high-speed gradient analysis. They designed an octag-
onal photodiode to reduce wire lengths to adjacent pixels. The area between sets of
four adjacent pixels is occupied by an analog multiplier that performs the function
V1 cos(β)+V2 sin(β)−V3 sin(β)−V4 sin(β). They showed how to use the function
to implement the Sobel operator and Laplacian.

Several groups have also designed ultra low-power image sensors. These sensors
generally offer lower resolution but at extremely low energy levels. Energy harvesting
has been successfully applied to a variety of ultra low-power systems and some recent
work has explored energy harvesting for image sensors. Hanson and Sylvester [12]
describe an ultra-low power sensor. Their test chip provides 128 × 128 pixels and
is designed to operate over a range of power supply voltages from 0.45 to 0.7 V. It
consumes 140nJ per frame at 8.5 frames/s. Tang et al. [8] describe a CMOS image
sensor with an energy harvesting mode. The imager has two modes, one for imaging
and the other for harvesting energy from light using the pixels. In energy harvesting
mode, the sensor can harvest 80nA at 350 lux and 9.7µA at 3,500 lux. Their sensor
has a resolution of 128 × 96 pixels and consumes 10µW at 10 frames/s. At these
rates of energy harvesting and usage during imaging, the energy required to capture
one frame can be provided through 200ms of energy harvesting.
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11.4 Middleware for Distributed Systems

Distributed computer vision systems are complex systems.As such, they need sophis-
ticated software support. Dynamic management of resources is essential to correct
and efficient utilization of computational and memory resources. Middleware also
abstracts important operations such as communication and hides their details from
application developers. Middleware allows computer vision developers to concen-
trate on vision algorithms. System-on-chip platforms for video computing generally
provide reasonablemiddleware to support on-chip computation, communication, and
storage. But middleware for computer vision systems still requires further develop-
ment.

Why do we need middleware for distributed smart cameras? A well-defined mid-
dleware API provides useful services that allow vision algorithm designers to build
complex algorithms without worrying about certain details. Middleware for vision
systems should provide at least two types of services that cover the sorts of things
many vision algorithm designers do not want to worry about. First, it should provide
a simple mechanism for a set of camers to share data. Distributed algorithms inher-
ently require sharing data; the communication protocols can require complex code
sequences, particularly when real-time or timeout-sensitive performance is required.
Second, middleware should allow one camera to request another camera to perform
a task, a different type of service from communication. Moving data is part of a ser-
vice, but you also need to schedule the set of processes required to perform the task.
You may also have some freedom as to which node performs the task, in which case
the middleware should choose a server based on loads, battery lifetime, bandwidth,
etc.

MPI [10] is a message passing system that is widely used to build parallel and
distributed computing applications. However, it has not received wide adoption in
embedded systems despite several efforts to develop versions of MPI for embedded
computing. McMahon and Skellum [22] developed a subset of MPI for memory-
constrained embedded systems. Their design experiment completed two different
approaches to embedded MPI subsets, which they compared in terms of code size,
development effort, and flexibility. Agbaria et al. [1] developed a lightweight version
of MPI known as LMPI. Kanevsky et al. [15] took a somewhat different approach,
developing MPI/RT to add quality-of-service requirements to the MPI model. Ly
et al. [18] developed anFPGAversion ofMPI that allowed interactionswith hardware
accelerators as well as software modules.

Doblander et al. [5] developed a SmartCam framework that operates as middle-
ware on top of standard operating systems. SmartCam abstracts lower level com-
munication services by providing a publish-subscribe model by which applications
can communicate. Applications use mailboxes to distribute data; in the case of large
video objects, the data are identified by reference. The DSP framework abstracts
the hardware and communication, supports dynamic loading/unloading of tasks, and
management of on-chip and off-chip resources.
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11.5 Peer-to-Peer Distributed Algorithms

Client-server architectures do not scale for a wide range of vision problems. The
community has now developed a range of distributed algorithms for important vision
tasks, but we still have much to learn.

Long-term tracking using cameraswith nonoverlapping views has received a great
deal of attention. Kim and Wolf [13] developed a distributed algorithm for Markov
chain Monte Carlo tracking. Cameras estimate local paths based on local communi-
cations; the local paths are then transmitted through the network and concatenated
to build longer tracks of the target. Esterle et al. [7] use autonomous self-interested
agents to learn the vision graph during operation. The algorithm does not require
multi-camera calibration since it does not rely on a priori camera topology informa-
tion. Cameras bid for the right to track an object; the utility of a tracked object to a
camera depends on the visibility of the target to the camera and its confidence in its
tracking estimate. Sales of a target from one camera to another are used to build the
structure of the vision graph. As the systemmakes more observations, the communi-
cations between cameras can become more targeted based on their understanding of
the vision graph structure. Wan and Li [27] formulated an online algorithm for asso-
ciating observations with targets; at each new observation, nodes trade information
with neighbors on observations and networks, then update their inferences.

Sek Chai [26] describes a distributed smart camera system based on smartphone
processors called visual sensor networks (VSNs). Nodes distribute metadata for
search purposes while video data remains on the local nodes. Metadata is organized
into a video catalog accessible using key search indices including time, location,
and object description. Nodes decide when to activate their cameras in order to
manage their energy consumption; a node may be turned on at a predefined time or
by an external event such as sound or vibration detection. Their implementation on a
Qualcomm Snapdragon MSM8960 used 1.6W for capture, processing, and storage
of compressed video, with motion tracking and analytics generation requiring an
additional 0.4W.

An early example of in-network search was provided by Yan et al. [32], who
developed a distributed image search system for a sensor network based on iMote2
sensor nodes. Their system uses SIFT to generate feature vectors that are clustered
into visterms (representation of an image feature). They optimized both their vocab-
ulary tree and inverted index for flash memory. They used buffered lookup to reduce
the performance penalty of storing the vocabulary tree in flash, which has much
longer access times than RAM. The read the tree in subtree increments that fit into
ram, then buffer a collection of SIFT vectors for lookup in the subtree. Optimizations
for the inverted index were designed to compensate for the write characteristics of
flash: writes are slower than reads, and an entire block must be erased and rewritten
to change any value in the block [19]. They stored the inverted index in a log-
structure, which uses an appended log to record changes to the file, which requires
multiple file reads for a data access. They minimize read overhead by writing only
visterms with many associated image IDs to flash; Zipf’s Law predicts that a small
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number of vistermswill have very long image chains. They also performeddistributed
search: queries were distributed to the nodes, which computed a local ranking
of search results; these results were sent back to the proxy, which normalizes the
local search results by adjusting based on the number of images in which each vis-
term occurs and the total number of images in the database.

11.6 Cloud-Aware Systems

Although peer-to-peer is the clear choice formany algorithms, cloud-based computer
vision also makes sense in other applications. Both online analysis and search are
potentially amenable to the cloud. This is particularly true when we see peer-to-
peer and cloud as part of a continuum. Our challenge is to partition an algorithm
between camera nodes, the network, and the cloud. A variety of commercial services
provide cloud-based online analysis. Several retail customer analysis companies, for
example, use network cameras to ship video to the cloud for analysis. Widen [30]
surveys U. S. law on privacy and surveillance.

Law enforcement has received a great deal of attention as an application of both
online analysis and search. An episode of Nova [29] surveyed the various tech-
nologies, including video search, used to track down the Boston Marathon bombing
suspects. Much of the video used in the initial analysis was gathered by detectives
going door-to-door to local businesses. They also describedNewYorkCity’s Domain
Awareness System, which analyzes in real-time video from 4,000 video cameras as
well as environmental sensors and license plate readers. The system reads license
plates in every lane of the bridge and tunnel connections into lower Manhattan and
compares them to terror watch lists. It analyzes video for suspicious behavior in real
time; it can also perform query-based search.

We are also starting to see computer vision implemented as cloud applications.
CloudCV [2] provides a library of computer vision algorithms as a cloud service. It
provides Matlab and Python interfaces to its services. At the time of this writing, it
implements image stitching and object detection.

11.7 Conclusion

Advances in camera platforms are driving important new applications of distributed
smart cameras. Moore’s Law provides not only high-performance computing nodes
but also advanced image sensors. FPGAs also provide rich platforms for the develop-
ment of custom vision platforms. Middleware can allow vision algorithm designers
to concentrate on vision without worrying about managing communication, mem-
ory, and processors. Peer-to-peer algorithms provide a powerful mechanism for the
design of ubiquitous smart camera networks. Cloud-aware vision systems comple-
ment peer-to-peer algorithms.
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Chapter 12
Data-Driven Stream Mining Systems
for Computer Vision

Shuvra S. Bhattacharyya, Mihaela van der Schaar, Onur Atan, Cem Tekin
and Kishan Sudusinghe

Abstract In this chapter, we discuss the state of the art and future challenges in
adaptive streammining systems for computer vision. Adaptive streammining in this
context involves the extraction of knowledge from image and video streams in
real-time, and from sources that are possibly distributed and heterogeneous. With
advances in sensor and digital processing technologies, we are able to deploy net-
works involving large numbers of cameras that acquire increasing volumes of image
data for diverse applications in monitoring and surveillance. However, to exploit the
potential of such extensive networks for image acquisition, important challengesmust
be addressed in efficient communication and analysis of such data under constraints
on power consumption, communication bandwidth, and end-to-end latency. We dis-
cuss these challenges in this chapter, and we also discuss important directions for
research in addressing such challenges using dynamic, data-driven methodologies.

12.1 Introduction

In this chapter, we address challenges involving the development of algorithms,
models, and designmethods for distributed and adaptive real-time knowledge extrac-
tion of information from high volume image streams. We focus on an important
emerging class of “big data” systems called adaptive stream mining (ASM) systems,
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and discuss the state-of-the-art and challenges in design and implementation of
effective ASM systems for embedded computer vision. ASM systems can be viewed
as real-time data mining systems that operate on streams of data and are constructed
as topologies (directed graphs) of classifiers, where parameters associated with the
topologies and constituent classifiers may be manipulated dynamically based on
changes in data characteristics, operational constraints, and other relevant run-time
considerations.

Intended applications of ASM systems for embedded computer vision are very
diverse, ranging from medical services, to dynamic management of vehicular traf-
fic, to real-time detection of events in home-based health-care, to many kinds of
surveillance and environmental monitoring applications. Each of these applications
requires a topology of classifiers (such as a chain or “pipeline” configuration) that
analyzes streaming data (which dynamically changes over time) from a set of raw
data sources to extract valuable information in real time.

The need for adaptivity in ASM systems is inherent in almost all practical
knowledge extraction application areas as data characteristics and operating con-
ditions often exhibit uncertain or time-varying behavior. Accurate assessment,
understanding, and optimization of ASM systems generally requires extensive
experimentation of how algorithms for data classification and classifier adaptation
interact with the characteristics of input data, and how scheduling and buffer man-
agement for such algorithms should be performed to satisfy real-time constraints
subject to given resource constraints.

Decomposing applications as topologies of distributed processing operators has
merits that transcend the scalability, reliability, and performance objectives of
large-scale, real-time stream mining systems [1, 11, 18, 27]. Specifically, many
stream classification and mining applications implement topologies (ensembles such
as trees or cascades) of low-complexity binary classifiers to jointly accomplish the
task of complex classification [24]. Such a structure enables the successive identifi-
cation of multiple attributes in the data, and also provides significant advantages in
terms of reduced resource consumption through appropriate dynamic data filtering,
based on the incrementally identified attributes.

It has been shown that using a tree of binary classifiers can achieve better
performance compared to other techniques such as support vectormachines or SVMs
(e.g., see [10]), rule-based techniques, and neural nets for some applications [6, 11,
19, 26, 28, 31, 42]. Furthermore, using classifiers operating in series with the same
model (boosting [31]) or classifiers operating in parallel with multiple models (bag-
ging [19]) has resulted in improved classification performance.

12.2 ASM System Example

Consider the surveillance application depicted in Fig. 12.1. A straightforward
approach to dealing with this application requires the cameras to acquire the images
on a continuous basis with the highest resolution, and send them to a central process-
ing unit that is responsible for analyzing the images with complex data analytics.
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Fig. 12.1 An example of an ASM system for surveillance

Unfortunately, this approach is infeasible because it requires large communication
bandwidths and energy consumption, and long transmission and processing delays.
A feasible approach involves classifiers—localized in the same processing node of
a camera—that are in charge of preprocessing the images. Based on the results
of such preprocessing, the classifiers decide: (1) at which rate to acquire images,
(2) whether or not to discard a specific image, and (3) in case the image is not
discarded, the node to which the image must be sent for further processing and the
resolution at which the imagemust be transmitted. Then the results of image process-
ing can be exploited to trigger actions that modify the environment under observation
(e.g., some roads are opened or closed) and even the streammining system itself (e.g.,
additional cameras are turned on).

12.3 Challenges in ASM System Design

Key challenges in distributed real-time streammining systems arise from the need to
cope effectively with system overload due to large data volumes and limited system
resources. There is a large computational cost incurred by each classifier (propor-
tional to the data rate) that limits the rate at which the application can handle input
video. Commonly used approaches to dealing with this problem in resource con-
strained stream mining are based on load-shedding, where algorithms determine
when, where, what, and howmuch data to discard given the observed data character-
istics, e.g. burst, desired Quality of Service (QoS) requirements [4, 5, 37–41], data
value or delay constraints [12, 15].
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An alternate approach to resource-constrained stream mining involves cons-
tructing topologies of classifiers based on hierarchical semantic concepts, and allow-
ing individual classifiers in the topology to operate at different performance levels
given the resources allocated to them. The performance level is determined by a clas-
sifier operating point that corresponds to the selected trade-off between probability
of detection pD and probability of false alarm pF. Here, the probability of detection
is defined as pD = ptp + ptn, where ptp and ptn denote, respectively, the probability
of a true positive, and the probability of a true negative.

This approach is illustrated in Fig. 12.2, where the curve on the right side shows a
profile of the classifier accuracy in terms of the detection error trade-off (DET)—i.e.,
the trade-off of pD versus pF. Examples of operating points include decision thresh-
olds for likelihood ratio tests or SVM normalized scores. Hence, instead of deciding
on what fraction of the data to process, as in load-shedding approaches, such an
approach determines how the available data should be processed given the underly-
ing resource allocation. A solution based on this approach for configuring filtering
applications that employ binary classifier chains has been proposed [14, 16–18].

Nevertheless, general binary tree topologies go significantly beyond linearly
cascaded classifiers by providing greater flexibility in data processing, while also
posing different challenges in terms of resource-constrained configuration. Specif-
ically, while excess load can be easily handled within the optimization framework
for a binary classifier chain, using a single operating point for each classifier in a
tree generates two output streams with a total sum output rate that is fixed. Hence,
it may not be possible to simultaneously meet tight processing resource constraints
for downstream classifiers along both output edges when using only one operating
point.

12.4 Dynamic, Data-Driven ASM Systems

Building on the conceptual framework of dynamically reconfigurable topologies
of classifiers introduced in Sects. 12.1 and12.3, an important direction for further
work on stream mining for computer vision systems is in the rigorous integration of
Dynamic Data Driven Applications Systems (DDDAS) into all aspects of processes
for design and implementation. A significant class of future challenges for embedded
computer vision therefore involves what may be referred to as DDDAS-enabled ASM
systems.

12.4.1 DDDAS-Enabled ASM Systems

DDDAS is a paradigm that rigorously integrates application system modeling,
instrumentation, and dynamic, feedback-driven adaptation of model and instrumen-
tation parameters based on measured data characteristics [13]. DDDAS methods are
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Fig. 12.2 An illustration of an adaptive and scalable classifier

highly relevant to design and implementation of ASM systems because they enable
techniques for exploiting characteristics of the currently arriving set of image streams
as well as characteristics of the overall operating environment to dynamically opti-
mize critical trade-offs among key execution metrics, including power consumption,
communication bandwidth, knowledge extraction accuracy, and end-to-end latency.

In ASM systems for embedded computer vision, DDDAS can be employed, for
example, at network edges to systematically filter out image features that are not rel-
evant to the current operational scenario or to adjust the resolution or frequency
of captured images based on the type of object or amount of motion detected.
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Such preprocessing at the network edges can help to reduce communication with
a back-end server, and to improve overall system accuracy under communication
and computation constraints. DDDAS techniques can also be employed at the server
side. An example of such an application would be to dynamically determine the set
of cameras at the network edges that should be active at a given time—e.g., to opti-
mize trade-offs among energy efficiency, communication bandwidth requirements,
and accuracy for the current image analysis scenario. In Sect. 12.5, we provide a
detailed case study ofDDDASmethods applied to a relevant application in embedded
computer vision.

Use of DDDAS design techniques involves tightly integrated feedback from
instrumentation. Use of DDDAS design techniques also involves application of
dynamic parameters that are adapted based on such feedback, and that also control
how subsequent rounds of instrumentation are performed. Figure12.3 illustrates an
abstract view of DDDAS as it relates to the class of streammining systems addressed
in this chapter.

Key challenges in integrating DDDAS principles into stream mining systems
include the following.

• Development of abstract models for stream mining systems that can compactly
and accurately represent the underlying design space of topological and classifier
configurations. For this purpose, signal-processing-oriented dataflow models of
computation are a promising starting point [8, 35].

• Development of methods to steer parameters of image stream acquisition (e.g.,
to select specific subsets of cameras or frame rates and resolutions for activated
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Fig. 12.3 An illustration of the LiD4E design tool and its application to DDDAS-enabled, multi-
media, stream mining system design

cameras) based on the currently active regions of the streammining design spaces,
as estimated, for example, with the help of the abstract models described above.

• Development ofmethods to dynamically optimize themapping ofASM topologies
onto the targeted hardware platforms based on current configurations for the
topologies, and their constituent classifiers. This mapping process may be espe-
cially challenging due to dynamics in stream mining topology characteristics,
resource constraints on the target platforms or severe application requirements in
terms of the volume of image data that needs to be processed, real-time constraints,
etc.

Lightweight Dataflow for Dynamic Data-Driven Application Systems Environment
(LiD4E) is a recently-developed design tool to help in the investigation of these chal-
lenges and other aspects of DDDAS-enabled stream mining systems. We discuss
LiD4E next, in Sect. 12.4.2.

12.4.2 LiD4E

In this section, we provide an overview of LiD4E, which is a design environment that
has been developed to facilitate experimentation with methods for DDDAS-enabled
ASM system design, with emphasis on multimedia ASM systems [35].



256 S.S. Bhattacharyya et al.

A key feature of LiD4E is the provision for signal processing pipelines (i.e.,
chains of signal processing modules, such as classifiers, digital filters and transform
operators) that can be data-dependent and dynamically changing. LiD4E employs
hierarchical core functional dataflow (HCFDF) semantics as the specific form of
dynamic dataflow [35]. HCFDF and the core functional dataflow (CFDF) model [29]
that it extends belong to the class of signal-processing-oriented dataflow models
of computation described in Sect. 12.4.1. HCFDF can be viewed as a hierarchical
extension of CFDF. Through its emphasis on supporting structured, application-level
dynamic dataflow modeling, HCFDF provides a formal, model-based framework
through which stream mining applications can be designed and analyzed precisely
in terms of integrated principles of DDDAS and dataflow.

InHCFDF graphs, actors are specified in terms of sets of processingmodes, where
each mode has static dataflow rates—i.e., each mode produces and consumes a fixed
number of data values (tokens) on each actor port. However, different modes of the
same actor can have different dataflow rates, and the actor mode can change from one
actor execution (firing) to the next, thereby allowing for dynamic dataflow behavior
(dynamic rates). Additionally, HCFDF allows dataflow graphs to be hierarchically
embedded (nested) within actors of higher level HCFDF graphs, thereby allowing
complex systems to be constructed and analyzed in a scalable manner. The design
rules prescribed for hierarchical composition in HCFDF graphs ensure that actors
at each level in a design hierarchy conform to the semantics of HCFDF or some
restricted subset of HCFDF semantics, such as cyclo-static dataflow or synchronous
dataflow (SDF) [9, 23]. For further details on HCFDF semantics, we refer the reader
to [35].

As demonstrated in [35], HCFDF modeling enables run-time adaptation of signal
processing topologies, including dataflow graphs that are constructed using arbitrary
combinations of classifiers, filters, and transform units. Through the inclusion of
a special HCFDF design component called an adaptive classification module, the
designer can invoke multiple operating modes at run-time, and selection of such
operating modes can be driven based on system feedback—e.g., based on instru-
mentation that monitors data characteristics, and guides selection based on desired
trade-offs among performance, accuracy, and energy consumption.

Figure12.3 provides an illustration of the LiD4E design tool and its application
to DDDAS-enabled, multimedia, stream mining system design. For more details on
LiD4E, we refer the reader to [35]. Extensions of the design principles in LiD4E to
handle multi-mode stream mining systems are discussed in [34].

12.5 Case Study: Learning Based on Multi-armed Bandits

In this section, we present a case study in data-driven ASM techniques that are
relevant for the emerging class of a ASM-enabled, embedded computer vision sys-
tems introduced in Sect. 12.1 through Sect. 12.4. The methods presented in the case
study can be viewed as representative of the kinds of advances that are needed to
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address the challenges in providing robust, efficient, and integrated stream mining
solutions for next-generation embedded computer vision systems.

The methods discussed in this section were originally presented in [2]. In this
section, we provide a concise summary of the developments in [2] in the context of
ASM systems for embedded computer vision. For full details on these methods, we
refer the reader to [2].

12.5.1 Overview

In most video-based object or face recognition services on mobile devices, each
device captures and transmits video frames over a wireless channel to a remote
computing service (a.k.a. the “cloud”) that performs the heavy-duty video feature
extraction and recognition tasks for a large number of mobile devices. The major
challenges of such scenarios stem from the highly-varying contention levels in the
wireless local area network (WLAN), as well as the variation in the task-scheduling
congestion in the cloud.

In order for each device to maximize its object or face recognition rate under
such contention and congestion variability, a systematic learning framework based
on multi-armed bandits has been developed [2]. Unlike well-known reinforce-
ment learning techniques that exhibit very slow convergence rates when operating
in highly-dynamic environments, this bandit-based, systematic learning approach
quickly approaches the optimal transmission and processing-complexity policies
based on feedback on the experienced dynamics (contention and congestion levels).
The case study presented in this section centers on this bandit-based, systematic
learning approach.

Many of the envisaged applications and services for wearable sensors, smart-
phones, tablets or portable computers in the next ten years will involve analysis of
video streams for event, action, object or user recognition [21, 32]. In this process,
they experience time-varying channel conditions, traffic loads and processing con-
straints at the remote cloud-computing servers where the data analysis takes place.
Examples of early commercial services in this domain include Google Goggles,
Google Glass, Facebook automatic face tagging [7], and Microsoft’s Photo Gallery
face recognition.

12.5.2 Application Example

Figure12.4 presents an example of such deployments. Video content producers
include several types of sensors, mobile phones, as well as other low-end portable
devices, that capture, encode (typically via a hardware-supported MPEG/ITU-T
codec) and transmit video streams to a remote computing server for recognition
or authentication purposes. A group of M devices in the same WLAN comprises a
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Fig. 12.4 Illustration of object or face recognition via adaptive wireless video transport to a remote
computing server

wireless cluster. A server running openstack or Hadoop (or a similar runtime envi-
ronment suitable for cloud computing) [25] is used for analyzing visual data from
numerous wireless clusters, as well as other computing tasks unrelated to object or
face recognition.

Each device can adapt the encoding bitrate, as well as the number of frames
to produce (with the ensemble of N such settings comprising the set A =
{a1, a2, . . . , aN }), in order to alleviate the impact of contention in the WLAN. At
the same time, the visual analysis performed in the cloud can be adapted to scale
the required processing time to alleviate the impact of task scheduling congestion
in the cloud [25, 30], with the sets of contention and congestion levels represented
by the discrete sets T and G , respectively. In return, each device receives from the
cloud a label that describes the recognized object or face (e.g., the object or person’s
name), or simply a message that the object or person could not be recognized. In
addition, each device or wireless cluster can also receive feedback on the experi-
enced WLAN medium access control (MAC) layer contention and the cloud task
scheduling congestion conditions.

Thus, the “reward” for each device is the recognition result at each time step.
Given that each wireless access point and the cloud computing infrastructure serve
many more requests than the ones from a given cluster of devices (as illustrated in
Fig. 12.4), we can safely assume that for each device, the wireless contention and
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cloud congestion levels are both independent of the actions taken by the devices
within their clusters. This makes each device independent, since the decisions made
by other devices do not affect the reward.

12.5.3 Relation to Prior Work

Each mobile device of Fig. 12.4 seeks to maximize its own expected recognition
rate at the minimum possible cost in terms of utilized wireless resources (i.e., MAC
superframe transmission opportunities used). To this end, several approaches have
been proposed that are based on reinforcement learning [36], such asQ-learning [30].
In these, the goal is to learn the state-value function, which provides a measure of the
expected long-term performance (utility). However, they incur large memory over-
heads for storing the state-value function, and they are slow to adapt to new or dynam-
ically changing environments. A better approach is to intermittently explore and
exploit when needed, in order to capture such changes. Index policies formulti-armed
bandit (MAB) problems, contextual bandits [22, 33], or epsilon-decreasing algo-
rithms [3] can be used for this task. However, all existing bandit frameworks do not
take into consideration the contention and congestion conditions as contexts in the
application under consideration.

12.5.4 Learning Based on Multi-user Bandits

Motivated by the lack of efficient methods that fully capture the problems related to
online learning in multi-user wireless networks and cloud computing systems with
uncertain and highly-varying resource provisioning, an online systematic learning
theory based on multi-user contextual bandits has been developed. This learning
theory can be viewed as a natural extension of the basic MAB framework. Analytic
estimates have been derived to compare its efficiency against the complete knowledge
(or “oracle”) benchmark in which the expected reward of every choice is known by
the learner. Unlike Q-learning [36] and other learning-based methods, it is proven
that the regret bound—the loss incurred by the algorithm against the best possible
decision that assumes full knowledge of contention and congestion conditions—is
logarithmic if users do not collaborate and each would like to maximize the user’s
own utility. Finally, the contextual bandit framework discussed here is general, and
can be used for learning in various kinds of wireless embedded computer vision
applications that involve offloading of selected processing tasks. Henceforth in this
chapter, we refer to the contextual bandit framework by the abbreviation CBF.



260 S.S. Bhattacharyya et al.

Table 12.1 Average attempts (with the oracle bound given in parentheses) to obtain a recognition
rate of 0.9 with 2D-PCA

Method Iteration

T = 50 T = 100 T = 250 T = 1,000

CBF 3.3 (1.7) 3.1 (1.6) 2.4 (1.5) 1.9 (1.5)

CBF no context 3.1 (1.7) 2.8 (1.6) 2.6 (1.6) 2.4 (1.6)

Q-learning 3.5 (1.7) 2.8 (1.6) 2.7 (1.5) 2.2 (1.5)

12.5.5 Numerical Results

The CBF has been evaluated by simulation. The simulation environment comprises
four mobile devices connected via an IEEE 802.11 WLAN to a cloud-computing
server. Videos of human faces are produced by random images of persons taken
from the extended Yale Face Database B (39 cropped faces of human subjects under
varying illumination) [20]. Each video comprises 34 images from the same person,
and is compressed to a wide range of bitrates via the H.264/AVC codec (x264 codec,
crf ∈ {4, 14, 24, 34, 44, 51}). The 2D PCA algorithm [43] is used at the cloud side
for face recognition from each decoded video (with the required training done offline
as per the 2D PCA setup [43]). More than 80% of the video frames have to match to
the same person in the database to declare a given video as “recognized”. There is a
time window set for recognition, which limits the number of frames received by the
cloud under varying WLAN contention levels (delay is increased under contention
due to the backoff and retransmissions of IEEE 802.11 WLANs). Similarly, because
of randomly varying congestion in the cloud, only a limited number of the received
video frames is actually used by 2D PCA, thereby affecting the recognition rate.

Table12.1 presents the average number of retries performed per recognition action
by the CBF method (with and without using the cloud congestion information as
context) in order to achieve a recognition rate of 90%. Results are also presented in
the following ways.

• An optimal solution that selects the transmission setting yielding the highest
expected recognition rate [2]. This solution is defined as the oracle solution, since
it assumes that all conditions for each case are precisely known beforehand.

• Q-learning [36, 44], as discussed in Sects. 12.5.3 and12.5.4.

The results indicate that after 250 recognition attempts (each attempt comprises
the retries listed), the CBF method approaches the oracle bound, and for the same
recognition rate, incurs less retries per attempt in comparison to Q-learning.
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12.5.6 Summary

In this section, we have examined in some detail a concrete case study of emerging
methods for data-driven, ASM system design targeted to embedded computer vision.
In particular, we have discussed a contextual bandit framework (CBF) for learning
contention and congestion conditions in object or face recognition viawirelessmobile
streaming and cloud-based processing. Analytic results show that the CBF frame-
work converges to the value of the oracle solution (i.e., the solution that assumes
full knowledge of congestion and contention conditions). Simulations within a
cloud-based face recognition system demonstrate that the CBF approach outper-
forms Q-learning, as it quickly adjusts to contention and congestion conditions. For
more details on the CBF approach, we refer the reader to [2].

12.6 Future Directions in Stream Mining Systems
for Computer Vision

Most existing solutions for designing and configuring computer vision and
stream-mining systems based on the extracted visual data offload their processing to
the cloud and assume that the underlying characteristics (e.g., visual characteristics)
are either known, or that simple-yet-accurate models of these characteristics can
be built. However, in practice, this knowledge is not available and models of such
computer vision applications or the associated processing mechanisms are very dif-
ficult to build and calibrate for specific environments, since these characteristics are
dynamically varying over time. Hence, despite applying optimization, these solu-
tions tend to result in highly sub-optimal performance since the models they use
for the experienced dynamics are not accurate. Hence, reinforcement learning (i.e.,
learning how to act based on past experience) becomes a vital component in all such
systems. Some of the best-performing online reinforcement learning algorithms are
Q-learning and structural-based reinforcement learning. In these, the goal is to learn
the state-value function, which provides a measure of the expected long-term per-
formance (utility) when it is acting optimally in a dynamic environment. It has been
proven that online learning algorithms converge to optimal solutions when all the
possible system states are visited infinitely often [36].

However, these methods have to learn the state-value function at every possible
state. As a result, they incur large memory overheads for storing the state-value
function and they are typically slow to adapt to new or dynamically changing
environments (i.e., they exhibit a slow convergence rate), especially when the state
space is large—as in the considered wireless transmission and recognition prob-
lem of Sect. 12.5. These memory and speed-of-learning deficiencies are alleviated
in structural-based learning solutions. Despite this, a key limitation still remains:
all these schemes provide only asymptotic bounds for the learning performance—no
speed-of-learning guarantees are provided. Nevertheless, in most computer vision
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and recognition systems, users are interested in both short-term performance and
long-term performance.

12.7 Conclusion

In this chapter, we have introduced the emerging area of adaptive stream mining
systems for embedded computer vision, and we have discussed important research
challenges in this area.We have emphasized key challenges in integratingmethods of
Dynamic Data Driven Applications Systems (DDDAS) rigorously in the design and
implementation process for the targeted class of embedded computer vision systems.
We have discussed the Lightweight Dataflow for Dynamic Data-Driven Application
Systems Environment (LiD4E) as a recently-introduced design tool for experiment-
ing with DDDAS-enabled stream mining methods. As a concrete example of recent
advances in DDDAS-enabled adaptive stream mining, we have presented a case
study involving learning based on multi-armed bandits. As motivated in this chapter,
addressing the future challenges of adaptive stream mining systems for embedded
computer vision will require interdisciplinary advances in areas that includemachine
learning, DDDAS design methods, and distributed embedded systems.
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Chapter 13
Designing Vision Systems that See Better

Sek Chai, Sehoon Lim and David Zhang

Abstract This chapter introduces computational sensing and imaging—a branch of
computer vision that deals with embedded processing for capturing higher quality
imagery, to the embedded vision developer. In this research domain, issues such as
exposure, motion blur, and dynamic range are addressed by fundamentally changing
how light is sensed, captured, and made available for downstream semantic process-
ing. Some important applications enabled are in digital photography and situational
awareness. We present several design examples on these camera platforms where
modifications of the image-capture process result in significant improvements in
image quality, allowing downstream vision analysis to perform better. Motivated by
example applications, we then describe the basic architecture of an embedded vision
system that dynamically tunes and adapts to the task at hand.

13.1 Computational Imaging Overview

Computational imaging refers to the capture, processing, and manipulation
techniques that improve or extend the quality of an image. Beyond just image
enhancements such as basic image processing, this field has evolved to include tech-
niques from computer vision, graphics, and applied optics to affect the output from
a traditional camera. Also commonly referred to as computational photography [1],
in this chapter we would adopt the term computational imaging instead because the
applications using this technology can extend beyond photography.

This growing area of research is important for embedded vision because it pro-
vides higher quality image data for downstream semantic processing, such as object
detection, tracking, and recognition. Very often semantic processing fails because
image quality is poor, noisy, blurry, or simply lacking desired features to segment
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Fig. 13.1 Generic block diagram of a Computational Imaging system consisting of light source,
aperture, optics, sensor and processor

the scene and detect an object in the first place. By creating a better camera system
that sees better, we enable more robust embedded vision systems to be built in the
future.

The field of computational imaging comprisesmore than just basic image process-
ing where traditional pixel manipulation techniques such as filtering, color interpola-
tion, image compression, and digital watermarking are applied. Techniques for image
effects for artistic output such as tone mapping, color negatives, and distortion cor-
rection are not included because they deal only with direct pixel manipulation. In
contrast, computational imaging considers a holistic view of the illumination, optics,
sensor, and processing to effect the output of image [2].

Next,wewill discuss the elements of the computational imaging system (Fig. 13.1).
We provide a random sampling of current, published approaches, and we note that
an exhaustive survey of the entire landscape is beyond the scope of this one chapter.
Our intent is to provide sufficient background of the area in order to better appreciate
the computational imaging platform, its embedded framework, and overall design
implications.

13.1.1 Illumination

A computational imaging system can take into consideration how a scene is
illuminated in order to improve the capture process. For example, with active illu-
mination, coded lighting at different intensity and angle can produce strong features
and responses to calculate a BRDF (bidirectional reflection distribution function) of
an object, which can be applied for material classification in a recycling plant so that
valuable materials are sorted during processing [3].

A computational imaging system may also detect the spectral responses of an
object’s material emissive properties. For example, ultraviolet lighting is provided
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so that a spectral response in near infrared can be detected based on the material
luminance properties. Applications such as forensic criminal investigation may uti-
lize such a system to detect fingerprints and bodily fluids left in a crime scene [4].

Structured illumination is also commonly used for geometry recovery. The basic
principle involves projecting a narrow band of light onto a 3D shaped object such that
the reflected illumination on the surface appears distorted. By analyzing the distortion
from various perspectives, the geometric surface shape can be reconstructed. The
Kinect Camera fromMicrosoft is one of the first consumer grade camera-system that
uses a pattern of projected infrared light points to generate a dense 3D image [5].
Other computational imaging applications where illumination is controlled include
image deblurring and object relighting.

13.1.2 Optics and Sensors

The optical elements in the camera systems are used to channel light into the image
sensor. While the most basic function would be to focus light using a lens, other
elements can be used to split, block, smear, or divert light accordingly to the proper
physical sensor arrangements. Careful attention is paid to the spectral phenomenol-
ogy of these optical elements to ensure proper transitivity of light.

In coded aperture imaging, for example, amask is applied so that certain amount of
light is captured at each location. Example applications include imaging spectroscopy
where a 3D spectral datacube (a three-dimensional data array) is mapped to a 2D
focal plane sensor [6]. In coded exposure imaging, the on/off state of the shutter is
purposefully manipulated in certain patterns and at a high rate. Example applications
include motion deblur in high frame rate processing [7, 8].

In sparse aperture imaging, an array of lenses or sensors is used to capture light
field information of a scene. Each light measurement can be used to calculate the
distance and phase in order to reconstruct the high-resolution image. For example, in
a light-field camera, also known as a plenoptic camera, an array ofmicrolenses is used
to simultaneously capture all light field information of a scene. Scene reconstruction
is possible, by analyzing the corresponding measured light properties of each pixel.
Because distance and optical wavefront can be estimated, the camera can, from
a single shot, produce multiple images refocused at different distances. In some
recently announced light-field cameras [9, 10], a mask-based design is used based
on a principle of optical heterodyning, where a printed film is placed close to the
image sensor. In others, such as [11], a plenoptic camera system with n-lens array
camera is proposed for use in smartphones, replacing the normal camera module and
achieving much thinner overall form factor.

In these examples, the captured images are optically coded, requiring computa-
tional decoding to produce new images.More specifically, in computational imaging,
light is manipulated and mapped to the sensor to offer fundamentally new ways to
produce higher quality images beyond the capability of a standard lens and an image
sensor.
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13.1.3 Processing

With new mapping of how light is captured and coded through the optics and sensor,
and also through various illumination techniques, a decoding step is required to
“re-create” the image from raw sensor data. Very often, compressive sensing (CS for
short) decoding algorithms provide a formalism in which a physical sampled data set
is analyzed to generate data in a different domain. For example, 3D spectral datacube
is physically mapped to a 2D focal plane sensor, in which the decoding process will
recreate the 3D datacube with certain fidelity [6].

Efficient CS decoding algorithms will take advantage of the sparse nature of the
mapping matrix that is used to translate raw sensed data to the final domain. CS
decoding algorithms fall into two main categories: convex optimization and greedy
algorithms. The former cast the problem into a linear program and apply efficient
algorithms to its solution; the latter refine an initial estimate one element at a time.
Compared to greedy algorithms, convex optimization algorithms tend to produce
more accurate results but require higher computational complexity. Examples of
two convex optimization algorithms that are reasonably efficient and produce good
results for datacube reconstruction are TVAL3 [12] and TwIST [13]. TVAL3 is a
decoding algorithm that can take advantage of a sparse sensing matrix and a signal
that is dense in its native sampling domain. It is also optimized to work with images,
since it implicitly performs Total Variation (TV) minimization—it searches for a
solution with a sparse 2D gradient. TwIST is another decoding algorithm that has
been optimized for image reconstruction. It is somewhat more flexible than TVAL3
but can take slightly more time to produce a result. Like TVAL3, it is a convex
optimization algorithm.

13.1.4 Putting Everything Together

There is not a common camera architecture for computational imaging as there is
much research left to explore before arriving at any optimal configuration of optics,
sensor and processor. While there are camera platforms such as the Frankencamera
[14] that exposes internal processing chain to allow for developers to create appli-
cations in this area, the field is a wide research territory to arrive at different con-
figurations suitable for many embedded vision application domains, including face
recognition [15], multivariate optical computing in spectroscopy [16], image sensing
[17], material classification [18], and compressive video reconstruction [19].

Specific to the discussion about optimization for computational imaging,we advo-
cate an alternative approach to directly capture only useful features (e.g., some key
spectral bands) that are critical to perform a specified task. Known as feature-specific
imaging [20, 21], this technique employs novel optical modulators to measure lin-
ear projections of incoming radiance. Depending on the nature of the given tasks,
such computational imaging systems can be optimally designed by maximizing
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task-specific information [22] to measure projections for either reconstruction
[17, 19, 20, 23] or classification [15, 16, 18]. Since the aim is to perform high-
level computer vision tasks directly on compressed measurements, such systems can
dramatically reduce the amount of data for a given SNR compared to traditional
imaging architectures.

One major limitation of feature-specific imaging, however, is that the measured
data is only useful for a specific task at any givenmoment. Thus it is nearly impossible
to reuse the data for any other purposes such as updating statistical models of objects.
This limitation is especially severe in spatial dimensions since many scene structures
will be lost.What is needed is a unified, extensible framework for task-specific imag-
ing systems that integrally performs detection, classification, tracking, and learning
directly on compressive measurements. This approach is favorable because we are
no longer dependent on the quality of the decoded imagery.

In the rest of this chapter, wewill describe two examples of computational imaging
solutions to motivate the application areas and to reinforce the advantages of this
research area. Then we present the architectural framework of an adaptive task-
specific imaging system, optimized for the embedded vision task at hand.

13.2 Multi Spectral Coded Aperture Camera

Multispectral imaging (MSI) enables recovery of spectral properties of material in
a scene, based on the material’s spectral responses to current illumination (e.g.,
reflection, absorption, fluorescence). In this section, we describe a key development
towards a small form-factor imaging spectrometer that can enable instantaneous cap-
ture and analysis of the spectral signatures of all objects in the scene. This spectral
classification system is achieved by combining a coded aperture snapshot spectral
imager (CASSI) with a multispectral detection algorithm. We further improve the
signal to noise ratio with temporal analysis enabled with image registration of cap-
tured images. The spectral datacube is captured and encoded simultaneously into a
2D image using a code aperture, and later decoded by sparsity-based computational
framework. An adaptive-cosine estimator (ACE) is used to quantitatively detect and
classify the target objects from the decoded spectral cube [24, 25].We present details
about our optical design, algorithm, and selected results of our camera system.

13.2.1 Computational and Optical Co-design

CASSI was first presented in [26] for a snapshot MSI. The optical encoding with
a static coded aperture and a dispersive element enables the system to compres-
sively record the spectral datacube and the computational decoding reconstructs the
datacube from the compressed measurement. With respect to computational imag-
ing, the optical measurement is formulated by a linear model and the input data is
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Fig. 13.2 CASSI’s optical design and components: coded aperture with 200 by 200 pixels, relay
lens, double amici prism, and FPA

reconstructed by computationally inverting the linearmodel.Abinary randompattern
is used to encode the spectral datacube into 2D imagery without critical information
loss. To decode the compressed datacube, a sparse optimization is used to alleviate
the underdetermined problem. The sparse optimization imposes spatial and spectral
sparsity constraints on plausible solutions, resulting in themost optimal among them.

CASSI is optically designed and implemented to support the computational
design. In Fig. 13.2, a collected optical field is modulated by the coded aperture
in the frontend and the modulated field is one-to-one imaged onto the focal plane
array (FPA) by amicroscopic relay lens. In the optical path, a double amici prism dis-
perses the spectral channels simultaneously. The coded aperture is designed by 200
by 200 pixels with 19.8µ feature size resulting in 4 by 4mm field-of-view (FOV).
The double amici prism is used as an aberration free dispersive element to trans-
form the spectral distribution to the spatial distribution. The double amici prism is
composed of two different optical materials which compensates the nonlinearity of
spectral dispersion. The total length of the system is 115.4mm whose compactness
is advantageous for compact video imaging.

In the computational design, the measurement model expresses the relationship
between the measurement g and the spectral datacube f. Since the system matrix H
is underdetermined, far away from the square form, the condition number of H is
very large. The bad condition number makes the inverse problem hard. The sparsity
constraints of CS make the inverse problem well conditioned in the proper basis
such as total variation (TV) [27, 28]. The backward model is the transpose of the
measurement model H and the transpose system matrix HT estimates the spatial
distribution of the coded aperture in g and combines the multiple estimates f ∗.
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Fig. 13.3 CASSI simulation: a image of datacube, b spectral signatures of datacube, and c com-
putational and optical flow describing the numerical processes from the computational and optical
co-design

CASSI reconstruction in Fig. 13.3. The spectral datacube f consists of alpha-
bet letters “G”, “P”, “Y”, “O” in 2D space and 1D spectrum data. The individual
letters have different intensity distributions in the spectral dimension. In the opti-
cal processing, the datacube f is encoded by the system matrix H, then the CASSI
measurement g is obtained by summing the element-wise multiplied cube over the
spectral dimension.

13.2.2 Image Registration

The goal of high frame rate image (video) stabilization is to remove motion blur
while maintaining high SNR (Signal to Noise Ratio). In practice this can be achieved
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by utilizing robust image registration and motion compensation to align successive
image frames that may have random inter-frame motion due to camera movement
and/or object motion. In our CASSI system if the captured images are well aligned,
then averaging N images will not only reduce blur, but will also increase the SNR
by a factor of N as compared to a single capture with limited exposure time.

Image registration (e.g., motion estimation) methods can be broadly grouped into:
feature based motion estimation and global motion estimation. Feature based meth-
ods [29, 30] use features extracted by image processing (corners, oriented edges, and
so on) to find correspondences in successive images and hence solve for a motion
model between these images. Global motion estimation [31] uses the intensity infor-
mation from all the pixels in the image to directly recover the motion between suc-
cessive image frames.

In our CASSI system the coded aperture (CA) introduces a fixed pattern in the
image (before datacube reconstruction) which masks any structure of objects in the
scene. Hence it is impossible to extract features from the scene that are suitable for
motion estimation. The global methods, on the other hand, use all the pixels in the
image. If the effect of the CA pattern can be averaged out and only the contributions
from the signals in the scene remain, then this method would be a solution to the
problem.Wechoose this approach sincewe can compensate for the knownCApattern
in every captured frame while maintaining a reasonable SNR by normalization.

Our choice for global motion estimation method is the hierarchical model-based
motion estimation [31] forwhich SRI has a real-time implementation. The estimation
process involves Sum-of-Squared-Difference (SSD) minimization using a motion
model between image frames, with Gauss-Newton minimization employed in a final
refinement process.

13.2.3 CASSI Based Spectral Classification

An experiment was designed to demonstrate the CASSI-based spectral classification.
A CASSI system (Fig. 13.4a) was used to measure the fluorescent visible colors
illuminated by an UV light source. Four highlighter colors were used to generate
green, pink, orange, and yellow alphabet letters in Fig. 13.4b. A single frame of
CASSI measurement was shown in Fig. 13.4c for the datacube reconstruction. In
the measurement, the “G” letter at the second row did not interact with the UV
illumination because the letter was marked by a non-fluorescent green Sharpie pen.
Two spectral channels of the CASSI reconstruction are compared at Channel 12 and
18 (Fig. 13.4d, e) from 20 channels. At Channel 12 the “G” letter is dominant and at
Channel 18 the “O” and “?” letters are dominant. The question mark “?” was added
in the object scene to demonstrate a multi-target classification. The question mark
has the same spectrum with the “O” letter because “?” was marked by the orange
highlighter color. In the datacube, the “G”, “P”, “O”, and “Y” letters have different
intensity distributions along the spectral channels.
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Fig. 13.4 CASSI-based spectral classification in the experiment: a photo of CASSI system, b
photo of objects, c CASSI measurement, d Channel 12, e Channel 18, and f ACE scores of 1, 2,
14, 7, and 425 for the “G”, “P”, “?”, “O”, and “Y” letters by referencing the “Y” letter’s spectrum.
Note: the color range is shown as a score of spectral similarity

In the reconstruction, the datacube was decoded by using the measurement model
of the computational design and the TV-based TwIST [13] was used to search the
solution with parameters of 20 spectral channels and 200 iterations. Note 20 frames
were used to reconstruct the datacube from CASSI measurements. In Fig. 13.4f, the
ACE scores are visually shown to quantify the performance of CASSI-based spectral
classification and theACE scores are obtained by usingACE algorithm on the CASSI
reconstruction. In the detection, some partial pixels of the “Y” letter were referenced
to detect the rest of the “Y” letter. The true positive score was returned as 425 and
the false positive score is 24, resulting in the ratio of 18. In the result, the pixels with
the target spectrum are highly scored keeping the other pixels relatively low. Thus,
the CASSI-based spectral classification effectively detects and classifies the desired
pixels with a single frame in the scene.

13.3 Motion Compensation Coded Exposure Camera

In a traditional single-exposure camera system, the camera shutter opens and closes
for a fixed amount of time. This means that the corresponding exposure time is
static, and fast moving objects or camera motion can cause motion blur. This is
because the exposure time defines a temporal period where light from a moving
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Fig. 13.5 Light collected over multiple frames is fused after alignment of video frames to com-
pensate for platform motion

object is smeared across the image. Processing steps to deblur the image, e.g., by
deconvolution, is near impossible because it is an ill-posed problem with uncertainty
in both object and platform motion. In a computational imaging framework, a coded
exposure approach would vary the period of time when the shutter is open during a
chosen exposure time. This “flutter shutter” approach changes the ways in which the
light is captured on each pixel, and preserves the high-frequency spatial details. To
that end, deblurring through deconvolution becomes a solvable solution, and has been
demonstrated for several challenging cases of motion-blur including large motion,
textured backgrounds, and partial occlusions [8].

Another approach for motion deblurring relies on alignment and fusion of the
coded exposure images. That is, by removing camera motion through video stabi-
lization of images, light can be “collected” appropriately by summing the proper
pixels associated with a particular part of the scene and object, as shown in Fig. 13.5.
Light from the “same location” will be fused or summed across temporal frames,
and as such, the described motion compensated system would generate video at a
lower rate based on a higher rate input source (e.g., output at 60Hz based on an input
at 240Hz frame rate). With this approach, the deblurring problem is once again a
solvable problem, and the video frames contain light intensity information across
multiple frames.

In this approach, images captured with low exposure would be less blurry but
would be noisy because the sensor does not have time to capture sufficient amount of
light. Dark current noise from each sensor pixel would dominate the signal produced
from captured light, similar to low-light conditions where images are speckled with
random salt-and-pepper noise. Images captured with high exposure would be less
noisy but would be susceptible to blur because light is smeared across the image.
Combining both low and high exposure image would produce both a low blur and
low noise, with high dynamic range.
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Fig. 13.6 The top row is the input rate and integration time from a commercial camera. The bottom
row is the coded-exposure sampling rate with varying exposure times

13.3.1 Coded Exposures

In the approachbasedon framealignment,multiple lowdynamic range (LDR) images
of varying exposure times are integrated to form a high dynamic range (HDR) image.
Figure13.6 provides an illustration of this approach. The shortest exposure LDR
subframe image is called the ‘seed’ image; its exposure time is given as tS . Other
images are exposed for longer and can be regarded as the combination of the unit
images with motion. Using this seed image approach, we do not require an optimized
shutter open/closed pattern, and as such, it works with different camera speed and
scene luminance. Using tS as the unit exposure time, T2, T3,…, TL as the subsequent
exposure times, we ensure that all of the images with longer exposures are multiples
of tS .

For the general case in which motion blur is significant due to long exposure
times, we create the output image by aligning and combining the short-exposure-
time LDR sub-frame images. Based on our experience in low light imaging, it is more
difficult to align the subframe images due to their unequal exposure times. Instead,
our approach is to first align images with equal exposure times, and then interpolate
the motions of other images of different exposure times. When there are multiple
exposure patterns involved in the capturing, or when there is a need to have higher
precision of motion interpolation, an accelerometer can be used to aid in motion
estimation and interpolation.

To further improve the quality of the output HDR image, we generate a map
of weighted values based on the camera’s photopic response curve, and apply the
weights to pixel values of the LDR images. This is done to normalize and blend the
pixels, and the processing is done after alignment of the LDR images. This weight
function gives lessweight to pixelswith values close to both 0 and the pixelmaximum
value, and more weight to pixels with midrange values. This mapping works well in
cases where the scene has well-defined spatial features, which need to be preserved
during fusion of LDR images.
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13.3.2 Motion Compensation

The signal-to-noise (SNR) improvements and motion blur reduction comes directly
from the alignment of LDR images to produce an HDR image. Without motion
compensation, each pixel would integrate the captured light much like a camera with
long exposure. There aremanymethods to enable image alignment. For example, one
can use a gyro and accelerometer to detect camera motion and align image frames.
However, this approach requires good initial calibration, precise timing, and drift
adjustment to work accurately. We advocate further sub-pixel accuracy in alignment
using image-based analysis.

In image-based alignment, feature based registration methods [32] work well to
achieve this if each LDR image has sufficient SNR. However, global methods are
preferred in SNR-limited low light conditions. Zhang et al. [33] have shown that a
hierarchical motion estimation algorithm using Laplacian pyramid methods exhibits
robust behavior for extremely low SNR (∼1.0) imagery. For our approach, this robust
motion estimation is applied to each LDR image.We also reduced processing latency
by having the first captured LDR image from a subgroup (typically in a group of
four images) used as the reference. The estimated true image is thus the weighted
average of these four aligned LDR images.

13.4 Contrast Enhancements

To improve the feature feasibility on a display or downstream video analytics, we
apply global and local contrast enhancement to the output HDR image. This would
also ensure better contrast and full range display on monitors or displays which
typically have low color range. For example, when we fuse LDR images (8–10 bits
per pixel, we can generate a HDR scene with higher dynamic range (10–14 bits per
pixel) and yet standard displays provide only 8 bit color depth. Using our contrast
enhancement step, we can automatically scale different regions of the image to fit
the highest dynamic range within the low color depth, while preserving the contrast.

Our global contrast enhancement is based on a logarithmic and exponential map-
ping function [34]. The processing would map the HDR image to the globally com-
pressed image based on the average of both the logarithmic and exponential mapping
functions. Our local contrast enhancement technique boosts the weak high spatial
frequency contrast features of an image while reducing the gain of its low spatial
frequency features in local regions. The source image is first decomposed into a
Laplacian pyramid [35]. Then the local contrast and a contrast map pyramid are
generated. At each pyramid level, this map is multiplied with the source pyramid to
create a normalized pyramid. Finally, the Contrast Normalized image is obtained by
the inverse transform of the pyramid. To ensure the best display, the output image is
typically gamma corrected, either by the algorithm or the monitor itself.
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(a) (b)

(c) (d)

Fig. 13.7 The effect of coded exposure to deblur live 30Hz video. a Top left a sample frame with
short integration time minimizes motion blur at the expense of low SNR. b Top right maximizing
the integration time improves SNR at the expense of motion blur. c Bottom left processing applied
to eight subframe images maintains the SNR of (b) while giving the deblur performance of (a) at
the same 30Hz frame rate. d Bottom right video (c) following contrast normalization

13.4.1 High Dynamic Range Video in Low Light Conditions

We show the HDR output using the coded exposure approach described in this
section. The source images shown in Fig. 13.7 were taken from a 30Hz video stream
in limited light with a large aperture and a relatively short integration time. The video
is taken with slow panning motion, which adds to pixel blur with long exposures.
The original video (top left) taken under these conditions thus contains significant
thermal noise from the camera. To improve the SNR with a traditional approach, the
camera exposure can be increased by changing the camera integration time, e.g., to
33.3ms, the frame-rate-limited maximum value (top right). However, large amounts
of motion blur are evident using this approach.

The coded exposure method is generated under the same illumination conditions
and with the same camera motion. The output is at the same 30Hz output frame rate,
which is produced by aligning and combining eight LSR subframe images. Each
LSR image is exposed for one-eighth of the frame-rate-limited integration time (i.e.,
4.17ms). The contrast-enhanced version of this image is shown at bottom right of
Fig. 13.7, and a decrease in motion blur is evident.
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In the HDR output, we are able to increase the effective dynamic range of 8- to
12-bit cameras by up to four bits (24dB), allowing simultaneous dark and light areas
in scenes to be accurately captured with little or no loss of information due to satura-
tion. We run the video camera at frame rates four times faster than the image display
rate while varying integration times from very short (to “freeze” scene motion) to
“as long as possible” (to maximize SNR). Through processing, we produce an HDR
image with significant blur reduction while simultaneously increasing the effective
dynamic range of the sensor. Furthermore, we perform contrast enhancements on the
HDR image to allow its high dynamic representation on 8-bit displays with virtually
no loss of visual information.

This coded exposure method enables high performance video to be captured from
any rapidly moving platform in real-world conditions (e.g., bright sunlight with deep
dark shadows) and displayed in low-latency real-time. It can be used in embedded
vision applications in the automotive and surveillance domains. In low light condi-
tions with significant motion blur, this system enables considerable improvements
in Detection, Recognition and Identification performance, demonstrated in real-time
in a prototype described in [36] using an FPGA.

13.5 Adaptive Task-Specific Imaging System

To conclude this chapter, we present an architectural framework for a camera sys-
tem that bridges the front-end computational imaging subsystem to the back-end
semantic reasoning. We have motivated this framework by providing two examples
of computational imaging solutions, and what is left is to make the connection to
the traditional computer vision processing that deals with detection, classification,
tracking, and learning. Our goal here is to reinforce the notion that computational
imaging functions can be made optimized for the embedded vision task at hand.

One main difference is that our framework is based on performing adaptive
feature-specific imaging directly on compressed measurements. This aspect is sim-
ilar to visual sensor networks [37] where processing is performed at the camera so
that video does not need to be transmitted. Without requiring the decoding step, we
can enable lower latency processing. In our proposed framework, we do not require
that the image be generated first, but instead, we perform some aspect of detection,
classification, tracking, and learning directly on compressive measurements. These
four components interact with each other, as shown in Fig. 13.8. For example, track-
ing results are fed into the learning module to update models to improve detection
and classification, which in turn re-initializes tracking when tracks are lost in some
frames. In spirit, our idea is similar to that in [20] where tracking, learning, and
detection/classification are co-trained to support each other. Specifically, the four
components are implemented as follows:
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Fig. 13.8 Task interaction and data flow, showing tasks performed on compressed measurements

• Detection/Classification: Implement discriminative modulator patterns and
directly measure linear projections of incoming radiance for detection and classi-
fication. Learn discriminative patterns via offline training and online update.

• Tracking: Use a Kalman filter to track the detected objects-of-interests. In case
of a missing track, the detector finds the object and reinitializes tracking.

• Learning: The detection results (i.e., the measured discriminative linear projec-
tions), after being verified with tracked frames, are used to update the posterior
probability distribution and themodulator patterns, and to improve the atmospheric
models (e.g., fog, haze, heat scintillations).

The key enabler for this architecture framework is to identify functions that can
be implemented with tight coupling between algorithms for feature and semantic
analysis with lower level computational imaging parameters for coded illumination,
aperture, and exposure. This coupling creates a feedback loop between application
task and sensor, allowing for increased sensitivity and potentially lowered power
operation by not following typical methods of just running the processing pipeline
faster.

While current camera systems already have feedback mechanisms that allow the
image capture subsystem to adapt based on the image processing system, there is
a significant level of feedback latency that limits the effectiveness of the system.
Very often, many multiple image frames have elapsed before any dynamic settings
can be calculated because there is a long processing chain from raw pixels to detec-
tion/tracking/classification of objects. Furthermore, the settings are often for the
entire frame and not at a finer grain level because there are no effective algorithms
that consider region of interest control of sensor parameters. Here, we are exploring
a camera system in which two subsystems (image capture and processing) are tightly
coupled at a very fine grain, resulting in low latency level control at the sub-frame
level. Such a system would be analogous to current auto-focus functionality, but
instead, such a mechanism would be driven from needs of the feature and semantic
analysis.



280 S. Chai et al.

Fig. 13.9 Sensor adaptive algorithms in the pixel domain can more actively control the sensor
without the latency to process feature and semantic level processing. Key elements of the detect-
track-classify algorithms provide cues to the task-specific model to enable high rate sensor control
based on scene understanding

Our proposed architecture revolves around selecting pieces of object detection,
tracking, and classification algorithms to process earlier in the image processing
pipeline. As shown in Fig. 13.9, this approach will offer a sensor adaptive module
with tight coupling between feature-semantic-level processing to camera control.
This approach is radically different than the traditional approach of simply speeding
up the entire image processing pipeline to enable a faster control loop. Motion and
other semantic cues are evaluated at a high sub-frame rate to reduce the latency for
sensor control. The needs of feature and semantic processing for object detection,
tracking and classification are evaluated quickly to provide near-instant feedback to
the sensor. By being task-adaptive, this approach can improve image quality and
SNR on target objects for higher quality actionable intelligence.

Sensor adaptive algorithms can improve the overall sensitivity of the camera
system for dynamic task-specific needs. That is, by adapting sensor parameters to
the dynamic understanding of the scene and targeted objects, the capture process can
be made more efficient to capture the desired signal at the appropriate time, duration,
and location.

The proposed architecture requires the mapping of sensor parameters to video
analytic parameters within the developed simulation framework. It is important to
explore sensor control parameters such as frame rate, resolution, exposure, and read-
out times, and how they can be tuned based on video analytic parameters, such as the
type of detected objects, number of salient targets, and predicted motion of targets.
With a semantic understanding of the scene and detected objects, the capture process
can adapt accordingly to the scene content.

The key to effectively migrating feature and semantic level algorithms into the
“front end” pixel processing domain is to maintain a low-latency control loop at the
sub-frame level such that sensor control can adjust quickly. This means that we will
algorithmically make an inference on detected objects based on low-level analytics.
While we efficiently and intuitively bridge the semantic gap between higher-level
algorithms and sensor controls,wemustmaintain the robustness of the camera system
to mission-specific functions.
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Let us consider the technical challenges for feature- and semantic-level
algorithms.Challenges in detectingmoving objects include: (1) stabilization of jittery
or on-the-move video for reliable detection of independently moving entities, and
(2) eliminating false alarms due to extraneous factors, e.g., swaying trees, shadows
and other illumination changes. Challenges for tracking objects include: (1) han-
dling objects that come to a stop and blend into the background, and (2) predicting
object movement for partial and full occlusions. Challenges for object classification
include: (1) distinguishing objects with similar features, and (2) having sufficient
views of the same object to extract distinguishing features. All of the algorithms
would benefit from increased sensor sensitivity spatially, spectrally, and temporally,
in order to reduce the false alarms caused by semantic inference from processing the
video.

13.5.1 Sensor Adaptive Algorithms

Detection, classification, tracking, and classification algorithms directly interact with
each other in order to formulate an output result based on an understanding of the
scene. For example, a detection algorithm would provide motion and location para-
meters to a tracking algorithm. The tracking algorithmwould sort among the detected
objects to associate a label or track identification. It wouldmaintain a history of tracks
and other features with the object so overcome occlusion. The track and feature infor-
mation is used by the classification algorithm to infer object type based on a trained
database of features and activities.

We will leverage our understanding of interactions within feature- and semantic-
level processing to create low-latency sensor adaptive algorithms. In Fig. 13.9, we
show small elements of the detect-track-classify algorithms within the sensor adap-
tive algorithm module that drives input into a Sensor Control block. Each of the
feature-semantic level algorithms has needs with respect to imagery to improve its
tasks, but not all can be satisfied concurrently. For example, a detection algorithm
typically wants a global view of the scene because it is tasked to find all moving
targets. This means that imagery captured within a single frame will equalize the
importance among all pixels in the field of view. In contrast, a tracking algorithm is
focused a single object, so it would prefer to allocate more resources (time, power,
dwell time) on a particular region of interest. Similarly, classification algorithms
would prefer to remove spurious data points (e.g., noisy sampled features), so it
might prefer to collect more data points around a particular modality (e.g., longer
exposure for higher dynamic range to gather more distinguishing features).

Running concurrently, the Sensor Control block contains an Adaptive Task-
Specific Model that organizes the inputs from the detect-track-classify algorithms
to maintain a consistent and robust control loop with the imager. The task-specific
model can be reinitialized based on different tracks, or when tracks are lost in some
frames. Lower rate information from the back-end processing chain (see Fig. 13.9)
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can also feed into the task-specific model to enhance the robustness by prioritizing
among multiple tracked objects.

The proposed algorithmic framework also allows for new algorithms to be created
and integrated. For example, as part of the detection task, we can include a filter that
detects the level of motion blur. Since blur can imply object motion, we can use it
to infer the object type in the scene. As such, the algorithm can feed input into the
task-specific model to decrease integration time for that region of interest because
of anticipated needs for the tracking task. The use of motion blur is improved from
typical optical flow analysis methods because the algorithm would measure the level
of blur of several pixels, and not need to find correspondence between pixels in
different frames.

13.6 Conclusion

Traditional embedded vision systems are bounded in performance because they are
limited by the quality of images they can work with. With a computational imaging
approach, these vision systems can “see” better because they are no longer limited to
the single-lens to focus light onto a focal plane image sensor. In this chapter, we pro-
vide an overview of the research elements of computational imaging.We showed two
example applications of this technology area using coded aperture and coded expo-
sure. We then show a proposed architectural framework for a computational imaging
system that is adaptive and task specific for back-end video analytics processing.

There is certainly a lot more work left to do as there are many technical challenges
in low latency, high robustness, and low power. All of these can be addressed as we
can readily adapt our understanding in accelerating embedded vision algorithms to
hardware such as GPUs, FPGAs, and DSPs. The vision community in both academia
and industry are already starting to head towards this path to reach significant gains
in image quality and performance in analytics. Are you doing the same with your
vision system?

References

1. Raskar R, Tumblin J (2009) Computational photography: mastering new techniques for lenses,
lighting, and sensors. AK Peters Ltd, Wellesley

2. Nayar SK (2006) Computational cameras: redefining the image. IEEE Comput 39(8):30–38
3. Jinwei G, Liu C (2012) Discriminative illumination: per-pixel classification of raw materials

based on optimal projections of spectral BRDF. In: 2012 IEEE conference on Computer vision
and pattern recognition (CVPR). IEEE

4. Lim S, Berends D, Das A, Isnardi M, Chai S (2014) Forensic prescreening system using coded
aperture snapshot spectral imager. SPIE defense, security, and sensing. international society
for optics and photonics



13 Designing Vision Systems that See Better 283

5. Lu X, Chen C-C, Aggarwal JK (2011) Human detection using depth information by kinect. In:
2011 IEEEcomputer society conference onComputer vision andpattern recognitionworkshops
(CVPRW). IEEE

6. Gehm ME et al (2006) Static two-dimensional aperture coding for multimodal, multiplex
spectroscopy. Appl Opt 45(13):2965–2974

7. ZhangDC, PiacentinoM, Chai S (2012) Extendedmotion adaptive signal integration technique
for real-time image enhancement. SPIE defense, security, and sensing. international society
for optics and photonics

8. Raskar R, Agrawal A, Tumblin J (2006) Coded exposure photography: motion deblurring using
fluttered shutter. ACM Trans Gr (TOG), 25(3). ACM

9. Veeraraghavan A, Raskar R, Agrawal A, Mohan A, Tumblin J (2007) Dappled photography:
mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACMTrans
Gr 26(3)

10. Ren N et al (2005) Light field photography with a hand-held plenoptic camera. Computer
Science Technical Report CSTR 2.11

11. Lumsdaine A, Georgiev T (2009) The focused plenoptic camera. In: 2009 IEEE international
conference on Computational photography (ICCP). IEEE

12. Li C, Yin W, Zhang Y (2009) User’s guide for TVAL3: TV minimization by augmented
lagrangian and alternating direction algorithms. CAAM report

13. Bioucas-Dias J, Figueiredo M (2007) A new TwIST: two-step iterative shrinkage/thresholding
algorithms for image restoration. IEEE Trans Image Process 16(12):2992–3004

14. Adams A et al (2010) The Frankencamera: an experimental platform for computational pho-
tography. ACM Trans Gr (TOG) 29(4):29

15. Baheti PK, Neifeld MA (2008) Adaptive feature-specific imaging: a face recognition example.
Appl Opt 47:B21–B31

16. Nelson MP, Aust JF, Dobrowolski JA, Verly PG, Myrick ML (1998) Multivariate optical com-
putation for predictive spectroscopy. Anal Chem 70:73–82

17. Duarte-Carvajalino JM, Yu G, Carin L, Sapiro G (2013) Task-driven adaptive statistical com-
pressive sensing of gaussian mixture models. IEEE Trans Signal Proc 63(3):1

18. Gu J, Liu C (2012) Discriminative illumination: per-pixel classification of raw materials based
on optimal projections of spectral BRDFs. IEEE CVPR

19. Hitomi Y, JinweiGu MG, Mitsunaga T, Nayar S (2011) Video from a singe coded exposure
photograph using a learned over-complete dictionary. IEEE ICCV

20. Neifeld MA, Shankar P (2003) Feature-specific imaging. Appl Opt 42(17):10
21. Dinakarababu DV, Golish DR, Gehm ME (2011) Adaptive feature specific spectroscopy for

rapid chemical identification. Opt Express 19:4595–4610
22. Neifeld MA, Ashok A, Baheti PK (2007) Task-specific information for imaging system

analysis. J Opt Soc Am A 24(12)
23. Baheti PK, Neifeld MA (2006) Feature-specific structured imaging. Appl Opt 45:7382–7391
24. Manolakis D et al (2009) Is there a best hyperspectral detection algorithm? SPIE defense

security, and sensing. international society for optics and photonics
25. Kraut S, Scharf LL (1999) The CFAR adaptive subspace detector is a scale-invariant GLRT.

IEEE Trans Signal Process 47:2538–2541
26. Kittle D, Choi K, Wagadarikar A, Brady DJ (2010) Multiframe image estimation for coded

aperture snapshot spectral imagers. Appl Opt 49:6824–6833
27. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306
28. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction

from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509
29. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis

60(2):91–110
30. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR,

pp 886–893
31. Bergen J, Anandan P, Hanna K, Hingorani R (1992) Hierarchical model-based motion estima-

tion. In: Sandini G (ed) Computer vision ECCV’92. Lecture Notes in Computer Science, vol
588. Springer, Berlin Heidelberg, pp 237–252



284 S. Chai et al.

32. Fonseca LMG, Manjunath BS (1996) Registration techniques for multisensor remotely sensed
imagery. PE RS-Photogramm Eng Remote Sens 62(9):1049–1056

33. Zhang DC, Piacentino M, Chai S (2012) Motion compensation for low light and high motion
imaging. Military sensing symposium

34. Burt P, Zhang C, van der Wal G (2007) Image enhancement through contrast normalization.
Military sensing symposium

35. Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans
Commun 31(4):532–540

36. Piacentino MR et al (2013) Motion adaptive signal integration-high dynamic range (MASI-
HDR) video processing for dynamic platforms. SPIE Defense, security, and sensing. interna-
tional society for optics and photonics

37. Winkler T, Rinner B (2009) Power aware communication in wireless pervasive smart camera
networks. IEEE International conference on intelligent sensors, sensor networks and informa-
tion processing (ISSNIP)



Index

A
Absolute difference (AD), 117
Acceleration, 193–195
Accelerometer, 77, 78
Adaptive cruise control (ACC), 218
Advanced Driver Assistance Systems

(ADAS), 45–49, 52, 56–63, 65, 66
Android, 185–187, 192–195, 197
Apex, 60
Approximate nearest neighbor, 29
ARM, 60, 81, 99, 187, 193, 194, 197
ASIC, 111
ASIL, 57, 65
Attractors, 10
Augmented reality (AR), 163–166, 168–

172, 175–177, 180–183
Autonomy, 24
Autostereoscopic, 136

B
Bidirectional reflection distribution function

(BRDF), 266
Big data, 249
Blind spot, 48, 51, 52

C
Camera, 46–56, 58, 64, 66
Classification, 266, 269, 272, 273, 278–281
Cloud, 257, 258, 260, 261
Cloud computing, 239
Coded aperture, 267, 269, 270, 272
Coded exposure, 267, 274, 277, 282
Coded illumination, 277
Computation sensing, 265

Computational imaging, 265–269, 274, 278,
282

CPU, 111, 113, 117, 128, 130
Cross-correlation, 7, 12, 16

D
Depth map, 110, 113, 114, 132
Detection, 265, 269, 273, 278–282
Difference-of-Gaussian (DoG), 28
Disparity, 112, 116–118, 121–124, 126–129,

132
Distributed smart cameras, 239, 246
Driver monitoring, 51, 52
Drone, 199
DSP, 112, 113
Dynamic programming, 126, 129

E
EVE, 60, 61, 240
Exploration, 73, 75
EyeQ, 60

F
Forward collision avoidance (FCA), 48
Forward collision warning (FCW), 48, 50,

52, 62
FPGA, 111, 113–120, 122–125, 127, 128,

130, 132

G
Gabor filter, 219
Gaussian Markov random fields (GMRF),

26, 33

© Springer International Publishing Switzerland 2014
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