
287

Chapter 14
Biotechnology Tools for Conservation  
of the Biodiversity of European  
and Mediterranean Abies Species

Jana Krajňáková, Dušan Gömöry and Hely Häggman

J. Krajňáková ()
Department of Agriculture and Environmental Science, University of Udine,  
Via delle Science 91, 33100 Udine, Italy
e-mail: jana.krajnakova@uniud.it

D. Gömöry
Faculty of Forestry, Technical University Zvolen, T.G. Masaryka 24, 960 53 Zvolen, Slovakia

J. Krajňáková · H. Häggman
Department of Biology, University of Oulu, PO Box 3000, 90014 Oulu, Finland

Abstract  The review underlines the importance of European and Mediterranean 
firs ( Abies sp.) in European forests, their geographical distribution, ecological 
and economical values. The present status of endangerment is given as well as 
the importance of genetic conservation of these species is illustrated by results 
from population genetics studies. Moreover, the current status of in situ and ex 
situ conservation methods is discussed and a special attention is paid to the role 
of biotechnological methods (in vitro regeneration system and cryopreservation) 
in their ex situ conservation. Among in vitro methods till now, only somatic 
embryogenesis proved to be promising and five species ( A. alba, A. cephalonica, 
A. cilicica, A. nordmanniana, A. numidica and several hybrids) were regenerated. 
Based on the success of regeneration method, the slow cooling cryopreservation 
protocols for three Abies species ( A. alba, A. cephalonica, A. nordmanianna) 
and their hybrids were developed. The biotechnology approaches have con-
firmed their place in the toolbox of conservation methods of firs. Transfer of the 
experience gained in widespread species and development of reliable procedures 
for somatic embryogenesis and cryopreservation for the endemics remain tasks 
for the future.
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14.1 � Introduction

According to the United Nations Food and Agriculture Organization (FAO 2013), 
the world forest area is slightly more than 4 billion ha and its importance as a car-
bon sink is enormous. In Europe, forests represent almost half of the land surface 
(102 million ha, which amount to 25 % of the world total), of which 65 % are co-
nifers. Over the last 20 years, the forest area has expanded in all European regions 
and has gained 0.8 million ha in each year (Forest Europe 2011). European forests 
sequester increasing amounts of carbon in tree biomass, between 2005 and 2010, 
about 870 million t of CO2 have been removed annually from the atmosphere by 
photosynthesis and tree biomass growth in European countries. This corresponds 
to about 10 % of the greenhouse gas emissions in 2008 of these countries (For-
est Europe 2011). Moreover, increasing population numbers in combination with 
accelerated climate change including weather extremes (Nellemann et al. 2009) 
are predicted to increase the need for more wood production. Wood is the world’s 
only large scale renewable, sustainable and environmentally friendly raw material 
and more systematic use of its potential needs to be made at the global level, if 
the aim of achieving true sustainability for the world is to be met (Sutton 2013).

In forested landscapes, trees play also essential roles in ecosystem structure 
and functioning. They mediate energy and material flows and are associated with 
processes such as water and nutrient cycling, biomass production, soil formation 
etc. Genetic diversity, which is closely associated with adaptability and population 
stability, is an inevitable prerequisite for fulfilling these functions (Pimm 1984; 
Johnson et al. 1996; Lefèvre et al. 2013). In spite of positive data about the increas-
ing forest area in Europe, about a fifth of all trees are damaged or dead and 11 mil-
lion ha (or 1 %) of Europe’s forests are affected by forest damage, most frequently 
caused by insects and diseases, followed by wildlife and grazing (Forest Europe 
2011).

Currently, the IUCN Red list includes 6277 tree species that are threatened 
with extinction in the wild (http://www.iucnredlist.org). Of these, 1002 tree spe-
cies are recorded as Critically Endangered, the most threatened category for spe-
cies based on the risk of extinction (Oldfield 2009) indicating an urgent need for 
germplasm conservation. Fulfilling the commitments adopted within the Global 
Strategy for Plant Conservation (Convention on Biological Diversity 2010), es-
pecially preservation and sustainable use of genetic resources, requires elabora-
tion and application of a wide spectrum of tools for in situ and ex situ conserva-
tion. Biotechnological approaches can substantially contribute to the success of 
such efforts.
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14.2 � European and Mediterranean Abies Species

14.2.1 � Biology, Ecology and Geographical Distribution  
of European and Mediterranean Firs

Euro-Mediterranean firs (the genus Abies Mill.) belong to ecologically and com-
mercially most important tree genera in Europe (Table 14.1). Fir forests represent a 
major component of Central European, Alpine and Mediterranean mountain forests. 
Their distribution ranges from 6°W to 44°E in longitude, from 35°N to 52°N in lati-
tude and from 135 to 2900 m in altitude (Alizoti et al. 2011) (Fig. 14.1 Abies alba, 
Fig. 14.2 Mediterranean fir species).

Like in the other tree species in Europe, the history of firs has been turbulent 
and left profound traces in their species diversity and genetic structures. Glacial/
interglacial climatic cycles during the Pleistocene provoked large retreats and ex-
pansions of species’ ranges. Mediterranean Sea bordering Europe from the south 
largely prevented southward migration; this obstacle drove several tree genera to 
local extinction (e.g., Pseudotsuga, Cryptomeria, Sequoia, Taxodium; Martinetto 
2001; Svenning 2003). At the species level, the consequences are manifested in 
reduced species diversity. Only four fir species have survived in Europe until recent 
times ( A. alba, A. cephalonica, A. pinsapo, and A. nebrodensis).

Greek fir ( Abies cephalonica Loudon) is endemic to Greece, where it grows be-
tween 400 and 1800 (2000) m a.s.l. on a variety of parent rocks such as limestones, 
dolomites, serpentines, sandstones, and schist with soil pH ranging from 5 to 8 
(Panetsos 1975). At present, the population of Greek fir is considered stable. On 
the other hand, the remaining two fir species are truly rare. Spanish fir ( A. pinsapo 
Boiss.) range covers only 1200 ha in southwestern Spain (Arista 1995), on dolo-
mitic and serpentine soils at elevations between 1000 and 1600 m. Its population 
decreases. Climate change associated with increasing incidence of wildfires, pests 
and diseases might under circumstances drive the species to extinction. The single 
existing natural population of the Sicilian fir ( A. nebrodensis Mattei) is extremely 
small, consisting of 29 adult trees only (Alizoti et al. 2011), and grows on a single 
limestone site in Sicily at elevations around 1500 m. Although population size is 
stable and genetic diversity is surprisingly high, the species is logically considered 
critically endangered.

Abies alba Mill., silver fir, is the only widespread and abundant species of the 
genus Abies in Europe. Longitudinally, the range spans between the Central Mas-
sive in France and the Eastern Carpathians in Romania. Isolated occurrences can 
be found even more westwards, in the Pyrenees and Normandy. Latitudinally, silver 
fir is distributed between the Dinaric Mountains and central Poland. Again, isolated 
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populations are scattered along the northeastern range limit (Poland, Ukraine) and 
the southern part of the range (Apennine and Balkan peninsulas) is highly frag-
mented (Wolf 2003).

Silver fir forms pure stands, but more frequently it can be found in mixed stands 
with European beech and Norway spruce, in the south with pines and oaks. It toler-

Table 14.1   List of the European and Mediterranean Abies species, threats to genetic diversity and 
information about in situ and ex situ conservation
Scientific name Common 

name
Category accord-
ing to IUCN Red 
List of threatened 
species

In situ 
conservation 
standsa

Ex situ conservation
Stands/seed 
orchard

Tissue cul-
ture system

 Section Abies
A. alba Mill. Silver fir Least concern 36.315 hab Conservation 

stands 307 ha
Yes, SE

A. nebrodensis 
(Lojac) Mattei

Sicilian fir Critically 
endangered

– One seed 
orchard

No

A. cephalonica 
Loudon

Greek fir Least concern 1.210 hab Conservation 
stands 6 ha

Yes, SE

A. borisii-regis 
Mattf.

Bulgarian fir Least concern 456 hab – No

A. nordmanni-
ana (Steven) 
Spach.

Nordmann 
fir, Cauca-
sian fir

Least concern unknown – Yes, SE

A. bornmuelle-
riana Mattf. ( A. 
nordmanniana 
ssp. bornmuel-
leriana)

Bithynian fir Endangered 213 hab – No

A. equi-trojani 
Coode and 
Cullen ( A. nor-
dmanniana ssp. 
equi-trojani)

Turkish fir, 
Kazdaghi fir

Endangered 293 hab

24.374 hac
– No

 Section Piceaster
A. pinsapo 
Boiss.

Spanish fir Endangered 100 hab – No

A. marocana 
Trabut ( A. 
pinsapo ssp. 
marocana)

Moroccan fir Critically 
endangered

– Seven ex situ 
stands

No

A. cilicica (Ant. 
and Kotschy) 
Carrière

Taurus fir, 
Cilicia fir

Near threatened 69 hab – Yes, SE

A. numidica 
de Lannoy ex 
Carrière

Algerian Fir Critically 
endangered

– – Yes, SE

a Specific conservation measures beyond nature conservationb Dynamic gene conservation units 
fulfilling the minimum criteria of Euforgen (http://portal.eufgis.org)c Multispecies Gene Manage-
ment Zones (Ozturk et al. 2010)
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ates a wide range of soil conditions. Consequently, it can be found over a variety of 
parent rocks, covered by soils with varying textures, nutrient levels and pH, avoid-
ing both waterlogged and dry soils. Nevertheless, the best growth and competition 
ability of silver fir can be expected on deep, nutrient-rich, fine- to medium-textured 

Fig. 14.2   Distribution range of Mediterranean firs. (Alizoti et al. 2011)

 

Fig. 14.1   Distribution map of silver fir ( Abies alba). EUFORGEN 2009. (http://www.euforgen.
org)
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and well-drained soils. Climatic niche of silver fir is also broad. The species is cold-
hardy, but sensitive to winter desiccation, late and early frosts, and water deficit 
during shoot elongation (Hansen and Larsen 2004). Silver fir is very shade tolerant, 
especially in young age. Although it is generally considered a typical climax spe-
cies, silver fir is able to colonize pioneer pine forests and even open lands.

In addition to Europe, other fir species occur around the Mediterranean. A. nor-
dmanniana Spach is distributed in eastern Turkey and the Caucasus. In spite of a 
fragmented range its population is stable and not endangered. Two subspecies, A. 
equi trojani Coode and Cullen and A. bornmuelleriana Mattf. (sometimes consid-
ered separate species or, alternatively, hybrids A. nordmanniana × A. cephalonica), 
grow in western and northern Turkey, respectively, the former having a very limited 
area of occupancy of 164 km2. A. cilicica de Lannoy occurs in the Turkish Taurus 
Mts., Syria and Lebanon on an area of almost 3400 km2. Although its range is not 
small, population size decreases and especially Syrian and Lebanonian local popu-
lations are threatened. Both African fir species, Abies numidica Carrière (Kabylian 
Mts. in Algeria), and A. marocana Trabut (sometimes considered a subspecies of 
A. pinsapo; Rif Mts. in Morocco) have extremely small areas of occupancy (1 and 
28 km2, respectively), and are critically endangered.

14.2.2 � Economical Importance and Use of Firs

The interest of foresters, nature conservationists, landscape ecologists etc. in Abies 
species is driven mainly by the commercial and ecological importance of the genus. 
Silver fir is the most productive native tree species of European forests. Although 
the maximum dimensions do not reach those of its North American counterparts, 
they are still impressive—the maximum height was recorded in the Peručica virgin 
forest in Bosnia and amounted 65 m (Leibundgut 1976). However, heights over 
60 m were measured in several reserves over East Europe—Mionší, Biogradsko 
jezero, Žofín, Dobroč and elsewhere (Holeksa et  al. 2009). Fir also contributes 
to ecological stabilization of forest communities, as it possesses a better stability 
against wind throw and is more resistant to fungal pathogens than, e.g., Norway 
spruce (Hansen and Larsen 2004).

Fir species are of high economic importance both for timber (construction wood, 
furniture, pulp production, fuel wood etc.) and for non-wood forest products (tur-
pentine and Christmas trees). The bark, buds and cones may contain a large amount 
of fine, highly resinous turpentine. Fresh oleoresin is mainly used for pharmaceuti-
cal purposes.

Because of their fragrance, colour, good form and exceptionally long leaf retention 
after being cut, most of the firs are used as ornamental trees and are grown in planta-
tions for Christmas trees (e.g., A. borisii-regis, A. cephalonica and A. nordmanniana).

This is true also for hybrids—the genus Abies was object of intensive hybridiza-
tion studies, and several artificial hybrids, including A. alba × A. cephalonica were 
found promising and exceeded pure species in growth (Kormuťák and Vooková 
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2001; Kobliha et al. 2013). They have thus a potential also for forestry, but their 
primary field of use is greenery and Christmas tree production.

14.2.3 � History and Genetic Variation of Mediterranean Firs

Genetic structures of the extant fir populations in Europe have largely been deter-
mined by historical factors. As mentioned above, Pleistocene climatic fluctuations 
severely reduced population sizes of all temperate species. Refugial population 
of rare fir species ( A. pinsapo, A. nebrodensis) did not expand; either due to de-
creased vitality caused by inbreeding and lowered genetic variation, or because 
they remained trapped in islands of favorable environments surrounded by dry 
highlands or by sea. Almost nothing is known about the population development 
of fir species South and East of the Mediterranean Sea in the postglacial period; 
nevertheless, these regions have been less influenced by the glaciation, so that lo-
cal fir populations may have persisted since the Tertiary. Holocene warming may, 
however, have contributed to the contraction of ranges of A. numidica, A. cilicica 
or A. marocana and fragmentation of A. nordmanniana. For A. cephalonica, Fady 
and Conkle (1993) concluded that the divergence between A. alba and this species 
occurred quite recently, at the beginning of the last glaciation. The reconstruction 
of the Holocene history of A. cephalonica is difficult because the pollen of differ-
ent Abies species cannot be distinguished in the fossil pollen record (Terhürne-
Berson et  al. 2004). Nevertheless, as the range of A. cephalonica is located in 
southern Balkans, which served as an important refugial area during the Holocene, 
population sizes, distribution and genetic structures of this species probably have 
not changed substantially.

The history of A. alba is more complicated, as this species recurrently succeed-
ed to colonize Europe during the warm phases of the Pleistocene, and during the 
Eemian interglacial it even covered larger area than the current range (Terhürne-
Berson et al. 2004). Pollen and macrofossils (mainly charcoal) documented that 
cryptic Pleniglacial refugia of silver fir were localized as far north as in Hungary 
or Moravia (Willis et al. 2000; Terhürne-Berson et al. 2004). Nevertheless, main 
refugial areas were situated more in the south. The analysis of maternally inherited 
mitochondrial DNA revealed two genetic lineages of silver fir, one distributed in 
western and central Europe, the other in southern Balkans and Eastern Carpathians 
(Liepelt et  al. 2002). A synthesis of paleobotanical and genetic data by Liepelt 
et  al. (2009) suggested that the effective refugia for the western lineage could 
have been localized in northern Apennines and possibly Maritime Alps, those for 
the eastern lineage in southeastern Balkans. Nevertheless, some regional silver fir 
populations have originated from local minor refugia, e.g. those in the Pyrenees or 
southern Italy.

Not much information is available about the past of Abies species in Asia Minor 
and Africa. Genetic diversity of conifers in the Mediterranean is relatively high 
compared with other regions of the world (Fady-Welterlen 2005). The rear-edge 
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populations are frequently highly differentiated and contain many private alleles 
(Petit et al. 2005; Awad et al. 2014). Most rear-edge populations did not substantially 
contribute to postglacial recolonization, but rather reacted to climate fluctuations by 
altitudinal range shifts (Hampe and Petit 2005). Traces of such local extinction/ex-
pansion cycles can still be recognized in gene pools of A. cilicica (Awad et al. 2014).

During postglacial recolonization, genetic lineages met and formed broad hybrid 
zones on both sides of the Danube plain (Gömöry et al. 2012). However, natural 
hybridization of firs is not limited to the intraspecific level. Mediterranean firs (at 
least those within the section Abies) intercross easily. Fir in northern Greece, dis-
tinguished by growth vigour and capable of massive colonization of open areas, 
shows intermediate traits between A. alba and A. cephalonica and was classified as 
a separate taxon A. borisii-regis Mattf. Phylogeny of this taxon is still unclear, but 
genetic analyses generally support the hypothesis of its hybridogenous origin (Fady 
et al. 1992; Scaltsoyiannes et al. 1999). Two further taxa, A. equi-trojani Asch. and 
A. bornmuelleriana Mattf. occurring in Turkey, are also suspected to be hybrids, in 
this case between A. nordmanniana and A. cephalonica.

14.2.4 � Threats to Abies Gene Pools

Genetic inventories of rare Mediterranean firs indicate that in spite of restricted 
ranges and small population sizes they possess genetic variation levels comparable 
to the other European conifers; this is true even for extremely endemic A. nebroden-
sis (Scaltsoyiannes et  al. 1999; Parducci et  al. 2001; Hansen et  al. 2005; Terrab 
et al. 2007). The widespread A. alba has long been considered less variable than 
other conifers because of its low morphological variation. However, neutral marker 
studies did not confirm this (Konnert and Bergmann 1995; Liepelt et  al. 2009). 
Unfortunately, adaptive markers for Abies are still under development (Mosca et al. 
2012a, b; Roschanski et al. 2013) and no range-wide mapping of genetic variation 
has been performed yet. Nevertheless, as fir populations occupy a very broad range 
of ecological conditions, they may be extremely diverse in their adaptive potential. 
Common-garden experiments and laboratory tests showed strong differentiation 
in mortality, growth, ecophysiology and biochemical traits among populations de-
scended from different parts of the distribution area (Mayer et al. 1982; Larsen and 
Mekić 1991; Wolf 2003). Silver fir is known to suffer from a periodically appearing 
syndrome of “silver fir decline”, associated with physiological damage, needle cast 
and reduced increment. The aetiology of this syndrome is largely unknown, air pol-
lution and lack of genetic variation being most often suggested as causes (Larsen 
1986). At present, fir populations mostly recover (Bošeľa et al. 2014), but the re-
gress is likely to reoccur, as long-term fluctuations in health state were observed in 
the past. What is important, the decline is restricted to populations originated from 
the northern-Apennine refugium. Neither the Balkan lineage, nor the populations 
from Calabria, Central Massive or Pyrenees seem to be affected (Larsen 1986). The 
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effects of selective pressures on silver fir gene pools have also been demonstrated 
in association with climate (Bergmann and Gregorius 1993) or pollution (Longauer 
et al. 2001). This underlines the significance of genetic variation for adaptive prop-
erties of fir populations.

Climatic niche offers much broader distribution of silver fir than the realized 
spatial range (Tinner et al. 2013), which, in addition to interspecific competition, 
is an indication of strong direct or indirect human pressures. First of all, the area 
of forests as such has steadily decreased since the Neolithic, as they were convert-
ed into agricultural land (mainly pastures and meadows in the case of fir forests). 
Moreover, since the eighteenth century, natural mixed forests have largely been 
being replaced by commercial conifer monocultures in many European countries. 
Improper silvicultural systems associated with clear cutting or shelterwood cutting 
with rapid canopy opening were also unfavourable for fir (Mayer 1984). Among 
indirect influences, game browsing is one of the most important limiting factors 
for silver fir regeneration. Current game management practices in many parts of 
Europe often support high stocks of red deer, which heavily damages fir juveniles. 
Last but not least, fir is susceptible to industrial pollution. The composition of pol-
lutants changes, sulphur dioxide, which was a serious problem in Central Europe in 
1970s and 1980s, was replaced by tropospheric ozone, but as a whole, air pollution 
remains a serious threat at least locally.

It is difficult to predict the future of firs under the ongoing climate change. Ar-
guing by the extent of fundamental climatic niche based on the comparison of past 
climates and past distribution of fir during the Holocene and the Eemian, Tinner 
et al. (2013) suggested that silver fir may profit from changing climate almost all 
over the range. On the other hand, their study does not take into account potential 
genetic differentiation in the past and the complexity of the phenomenon of climate 
change, which is not necessarily limited to altering overall levels of temperatures 
and precipitations. Drought stress and increased incidence of wildfires are gener-
ally considered the cardinal problem linked to climate change, as most climate sce-
narios predict increasing temperatures and prolonged drought periods, resulting in 
increased continentality in much of Europe. However, the effects of climate change 
are not restricted to drought. Elevated-temperature events during winter may induce 
winter desiccation associated with xylem cavitation and needle loss, which may 
decrease productivity of fir forests. Heritable features of tree architecture such as 
crown shape or branching form result from evolutionary adaptation to snow pres-
sure and occurrence of hoarfrost and ice (Geburek et  al. 2008). Changed winter 
precipitation patterns in terms of a shift of wet and heavy snow towards higher alti-
tudes may bring excessive damage. Vegetative phenology (budburst, shoot growth 
cessation, frost hardening etc.) results from evolutionary tradeoffs between the 
length of the growing season and the risk of frost damage. A part of circum-annual 
ontogenetic rhythms is internally regulated and proceed almost regardless of exter-
nal signals, however, climate-associated environmental signals (chilling, thermal 
accumulation) play essential role in the timing of growth and reproduction (Konnert 
et al. 2014). Changed temperature distribution over the year may confuse the tem-
poral course of life processes and lead to important economical losses.
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In spite of the protection in national parks and reserves, overharvesting and graz-
ing remain the main threats for rare fir species in southern Europe, Asia Minor and 
North Africa. Unfavorable consequences of climate change, such as drought and 
wildfires are expected to be even more pronounced and thus more risky for the 
persistence of fir populations in this area than in central or northern Europe (Alizoti 
et al. 2011).

14.3  �Abies Conservation Strategies

Generally, the germplasm conservation of European and Mediterranean firs, like in 
other forest trees, includes both in situ and ex situ strategies. In the case of widely 
distributed and wind-pollinated species, the principal method is to establish gene-
reserve forests that include a considerable proportion of the genetic diversity within 
a species and, in this way, to ensure the continuous evolution of the species (Ge-
burek and Turok 2005). Ex situ strategies, such as clonal field repositories, seed 
orchards, and seed banks based on desiccated orthodox seeds belong to the group 
of classical conservation approaches. Tissue culture techniques, in vitro collec-
tions, and cryopreservation are regarded as biotechnology based approaches (Pence 
2014). Thus, the biotechnology based approaches and the cryopreservation of tree 
material has generally been considered as a complementary system for existing in 
situ and ex situ conservation practises (Blakesley et al. 1996; Häggman et al. 2008; 
Li and Pritchard 2009).

14.3.1 � Classical In Situ and Ex Situ Conservation Strategies

The importance of genetic conservation of European and Mediterranean firs was 
recognized at the national level as well as by international institutions such as FAO 
and Bioversity International. In the frame of the EUFORGEN Conifers Network, 
“Technical guidelines for genetic conservation and use” of A. alba (Wolf 2003) and 
Mediterranean firs (Alizoti et al. 2011) were elaborated.

As fir populations at the southern edge of the distribution are potentially most 
threatened by climate change, they deserve special attention. Marginal populations 
may harbor specific genes, which may prove to be a relevant pre-disposition during 
future adaptation processes. Dynamic in situ conservation with emphasis on mar-
ginal and genetically distinct populations is the preferred way to prevent extinction 
and to sustain the evolutionary potential, taking also into account that local popula-
tions are regarded as the functional units of ecosystems (Alizoti et al. 2011). Gene 
reserves as the basic type of conservation units in forest trees have been established 
in practically all European countries and many of them contain Abies species (Ko-
skela et al. 2013; Lefèvre et al. 2013). Nevertheless, attention has always focused on 
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silver fir. The area of in situ gene conservation units meeting the newly defined pan-
European minimum requirements for dynamic gene conservation units (Koskela 
et al. 2013) is over 38,000 ha for firs (cf. http://portal.eufgis.org).

The rate of the environmental change may exceed the capacity of genetic sys-
tems of population to adapt through natural selection and gene flow or to disperse 
into more favourable habitats. Assisted migration or ex situ conservation aimed at 
safeguarding populations which are in danger of physical destruction or genetic de-
terioration become viable options under such conditions (Konnert et al. 2014). Con-
servation measures include establishing conservation stands, seed orchards, clonal 
archives or storing genetic material in gene banks (Skrøppa 2005). At present, there 
are 307 ha of ex situ conservation stands for A. alba and 6 ha for A. cephalonica 
(cf. http://portal.eufgis.org). In addition, all Mediterranean species are represented 
on numerous experimental sites such as provenance or progeny tests, and are also 
conserved in many botanical gardens throughout Europe.

As firs have orthodox seeds, they can be stored over longer period (5 years) 
after decreasing water content to 5–10 % with only a minor loss of viability (Bon-
ner 2008) and seeds as stored in the national seed banks. On the other hand, the 
cryostorage of A. alba seeds was also successfully tested nearly 30 years ago (Ahuja 
1986), but till now, this method has not been vigorously involved in seed storage 
banks, as the seed preparation and cooling procedures are complicated (Chmie-
larz 2008). Therefore, practical application is limited to few seed banks (e.g., the 
Kostrzyca Forest Gene Bank in Poland; http://www.lbg.jgora.pl).

Ex situ conservation may also be driven by the effort of preserving specific geno-
types, including products of breeding. However, not all measures mentioned above 
are applicable in the case of firs. In such cases, non-conventional biotechnological 
solutions including cryopreservation and tissue culture techniques may become the 
primary method of choice (Blakesley et al. 1996; Li and Pritchard 2009).

14.3.2 � Biotechnology Tools as Ex Situ Conservation Strategy  
for Abies Species

In vitro conservation and cryopreservation are the most specialized form of ex situ 
conservation of genetic resources and the detailed gene bank standards for in vitro 
culture, slow growth storage, and cryopreservation were published by FAO (2013) 
recently. Engelmann (2011) recognizes three possibilities of biotechnological ap-
plications for ex situ conservation: (i) in vitro cultures, (ii) slow growth storage and 
(iii) cryopreservation.

The recent biorepositories or banks are mostly established by using in vitro pro-
duced plant material and they are depended on the success of in vitro propagation 
techniques which have been used for particular species (Pence 2014). In some spe-
cific cases, like isolated embryos or dormant buds, the in vitro methods may only be 
applied at the recovery stage.
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14.3.2.1 � Tissue Culture Techniques

Generally, Abies species are considered recalcitrant for vegetative propagation. 
Even ex vitro methods were either unsuccessful or limited by very strong plagiotro-
pism (Blazich and Hinesley 1994). Rooting problem is associated with tree matura-
tion phase and age-related developmental process (Nielsen et al. 2008; Bonga et al. 
2010).

In Abies species, like in a majority of coniferous species, the applications of us-
ing in vitro biotechnology propagation methods by axillary and adventitious buds 
are hampered by low multiplication rates, difficulties in rooting, and high produc-
tion costs due to multiple manual operations required during propagation. Of the in 
vitro methods, somatic embryogenesis has proved to be the most promising method 
for regeneration of all Abies species (reviewed by Vooková and Kormuťák 2007, 
2014).

Somatic embryogenesis (SE) is a cloning technique based on tissue culture 
whereby genetically identical copies of a genotype are produced in unlimited num-
bers (Park 2013). A key advantage of SE over other vegetative propagation methods 
is that the embryogenic clonal lines can be cryostored in liquid nitrogen, while cor-
responding trees are tested in the field (Park 2002; Nehra et al. 2005; Bettinger et al. 
2009; Whetten and Kellison 2010; Park 2013). The ability to maintain donor tissue 
juvenility throughout cryopreservation represents an advantage over propagation 
programs based on rooted cuttings (Grossnickle et al. 1996), and the genotype re-
sponse supersedes that of systems based on organogenesis (Menzies and Aimers-
Halliday 2004).

In Abies species, like in other conifers, SE the multi-step regeneration process 
starts with induction of pro-embryogenic masses, followed by somatic embryo for-
mation, maturation, desiccation and plant regeneration as illustrated for A. cepha-
lonica on Fig. 14.3. Despite the fact, that A. alba was one of the first coniferous 
species where the induction of SE was reported (Erdelský and Barančok 1986a, b), 
and a few studies on the regeneration of silver fir employing SE were published 
nearly 20 years ago (Chalupa 1991; Hristoforoglu et al. 1995), a standard protocol 
for propagation by SE on a large scale is still lacking. Till now, out of 11 species 
belonging to the group of European and Mediterranean firs the successful regenera-
tion via SE was reported for five species; A. alba (Chalupa 1991; Hristoforoglu 
et al. 1995; Vooková and Kormuťák 2009), A. cephalonica (Krajňáková et al. 2008), 
A. cilicica (Vooková and Kormuťák 2003), A. nordmanniana (Nørgaard 1997), A. 
numidica (Vooková and Kormuťák 2002) and several hybrids: A. alba × A. nu-
midica, A. cilicica × A. nordmanniana, A. nordmanniana × A. veitchii (Salaj et al. 
2004; Vooková and Kormuťák 2014).

Embryogenic cultures of Abies species have been derived in majority of cases 
from immature zygotic embryos but also mature embryos were successfully used 
(Hristoforoglu et al. 1995; Salaj and Salaj 2003; Nawrot-Chorabik 2008). Besides 
pure species also embryogenic cultures of interspecific hybrids have been derived 
from immature ( A. alba × A. alba, A. alba × A. nordmanniana, Gajdošová et al. 
1995; A. alba × A. cephalonica, A. alba × A. numidica, Salajová et al. 1996; A. cilic-
ica × A. nordmanniana, Vooková and Kormuťák 2003) and mature ( A. alba × A. 
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Fig 14.3   Somatic embryogenesis of Abies cephalonica. a Elite tree of A. cephalonica. b Devel-
oping green cone shortly after meiosis. c Initiation of somatic embryogenesis using immature 
embryos and proliferation of embryogenic cell mass. d Proliferating embryogenic cell mass and 
detail of proembryogenic cell masses after staining with acetocarmine and Evan’s blue. e Option 
for cryopreservation of the germplasm. f Maturation of somatic embryos. g Conversion of somatic 
embryo plants. h Experimental field trail
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cephalonica, Salaj and Salaj 2003) zygotic embryos. Secondary or repetitive SE 
from cotyledon explants of A. alba × A. cephalonica and A. alba × A. numidica 
somatic embryos was reported by Salajová and Salaj (2001) and for A. numidica by 
Vooková et al. (2003).

Induction and proliferation of several Abies species differ from most other gen-
era of the Pinaceae, because they can be achieved with cytokinin as the sole plant 
growth regulator in the tissue culture medium (Nørgaard and Krogstrup 1995), al-
though the embryogenic cultures of A. alba proliferated on a medium supplemented 
with auxin (Vondráková et al. 2011). Maturation of fir somatic embryos is promoted 
by abscisic acid and maltose is the preferable carbohydrate. The addition of poly-
ethylene glycol promoted the development of somatic embryos (Nørgaard 1997; 
Salajová et  al. 2004; Krajňáková et  al. 2009). For germination, well-developed 
cotyledonary somatic embryos are selected and subjected to a partial desiccation 
treatment for 3 weeks (Nørgaard et al. 1997; Vooková et al. 1998).

Despite positive achievements, the bottlenecks in Abies species, like in most 
conifers, are the low initiation rate, uneven maturation of embryos, problems in 
rooting and germination phases. This is due to poor understanding of embryo devel-
opment and therefore inability to develop proper SE methods for practical purposes. 
Exception is only SE of A. nordmanniana were technology has been used already 
tested in large scale. In Denmark, within the last two years, from 400 different em-
bryogenic cell lines around 20,000 plantlets were produced which will go into field 
trials in 2014 and 2015. The expectation is to continue with production of 20,000 
plants in the following year but only with 5–10 elite, most productive genotypes 
(Jens Find, personal communication).

14.3.2.2 � Cryopreservation

Cryopreservation for conservation purposes allows for storage of valuable seed 
(some recalcitrant seeds), pollen, shoot tips, meristems, axillary and dormant buds, 
embryogenic axes, zygotic or somatic embryos, genetically modified lines, callus, 
or cell cultures depending on the species (Engelmann 2011; Pijut et al. 2011). En-
gelmann (2011) divided the cryopreservation techniques into two main categories 
(i) classical, based on slow cooling down to a defined prefreezing temperature, 
followed by rapid immersion in liquid nitrogen and (ii) new—vitrification based 
procedures (seven different identified).

The first reports on cryopreservation of conifers were published in the late 
1980s, the target species being Picea abies (L.) H. Karst, Pinus taeda L. (Gupta 
et al. 1987), and Picea glauca (Moench) Voss (Kartha et al. 1988). Since that time 
the number of target species has increased rapidly and the most cryopreserved spe-
cies belong to the genera of Pinus, Picea, Larix, Pseudotsuga and Abies. Nowadays, 
the cryopreservation technology plays an important part in gene conservation, bio-
diversity, and in maintaining juvenility (Park 2013; Pence 2014).

As SE has become the most preferable propagation method of coniferous spe-
cies, the majority of cryopreservation protocols for coniferous species deal with ac-
tively proliferating embryogenic cell masses. The most common cryopreservation 
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protocol for the embryonic cultures of conifers is the classical slow-cooling and 
fast-thawing one (as reviewed by Häggman et al. 2000; Lambardi et al. 2008). Suc-
cessful cryopreservation relies on the removal of freezable water in order to avoid 
damage from ice crystallization and on the stabilization of membranes and molecu-
lar structure of the cells to avoid damage from the loss of water (Benson 2008). 
Preculturing embryogenic cell masses, somatic embryos or in vitro shoot tissues 
with treatments such as cold, increased sugars, or ABA can also work to increase 
survival through cryopreservation, presumably by triggering natural desiccation-
adaptive physiology (Kushnarenko et al. 2009). However, even with preculturing, 
most plant tissues require the application of further cryoprotective procedures to 
remove water and stabilize tissues to maintain viability through LN exposure.

The “slow-cooling” method requires the use of a controlled-freezing apparatus 
to lower the temperature in a constant and controlled way, at rates of 0.1–1.0 °C 
per min. When temperatures reach − 35 °C or − 40 °C, the samples are plunged into 
LN. During the slow freezing, as intercellular water freezes, water moves out of the 
cells into the intercellular spaces, slowly dehydrating the cells. Limitations of the 
slow-cooling method include the expense of the equipment and the amount of LN 
needed. Mr. Frosty and similar products provide a less expensive alternative for 
slow cooling (Pence 2014). Cryovials containing samples in a bath of isopropanol 
are kept in the freezer at − 80 °C (cooling rate of the samples being 1 °C per min). 
Thereafter the samples are transferred to LN (− 196 °C). For thawing and regrowth 
of embryogenic cell masses, the cryovials are rapidly thawed in water bath at 37 °C 
for 1–2 min. Cryoprotectants are removed from the thawed embryogenic cellular 
masses by gradual elution. The regrowth of culture is obtained and followed on 
semi-solid proliferation medium for 4–6 weeks depending on species and cell line.

In order to overcome some of the limitations of the slow cooling method, Sakai 
et al. (1990) reported a different approach, known as vitrification, which combined 
rapid freezing with cryoprotectants to cause the formation of glass, rather than crys-
tals, within the tissues. For vitrification, tissues are cryoprotected using more con-
centrated cryoprotectant solutions, the most widely used being PVS2, a mixture of 
30 % glycerol, 15 % ethylene glycol, 15 % DMSO, and 0.4 M sucrose. Till now, 
there are only a few reports where embryogenic cultures of Picea mariana (Mill.) 
B.S.P. and Picea sitchensis (Bong.) Carr. have been cryopreserved successfully by 
vitrification (Touchell et al. 2002; Gale et al. 2008). Recently, vitrification method 
based on a pregrowth-dehydration method was successfully applied to cryopreser-
vation of Picea omorica (Pančič) Purk. and Picea abies embryogenic cell lines (Ha-
zubska-Przybyl et al. 2010, 2013) without using cryoprotectants. Other approaches 
of elimination of toxic cryoprotectants, such as DMSO, have used the desiccation 
tolerance of somatic embryos in preparation for cryostorage and have also been suc-
cessful (Bomal and Tremblay 2000; Kong and von Aderkas 2011).

For the species belonging to the genus Abies, the classical, slow cooling cryo-
preservation procedure has been described only for three Abies species: for A. alba 
(Krajňáková et  al. 2013) A. cephalonica (Aronen et  al. 1999), A. nordmanniana 
(Nørgaard et al. 1993; Misson et al. 2006), and some fir hybrids (Salaj et al. 2010) 
(Table  14.2). As preculture treatment, the culturing of embryogenic cell masses 
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was done on solid or liquid media with increased concentration of sucrose (0.2 and 
0.4 M) or sorbitol (0.2 and 0.4 M) applied for subsequent 24 h. The most common 
cryoprotectants which were used are 5 % PGD (polyethylene glycol 6000, glucose, 
DMSO) and DMSO reaching the final concentration 7.5 % and 5 %, respectively. 
The duration of storage in LN2 varied from 1 h (Misson et al. 2006; Salaj et al. 2010) 
till 6 years (Krajňáková et al. 2011a, 2013).

The first reports have evaluated only the recovery after cryopreservation moni-
tored as increase in proliferation rate or as vital staining of embryogenic cell masses 
(Nørgaard et al. 1993; Aronen et al. 1999). The most recent studies compared also 
occurrence of oxidative stress (histological localization of H2O2) and the biochemi-
cal parameters (cellular levels of ATP and glucose-6-phosphate) during each step of 
cryo-procedure and thawing (Krajňáková et al. 2011b). The evaluation of matura-
tion abilities after cryopreservation was done by Salaj et al. (2010) for fir hybrids 
and by Krajňáková et al. (2011a, 2013) for A. cephalonica and A. alba.

However, despite more than 20 years of experience in conifer cryopreservation, 
including Abies species, there are only a limited number of reports on long-term 
storage. The present scenarios for global forest management and conservation, the 
need to conserve breeding material during clonal field testing and the consequences 
of climate change, not only underline the importance of cryopreservation as a safe 
storage against external threats but also emphasize the significance of the genetic 
fidelity of cryopreserved material. Long-term cryopreservation of an Abies species 
has only been reported for A. cephalonica (Krajňáková et al. 2011a) and A. alba 
(Krajňáková et al. 2013).

The experience and reports on the effects of prolonged storage in liquid nitrogen 
are still limited, and the genetic fidelity at DNA level of the cryopreserved mate-
rial has rarely been considered (Aronen et al. 1999; Salaj et al. 2010; Krajňáková 
et al. 2011a). However, cryopreservation as a cost-effective, low labor- and space-
demanding alternative will have an important role for conservation of coniferous 
tree species, including European and Mediterranean fir species in the near future.

14.4 � Concluding Remarks

Despite the fact that five European and Mediterranean fir species and some hybrids 
were regenerated using somatic embryogenesis technique and the successful cryo-
preservation protocols were applied to three species, there is still need for further 
studies. First, the critically endangered and endangered fir species were not subject-
ed to above mentioned studies. Second, the current protocols for regeneration have 
some limitations and have been applied only to a few embryogenic cell lines. Due to 
the fact, that in vitro cultures are clonally propagated lines, it is important to remem-
ber that multiple genotypes of these tissues need to be banked in order to achieve a 
high level of genetic diversity in the collection. This can dramatically increase the 
labour and resources needed initially to establish the lines and cryopreserve the tis-
sues, but once the lines are banked, maintenance costs are similar to those of other 
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cryopreserved materials, such as seeds (Li and Pritchard 2009). Thus, biotechno-
logical approaches have their place in the toolbox of conservation methods of firs.

Biotechnology means for ex situ conservation are of specific value in the context 
of rare endangered species with small local populations like A. nebrodensis or A. 
numidica, where populations are small and virtually all trees are worth of being 
conserved. They also can be useful in the case of small local populations, mainly 
fragmentary demes on the edges of the distribution range, potentially containing 
specific alleles. Transfer of the biotechnology experience gained in widespread spe-
cies and development of reliable procedures for somatic embryogenesis and cryo-
preservation for the endemics remain, however, the tasks for the future.

Acknowledgment  Authors thank the EUFORGEN as the source of information for downloading 
the distribution maps from http://www.euforgen.org/distribution_maps.html.
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