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Abstract. It seems that every biological process involves multiple protein-
protein interactions. Small subsets of residues, which are called “hot spots”, 
contribute to most of the protein-protein binding free energy. Considering its 
important role in the modulation of protein-protein complexes, a large number 
of computational methods have been proposed in the prediction of hot spots. In 
this work, we first collect lots of articles from 2007 to 2014 and select nine 
typical data sets. Then we compare the nine data sets in different aspects. We 
find that the maximum number of interface residues used in the previous work 
is 318, which can be selected as the fittest training data set used in predicting 
hot spots. At last, we compare and assess the features used in different works. 
Our result suggests that accessibility and residue conservation are critical in 
predicting hot spots. 

Keywords: proteins-protein interaction, hot spots, computational method, 
training data. 

1 Introduction 

Protein-protein interactions play an important role in almost all biological processes 
such as signal transduction, transport, cellular motion, and regulatory mechanisms. 
Researches of residues at protein-protein interfaces has shown that only a small 
portion of all interface residues is actually essential for binding [1]. These residues are 
termed as hot spots which contribute a large fraction of the binding free energy and 
are crucial for preserving protein functions and maintaining the stability of protein 
interactions. Recent years, several studies discovered that small molecules which 
bound to hot spots in protein interfaces can disrupt protein-protein interactions [2]. 
So, identifying hot spots and revealing their mechanisms can provide promising 
prospect for medicinal chemistry and drug design [3-4]. 

Experimental methods have been used to identify hot spot residues at protein-
protein interfaces. For example, alanine scanning mutagenesis has been used to 
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identify protein-protein interface hot spots [5]. Because of the high cost and low 
efficiency of experimental method, public databases of experimental results such as 
the Alanine Scanning Energetic Database (ASEdb) [6] and the Binding Interface 
Database (BID) [7] contain only a limited number of complexes. 

Besides the experimental methods, a large number of computational methods have 
been proposed in the prediction of hot spots. Tuncbag et al. [8] constructed a web 
server Hotpoint to predict hot spots effectively. Darnell et al. [9] also provided a web 
server KFC to predict hot spots by using decision trees. Cho et al. [10] developed two 
feature-based predictive support vector machine (SVM) models for predicting 
interaction hot spots with features including weighted atom packing density, relative 
accessible surface area, weighted hydrophobicity and molecular interaction types. Xia 
et al. [11] introduced both a SVM model and an ensemble classifier to boost hot spots 
prediction accuracy. Recently, Ye et al. [12] used network features and 
microenvironment features to predict hot spots. 

Although these approached have obtained good performance, there are still some 
problems remaining in this field. Though many features have been used in the 
previous studies, effective feature subsets have not been found yet. Moreover, most 
existing approaches use very limited data from experiment-derived databases, 
therefore the training data is insufficient, which may lead to pool prediction 
performance. Cheng et al. [13] also found that a rational selection of training sets had 
a better performance than random selection.  

To assess their data sets, we compare the methods with each other and with a 
overlapping set of hot spots.In this paper, we collect 9 data sets about hot spots from 
2007 to 2014. Firstly, we compare their training sets and analysis the same subsets 
they used. Then, we list the features they used and give a heuristic conclusion. 

2 Datasets and Methods 

(a) Datasets 

We collect 2600 articles with a simple query of protein-protein interactions, hot spots 
prediction and computational methods on PubMed. Then we obtain 30 articles by 
cutting off the remaining ones whose topics are not concerning about hot spots. 
Finally, we select nine typical articles which are used the computational methods to 
predict hot spots, including APIS [11], KFC2 [14], RF [15], NFMF [12], ELM [16], 
KFC1 [17], MINERVA [10], DSP [18], and βACVASA [19].  

Then we get data sets from the nine articles from the tables in the main text or from 
their supplements. The training data sets in these studies were all extracted from 
ASEdb [6] and the published data by Kortemme and Baker [1]. Then filtering 
methods were used to eliminate data redundancy by querying sequence identity. As a 
result, only a subset of the interface residues was chosen, and the interface residues 
with binding free energy (ΔΔG) ≥2.0 kcal/mol are defined as hot spots [15, 17, 21]. 
The dataset from BID was used as test sets. BID categorizes the effect of mutations as 
strong, intermediate, weak or insignificant. The residues having strong interaction 
strengths are considered as hot spots in this study. Details of the data sets are listed in 
supplement Table S1-S9. 
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(b) Framework 

As described in Fig.1. We first collect data from literature which is explained in 
section 2.1. Then we compare their data in different aspects such as their scale and 
features. We use Venn Diagrams [22] to analysis these complexes. At last we obtain 
the overlapping data in the nine works. 

 

Fig. 1. The framework of our method. Firstly, we collect 9 data sets from literatures. Then we 
compare the number of hot spots and non-hot spots, the complexes and features respectively. 
Finally, we obtain the overlapping data. 

3 Results and Discussions 

(a) Comparison of the Number of Training and Test Data Sets 

Table 1 and 2 shows the number of training and test data sets in different works. From 
Table 1, we find that the number of training data sets really make a big difference. 
The KFC2 method has only 132 interface residues while RF, NFMF and ELM have 
the largest number (318) of interface residues. Then we also find that the number of 
hot spots and the number of non-hot spots are different in different works except 
NFMF, RF and ELM (the training data set of them are the same) However, the 
training data sets used in creating machine learning methods, such as APIS, RF, 
KFC1, MINERVA, DSP, and βACVASA, contain more non-hot spot residues than 
hot spot residues. To avoid biased predictions, the training data set of interface 
residues in KFC2 contains 65 hot spot residues and 67 non-hot spot residues.  

From Table 2, we can see that almost all the number of test data sets is the same. 
Test data sets do not exist in DSP and βACVASA. The number of test data set in RF 
is the same as that in ELM, which is original from MINERVA. Two residues which 
are not in protein interfaces have been removed, so there are 125 residues in RF, not 
the number 127. Xia et al. [11] used exactly the same dataset as the one used in Cho 
et al. [10] for the purpose of comparing APIS and MINEVAR. So the number of their 
test data sets is also 127. 
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Table 1. The number of training data sets in different works 

Dataset Number of hot spots Number of non-hot spots Total number 
APIS 62 92 154 
KFC2 65 67 132 
RF 77 241 318 
NFMF 77 241 318 
ELM 77 241 318 
KFC1 60 189 249 
MINERVA 119 146 265 
DSP 76 145 221 
βACVASA 86 148 234 

Table 2. The number of test data sets in different works 

Dataset Number of hot spots Number of non-hot spots Total number 
APIS 39 88 127 
KFC2 39 87 126 
RF 38 87 125 
NFMF 38 86 124 
ELM 38 87 125 
KFC1 50 62 112 
MINERVA 39 88 127 
DSP NA NA NA
βACVASA NA NA NA

NA: Not Available 

(b) Comparison of the Protein Complexes Used in the Previous Works 

We list the complexes in each work. Considering the training data sets of NFMF, RF 
and ELM are same, so we just list the other 7 data sets in Table 3. The overlapping 
complexes are underlined. Then we use Venn Diagrams [22] to distinguish each 
other. Because the works in DSP and βACVASA do not contain test data sets, we 
don’t use these data sets. We first divide the rest 5 data sets into 2 groups. The one 
group is combining the data from APIS, KFC2 and ELM, the other is combining 
those from the remaining two methods KFC1 and MINERVA. From Fig.2, we can 
see that the dataset in ELM has the widest range of complexes among the three works 
(APS, KFC2, and ELM). So we choose the dataset from ELM as an additional set to 
join into the other group and use Venn Digrams to obtain the overlapping data. 
Apparently, from Fig.3, we also find that the complexes used in ELM contain the 
widest range of the whole. To further study, we list all the training data in supplement 
Table S 1-7 and the same data in supplement Table S8. We find that the data set of 
ELM contains the maximum amount of complexes and almost cover every data set of 
the rest. 
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Fig. 2. The number of complexes in APIS, ELM and KFC2.The 3 complexes only exist in 
ELM are 1dn2, 1jck and 1jtg. 1f47 and 1nmb only exist in ELM and KFC2. The 15 complexes 
which all works contain are 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1fc2, 1fcc, 1gc1, 
1jrh, 1vfb, 2ptc, and 3hfm. 
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Fig. 3. The number of complexes in KFC1, ELM and MINERVA. The complex only exists in 
ELM is 1jck and those only in KFC1 are 1bsr, 1dx5 and 3hhr. The 2 complexes only exist both 
in ELM and KFC1 are 1dn2 and 1jtg and those only exist in ELM and MINERVA are 1a22, 
1f47, 1fc2, 1fcc, 1jrh and 2ptc. All works contain 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 
1gc1, 1nmb, 1vfb, and 3hfm. 

Table 3. The complexes used in the previous works 

Method Complexes 
APIS 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1fc2, 1fcc, 1gc1, 1jrh, 

1vfb, 2ptc, 3hfm 
KFC2 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1f47, 1fc2, 1fcc, 1gc1, 

1jrh, 1nmb, 1vfb, 2ptc, 3hfm 
ELM 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dn2, 1dvf, 1f47, 1fc2, 1fcc, 

1gc1, 1jck, 1jrh, 1jtg, 1nmb, 1vfb, 2ptc, 3hfm 
KFC1 1a4y, 1ahw, 1brs, 1bsr, 1bxi, 1cbw, 1dan, 1dn2, 1dvf, 1dx5, 1gc1, 1jtg, 

1nmb, 1vfb, 3hfm, 3hhr 
MINERVA 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1f47, 1fc2, 1fcc, 1jrh, 

1nmb, 1gc1, 1vfb, 2ptc, 3hfm 
DSP 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1f47, 1fc2, 1fcc, 1gc1, 

1jrh, 1jtg, 1nmb, 1vfb, 2ptc, 3hfm, 3hhr 
βACVASA 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dfj, 1dvf, 1dx5, 1f47, 1fc2, 

1fcc, 1gc1, 1jck, 1jrh, 1jtg, 1nmb, 1vfb, 2ptc, 3hfm, 3hhr 
The same complexes in all works are underlined. 
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3.1 Comparison of the Features 

Table 4 gives the number of features used in different works and the methods of 
feature selection. And the details of features are described in supplement Table S9.We 
find that all models use Accessibility, Residue Conservation as features because of 
their importance in protein-protein interactions.  

However, the computational of accessibility is a little different in the 5 works. The 
work in MINERVA had proved that the absolute values of solvent accessibility and 
surface area burial ( ASAΔ ) had only a limited capacity to distinguish hot spots from 
other interface residues. To compensate that, they introduced the concept of relative 

surface burial ( rSB ). The relative surface burial was calculated as follows:  

 )(/)( iASAASAiSB monoir Δ=  (1) 

Here )(iASAmono is solvent accessibility of the i-th residue in a monomer. 

In the work of APIS, for accessible surface area (ASA) and relative ASA (RASA), 
they obtained five residue attributes: total (sum of all atom values), backbone (sum of 
all backbone atom values), side-chain (sum of all side-chain atom values), polar (sum 
of all oxygen, nitrogen atom values) and non-polar (sum of all carbon atom values). 
The structure information was calculated by PSAIA [23]. In addition, the relative 
change in ASA (RcASA) was calculated as follows: 
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Here )(iASAcomp  is solvent accessibility of the i-th residue in a complex. 

In the work of KFC2 and NFMF, they calculated the solvent accessible surface area 
using the program NACCESS [24]. In RF, they computed the relative accessible 
surface area (rel_ASA) of the ith residue is described in formula (2). 

Table 4. The number of features used in different works 

Methods Initial number Final number Feature selection 
MINERVA 54 12 Tree-decision 

APIS 62 9 F-score 
KFC2 47 14 SVM 

RF 57 19 RF 
NFMF 75 10 RF 

4 Conclusions 

In our work, we compared nine data sets from previous work. And we discuss the 
same training data set they all used. We think that the training data set of ELM may 
be the most suitable subsets to predict hot spots. In the end, we compare the features 
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and find two features used in all works are important for protein-protein interactions. 
We hope that this paper can give a possible way to select training data sets and 
features for researchers in this field. In our future work, we will build a database that 
contains data both from the experimentally detected hot spots and computationally 
predicted hot spots. 
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