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Abstract. In this paper, according to evolutionary information and 
physicochemical properties, we selected eight features, combined with Rotation 
Forest (RotF) to predict interaction sites. We built two models on both balanced 
datasets and imbalanced datasets, named balanced-RotF and unbalanced-RotF, 
respectively. The values of accuracy, F-Measure, precision, recall and CC of 
balanced-RotF were 0.8133, 0.8064, 0.8375, 0.7775 and 0.6283 respectively. 
The values of accuracy, precision and CC of unbalanced-RotF increased by 
0.0679, 0.0122 and 0.0361 over balanced-RotF. Precision values of 
unbalanced-RotF on our four selected testing sets were 0.907, 0.875, 0.878 and, 
0.889, respectively. Moreover, experiment only using two physicochemical 
features showed evolutionary information has effective effects for classification. 
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1 Introduction 

On the basis of the sequence and structural information of protein, some methods have 
been proposed [1-6]. Kini and Evans [1] proposed a unique predictive method that 
detecting the presences of the “proline” because they observed that proline is the most 
common residue found in the flanking segments of interface residues. Zhu-Hong 
You.et al[6] have proposed a novel method only using the information of protein 
sequences, which used the PCA-EELM model to predict protein-protein interactions. 
Many methods to predict the protein-protein interacting sites are motivated by the 
different machine learning methods with characteristics of proteins [5-17]. Minhas F.U. 
et al. [10] presented a novel method called PAIRpred. They selected structure and 
sequence information of residue pairs, combined Support Vector Machine method, 
which achieved good and detailed result. Peng Chen and Jinyan Li [11] trained a SVM 
using an integrative profile by combining the hydrophobic and evolutionary 
information, where they used a self-organizing map (SOM) technique as input vectors. 
Based on the Random Forest method, B.L.et al. [12] presented a new method with the 
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Minimum Redundancy Maximal Relevance method followed by incremental feature 
selection. What they took into consideration included the five 3D secondary structures. 

2 Methods 

2.1 Defining the Protein Interaction Sites 

In our article, we adopted the Fariselli’s [7] method to define the definition of surface 
residues and interface residues. If a residue’s RASA is at least 16% of its MASA, it is 
defined to be a surface residue, or it is defined to be a non-surface residue. If a surface 
residue’s difference between ASA and CASA is greater than 1 Å2, than it is defined to 
be an interface residue, otherwise it is defined to be a non-interface residue.  

2.2 Features  

In this paper, we adopt eight features to express interaction sites. These features as 
follows: sequence profiles, entropy, relative Entropy, conservation Weight, accessible 
surface areas, sequence variability, hydrophobicity [18] and polarity. The first six 
values of features could be obtained in HSSP database [19]. 

2.3 Creating Sample Sets 

From what we have mentioned above, we use these features to describe a residue. Each 
residue is made up by 27 values (Sequence profile is 20 values, and the other features 
is one value.). We used sliding window of size 5. Therefore, there are 27*5 values in 
each residue’s sample. If a residue doesn’t have enough neighbors, we substitute the 
zero for its value.  

2.4 Rotation Forests 

In our paper, we constructed classifiers using Rotation Forests [20]. Rotation Forests, 
including many decision trees, is an ensemble learning method for classification. Its 
output decided by the mode of outputs of decision trees. In our experiment, we used 
Rotation Forest algorithm in Waikato Environment for Knowledge Analysis (WEKA) 
[21] to construct classifiers.  

2.5 Datasets 

In our experiment, we chose the proteins in bos Taurus organism as our training and 
testing datasets. We downloaded proteins of whose resolution is less than 3.5Å2 in bos 
Taurus organism from the Protein Data Bank (PDB). Then we gave up those proteins 
whose length is less than 40 residues and sequence similarity is greater than 30%. 
Finally, we obtained 292 chains, 65185 residues. According to the definition of surface 
residues, there were 9291 interface residues and 30899 non-interface residues. Finally, 
we chose them as our datasets, named Bos. Then interface residues were labeled as 
“+1”, and non-interface residues were labeled as “-1”. We have created two training 
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and testing datasets. One is unbalanced named unbalanced-Bos, containing all surface 
sites in Bos. The other one is balanced named balanced-Bos.  

2.6 Measuring Method 

Accuracy, F-Measure, Recall, Precision, Correlation Coefficient (CC) were calculated 
to evaluate the performance of our predictors. ROC Area and ROC curve were also 
used in our article.  

( ) (TP TN FP FN)Accuracy TP TN= + + + +  ( )Recall TN TN FP= +  Pr ecision TP TP FP= +  

(2* * ) ( )F Measure recall precision recall precision− = +

( * * ) ( )( )( )( )CC TP TN FP FN TP FN TP FP TN FP TN FN= − + + + +  

3 Experimental Procedure and Results 

3.1 Experiments on Different Machine Learning Methods 

Experimental Procedure: We make experiments on both balanced Bos and 
unbalanced-Bos using Rotation Forests. We carried out experiments for 10 times and 
we created 10 models for balanced-Bos. We named the experiment balanced-RotF. For 
unbalanced-Bos, we carried out experiment for only once with10-cross validation and 
we named it unbalanced-RotF. Meanwhile we constructed other classifiers by some 
other machine learning methods in WEKA and LIBSVM [22] software. By comparing 
those results on different classifiers, we can make an observation which classifier that 
our sample sets perform on is better. From Figure 1 and Figure 2, we can see the value 
of accuracy, F-Measure and CC of Rotation Forests are higher than that of other 
machine learning methods. The values of accuracy, F-Measure, Precision, Recall and 
CC are 0.8133, 0.8064, 0.8375, 0.7775 and 0.6283，respectively.  

 

Fig. 1. The accuracy, F-Measure, and CC of different machine learning methods on the 
balanced-Bos. Figures on the top left corner, the top right corner, the bottom corner, show  
the accuracy values, F-Measure and CC of ten times of six machine learning methods on the 
balanced-Bos, respectively. 
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Fig. 2. The performances of Precision and Recall on the balanced-Bos. Ten black points show 
performances of ten balanced-RotF experiments we carried out. The vertical axis values show the 
value of recall and the abscissa axis values show the value of precision.  

What we expected was it can achieve high accuracy and also get the high recall and 
precision. Figure 2 shows the values of precision and recall. Obviously, the closer  
that points can approach to the right top corner, the better performances they have. 
Black points in Figure 2, standing for Rotation Forest algorithm, we can observe that 
black points have highest precision. Figure 3 shows performances of different methods 
on unbalanced-Bos. It is obvious that unbalanced-RotF have better performances than 
other methods. The values of accuracy, F-Measure, precision, recall and CC were 
0.8812, 0.7271, 0.8497, 0.6354 and 0.6644, respectively; expect precision of SVM was 
higher. From the three figures, we can make a conclusion that Rotation Forests are 
more suitable for our extracted features. From Table 1, what else we can observe was 
that the some indicator values on unbalanced-Bos were better than balanced Bos. It 
shows information that negative samples contained make irreplaceable contributions to 
the prediction of interaction sites and it should not be abandoned. 

3.2 Experiments on Rotation Forests without Evolutionary Information 

We make experiments only using hydrophobicity and polarity to confirm whether 
evolutionary information of proteins makes contributions to predict interaction sites. 
As the same way, we carried experiments on both balanced-Bos and unbalanced-Bos. 
From Table 2, we can see the average value of accuracy, F-Measure, precision, recall 
and CC was 0.6146, 0.6153, 0.6141, 0.6167 and 0.2292 respectively on balanced-Bos. 
However, the results show all sites including interaction sites and non-interface sites 
were predicted to be non-interaction sites. Rotation Forests with all eight features 
performed better on predication of interaction sites. It indicates that evolutionary 
information has effective effects on classification. 

3.3 Experiments on different Independent Testing Datasets 

In order to measure performances of RotF-classifiers we created in experiments on 
different machine learning methods, we built several independent testing sets, which 
came from escherichia coli (E.coli), bacillus subtilis (B.subtilis), rattus norvegicus 
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(R.norvegicus) and Yeast bacillus (Y.bacillus). We adopted the models which were 
produced by RotF-classifiers, including balanced-RotF and unbalanced-RotF. The 
following Table 3 and Table 4 present the performances of RotF-classifiers on 
independent testing sets, respectively.  
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Fig. 3. Performances of unbalanced-Bos using different machine learning methods. It shows 
accuracy, F-Measure, Precision, Recall, CC and ROC Area using different machine learning 
methods on the unbalanced-Bos.  

Table 1. Performances of Rotation Forests on balanced-Bos and unbalanced-Bos 

 Accuracy F-Measure Precision Recall CC ROC Area 

balanced-Bos 0.8133 0.8064 0.8375 0.7775 0.6283 0.9077 

unbalanced-Bos 0.8812 0.7271 0.8497 0.6354 0.6644 0.8790 

Table 2. Performances of Rotation Forests only using hydrophobicity and polarity 

 Accuracy F-Measure Precision Recall CC ROC Area 
balanced-Bos 0.6146±0.0030 0.6153±0.0061 0.6141±0.0026 0.6167±0.0123 0.2292±0.0059 0.6576 

unbalanced-Bos 0.7509 —1 — 0 — 0.5950 
 1: “—” means all residues were predicted to be non-interface sites. 

 
From the Table 3, we can observe that performances on imbalanced samples were 

good. Values of accuracy of balanced-RotF for these four organisms were 0.8198, 
0.8062, 0.8093 and 0.8044, respectively. Values of ROC Area were 0.8441, 0.8278, 
0.8030 and 0.8350, respectively. Table 4 shows the performances of unbalanced-RotF 
models. Values of precision of unbalanced-RotF models for four testing sets were 
0.907, 0.875, 0.878 and 0.889, respectively. High precision means more positive 
samples were predicted correctly. Figure 4 shows the balanced-RotF models of ROC 
curves on four testing sets and Figure 5 shows the unbalanced-RotF model of ROC 
curves on four testing sets. We can make a conclusion that our classifiers performed 
well on independent testing sets, which confirms that our classifiers are suitable for not 
only the bos Taurus organism, but also for some other organisms. The results 
confirmed that our Rot-classifiers have extensive adaptation. 
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Table 3. Performances of Rotation Forests of balanced RotF models on independent testing 
datasets 

 Accuracy F-Measure Precision Recall CC ROC Area 

E.coli 0.8198 0.7022 0.6976 0.7069 -0.1173 0.8441 

variance 0.0101 0.0181 0.0219 0.0149 0.5703 0.0019 

B.subtilis 0.8062 0.6665 0.6904 0.6442 0.5308 0.8278 

variance 0.0022 0.0037 0.0045 0.0043 0.0052 0.0026 

R.norvegicus 0.8093 0.6094 0.6074 0.6118 0.4835 0.8030 

variance 0.0036 0.0100 0.0074 0.0208 0.0118 0.0025 

Y.bacillus 0.8044 0.6850 0.7089 0.6631 0.5421 0.8350 

variance 0.0088 0.0431 0.0435 0.0459 0.0326 0.0024 

Table 4. Performances of unbalanced RotF model on independent testing datasets 

 Accuracy F-Measure Precision Recall CC ROC Area 

E.coli 0.849 0.692 0.907 0.560 0.630 0.854 

B.subtilis 0.831 0.645 0.875 0.511 0.578 0.839 

R.norvegicus 0.856 0.615 0.878 0.473 0.574 0.814 

Y.bacillus 0.830 0.674 0.889 0.543 0.598 0.847 

 
According to results, we can also observe that values of accuracy, precision, CC and 

ROC Area of unbalanced-RotF models were better than balanced samples. The 
performances of Rot-classifiers in experiments on different machine learning methods 
also proved it, which means imbalanced samples contained the information of all sites 
in proteins, including interface sites and non-interface sites. We took the fully use of 
samples and achieved better results. It meant in our experiment information of 
non-interface sites should not be abandoned. 

3.4 Compared to Other Methods 

For comparison purpose, we make experiments with our sample sets using other 
methods. We make experiments on following websites: SPIDDER [23] 
(http://sppider.cchmc.org/): It uses solvent accessibility, based on artificial neural 
network method. InterProSurf [24] (http://curie.utmb.edu/usercomplex.html): It was 
based on solvent accessible surface area, a propensity scale for interface residues and a 
clustering algorithm to classify interaction sites. 

In order to make a convenient comparison to the method of SPIDDER, we redefined 
interface residues according to the definition of SPIDDER and InterProSurf to 
calculate accuracy, F-Measure, precision, recall and CC. Table 5 shows performances 
on the two methods. The results of SPIDDER achieved high accuracy: 0.723, but the 
values of precision and recall are low. The results of InterProSurf were similar to the 
SPIDDER. Its precision was higher than SPIDDER, but similarity, the value of recall 
was unsatisfactory, only 0.4894. (There were some problems with our experiments on 
InterProSurf. There were 85 chains didn’t obtain predicted results, so the results were 
obtained after deleting these 85 chains).  
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Fig. 4. Balanced ROC curves of four testing sets. It shows ROC curves of four testing sets, which 
produced by balanced-RotF classifiers from the experiment on Rotation Forests. E.coli stands for 
the Escherichia coli, which consists of ten curves, where each curve stands for the experimental 
result of each model from experiment on Rotation Forests. The same as E.coli, B.subtilis, 
R.norvegicus and Y.bacillus stand for the bacillus subtilis, rattus norvegicus and yeast bacillus, 
respectively. 

 

Fig. 5. Unbalanced ROC curves of four testing sets. It shows the ROC curves from four testing 
sets, which produced by unbalanced-RotF classifier from the experiment on Rotation Forests. 
There are four curves in the figure, where different color curves stand for different sample sets. 
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Table 5. Performances of SPIDDER and InterProSurf 

 Accuracy F-Measure Precision Recall CC 

SPIDDER 0.723 0.450 0.510 0.402 0.272 

InterProSurf 0.851 0.608 0.802 0.489 0.226 

4 Conclusion 

In our paper, a new method was proposed to predict the interaction sites. At first,  
we extracted eight features, combined with the sliding window and it contained five 
amino acids. We created two classifiers named balanced-RotF and unbalanced-RotF, 
which showed good performances with high accuracy, F-Measure and CC, especially 
the Recall and Precision. Meanwhile, we make experiments on different machine 
learning methods: RanF, SVM, RT, BN and RBF. The results show that features  
that we selected are more suitable for the Rotation Forests method. What is more,  
we confirmed evolutionary information make contribution to prediction. Moreover, our 
models were tested on independent datasets, which achieved good results, as well, 
which proved that our models have extensive adaptation. For comparison, we made our 
datasets test on other methods. Performances show our results were better than theirs. 

5 Funding 

This project was supported by the National Natural Science Foundation of China 
(Grant No.61203290), Startup Foundation for Doctors of Anhui University 
(No.33190078) and outstanding young backbone teachers training (No.02303301). 

References 

1. Kini, R.M., Evans, H.J.: Prediction of potential protein-protein interaction sites from amino 
acid sequence identification of a fibrin polymerization site. FEBS Lett. 385(1-2), 81–86 
(1996) 

2. Tuncbag, N., Keskin, O., Nussinov, R., Gursoy, A.: Fast and accurate modeling of 
protein–protein interactions by combining template-interface-based docking with flexible 
refinement. Proteins: Structure, Function, and Bioinformatics 80(4), 1239–1249 (2012) 

3. Zhang, S.W., Hao, L.Y., Zhang, T.H.: Prediction of protein–protein interaction with 
pairwise kernel Support Vector Machine. International Journal of Molecular Sciences 15(2), 
3220–3233 (2014) 

4. Konc, J., Janezic, D.: Protein-protein binding-sites prediction by protein surface structure 
conservation. J. Chem. Inf. Model. 47(3), 940–944 (2007) 

5. Yuehui, C., Jingru, X., Bin, Y., Yaou, Z., Wenxing, H.: A novel method for prediction for 
protein interaction sites based on integrated RBF neural networks. Computers in Biology 
and Medicine 42(4), 402–407 (2012) 

6. You, Z.H., Lei, Y.K., Zhu, L., Xia, J., Wang, B.: Prediction of protein-protein interactions 
from amino acid sequences with ensemble extreme learning machines and principal 
component analysis. BMC Bioinformatics 14(suppl. 8), S10 (2013) 



 Predicting Protein-Protein Interaction Sites by Rotation Forests 279 

 

7. Fariselli, P., Pazos, F., Valencia, A., Casadia, R.: Prediction of protein-protein interaction 
sites in heterocomplexes with neural networks. Eur. J. Biochem. 269, 1356–1361 (2002) 

8. Sriwastava, B.K., Basu, S., Maulik, U., Plewczynski, D.: PPIcons: Identification of 
protein-protein interaction sites in selected organisms. J. Mol. Model. 19(9), 4059–4070 
(2013) 

9. Chen, C.T., Peng, H.P., Jian, J.W.: Protein-protein interaction site predictions with 
three-dimensional probability distributions of interacting atoms on protein surfaces. PLOS 
One 7(6), e37706 (2012) 

10. Minhas, F.U., Geiss, B.J., Ben-hur, A.: PAIRpred: Partner-specific prediction of interacting 
residues from sequence and structure. Proteins: Structure, Function, and Bioinformatics 
(2013) 

11. Chen, P., Li, J.: Sequence-based identification of interface residues by an integrative profile 
combining hydrophobic and evolutionary information. BMC Bioinformatics 11, 402–416 
(2010) 

12. Li, B.Q., Feng, K.Y., Chen, L., Huang, T., Cai, Y.D.: Prediction of Protein-Protein 
Interaction Sites by Random Forest Algorithm with mRMR and IFS. PLOS One 7(8), 
e43927 (2012) 

13. Li, C.X., Drena, D., Vasant, H.: HomPPI: a class of sequence homology based 
protein-protein interface prediction methods. BMC Bioinformatics 12, 244–267 (2011) 

14. Jordan, R.A., EI-Manzalawy, Y., Dobbs, D., Honavar, V.: Predicting protein-protein 
interface residues using local surface structural similarity. BMC Bioinformatics 13, 41–44 
(2012) 

15. Xu, B., Wei, X., Deng, L., Guan, J., Zhou, S.: A semi-supervised boosting SVM for 
predicting hot spots at protein-protein interfaces. BMC Syst. Biol. 6(suppl. 2) (2012) 

16. Sriwastava, B.K., Basu, S., Maulik, U., Plewczynski, D.: PPIcons: identification of 
protein-protein interaction sites in selected organisms. J. Mol. Model. 19(9), 4059–4070 
(2013) 

17. Hwang, H., Vreven, T., Weng, Z.: Binding interface prediction by combining 
protein-protein docking results. Proteins 10, 1002 (2013) 

18. Gallet, X., Charloteaux, B., Thomas, A., Brasseur, R.: A fast method to predict protein 
interaction sites from sequences. J. Mol. Biol. 302(4), 917–926 (2000) 

19. Chris, S., Reinhard, S.: Database of homology-derived protein structures and the structural 
meaning of sequence alignment. Proteins Struct. Funct. Bioinforma. 9(1), 56–68 (1991) 

20. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001) 
21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA 

Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009) 
22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transactions 

on Intelligent Systems and Technology 2(27), 1–27 (2011) 
23. Porollo, A., Meller, J.: Prediction-based fingerprints of protein-protein interactions. Proteins 

Struct. Funct. Bioinforma 66(3), 630–645 (2007) 
24. Neqi, S.S., Schein, C.H., Oezquen, N., Power, T.D., Braun, W.: InterProSurf: a web server 

for predicting interacting sites on protein surfaces. Bioinformatics 23(24), 3397–3399 
(2007) 

 

 


	Predicting Protein-Protein Interaction Sites by Rotation Forests with Evolutionary Information
	1 Introduction
	2 Methods
	2.1 Defining the Protein Interaction Sites
	2.2 Features
	2.3 Creating Sample Sets
	2.4 Rotation Forests
	2.5 Datasets
	2.6 Measuring Method

	3 Experimental Procedure and Results
	3.1 Experiments on Different Machine Learning Methods
	3.2 Experiments on Rotation Forests without Evolutionary Information
	3.3 Experiments on different Independent Testing Datasets
	3.4 Compared to Other Methods

	4 Conclusion
	5 Funding
	References




