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Abstract. Epilepsy is a chronic neurological condition that affects approximate-
ly 70 million people worldwide. Characterised by sudden bursts of excess elec-
tricity in the brain manifesting as seizures, epilepsy is still not well understood 
when compared with other neurological disorders. Seizures often happen unex-
pectedly and attempting to predict them has been a research topic for the last 20 
years. Electroencephalograms have been integral to these studies, as they can 
capture the brain’s electrical signals. The challenge is to generalise the detec-
tion of seizures in different regions of the brain and across multiple subjects. 
This paper explores this idea further and presents a supervised machine learning 
approach that classifies seizure and non-seizure records using an open dataset 
containing 543 electroencephalogram segments. Our approach posits a new me-
thod for generalising seizure detection across different subjects without prior 
knowledge about the focal point of seizures. Our results show an improvement 
on existing studies with 88% for sensitivity, 88% for specificity and 93% for the 
area under the curve, with a 12% global error, using the k-NN classifier. 

Keywords: Seizure, non-seizure, machine learning, classification, Electroence-
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1 Introduction 

Epilepsy is a chronic condition of the brain, and causes repeated seizures, commonly 
referred to as fits. Epilepsy is said to affect one in every 103 people in the UK 
(500,000 approximately), according to epilepsy research UK1, and 70 million people 
worldwide (Fazel, Wolf, Langstrom, Newton, & Lichtenstein, 2013). The risk of de-
veloping epilepsy is greatest at the extremes of life with incidences more common in 
the elderly than the young (Engel, 2013). 

Seizures can be focal (partial) and exist in one part of the brain only, or they can be 
general and affect both halves of the brain. In a focal seizure, the excess electrical 
activity is confined to the occipital lobes, parietal lobes, frontal lobes, or temporal 
lobes. During a focal seizure, the person may be conscious and unaware that a seizure 

                                                           
1 http://www.epilepsyresearch.org.uk 
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is taking place, or they may have uncontrollable movements or unusual feelings and 
sensations. During a general seizure, consciousness is normally lost and muscles may 
stiffen and jerk2. A diagnosis of epilepsy is made if a patient has had two or more 
unprovoked seizures3, and diagnosis is made with the help of an electroencephalo-
gram (EEG), which measures the electrical activity in the brain.   

The majority of previous works on seizure detection have focused on patient-
specific predictors, were a classifier is trained on one person and tested on the same 
person (Carney, Myers, & Deyer, 2011; Maiwald et al., 2004; Mormann, Andrzejak, 
Elgar, & Lehnertz, 2007; Shoeb, 2009). However, in this paper, the emphasis is on 
using EEG classification to generalise detection across all regions of the brain using 
multiple subject records, without prior knowledge of which region of the brain the 
seizure occurred. Several classifiers are evaluated using 171 seizure and 171 non-
seizure blocks extracted from the 543 EEG segments of 24 patients suffering with 
epilepsy. 

The structure, of the remainder, of this paper is as follows. Section 2 describes the 
underlying principles of Electroencephalography and the type of features extracted 
from Electroencephalography signals. Section 3 discusses the approach taken in this 
paper, while Section 4 describes the evaluation. The results are discussed in Section 5 
before the paper is concluded in Section 6. 

2 Electroencephalography and Feature Extraction 

Electroencephalography (EEG) is the term given for the recording of electrical activi-
ty resulting from ionic current flows generated by neurons in the brain (Libenson, 
2009) and is mainly used to evaluate seizures and epilepsy. In order to retrieve EEG 
signals, electrodes are placed on the scalp where odd numbered electrodes are placed 
on the left side of the scalp and even numbered electrodes on the right. The letters that 
precede the numbers represent brain regions (Fp) frontopolar, (F) frontal, (T) temper-
al, (P) parietal, (C) central, and (O) occipital (Libenson, 2009).  

The collection of raw EEG signals is always temporal. However, for analysis and 
feature extraction purposes, translation, into other domains, is possible and often re-
quired. In order to obtain frequency parameters, several of the studies reviewed, have 
used Power Spectral Density (PSD). Peak Frequency is one of the features also con-
sidered in many studies. It describes the frequency of the highest peak in the PSD. 
During a seizure, EEG signals tend to contain a major cyclic component, which shows 
itself as a dominant peak in the frequency domain (Sanei & Chambers, 2007).  

Meanwhile, Ning et al. (Ning & Lyu, 2012) found that Median Frequency dis-
played significant differences between seizure and non-seizure patients. By segment-
ing the EEG signal into five separate frequency bands for delta (δ: 0.5 ≤ f ≤ 4 Hz), 
theta (θ: 4 ≤ f ≤ 8 Hz), alpha (α: 8 ≤ f ≤ 12 Hz): beta (β: 12 ≤ f ≤ 25 Hz), and gamma 

                                                           
2 http://www.epilepsy.org.uk 
3 http://www.who.int 
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(γ: 25 ≤ f), it was possible to predict 79 of 83 seizures, with a sensitivity value of 
95.2%.  

Root Mean Square (RMS) has also been considered a useful feature for distinguish-
ing between seizure and non-seizure events. RMS measures the magnitude of the va-
rying quantity and is a good signal strength estimator in EEG frequency bands 
(Abdul-latif, Cosic, Kimar, & Polus, 2004; Patel, Chern-Pin, Fau, & Bleakley, 2009).  

Entropy has been used as a measure of the complexity, or uncertainty, of an EEG 
signal, were the more chaotic the signal is, the higher the entropy (Greene et al., 2008; 
Sanei & Chambers, 2007). Many authors agree that during a seizure, the brain activity 
is more predictable than during a normal, non-seizure, phase and this is reflected by a 
sudden drop in the entropy value (Aarabi, Fazel-Rezai., & Aghakhani, 2009; 
Diambra, de Figueiredo, & Malta, 1999; Greene et al., 2008; Iasemidis, 2003; Kelly et 
al., 2010). All of the above features are extracted from the raw dataset in this paper. 

3 Generalisation of Epileptic Seizure Detection 

The study in this paper focuses on discriminating between seizure and non-seizure 
EEGs across a group of 24 subjects. The classifiers are trained on all patient records 
and therefore, classification is generalised across all subjects using features from 
channels that capture the EEG in all parts of the brain.  

3.1 Methodology 

The CHB-MIT dataset used in this paper is a publicly available database from physio-
net.org that contains 686 scalp EEG recordings from 24 patients treated at the Child-
ren’s Hospital in Boston. The subjects had anti-seizure medication withdrawn, and 
EEG recordings were taken for up to several days after.  

3.1.1 Data Pre-processing 
In the CHB-MIT database, each record was sampled at 256Hz, with 16-bit resolution. 
Signals were recorded simultaneously through twenty-three different channels, via 19 
electrodes and a ground attached to the surface of the scalp.  

A bandpass filter was applied to each of the 543 EEG segments to extract the EEG 
data in each of the frequency bands. This results in four columns of additional data; 
delta (δ: 0.5 ≤ f ≤ 4 Hz), theta (θ: 4 ≤ f ≤ 8 Hz), alpha (α: 8 ≤ f ≤ 12 Hz): and beta (β: 
12 ≤ f ≤ 25 Hz). Finally, all frequency bands in each of the 543 EEG segments were 
normalised to a common scale between zero and one.   

3.1.2 Classification 
Following an analysis of the literature, the study in this paper adopts simple, yet po-
werful algorithms. These include the linear discriminant classifier (LDC), quadratic 
discriminant classifier (QDC), uncorrelated normal density based classifier (UDC), 
polynomial classifier (POLYC), logistic classifier (LOGLC), k-nearest neighbour 
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(KNNC), decision tree (TREEC), parzen classifier (PARZENC) and the support vector 
machine (SVC) (van der Heijde, Duin, de Ridder, & Tax, 2005).  

4 Evaluation 

4.1 Results Using Top Twenty Uncorrelated Features Ranked Using LDA 
Backward Search Feature Selection 

In this evaluation, the top twenty uncorrelated features, extracted from each of the 
frequency bands within each of the EEG channels, and nine classifiers are used. The 
performance for each classifier is evaluated using the sensitivity, specificity, and AUC 
values with 100 simulations and randomly selected training and test sets for each 
simulation.  

4.1.1 Classifier Performance 
The first evaluation uses all the seizure and non-seizure blocks from all subjects in the 
CHB-MIT dataset (171 seizures and 171 non-seizures). Table 1, shows the mean aver-
ages obtained over 100 simulations for the sensitivity, specificity, and AUC. 

Table 1: Classifier Performance Results for Top 20 Uncorrelated Features 

Classifier Sensitivity Specificity AUC 
LDC 70% 83% 54% 
QDC 65% 92% 62% 
UDC 39% 95% 65% 

POLYC 70% 83% 83% 
LOGLC 79% 86% 89% 
KNNC 84% 85% 91% 
TREEC 78% 80% 86% 

PARZENC 61% 86% 54% 
SVC 79% 86% 88% 

 

As shown in Table 2, the sensitivities (seizure), in this initial test, are lower for all 
classifiers. This is interesting given that the number of seizure and non-seizure blocks 
is equal. One possible reason for this is that the ictal length across the 171 records 
was 60 seconds. However, in the CHB-MIT records ictal periods ranged between 6 
and 752 seconds. It is possible that some ictal blocks resemble non-seizure records 
resulting in misclassification (particularly blocks that contain 6 seconds of ictal data).  

4.2  Results Using Top Five Uncorrelated Features Ranked Using LDA 
Backward Search Feature Selection from Five Head Regions 

In the second evaluation, the top five uncorrelated features, extracted from five main 
regions across the head, are used to determine whether the detection of seizures can 
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be improved. Again, the performance for each classifier is evaluated using the sensi-
tivity, specificity, and AUC values with 100 simulations and randomly selected train-
ing and test sets for each simulation.  

4.2.1 Classifier Performance 
As shown in Table 2, the sensitivities (seizure), for most of the algorithms have im-
proved, including the specificity values. The AUC results also showed improvements 
for several of the classifiers, with 93% achieved by the KNNC classifier. This is en-
couraging given that sensitivities are more important in this research than specificities. 
From the previous results, we find a 4% increase in sensitivities, a 3% increase in 
specificities and a 2 % increase in the performance of the KNNC classifier, with other 
classifiers improving with similar increases.  

Table 1. Classifier Performance Results from Top five Uncorrelated Features from Five Head 
Regions 

Classifier Sensitivity Specificity AUC 
LDC 78% 88% 55% 
QDC 84% 86% 60% 
UDC 51% 91% 70% 

POLYC 78% 88% 89% 
LOGLC 82% 84% 90% 
KNNC 88% 88% 93% 
TREEC 82% 81% 89% 

PARZENC 81% 93% 61% 
SVC 85% 86% 90% 

5 Discussion 

The study in this paper focused on discriminating between seizure and non-seizure 
EEG records across a group of 24 subjects, rather than a single individual. The clas-
sifiers are trained using all 24 patients, and therefore, classification is generalised 
across the whole population contained in the CHB-MIT database. To achieve this, 
features from all the channels that capture the EEG in all parts of the brain were used. 
In the initial classification results, the top 20 uncorrelated features from the whole of 
the head (not region-by-region) were extracted from 805 possible features. This has 
been accomplished using the linear discriminant analysis backward search technique 
to rank features. This approach achieved reasonably good results, using the KNNC 
classifier, with 84% for sensitivity, 85% for specificity, 91% for the AUC, with a 
global error of 15%. 

Interestingly, the features used in this initial evaluation, involved channels from the 
four lobes of the brain, occipital, parietal, frontal, and temporal, but not the channels 
spread across the centre of the head. This implied that rather than having generalised 
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seizures across the whole of the brain, a majority of focal seizures occurred in each of 
the lobes. 

Using the top five uncorrelated features from EEG channels specific to the five 
main regions of the head improved the sensitivities and specificities, while producing 
high AUC values. The best classification algorithm was again the KNNC classifier, 
which achieved 88% for sensitivity, 88% for specificity, and an AUC value of 93% 
with a 12% global error. This was followed closely by the SVC classifier, which 
achieved 85% for sensitivity, 86% for specificity, and an AUC value of 90% with a 
14% global error. 

Generally, this paper produced good results and in many cases better than several 
papers reported in the literature. Where papers reported better results than ours, a 
patient-specific seizure detector was used, in contrast to the generalised detector ap-
proach taken in this paper. Consequently, it is challenging to make a like-for-like 
comparison and it is difficult to determine if the higher results produced in our study 
are, in fact, better than the results produced in patient-specific studies.  

6 Conclusions and Future Work 

Epilepsy is one of the most common neurological conditions, and one of the least 
understood. The seizures that characterise epilepsy are frequently unannounced and 
affect a sufferer’s quality of life, as well as increasing the risk of injury or possibly 
death. A strong body of evidence has suggested that these epileptic seizures can be 
predicted by analysis of EEG recordings.  

Within a supervised-learning paradigm, this paper utilises EEG signals to classify 
seizure and non-seizure records. Most of the previous work in this area has focused on 
detecting seizures of individual patients, but this paper generalises seizure detection 
across a group of 24 subjects from the open CHB-MIT database. 

A rigorous, methodical, approach to pre-processing of the data was undertaken, 
and features were extracted from the raw EEG signal using several feature-ranking 
techniques. From our evaluations, the highest result, achieved with the KNNC clas-
sifier, was 93% for the AUC, 88% for sensitivity, and 88% for specificity. 

Despite these encouraging results, more in-depth research is still required. For ex-
ample, regression analysis, using a larger number of observations would be interest-
ing. This would help to predict the early signs of a seizure, not just when the seizure 
happens. In addition, more advanced classification algorithms, and techniques, will be 
considered, including advanced artificial neural network architectures. The investiga-
tion and comparison of features, such as fractal dimension and cepstrum analysis, 
autocorrelation zero crossing and correlation dimension, has also not been per-
formed. Future work will investigate these techniques in a head-to-head comparison, 
with linear methods. 
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