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Preface

The International Conference on Intelligent Computing (ICIC) was started to
provide an annual forum dedicated to the emerging and challenging topics in
artificial intelligence, machine learning, pattern recognition, bioinformatics, and
computational biology. It aims to bring together researchers and practitioners
from both academia and industry to share ideas, problems, and solutions related
to the multifaceted aspects of intelligent computing.

ICIC 2014, held in Taiyuan, China, during August 3–6, 2014, constituted
the 10th International Conference on Intelligent Computing. It built upon the
success of ICIC 2013, ICIC 2012, ICIC 2011, ICIC 2010, ICIC 2009, ICIC 2008,
ICIC 2007, ICIC 2006, and ICIC 2005 that were held in Nanning, Huangshan,
Zhengzhou, Changsha, China, Ulsan, Korea, Shanghai, Qingdao, Kunming, and
Hefei, China, respectively.

This year, the conference concentrated mainly on the theories and method-
ologies as well as the emerging applications of intelligent computing. Its aim was
to unify the picture of contemporary intelligent computing techniques as an in-
tegral concept that highlights the trends in advanced computational intelligence
and bridges theoretical research with applications. Therefore, the theme for this
conference was “Advanced Intelligent Computing Technology and Ap-
plications”. Papers focused on this theme were solicited, addressing theories,
methodologies, and applications in science and technology.

ICIC 2014 received 667 submissions from 21 countries and regions. All pa-
pers went through a rigorous peer-review procedure and each paper received at
least three review reports. Based on the review reports, the Program Committee
finally selected 235 high-quality papers for presentation at ICIC 2013, included
in three volumes of proceedings published by Springer: one volume of Lecture
Notes in Computer Science (LNCS), one volume of Lecture Notes in Artificial
Intelligence (LNAI), and one volume of Lecture Notes in Bioinformatics (LNBI).

This volume of Lecture Notes in Bioinformatics (LNBI) includes 58 papers.
The organizers of ICIC 2014, including Tongji University and North Univer-

sity of China, Taiyuan Normal University, Taiyuan University of Science and
Technology, made an enormous effort to ensure the success of the conference.
We hereby would like to thank the members of the Program Committee and
the referees for their collective effort in reviewing and soliciting the papers. We
would like to thank Alfred Hofmann, executive editor from Springer, for his frank
and helpful advice and guidance throughout and for his continuous support in
publishing the proceedings. In particular, we would like to thank all the authors
for contributing their papers. Without the high-quality submissions from the
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authors, the success of the conference would not have been possible. Finally,
we are especially grateful to the IEEE Computational Intelligence Society, the
International Neural Network Society, and the National Science Foundation of
China for their sponsorship.

May 2014 De-Shuang Huang
Kyungsook Han

Michael Gromiha
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Abstract. The beta sheet, as one of the three common second form of regular 
secondary structure in proteins plays an important role in protein function. The 
best strands in a beta sheet can be classified into the outer or inner strands. 
Considering the protein primary sequences have determinant information to 
arrange the strands in the beta sheet topology, we introduce an approach by 
using the random forest algorithm to predict outer or inner arrangement of a 
beta strand. We use nine features to describe a strand based on the 
hydrophobicity, the hydrophilicity, the side-chain mass and other properties of 
the beta strands. The random forest classifiers reach the best prediction 
accuracy 89.45% with 10-fold cross-validation among five machine learning 
methods. This result demonstrates that there are significant differences between 
the outer beta strands and the inner ones in beta sheets. The finding in this study 
can be used to arrange beta strands in a beta sheet without any prior structure 
information. It can also help better understanding the mechanisms of protein 
beta sheet formation.  

Keywords: beta sheet, beta strand, protein secondary structure, random forest 
algorithm. 

1 Introduction 

Protein secondary structure is an important bridge to understand the protein’s three-
dimensional structure from its amino acid sequence[1-3]. Investigation of the protein 
secondary structure helps the determination of the protein structure, as well as the 
design of new proteins[4]. The beta sheet (also β-pleated sheet) is one of the three 
common second form of regular secondary structure in proteins. The statistical data of 
the PDB database[5] showed more than 75% of proteins with known structures 
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contain beta sheets. To predict these beta sheet containing proteins, assigning beta 
strands to a beta sheet can reduce the search space in the ab initio methods[13, 45]. 
Moreover, beta sheets play some important roles in protein functions, particularly in 
the formation of the protein aggregation observed in many human diseases, notably 
the Alzheimer's disease. 

 

Fig. 1. Illustration of beta strands pairs and configurations. Arrows show the amide (N) to 
carbonyl (C) direction of beta strands. Hydrogen bonds are represented by dotted lines. 

In a beta sheet, beta strands are paired by the interactive hydrogen bonds in parallel 
or antiparallel arrangement (Fig.1). A beta sheet forms a topology (Fig.2b), which can 
be described by three components: the group of beta strands in the beta sheet, the 
orders of these beta strands on the sequence level (Fig.3), and the configuration of 
beta strand pairs (parallel or antiparallel). The order of beta strands arranged in a beta 
sheet topology differs with the order of beta strands on sequence level (Fig.2). As 
described in the Protein Data Bank Contents Guide[6], beta strands are listed and 
numbered according to their orders on the sequence level. In this study, the first and 
the last strand in a beta sheet are defined as outer strands, whereas the other strands 
are defined as inner strands (Fig.3). 

Many studies have been proposed to reach the different levels of understanding the 
beta sheet topology. The mechanisms and rules of beta sheet formation are 
investigated and simulated by theoretical and experimental method[7-10]. Some 
efforts focus on the prediction of residue contact maps, which can be used to construct 
the beta sheet topology[11, 12]. Other researcher predicted the parallel/antiparallel 
beta strand pairs[13-15], based on the non-random distribution and pairing 
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preferences of amino acids in parallel and antiparallel beta strand pairs[16-19]. 
Utilizing machine learning algorithms, several methods are proposed to predict the 
topology of some certain kinds of beta sheets[2, 20, 21]. Although much 
achievements have been acquired in some aspects of beta sheet studies, the 
mechanisms of beta strands to form beta sheets have not yet to be fully understood[7]. 

 

Fig. 2. (a) Seven strands of protein 1VJG in sequence order. (b) Beta-sheet topology of protein 
1VJG. (c) Protein 1VJG rendered in Rasmol. 

Considering the two outer beta strands take the starting and terminal location in one 
beta sheet, we suggest beta strands probably have different conservative properties in 
the outer and inner strands on the sequenced level. In this study, we predict the 
outer/inner beta strands in beta sheets using the Random Forest (see Materials and 
Methods), extracting the features from the protein primary sequences.  

 

Fig. 3. Illustration of beta strands number in the beta sheets of protein 1VJG in the PDB file. 
The number 1 and 5 marked with circles denote the outer beta strands; whereas the number 
marked with the box denote inner ones. The number 1 strand, ranging from the sequence 
number of residue 43 to 51, corresponds to the second strand in sequence order. 
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2 Materials and Methods 

2.1 Datasets 

The protein structure dataset we used is from a database server named PISCES, 
established by Wang et al[22, 23]. For precisely examining the accuracy of the 
classification via a cross-validation, an appropriate cutoff threshold of sequence 
identity is necessary to avoid the redundancy and homology bias[24, 25]. PISCES 
utilizes a combination method of PSI-BLAST and structure-based alignments to 
determine sequence identities, and products lists of sequences from the Protein Data 
Bank (PDB) using a number of entry- and chain-specific criteria and mutual sequence 
identity according to the needs of the study. In our investigation, a non-redundant 
dataset (cullpdb_pc25_res2.0_R0.25_d090516_chains4260) with the sequence 
identity percentage cut-off 25% is used. Crystal structures have a resolution of 2.0 Å 
or better and an R-factor below 0.25. We import the set into the Sheet Pair Database 
[26] for easier data management and screening. Many incorrectness samples such as 
protein chains that contain non-standard amino acids or disordered regions[27, 28], 
any patterns with a chain break or heteroatom are excluded. We treat the outer beta 
strands as positive samples and the inner ones as negative samples (Fig. 3). In the 
final dataset, there are 1,205 proteins, of which contained 11,424 outer beta strands 
and 13,285 inner ones. 

2.2 Feature Extraction 

Protein folding is a collaborative process but mainly driven by the hydrophobic 
interaction[29]. The balance of the interaction between hydrophobicity and 
hydrophilicity is a notable feature of the stability of protein structure[29,30]. The 
previous studies also showed that the amino acid hydrophobicity and molecular size 
are two important factors that cause differences of amino acid conservative[31]. In 
this study, we used nine features to describe a beta strand. Seven of nice features are 
based on three physical and chemical properties of the amino acids, which are the 
hydrophobicity value (H1) from Tanford[32], the hydrophilicity value (H2) from Hopp 
and Woods[33], and the mass of side chain of amino acid(M).  The other two 
features are from the Pseudo-Amino Acid Composition (PseAAC), which was 
originally introduced by Chou for the prediction of protein subcellular localization 
and membrane protein type[34]. The PseAAC includes not only the main feature of 
amino acid composition but also sequence order information beyond amino acid 
composition. It can represent a protein sequence comprehensively with additional 
sequence order effects reflected by a series of sequence correlation factors with 
different tiers of correlation. 

A beta strand chain can be represented by a 9-dimension numeric vector 
}  …{X 987321 xxxxxx= . Each value in the vector can be calculated by such formulas: 
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Where, )(  )(),( 21 iii RMandRHRH are the hydrophobicity value, hydrophilicity value, 

and side-chain mass of the amino acid iR after the standard conversion, respectively. 

The element 8x  is the first-tier correlation factor defined in PseAAC[34].Since 

the length of a beta strand sequence is usually not long, only the first-tier correlation 
factor is calculated which can reflect the sequence order correlation between all the 
most contiguous residues along a beta strand sequence[34]. Correspondingly, the 
element 9x  is the 21st component of PseAAC. In Eq.(9), if is the normalized 

occurrence frequency of the 20 amino acids in the beta strand and w is the weight 
factor for the sequence order effect and is set to default value 0.05 in the current study 
[34]. In Eq.(8) and Eq.(9), ),( 1+Θ ii RR  is calculated by the following equation as 

described in PseAAC: 
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2.3 The Random Forest Algorithm 

Random Forest (RF), as a machine learning algorithm, was originally introduced by 
Breiman[35]. RF generates decision trees by randomly sampling subspaces of the 
input features, and then makes the final decisions by a majority voting from these  
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trees. RF has a good predictive performance even though the dataset has much noise 
[36]. With the increased number of decision trees, RF avoids the overfitting problem 
or the dependence on the training data sets[35]. In view of the good characteristics of 
Random Forest, it has been applied successfully to deal with many classification or 
prediction problems in varied biological fields[37-41]. In this study, we used theWeka 
software package[42] to implement the RF classification of the outer/inner beta 
strands. There are three parameters to run RF in Weka developer version 3.6.2, which 
are I: the number of trees constructed in the forest; K: the number of features 
calculated to define each of the nodes in a tree; and S:random number seed. In this 
study, we used the default setting without model selection. 

2.4 Performance Measures 

To assess the performance of classifiers we used the following measures: the number 
of true positives (TP), the number of false positives (FP), the number of true negatives 
(TN), the number of false negatives (FN) , sensitivity of positive examples(Sn+), 
specificity of positive examples(Sp+), sensitivity of negative examples(Sn-), 
specificity of negative examples(Sp-), accuracy(Ac) and Matthews correlation 
coefficient(MCC), as described in[43]. 

3 Results 

In order to compare the prediction performance of different algorithms with that of 
Random Forest (RF), BayesNet, support vector machine (SVM), multilayer 
perceptron (MLP) and K-nearest-neighbor (IBk) were used to classify the outer/inner 
beta strands with the default parameter setting. The SVM algorithm was implemented 
by the LibSVM 2.86 [44], while the other three algorithms were implemented in 
Weka. Ten-fold cross-validation test was used to evaluate the accuracy of each 
prediction algorithm. The prediction accuracy of outer/inner beta strands in beta 
sheets reaches 89.45% Ac and 0.79 MCC by using RF (see 2.3). From Table 1, we 
can see that RF reaches the best performance among five algorithms. The prediction 
accuracy of RF is about 2% higher than the K-nearest-neighbor classifier, 
significantly ahead of the Naive Bayes, SVM and MLP classifiers.  

Table 1. The prediction result of theouter/inner beta strands 

Algorithm Sn+ Sp+ Sn- Sp- Ac MCC 

BayesNet 0.61 0.71 0.78 0.70 70.14% 0.40 

SVM 0.75 0.66 0.74 0.81 74.38% 0.48 

MLP 0.73 0.77 0.81 0.78 77.35% 0.54 

IBk 0.86 0.87 0.89 0.88 87.53% 0.75 

RF 0.87 0.90 0.92 0.89 89.45% 0.79 
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4 Conclusion and Discussion 

In this study, we proposed an approach based on the Random Forest (RF) 
classification to predict the outer/inner beta strands in beta sheets using nine features. 
Seven of the nine features were extracted based on the hydrophobicity, the 
hydrophilicity, and the side-chain mass of the beta strands. The other two features are 
from the Pseudo-Amino Acid Composition (PseAAC). Using RF, the accuracy of 
prediction of outer/inner beta strands reaches 89.45% with 10-fold cross-validation. 
The RF performance defeated other four machine learning methods on datasets used 
in this study. This RF prediction result can provide useful information about the 
arrangement of beta strands in a beta sheet, especially for the beta sheets which 
include no more than four beta strands. 

The high prediction accuracy demonstrates that there are significant differences 
between the outer beta strands and the inner ones on the sequence level. The primary 
sequences of proteins contain determinant information to arrange a strand in an outer 
or inner location. However, the best accuracy reaches 89.45%. There must be some 
other factors which take effects on the arrangement of strands in a beta sheet. 
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Science Foundation of China (31171053) and Tianjin research program of application 
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Abstract. In this paper, a novel neural network, DenoisedAutoEncoder (DAE) 
is introduced first. This neural network is applied for extracting the features. In 
this paper, we proved that stacked DAE can extract good features for 
classification task. We apply the stacked DAE to extract features of leave 
pictures, and then we classify leaves using those features with SVM, the result 
suggests that this method surpass pure SVM. 

Keywords: Stacked DAE, classification, feature extracting. 

1 Introduction 

When proposed an efficient way to train deep architecture through pre-training [1], 
deep neural network re-boomed. Deep architectures have an advantage in feature 
extracting, because they can get much more complex and abstract features than 
shallow architectures[2][3]. In this paper, we extract features through stacked DAE 
and then do classification using these features. The results prove that the performance 
surpass pure SVM. 

2 Prerequisites 

2.1 Basic AutoEncoder 

AE neural is an unsupervised learning algorithm that applies back propagation,Setting 
the output equal to the input. It directly encodes the input layer and then decodes the 
hidden layer. The aim of an AE is to learn a compressed or sparse representation 
(encoding) for a set of data. The architecture of AE is shown in figure 1: 

 
Fig. 1. The architecture of AE. The input and output are equal, and there is only one hidden layer. 
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In the AE, we should first define a feature extracting function called encoder in a 
special parameterizedclosed form. With the encoder, we can straightforward compute 
the feature vector efficiently. The formula is: 

( )h f xθ=
                                     

(1) 

where h is the feature vector or sometimes called representation, f is the encoder 
function, x is the input vector and theta is the parameter vector. To get the output, we 
should define another function called decoder: ( )r g hθ=  

where r is the output, g is the decoder function, h is the feature vector from (1) and 
theta is the parameter vector. So the AE is defined by its encoder and decoder, and 
there are many different kind of training principle. Theta is earned simultaneously on 
the task of reconstructing as well as possible the original input. One of most popular 
training principle is attempting to lowest the reconstruct error defined as: ( )min ,L r x

θ
 

Basic AE training consists in finding a value of parameter vector theta minimizing 
reconstruction error 

( ) ( ) ( )( )( )( ),t t

t

L x g f xθ θϑ θ =                         (2) 

where x is the training example. This minimization is usually carried out by stochastic 
gradient descent as in the training mulit-layer-perceptrons(MLP). The most 
commonly used encoder and decoder are: 

( ) ( )
( ) ( )

f

g

f x s b Wx

g h s d W h

θ

θ

= +

′= +
 

where fs  and gs  are non-linear. 

2.2 DAE 

Vincent proposed the DAE in [4][5], In the DAE, we should first corrupt the input 
data. There are two common way to corrupt the raw data, to add Gaussian noise or 
binary masking noise. Here we donate the original data and the corrupt data, if you 
add Gaussian noise, we can get ( )

~
20,x x N Iσ= + . 

Then, the DAE is optimized using the artificially corrupted input. In the DAE, 
learn the identity in not enough because the learner must capture the input distribution 
in order to undo the effect of the corrupt process [6].  

Formally, the objective optimized by such a DAE is: 

( )

( )
~

~

|
E ,

t

t
DAE

q x xt

L x g f xθ θϑ  
 
 

    =         
  

where ( )
[ ]~

|
E

tq x x
 
 
 

  denotes the expectation over corrupted examples ~x drawn from 

corruption process ( )~

| tq x x 
 
 

. In practice this is optimized by stochastic gradient 

descent, where the stochastic gradient is estimated by drawing one or a few corrupted 
versions of x(t) each time x(t) is considered. 
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3 The Architecture Used in this Paper 

In this paper, the author combined the stacked DAE and SVM.for clarity, the 
architecture is shown in figure 2: 

 

Fig. 2. The architecture used in this paper 

The algorithm is in table 1: 

Table 1. Training algorithm 

1. Activation[0]=input data. 
2. For i=1, 2, 3...n 

Train the AE[i],use activation[i-1] as the input, and get the weight w[i] 
3. Unfold these AE in a deep neural network. 
4. Fine tune the deep neural network gained in step 2 
5. Add a SVM to the highest level for classification task, to train the 

SVM,taking the deep neural network’s highest level hidden layer’s 
activation as input and corresponding labels as the output. 

4 Experiment 

In the experiment, we chose sigmoid activation function for the DAE, the sigmoid 

function is: ( ) 1

1 x
sigmoid x

e−=
+

, We chose binary masking noise, denote the 

noised data as
~

x , we can get: 
~ ~

h sigmoid W x b = + 
                                

(3) 

Where W is the weight and b is the bias. 
Subsequently, we can get the reconstructed version of input x by 

~
Tr sigmoid W h d = + 

 
 

Where 
TW is the reverse of 

TW  in (5) and d  is the bias. 
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Finally, we get the optimize object: ( )2( )

, ,

1

2
i i

DAE
W b d

N

minimize L x r
N

= −  

For all the samples, the fraction of training samples and testing samples is 2:1. We 
first transform those pictures into 32*32 gray pixels.  

In our experiment, the architecture is 1024-2048-512-2048-1024 and we choose 
the 3rd lay to perform classify. We choose the binary masking noise to corrupt the 
original data.  

Table 2. The parameters used in our experiment 

 Learning 
rate 

Activation 
function 

poach Batch size Masked 
fraction 

DAE{1} 0.01 sigmoid 10 10 0.15 
DAE{2} 0.01 Sigmoid  10 10 0.3 
Unfold Net 0.05  5 10  

 
The result of this experiment is shown in table 3, and in the two method, the 

parameters of SVM are same: 

Table 3. The result of this experiment 

Method  accuracy 
SVM 88% 
Stacked DAE+SVM 90% 

5 Conclusion 

AE can extract good features through restricting the input and the output, DAE is a 
generative of AE aiming at robust through corrupt the input and try to make the 
output to be same to clean input data. Our experiment show that stacked DAE can get 
better feature, so the result beat pure SVM. 
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Abstract. We address the microarray dataset based cancer classification 
problem using a newly proposed ensemble of Error Correcting Output Codes 
(E-ECOC) method. To the best of our knowledge, it is the first time that ECOC 
based ensemble has been applied to the microarray dataset classification. 
Different feature subsets are generated from datasets as inputs for some 
problem-dependent ECOC coding methods, so as to produce diverse ECOC 
coding matrixes. Then, the mutual difference degree among the coding matrixes 
is calculated as an indicator to select coding matrixes with maximum 
difference. Local difference maximum selection(L-DMS) and global difference 
maximum selection(G-DMS) are the strategies for picking coding matrixes 
based on same or different ECOC algorithms. In the experiments, it can be 
found that E-ECOC algorithm outperforms the individual ECOC and effectively 
solves the microarray classification problem. 

Keywords: ECOC, ensemble learning, Cancer classification, feature selection. 

1 Introduction 

In the field of machine learning and pattern recognition, the goal of a classification 
problem is looking for a map function: f: S – K, in which S is a set of attributes that 
describes series of properties of the samples, and K is the corresponding labels that 
belong to each sample. Function f maps each sample belonging to S into a unique 
class label k. Consider a binary problem, there has been widespread application of 
mature machine learning algorithm for estimating the function f. However, for multi-
class problems, with the increasing categories, a single learner is usually hardly 
competent to produce accurate outputs.  |And there are many classifier that can only 
deal with binary class problem. An alteration for solving the multi-class problem is 
the divide and conquer method, which means, the original classification problem is 
decomposed into multiple binary classification problems. By solving each binary 
classification independently, we can solve a multi-class classification task with some 
integration strategies, such as voting. Under the guidance of this idea, there are three 
basic solutions: flat strategy, hierarchical strategy, Error-Correcting Output Codes 
(ECOC). In flat strategy, a fixed decomposition method is used, such as One vs. One 
or One vs. All, and the final label is decided directly by voting. On the other hand, 
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hierarchical strategy build a binary tree based on the relationship among categories 
for the multi-class problem, and each branch node represents a binary classifier and 
the leaf node represents a final class. ECOC algorithm framework[1] consists of two 
key steps: in encoding phase, the original multi-classification problem is decomposed 
into multiple binary classification problem, which is represented by an M*N encoding 
matrix . In a coding matrix, each row represents a unique class, and each column 
illustrates specifically the decomposition method from a multi-class problem into a set 
of binary problem. In decoding phase, by comparing the distance between outputs of 
the multiple binary classifier and each code word in the coding matrix, the label with 
the minimum distance is selected as the final label for a unknown sample[2]. In a 
sense, ECOC algorithm framework can be considered as a more general solution than 
flat and hierarchical strategies. In the coding phase, the methods of decomposing 
multi-class contain all of the possible ways of division from the former two strategies. 
In addition, Dietterich and Kong[3] proved that ECOC algorithm framework can 
reduce bias and variance errors produced by the binary classification algorithms. It's 
worth noting that the number of the binary classifiers has been reduced to [10log2 N, 
15 log2 N][4]. The coding matrix is not difficult to construct even when N is large 
enough. However, it is very difficult to filter the optimum coding matrix. 

In the past few years, the ECOC algorithm framework were studied by researchers 
from different perspectives. Algorithms to construct suitable and effective coding 
matrix, and the decoding strategies have been extensively studied. Moreover, Masulli 
and Valentini[5] analyzed the different factors that affect the effectiveness of ECOC 
algorithm, and the correlation between the coding matrix and the binary classifier. 
Effectiveness of ECOC depends on code word correlation, structure and accuracy of 
dichotomizers, and the complexity of the multiclass learning problem. It is noticeable 
that the predefined coding matrix, like one vs. one, one vs. all, and the random-based 
coding matrix, are not suitable for the problems. The reason is that all those 
algorithms neglect the distribution characteristics of the data itself. Therefore, 
researchers take the distribution features of the data into consideration when 
constructing the encoding matrix and proposed many data dependent encoding 
algorithms to decompose the original multi-class problem into dichotomizer. 
DECOC[6] method builds N-1 binary classifier. Moreover, Crammer and Singer[7] 
proved that searching for the optimal coding matrix which are associated to the 
problem domain is a NP-complete problems. Recent research works use Genetic 
Algorithms in the coding phase to obtain higher accuracy of coding matrix along with 
reducing the number of dichotomizer. Bautista et al.[8] focused on optimizing ECOC 
coding matrix based on the standard genetic algorithm (GA), which is known as 
Minimal ECOC. The final result was that the number of binary classifiers is reduced 
to [log2 N] and at the same time, the degree of differentiation among classes are 
guaranteed. Garcia-Pedrajas and Fyfe[9] used the CHC based genetic algorithm to 
optimize the Sparse Random ECOC Matrix. In their work, the length of coding matrix 
is limited within [30, 50], and is independent of both the distribution of data sets and 
the number of classes. It is obvious that the techniques involved are simple and direct. 
Lorena and Carvalho [10]combined GA with the Sparse Random coding matrix too, 
and limited the length of code in [log2 N, N]. Furthermore, Miguer and Sergio 
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[11]proposed a new genetic operator to avoid invalid individuals and reduce the 
search space of the genetic algorithm. 

Although there are already many papers discussing ECOC, the application of 
ECOC on microarray data is just at the beginning. Different from regular datasets, due 
to the small sample size of microarray data, a validation set is not affordable in the 
classification process, so it is much more complicated. In this paper, we propose a 
novel ensemble of ECOC(E-ECOC) system work by integrating different ECOC 
coding matrix with local difference maximum selection(LDMS) or global difference 
maximum selection(GDMS) strategies. And the experiments on some microarray 
datasets proves that our method is effective. 

The rest of the paper is organized as follows: Section 2 overviews the background 
of ECOC framework. In Section 3, we present the E-ECOC framework. Section 4 is 
devoted to presenting the experimental results. Finally, Section 5 concludes the paper. 

2 Error Correcting Output Codes 

Let K denotes a set of unique labels, { }1 2, , , NK k k k= … , where N means the 

number of classes (N > 2). Let S denotes a set of samples, 

( ) ( ) ( ){ }1 1 2 2, , , , , ,L LS X y X y X y= … . Xi is the features vector represent the 

sample Si, and yi is the class label to which Si belongs. Besides, iy K∈ . L means the 

number of samples. And Let D denotes a set of dichotomizers according to the ECOC 

coding matrix { }1 2, , , MD d d d= … . 

The basis of ECOC framework is building a unique "code word" for each class. 
The elements within the coding matrix of size M * N belong to the set {-1, +1} or {-1, 
0, +1}. Each row represents a class, and there are M classes totally. Meanwhile, each 
column is interpreted as a binary classifier, and the original class label is re-calibrated 
into binary classes, which is named as meta-class. For instance, suppose a sample (X, 
y) belonging to class i . It will be re-labeled as positive in j-th dichotomizer when 

( ),ECOC i j =1; otherwise (X, y) will be re-labeled as negative when 

( ),ECOC i j =-1. Moreover, (X, y) will be neglected when ( ),ECOC i j =0. 

(a) Encoding Algorithms 

Encoding matrix plays an important role in ECOC framework, because it describes 
how to decompose a multi-class classification into a set of binary problem. In [12], 
the researchers summarized the methods to build coding matrix into two categories: 
static method and dynamic method. The static method commonly constructs coding 
matrix independent of base classifiers and datasets. There are four kinds of static 
coding design schemes, including One Vs. One, One Vs. All, dense random, and 
sparse random. Dynamic methods construct problem-dependent encoding matrixes, so 
they are more flexible comparing with static schemes.  
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The researchers take two factors into consideration: row separation/column 
separation and matrix validity. Row separation refers to the distance between any pair 
of code words, and column separation indicates the difference degree within each 
binary classifier pair. Both should be as large as possible, so as to reduce the 
correlation between base classifiers.  

The coding matrix may not be correctly constructed, and there are some essential 
rules to check the legality of the matrix, as shown in equation 1-4[13]. Equation 1 
indicates that each column of the encoding matrix comprises at least one +1 and -1. 
AHD represents attenuated Hamming distance. Equation 2 shows that the minimum 
Hamming distance between two rows should be at least one, which means all 0s, all 
+1s and all -1s are not correct. Equation 3 means if there is converse relationship 
between any two rows, the encoding matrix is invalid. Equation 4 indicates that the 
number of binary classifiers should be at least 

2lo g M . Validity checking can 

provide pseudo integrity protection while constructing coding matrix. 

( )( ) [ ]min , 1, , : , , 1, ,i lAHD r r i k i k i k Nδ ≥ ∀ ≠ ≠ ∈ … .          (1) 

( )( ) [ ]min , 1, , : , , 1, ,j lHD d d j l j l j l Mδ ≥ ∀ ≠ ∈ … .           (2) 

( )( ) [ ]min , 1, , : , , 1, ,j lHD d d j l j l j l Mδ − ≥ ∀ ≠ ∈ … .          (3) 

2logN M≥                                    (4) 

(b) Decoding Strategies 

When testing an unlabeled sample X*, each binary classifier gives an output, and the 
group of outputs makes up a vector V* with length L. Then, the distance between the 
output vector and code words within the coding matrix is calculated, and the code 
word with the minimum distance will be the class label to which X* belongs. The 
procedure is called decoding. There are different decoding strategies. Among them, 
hamming decoding is the most commonly used, as is shown in equation 5-6. It has 
obvious drawbacks, because it requires each binary classifier produces hard outputs, 
+1 or -1. With Euclidean decoding strategy, this problem can be solved, and the 
output of each classifier could be the confidence to positive class or negative class as 
shown in equation 7. 

( ) ( )( )*
 *

i
1

1 V
HD V , y

2

j j
n

i

j

sign y

=

− ×
= .                     (5) 

{ }
( )*

i1, ,
y min HD V , y

i n= …
= .                             (6) 



 Cancer Classification Using Ensemble of Error Correcting Output Codes 19 

 

( ) ( )2* *
 

1

ED V , V
n

j j
i i

j

y y
=

= − .                           (7) 

Besides distance based decoding strategies, researchers also proposed some other 
schemes based on loss function[4]. The loss function is calculated firstly according to 

the output vector V* as shown in equation 8. Loss function ( )L θ  depends on the 

characteristics of the base classifier, and the most commonly used functions are 

( )L θ θ= −  (LLD) and ( )L e θθ −=  (ELD). Then, the code word with the 

minimum loss function value is picked as the class label for a sample. . Moreover, 
decoding strategies based on probability have been proposed, which take probability 
estimation and confidence into consideration. 

( ) ( )* *

1

LB V , V
n

j j
i i

j

y L y
=

×= .                         (8) 

3 Ensemble of ECOC 

The most important purpose while designing ECOC coding matrix is to improve the 
error correction capability of the matrix. According to the theory of error-correcting, 
the matrix could fix d bits’ error if the code matrix’s minimum hamming distance 
equals 2d + 1. Therefore, many random-based algorithms and data-dependent 
algorithms try to maximize the minimum hamming distance. However, the ability to 
detect and correct errors depends on whether the errors occur independently. In the 
ECOC framework, the efforts to improve the binary classifiers’ mutual independence 
is reasonable and essential. In [12], researchers uses different feature subsets for each 
dichotomizer, leading to more independent classifiers.  

We design a new method to ensemble ECOC coding matrixes called E-ECOC. The 
strategy consists of designing multiple ECOC coding matrixes, and then ensemble the 
matrices with high diversity. That is, a multi-class problem is solved by a set of 
different ECOC coding matrixes consequently, so as to increase the overall system 
accuracy. And the coding matrices are produced based on different problem 
dependent algorithms, and different feature subsets are used to construct the matrix 
within one same algorithm. The notation used to measure the difference is show in 
equation 9. We design two strategies to ensemble ECOC coding matrixes, the first 
one called as Local Difference Maximum Selection (L-DMS). Different feature 
subsets to construct the problem dependent coding matrix, and the top coding 
matrixes are chosen to solve the original multi-class problem. The second is called as 
Global Difference Maximum Selection (G-DMS). Different algorithms are applied to 
construct coding matrixes, and for each algorithm, different feature subsets are used. 
Then, we calculate the global difference degree and choose top coding matrixes with 
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maximum difference degree. The process of choosing coding matrices is shown in 
Figure 1.  
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Fig. 1. ECOC coding matrixes’ mutual difference degree, basis for ECOC ensemble. Red lines 
mean the local diversity among one same ECOC algorithm with different feature subsets  
(L-DMS). Purple lines and dark lines including the red lines indicate the global diversity among 
different ECOC coding matrixes with different feature subsets (G-DMS). The thickness of the 
line illustrates the difference degree. 

4 Experiments and Analysis 

ECOC library [14]is used to implement the ECOC algorithm framework, and three 
ECOC methods are used: DECOC[6], forest-ECOC[15], and ECOC-One[16]. The 
decoding method uses the default Hamming distance function. Two kinds of base 
classifiers are applied: KNN (k=3), and SVM (Lib-SVM library[17]). Other 
parameters use the default settings. The feature selection methods include Su[18], 
Laplacian Score[19] and t-test[20]. Moreover, the feature size within a same ECOC 
coding matrix increases from 20 to 200, and the step size is 20. We apply E-ECOC 
method to two well-known cancer datasets: Cancers [21], and Breast cancer dataset 
[22]. Table 1 shows the performance for each single ECOC coding matrix, and Table 
1, 2 summarizes the ensemble results. Methods (a), (b), and (c) mean one single 
ECOC coding matrix with feature selection. Methods (d), (e), and (f) select from one 
same encoding algorithm with different feature subsets, which is called as L-DMS. 
Method (g) selects ECOC coding matrixes from different encoding algorithms and 
each constructed with different features, which is named as G-DMS.  
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Fig. 2. Typical results of classification accuracy obtained by individual ECOC-One with 
different number of genes selected by Laplacian Score: (a) Dataset: Breast (b) Dataset: Cancers 

Table 1. The comparison of average and best classification accuracies among individual ECOC 
coding matrixes and different ECOC ensemble method for dataset Breast 

 
Breast 

Base Classifier: KNN 

Su Laplacian Score t-test 

Aavg Abest Aavg Abest Aavg Abest 

(a)ECOC-One 56.52±1.09 73.91 69.13±1.07 82.61 69.13±0.35  78.26 

(b)DECOC 65.65±0.61  78.26 72.61±0.17  78.26 62.17±0.51  73.91 

(c)Forest-ECOC 63.04±0.47  73.91 76.52±0.39  82.61 64.35±1.42  82.61 

 
L-DMS 

(d)ECOC-One 73.04±0.79  86.96 82.61±0.67  100.00 92.61±0.21  100.00 

(e)DECOC 75.22±0.21  82.61 84.78±0.26  91.30 89.13±0.22  95.65 

(f)Forest-ECOC 73.91±0.42  82.61 89.13±0.30  95.65 89.57±0.30  95.65 

(g)G-DMS 78.26±0.42 86.96 83.91±0.21  91.30 87.39±0.27  95.65 

 
Breast 

Base Classifier: SVM 

Su Laplacian Score t-test 

Aavg Abest Aavg Abest Aavg Abest 

(a)ECOC-One 55.65±0.29 65.22 68.26±0.59  78.26 63.04±1.10  82.61 

(b)DECOC 63.91±0.25  69.57 66.96±0.39  73.91 59.13±0.93  73.91 

(c)Forest-ECOC 68.26±0.30  73.91 78.26±0.34  86.96 64.35±1.08  82.61 
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Table 1. (Continued.) 

 
L-DMS 

(d)ECOC-One 86.96±0.08  91.30 99.13±0.03 100.00 92.61±0.21  100.00 

(e)DECOC 88.26±0.21 91.30 87.39±0.27  95.65 89.13±0.22  95.65 

(f)Forest-ECOC 89.13±0.43 100.00 86.52±0.27  91.30 89.57±0.30  95.65 

     (g)G-DMS 77.83±0.52  91.30 86.09±0.12  91.30 93.04±0.26  100.00 

Table 2. The comparison of average and best classification accuracies among individual ECOC 
coding matrixes and different ECOC ensemble method for dataset Cancers 

 
Cancers 

Base Classifier: KNN 

Su Laplacian Score t-test 

Aavg Abest Aavg Abest Aavg Abest 

(a)ECOC-One 52.13±0.18  57.45 57.23±0.38  63.83 59.15±0.47 68.09 

(b)DECOC 67.87±0.23 78.72 61.06±0.19 68.09 70.00±0.15 76.60 

(c)Forest-ECOC 56.17±0.40  65.96 43.83±0.18 51.06 54.04±0.49 63.83 

 
L-DMS 

(d)ECOC-One 57.23±0.30 65.96 73.40±0.16  78.72 79.15±0.06  80.85 

(e)DECOC 63.62±0.31  72.34 74.47±0.10  78.72 80.43±0.16  87.23 

(f)Forest-ECOC 60.43±0.29  74.47 76.17±0.43 89.36 79.36±0.25  87.23 

(g)G-DMS 65.96±0.35  74.47 74.04±0.15  80.85 78.09±0.18  82.98 

 
Cancers 

Base Classifier: SVM 

Su Laplacian Score t-test 

Aavg Abest Aavg Abest Aavg Abest 

(a)ECOC-One 48.30±1.49 65.96 46.81±0.33 55.32 50.21±0.63 65.96 

(b)DECOC 63.19±0.22 70.21 52.34±0.11 59.57 61.70±0.46  76.60 

(c)Forest-ECOC 57.87±0.14 61.70 59.15±0.24 48.94 58.51±0.44 65.96 

 
L-DMS 

(d)ECOC-One 81.49±0.11 87.23 86.17±0.25 93.62 87.23±0.27 95.74 

(e)DECOC 79.79±0.31 89.36 82.55±0.11 87.23 84.47±0.11 89.36 

(f)Forest-ECOC 78.51±0.26 85.11 87.45±0.18 95.74 91.49±0.06 95.74 

(g)G-DMS 83.40±0.11 89.36 85.96±0.43 93.62 87.23±0.11 93.62 

 
From Fig. 2, it can be found that the performance of the ECOC-One methods varies 

greatly with different feature subsets, which indicates the performance of data-
dependent ECOC coding matrixes vary greatly. Comparing with individual ECOC 
coding matrixes, E-ECOC ensembles achieve better results. From Table. 1 and table. 2, 
E-ECOC with SVM generally has better average results. For dataset Breast, the best 
results reach 99.13±0.03. Its parameters include ECOC-One, SVM as base classifier 
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and t-test for feature selection. For dataset Cancers, the best results reach 91.49±0.06. 
Its parameters include forest-ECOC, SVM as base classifier and t-test for feature 
selection. Furthermore, L-DMS has similar performance comparing with G-DMS. 

5 Conclusions 

In this paper, we applied ECOC framework to tackle the microarray data 
classification problem. In this ensemble scheme, individual ECOC coding matrixes 
are selected according to the mutual diversity measures. Therefore, ECOC ensemble 
are used to solve the original multi-class classification problem. Two strategies 
including different feature subsets and different data-dependent ECOC coding 
matrixes are applied to promote diversity. The experimental results show that ECOC 
ensemble algorithm is an effective method for microarray classification, which 
usually leads to better accuracy. Furthermore, ECOC ensemble is more robust method 
comparing with individual ECOC. 
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Abstract. Different studies have stated that electroencephalogram signals in 
Alzheimer’s disease patients usually have less synchronization as compare to 
healthy subjects. Changes in electroencephalogram signals start at early stage 
but clinically, these changes are not easily detected. To detect this perturbation, 
three neural synchrony measurement techniques have been examined with three 
different sets of data. This research work have successfully reported the 
experiment of comparing right and left temporal of brain with the rest of the 
brain area (frontal, central and occipital), as temporal regions are relatively the 
first ones to be affected by Alzheimer’s disease. A new approach using 
principal component analysis before applying neural synchrony measurement 
techniques has been presented and compared with to other existing techniques. 
The simulation results indicated that applying principal component analysis 
before synchrony measurement techniques show significantly improvement 
over the lateral one. The results of the experiments were analyzed using Mann-
Whitney U test. 

Keywords: Electroencephalogram signals, EEG Signals, Alzheimer’s Disease. 

1 Introduction 

Mild Cognitive Impairment (MCI) is characterized by impaired memory state of brain 
probably leads towards mild Alzheimer’s disease (MiAD) or Alzheimer’s disease 
(AD). This prodromal stage of AD is under a great influence of research for long time 
[1-3]. Different research work reported that 6-25% of MCI are transformed to AD 
annually and 0.2-4% transformed from healthy person to AD [2, 4], revealing the fact 
that MCI is a transition state of MiAD and AD. 

Loss of functional connectivity between cortical and hippocampus has long been 
an important focus of many investigation to examine the cause of cognitive 
dysfunction in AD [5, 6]. Functional connectivity is a term which has been used to 
study the functional interaction among times series recorded from different brain 
areas [7]. Due to destructive characteristics of AD, it has also been characterized as a 
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neocortical “disconnection syndrome” [8]. Brain’s visualization as a complex network 
of subsystems has led us to find out the factors that can best identify functional 
disorders in the brain [9]. There is now ample evidence that formation of dynamic 
links in term of synchronization constitutes the functional integration of brain [10-12].  

Electroencephalogram (EEG) signals are considered functional example to 
evaluate cognitive disturbances and a diagnostic tool, especially when a diagnostic 
doubt exists even after the initial clinical procedures [13, 14]. A great deal of research 
has already been conducted to detect the fluctuations in EEG signals [2, 5, 15]. 
Alteration in the regional cerebral blood flow (rCBF) has been considered one of the 
causes of abnormality in EEG signals of AD [16, 17]. Studies on MCI have shown a 
decrease of alpha power [18, 19] and an increase of theta (4-8 Hz) power [20] in 
cortio-cortical and subcortical parts of the brain. Babiloni et al [2] claimed that the 
reduction of the synchronization likelihood occurs both at inter-hemispherical (delta-
beta2) and fronto-parietal (delta-gamma) electrodes. Topographically analyzing the 
EEG signals, Micheal et al [22] reported a less synchronization of upper alpha band 
between central and temporal cortex. In line, a correlation between higher low-
frequency amplitude and alpha-beta activity at frontal region may reflect an early sign 
of cortical atrophy during the course of AD. The concept of local and global methods 
is used to analyze synchronization between pairs of signals and entire EEG channels 
at the same time, respectively [15]. This paper proposes a novel approach using 
principal component analysis before applying neural synchrony measurement 
techniques; the proposed technique was benchmarked with other existing techniques. 
The simulation results indicated that applying principal component analysis before 
synchrony measurement techniques show significantly improvement over the lateral 
one. The reminder of this paper is organised as follows. Section 2 will discuss 
synchrony measurement techniques while section 3 will shows the data description 
and filtering. Section 4 is concerned with the methodology and section 5 shows the 
conclusion and future direction.  

2 Synchrony Measurement Techniques 

In this section, we briefly review the synchrony measurement techniques that we have 
implemented on our datasets which include phase synchrony, cross correlation and 
coherence.  

2.1 Phase Synchrony (Hilbert Transform) 

Synchronization of two periodic non-identical oscillators refers to the adjustment of 
their rhythmicity, i.e. the phase locking between the two signals. It refers to the 
interdependence between the instantaneous phases  and  of the two 
signals  and , respectively.  It is usually written as: 

 

                      (1) 
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Where n and m are integers indicating the ratio of possible frequency locking, and  
 is their relative phase or phase difference. To compute the phase 

synchronization, the instantaneous phase of the two signals should be known. This 
can be detected using analytical signals based on Hilbert Transform [9].  

                                  (2) 

Here z(t) is complex value with x(t) is a real time series and (t) is its Hilbert 
transform. 

2.2 Cross Correlation 

Cross correlation is a mathematical operation used to measure the extent of similarity 
between two signals. If a signal is correlated to itself, it is called auto-correlated. If we 
suppose that x(n) and y(n) are two time series then the correlation between them is 
calculated as: 

                               (3) 
 
Cross correlation returns a sequence of length 2*M−1 vector, where x and y are of 

length N vectors (N>1). If x and y are not of the same length then the shorter vector is 
zero-padded. Cross correlation returns value between −1 and +1. If both signals are 
identical to each other the value will be 1, otherwise it would be zero [15].  

2.3 Magnitude Squared Coherence 

The coherence functions estimates the linear correlation of signals in frequency 
domain [15].  The magnitude squared coherence is defined as the square of the 
modulus of the mean cross power spectral density (PSD) normalized to the product of 
the mean auto PSDs. The coherence  between two channel time series is 
computed as: 

                             (4) 
 

 is the cross PSD estimate of x and y.  and  are the PSD 
estimates of x and y respectively. For computation, each signal is divided into a 
section of 650ms and default value of 50% is used. Coherence returns the values 
between 0 and 1, showing how well the input x corresponds to the output y at each 
frequency. 
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3 Data Description and Data Filtering  

3.1 Data Description 

The datasets we are analyzing, have been recorded from three different countries of 
European Union. Specialist at memory clinic referred all patients to the EEG 
department of the hospital. All patients passed through a number of recommended 
tests; Mini Mental State Examination (MMSE). The Rey Auditory Verbal Learning 
Test, Benton Visual Retention test and memory recall tests. The results are scored and 
interpreted by psychologists and a multidisciplinary team in the clinic. After that, 
each patient is referred to hospital for EEG assessment to diagnose the symptoms of 
AD. Patients were advised to be in a resting state with their eyes closed. The sampling 
frequency and number of electrodes for three datasets are all different. Detailed 
information is described in the following sections. 

3.1.1   Database A 
The EEG dataset A contains 17 MiAD patients (10 males; aged 69.4 ± 11.5 years) 
while 24 healthy subjects (9 males; aged 77.6 ± 10 years). They all are of British 
nationality. These data were obtained using a strict protocol from Derriford Hospital, 
Plymouth, U.K. and had been collected using normal hospital practices. EEG signals 
were obtained using the modified Maudsley system which is similar to the traditional 
10-20 international system. EEGs were recorded for 20 sec at a sampling frequency of 
256 Hz (later on sampled down to 128 Hz) using 21 electrodes. 

3.1.2   Database B 
This EEG dataset composed of 5 MiAD patients (2 males; aged 78.8 ± 5.6 years) as 
well as 5 healthy subjects (3 males; aged 76.6 ± 10.0 years). They all are of Italian 
nationality. Several tests, for instance; MMSE, the clinical dementia rating scale 
(CDRS) and the geriatric depression scale (GDS) were conducted to evaluate the 
cognitive state of the patients. The MMSE result for healthy subjects is (29.3 ± 0.7) 
while for MiAD patients is (22.3 ± 3.1). EEGs were recorded for 20 sec at a sampling 
frequency of 128 Hz using 19 electrodes at the University of Malta, Msida MSD06, 
Malta.  

3.1.3   Database C 
This dataset consists of 8 MiAD patients (6 males; aged 75 ± 3.4 years) and 3 healthy 
subjects (3 males; aged 73.5 ± 2.2 years). They all are of Romanian Nationality. The 
AD patients have been referred by a neurologist for EEG recordings. All subjects are 
diagnosed with AD by means of psychometric tests (MMSE, CDR, OTS), 
neuroimaging (CT) and clinical examination (gender, age, disease, duration, 
education and medication). The MMSE result for healthy subjects is (28-30) while for 
MiAD patients is (20-25).  EEG data is recorded using a large equidistant 22-channel 
arrangement conforming to the international federation of clinical neurophysiology 
(IFCN) standards for digital recording of clinical EEG from the Ecological University 
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of Bucharest. The time series are recorded for 10 to 20 min at a sampling frequency of 
512 Hz using 22 electrodes. The signals are notch filtered at 50 Hz.  

For current research work, we have obtained a version of data that is already 
preprocessed of artifacts by using Independent Component Analysis (ICA), a blind 
source separation technique (BSS). Details of these procedures can be found in [43]. 
For ICA processed data, least corrupted 20s recordings have been selected for further 
analysis.  

3.2 Data Filtering into Five Frequency Bands 

EEG time series are classified into five frequency bands. Each frequency band has its 
own physiological significance [6]. 

1. Delta (δ: 1 ≤ f ≤ 4 Hz): these are characterized for deep sleep and are 
correlated with different pathologies. 

2. Theta (θ: 4 ≤ f ≤ 8 Hz): they play important role during childhood. High theta 
activities in adults are considered abnormal and associated with brain 
disorders. 

3. Alpha (α: 8 ≤ f ≤ 12 Hz): they usually appear during mental inactive 
conditions and under relaxation. They are best seen during eye closed and 
mostly pronounced in occipital location.  

4. Beta (β: 12 ≤ f ≤ 25 Hz): they are visible in central and frontal locations. 
Their amplitude is less than alpha waves and they mostly enhance during 
tension. 

5. Gamma (γ: 25 ≤ f ≤ 30 Hz): they are best characterized for cognitive and 
motor functions.  

6. Bandpass filter is applied to each EEG channel to extract the EEG data in 
specific frequency band [F:(F+W)] Hz. Butterworth filters were used (of 2nd 
order) as they offer good transition band characteristics at low coefficient 
orders; thus, they can be implemented efficiently.  

4 Methodology 

In this research work, a novel methodology using PCA and neural synchrony 
measurement of the brain is proposed. We have compared our proposed method with 
other method which takes the average of synchrony measures for all channels in one 
region of the brain. As mentioned previously, we are comparing right and left 
temporal with frontal, central and occipital so there are total 7 comparisons of the 
brain ((left temporal-right temporal (LT-RT)), (left temporal-frontal (LT-F)), (left 
temporal-central (LT-C)), (left temporal-occipital (LT-O)), (right temporal-frontal 
(RT-F)), (right temporal-central (RT-C)), and (right temporal-occipital (RT-O))) for 
all frequency bands (δ, θ, α, β, γ).  A brief description of these methods is given 
below. 
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Fig. 1. The 21 Channels used for EEG recording 

4.1 First Method (Taking Average of Synchrony Measures) 

First we apply neural synchrony measurement technique on each channel pair  
(time series of two channels) of two different regions for all frequency bands and then 
we take the average of those results. For instance, we apply phase synchrony measure 
on each channel pair of right and left temporal ((F7-F8), (F7-T4), (F7-T6), (T3-F8), 
(T3-T4), (T3-T6), (T5-F8), (T5-T4), (T5-T6) and then we take the average result of 
right temporal-left temporal. We compare the left temporal with frontal (FP1, FP2, 
FPz, F3, F4), central (Fz, C3, Cz, C4, Pz) and occipital (P3, P4, O1, O2, Oz). 
Similarly, we compare the right temporal (F8, T4, T6) to rest of the brain area.  The 
same technique has been used for rest of the synchrony measures i.e. cross correlation 
and coherence.  

After getting the results, we compare the neural synchronization of AD patients 
and healthy subjects, for all three measurement techniques (phase synchronization, 
cross correlation and coherence), by Mann-Whitney U test. Figure 2 shows all the 
steps of our Average method. 

4.2 Second Method (PCA Based Neural Synchrony Measure) 

In this method, instead of applying synchrony measurement technique directly on the 
filtered data, first we apply Principal Component Analysis (PCA) technique on all 
channels of one region. This eliminates any redundant information that a region could 
provide. For instance, we apply PCA on all three channels of left temporal (F7, T3, 
T5) and consequently it provides a single signal without any redundant information. 
Then we apply PCA on all channels of right temporal (F8, T4, T6). After that, we 
apply synchrony measure on these two regions. Similarly, we apply PCA on all other 
channels of a region; frontal (FP1, FP2, FPz, F3, F4), central (Fz, C3, Cz, C4, Pz) and 
occipital (P3, P4, O1, O2, Oz) and compute the synchrony measure with left and right 
temporal. Rest of the procedure is similar to the first proposed method.  
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Fig. 2. Average and PCA Methods 

4.2.1   Principal Component Analysis (PCA) 
The basic purpose of PCA is to reduce the dimensionality of a dataset to convert it to 
uncorrelated variables providing maximum information about a data while 
eliminating interrelated variables. In other words it transforms highly dimensional 
dataset (of m dimensions) into low dimensional orthogonal features (of n dimension) 
where n<m.  

In our case we apply PCA on all channels in one particular region, for instance, 
the application of PCA for the left temporal as is shown in Fig.3 (a) using channel 
(F7, T3, T5) are converted into a single signal as shown in Fig. 3(b). The generated 
temporal signal contains almost all information from the left temporal while 
eliminating any redundant information. 
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(a)                                         (b) 

Fig. 3. Application of PCA on left temporal channels signals 

5 Conclusion 

The aim of the current study was to show the significance of applying PCA method to 
eliminate redundant information from the datasets to get more reliable results. In this 
study, three different datasets are selected with different specifications and three 
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different synchrony measures are applied to prove the significance of our approach. 
Moreover we have compared our proposed method with Average method to compute 
synchronization in MiAD patients as well as in control subjects. Results revealed that 
cross correlation measure showed higher difference in synchronization of MiAD and 
control subjects as compare to phase synchrony while coherence function did not 
perform very well. They have also indicated that alpha and theta bands play a major 
role in identifying the change in synchronization from MiAD and control subjects 
especially in right temporal-central region (RT-C) and also in left temporal-occipital 
(LT-O) region. Furthermore, we have successfully shown the importance and 
significance of our proposed method, to detect lower synchronization in MiAD 
patients, as compare to the Average method for all three datasets. Future work will 
involve the study of much significant results of lower synchronization in case of 
datasets B and datasets C as compare to dataset A.  
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Abstract. Tumor clustering is a powerful method in tumor subtype discovery 
for more accurately and reliably clinical diagnosis and prognosis. In order to 
further improve the performance of tumor clustering, we introduce a new tumor 
clustering approach based on independent component analysis (ICA) and 
affinity propagation (AP). Particularly, ICA is initially employed to select a 
subset of genes so that the effect of irrelevant or noisy genes can be reduced. 
The AP and its extensions, adaptive affinity propagation (adAP), are then used 
for tumor clustering on the selected genes.  

Keywords: Clustering, independent component analysis (ICA), gene expression 
data, affinity propagation (AP), adaptive affinity propagation (adAP). 

1 Introduction 

Cluster of patients can be used to assess the distinct clinical outcomes and interpret 
the biological processes contribute to understand the mechanisms of human disease. 
With the rapid advance of DNA microarray technologies, it is possible for us to know 
about the underlying human disease, and then nip the underlying disease in the bud. 
The microarray data contain tens of thousands of genes for each chip typically, and 
the number of the collected tumor samples is much smaller than genes. So it is a 
typical “large p, small n” problem [1], i.e., the number of predictor variables p is 
much greater than that of available samples n. The particular condition pn makes most 
of the standard statistical methods difficult to use from both analytical and 
interpretative points of view [2].  

There are many approaches to gene selection (feature selection), such as 
nonnegative matrix factorization (NMF) [2]. There are also many approaches for 
dimensionality reduction, such as Linear Discriminate Analysis (LDA) [3]. 
Independent component (IC) analysis (ICA) can be employed to select a subset of 
genes that might be relevant to different tumors [2]. 
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Up to now, many unsupervised clustering approaches have been applied in 
clustering analysis successfully. Wang et al. [4] have employed adaptive affinity 
propagation (adAP) to twelve kinds of data sets, and achieved good cluster results. 

The successful use of gene selection and adAP in processing simulated data and 
clinical data inspires us to improve the clustering performance.  

2 Methods 

(a) Gene Selection by ICA 

In this part, we first describe the ICA algorithm simply and then we describe the AP 
algorithm and the adAP algorithm briefly. ICA is a linear transformation technique 
for data feature extraction. Now we briefly introduce the ICA proposed by Hyvarinen 
A et al. [5] and [2]. Consider a gene expression data set that consists of p genes in n 
samples. We denote it by a matrix X of size np× . 
 

 

Fig. 1. The ICA model of gene expression data used in this paper 

Then the standard mathematical ICA model can be written as: 

kk

n

k
saASX

1=
Σ==                             (1) 

Where A is a matrix of size np× and S is a mixing matrix of size nn× .  
T

nXXXX ),...,( 21= , which is n-dimensional random mixing signals, the 

observed signals. A is a constant mixing matrix of size nn× , T
nSSSS ),...,( 21= , 

which is component independent source signals. Formula (1) implies that the columns 
of X are linear mixtures of the ICs, in order to seek out the right linear combinations 
of the observed variables, we use another form to express the mixing matrix as 
follow. 

XWXSA == −1                              (2) 
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Vectors qa , which are the columns of A, are called the ICs of A and are assumed 

to be statistically independent. The mission of the ICA is to find out the nn×  mixed 

matrix 
T

nWWWW ),...,( 21=  to make recovery signal each component independent 

as far as possible when we only know the observation signal X. 
The ICA gene selection method is based on a ranking of the p genes, the ranking 

process is showed as follow [2], 

Step 1. z-ICs zAAA ,..., 21  with zero mean and unit variance are extracted from 

the gene profiles data by ICA. 

Step 2. For gene ),...2,1( pll = , the absolute score are computed on each 

component ija . By retaining the maximum one, these z scores (the actual number of 

ICs) are synthesized and denoted by ijjl ag max= . 

Step 3. According to the maximum absolute scores{ }pgg ,...,1 , the p genes are 

sorted in increasing order, and the rank )(lr is computed for each gene. 

When we perform the experiments again and again, we found the selected genes by 
ICA is difficult to be reproducible [6] because of local optima of the ICA [7]. In this 
paper, we selected the IC number z experimentally, and we found that the appropriate 
value of z to make the experiment results have weak randomness. Lastly, the number 
of selected gene is decided according to the cluster methods experimentally. 

(b) Cluster with adAP 

Affinity Propagation (AP) [8] is a new clustering algorithm proposed in Science. AP 
algorithm adopts the similarity between n data points to cluster samples, the similarity 
which can be symmetrical or asymmetric. Wang et. al. [4] proposed that AP has two 
limitations: the oscillations can not be eliminated automatically if occurs and it is hard 
for us to know what value of “preference” can get an optimal clustering result. Hence, 
they proposed adAP instead of AP to solve the above limitations, including 
eliminating oscillations by adaptive adjustment of the damping factor, decreasing 
value of p when adaptive damping methods don't work, and finding out the optimal 
and suitable clustering solution through adaptive searching the space of p. The 
adaptive escaping technique is designed below, 

Step 1. when lam (lam is damping factor; ]1,0[∈lam ) is large (e.g., lam is 

increased to 0.85) and oscillations occur, decrease p step by step until oscillations 
disappear in the iterative process, this could be added in the step 2. 

Step 2. increase lam by a step when oscillations occur; if 85.0≥lam , go to  
step 1 or decrease p by step ps.  
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The adaptive preference scanning technique is designed as follows, 
step 1. start the algorithm by a designated large preference (p). 
step 2. runs an iteration to generate K exemplars. 
step 3. check whether K exemplars are converged. 
step 4. if K exemplars are converged, go to step 5; otherwise go to step 2. 
step 5. if K exemplars converge too in additional dy iterations decrease the value of 

p by step ps, otherwise go to step 2. 
step 6. go to step 2. For details, please refer to [4]. The approaches of evaluate the 

solutions is numerous, in this paper, we choose Silhouette index [9].  

                )}(),(max{

)()(
)(

tbta

tatb
tSil

−=                            (3) 

Where )(ta  is the average distance of sample t in cluster jC  to all other samples 

in cluster jC , ),( jCtd  is average distance of sample t in cluster jC  to all samples 

in another cluster iC , then jikiCtdtb i ≠== ,,...,2,1)},,(min{)( . 

The value of )(tSil  beyond 0.5 indicates that the each cluster can be separated 

perfectly, less than 0.5 indicates that certain clusters exist overlap, and less than 0.2 
illustrates the lack of substantial cluster structure. The optimal cluster results 
correspond to the largest value among all value of Silhouette[9, 10]. 

3 Data 

The follicular lymphoma gene expression data were derived from 106 samples 
(patients with follicular lymphoma), which was produced by the SMRT array 
platform [11] and contain 26266 genes (probes) per samples [12, 13]. The expected 
cluster for these 106 samples predicted by HMM-Mix method is 6 groups and WKM 
method is 4 groups [14].  

4 Experimental Results 

Up to present, numerous gene selection approaches have been raised [15-18]. The 
most important reason that we choose ICA as the gene selection method is that ICA-
based gene selection does not need to know the labels of samples, so ICA is very 
suitable for AP and adAP cluster. Besides, ICA has been demonstrated to be a valid 
gene selection technique in tumor classification [18] and there is a reasonable 
biological explanation of ICA model for gene expression data. In order to show the 
efficiency of our methods, we also use the genevarfilter method, which filters genes 
with small profile variance. 
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In our study, we find that selected genes have the best stability when we select 
1=z for ICA. The number of selected genes is 10 in table 1 and the number of 

selected genes is 20 in table 2 when we perform the ICA. When Pearson coefficients 
are used as similarity measure we find it is hard to obtain a good result, so our results 
are based on Euclidean distances. Please note that we excluded the category when 
there is only one sample in this category. Because the dataset have no true class labels 
so that we cannot calculate the error rate and FM value, and we determined the 
number of groups using the maximum Silhouette coefficient. 

Table 1. The experimental result on the FL data (z=1, m=10) 

Experimental Method Class Number Value of silhouette 
ICA + adAP 2 0.513713 
ICA + AP 25 0.454998 
Genevarfilter + ICA + adAP 4 0.572212 
Genevarfilter + ICA + AP 27 0.371547 

Table 2. The experimental result on the FL data (z=1, m=20) 

Experimental Method Class Number Value of silhouette 
ICA + adAP 2 0.554458 
ICA + AP 27 0.301090 
Genevarfilter + ICA + adAP 4 0.483395 
Genevarfilter + ICA + AP 27 0.399124 

 
From the tables 1 and 2, obviously, we can find the cluster results by adAP are 

better than the results by AP. We also selected 10927 genes by genevarfilter before 
we used ICA. The clustering effect is better when we initialized the model by 
genevarfilter. The value of silhouette by ICA and adAP both beyond 0.5 which 
indicate the each cluster can be separated perfectly when the samples are full into two 
groups. In table 1, Apply Genevarfilter before ICA works better than without use 
Genevarfilter, we could get 4 clusters, and the value of silhouette is more than 0.5, 
which indicates that the each cluster can be separated perfectly. However in table 2, 
we could find that adAP combined with ICA is better than adAP combined with ICA 
and Genevarfilter. Hence, in order to obtain a best result, the larger the probability, 
we should do a large of experiments. In addition, the value of parameters z, m are 
determined experimentally. We find when we make z=1, and m=10 the fluctuation in 
results is on the small side.  

5 Conclusion 

In this work, we first applied ICA to model the gene expression data for gene 
selection, and then we employed adAP to cancer clustering using the selected genes. 
ICA is a multipurpose statistical approach in which the observed random data can be 
served as the estimation of a latent variable model. The results of adAP algorithm is 
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better than AP algorithm indeed. The main purpose of this paper is to study the 
combination gene selection and clustering. There are numerous gene selection 
methods and numerous cluster methods, we could take advantage of the kind of 
combination, thus all kinds of novel combination techniques could be used for dealing 
with gene expression data, that is, we should choose the best combination so that we 
obtain most effective approaches to cluster cancers. We are also find approaches to 
model selection to prevent choosing the number of grounds at run time. The method 
could be applied in different areas such as biomedical signal processing, image 
processing, and telecommunication. 
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Abstract. This paper proposed a new method to train feedforward neural net-
works(FNNs) parameters based on the iterative chaotic map with infinite col-
lapses particle swarm optimization(ICMICPSO) algorithm. This algorithm 
made full use of the information of BP’s error back propagation and gradient. It 
used ICMICPS as the global optimizer to adjust the neural networks’ weights 
and thresholds, when network parameters converge around global optimum. 
And it used gradient information as a local optimizer to accelerate the modifica-
tion at a local scale. Compared with other algorithms, results show that the  
performance of the ICMICPSO-BPNN method is superior to the contrast  
methods in training and generalization ability. 

Keywords: Feedforward Neural Networks, Back-propagation Neural  
Networks, Particle Swarm Optimization, Chaos Map. 

1 Introduction 

In recent years, neural network is widely used in pattern recognition, data mining, 
intelligent control and other fields. The three-layer feedforward neural network is a 
kind of mentor learning algorithm, which used gradient descent method based on 
error back propagation(BP) for training[1]. However, this method is sensitive to the 
initial weights choice and is easy to fall into local minima. These are made worse 
neural network training effect, so the performance of BP neural network is affected.  

Particle Swarm Optimization(PSO) algorithm is a Swarm intelligence optimization 
algorithm proposed by Kennedy and Eberhart in 1995[2]. PSO has many advantages of 
fast convergence speed, simple modeling and implementation, and existing PSO has 
fast convergence speed in the pre-search and easily fall into local optimal value in the 
latter. Chaos is a common phenomenon that exists in nonlinear system, and can obtain 
the motion state of randomness by deterministic equations. Chaotic motion has many 
characteristics of random, universality and regularity. It can traverse all states within a 
certain range in accordance with its non-repetition of own laws.  

This paper presents an ICMIC particle swarm method(ICMICPSO), then combines 
ICMICPSO with gradient descent and become a mixed ICMICPSO-BP algorithm to 
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train feedforward neural networks (FNNs). The algorithm uses PSO for global search 
in the initial stages, then uses chaotic search to led the particles escape from local 
optimal solution when premature convergence, at the same time, accelerate local 
search near the globally optimal solution by using gradient descent. The proposed 
ICMICPSO-BP algorithm is used to train FNNs’ weights and thresholds. Finally we 
use four Benchmark standard function questions to test the algorithm and compared 
the results with literature result, show the effectiveness of this algorithm. 

2 BPNN, PSO and Chaotic Mapping 

2.1 Neural Network Based on Error Back-propagation (BPNN) 

BP neural network’s learning process is divided into forward propagation and back-
ward propagation under the instructors’ guidance. It has been demonstrated that a 
three-layer BP neural network can approximate nonlinear function by any accuracy. 
The mean square error function calculation formula is as follows: 

 ( ) − ===
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Where q is input samples’ number, εk  is the k-node’s output error, d k  is the k-
node’s desired output value, ck  is the k-node’s actual output value. 

2.2 Particle Swarm Optimization Algorithm (PSO) 

The standard particle swarm algorithm is an optimization algorithm based on popula-
tions, individual in the particle swarm is called particle. Assume that a certain group 
size is N in the D-dimensional search space, the position of its i-th particle's  
t-generation in this search space is ( ) NixxxX t
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Where c1 and c2 are constants and are known as acceleration coefficients; r1, r2 are 

random values in the range of (0, 1)[3]. 

2.3 Chaotic Mapping 

Chaos is a common phenomenon that exists in nonlinear system, it can traverse all 
states within a certain range in accordance with its non-repetition of own laws. We 
can combine this traversal state and PSO algorithms, which is helpful for particles to 
escape from local optima region and enhance the global search ability[4]. Reversible 
one-dimensional mapping is the simplest chaotic motion system, He et al. has pro-
posed iterative chaotic map with infinite collapses (ICMIC) and discussed its chaos 
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rigorously from the perspective of mathematics[5]. In this paper, we use ICMIC map-
ping to generate chaotic variables, and the variable sequence will be distributed be-
tween -1 and 1: 
 ( )xx kk a /sin=+1        0，11 ≠≤≤ xx kk  (4) 

Where xk  is the k-th component, α is control parameter and its general value is 
5.65. Chaos is sensitive to initial value, so we can get N-chaotic variables of different 
locus by taking N-initial particles. 

3 ICMICPSO-BP Algorithm and FNNs Training 

3.1 Mixed ICMICPSO-BP Algorithm 

ICMICPSO-BP has combined ICMIC chaotic mapping and gradient descent method 
based on the error back propagation. PSO has strong search capability of global op-
timal solution, but the search speed will become slow and be prone to premature when 
searching is close to optimal solution. In order to solve the algorithm's drawbacks, 
this paper introduces ICMIC and gradient descent algorithm based on error back 
propagation to improve the performance of PSO. When PSO algorithm falls into local 
optimal solution by premature judgment mechanism, introduce chaotic mapping, lead 
the local population to escape local extreme point, continue to search in the global 
scope and avoid premature phenomenon.  

3.2 Training Feedforward Neural Networks by ICMICPSO-BP Algorithm 

Take the FNNs' weights and thresholds as the particles' position vectors, and then 
train network parameters by using proposed algorithm. 

This algorithm can obtain the diversity of population by using chaotic mapping, 
and accelerate PSO's local search capability by using gradient descent information, so 
particles can search the entire space globally under the premise of fast local search, 
specific steps are as follows: 

(1) Initialize each parameter of algorithm 
(a) Set M as particle population's size, T as algorithm's total iterations, TN as algo-

rithm's current iteration, λ  as minimum training stop error, pm  as chaotic transition 
probability, c1  and c2  as learning factors, ω  as inertia weight, C as fitness variance 
threshold, TBP  as BP algorithm's iteration, η  as learning rate, α  as momentum 

factor. 
(b) Initialize particle's velocity ( )vvv iii

T
i D21 ...V = ，，， and position ( )xxx iii

T
i D21 ...X = ，，，  

randomly to characterize weights and thresholds of the neural network, where D is the 
sum of neural network weights and thresholds dimension. 

(c) Calculate particle's fitness value ( )xif , select particle with best fitness value in 

the initial population, the value is also treated as global extreme position pg  of initial  

search algorithm and pbest  of  whole algorithm, make TN=1. 
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(2) If TN ≥ T, save ( ) ( ){ }pp ff g imin ，  as optimal results, the algorithm finishes. 

Otherwise, perform the following steps: 
(a) According to formula (2) and (3), update particles' speed V i  and position Xi . 
(b) Update pi  and pg  by each particle's information, and record global optimal 

particle subscript. 
(3) If C2

≤σ , proceed with the following steps, otherwise, return to Step (2). 
(4) Take global optimal particle's position X g

best
 as the initial point, call BP  

algorithm, update X g
best

, pi  and TN. 

(5) If TN ≥ T, save ( ) ( ){ }pp ff g imin ，  as optimal results, algorithm finishes.  

Otherwise, continue. 
(6) Generate a random number r  in the range of (0, 2) for each particle, if pmr ≤  

and gbesti≠ , carry on ICMIC chaotic mapping in the chaotic search space, calculate 

new position's target value f k
i

1+ , update TN and pg . 

(7) Return to step (2). 

3.3 Performance Analysis of ICMICPSO-BP Algorithm 

ICMICPSO-BP algorithm has combined particle swarm, chaotic mapping and  
BP algorithm. ICMICPSO-BP’s complexity is equal with PSO-BP and GA-BP et al, 
particles will have a stronger global search capability based on chaotic mapping  
mechanism, and particles' local search capability will be accelerated by BP, PSO's 
performance will get a good play.  

4 Simulation 

4.1 Function List and Experimental Parameters 

In this paper, four typical Benchmark functions that shown in Table1 are used to test 
algorithm's effectiveness, then compare the results to literature[5].  

Table 1. Test Benchmark Function Set 

Test Functions Range 
( ) ( )xxxf 12

2
1 -1- 22

1 +×100=  2,1=],10,10[ ixi -∈  

)cos(-sin-+-+= 1
2
3

2
23321

3
2

2
12 xxxxxxxxxf  3,2,1=],2,2[ iππxi -∈  

xxf xxxx 54
3

32
13 +=  5,...,2,1=],2,0[ ixi∈  

∑
8

1=
4 =

i

i
ixf  8,...,2,1=],1,1[ ixi -∈  

 
In order to maintain the consistency of training parameter settings in comparative 

literature, parameters are set as follows: M = 40, T = 1000, 10 6-=λ , c1 = c2 =1.4, 
network weights and thresholds are initialized to [-1,1], ω is in the range of [0.4, 0.9], 
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r1  and r2  are random values in the range of (0, 1). Assume particles' max speed is 
10, min speed is -10. By using ICMIC mapping as chaotic mapping, set 2.0=pm , 

01.0=c , 2/)-(= minmaxmax xxv , vv maxmin = , particle's position and velocity dimension 

1++1×+×= hhhiD , where i represents neurons number of input layer and h 
represents neurons number of hidden layer. Assume that BP's learning rate η =0.7, 

momentum factor α =0.3, max iterations of BP subroutine is 30. In the range of inde-
pendent variable values, initialize 150 training samples randomly and generalize 50 
samples. Then compare the proposed algorithm with literature’s results, E1 is training 
MSE, E2 is generalization MSE, E3 is training average absolute error, E4 is generaliza-
tion average absolute error, E5 is all sample average absolute error. 

When function f1~ f4
 have different nodes number h of hidden layer, errors E1~ E5 

are shown in Table2~5, error comparison of ICMICPSO-BPNN and contrast algo-
rithms for four functions is shown in Table6. 

Table 2. Training Error Comparison of Different Network Structures By Function f1 

Nodes Number h Algorithm E1 E2 E3 E4 E5 

6 
ICMICPSO-BPNN 3.63E – 06 0.000547 0.001782 0.023257 0.007149 

PSO-BPNN 6.06E – 06 0.009995 0.001906 0.074016 0.019933 

7 
ICMICPSO-BPNN 1.04E – 06 4.284E – 05 0.000867 0.010234 0.003201 

PSO-BPNN 4.87E – 06 2.98E – 04 0.001886 0.014980 0.005160 

8 
ICMICPSO-BPNN 8.37E – 06 0.000797 0.001032 0.018561 0.005414 

PSO-BPNN 4.75141E – 05 0.001074 0.005482 0.030187 0.011658 

9 
ICMICPSO-BPNN 1.26E – 05 0.000864 0.001932 0.024634 0.007607 

PSO-BPNN 3.33E – 05 0.003742 0.004869 0.039807 0.013603 

Table 3. Training Error Comparison of Different Network Structures By Function f2 

Nodes Number h Algorithm E1 E2 E3 E4 E5 

7 
ICMICPSO-BPNN 4.39E – 05 8.23E – 05 0.003326 0.011254 0.007808 

PSO-BPNN 2.86E – 04 5.15E – 04 0.012571 0.018063 0.013944 

8 
ICMICPSO-BPNN 3.54E – 05 0.000863 0.003746 0.022758 0.008493 

PSO-BPNN 4.75141E – 05 0.001524 0.004963 0.030166 0.011264 

9 
ICMICPSO-BPNN 1.26E – 05 0.007651 0.002973 0.021415 0.007581 

PSO-BPNN 3.33E – 05 0.019533 0.005353 0.112832 0.032223 

10 
ICMICPSO-BPNN 1.05E – 05 0.004132 0.002865 0.027159 0.008936 

PSO-BPNN 1.70E - 05 0.006777 0.005272 0.064394 0.020052 

Table 4. Training Error Comparison of Different Network Structures By Function f3 

Nodes Number h Algorithm E1 E2 E3 E4 E5 

7 
ICMICPSO-BPNN 0.007165 0.007268 0.031723 0.046526 0.035424 

PSO-BPNN 0.007343 0.007399 0.057853 0.062319 0.058970 

8 
ICMICPSO-BPNN 0.006472 0.008562 0.021652 0.047184 0.028033 

PSO-BPNN 0.011044 0.009478 0.074014 0.070769 0.073203 

9 
ICMICPSO-BPNN 0.004125 0.006318 0.024963 0.042541 0.029355 

PSO-BPNN 0.009145 0.013129 0.065892 0.079063 0.069184 

10 
ICMICPSO-BPNN 0.003156 0.003264 0.020015 0.032815 0.023215 

PSO-BPNN 0.005850 0.003419 0.044258 0.043698 0.044118 
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Table 5. Training Error Comparison of Different Network Structures By Function f4 

Nodes Number h Algorithm E1 E2 E3 E4 E5 

7 
ICMICPSO-BPNN 0.008192 0.006742 0.041791 0.062839 0.047052 

PSO-BPNN 0.012823 0.008337 0.068605 0.068605 0.069402 

8 
ICMICPSO-BPNN 0.008292 0.009281 0.042655 0.068547 0.049012 

PSO-BPNN 0.009363 0.013577 0.079761 0.100246 0.084882 

9 
ICMICPSO-BPNN 0.008192 0.009347 0.052163 0.074152 0.057660 

PSO-BPNN 0.012823 0.015750 0.092703 0.103527 0.095409 

10 
ICMICPSO-BPNN 0.008292 0.009728 0.063276 0.075251 0.067265 

PSO-BPNN 0.009363 0.010234 0.077145 0.076798 0.077059 

Table 6. Error Comparison of ICMICPSO-BPNN and Contrast Algorithms for Four Functions 

Algorithm Error f1(2-7-1) f2(3-6-1) f3(5-10-1) f4(8-7-1) 

ICMICPSO-BPNN 

E1 1.04E – 06 4.67E – 06 0.003156 0.005228 
E2 4.28E – 05 8.29E – 05 0.007764 0.006742 
E3 0.000867 0.002835 0.020015 0.041791 
E4 0.010234 0.016457 0.032815 0.062839 
E5 0.003201 0.006488 0.023215 0.047052 

Improved PSO-BPNN 

E1 4.87E – 06 3.56E – 05 0.005850 0.007367 
E2 2.98E – 04 9.26E – 04 0.003419 0.008337 
E3 0.001886 0.004992 0.044258 0.068605 
E4 0.014980 0.025081 0.043698 0.071793 
E5 0.005160 0.010014 0.044118 0.069402 

Traditional PSO-BPNN 

E1 4.16E – 05 2.54E – 04 0.008941 0.015331 
E2 0.110844 0.066119 0.002599 0.019901 
E3 0.005701 0.013349 0.061929 0.098510 
E4 0.250629 0.224780 0.041604 0.111654 
E5 0.066933 0.066207 0.056848 0.101796 

GA-BPNN 

E1 5.37E – 04 3.30E – 04 0.009272 0.011973 
E2 0.041519 0.064065 0.003002 0.016747 
E3 0.017857 0.015369 0.058552 0.086193 
E4 0.197877 0.221804 0.045065 0.105106 
E5 0.062862 0.066978 0.055180 0.090921 

Basic BPNN 

E1 9.9995E – 05 3.6850E – 04 0.0114 0.0120 
E2 0.4178 0.1350 0.1949 0.0132 
E3 0.0082 0.0151 0.0730 0.0857 
E4 0.5980 0.3629 0.3813 0.0944 
E5 0.2075 0.1361 0.2001 0.1172 

4.2 Simulation Results and Analysis 

From table 2 it can be seen that ICMICPSO-BPNN's training error E1 and generaliza-
tion error E2 is less than comparison algorithm significantly, also are reflected on E3, 
E4 and E5, algorithm has good learning ability and adaptive for new samples.  

From table 3 it can be seen that ICMICPSO-BPNN's errors E1~ E5 is less than 
comparison algorithm significantly. These results fully illustrate the importance of 
chaotic mapping in PSO, which has led particles escape from local optima. 

From table 4 it can be seen when h=6, the rest training error and generalization  
error results are better than comparison algorithms. These are also fully explained that 
ICMICPSO-BPNN has higher training precision and better learning ability.  
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From table 5 it can be seen that E3~ E5 is less than comparison algorithms' results, 
ICMICPSO-BPNN's network output value is closer to the true value.  

Table 6 compares ICMICPSO-BPNN with improved PSO-BPNN, traditional  
PSO-BPNN, GA-BPNN and BPNN which are proposed in Literature[5], where the 
network structure of four functions are 2-7-1, 3-6-1, 5-10-1 and 8-7-1. From the re-
sults it can be seen that ICMICPSO-BPNN's five test indicators are superior to other 
algorithms. The proposed algorithm has higher training accuracy.  

5 Conclusion 

This paper proposed a new method to train feedforward neural networks(FNNs)  
parameters based on the iterative chaotic map with infinite collapses particle swarm 
optimization(ICMICPSO) algorithm. This algorithm made full use of the information 
of BP’s error back propagation and gradient. And it used gradient information as a 
local optimizer to accelerate the modification at a local scale. Compared with other 
algorithms, results show that the performance of the ICMICPSO-BPNN method is 
superior to the contrast methods in training and generalization ability. 
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Abstract. We present a method for training a deep neural network containing 
sinusoidal activation functions to fit to time-series data. Weights are initialized 
using a fast Fourier transform, then trained with regularization to improve gene-
ralization. A simple dynamic parameter tuning method is employed to adjust 
both the learning rate and regularization term, such that stability and efficient 
training are both achieved. We show how deeper layers can be utilized to model 
the observed sequence using a sparser set of sinusoid units, and how non-
uniform regularization can improve generalization by promoting the shifting of 
weight toward simpler units. The method is demonstrated with time-series prob-
lems to show that it leads to effective extrapolation of nonlinear trends. 

Keywords: neural networks, time-series, curve fitting, Fourier decomposition. 

1 Introduction 

Finding an effective method for predicting nonlinear trends in time-series data is a 
long-standing challenge with numerous potential applications, including weather pre-
diction, market analysis, and control of dynamical systems. Fourier decompositions 
provide a mechanism to make neural networks with sinusoidal activation functions fit 
to a training sequence [1,2,3], but it is one thing to fit a curve to a training sequence, 
and quite another to make it extrapolate effectively to predict future nonlinear trends. 
We present a new method that uses deep neural network training techniques to trans-
form a Fourier neural network into one that can facilitate practical and effective 
extrapolation of future nonlinear trends. 

Nonlinear curve-fitting approaches tend to be very effective at interpolation, pre-
dicting values among those for which it was trained, but they often struggle with 
extrapolation, predicting values outside those for which it was trained. Because extra-
polation requires predicting in a region that is separated from all available samples, 
any superfluous complexity in the model tends to render predictions very poor. Thus 
far, only very simple models, such as linear regression, have been generally effective 
at extrapolating trends in time-series data. Finding an effective general method for 
nonlinear extrapolation remains an open challenge. 

We use a deep artificial neural network to fit time-series data. Artificial neural 
networks are not typically considered to be simple models. Indeed, a neural network 
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with only one hidden layer has been shown to be a universal function approximator 
[4]. Further, deep neural networks, which have multiple hidden layers, are used  
for their ability to fit to very complex functions. For example, they have been very 
effective in the domain of visual recognition [5,6,7]. It would be intuitive to assume, 
therefore, that deep neural networks would be a poor choice of model for extrapola-
tion. However, we show that a careful approach to regularization can enable complex 
models to extrapolate effectively, even with complex periodic and chaotic nonlinear 
trends. 

2 Related Works 

Many papers have surveyed the various techniques for using neural networks to fore-
cast time-series data [8,9,10,11,12,13]. Therefore, in this section, we review only the 
works necessary to give a high-level overview of how our method fits among the 
existing techniques. The various approaches for training neural networks to model 
time-series data may be broadly categorized into three major groups, which we refer 
to as pattern-based, recurrent, and extrapolation. 

Pattern-based methods are the most common, and perhaps simplest, methods  
for time-series prediction. They involve feeding sample values from the past into the 
model to predict sample values in the future [12,14]. These methods require no recur-
rent connections, and can be implemented without the need for any training  
techniques specifically designed for temporal data. Consequently, these can be easily 
implemented using many available machine learning toolkits, not just those specifi-
cally designed for forecasting time-series data. These convenient properties make 
these methods appealing for a broad range of applications. Unfortunately, they also 
have some significant limitations: The window size for inputs and predictions must be 
determined prior to training. Also, they essentially use recent observations to 
represent state, and they are particularly vulnerable to noise in the observed values. 

A more sophisticated group of methods involves neural networks with recurrent 
connections [15]. These produce their own internal representation of state. This 
enables them to learn how much to adjust their representations of state based on  
observed values, and hence operate in a manner more robust against noisy observa-
tions. Training recurrent neural networks is notoriously difficult because long training 
times are often required [16,17], and recurrent neural networks are particularly vul-
nerable to chaotic responses in their error surfaces due to the feedback connections 
[18]. However, recurrent neural network models have found significant success with 
time-series problems [19], and recent advances in deep neural network learning have 
also helped to improve the training of recurrent neural networks  [20,21,22,23]. 

The third, and most relevant, group of methods for forecasting time-series data is 
extrapolation. Extrapolation with linear regression has long been a standard method 
for forecasting trends. Extrapolating nonlinear trends, however, has generally been 
ineffective. For this reason, this branch of time-series forecasting has been much less 
studied, and remains a relatively immature field. Our work attempts to promote  
research in this branch by presenting a practical method for extrapolating nonlinear 
trends in time-series data. 
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The idea of using a neural network that can combine basis functions to reconstruct 
a signal, and initializing its weights with a Fourier transform, has been previously 
proposed [1,24], and more recently methods for training them have begun to emerge 
[2,3]. These studies, however, do not address the important practical issues of stability 
during training and regularizing the model to promote better generalization. Our work 
treats the matter of representing a neural network that can combine basis functions as 
a solved problem, and focuses on the more challenging problem of refining these 
networks to achieve reliable nonlinear extrapolation. 

3 Algorithm Description 

Our algorithm uses a deep artificial neural network with a mixture of activation func-
tions. We train with stochastic gradient descent [25]. Each unit in the artificial neural 
network uses one of three activation functions, sinusoid: f(x) = sin(x), softplus: f(x) = 
loge(1 + ex), or identity: f(x) = x. Using the “identity” activation function creates a 
linear unit, which is only capable of modeling linear components in the data. Nonli-
near components in the data require a nonlinear activation function. The softplus units 
enable the network to fit to non-repeating nonlinearities in the training sequence. The 
sinusoid units enable the network to fit to repeating nonlinearities in the data. 
 
Initializing Weights: Before training begins, we measure the standard deviation, σ, 
of the training sequence to serve as a baseline for accuracy. The output layer of our 
neural network is a single linear unit. We call this layer 4. The layer that feeds into the 
output layer, layer 3, contains k sinusoid units, 12 softplus units, and 12 linear units, 
where k is the number of samples in the training sequence. We use the Fast Fourier 
Transform to initialize the sinusoid units. This technique has been well-established 
[1,2,3], and our implementation is included in the Waffles machine learning toolkit 
[26]. We initialize the other units to approximate the identity function. For the 
softplus units, we do this by setting the weights to the identity matrix, then we in-
crease the bias by 10, and decrease each weight wj that feeds out from the softplus 
unit into the next layer by 10wj. Layers 1 and 2 each contain 12 softplus and 12 linear 
units. Only one input value (representing time) feeds into layer 1. Layers 1 and 2 are 
also initialized to approximate the identity function. These layers serve the important 
purpose of enabling the model to “warp time” as needed to fit the training data with 
fewer sinusoid units. In other words, these layers enable the model to find simple 
repeating patterns, even in real-world data where some of the oscillations may not 
occur at precisely regular intervals. Because these layers are further from the output 
end of the model, backpropagation will refine them more slowly than the other layers. 
This is desirable because warping time in the temporal region of the training sequence 
is a “last resort” method for “explaining away” superfluous complexity in the training 
sequence. Finally, we complete our initialization of the weights by slightly perturbing 
all the weights in the network. 
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The initialized weights result in a model that predicts the training sequence will re-
peat in the future, as depicted in Figure 1. Such models fit the training data well, but 
generalize poorly. Our purpose in training, therefore, is not to improve how well it fits 
to the training data, but to simplify the model. 
 
Regularization: For the first half of our training epochs, we use weight decay, also 
known as L2 regularization. This is implemented by multiplying all the network 
weights by 1 – ηλ just before the presentation of each training pattern. (η is the learn-
ing rate for training, and λ is a small term that controls how strongly the network is 
regularized.) L2 is effective at making all weights small, which tends to distribute the 
weight somewhat evenly among the various units. During the second half of training, 
we use L1 regularization. This is implemented by subtracting the term 1 – ηλ from all 
positive weights, and adding that term to all negative weights. L1 regularization tends 
to promote sparsity in the neural network. It causes the network to utilize few non-
zero weights, while still fitting the training data. Thus, L2 regularization helps to draw 
weight away from the sinusoid units, and the final L1 regularization helps the weight 
to settle into a small number of units, preventing the overfit that typically occurs with 
large networks. 

In order to further promote shifting weight onto the simpler units, we use a non-
uniform regularization term. For sinusoid units, we regularize with the standard term 
1 – ηλ. For softplus units, we use 1 – 0.1ηλ. For linear units, we use 1 – 0.01ηλ. Thus, 
the strongest regularization is applied to the sinusoid units, while only very weak 
regularization is applied to the linear units. These constant factors (1, 0.1, and 0.01) 
were selected intuitively. We attempted to optimize them, but in our experiments 
small variations tended to have little influence on the final results. 
 
Dynamic Parameter Tuning: Stochastic gradient descent relies on being able to 
update the network weights without visiting every pattern in the training data. This 
works well with logistic activation functions because its derivative is close to zero 
except where the net pre-activation is close to zero. This gives it a very local region of 
influence, such that each pattern presentation will only significantly change a few 
relevant weights in the whole network. The three activation functions we use in our 
algorithm, however, all have non-local regions of influence. In other words, each 
pattern presentation will usually affect many of the weights in the network. This has 
the effect of giving the network a strong tendency to diverge unless an extremely 
small learning rate is used. In our experiments we found that even learning rates as 
small as 10-6, would eventually result in divergence at some point during training. The 
only static learning rates that always lead to convergence were so small that training 
became impractical. Therefore, the crux of our training algorithm relies on dynamical-
ly adjusting the learning rate η, and regularization term λ. 

After initializing the weights, the network already fits to the training data with a 
very small root-mean squared error (RMSE), much smaller than 0.1σ. As training 
proceeds, we use stochastic gradient descent to keep the RMSE near 0.1σ, and we use 
regularization to improve generalization. As training completes, the model no longer 
predicts that the training data will repeat, but predicts a continuation of the nonlinear 
trends exhibited in the training data. 
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It is important that η and λ be dynamically adjusted using different mechanisms, so 
the ratio between them is free to change. After each epoch of training, if the RMSE is 
less than 0.1σ, then λ = λ * 1.001 else λ = λ / 1.001. In contrast with this approach, we 
always make η bigger after every epoch, such that η = 1.01η. Eventually, this will 
lead to divergence, which we detect when the RMSE is greater than 0.2σ. When that 
occurs, we restore the network weights to the last point where the RMSE score was 
below 0.1σ, and we set η = 0.1η. Naturally, all of these constants could be optimized, 
but we anticipate only a nominal amount of performance gain by doing so. Due to 
space limitations, we must omit an explanation of the intuition motivating this dynam-
ic tuning approach, but suffice it to say that this approach is much more effective at 
independently tuning λ and η than many other approaches we tried. 

4 Validation 

This section presents visual results showing that our method is able to anticipate  
nonlinear trends into the future. Deliberately absent in this section are quantitative 
comparisons with recurrent neural networks and other methods. Because non-linear 
extrapolation is a less-mature method for time-series forecasting, we seek only to 
demonstrate effectiveness with this approach. We do not attempt to establish it as the 
new state-of-the-art in forecasting. If the research community were to only focus on 
improving the method with the highest precision, then it would risk becoming stuck in 
a local optimum. By advancing this alternative approach, we intend to help open the 
way for research interest in an area that could potentially lead to different use-cases or 
a long-term shift in how time-series forecasting is done. 

Our first experiment shows results with a toy problem involving a sine wave with 
the addition of a linear trend, f(t) = sin(t) + 0.1t. For training, we used this equation to 
generate a sequence of 128 values. After initializing the weights, the model predicts 
that the training sequence repeats into the future, as shown in Figure 1. This model 
assigns significant weight to many of its sinusoid units. As training proceeds, howev-
er, the model is greatly simplified while still fitting with the training sequence. The 
final model assigns nearly all of its weight to just two units: a sinusoid unit and a 
linear unit, which matches the equation that was used to generate the training se-
quence. The results are shown in Figure 2. The blue dots spanning the left half of the 
plot represent the training sequence. The red dots spanning the right half of the plot 
are test values generated by continuing to sample from the same equation. These were 
withheld from our algorithm during training. The green curve shows the continuous 
predictions of the trained model. 

We tested our method with the Mackey-Glass series. This test is interesting be-
cause it involves a chaotic series, rather than a periodic series. Results with this data 
are given in Figure 3. We note that the model begins to prematurely descend very 
early in the test sequence (at approximately time 1.02), which causes its predictions to 
be slightly out of phase for the remainder of the test sequence. Nevertheless, the mod-
el clearly exhibits similar patterns to those in the test set. Significantly, these patterns 
do not repeat those in the training sequence, nor does the model repeat its earlier  
predictions. This shows that our method can be effective for predicting even non-
repeating trends in the near term. 
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Fig. 1. Weights initialized with the FFT predict that the training data repeats 

 

Fig. 2. After training, the model is much simpler, and generalizes well 

 

Fig. 3. Results with predicting the Mackey-Glass chaotic series. Although the extrapolated part 
of the model is slightly out of phase, it anticipates nonlinear trends effectively. This is signifi-
cant because this problem does not repeat the training data. 

Other experiments were performed, and positive results were obtained, but these 
could not be reported here due to space limitations. These can be found in the longer 
preprint version of this paper at http://arxiv.org/abs/1405.2262. 

5 Summary of Contributions 

We presented a method for fitting a neural network to time-series data for the purpose 
of extrapolating nonlinear trends in the data. This paper makes several contributions 
to the current knowledge, which we itemize here: 
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1. It proposes new theoretical intuition for why deep neural networks can actually 
facilitate finding simpler predictive models than can be found with shallow net-
works. Specifically, the deeper layers provide a mechanism to “warp time” in the 
temporal region of the training sequence, allowing subsequent layers to “explain” 
the training data with fewer sinusoid units. 

2. It shows that shifting weight toward simpler units can be promoted during training 
by regularizing the complex units more heavily. 

3. It describes a dynamic method for simultaneously tuning both the learning rate and 
regularization terms, while allowing them to find independent values. It also shows 
that dynamic tuning can be an effective solution to the instability problems that in-
herently occur with sinusoidal activation functions. 

4. It unifies all of these techniques into a method for nonlinear extrapolation with 
time-series data, and demonstrates that it is both practical and effective. 
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Abstract. A novel type of recurrent neural network, the regularized Dynamic 
Self Organised Neural Network Inspired by the Immune Algorithm, is 
presented. The Regularization technique is used with the Dynamic self-
organized multilayer perceptrons network that is inspired by the immune 
algorithm. The regularization has been addressed to improve the generalization 
and to solve the over-fitting problem. The results of an average 30 simulations 
generated from ten stationary signals are demonstrates. The results of the 
proposed network were compared with the regularized multilayer neural 
networks and the regularized self organized neural network inspired by the 
immune algorithm. The simulation results indicated that the proposed network 
showed better values in terms of the annualized return in comparison to the 
benchmarked networks. 

Keywords: Dynamic neural network, exchange rate time series, and financial 
time series prediction. 

1 Introduction 

Financial time series analysis is a fundamental subject that has been addressed widely 
in economic fields. The analysis of financial time series is primary importance in the 
economic world. A time series is a collection of observations of a particular problem 
measured during a period of time. The analysis of financial time series has an 
economic importance. It is a promising and crucial task for any future investment 
used for making decisions in different areas, such as businesses and financial 
institutions [1]. Financial time series involve different time scales such as intraday 
(high frequency), hourly, daily, weekly, monthly, or tick-by-tick stock prices of 
exchange rates. The distance between variables in financial time series is influenced 
by real economic activity [2]. The effect of this activity has been represented by a 
mixture of hills and bumps in financial time series charts [3]. Thus, the prediction 
aims to forecast these activities. Financial data analysis usually provides the 
fundamental basis for decision models [4] to achieve good returns, which is the first 
and the most important factor for any investor. This can help to improve companies’ 
strategies and decrease the risk of potentially high losses [5]. Furthermore, it can help 
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investors to cover the potential market risk to establish some techniques to progress 
the quality of financial decisions. Financial data are naturally dynamic, nonlinear, 
nonparametric, complex, and chaotic [6]. This type of time series is non-stationary, 
has a high level of uncertainty, is highly noisy, and has an unstructured nature which 
includes regular structural breaks. In addition, the financial  time series holds several 
types of information, which are incomplete, unclear and unlimited [7]. Furthermore, 
financial time series such as the stock market are facing dramatic changes, as well as 
rapid information exchange all the time. Hence, the prediction of its economic activity 
in the future is extremely challenging.  

Several models and techniques have already been developed to enhance the 
forecasting ability of neural networks, such as the regularization methods. This method 
is based on using weight decay in order to improve the training of the neural network. 
Mahdi et al has used regularization technique in Self-organized Multilayer network 
inspired by the Immune Algorithm (SONIA) network in order to forecasting physical 
time series data as well as financial time series data [8], [9]. Their result demonstrated 
that the weight decay has improved the predication performance of SONIA network.  

In this paper the Regularization technique is applied with Dynamic Self-organized 
Multilayer neural network which is inspired by Immune Algorithm (R-DSMIA). The 
aim is to improve the generalization capability of the R-DSMIA network for time 
series forecasting. The main goal of this simulation is to evaluate the forecasting 
performance of the proposed neural network. The proposed R-DSMIA is used to 
predict ten financial time series. 

2 Dynamic of Self-organized Multilayer Network Inspired by 
Immune Algorithm (DSMIA)  

The proposed Dynamic Self-organised Multilayer network Inspired by the Immune 
Algorithm (DSMIA) is used to predict financial time series. The structure of the 
DSMIA network is shown in Fig. 1. The DSMIA network has three or more layers: the 
input, the self-organised hidden layer, and the output layers with feedback connections 
from the output layer to the input layer. The input layer holds copies of the current 
inputs as well as the previous output produced by the network. This provides the 
network with memory. As such, the previous behaviour of the network is used as an 
input affecting current behaviour. Similar to the Jordan recurrent network[10] the 
output of the network is fed back to the input through the context units.  

Suppose that N is the number of external inputs x(t) to the network, and  y(t-1) is 
the output of the network from the previous time step while O refers to the number of 
outputs. In the proposed DSMIA, the total input to the network will be the component 
of x(t) and the previous output where 
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Where fht, fot  are nonlinear activation functions, N is the number of external inputs, 

O is the number of output units. wojk is the weight corresponds to the external input 
while wzhjk is the weight corresponding to the previous output, and n is the current time 
step, while α,β are selected parameters with 0< α and  0< β. 

 
Fig. 1. The structure of the proposed DSMIA network 

The first layer of the DSMIA is a self-organised hidden layer trained similar to the 
recursive self-organized map RecSOM [11]. In this case, the training rule for updating 
the weights is based on the same technique for updating the weights of the self-
organized network inspired by the immune algorithm (SONIA) network [12]. The 
change in the proposed network is that the weights of the context nodes are also 
updated in the same way as the weights of the external inputs. This is done by first 
finding D, which is the distance between the input units and the centroid of the jth 
hidden units:  
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The position of the closest match will be determined as: 
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If the shortest distance is less than the stimulation level value, s1 (0, 1), then the 
weight from the external input vector and the context vector are updated as follows:  

)()()1( nDnWnW chjihji γ+=+                      (9) 

)()()1( nDnWznWz chjkhji γ+=+                        (10) 

Where wzhjk is the weight of the previous output and whji is the weight for the 
external inputs, and γ is the learning rate which is updated during the epochs. 

3 Regularized DSMIA Network (R-DSMIA) 

The regularization technique has been used on DSMIA to improve the performance of 
the proposed network. The main aim of the regularization is to decrease the 
generalization error. Regularization is the technique of adding a penalty term Ω to the 
error function, which can help obtain a smoother network mapping. It is given by 

Ereg = Estd + λΩ                                    (11) 

Where Estd represents one of the standard cost functions such as the Sum-of-squares 
error and the parameter λ controls the range of the penalty term Ω in which it can 
influence the form of the solution. The network training should be implemented by 
minimizing the total error function Ereg [13] . 

Weight decay is based on the sum of the squares of the adaptive parameter in the 
network. 
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The idea is that every weight once updated, is simply decayed or shrunk as follows: 

)1( λ−= oldnew ww                               (13) 

Where 0<λ< 1, The weight decay is performed by adding a bias term to the original 
objective function Estd, thus the weight decay cost function is determined as follows 
[24]:  

Ereg = Estd + (λ/2) B                               (14) 

Where λ is the weight decay rate, B represents the penalty term. 
The simplest form of calculating the penalty term B is: 

B =  W2
ij                                                         (15) 

Where wij is the weight connections between the ith units and jth nodes in the next 
layer. In the R-DSMIA network, the weight decay was used to adjust the weights 
between the hidden and the output units. The change of weights using weight decay 
method could be calculated as follows: 

∆wojk/wd = ∆wojk - ηλwojk                                             (16) 

Where ∆wojk is the updated weight that connects the hidden and the output units. The 
significant role of weight decay is to manage the complexity of the cost function. This 
will improve the neural network performance.  
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4 Financial Time Series Data  

Three different types of financial time series are applied in this research work: the 
exchange rate prices, stock opening and closing prices, and the oil price. The 
exchange rate time series and the stock process are daily time series for the period 
from 1st July 2002 to 11th November 2008, giving 1,605 trading days. The oil price 
data is monthly data and covers the period between 1st January 1985 and 1st 
November 2008, with a total of 389 trading months. The source of the data can be 
found at http://www.economagic.com/ecb.htm.  

Since most of the published papers about financial time series prediction have 
focused on exchange rate prediction, this research has used six series exchange rate 
signals. The foreign exchange market is considered to be the largest market, with 
more than $1 trillion traded everyday. The US dollar is the most significant currency 
in the market and it has been used as a reference currency. Another time series used in 
this research is the West Texas Intermediate (WTI) crude oil spot prices. Crude oil is 
well known as a central source of energy. The future oil price has a great impact on 
governments and industries and companies’ activities. 

5 Modelling DSMIA for Financial Time Series Prediction 

The original raw non-stationary signals are transformed into stationary signals before 
sending them to the neural network, by a transformation technique known as Relative 
Difference in Percentage of price (RDP) [14]. The input variables are computed from 
four lagged RDP values based on five-day periods (RDP-5, RDP-10, RDP-15, and 
RDP-20) and one transformed signal (EMA15) which is computed by subtracting a 
15-day exponential moving average from the raw signals [15].  

There are different evaluation functions that have been applied to estimate the 
network performance; some of them are related to financial measurement and some of 
them are statistical methods. The performance of the proposed network is measured 
with four financial metrics [16] and five statistical metrics [17] which measure the 
accuracy of the prediction signal.  

6 The Simulation Results 

In this section, the simulation results of the regularization Dynamic Self-organized 
Multilayer network inspired by Immune Algorithm are presented. In this research 
work, the networks were tested on five steps ahead predictions of financial time 
series. In term of evaluating the performance of the network based on Annualized 
return measures (AR). The R-DSMIA has obtained the highest percentage compared 
to DSMIA network except for the NASDAQC time series. The comparison between 
the performance of DSMIA and R-DSMIA networks showed that using regularization 
techniques on R-DSMIA network has significantly improved the performance of 
DSMIA. In term of the maximum drawdown (MDD) measure, the R-DSMIA has  
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achieved the highest value of maximum drawdown when predicting the USDUK, 
JPYUSD NASDAQC, NASDAQO, DJIAO, DJUAO, DJUAC OIL time series. 
However, DSMIA network achieved good result on maximum drawdown when 
predicting the USDEUR signal.  

 

Fig. 2. The Annualised Return result of the benchmarks networks and the R-DSMIA in 
Stationary signals 

The comparison between R-DSMIA and other networks is illustrated in Figure 2. 
The proposed network was compared with the Regularized MLP (R-MLP) and the 
Regularized SONIA (R-SONIA) neural networks. The R-DSMIA has obtained the 
highest percentage compared to the benchmarks network except USDUKP, JPYUSD, 
NASDAQC and DJUAC time series. The R-SONIA has achieved the best values of 
AR on USDUKP and NASDAQC time series. The R-MLP networks achieved the 
lowest profits on average for all ten time series. The R-DSMIA successfully obtained 
the best profits in comparison to other Regularized neural networks. 

7 Conclusion 

In this paper a novel neural network architecture based on the regularization is 
proposed which is called the regularized dynamic self-organized neural network 
inspired by the immune algorithm. The proposed network was utilized for the 
prediction of financial time series. The financial data was transformed into stationary 
signal and the results for 5 step ahead prediction were shown. The simulation results 
indicated that using recurrent links with regularization techniques can significantly 
improve the results due to the temporal aspect of the financial time series.  

Future work will involve the use of one step and multi-step ahead prediction for 
stationary and nonstationary financial time series prediction. For nonstationary 
prediction, the financial data will be presented to the neural network directly to test 
the performance of the proposed network to extract the information and model  
the financial signals data. Another direction of research will involve the use of the 
proposed neural network for the prediction of physical time series such as the 
earthquake and the sunspot time series which exhibit extreme nonlinearity and 
nonstationary behaviours.   
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Abstract. This paper presents a novel level set method to segment medical 
image with intensity inhomogeneity (IIH). The multi-scale segmentation idea is 
incorporated and a new penalty energy term is proposed to eliminate the time-
consuming re-initialization procedure. Firstly, the circular window is used to 
define the local region so as to approximate the image as well as IIH. Then, 
multi-scale statistical analysis is performed on intensities of local circular 
regions center in each pixel. The multi-scale energy term can be constructed by 
fitting multi-scale approximation of inhomogeneity-free image in a piecewise 
constant way. In addition, a new penalty energy term is constructed to enforce 
level set function to maintain a signed distance function near the zero level set. 
Finally, the multi-scale segmentation is performed by minimizing the total 
energy functional. The experiments on medical images with IIH have 
demonstrated the efficiency and robustness of the proposed method. 

Keywords: intensity inhomogeneity, level set method, multi-scale 
segmentation, penalty energy term, re-initialization. 

1 Introduction 

Medical Image segmentation is usually formulated as a minimization problem where 
the predefined energy functional specifies the segmentation criterion and the 
unknown variables describe the object contours. The most representative method 
within this context is the level set method (LSM) whose popularity and success is due 
to its ability to deal with topological changes (contour splitting or merging) without 
additional functions. Besides, extensive numerical solutions based on Hamilton-
Jacobi equations can provide the stable contour evolution for LSM. 

Generally, the existing level set methods can be classified into edge-based methods 
and region-based methods. Edge-based methods [1-4] are efficient for segmenting 
object with edge defined by gradient. However, they are quite sensitive to the initial 
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conditions and often suffer from serious boundary leakage problems at weak edge. 
Region-based methods [5-7] have a better performance for image with weak object 
boundaries and are less sensitive to initial conditions. However, they usually fail to 
segment images with intensity inhomogeneity (IIH). Recently, local region-based 
methods have been proposed [8-10] which assume that the intensities are 
homogeneous in local regions. By fitting the image in terms of local regions rather 
than global region, they have advantage to segment image with IIH. Huang et al. [11-
16] proposed designing neural network for image recognition and segmentation. 
However, the scale of local region is generally fixed in the existing local region-based 
methods, which may produce failed segmentation for medical image with severe IIH. 
To solve this problem, multi-scale segmentation idea can be introduced.  

In practical implementation, level set function (LSF) is initially represented by a 
signed distance function (SDF) to keep numerical stability and accuracy of LSM. 
During the level set evolution, LSF often becomes very flat or steep near zero level 
set, which in turn affect the numerical stability. Therefore, a remedy procedure called 
re-initialization is applied periodically to enforce the degraded LSF being an SDF. 
However, it is hard to build a trade-off between speed (re-initialization is particularly 
time-consuming) and accuracy (LSM will develop irregularities if without re-
initialization). Recently, Li et al [2, 17] proposed constraining the LSF to preserve an 
SDF during contour evolution and hence re-initialization can be efficiently avoided.  

In this paper, we propose a new level set method which incorporates the multi-
scale segmentation idea. Besides, a new penalty energy term is constructed to make 
our method be completely free of re-initialization. Here, we utilize circular window to 
define a local region so as to approximate the image as well as IIH. Then, multi-scale 
statistical analysis is performed on intensities of local circular regions center in each 
pixel. The multi-scale energy term is constructed by fitting multi-scale approximation 
of inhomogeneity-free image in a piecewise constant way.  To avoid re-initialization, 
we propose a new double-well potential and construct the penalty energy term which 
can maintain the signed distance property of LSF near zero level set. Finally, the 
multi-scale segmentation is performed by minimizing the overall energy functional.  

The rest of this paper is organized as follows: The detail of the proposed method is 
presented in Section 2. In Section 3, we provide the experimental results on several 
medical images with IIH. Finally, the conclusive remark is included in Section 4. 

2 Proposed Method 

(a) Intensity Inhomogeneity 

The intensity inhomogeneity (IIH) is frequently encountered in medical images. It is a 
systematic intensity change on both object and background which are originally 
homogeneous. The presence of IIH can greatly degrade the medical image 
segmentation performance since the intensities vary significantly for the pixels within 
the same class of tissue and overlap between the pixels belonging to the different  
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classes of tissues. Generally, IIH can be regarded as a multiplicative component of 
image and is independent of noise. So, the image with IIH can be modeled as follows: 

 ( ) ( ) ( ) ( )I x b x J x n x= + , (1) 

where I  is the given image and J  is the inhomogeneity-free image which is 
hypothetically piecewise constant. b  denotes the IIH which often manifests itself as 
a smooth spatially varying function. n  is noise which can be approximated by a 
zero-mean Gaussian distribution. To simplify the computation, the noise can be 
ignored: 

 ( ) ( ) ( )I x b x J x= . (2) 

The emergence of IIH in medical image is attributed to a number of reasons. Many 
of IIH arise from the non-uniform artificial illumination which usually presents 
circular scattered shape. Here, we illustrated three examples of IIH in Fig.1. It can be 
easily observed that they are slowly changing in circular scattered shape. Inspired by 
this observation, we use circular shape to define the local region rather than square 
shape in traditional methods. By approximating the image with local circular regions, 
more precise intensity information can be used to guide the contour evolution. 

 

       

Fig. 1. Illustrations of three examples of IIH 

(b) Multi-scale Energy Term 

Generally, IIH influences the intensity distribution of non-boundary pixels (low-
frequency part), whereas for that of boundary pixels (high-frequency part), the 
influence is relatively small. By reducing the value of low-frequency components, we 
can make the variation of b  less significant. So, we need to perform the local 
statistical analysis based on filtering technology, which implies a separation of the 
low-frequency IIH from the higher frequencies of image structures. In this paper, the 
Homomorphic Unsharp Masking (HUM) method [18] is adopted: 

 ( ) ( ) / ( ) ( ) / ( )NJ x I x b x I x C LPF x′ = = ,  (3) 

where J ′  is an approximation of inhomogeneity-free image J . LPF means low-
pass filtering and NC  is a normalized constant to preserve the mean intensity of J ′ .  
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Among the low-pass filtering methods, mean filtering is used in our method due to 
its particularly simple analytical form. As mentioned above, fixing radius for all local 
circular regions is unreasonable. Thus, we consider introducing the multi-scale 
segmentation idea and constructing the multi-scale mean filtering as follows: 

 2 2
1 1 2 2

1
( ) ( ), :{ : ( ) ( ) }

r

r r
y R

LPF x I y R y y x y x r
k ∈

= − + − ≤ , 1...r m= , (4) 

where ( )rLPF x  is the mean filtering at scale of r . rR  denotes the local circular 

region with radius also being r . k  denotes the number of pixels belonging to rR  

and m  is the number of scales. Accordingly, HUM in (3) can be reformulated as 
follows: 

 ,( ) ( ) / ( )r N r rJ x I x C LPF x′ = , 1...r m= , (5) 

where rJ ′  denotes the approximation of inhomogeneity-free image J  at scale of r . 

The normalized constant ,N rC  is the average intensity of ( )rLPF x . Then, the mean  

of ( )rJ x′  is computed as the multi-scale approximation of inhomogeneity-free image 

J : 

 
1

1
( ) ( )

m

r
r

J x J x
m =

′=  . (6) 

By reducing the low-frequency components in a multi-scale way, the intensity 

contrast between object boundary and background in J  can be significantly 
increased. The separation of object boundary and background may be performed even 

in the image with severe IIH. However, J  is still hard to segment since the 
substantial IIH still remains. Hence, the level set segmentation should be performed 
and the multi-scale energy term can be constructed in a piecewise constant way: 

 
2 2

1 2 1 2( ) ( )
( , , ) ( ) ( )D

m inside C outside C
E c c C J x c dx J x c dx= − + −  , (7) 

where 1c  and 2c  are intensity averages of J  inside and outside evolving contour C . 

(c) Regularization Energy Term 

To avoid the re-initialization problem, Li et al [17] proposed constructing the penalty 
energy term based on a double-well potential function with two minimum points  
as 0s =  and 1s = . It can efficiently maintain the signed distance property of LSF 
near the zero level set and keep LSF as a constant at locations far away from the zero 
level set. This paper takes the idea of [17] a few steps further by constructing the  
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following double-well potential function based on polynomial instead of 
trigonometric function. 

 

2

2
2

2 3 31 1
,( 1) ( 1) 1

2 2( )
1

( 1) , 1
2

if s
P s

s if

s s s

s

s
 ≤= 

− +

− >

−




,   (8) 

2 ( )P s  has the same property with the double-well potential function proposed in 

[17] but has a less computation complexity due to the usage of polynomial. Thus, our 
penalty energy term can be constructed as follows: 

 2( ) ( ( ) )R P x dxφ φ
Ω

= ∇ ,   (9) 

The gradient flow of (9) can be described as follows: 

 ( ( ) )div d
t

φ φ φ∂ = ∇ ∇
∂

, (10) 

where div  denotes the divergence operator and ( )d s  is defined by 2 ( ) /P s s′ . Here, 

we gave the illustrations of  2 ( )P s  and ( )d s  in Fig. 2. 
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(a)                                                   (b) 

Fig. 2. Illustration of 2 ( )P s  and ( )d s . (a) Illustration of 2 ( )P s . (b) Illustration of ( )d s . 

It can be seen from Fig.2 that ( )d s  satisfies the following relationship: 

 ( ) 1d s < , [0, ]s∈ ∞  and 
0

lim ( ) lim ( ) 1
s s

d s d s
→ →∞

= = , (11) 

Regarding (10) as a diffusion equation with the diffusion rate being ( )d φ∇ , we 

can analyze the effect of our penalty energy term as follows: 

1. If 1φ∇ > , ( )d φ∇  is positive and diffusion is forward so as to decrease φ∇   

to 1; 
2. If 0.5 1φ< ∇ < , ( )d φ∇  is negative and diffusion is backward so as to increase 

φ∇  to 1; 



68 X.-F. Wang et al. 

 

3. If 0.5φ∇ < , ( )d φ∇  is positive and diffusion is forward so as to decrease φ∇  

to 0. 

Our penalty energy term will make LSF preserve an SDF near the zero level set 
and be a constant at locations far away from the zero level set. Hence, the re-
initialization can be efficiently avoided. In addition, the frequently used length energy 
term ( )L φ  should also be included to control the smoothness of evolving contour. 

Thus, the regularization energy term RE  of the proposed method consists of two 
parts: 

 2( ) ( ) ( ) ( ( )) ( ) ( ( ) ) .RE L R x x dx P x dxφ μ φ φ μ δ φ φ φ
Ω Ω

= ⋅ + = ⋅ ∇ + ∇   (12) 

where μ  controls the length penalization effect and δ  is the Dirac delta function. 

(d) Level Set Formulation 

By introducing the penalty energy term in (9), the binary step function can be utilized 
as the initial LSF: 

 0
0

1 ,      
( )

1 ,

x is inside initial contour C
x

otherwise
φ 

= −
.   (13) 

Implicitly representing the evolving contour C  by the zero level set of the LSF 
φ ,  the overall energy functional of the proposed method can be described as 

follows: 
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φ φ φ

φ φ

μ δ φ φ φ
Ω Ω

Ω Ω
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 (14) 

where ( )H zε  is the smoothed approximation of Heaviside function and ( )zεδ  is the 

regularized approximation of Dirac delta function. 
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( ) 1 arctan
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z
H zε π ε
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2 2
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π ε
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+
. (15) 

Fixing φ , we minimize (14) with respect to 1( )c φ  and 2 ( )c φ .Then, 1c  and 2c  

can be computed by calculus of variations as follows: 
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Keeping 1c  and 2c  fixed and minimizing 1 2( , , )E c c φ  with respect to φ , we can 

deduce the associated gradient flow equation for φ : 

 2 2
2 1( ){( ( ) ) ( ( ) ) ) ( )} ( ( ) )J x c J x c div div d

t ε
φ φδ φ μ φ φ

φ
∂ ∇= − − − + + ∇ ∇
∂ ∇

. (17) 

To solve the above equation, the finite difference scheme is used in this paper.  

3 Experimental Results 

In this section, we demonstrated the experiments of the proposed method on several 
medical images with IIH. The proposed method was implemented by Matlab R2010a 
on a computer with Intel Core 2 Duo 2.2GHz CPU, 8G RAM. We used the same 
parameters, i.e. 0.1tΔ = , 1ε = , 32m = , 20.01 255μ = × for all experiments.  

Firstly, we used the images with slight IIH to test our method (as shown in Fig.3). 
The first row shows three vessel images which have been regarded as the benchmark 
images to test the performance of local region methods. To show the good ability of 
our method, we placed the initial contours (green circles) near the vessels rather than 
on the vessels (as shown in the first row). The final segmentation results of our 
method are shown as the red curves in the second row. The experimental records 
show that the evolving contours successfully arrived at each vessel boundaries at the 
25th iteration, 34th iteration and 28th  iteration.  

 

      

     

Fig. 3. Segmentation for medical images with slight IIH by using our method. The first row: 
Initial contours. The second row: Final segmentation results.  

Next, we shall validate the performance of our method on segmenting images with 
severe IIH. In Fig.4, we provided three medical images where severe IIH appears due 
to the low imaging quality and inhomogeneity of reception coil sensitivity. The initial 
contours were still placed near the target objects as shown in the first row of Fig.4.  
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The second row shows that our method has achieved successful segmentation on all 
three images despite the presence of severe IIH. The iteration numbers for three 
segmentations were 36, 66 and 89, respectively.  

 

     

     

Fig. 4. Segmentation for medical images with severe IIH by using our method. The first row: 
Initial contours. The second row: Final segmentation results.  

4 Conclusions 

By introducing multi-scale segmentation idea, a novel and efficient level set method 
is proposed for segmenting medical images with IIH. Here, we utilize circular 
window to define local region so as to approximate the image as well as IIH. Then, 
multi-scale statistical analysis is performed on intensities of local circular regions 
center in each pixel. The multi-scale energy term can be constructed by fitting the 
multi-scale approximation of inhomogeneity-free image in a piecewise constant way. 
To avoid the time-consuming re-initialization procedure, we propose a new penalty 
energy term to maintain the signed distance property of LSF near the zero level set. 
Finally, the multi-scale segmentation is performed by minimization of the overall 
energy functional. The experiments have demonstrated that our method is efficient 
and robust for segmenting medical images with slight or severe IIH.  
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Abstract. In this paper, considering the local variance of intensity 
inhomogeneity, we propose a novel local regional level set model based on a so-
called Three-Layer structure to segment images with intensity inhomogeneity. 
The local region intensity mean idea is used to construct region descriptor. 
Especially, three descriptors separately based on ÂlargeÊ, ÂmedianÊ and ÂsmallÊ 
scales of local regions are utilized to derive the Three-Layer structure. Compared 
to the traditional methods based on fixed scale for all local regions, the Three-
Layer structure is more reliable for capturing local intensity information. Then, 
the Three-Layer structure is incorporated into the level set energy functional 
construction. As a result, more effective local intensity information is 
incorporated into the level set evolution. Finally, the experimental results 
demonstrate that the proposed method yields results comparative to and even 
better than the existing popular models for segmenting images with intensity 
inhomogeneity. 

Keywords: local information, level set, intensity inhomogeneity, three-Layer 
structure. 

1 Introduction 

The level set methods for capturing dynamic interface and shape [1] are the state-of-
the-art techniques for image segmentation [2]. The fundamental idea of the level set 
function is to represent a contour as the zero level set of a higher dimensional function 
and formulate the motion of the contour as the evolution of the level set function.  

Recently, many region-based models are proposed to segment images with 
intensity inhomogeneity by utilizing local intensity information, such as the local 
region based model (LRB) model [3], the local binary fitting (LBF) model [4], the 
local intensity clustering (LIC) model [5], the local Chan-Vese model [6], the local 
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image fitting (LIF) model [7], etc. However, some drawbacks are existed in these 
local region-based models. The Dirac functional used there is restricted to a 
neighborhood around the zero level set, which makes level set evolution act locally. 
Therefore, the local minima often occur in LRB model. For LBF model, the local 
region descriptor function is utilized to describe each local region in the whole image. 
However, the intensity inhomogeneity of local regions is different to some extent. The 
local region descriptor with fixed scale cannot accurately describe all local regions of 
image. Besides, the LIC model can also be seemed as the locally weighted K-means 
clustering. Unfortunately, the cluster variance is not considered in LIC model. 
Therefore, it is unavailable for images with sever intensity inhomogeneity.  

However, it is difficult to determine the desired local region scale for each model. 
Meanwhile, it is also a difficult problem to utilize local region descriptor with single 
certain scale to describe all local regions. Thus, some desirable hybrid structures [8-
10] and neural networks [11-14] are proposed and proved to be more effective than 
traditional methods. Motivated by these methods, a novel local regional level set 
model based on Three-Layer structure is proposed to segment images with intensity 
inhomogeneity. By analyzing the role of local region information, we propose using 
local region descriptor based on Three-Layer structure to describe the local regions. 
The local region descriptor based on Three-Layer structure is composed by three 
descriptors separately based on ÂlargeÊ, ÂmedianÊ and ÂsmallÊ scales. It works with 
three local regions each of which is created based on a specific kind of local region, 
and fuses the descriptors in the level set energy functional. Firstly, the three kernel 
functions with different variance scales are given. Then, the local region mean idea is 
used to represent the each local region descriptor. Finally, the local operation based 
on Three-Layer structure is incorporated into level set method and the overall energy 
functional is constructed.  

The rest of the paper is organized as follows. The proposed method and variational 
formulation are described in Section 2. In Section 3, we verify the effectiveness of our 
method by some experiments. The conclusion is presented in Section 4. 

2 Model Description 

(a) Three-Layer Structure  

As described above, the local information is used to describe images with intensity 
inhomogeneity. However, the local region with predefined single scale generally 
cannot capture enough desirable intensity distribution information. Fig.1 shows three 
local regions with different scales 1s , 2s , 3s  and the same center point (red point) are 

exhibited in the input image I . While the local region scale is 1s , the local region 

does not include the intensity inhomogeneity or boundary information. Then, the 
descriptor derived from the local region cannot capture the intensity inhomogeneity 
feature. If the value 3s  is selected as the local region scale, many of intensity 

information is included in the local region with scale of 3s . However, the descriptor 

based on intensity mean cannot accurately describe the local region feature with 
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included information. It can be seen that 2s  may be a desired scale of local region. It 

includes some intensity inhomogeneity information and the local region descriptor 
based on intensity mean can represent the intensity feature of local region. Thus, for 
the center point, the desired local region scale s  can be determined in the interval 
[ 1s , 3s ]. Similarly, for all the other points of image, the desired local region scales can 

also be determined as qs ( q  denote the different points of image) which separately 

locate in some other intervals. Due to the local variance of intensity inhomogeneity, 
all these intervals may be not identical. 

2S
1S

3S

 

Fig. 1. The illustration of local region scales of image with intensity inhomogeneity 

Therefore, considering the uncertainty of optimal scale, we propose a so-called 
Three-Layer structure to solve the intensity inhomogeneity problem. Since the 
desirable local region scale located in different intervals, the ÂlargeÊ (L), ÂmedianÊ (M) 
and ÂsmallÊ (S) local region scales are used to construct the local region descriptors. 
The aim is to make the intersections between three scales and each desirable scale 
interval be non-zero.  

Firstly, we need to determine the three local regions with , ,L M S  scales for each 

point of image. Here, as formula (1) shows, the Gaussian kernel function is used to 
determine the local regions by setting different variances.  
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2
-
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j
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x y

j

k x y e σ
σ

π σ

−

− = ( , ,j L M S= ), ( 4 1j jσ = ⋅ + ). (1) 

The three predefined scales ( , ,L M S ) represent the values located in different 
intervals. Thus, our method based on Three-Layer structure can include enough local 
region information. Meanwhile, it is noticed that the three descriptors are derived. The 
local information is extracted by three descriptors based on intensity mean. Then, we 
fuse the three descriptors by summing the description differences. The illustration of 
Three-Layer structure is shown in Fig.2. The Gaussian kernel functions

L
kσ ,

M
kσ and 

S
kσ are used to process the image I . Based on the Three-layer structure idea, the data 

term of our level set energy functional can be written as the following: 

 1 2

( ) ( )

D

inside C outside C

E dydx dydxε ε
Ω Ω

= +     (2) 
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Fig. 2. The illustration of Three-Layer structure 

where 1ε  and 2ε  are computed as follows: 
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 (4) 

where C  denotes the evolving contour, 
L

kσ ,
M

kσ and 
S

kσ  denote the three Gaussian 

kernel functions with L , M and S  scales as formula (1) shows. im  

( 1,2,3, 4,5,6i = ) denote the local region intensity mean of inside or outside of C . 

(b) Numerical Computation 

In this paper, we utilize level set method to solve the energy functional in (2). In level 
set method, the contour C is represented by zero level set of a Lipschitz function φ , 

which is called a level set function. We use ( )H x  to denote the Heaviside function. 

Then, the data term in (2) can be formulated as follows: 

 1 2( ) (1 ( ))DE H dydx H dydxε φ ε φ= ⋅ + ⋅ −    (5)  

Here, ( )H x  and its derivative, i.e. Dirac delta ( )xδ , are approximated by the 

following formula: 

 
1 2

( ) [1 .arctan( )]
2

x
H x

π ε
= + , 

2 2

1
( ) '( )x H x

x

εδ
π ε

= =
+

. (6) 

Besides, the regularization terms proposed in [4] are also introduced to regulate the 
level set function. Finally, the overall energy functional is written as: 

 
1 2

2

( ) (1 ( ))

+ ( ( ( ))) ( ( ) 1)

E H dydx H dydx

H x dx v x dx

ε φ ε φ

μ φ φ
Ω Ω
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∇ + ∇ −

  

 
 (7) 
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Then, we use the standard gradient descent method to solve the numerical 
computation problem.  im  ( 1,2,3, 4,5,6i = ) are derived by minimizing the energy 

functional in (7). Fixing φ , the optimal im  ( 1,2,3, 4,5,6i = ) can be obtained as 

follows: 
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. (10) 

The function  im  ( 1,2,3, 4,5,6i = ) given in (8-10) are weighted averages of 

intensities in a neighborhood. It is noticed that the scales of local neighborhoods are 
proportional to the scale parameters L , M  and S . In practical implementation, 
L , M  and S  are predefined by us according to experience.  

Keeping im  ( 1,2,3, 4,5,6i = ) fixed, we minimize the energy functional. It can be 

achieved by using standard gradient descent method: 

 2
1 2( )( ) ( ). ( ) ( ( )

data term

regularization term

div v div
t

φ φ φδ φ ε ε μδ φ φ
φ φ

∂ ∇ ∇= − + + ∇ −
∂ ∇ ∇


. (11) 

where ∇  is gradient operator and (.)div  is the divergence operator. 

(c) Algorithm Summary 

1. Place the initial contour and initialize the level set function φ : if x  is located 

inside initial contour, ( ) 1xφ =  or else ( ) 1xφ = − . 

2. Set parameters v , μ , L , M , S , 4 1j jσ = +  ( , ,j L M S= ). 

3. Evolve  φ  according to the gradient flow equation described in (11). 

4. Extract the zero level set from the final level set function. 

3 Experimental Results 

In this section, the experiment results of our model shall be shown on some synthetic 
and real medical images. Besides, we also compared our method with the popular 
LBF and LIF model, respectively. The LBF model extracts the intensity information 
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of local region at a controllable scale. It demonstrates that the problem of intensity 
inhomogeneity can be solved. The LIF model introduces a local image fitting energy 
to extract the local image information where the Gaussian kernel with predefined 
scale is utilized to process original image. Here, we make experiments by Matlab 7.0 
on a PC with Intel double core, 2.2GHZ CPU. We shall use the same parameters, i.e. 

=1v , 2=0.001 255μ × , 19L = , 11M = , 3S = , for all experiments in this section.  

In Fig.3, we made the comparison between the LBF model and our method on 
segmenting two medical images. The initial contours are shown in the first column. 
The segmentation result of LBF model and our method are shown in the second and 
third columns, respectively. Obviously, our method achieved better segmentation 
performance than LBF model. This is because the LBF model based on certain scale 
parameter could not describe the local variance of intensity inhomogeneity. On the 
contrary, the local regions with scale parameters L , M and S  in our method can 
efficiently extract more desired local intensity information.  

     

 

Fig. 3. The comparison between LBF model and our method on segmenting two medical 
images. Column1: Initial contours. Column2: The segmentation results of LBF model. 
Column3: Final segmentation results of our method. 

The comparison between the LIF model and our method on segmenting two 
medical images is shown in Fig.4. The initial contours and original images are shown 
in the first column. The segmentation results of the LIF model and our method are 
separately shown in the second and third columns. It can be seen that our method is 
more robust to intensity inhomogeneity than LIF model. Although the local image 
information is considered in LIF model, the fixed local region is not reliable for 
describing image. In our method, more desirable local image information can be 
extracted based on proposed Three-Layer structure. Hence, the better segmentation 
results were obtained by our method.  
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Fig. 4. The comparison between LIF model and our method on segmenting two medical 
images. Column1: Initial contours. Column2: The segmentation results of LIF model. 
Column3: Final segmentation results of our method. 

4 Conclusion 

This paper proposed a new local regional level set model for segmenting images with 
intensity inhomogeneity. Based on the local variance of intensity inhomogeneity, the 
local intensity mean idea is utilized to extract more local intensity information. By 
fusing the proposed Three-Layer structure into the level set method, we successfully 
derived a novel local regional level set energy functional. Experimental results have 
demonstrated the superior performance of our method in terms of accuracy for 
segmenting images with intensity inhomogeneity. In future, the Three-Layer structure 
shall be further studied and extended to solve the existing complex image 
segmentation problem.  
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Abstract. Real-life clinical cases are important sources for computer diagnosis 
and pathologic analysis. In this paper, we propose a novel medical case retrieval 
framework based on multi-graph semi-supervised learning. The presented 
framework aims to retrieve multi-modality medical cases consisting of images 
together with diagnostic information. In particular, we first introduce a multi-
graph semi-supervised learning method, which unifies both visual and textual 
information during learning by minimizing the cost function on a fusion graph. 
Then, a manifold ranking scheme is generated based on this multi-graph 
structure for retrieval. Experiments on the LIDC dataset and the mammographic 
patches dataset validate the effectiveness of the proposed method. 

Keywords: medical case retrieval, image ranking, multi-graph semi-supervised 
learning, multi-graph fusion. 

1 Introduction 

One main task in computer-aided diagnosis is automatically searching relevant 
medical cases from a variety of medical image datasets and archival systems to 
generate a reliable diagnosis. It assists a radiologist to compare a new case to 
previously solved cases and makes a medical decision based on his or her experience. 
The underlying idea is the assumption that analogous problems have similar solutions. 
Therefore, efficient retrieval of medical case combining images and structured-textual 
information becomes an active area of research. 

Content-based image retrieval (CBIR), which queries relevant medical images 
based on their visual content similarity, is one of the promising solutions to medical 
case retrieval [1]. The core of the medical CBIR is the extraction of the visual features 
that can effectively represent the medical image. These features typically include 
color, texture [2], and shape [3] for representing the specific categories of medical 
images such as mammography, brain MR, lung CT and so on. Especially, for the 
large scale image retrieval, bag of words (BOW) and fusion features are applied to 
describe the medical images with diverse models [4]. To improve the performance of 
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the retrieval system, some prototypes treat the relevant medical image searching as a 
machine learning problem. Yang et al. proposed a boosting based metric learning 
algorithm seeking to preserve both visual and semantic similarities in medical 
retrieval procedures [5]. In addition, support vector machine (SVM) based 
frameworks are also popular in medical image retrieval system during image filtering 
and dynamic features fusion [6]. However, the low-level features may not be able to 
characterize the medical sense of the images, known as semantic gap. 

Medical case retrieval becomes even more challenging because the data of the 
medical case originates from heterogeneous information including visual and textual 
information. Recently, some literatures have proposed several models for medical 
case retrieval [7-12]. The main purpose of these methods is to combine the content of 
digit image and textual information by using fusion strategies or representing the 
various modalities in a unified model. However, these methods have a major obstacle 
that the labeled medical cases are limited for retrieval in practical applications. The 
semi-supervised learning aims to develop the machine learning model combining 
labeled data and a huge of unlabeled data. Based on this idea, we propose a novel 
medical case retrieval framework based on multi-graph semi-supervised learning, 
which views medical case searching as a multi-modality information retrieval 
problem. The main contributions of this paper are: (1) integrating both medical image 
features and clinical diagnostic descriptors for medical case retrieval; (2) introducing 
a new multi-graph semi-supervised learning model for multi-modality information 
retrieval; (3) conducting extensive experiments to demonstrate the effectiveness of the 
proposed framework. 

2 Related Works 

In recent years, multi-modality medical case retrieval has arisen as an active research 
topic. To search relevance medical cases based on both visual and semantic similarity, 
some algorithms for heterogeneous information retrieval were proposed on this 
subject. Shao et al. introduced a brain CT retrieval system linearly combining textual 
information and visual content in a common similarity measure [7]. In [8-9], a 
decision tree model and a Bayesian network were proposed for medical case retrieval 
based on various sources of medical information, respectively. To retrieval similar 
patient cases by time-series medical data, a dynamic time warping fusion scheme was 
presented in [10]. Ko et al. proposed a medical image annotation algorithm and 
keyword-based image retrieval framework with relevance feedback [11]. Besides, in 
[12], a graph-based retrieval approach concerning spatial proximity of tumors and 
organs was proposed for multi-modality medical image retrieval. Most of these 
methods aimed to integrate clinical annotations and images into a regular feature 
vector using fusion scheme, or represent them by a unified model.  

Other studies suggest medical case retrieval is a cross-modal multimedia retrieval 
problem. Burdescu et al. adopted a cross relevance model for medical image retrieval 
using both medical annotation and visual features [13]. In [14], Lacost et al. proposed 
an automatic indexing of images and associate texts for retrieval using unified medical 
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language system. Although these approaches have demonstrated effectiveness in 
retrieval, they depend on the precision of the image segmentation. 

More recently, graph-based semi-supervised learning methods have attracted 
widely attention due to their effectiveness and computational efficiency. Most 
methods in this filed define a graph where nodes are labeled and unlabeled sample in 
the dataset, and weighted edges denote the pairwise similarity between the samples. 
Then the scores of the labeled samples are spread to unlabeled samples by diffusing 
the similarity values through the graph [15]. These methods are widely applied in data 
classification [16], multimedia annotation [17], and image retrieval [18]. Especially, 
several approaches focus on multi-modal image classification and annotation, which 
construct a multi-graph model for learning task [19]. Motivated by graph 
regularization model in [15], we proposed a multi-graph semi-supervised learning 
based retrieval framework and applied it to medical case retrieval in this paper. 

3 The Medical Case Retrieval Framework 

In this section, we propose a multi-graph semi-supervised learning based medical case 
retrieval framework. Firstly, graph models are built for both visual and textural 
information. Secondly, we propose a multi-graph fusion based learning method 
according to the basic function of graph regularization model. Thirdly, a manifold 
ranking scheme is implemented based on this multi-graph fusion structure. 

3.1 Graph-Based Semi-supervised Learning 

First we describe the basic notation for graph-based semi-supervised learning. Given 

the dataset as 1{ , } { ,..., , ..., }L U l nx x xχ χ χ= = . The first l  samples are labeled by 

1{ , ..., }L ly y y= , where {1,..., }iy L c∈ = . The goal of learning is to infer the 

missing labels 1{ , ..., }U l ny y y+=  corresponding to the unlabeled set Uχ . 

Assume that an undirected weighted graph ( , )G V W=  is converted from the 

input dataset χ . Its vertex set is V χ=  and weight matrix is { }ij n nW w ×=  , where 

the edge ijw  represents the similarity between ix  and jx . Here ijw  is given by 

Gaussian kernel of widthσ : 

 2 2exp( || || /2 )ij i jw x x σ= − −                           (1) 

According the manifold assumption that nearby samples or samples on the same 
manifold structure are likely to have the same label, graph-based semi-supervised 

learning methods attempt to predict the soft labels 1{ , ..., , ..., }T T T n c

l nF f f f R ×= ∈  

through minimizing a cost function defined over the graph. One of these methods is 
Guassian fields and harmonic function (GFHF). In this approach, the quadratic cost 
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function integrates the combined contributions of smoothness term and the local 
fitting term. This graph regularization based cost function is defined as [15]: 

 * 2 2

,

arg min ( ) ( )ij

F i j i i
i j i Lii

w
F f f f y

d ∈

= − + ∞ −    (2) 

where { }ij n nW w ×= is the weight matrix and  { }ii n nD d ×= is the diagonal matrix 

with ii ij
j

d w= . The first term of the right side is smoothness term, which 

indicates the nearby sample should not charge too much according to the structure of 
the graph, while the second term is local fitting term, which requires that the initial 
labels of the annotation samples should not change in the label propagation. 

Let 1S D W−=  be the transfer matrix of the graph G . Splitting the matrix S  
after the l-th row and the l-th column, we have 

 L L L U

U L U U

S S
S

S S
=
 
 
 

  (3) 

According to [15], we can obtain the solution of (2) as * 1( )U UU UL LF I S S y−= − . Then 

each of the unlabeled samples can be assigned a soft label. 

3.2 Multi-graph Learning Model 

Digital image and diagnostic information are heterogeneous information in medical 
cases. Therefore, their manifold structures should be represented by two different 

graph models, which are denoted by { }g g

ij n nW w ×=  and { }c c

ij n nW w ×= . Based on 

the basic notion of GFHF, we define a multi-graph learning function as: 

 * 2 2

, ,

a rg m in ( ) (1 ) ( )

. . (1 )

g c

i j i j

F i j i jg c
i j i ji i i i

i i

w w
F f f f f

d d

s t f y i l

η η= − + − −

≡ ≤ ≤

 
 
 
    (4) 

where g g

ii ij
j

d w=  and c c

ii ij
j

d w= . The parameter η  denotes a tradeoff between 

two graph models. This function can be viewed as an extension of formula (2) for 
multi-graph fusion structure. The first term of right side indicates that the labels of 
nearby samples should not change too much according to the graph structure for 
visual content, while the second term denotes that the labels of nearby samples should 
not change too much according to the graph structure for textual information. The 
constraint requires that the initial labels should not change in the label propagation.  

The multi-graph learning structure is shown in Fig.1. In this structure, the top 
graph represents the manifold structure of visual content, the bottom graph represents 
the manifold structure of textual information, and the middle graph is the fusion 
graph. The label propagation procedure executes on top and bottom graph, both of 
which supervise each other through the fusion graph. 
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Fig. 1. The multi-graph learning structure and label propagation procedure. The labeled 
samples are denoted by red circles. The score of labeled samples are spread to unlabeled 
samples by diffusing the similarity values through the graph. 

To solve the optimization problem in (4), we rewrite it as a matrix form: 

 
* arg m in { (1 ) }

. .

T g T c

F

L L

F F L F F L F

s t F Y

η η= + −

=
  (5) 

where 1( )g g gL I D W−= −  and 1( )c c cL I D W−= −  are the graph Laplacians of 

two graphs, respectively. gD  and cD  are diagonal matrices with diagonal elements 
g

iid  and c

iid . We assume the multi-graph transfer matrix as: 

 1 1(1 ) ( ) (1 )( )M g c g g c cS S S D W D Wη η η η− −= + − = + −   (6) 

Then the formula (5) can be rewritten as: 

 

*

*

arg min { ( ) }

. .

T M

F

L L

F F I S F

s t F Y

= −

=
  (7) 

We differentiate with respect to F  and set it to zero. By splitting S  and F like (3): 

 
* * *

*

M M

U UL L UU U

L L

F S F S F

F Y

= +

=





  (8) 

The solution of (8) is * 1( )M M

U UU UL LF I S S Y−= − , which indicates the soft labels of the 

unlabeled samples. This solution then can be represented as an iterative form: 

 ( 1)t M t M

U UU U UL LF S F S Y+ = +   (9) 

Visual content

Fusion graph 

Textual information
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3.3 The Medical Case Retrieval Algorithm 

Based on the multi-graph learning model, we generate a manifold ranking scheme on 
the fusion graph to implement medical case retrieval. Manifold ranking is a typical 
application of graph-based semi-supervised learning, which obtains the scores by 
label propagation on the graph and returns the query results according to their ranking 
score. It can be viewed as a binary-class classification problem of graph based semi-

supervised learning. The label iy  is set to 1 if ix  is a relevant medical case; 

otherwise, iy  is set to 0. Therefore, we can apply the multi-graph learning model to 

medical case retrieval by converting the initial label matrix to a binary vector.  
For clarity, we summarize the medical case retrieval approach in algorithm 1: 

Algorithm1. Multi-graph semi-supervised learning based medical case retrieval 

Input: Medical cases 1{ ,..., , ..., }l nx x xχ = . The first l  samples are medical cases 

of queries and the rest are medical cases in dataset. 

1. Create Graph ( , )g g gG V W=  and ( , )c c cG V W=  for visual content and 

textual information using (1), respectively. 

2. Construct initial vector 1[ ,.., , ..., ]T

l nY y y y= . If ix  is relevant sample or query 

sample, 1iy = ; otherwise 0iy = . 

3. Calculate the multi-graph transfer matrix MS using (6). 

4. Iterate ( 1)t M t M

U UU U UL LF S F S Y+ = +  until convergence. The element of vector UF

denotes the ranking score of corresponding medical case. 
5. Return the top K medical cases by listing the ranking scores in descend order. 

4 Experiments and Analysis 

4.1 Experiment Setup 

To evaluate the performance of the proposed framework, we carried out experiments 
on the LIDC dataset [20] and the mammographic patches dataset [21]. The summary 
of the details of each dataset is follows: 

1. LIDC dataset is a popular benchmark dataset for the development, training and 
evaluation for lung cancer detection and classification. In this paper, we selected 
876 samples from the dataset as the training set. Each sample includes a CT scan, a 
contouring of nodule marking by the expert thoracic radiologists and 9 
pathological properties of each nodule. According to the assessment of each tumor, 
we classified these samples as 5 categories: Highly unlikely, moderate unlikely, 
indeterminate, moderately suspicious, and highly suspicious. 

2. Mammographic patches dataset consists of texture patches from screen 
mammography. It includes 2796 patches annotated by IRMA code [21]. Each 
patch contains a region of interest (ROI), which is resized to 512×512. According 
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to the tumor stating, we group these mammographic patches into 5 categories: 
normal, benign, probably benign, suspiciously abnormal, and malignant. 

In LIDC dataset, visual contents are represented by the features of lung nodules 
including: co-occurrence, Gabor, Markov features, shape and intensity, while the 
textual information is described by 8 characteristics of the lesion [20]. In 
mammographic patches dataset, each patch is represented by patch-based visual 
words and medical annotation is described by IRMA code [21]. 

4.2 Compare with CBIR Methods 

To evaluate the performance of the medical case retrieval framework, we compare the 
proposed approach in this paper with CBIR methods. For LIDC dataset, the 
comparative methods are: (1) manifold ranking-based image retrieval (MRBIR) [18]; 
(2) Euclidean distance measurement based on texture and shape features [20].  
For mammographic patches dataset, the comparative methods are: (1) MRBIR; (2) bag 
of words (BOW) [4] and Jensen-Shannon divergence-based measurement; (3) 
mammogram retrieval based on Gabor feature [2]. All algorithms in our experiments 
are implemented in MATLAB and run on a computer with 2.8 GHZ CPU and  
16GB RAM. 

For the proposed approach, we set 60K =  to computer the KNN similarity 

matrix by (1) according to the sample distribution, where 0.5gσ =  and 0.1cσ =  
for visual and textual information, respectively. In addition, we set the fusion 
parameter η  in (5) to 0.4 and 0.2 for LIDC dataset and mammographic patches 

dataset by cross validation, respectively. In the experiment, according to the dataset 
scale, we randomly select 200 and 500 samples from former and later dataset as query 
medical cases, and leave the rest for retrieval. A query example on LIDC datasets is 
shown in Fig.2. 

 

Fig. 2. A query example on LIDC dataset (Only the ROIs are shown). The left upper image is 
the query medical case and others are top 20 returned results. Green framed images denote the 
relevant medical cases and red framed images denote the irrelevant medical cases. 
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For comparison, a popular and straightforward measure is the PR-curve, which 
depicts the relationship between precision and recall of a specific retrieval system. In 
this paper, we draw the PR-curves for different retrieval algorithms on both datasets. 
These results are shown in Fig. 3 and Fig.4. 

 
Fig. 3. The PR-curves of three algorithms on LIDC 

 
Fig. 4. The PR-curves of four algorithms on mammographic patches dataset 

As these figures show, it is evident that the proposed approach explicitly 
outperforms the other CBIR algorithms on both datasets. Although the performance 
of all the compared methods degenerates with the recall increasing, the proposed 
approach still achieves highest accuracy because it integrates the visual and textual 
information for retrieval. The CBIR algorithms only concern the visual similarity of 
the medial images, but they ignore the semantic information of the medical 
annotation. Therefore, their average precisions are lower than the proposed approach. 
In addition, the BOW descriptor is more effectiveness than the Gabor feature for 
mammogram retrieval. The MRBIR performs better than BOW-based algorithm due 
to the fact that MRBIR concerns more about the manifold structure rather than 
pairwise similarity between images. 
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4.3 Compare with Fusion Based Methods 

In order to verify the effectiveness of exploiting the visual and textual information in 
medical case retrieval, we evaluate the proposed framework with three fusion-based 
multi-modality information retrieval schemes. Scheme 1 uses early fusion combining 
visual content and textual information based on canonical correlation analysis (CCA) 
[22], scheme 2 applies linear weighted fusion strategy as late fusion [7], and scheme 3 
is a multi-graph learning based fusion algorithm [19]. The PR-curves for different 
retrieval methods on both datasets are shown in Fig. 5 and Fig. 6. 

We observe that the performance of the proposed approach is superior to other 
fusion-based retrieval schemes. The results indicate that the proposed framework treats 
the visual and textual information as two kinds of compensation information and fuse 
them on the manifold structure, which achieves more accurate results than early fusion 
and late fusion. The results also demonstrate that our framework is more effective  
for retrieval than the multi-graph learning based fusion algorithm of scheme 3. 
 

 
Fig. 5. The PR-curves of four retrieval methods on LIDC dataset 

 

Fig. 6. The PR-curves of four retrieval methods on mammographic patches dataset 
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In addition, we notice that the late fusion scheme achieves a better performance than 
early fusion, although its computation complexity is higher, because there are two 
manifold ranking procedures generated for visual and textual information, 
respectively. The comparisons of average time costs in one query for four methods 
are shown in table 1, which obviously illustrate that the proposed framework is more 
efficient than other three methods in both datasets. 

Table 1. Comparisions of time cost 

Dataset Method 
Executing 
Time (s) 

Dataset Method 
Executing 
Time (s) 

LIDC 

Scheme1 0.556 
Mammographic 

patches 

Scheme1 2.088 
Scheme2 0.929 Scheme2 6.569 
Scheme3 0.236 Scheme3 1.413 
proposed 0.090 proposed 0.480 

 
For the purpose of computer-aid diagnosis, radiologists always pay more attention 

on the top results of the retrieval list. Therefore, we apply the NDCG (Normalized 
Discounted Cumulative Gain) to evaluate the retrieval performance, where the 
contribution of each result is proportional to its relevancy to the query and the 
position in the ranking list. The NDCG is defined as follows: 

 ( )

2
1

NDCG( ) (2 1) / log (1 )
n

r i

n
i

n Z i
=

= − +  (10) 

where ( )r i  denotes the relevance degree of the i-th sample. 
n

Z  is the normalized 

parameter which is set to the NDCG value of the best retrieval result. Table 2 
demonstrates the NDCG evaluations of the three methods on both datasets. The 
results explicitly show that the proposed approach achieves a higher NDCG value 
than other fusion-based retrieval methods. 

Table 2. The NDCG evaluation of three retrieval methods on both dataset 

Dataset Method 
NDCG value of top K medical cases 
10 20 30 40 50 

LIDC 

Scheme1 0.6227 0.6065 0.5978 0.5896 0.5812 
Scheme 2 0.6421 0.6110 0.5938 0.5834 0.5731 
Scheme 3 0.6374 0.6233 0.6015 0.5946 0.5831 
Proposed 0.6734 0.6416 0.6268 0.6115 0.5980 

Mammographic 
patches 

Scheme1 0.6371 0.6082 0.5896 0.5770 0.5661 
Scheme 2 0.6715 0.6612 0.6545 0.6482 0.6427 
Scheme 3 0.7177 0.7049 0.6982 0.6956 0.6909 
Proposed 0.7594 0.7547 0.7454 0.7330 0.7176 
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5 Conclusion and Discussion 

In this paper, we proposed a novel medical case retrieval framework using 
heterogeneous information. The proposed framework bases on multi-graph semi-
supervised learning and aims to unify the visual and texture information by 
minimizing the cost function of the fusion graph. We first introduced the basic 
function of graph regularization model and extended it to multi-graph learning for 
retrieval. Then we generate a manifold ranking scheme on this multi-graph manifold 
structure for medical case retrieval based on visual content and textual information. 
The results demonstrate the effectiveness of the proposed framework to integrate the 
two kinds of information for retrieval. In the further we will combine the proposed 
framework with relevance feedback strategy, which can improve the performance of 
the retrieval system by user feedback. 
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Abstract. Unsupervised phenotype structure learning is important in microarray 
data analysis. The goal is to (1) find groups of samples corresponding to 
different phenotypes (e.g. disease or normal), and (2) find a subset of genes that 
can distinguish different groups. Due to the large number of genes and a mass 
of noise in microarray data, the existing methods are often of some limitations 
in terms of efficicency and effectiveness. In this paper, we develop an 
incremental updating based phenotype structure learning algorithm, namely 
FPLA. With a randomly selected initial state, the algorithm iteratively tries 
three possible adjustments, i.e. gene addition, gene deletion and sample move, 
to improve the quality of the current result. Accordingly, four incremental 
updating based optimization strategies are devised to eliminate the redundancy 
computations in each iteration. Further, by utilizing a harmonic quality 
function, it improves the result accuracy by penalizing the “outlier” effect. The 
experiments conducted on several real microarray datasets show that FPLA 
outperforms the two representative competing algorithms on both effectiveness 
and efficiency. 

Keywords: data mining, microarray data, phenotype structure, bioinformatics. 

1 Introduction 

The high-throughput microarray technology enables to simultaneously monitor the 
expression levels of tens of thousands of genes. However, it is often that only a small 
number of genes will interest the biologists [1]. So, finding such genes is a significant 
task in microarray data analysis. 

Generally, the task can be considered from two different scenarios. In supervised 
case, it is described as an informative gene selecting problem, where the genes 
showing differential expression levels among different phenotypes are selected. In 
unsupervised case, the task is described as a phenotype structure learning problem, 
the goal of which is to find (1) an exclusive and exhaustive partition of the samples 
that samples of each group within the partition represent a unique phenotype; and (2) 
a set of informative genes manifesting this partition that each informative gene 
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displays approximately invariant signals on samples of the same phenotype and 
highly differential signals for samples between different phenotypes. Obviously, the 
unsupervised task is much more difficult than the former, since the information of 
sample labels, which can be utilized as a reference to guide gene selection, is not 
available. In this case, many statistical methods cannot be applied.  

In this paper, we focus on the unsupervised task, which is more challenging and 
tougher. An intuitive solution to this problem is an iterative method. That is, we first 
design a criterion, say Q, for the clustering quality evaluation. Then, starting from a 
randomly initialized clustering, perform an iterative updating, where any addition or 
deletion operation of a sample or a gene is tried for every cluster in the current 
clustering to make clustering proceed towards Q increasing. There are two major 
drawbacks in this intuitive method. First, Q has to be computed from scratch in each 
iteration if no any optimization; Second, some outliers may heavily influence the 
clustering result so that some resulting clusters are too extreme, that is, some clusters 
only contain very few samples and genes. In this paper, we tackle this problem by 
developing an incremental updating based fast phenotype structure learning 
algorithm, namely FPLA. We claim the contributions as follows. 

1. We adopt the incremental updating strategies to optimize the iterative process. 
Particularly, four incremental updating based optimization strategies are devised. By 
integrating them into the iterative learning, the quality evaluation in each iteration 
need not to be calculated from stratch. Thus, the running time is greatly reduced. 

2. We consider the impact of the number of samples to the result quality. By 
utilizing a harmonic quality function, which harmonizes the pattern quality with the 
pattern weight, the “outlier” effect is penalized and the result accuracy is improved. 

3. We conduct the experiments on several real microarray datasets. The result show 
that FPLA outperforms the two related competing algorithms on both effectiveness 
and efficiency. 

The remainder of this paper is organized as follows. Section 2 gives some 
preliminaries and the problem statement. Section 3 describes the quality 
measurements. The algorithm is detailed in Section 4. Experimental results are given 
in Section 5. Section 6 introduces some related work. Finally, Section 7 concludes 
this paper. 

2 Preliminary 

A gene expression matrix M consists of a set of rows R = {r1, r2, …, rm}, which 
represent a set of genes, and a set of columns C={c1, c2, …, cm}, which represent all 
considered samples. Then, the data matrix can be represent as M = {ai,j |1≤ i≤ m, 1≤ j≤ 
n}, where ai,j corresponds to the value of gene ri on sample cj. For example, Table 1 
gives an illustrative gene expression matrix. 
 
Definition 1. The empirical phenotypes refer to the samples controlled by the 
biologist in a gene expression experiment (e.g. diseased or normal samples). The 
sample partition corresponding to the empirical phenotypes is called an empirical 
sample pattern, and each subset of samples of the partition is called a sample group.  
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Definition 2. An informative gene is a gene that can manifest the empirical sample 
pattern. So, an informative gene should express the similar values in every sample 
groups but the differential values in different groups. The set of informative genes is 
called the informative gene space. 

Table 1. An illustrated gene expression matrix 

 c1 c2 c3 C4 c5 C6 

r1 10 10 70 70 30 30 

r2 10 10 30 30 70 70 

r3 6 13 65 75 26 32 

r4 7 12 27 36 66 77 

r5 40 40 40 40 40 40 

r6 10 68 48 35 15 53 

r7 20 100 20 20 100 20 

 
Problem Statement: Given a gene expression matrix M and the number of sample 
phenotypes K, the goal is to find a sample partition of K groups matching the 
empirical phenotype and a subset of genes that can manifest this special pattern.  

3 Quality Measurable Function of Sample Patterns and 
Informative Genes 

We first give a general view of quality measure function of sample patterns and 
informative genes. Accordingly, Intra-pattern-Variance and Inter-pattern-Mean are 
introduced respectively. Moreover, the Sample-number-Influence is taken into 
account.  In what follows, let C*⊆C be a sample group, R*⊆R be a subset of genes, 
and  MR*,C*={ai,j|i∈R*, j∈C*} be the corresponding submatrix of C* projected on R*.  

3.1 Intra-pattern-Variance 

The similarity of values in one group is measured by Intra-pattern-Variance that is 
defined as the average row variance of the projected submatrix. The formula is 
expressed as follows: 
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where *
*

, ,*
( ) /i C i jj C

a Ca
∈

=   is the mean expression value of samples in C*. The 

variance of each row indicates the distribution of the values of the samples in a group 
on the given genes.  The smaller the variance, the more similar the expression values 
of these samples on the genes. Thus, it is reasonable to infer that the small value of 
Intra-pattern-Variance indicates a good sample group. This is intuitively because the 
expression values with little change mean the stability and the similarity within the 
corresponding submatrix. Note: Tang et al. [2] have showed that two common local 
similarity metrics, residue and mean squared residue, are not suitable  Intra-pattern-
variance.  

3.2 Inter-pattern-Mean 

Inter-pattern-Mean is introduced to qualify how different the two exclusive groups 
(C1⊂C, C2⊂C and C1∩C2=∅) projected on the same subset of genes (denote as R*). 
We use the difference of the mean values to measure the divergence between two 
groups. The formula is  
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∈
−

=


                         (2) 

where , 1i Ca is the mean value of the samples in C1 expressed on genes *R , and 2,i Ca is 
the mean value of the samples in C2 expressed on genes R*. We could clearly conclude 
that if the value of Inter-pattern-Mean is large, the discrepancy of the expression values 
of the samples in different groups on the same set of genes is large. 

3.3 Pattern Quality 

Given a set of samples C, which are divided into K mutually exclusive groups 
(Ci∩Cj=∅, 1≤i, j≤k and i≠j). The pattern quality, Q, should be able to qualify how well 
the pattern partitions the samples given a subset of genes (R*). Thus, it is measured by the 
reciprocal of the square root of the sum of Intra-pattern-Variance divided by the Inter-
pattern-Mean between different groups. The formula is as follows: 
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3.4 Pattern Weight 

Microarray data is often of high noise. So, only using the pattern quality, Q, is not 
enough. Consider such a case that a gene, which similarly expresses on almost all  
the samples, has the similar over-expression value on the other few samples due to 
noise. Eq.(3) may identify such a case as a pattern of good quality due to the small 
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intra-group difference and the large inter-group difference. Such fake patterns conceal 
the real empirical pattern that we want to find.  

To address this issue, we introduce another measurement, namely pattern weight 
(Pw for short), which is defined as the product of the sample numbers of each group 
divided by the total number of samples. The formula of pattern weight is  

1

K

i

i

C
Pw

C=

= ∏                                       (4) 

The pattern weight helps to reduce the influence of outliers. It is obvious that Pw is 
large when the number of samples in each group is identical. By this way, we can 
adjust the weight of a pattern.  

4 FPLA Algorithms 

The empirical sample pattern detecting problem is NP-hard [2]. In this section, we 
give a heuristic searching algorithm, which is an enhanced version of the method 
proposed by Tang et al [2].  

4.1 An Heuristic Searching Algorithm 

The algorithm proposed by Tang et al. [2] is iterative, which consists of two major 
steps: initialization and iterative adjustment. In the initialization phase, an initial state, 
i.e. k groups and a subset of genes, is randomly selected and the corresponding pattern 
quality, Q, is calculated. In the iterative adjustment phase, the current phenotype 
structure is adjusted by trying adding genes, deleting genes or moving samples, 
receptively. Then, the corresponding quality increment, △Q, is calculated, and the 
operation corresponding to the highest △Q is adopted to raise the quality of the 
adjusted status. However, such a way is not efficient since it calculates the intra 
pattern variance of the submatrix from scratch in each iteration and only one gene or 
sample is changed in every adjustment. Instead, we design an incremental method, 
which directly derives the updated intra pattern variance based on the just previously 
adjusted status. Since many repeated computations are avoided, the running time is 
greatly reduced. 

4.2 The FPLA Algorithm  

In this section, we detail the proposed algorithm, namely FPLA. Besides adopting an 
incremental manner to adjust the current status towards increasing Q, FPLA takes into 
account the influence of noise (or say outliers). As explained in Section 3.4, the 
outlier samples may interfere the value of pattern quality. FPLA penalizes the extreme 
sample partition by the pattern weight, and thus reduces the negative impact of 
outliers. The FPLA algorithm is shown in Figure 1. 
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FPLA Algorithm( K )  
Initialization phase: 
1. Create K groups each with several randomly selected samples and a set of genes R* 
2. Use Eq. (3) and (4) to calculate the quality of the initial state. 
Iterative adjustment phase: 
3. Arrange the sequence of genes and samples randomly. 
4. For each element in the sequence do   
5.  if the element is a gene 
6.     if the gene is in the informative gene set 
7.             compute Q using the optimization strategy 2 
8.     else     compute Q using the optimization strategy 1 
9.  else if the element is a sample 
10.    incrementally compute Q for the best movement using optimization strategies 3 and 4 
12.    Compute Q using Eq. (3) and (4) and then compute △Q 
13.       if △Q≥0, then conduct the best movement 

14.   else if △Q<0, then conduct the adjustment with the probability exp( )
( )

Q
p

Q T i
Δ=
×

 

15. Output the final sample partition. 

Fig. 1. The FPLA algorithm 

In each iterative adjustment phase, the possible operations, i.e. gene adding, gene 
deleting and sample moving, are tested one by one. If the informative genes contain the 
current tested gene, remove it from the set of informative genes. If not, add it into the 
set of informative genes. For every sample, it can be put into the other k－1 groups. 
Then, the corresponding quality increments △Q are calculated, respectively. The 
adjustment of the maximum quality increment △Q is conducted if it is positive. 

Otherwise, if △Q<0, conduct the adjustment with the possibility exp( )
( )

Q
Q T i

p Δ
×

= . 

Note: △Q/Q is the slope of the declining pattern quality [3]. The smaller △Q, the 

smaller the possibility of the adjustment. T(i) = 1
1 i+

 is an annealing function, where 

T(0) =1 and i is the number of iterations. With the iteration proceeding, ( )T i  

gradually decreases.  
To further improve the efficiency, some useful optimization strategies are 

introduced. One of the major optimization strategies is the incremental calculation of 
the pattern quality. First, we give some lemmas, which are used to derive the strategies. 

 
Lemma 4.1. Suppose that the mean value of n samples is nX  and the value of the 
(n+1)-th sample is Xn+1, we conclude that the mean value of the n+1 samples is that  
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=
+                                  
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Lemma 4.2. Suppose that the sample variance of n samples on a given gene is 2
nS . 

Then, after inserting a sample Xn+1 into the group, the sample variance of the n+1 
samples should be   2

1

2 2
1

1 1 ( )
1

nnn n
n X X

n n
S S ++

−= + × −
+

, where nX is the mean value 
of the n samples. 
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Similar to lemma 4.2, we can derive that if a sample is removed from a group, the 

updated sample variance should be   2
1

2 2
1

1 1 ( )
2 ( 2)

nnn n
n n X X
n n n

S S −−
− −= × + × −
− − ×

, where 

Xn is the removed sample and 1nX −  is the mean value of the remaining n－1 samples. 
As such, we can devise different optimal strategies for three basic adjusting 

operations, i.e. gene adding, gene deleting, sample moving. In what follows, we give 
these optimization strategies, where R* denotes the informative gene set and C* denotes 
the set of samples within a group before the adjustment. 

 
Optimization Strategy 1: When a gene is added into the set of informative genes, the 
updated intra pattern variance should be where * *| | 1, R C

a + is the mean expression value of 
the new added gene on the sample set C*. 
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Proof: The sum of the intra pattern variance of the former |R*| genes on the sample set 
|C*| is Intra_old×|R*|, and the intra pattern variance of the added (|R*|+1)-th gene on the 

sample set |C*| is 
* *
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. Eq.(6) can be derived from Eq.(1). 

 
Optimization Strategy 2: When a gene is deleted from the set of informative genes, 
the updated intra pattern variance should be 
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where i is the number ID of the gene removed and *, i C
a  is the mean expression value 

of the deleted gene on the sample set C*. 

 

Proof: The proof is similar to that for Eq.(6). 
 
Optimization Strategy 3: When a sample is inserted into a group of samples, the 
updated intra pattern variance should be 

***
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where *, i C
a  is the mean expression value of gene i on the sample set C* and ai,C*+1 is 

the expression value of gene i on the inserted sample C*+1. 
 
Proof: For a group of n samples and one gene, Lemma 4.2 gives the formula to 
incrementally updating the intra pattern variance. Since the informative gene set R* 
contains |R*| genes, we can derive Eq.(8) by summing up such |R*| formulas of the 
similar form in Lemma 4.2. 
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Optimization Strategy 4: When a sample is removed from a group of samples, the 
updated intra pattern variance should be 

*
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where j is the sample removed from the group and *
, 1i Ca −  is the mean expression value 

of gene i on the remaining C*

－1 samples. 
 

Proof: The proof is similar to that for Eq.(8). 

Note: Optimizations 1 and 2 correspond to gene addition and gene deletion, 
respectively. Both optimization 3 and 4 correspond to sample move, since moving a 
sample from group A to B indicates deleting the sample in group A and adding it to 
group B.    Utilizing the four optimization strategies, the updating of the intra pattern 
variance can be directly performed in an incremental manner. That is, instead of 
computing from scratch, we only need to accumulate the increment to the just  
previous result. Thus, the cost of computing the pattern quality is greatly reduced. 

As mentioned, only the pattern quality Q, is not enough for the empirical 
phenotypes discovery since microarray data is often highly noisy. So, we propose a 
method to reduce the negative impact of the outliers by taking into account the 
proportion of the samples within each group. As discussed, the pattern weight function 
can be used to harmonize the pattern quality Q in Eq.(3). For example, Eq.(10) and 
Eq.(11) are two alternative harmonic quality functions, the performance of which are 
given in the performance evaluation section. 

1/ (1/ 1/ )finalQ Q Pw= +                                  
(10) 

1
final

KQ Q Pw−= ×                                      (11) 

5 Perpformance Evaluation 

In this section, we study the performance of FPLA by evaluating its effectiveness and 
efficiency. The algorithm is coded in C++. ALL experiments are conducted on a 
2.33GHz Intel Core 2 HP PC with 2GB memory running Windows XP. 

5.1 Experimental Datasets 

Real Datasets: we use the clinical data on Leukemia [4], DLBCL Tumor [5] and 
Hereditary Breast Cancer (HBC) [6]. In Table 2, we give the description for each real 
dataset in the Data size column. 
 
Synthetic Datasets: The synthetic data generator takes the following parameters: (1) m, 
the number of genes, (2) n, the number of samples, (3) k, the number of classes.  



100 H. Cheng et al. 

 

5.2 Effectiveness Evaluation 

The Rand Index [7], denoted as RI, measures the extent to which the ground-truth 
phenotypes (T) agree with the conducted partition (R). Thus, it is adopted to evaluate 
the effectiveness of FPLA. 
 

Table 2. Rand Index value of different methods 

Data set ALL_AML ALL_AML ALL DLBCL DLBCL HBC HBC 

Data size 5000× 38 5000× 38 5000× 27 7129× 77 7129× 77 3226× 22 3226× 22 
K 2 3 2 2 3 2 3 

J-Express 0.510 0.425 0.497 0.494 0.407 0.486 0.411 

SOTA 0.602 0.424 0.492 0.495 0.420 0.493 0.411 

CLUTO 0.578 0.512 0.487 0.493 0.498 0.680 0.636 

SOM 0.510 0.486 0.492 0.497 0.472 0.602 0.584 

Kmeans 0.659 0.553 0.492 0.487 0.453 0.613 0.584 

δ-cluster 0.501 0.440 0.454 0.480 0.437 0.498 0.471 

HS 0.868 0.758 0.755 0.885 0.703 0.779 0.750 

FPLA 0.957 0.816 0.982 0.989 0.805 0.863 0.840 

 

To show the effectiveness of the proposed FPLA algorithm, we test RI of FPLA on 
several real datasets. For comparison, we also report the results of some other respresentative 
methods, such as HS [2], J-Express [8], SOTA [9], CLUTO [10], SOM [11], K-means [12], 
δ-cluster [13]. The detailed experimental results are given in Table 2. It is not difficult to see 
that the proposed FPLA algorithm always behaves the best RI on all the tested datasets. This 
is because that J-press, CLUTO, SOTA, SOM and K-means partition the samples using the 
full set of genes. However, it is well known that only a small number of genes are relevant to 
the sample partition [13]. Thus, the accuracy of the sample partition using the full set of 
genes will be depressed due to the large number of irrelevant genes included in the full set of 
genes. δ-cluster [13] is an effective subspace clustering algorithm. It reduces the 
dimensionality of genes by adopting PCA. However, the principal components in PCA do 
not necessarily capture the group structure of the data. Therefore, it is not surprising that the 
subspace clustering method δ-cluster is not effective to find the phenotypes and 
informative genes precisely. Further, because it is more susceptible to the large noise 
of microarray data, the Rand Index of HS algorithm is lower than the proposed FPLA 
algorithm. 

5.3 Efficiency Evaluation 

In this section, we first evaluate the efficiency of FPLA by studying how response 
time varies w.r.t. #sample and #gene. Moreover, two representative unsupervised 
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phenotype structure learning algorithms, HS [2] and SDC [15],  are used as the 
alternatives for comparison. In this set of experiments, K are respectively set to two or 
three. In Figure 2, the number of samples is set to 30, and the number of genes varies 
from 1000 to 7000 with step 1000. In Figure 3, the number of genes is set to 3000, and 
the number of samples varies from 10 to 40 with step 5. It is easy to see that the response 
time of FPLA becomes longer as #gene or #sample increases and it is much less than that 
of HS or SDC. Moreover, FPLA behaves much better than the two alternatives as #gene 
or #sample increases. This is because HS calculates the pattern quality from scratch in 
each iteration, and SDC has to enumerate all possible combinations of genes. However, 
due to the incremental computation, FPLA greatly reduces the cost of computing the 
pattern quality.  
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Fig. 2. time vs. #gene when K=2 Fig. 3. time vs. #gene when K=2 

6 Related Work 

The exiting methods fall into two major classes: supervised analysis and unsupervised 
analysis. 

The supervised approach assumes that phenotype information is attached to the 
samples. There are some popular supervised methods, such as the neighborhood 
analysis [4], the support vector machine [16], the tree harvesting method [17], the 
decision tree method [18] and so on. In these methods, a subset of samples is used as 
training set to find a subset of informative genes, where some criteria are used to rank 
the genes and guide the gene selection. All the given samples are classified based on 
these genes. 

Some unsupervised methods without knowing the phenotype information  are also 
proposed to find the phenotypes of samples, such as K-means [12], self-organizing 
maps [11], hierarchical clustering [9], graph based clustering [19] or pattern-based 
clustering [20]. However, these traditional methods are all based on the full set of 
genes. They are not suitable for microarray data due to the large number of redundancy 
genes. Accordingly, some subspace based methods are presented to address the 
problem. Specially, HS [2] and SDC [15] are two such representative unsupervised 
methods. The former is a simple iteration-based heuristic searching algorithm, where 
the updated pattern quality has to be recomputed from stratch in each iteration. The 
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latter is a breadth-first based exhaustive enumeration algorithm, where the Apriori 
property is used to prune the unnecessary computations. However, it is well known that 
learning phenotype structure in an unsupervised manner is an NP-hard problem.  

7 Conclusion 

In this paper, we propose an unsupervised phenotypes and informative genes 
detection algorithm with outlier consideration, namely FPLA. Starting with a 
randomly selected initial state, the algorithm iteratively tries three possible 
adjustments, i.e. gene addition, gene deletion and sample move, to improve the 
quality of the current state. Accordingly, four incremental updating based 
optimization strategies are devised. By integrating them into the iterative learning, the 
quality evaluation needs not to be calculated from stratch. That is, the updated quality 
can be deduced from the just previously result without the redundancy calculations. 
Further, by utilizing the harmonic quality function, which harmonizes the pattern 
quality with the pattern weight, FPLA improves the result accuracy by penalizing the 
“outlier” effect. The experiments show that the proposed method outperforms the two 
representative competing algorithms in terms of both effectiveness and efficiency.  
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Abstract. Domains act as structural and functional units of proteins, playing an 
essential role in functional genomics. To investigate the annotation of finite 
protein domains is of much importance because the functions of a protein can 
be directly inferred if the functions of its component domains are determined. In 
this paper, we propose PDAMIML based on a novel multi-instance multi-label 
learning framework combined with auto-cross covariance transformation and 
SVM. It can effectively annotate functions for protein domains. We evaluate the 
performance of PDAMIML using a benchmark of 100 protein domains and 10 
high-cycle functional labels. The experiment results reveal that PDAMIML 
yields significant performance gains when compared to the state-of-the-art ap-
proaches. Furthermore, we combine PDAMIML with the other two existing 
methods by using majority voting, and obtain encouraging results. 

Keywords: domain annotation, multi-instance multi-label, SVM, auto-cross 
covariance transformation. 

1 Introduction 

One of the most challenging and intriguing problems in the post-genomic era is the 
characterization of the biochemical functions of proteins. Accurate computational 
assignment of protein function is becoming a useful resource for both the community 
at large and the curators that eventually assign function to proteins. It is known that 
domains appear either singly or in combination with other domains as building blocks 
in a protein [1,2], and play important roles in the process of protein-protein interac-
tions [3]. It will be much easier to infer the function of proteins if the functions of 
their component domains are determined. 

Traditional work of annotation of functions is based on the physicochemical prop-
erties of special structure and primarily conducted manually, which is a time-
consuming, inefficient and experience-dependent process. Some researchers have 
paid attention to the field of domain annotation using computational methods. Schug 
et al. [4] described a heuristic algorithm for annotating Gene Ontology (GO) [5].  
                                                           
* Corresponding author. 
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Lu et al. [6] utilized protein-domain mapping (P2D) features to investigate the 
associa-tion rules between target domains and GO terms. 

Based on the previous work, Zhao and Wang [7] designed two methods, the 
threshold-based classification method and the SVM method, for protein domain func-
tion prediction by integrating heterogeneous information sources, improving predic-
tion accuracy and annotation reliability. The threshold-based classification method 
outperforms the SVM method according to their experiments. 

However, in those formalizations, each domain is represented by an instance and 
associated with single GO term. Actually, each domain usually exists in multiple 
proteins, which can be described by a feature vector, and it may belong to multiple 
categories since it is associated with several different functions. 

In this paper, we propose a novel Multi-Instance Multi-Label Learning (MIML) [8] 
based framework, PDAMIML, to predict functions of protein domains. PDAMIML 
combines MIML model, SVM [9] and auto-cross covariance (ACC) [10] to overcome 
the multi-label classification problem and effectively utilizes the features of Position-
Specific Scoring Matrix (PSSM) [11]. Furthermore, we design an ensemble method, 
PDAMIML-Ensemble, which integrates PDAMIML and other two eminent threshold-
based approaches (CDD and P2D)[7] with majority voting strategy. Our experimental 
results show that PDAMIML-Ensemble significantly outperforms the state-of-the-art 
domain annotation approaches. 

2 Materials and Methods 

2.1 Datasets 

Relationships between proteins and domains are obtained from InterPro Database [12] 
and the function annotations of domains are generated from GOA Database [13]. 
Through analyzing the databases, we find that around 76% domains are annotated 
with more than one GO term, and every domain has 2.5 GO terms on average. We 
choose the top 100 domain with the most GO terms as target domains, and select the 
most frequent 10 GO terms as target labels. 

In each experiment, the whole data set is randomly partitioned into two parts, a 
training set, accounting for 70% of the data set, and a test set, 30%. The training set is 
used to build classifiers, and the test set is used to evaluate the performance of the 
corresponding classifier. The whole experiment is repeated for 10 times to get an 
average and common performance, and every time, all the model parameters are 
tuned with 10-fold cross validation on the training set to optimize the model 
performance. 

2.2 MIML Model for Domain Annotation 

In this section, we first describe in detail how to formulate protein domain annotation 
as an MIML problem. 

In biology, many proteins consist of several structural domains; meanwhile  
one domain may appear in a variety of different proteins. Besides, in a multi-domain 
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protein, each domain may fulfill its own functions independently, or in a concerted 
man-ner with its neighbors [14]. Since proteins interact with each other through 
domain interactions, the functions of domains determine the functions of their host 
proteins. Domains act as the structural and functional units, and each domain is 
associated with multiple proteins and multiple GO terms, as illustrated in Fig.1. 

 

Fig. 1. Diagram for MIML learning in protein domain annotation 

Let ℵ  denote the instance space and ℜ  the set of class labels. In our research, 
every protein containing some particular domain is an instance and every GO term is 
a label. Then the task is to learn a function  func: ℜ→ℵ  from a given data set 
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where )(
i

Xφ  is the mapping function that maps bag of instances iX  into a kernel 

space; ),( yXiϕ  indicates whether y  is a proper label of iX ; 
i
ξ  is the hinge 

loss; n  is the number of domains in the training set; and w  and b  are parameters 

for representing a linear discrimination function in the kernel space. +
C  and −

C  
are the penalty parameters for errors resulting from positive bags and negative bags, 
respectively. 

Then the discriminant function of the final classifier can be demonstrated as: 
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2.3 PDAMIML Framework 

Two predictors (PDAMIML and PDAMIML-Ensemble) are implemented as shown in 
Fig.2. 

 

Fig. 2. Overview of PDAMIML and PDAMIML-Ensemble 
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PDAMIML is based on MIML learning framework and ACC transformation, while 
PDAMIML-Ensemble is an ensemble classifier built to combine the outputs of 
PDAMIML and other two existing methods. It can be formulated as: 

DPCDDPDAMIML
RRRR

2
⊕⊕=  

where PDAMIMR 、

CDD
R  and DPR 2

 stand for the predicted results of PDAMIML, 

CDD and P2D respectively, sign ⊕  means the operation of voting, R  is the final 
result. For detailed implementation of CDD, P2D and CDD+P2D, please refer to the 
paper of Zhao[7]. 

2.4 Position-Specific Scoring Matrix(PSSM) 

Each protein sequence can be represented as a time sequence of physical-chemical 
properties.  In this study, we select PSSMs as the features to transform protein 
sequences to simple quantitative matrices. PSSMs are taken from multiple sequence 
alignment obtained by PSI-BLAST searching against NCBI non-redundant 
database(ftp://ftp.ncbi.nih.gov/blast/db/), with parameters j = 3 and e = 0.001 
[11,16,17]. 

2.5 Auto-Cross Covariance Transformation 

PSSM contains wealthy information about the evolutionary relationship of proteins 
and often has different lengths, while many machine learning methods, for instance, 
SVM, usually require fixed length data. 

ACC transformation is used to make uniform of the length of the proteins. It is a 
new feature representation, which has been adopted by more and more investigators 
for protein classification [18,19,20]. Two kinds of variables are generated: Auto 
Covariance (AC) and Cross Covariance (CC). The AC variable measures the 
correlation of the same property between two residues, while the CC variable 
measures the correlation of two different properties between two different residues in 
some distance. 

2.6 Evalution Measures 

Some widely used measures in information retrieval research are adopted in this 
study, such as sensitivity, specificity, precision, accuracy, F1-score and AUC (Area 
Under ROC). However, these six criteria have to be modified slightly to be suitable 
for the multi-label classification problem. The criteria used for the annotation task is 
the average value across all the labels. 

The higher those criteria scores are, the better the classifier is. 
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3 Results and Discussions 

3.1 The Impact of Parameter during ACC Transformation 

In the study, each protein sequence is represented as a vector of either AC variable or 
ACC variable that is a combination of AC and CC. The maximum value of distance 
between the residues, LG, can influence the performance of transformation to some 
extent. The maximum value of variable LG is 30 for the sequences we use. Fig.3 
shows the average accuracy of prediction performance on different values of LG. 

According to Fig.3, it is obvious that ACC variable has a better performance than 
AC variable, and it is sound to choose 15 as the optimal value for LG, so we choose 
ACC variable to present protein and LG takes 15 in all relative processes. 

 

Fig. 3. Average accuracy versus LG value 

3.2 Performance Comparison with the State-of-the-Art Approaches 

To evaluate the proposed methods, we performed computational experiments and 
compared them with CDD, P2D and CDD+P2D. The performance of each model is 
measured by six metrics: accuracy, sensitivity, specificity, precision, AUC and F1-
score. Higher score means better performance. 

Table 1. Performance comparison with existing methods on multiple labels 

 accuracy sensivity specificity precision AUC F1-score 

CDD 0.923±0.021 0.661±0.168 0.962±0.043 0.802±0.135 0.647±0.160 0.698±0.142 

P2D 0.897±0.016 0.900±0.105 0.877±0.018 0.601±0.092 0.805±0.113 0.699±0.095 

CDD+P2D 0.907±0.013 0.891±0.114 0.886±0.013 0.636±0.116 0.855±0.114 0.718±0.112 

PDAMIML 0.914±0.017 0.744±0.090 0.936±0.013 0.822±0.075 0.908±0.051 0.757±0.058 

PDAMIML-

Ensemble 

0.953±0.010 0.823±0.061 0.974±0.010 0.894±0.065 0.934±0.017 0.843±0.062 
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Table 1 shows the detailed results of comparing our method with the existing 
methods. Our approaches (PDAMIML and PDAMIML-Ensemble) show dominant 
advantages over the existing methods in the metrics of AUC, F1-score and precision. 
PDAMIML-Ensemble has the best performance among all of the methods, with the 
AUC of 0.934, F1-score of 0.843, specificity of 0.974, precision of 0.894, and 
accuracy of 0.953, while PDAMIML achieves the second best performance in the 
measures of AUC, F1-score and precision. Only in sensitivity, P2D and CDD+P2D 
per-form better than our methods. The results in Table 1 verify the effectiveness of 
the proposed MIML-based algorithm and the ensemble method with majority voting. 
It is worth emphasizing that PDAMIML doesn't need to know the whole protein 
sequences and annotations of other coexisting domains, which is much more direct 
and convenient than other methods. 

4 Conclusion 

Domains are structural and functional units of proteins and play an important role in 
functional genomics. In this paper, we construct a novel multi-instance multi-label 
SVM classifier (PDAMIML) with ACC transformation to predict the annotation of 
domains. PDAMIML doesn't need to know the whole protein sequences and 
annotations of other coexisting domains, which is more direct and convenient. 

Further, we combine PDAMIML with CDD and P2D, to establish a new voting 
system (PDAMIML-Ensemble) to integrate their particular advantages to improve the 
comprehensive performance of annotation. The result of PDAMIML-Ensemble is 
based on outputs of PDAMIML, CDD and P2D with majority voting. Final result 
demonstrates that PDAMIML is well-equipped to handle the multi-label classification 
problem, and the ensemble method PDAMIML-Ensemble obtains the best 
performance when compared with the state-of-the-art methods. 

As for the future work, more effective features and transform methods will be 
investigated. Other machine learning algorithms such as neural network, decision tree 
and Bayesian network will also be considered in the ensemble classifier. 
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Abstract. Epilepsy is a chronic neurological condition that affects approximate-
ly 70 million people worldwide. Characterised by sudden bursts of excess elec-
tricity in the brain manifesting as seizures, epilepsy is still not well understood 
when compared with other neurological disorders. Seizures often happen unex-
pectedly and attempting to predict them has been a research topic for the last 20 
years. Electroencephalograms have been integral to these studies, as they can 
capture the brain’s electrical signals. The challenge is to generalise the detec-
tion of seizures in different regions of the brain and across multiple subjects. 
This paper explores this idea further and presents a supervised machine learning 
approach that classifies seizure and non-seizure records using an open dataset 
containing 543 electroencephalogram segments. Our approach posits a new me-
thod for generalising seizure detection across different subjects without prior 
knowledge about the focal point of seizures. Our results show an improvement 
on existing studies with 88% for sensitivity, 88% for specificity and 93% for the 
area under the curve, with a 12% global error, using the k-NN classifier. 

Keywords: Seizure, non-seizure, machine learning, classification, Electroence-
phalogram, oversampling. 

1 Introduction 

Epilepsy is a chronic condition of the brain, and causes repeated seizures, commonly 
referred to as fits. Epilepsy is said to affect one in every 103 people in the UK 
(500,000 approximately), according to epilepsy research UK1, and 70 million people 
worldwide (Fazel, Wolf, Langstrom, Newton, & Lichtenstein, 2013). The risk of de-
veloping epilepsy is greatest at the extremes of life with incidences more common in 
the elderly than the young (Engel, 2013). 

Seizures can be focal (partial) and exist in one part of the brain only, or they can be 
general and affect both halves of the brain. In a focal seizure, the excess electrical 
activity is confined to the occipital lobes, parietal lobes, frontal lobes, or temporal 
lobes. During a focal seizure, the person may be conscious and unaware that a seizure 

                                                           
1 http://www.epilepsyresearch.org.uk 
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is taking place, or they may have uncontrollable movements or unusual feelings and 
sensations. During a general seizure, consciousness is normally lost and muscles may 
stiffen and jerk2. A diagnosis of epilepsy is made if a patient has had two or more 
unprovoked seizures3, and diagnosis is made with the help of an electroencephalo-
gram (EEG), which measures the electrical activity in the brain.   

The majority of previous works on seizure detection have focused on patient-
specific predictors, were a classifier is trained on one person and tested on the same 
person (Carney, Myers, & Deyer, 2011; Maiwald et al., 2004; Mormann, Andrzejak, 
Elgar, & Lehnertz, 2007; Shoeb, 2009). However, in this paper, the emphasis is on 
using EEG classification to generalise detection across all regions of the brain using 
multiple subject records, without prior knowledge of which region of the brain the 
seizure occurred. Several classifiers are evaluated using 171 seizure and 171 non-
seizure blocks extracted from the 543 EEG segments of 24 patients suffering with 
epilepsy. 

The structure, of the remainder, of this paper is as follows. Section 2 describes the 
underlying principles of Electroencephalography and the type of features extracted 
from Electroencephalography signals. Section 3 discusses the approach taken in this 
paper, while Section 4 describes the evaluation. The results are discussed in Section 5 
before the paper is concluded in Section 6. 

2 Electroencephalography and Feature Extraction 

Electroencephalography (EEG) is the term given for the recording of electrical activi-
ty resulting from ionic current flows generated by neurons in the brain (Libenson, 
2009) and is mainly used to evaluate seizures and epilepsy. In order to retrieve EEG 
signals, electrodes are placed on the scalp where odd numbered electrodes are placed 
on the left side of the scalp and even numbered electrodes on the right. The letters that 
precede the numbers represent brain regions (Fp) frontopolar, (F) frontal, (T) temper-
al, (P) parietal, (C) central, and (O) occipital (Libenson, 2009).  

The collection of raw EEG signals is always temporal. However, for analysis and 
feature extraction purposes, translation, into other domains, is possible and often re-
quired. In order to obtain frequency parameters, several of the studies reviewed, have 
used Power Spectral Density (PSD). Peak Frequency is one of the features also con-
sidered in many studies. It describes the frequency of the highest peak in the PSD. 
During a seizure, EEG signals tend to contain a major cyclic component, which shows 
itself as a dominant peak in the frequency domain (Sanei & Chambers, 2007).  

Meanwhile, Ning et al. (Ning & Lyu, 2012) found that Median Frequency dis-
played significant differences between seizure and non-seizure patients. By segment-
ing the EEG signal into five separate frequency bands for delta (δ: 0.5 ≤ f ≤ 4 Hz), 
theta (θ: 4 ≤ f ≤ 8 Hz), alpha (α: 8 ≤ f ≤ 12 Hz): beta (β: 12 ≤ f ≤ 25 Hz), and gamma 

                                                           
2 http://www.epilepsy.org.uk 
3 http://www.who.int 
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(γ: 25 ≤ f), it was possible to predict 79 of 83 seizures, with a sensitivity value of 
95.2%.  

Root Mean Square (RMS) has also been considered a useful feature for distinguish-
ing between seizure and non-seizure events. RMS measures the magnitude of the va-
rying quantity and is a good signal strength estimator in EEG frequency bands 
(Abdul-latif, Cosic, Kimar, & Polus, 2004; Patel, Chern-Pin, Fau, & Bleakley, 2009).  

Entropy has been used as a measure of the complexity, or uncertainty, of an EEG 
signal, were the more chaotic the signal is, the higher the entropy (Greene et al., 2008; 
Sanei & Chambers, 2007). Many authors agree that during a seizure, the brain activity 
is more predictable than during a normal, non-seizure, phase and this is reflected by a 
sudden drop in the entropy value (Aarabi, Fazel-Rezai., & Aghakhani, 2009; 
Diambra, de Figueiredo, & Malta, 1999; Greene et al., 2008; Iasemidis, 2003; Kelly et 
al., 2010). All of the above features are extracted from the raw dataset in this paper. 

3 Generalisation of Epileptic Seizure Detection 

The study in this paper focuses on discriminating between seizure and non-seizure 
EEGs across a group of 24 subjects. The classifiers are trained on all patient records 
and therefore, classification is generalised across all subjects using features from 
channels that capture the EEG in all parts of the brain.  

3.1 Methodology 

The CHB-MIT dataset used in this paper is a publicly available database from physio-
net.org that contains 686 scalp EEG recordings from 24 patients treated at the Child-
ren’s Hospital in Boston. The subjects had anti-seizure medication withdrawn, and 
EEG recordings were taken for up to several days after.  

3.1.1 Data Pre-processing 
In the CHB-MIT database, each record was sampled at 256Hz, with 16-bit resolution. 
Signals were recorded simultaneously through twenty-three different channels, via 19 
electrodes and a ground attached to the surface of the scalp.  

A bandpass filter was applied to each of the 543 EEG segments to extract the EEG 
data in each of the frequency bands. This results in four columns of additional data; 
delta (δ: 0.5 ≤ f ≤ 4 Hz), theta (θ: 4 ≤ f ≤ 8 Hz), alpha (α: 8 ≤ f ≤ 12 Hz): and beta (β: 
12 ≤ f ≤ 25 Hz). Finally, all frequency bands in each of the 543 EEG segments were 
normalised to a common scale between zero and one.   

3.1.2 Classification 
Following an analysis of the literature, the study in this paper adopts simple, yet po-
werful algorithms. These include the linear discriminant classifier (LDC), quadratic 
discriminant classifier (QDC), uncorrelated normal density based classifier (UDC), 
polynomial classifier (POLYC), logistic classifier (LOGLC), k-nearest neighbour 
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(KNNC), decision tree (TREEC), parzen classifier (PARZENC) and the support vector 
machine (SVC) (van der Heijde, Duin, de Ridder, & Tax, 2005).  

4 Evaluation 

4.1 Results Using Top Twenty Uncorrelated Features Ranked Using LDA 
Backward Search Feature Selection 

In this evaluation, the top twenty uncorrelated features, extracted from each of the 
frequency bands within each of the EEG channels, and nine classifiers are used. The 
performance for each classifier is evaluated using the sensitivity, specificity, and AUC 
values with 100 simulations and randomly selected training and test sets for each 
simulation.  

4.1.1 Classifier Performance 
The first evaluation uses all the seizure and non-seizure blocks from all subjects in the 
CHB-MIT dataset (171 seizures and 171 non-seizures). Table 1, shows the mean aver-
ages obtained over 100 simulations for the sensitivity, specificity, and AUC. 

Table 1: Classifier Performance Results for Top 20 Uncorrelated Features 

Classifier Sensitivity Specificity AUC 
LDC 70% 83% 54% 
QDC 65% 92% 62% 
UDC 39% 95% 65% 

POLYC 70% 83% 83% 
LOGLC 79% 86% 89% 
KNNC 84% 85% 91% 
TREEC 78% 80% 86% 

PARZENC 61% 86% 54% 
SVC 79% 86% 88% 

 

As shown in Table 2, the sensitivities (seizure), in this initial test, are lower for all 
classifiers. This is interesting given that the number of seizure and non-seizure blocks 
is equal. One possible reason for this is that the ictal length across the 171 records 
was 60 seconds. However, in the CHB-MIT records ictal periods ranged between 6 
and 752 seconds. It is possible that some ictal blocks resemble non-seizure records 
resulting in misclassification (particularly blocks that contain 6 seconds of ictal data).  

4.2  Results Using Top Five Uncorrelated Features Ranked Using LDA 
Backward Search Feature Selection from Five Head Regions 

In the second evaluation, the top five uncorrelated features, extracted from five main 
regions across the head, are used to determine whether the detection of seizures can 
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be improved. Again, the performance for each classifier is evaluated using the sensi-
tivity, specificity, and AUC values with 100 simulations and randomly selected train-
ing and test sets for each simulation.  

4.2.1 Classifier Performance 
As shown in Table 2, the sensitivities (seizure), for most of the algorithms have im-
proved, including the specificity values. The AUC results also showed improvements 
for several of the classifiers, with 93% achieved by the KNNC classifier. This is en-
couraging given that sensitivities are more important in this research than specificities. 
From the previous results, we find a 4% increase in sensitivities, a 3% increase in 
specificities and a 2 % increase in the performance of the KNNC classifier, with other 
classifiers improving with similar increases.  

Table 1. Classifier Performance Results from Top five Uncorrelated Features from Five Head 
Regions 

Classifier Sensitivity Specificity AUC 
LDC 78% 88% 55% 
QDC 84% 86% 60% 
UDC 51% 91% 70% 

POLYC 78% 88% 89% 
LOGLC 82% 84% 90% 
KNNC 88% 88% 93% 
TREEC 82% 81% 89% 

PARZENC 81% 93% 61% 
SVC 85% 86% 90% 

5 Discussion 

The study in this paper focused on discriminating between seizure and non-seizure 
EEG records across a group of 24 subjects, rather than a single individual. The clas-
sifiers are trained using all 24 patients, and therefore, classification is generalised 
across the whole population contained in the CHB-MIT database. To achieve this, 
features from all the channels that capture the EEG in all parts of the brain were used. 
In the initial classification results, the top 20 uncorrelated features from the whole of 
the head (not region-by-region) were extracted from 805 possible features. This has 
been accomplished using the linear discriminant analysis backward search technique 
to rank features. This approach achieved reasonably good results, using the KNNC 
classifier, with 84% for sensitivity, 85% for specificity, 91% for the AUC, with a 
global error of 15%. 

Interestingly, the features used in this initial evaluation, involved channels from the 
four lobes of the brain, occipital, parietal, frontal, and temporal, but not the channels 
spread across the centre of the head. This implied that rather than having generalised 
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seizures across the whole of the brain, a majority of focal seizures occurred in each of 
the lobes. 

Using the top five uncorrelated features from EEG channels specific to the five 
main regions of the head improved the sensitivities and specificities, while producing 
high AUC values. The best classification algorithm was again the KNNC classifier, 
which achieved 88% for sensitivity, 88% for specificity, and an AUC value of 93% 
with a 12% global error. This was followed closely by the SVC classifier, which 
achieved 85% for sensitivity, 86% for specificity, and an AUC value of 90% with a 
14% global error. 

Generally, this paper produced good results and in many cases better than several 
papers reported in the literature. Where papers reported better results than ours, a 
patient-specific seizure detector was used, in contrast to the generalised detector ap-
proach taken in this paper. Consequently, it is challenging to make a like-for-like 
comparison and it is difficult to determine if the higher results produced in our study 
are, in fact, better than the results produced in patient-specific studies.  

6 Conclusions and Future Work 

Epilepsy is one of the most common neurological conditions, and one of the least 
understood. The seizures that characterise epilepsy are frequently unannounced and 
affect a sufferer’s quality of life, as well as increasing the risk of injury or possibly 
death. A strong body of evidence has suggested that these epileptic seizures can be 
predicted by analysis of EEG recordings.  

Within a supervised-learning paradigm, this paper utilises EEG signals to classify 
seizure and non-seizure records. Most of the previous work in this area has focused on 
detecting seizures of individual patients, but this paper generalises seizure detection 
across a group of 24 subjects from the open CHB-MIT database. 

A rigorous, methodical, approach to pre-processing of the data was undertaken, 
and features were extracted from the raw EEG signal using several feature-ranking 
techniques. From our evaluations, the highest result, achieved with the KNNC clas-
sifier, was 93% for the AUC, 88% for sensitivity, and 88% for specificity. 

Despite these encouraging results, more in-depth research is still required. For ex-
ample, regression analysis, using a larger number of observations would be interest-
ing. This would help to predict the early signs of a seizure, not just when the seizure 
happens. In addition, more advanced classification algorithms, and techniques, will be 
considered, including advanced artificial neural network architectures. The investiga-
tion and comparison of features, such as fractal dimension and cepstrum analysis, 
autocorrelation zero crossing and correlation dimension, has also not been per-
formed. Future work will investigate these techniques in a head-to-head comparison, 
with linear methods. 
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Abstract. As one of the most prevailing post-translational modifications, 
phosphorylation is vital in regulating almost every cellular behavior. In this 
paper, we propose a new computational method that can effectively identify 
phosphorylation sites by using optimally chosen properties. The highlight of 
our method is that the optimal combination of features was selected from a set 
of 165 novel structural neighborhood properties by a random forest feature 
selection method. And then an ensemble learning method based on support 
vector machine was used to build the prediction model. Experimental results 
obtained from cross validation and independent test suggested that our method 
achieved a significant improvement on the prediction quality. Promising results 
were obtained after being compared with the state-of-the-art approaches using 
independent dataset. 

1 Introduction 

Reversible phosphorylation is one of the most prevailing post-translational 
modifications[1, 2]. It is estimated that about 30~50% of the proteins can be 
phosphorylated in a eukaryotic cell[3], but most of the phosphorylation substrates still 
remain to be unrecognized. Despite the fact that there are already around 40 
phosphorylation site prediction tools being established, they vary from one tool to 
another with respect to several particular attributes. For example, DISPHOS[4] and 
NetPhos[5] are both non-kinase-specific phosphorylation site prediction tools, and 
NetPhosK, GPS[6], PPSP[7] as well as KinasePhos2.0[8] are all kinase-specific 
phosphorylation site prediction tools. While DISPHOS takes position-specific amino 
acid frequencies and disorder information as its crucial features, NetPhos and 
NetPhosK are based on neural-network. GPS came up with their own algorithm 
named Group-based Phosphorylation Scoring algorithm, and PPSP implements an 
algorithm of Bayesian decision theory (BDT). In our experiment, a full set of 165 
features including both sequence and structural information as well as their novel 
structural neighborhood properties were obtained. Then, a random forest feature 
selection method was used to select a subset of optimal features. Finally, SVM-
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based ensemble models were built to identify phosphorylation sites with less bias and 
better performance. 

2 Methods 

2.1    Dataset 

2143 phosphoprotein chains which have at least one phosphorylated site were exacted 
from Phospho3D database[9, 10] in the first step. A tool named CD-HIT[11] was then 
used here to remove the redundant (or highly similar) chains with 90% sequence 
identity. Several well-known families-PKA, PKC, CK2, MAPK and SRC were 
chosen in our experiment to be discussed after we grouped the remained 817 
phosphoprotein chains according to their respective kinase family. Then, from the 
non-redundant dataset, we extracted sequences centering on S, T and Y with a 
window size of 5. 

To construct positive dataset, we extracted sequences with the center residue 
annotated as phosphorylation site in Phospho3D. The remained sequences were 
considered as negative control. As shown in table 1, there are 40, 42, 22, 24 and 35 
phosphoprotein chains, 58, 68, 37, 30, 47 phosphorylation sites and 955, 1280, 579, 
612, 1371 none-phosphorylation sites in PKA, PKC, CK2, MAPK and SRC, 
respectively. 

Table 1. Number of Protein Chains, Phosphorylation Sites and Non-phosphorylation Sites of 
Each of the Five Families 

 PKA PKC CK2 SRC MAPK 

number of protein chains 40 42 22 24 35 

number of phosphorylation sites 58 68 37 30 47 

number of non-phosphorylation sites 955 1280 579 612 1371 

 
In hope to have a more impartial estimation, we decided to use all chains 

discovered after the year of 2008 to construct the benchmark dataset. It should be 
pointed out that because of the lack of data after 2008 of family CK2 and PKA in 
Phospho3D, discussion about independent testing on CK2 and PKA was not included 
in this paper. The remaining chains composed the training set.  

2.2   Features 

Site Features and Structural Neighborhood Properties 
In our experiment, a large variety of 55 sequence, structural, and energy attributes  
are selected for classification, including disorder score, PSSM score，evolutionary 
conservation score, ASA features, pair potential, atom contacts and residue contacts, 
et al. For each residue, its feature vector not only including the above 55 attributes of 
the residue itself, but also including these 55 attributes of its two types structural 
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neighborhood residues defined by Euclidean distance and Voronoi diagram[12, 13] , 
that is , there are  features for each residue. 

Feature Selection 
In this experiment, we assessed the feature vector elements using the mean decrease 
Gini index (MDGI) calculated by the RF package in R[12] . MDGI represents the 
importance of individual feature vector elements for correctly assigning a residue into 
phosphorylation site and non–phosphorylation site. Here, for family of CK2, MAPK, 
PKA, PKC and SRC, we selected the top 19,112,33,25,20 features with MDGI Z-
Score larger than 2.5 respectively.  

2.3   Ensemble Learning Process 

• A test set was constructed with both 10% of the positive set and negative set by a 
random selection. 

• We generated training set by combining the remaining 90% positive examples and 
the same or similar size of negative examples which was randomly sampled with 
replacement from the remaining 90% negative set.  

• Step II was repeated for m = 20 times, therefor we got 20 subsets for classifiers. 
Each sub-set was adopted to train a corresponding SVM classifier. Each training 
model of the classifier was tested by the test set obtained from step I and the final 
prediction result was determined by averaging raw outputs from all m classifiers 
for further processing with 10-fold cross validation. 

Support Vector Machines 
In this experiment, we employed the Support Vector Machines (SVMs)[13] as the 
underlying supervised learning algorithm in the ensemble approach. A public SVM 
library, namely LIBSVM, is applied for training the predictive models. The SVM 
kernel function of radial basis function (RBF) is selected. The SVM cost values and 
SVM gamma values are optimized for maximizing the sum of predictive Auc, Acc, 
Sn and Sp. 

2.4   Performance Evaluation 

The performance of the proposed prediction method is evaluated by 10-fold cross-
validation. The following measures of predictive performance of the trained models 
are defined:  

Specificity(Sp)=TN/(FP+TN), Precision(Pre)=TP/(TP+FP),  
Sensitivity (Sn)=TP/(TP+FN), F1=(2*Pre*Sn)/(Pre+Sn), 
Acracy(Acc)=(TP+TN)/(TP+FP+TN+FN), 
and CC=(TP*TN-FP*FN)/  

Above, the TP, FP, TN, and FN are abbreviations of true positives, false positives, 
true negatives, and false negatives, respectively. The AUC score is the normalized 
area under the ROC curve. The ROC curve is plotted with TP as a function of FP for 
various classification thresholds. 
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3 Results and Discussions 

3.1 Performance Comparison: SVM-F vs. SVM-Sub 

We implemented 10-fold cross-validation using two distinctive feature sets, namely 
full set of features (SVM-F) and subselected feature set (SVM-Sub). 

Table 2. Performance comparison on SVM-F and SVM-Sub 

  AUC Accuracy Sensitivity Specificity CC F1 

CK2 
SVM-Sub 0.877 0.963 0.433 0.992 0.433 0.429 

SVM-F 0.842 0.954 0.350 0.986 0.370 0.366 

MAPK 
SVM-Sub 0.839 0.952 0.483 0.973 0.480 0.480 

SVM-F 0.833 0.959 0.400 0.985 0.424 0.423 

PKA 
SVM-Sub 0.858 0.948 0.375 0.980 0.426 0.432 

SVM-F 0.846 0.926 0.335 0.959 0.279 0.310 

PKC 
SVM-Sub 0.857 0.952 0.303 0.985 0.396 0.363 

SVM-F 0.821 0.948 0.226 0.984 0.282 0.274 

SRC 
SVM-Sub 0.900 0.951 0.558 0.973 0.510 0.499 

SVM-F 0.890 0.946 0.241 0.985 0.317 0.294 

 
Table 2 shows the detailed results of comparing SVM-F with SVM-Sub. On test 

set, SVM-Sub shows dominant advantages over SVM-F in four metrics: auc, 
sensitivity, CC, and F1-score for all five families. As to accuracy and specificity, 
SVM-F narrowly outperformed SVM-Sub in MAPK and SRC, but still not good 
enough than SVM-Sub in other three families. Concretely, as for MAPK, considering 
the size of its optimal feature set, maybe it indicates that there doesn’t exist a few of 
features that can discriminate MAPK significantly. Table 2 indicate that our feature 
selection method based on RFC can effectively improve the prediction performance 
with less computational cost and reduce the risk of over-fitting. 

0%

50%

100%

CK2 MAPK PKA PKC SRC
residue-based features Euclidean features Voronoi features

 

 

Fig. 1. The proportions of residue-based features, Euclidean features and Voronoi features on 
the top 10 list ranked by MDGI Z-Score for 5 families 
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We investigated three types of features-site, Euclidean, and Voronoi features. The 
proportions of the three types of features on the top 10 list by MDGI Z-Score for 5 
families are presented in Figure 1. From Figure 1, we can find that for all families 
except SRC and MAPK, structural neighborhood properties (Euclidean or Voronoi) 
dominated the top 10 list. To be more specific, CK2 are mainly influenced by 
Euclidean features while Voronoi features are the most prominent features to PKA 
and PKC, suggesting that structural neighborhood properties are more predictive for 
those four families. Opposed to the former 3 families, Figure 1 indicated that the 
residue-based features dominated top 10 list for SRC and MAPK. 

3.2 Performance Evaluation by Independent Test Comparison with Other 
Kinase-Specific Prediction Tools and SVM 

We carried out the comparison of kinase-specific predictions using our method, SVM 
and four widely used kinase-specific prediction tools (PPSP, NetPhosK 1.0, 
KinasePhosK 1.0 and GPS 2.1) based on the independent test dataset. Results of the 
independent test are presented in Table 3. It is need to be noted that unfair comparison 
may generate if our test data are included in the training set of other tools, and thus 
leading a fake high performance of other existing ones and underestimation of ours. 

Table 3. Performance Comparison of MAPK, PKC and SRC on the Independent Test Dataset 

Tools Kinase Acc Sn Sp CC F1 

PPSP_DEFAULT MAPK 0.938895 0.157025 0.9987 35 0.362594 0.267606 

PKC 0.747826 0.6 0.761905 0.22981 0.292682 

SRC 0.856868 0.591703 0.882527 0.367532 0.421789 

KinasePhos_100% MAPK 0.936545 0.107438 1 0.317125 0.19403 

PKC 0.878261 0 0.961905 -0.05858 0 

SRC 0.924099 0.150655 0.998944 0.357936 0.259398 

KinasePhos_95% MAPK 0.919506 0.132231 0.97976 0.173842 0.189349 

PKC 0.886957 0.1 0.961905 0.085534 0.133333 

SRC 0.919091 0.170306 0.991549 0.308001 0.270834 

KinasePhos_90% MAPK 0.90658 0.272727 0.955092 0.244424 0.293333 

PKC 0.773913 0.5 0.8 0.202085 0.277778 

SRC 0.917742 0.224891 0.984788 0.329501 0.325435 

NetPhosK_DEFAULT MAPK 0.937133 0.115702 1 0.329193 0.207407 

PKC 0.791304 0.4 0.828571 0.163743 0.25 

SRC 0.921595 0.19214 0.992183 0.341029 0.301887 

GPS MAPK 0.940658 0.181818 0.998735 0.393516 0.303448 

PKC 0.852174 0.1 0.92381 0.024979 0.105263 

SRC 0.946253 0.475983 0.99176 0.611564 0.609791 

SVM-Sub MAPK 0.938895 0.140496 1 0.363076 0.246377 

PKC 0.960452 0.133333 0.99705 0.286519 0.222222 

SRC 0.911963 0.262009 0.974857 0.320564 0.344333 

Ensemble-SVM-Sub MAPK 0.8866 0.644628 0.786844 0.258225 0.291045 

PKC 0.9237 0.6 0.938 0.3892 0.4 

SRC 0.8996 0.5044 0.9379 0.416 0.47 
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For the family of MAPK, recall value reached nearly three times as high as the 
average value of others. Cc and F1-score are also the highest among these methods. 
Although the accuracy and specificity of the ensemble learning method decreased, 
ensemble learning method did make a better balance between the positive dataset and 
negative dataset, and thus, acquired an outperformance in comprehensive strength 
(the sum of accuracy, recall, specificity, cc and F-score) compared with SVM and 
other prediction tools. For the family of PKC, the high recall leads to a high cc and 
F1-score, and wins an absolutely victory in comprehensive strength. For the family of 
SRC, although ensemble learning method has a good performance, GPS performed 
better. Note that for SRC, GPS only considers about Y, while S, T and Y are all taken 
into account in our method, which may lead to a less-explicate prediction result 
compared with GPS. In any case, the prediction performance of our method is at least 
comparable with other kinase-specific prediction tools. 

4 Conclusion 

In this work, we presented a novel phosphorylation site prediction approach 
combining structural neighborhood properties. Experimental results revealed that the 
proposed method outperformed most existing kinase specific prediction methods. 
Two key factors are responsible for our success. First, 165 features providing much 
more thorough clues for phosphorylation identification. Second, significant lower 
computational cost and lower risk of overfitting was achieved by random feature 
selection. Although our method wins an absolutely victory in comprehensive strength 
compared with other tools,  the ensemble learning method leads to an decrease on Sp 
at the same time, which is the demerit of this method. The conclusions derived from 
this paper might help to accelerate accumulation of our knowledge on 
phosphorylation mechanism and guide corresponding experimental validation. 
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Abstract. In this paper, we address the concept mining of binary gene 
expression data. To deal with this problem, we first compute the left and 
right singular vector matrices from the input binary gene expression 
matrix, and then information entropy is employed to determine whether 
column-clustering or row-clustering is performed first. Finally, the 
column-clustering and the row-clustering are repeated iteratively until the 
stopping criterion is satisfied. Experimental results show that our 
algorithm can identify the non-overlapping biclusters effectively. 

Keywords: Concept Mining, Biclustering, Gene Expression Data. 

1 Introduction  

In biological experiments, gene expression levels can be simplified into two cases: 
active or inactive. It corresponds to binary matrix which contains only two values, 0 
and 1. Clustering technology is often used during the exploratory of data analysis 
procedure, so we can use a clustering algorithm to analyze 0/1 gene expression data.  

Singular value decomposition employs the product of several smaller and simpler 
matrices to represent a complex matrix. These sub-matrices are found to encode 
important properties of the 0/1 matrix. By far, there have been several work dedicated 
to biclustering of binary gene expression data. The first is a fast divide-and-conquer 
algorithm (Bimax) [1], which is time consuming and produces a list of insignificant 
biclusters. Second is Cmnk [2] introduced to find statistically significant biclusters, yet 
it returns biclusters that contain a large number of predicted elements, where most of 
these predicted biclusters are not part of the true bicluster. This is later improved by 
[3] to detect bicluters in sparse genomic data sets even in noisy background with a 
much lower false positive rate. Taking into consideration the instance-level 
constraints, Pensa et al. [4] come up with a CDK-Means for co-clustering 0/1 data. 
Recently, [5] puts forward a tabu-research heuristic and address block modelling of 
the binary network matrices; and [6] introduces a BiBit method aiming to discover 
bit-patterns from binary data. Seokho Lee, Jianhua Z. Huang [7] recently proposed a 
biclustering algorithm for binary matrices based on penalized Bernoulli likelihood. 
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Inspired by the recent research of [8], this article utilizes Singular Value 
Decomposition to select focus areas of energy (element 1), while removing a certain 
amount of noise at the same time. The 0/1 biclusters are obtained by iteratively perform 
row clustering or column clustering, whose order is determined by the information 
entropy computation. The iteration is supposed to terminate when the number of 
element 1 in a sub-matrix meets threshold’s requirements. This paper can also 
distinguish overlapping and non-overlapping sub-matrices, and dig out those who are 
not overlapped. For those who are in the overlapping area, the degree of similar 
differences can be used to classify row sets and column sets. Thus, we can get rid of 
the background elements and achieve all-1 matrix or biclusters fulfilling the similar 
difference limitations. 

2 Preliminaries 

Suppose a gene collection G and a condition collection C, where G = { g1, g2, ..., gm} 
represents a collection of genes and C = { t1, t2, ..., tn} represents a collection of 
conditions. The data to be mined under a boolean context is R ⊆ G×C={0,1}m×n, where 
the elements of R, i.e., (gi, tj)∈R indicates that the jth condition supports the ith gene, or 
in another word, ith gene reacts under the jth condition. 

 
Definition 1: Frequency of 1  
A collection of bi-set binary (G, C), G={ g1, g2, ..., gm}, C={ t1, t2, ..., tn},(gi, tj)=1 
indicates that ith gene reacts under the jth condition. Frequency of 1 is  

f(G, C) = size((gi, tj)=1)/size((G,C))                     (1) 

where size((gi,tj)=1) denotes the number of 1 in set (G, C),and size((G,C))=|G|×|C|.  
 
Definition 2: 1-matrix and 0-matrix  
A bi-set (G, C) is a 1-matrix if and only if ∀g∈G, ∀ t∈C and (g, t)∈R; a collection 
of bi-set binary (G,C) is 0-matrix if and only if ∀g∈G, ∀ t∈C and (g, t)∉ R. 

 
Definition 3: Concept [10]  
Suppose a 0/1 gene matrix Rm×n, (G,C)∈2{1,…,m}×2{1,…,n} called a Concept if and only 
if 

(1) ∀g∈G，∀ t∈C：(g,t)∈R  
(2) (G’,C’) ∈  2{1,…,m}×2{1,…,n}, where ∀ g’∈ G， ∀ t’∈ C： (g’,t’)∈ R and 

G⊆G’∧C⊆C’∧ (G’,C’)≠(G,C).  

Therefore, a Concept is also known as a maximum 1-matrix, which means it cannot 
be extended in either dimension.  
 
Definition 4: Frequent Concept [11]  
Given a concept (G, C), if its Frequency of 1 meets that f(G, C) ≥ σ（0<σ≤1）, where σ 
is the user-specified threshold value, then we call it a Frequent Concept. 
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3 Biculstering Algorithm 

The Singular Value Decomposition [12] technique refers to the following equation. 
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By using SVD, a matrix can be decomposed into a left singular vector matrix U, a 
diagonal matrix S, and a right singular vector matrix V.  

Since the larger value of a singuar value σi indicates the greater important of the 
corresponding left singular vector ui and right singular vector vi, we sort the singular 
vectors according to their singular values in descent order. We start from analyzing 
the row vector u1 and the column vector v1, and use them for biclustering.  

Row vector u1=(r1, r2, ..., rm) reflects the energy distribution of rows in the 0/1 
matrix, the greater the number of element 1 in a row i, the bigger  value ri of u1. 
Assume that the values in u1 are rearranged from large to small u1=(r1, r2, ..., rm) ( 
r1≥r2≥... ≥rm), the row clustering of 0/1 matrix R equals to the clustering of row vector 
u1; vector v1=(c1, c2, ..., cm) reflects the energy distribution of the columns in 0/1 
matrix, similarly, the column clustering is the clustering of the column vector v1. 

Given a row vector u1=(r1, r2, ..., rm) and column vector v1=(c1, c2, ..., cm) after 
SVD decomposition of R, we try to determine the order of column and row clustering. 
In view of this, we introduce the information entropy [13], which is a concept in 
information theory aiming to measure the amount of information. Assuming a 
variable X, it may have n different possible values, namely x1,x2,…,xn, the 
probabilities for X to take each value are P1,P2,…,Pn respectively, then the entropy of 
X is defined as: 
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For a 0/1 gene matrix Rm×n , g∈G ≡ { 1,..., m }, G expresses the collection of genes in 
matrix R m × n, then the matrix Rm×n  can also be represented by the row vector 
g, ( )T

mG gggR ,...,, 21= , and the ith row vector gi=(Ri1, Ri2,..., Rin); t ∈C ≡ {1,..., n}

， C expresses the collection of conditions in matrix Rm×n, then the matrix Rm×n  can 
also be represented by the row vector t , i.e., ),...,,( 21 nC tttR = , the ith column vector 

ti=(R1i, R2i,..., Rmi)。 
Now we know, 0/1 gene matrix Rm×n  has two expression forms RG  and RC , and 

they carry different amount of information, i.e., different information entropy. For 
row matrix RG , its information entropy is:  

              (4) 

uk  denotes the kth row characteristic vector. For column matrix RC , its information 
entropy is:  

                (5) 

vk denotes the kth characteristics column vector. If H(RG)≥H(RC) then row clustering is 
the prior choice; otherwise, column clustering is. Assume the row clustering first, 
Algorithm 1 is described as follows.  
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Algorithm 1. SVD Biclustering for Frequency Concept Mining

Input: 0/1 matrix R; noise threshold δ0(δ0≥0)•row similarity row similarity 
threshold Ψr, column similarity threshold•11-Frequency 
threshold w(w>0).  
Output: Frequency concept array A
[1] Decompose matrix R with SVD: 

TUSVR = , U=(u1,u2,…,ur)，V=(v1,v2,…,vr); 

if (σ1+…+σk)/(σ1+…+σr)≥98%, then output k; 
 

[2] Compute the entropy of RG and RC 

 
 

if H(RG) ≥ H(Rc)  

l= u1=(r1, r2, ..., rm), Ψ=Ψr 

else 
l= v1=(c1, c2, ..., cm), Ψ=Ψc 

endif 
sort(l)•l=(l1, l2, ..., lm) (l1≥l2≥... ≥lm≥0) 
if lN ≥ δ0 and lN+1 < δ0  
l’=(l1, l2, ..., lN) 

endif 
 

[3] for i = 2 to N 

    s(i-1)= li- li-1 
endfor 
if (s(i)<  || size(li)<3),  
merge the ith and (i-1)th rows 
if size(li)<3 
if s(i)<s(i-1),  
merge the ith and (i+1)th rows  

else  
merge the ith and (i-1)th rows 

endif 
endif 

endif 
M={M1, ..., Mg}(M= G or C) 

 
[4] for i=1 to g 

      Compute the 1-frequency of Mi, denoted as f(Mi) 
if f(Mi)>w 
return Mi 

else 
goto 2 

    endif  
Endfor 

 

5. Jump back to 2 unless the exit conditions are met 

Fig. 1. SVD Biclustering Algorithm for Concept Discovery 
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In step 1 of Algorithm 1, SVD decomposes 0/1 matrix R into U，S and V. We find 
out the first k energy concentrated singular values. Limitation proportion is used in 
this article to interception when (σ1+…+σk)/(σ1+…+σr)≥θ , where θ is a threshold 
which we set 98%. Then the row vector u1 and column vector v1, which correspond to 
the maximum singular, are extracted respectively. In step 2, we determine the priority 
of column and row clustering. According to our assumption that row clustering is 
conducted first, we sort the u1 to ordered vector u1=(r1, r2, ..., rm) (r1≥r2≥... ≥rm≥0). To 
remove the background signal and other noises, we set a threshold δ0 (δ0 ≥ 0), and 
obtain u1 = ( r1 , r2 ,..., rNG ) ( r1 ≥ r2 ≥ ... ≥ RNG > 0 ) which is free of background signal 
and noises with rNG ≥ δ0 and rNG+1 <δ0 . Next, in the third step, since u1 is well ordered, 
we calculate the similarity of the adjacent rows in a vector s(r)=(s(r)1,s(r)2, ..., 
s(r)NG-1) with s(r)i=|ri+1- ri|. To merge adjacent rows into clusters, there are two 
conditions: first s(r)i<Ψr, where Ψr  is the similarity threshold for row clustering; 
second size(li) <3, where size(li) is the least number of genes in cluster li. This step is 
to merge rows with the adjacent rows whose values are most similar to ri. After row 
clustering, we obtain a sub-matrix set G={G1, ..., Gg}. The step 4 is to judge if the 1- 
Frequency of Gi is above threshold w. If yes, then Gi is a Frequent Concept, otherwise 
we need to continue in Frequent Concept Mining. Therefore, in step 5, our algorithm 
jumps back to the second step until the exit condition is met. 

4 Experiments 

In this experiment, we test our algorithm on both artificial and real-world data sets. 
Both data sets contain noise. Our algorithm is implemented in Matlab. 

4.1 Artificial 0/1 Data Set with Noise  

We create a matrix of 100 rows and 100 columns, and generate three 1-matrices as 
shown in Fig. 2. To simulate noise, we replace some elements in the original 
1-matrices with a small amount of element 0. Our aim is to identify the Frequent 
Concept.  

 

Fig. 2. Artificial data with noise 
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We now use Algorithms 1 to cluster the scattered noisy 0/1 data. From Fig. 3, 
where the x axis is gene and the y axis is condition, we find that A and B can be 
merged into a single high-quality Frequent Concept, while A as well as B is 
orthogonal with C, so the row vector u1 and the column vector v1 are unable to dig out 
C, but the row vector u2 and the column vector v2 are capable.  

   
Fig. 3. Result by u1 and v1 and result by u2 and v2 

4.2 Real-World Data Set ( yeast )  

We adopt two real-world data sets and transform them into binary data. This process 
includes standardization of the original matrix and then discretization with a threshold 
t. Element 1 means any real data above the threshold t, 0 otherwise. 

Fig. 4 (left) illustrates a real-world data set containing 858 genes and 17 conditions. 
The threshold is t =0.0315, and the w threshold for 1-Frequency is w=75%. Fig. 4 
(right) is another real-world data set, which includes 1979 genes and 17 conditions, 
with threshold t =0.0210, w=75%. 

  

Fig. 4. Binary data sets transformed from real data sets 

Fig. 5 (left) is the biclustering result of Fig. 4 (left). It covers all the conditions and 
634 different genes. Fig. 5 (right) denotes the biclustering result of Fig. 4 (right), which 
covers all the conditions and 1515 genes. The 1-Frequencies of both biclusters are 
above 90%. 
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Fig. 5. Biclustering results of real-world data sets 

5 Conclusions 

In this article, we propose a concept mining algorithm to perform biclustering for gene 
expression data with SVD. It can help us understand the binary gene expression matrix 
easier and find the frequent concept of element 1. The experiments show the 
effectiveness of our method.  
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Abstract. Gene expression in complex regulatory interactions is often governed 
by more than one gene, so a gene involved in such interactions may have 
multiple regulators. We developed a method for identifying dynamic gene 
regulations of several types from the time-series gene expression data. The 
method can find gene regulations with multiple regulators that work in 
combination or individually as well as those with single regulators. The method 
has been implemented and tested on several gene expression datasets. The 
algorithms and program developed in our study will be useful for identifying 
multiple regulators, especially those that jointly regulate the expression level of 
a target gene. 

Keywords: gene regulatory interactions, multiple regulators, regulatory 
network. 

1 Introduction 

A regulatory interaction between genes is a fundamental mechanism of a cell to 
develop and adapt to the environment. Biological processes in living cells are 
controlled by complex regulatory interactions between genes rather than by a single 
gene [1]. 

Recent studies report that some genes tend to cooperate with others in playing a 
role of regulator of another gene although each of them does not have a regulatory 
relation with the target gene independently [2, 3]. So far, most studies for finding 
gene regulations from gene expression data have focused on identifying regulatory 
relations between individual genes or co-regulated genes which have the same 
regulator, so they cannot find gene regulatory relations with multiple activators or 
inhibitors that jointly regulate the expression level of a target gene. 

We developed a new method that identifies regulatory interactions between a 
group of genes and a single gene. It constructs a dynamic network of gene regulatory 
interactions of several types, which have not been considered by existing methods. 
We tested the method on the data of the yeast cell cycle [5]. The rest of this paper 
presents the method and its experimental results. 

                                                           
*To whom correspondence should be addressed.  
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2 Methods 

(a) Scoring Scheme for Gene Regulatory Relationships 

The gene expression data of m genes with n samples is represented as an m × n 
matrix, where rows represent genes and columns represent various samples such as 
experimental conditions or time points in a biological process. Each element of the 
matrix represents the expression level of a particular gene.  

We analyze the gene expression matrix for similarity between gene expressions. 
The similarity of gene expressions is often measured using several metrics such as 
Pearson correlation coefficient [7], Euclidean distance [8] and Spearman correlation 
[9]. To evaluate the regulatory relation between two genes, we modified the Pearson 
correlation coefficient. R1(X, Y, i, p) in Equation 1 represents the score of a regulation 
between gene X at time point i and gene Y at time point i + p. p is the time delay of the 
gene regulation. 
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In Equation 1, N is the total number of time points contained in the time span,  Xk 

and Yk are the expression levels of genes X and Y at time k, and X and Y are the 
average gene expression levels at all time points of the time section. The R1 score is 
in range of [-1, 1]. Among the total i × p candidate regulations, the regulation with the 
maximum absolute value of R1(X, Y, i, p) above a threshold value is selected as the 
regulatory relation between X and Y. By default the threshold value is set to include 
80% of the R1 scores of all identified gene pairs, but can be changed to a different 

value by the user.  

Using the R1 score, we can determine whether gene X is a candidate activator or 
inhibitor of gene Y. If the expression level of gene X increases before that of Y 
increases, X is a candidate activator of gene Y; if the expression level of gene X 
increases before that of Y decreases, X is a candidate inhibitor of Y. 

Algorithm 1 provides the top-level description of the algorithm for constructing an 
initial regulation list using R1 scores. 

(b) Inferring Gene Regulatory Relationships with Multiple Regulators 

We consider two types of multiple regulators in gene regulations. What we call 
multiple-separate regulators have a same target gene, and each of the regulators has 
an individual regulatory relation with the target gene. The regulators X and Y which 
satisfy all the conditions below are grouped as multiple-separate regulators, and the  
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regulation with multiple-separate regulators is denoted by {X, Y} → Z in the 
regulation list. 

1). The regulators X and Y should have a same target gene Z. 
2). The regulations X → Z and Y → Z must appear at the same time point. 
3). The regulations must be of the same type (either activation or inhibition). 
 
Algorithm 1. Construct an initial regulation list 
1: For each pair of genes X and Y, compute R1(X, Y, t, p) at every time point t and 

time delay 0 < p ≤ 8. 
2: Select the regulation with the maximum absolute value of R1(X, Y, t, p) as a 

candidate regulatory relation. 
3: Classify the regulation into one of the four types, +X(t) → +Y(t + p), -X(t) 

→+Y(t+p), +X(t) → -Y(t+p), -X(t) → -Y(t+p), and add it to the regulation list. 
4: If the new gene regulation is already in the regulation list, merge it with the

previous regulation. 
5: Go to step 2 to find the next gene regulation until no more regulation found. 
6: Sort the candidate regulations in the regulation list with respect to their R1 

scores, and remove those with R1 score < d. 
 

In the other type of multiple regulators, the target gene is not regulated by any 
single gene of the multiple regulators, but rather by a combination of the multiple 
genes. We call these genes multiple-combined regulators, and the regulation with 
multiple-combined regulators is denoted by {X, Y} → Z. Unlike multiple-separate 
regulators, regulation by multiple-combined regulators X and Y cannot be found by 
examining individual gene regulations since individual gene regulations X → Z and Y 
→ Z do not exist. Regulation by multiple-combined regulators is identified using the 
information on transcription factors of potential regulators and their binding to target 
genes. 

Genes X and Y that satisfy the following conditions are identified as multiple-
combined regulators of their target gene Z. 
 
1). Individual regulatory relations X → Z and Y → Z do not hold (i.e., the relations are 

not included in the gene regulation list).  
2). The transcription factors of X and Y should satisfy one of these:  

1. Genes X and Y have a same transcription factor that binds to a target gene 
(Figure 1A). 

2. Genes X and Y have different transcription factors that constitute a cis-
regulatory element and bind to a target gene in a promoter region (Figure 1B). 

 
Given a time-series data of gene expression, it first identifies regulations between 

individual genes using the R1 score. From the gene regulation list, it then finds the 
gene regulations with multiple-separate regulators by grouping regulations with a 
same target gene. For multiple-combined regulators, it first extracts data of 
transcription factors for all genes left after filtering out housekeeping genes and 
unexpressed genes. For every pair of genes with transcription factors known, it 
examines whether there is no regulatory relation between them (i.e., their relation is 
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not included in the gene regulation list) and their transcription factors have a same 
target gene. If so, the pair of genes is a potential multiple-combined regulator of their 
target gene. 

 

 

Fig. 1. Two cases of multiple-combined regulators of a target gene. (A) Genes X and Y have a 
same transcription factor that binds to a target gene. (B) Genes X and Y have different 
transcription factors that constitute a cis-regulatory element and bind to a target gene. 

3 Results and Discussion 

The algorithms have been implemented as the second version of GeneNetFinder 
(hereafter called GeneNetFinder2) using Microsoft Visual C#. GeneNetFinder2 is 
executable on any Windows systems. Given a time-series data of gene expressions in 
log-ratios, it identifies gene regulatory interactions of several types and visualizes 
them. This section shows the experimental results of GeneNetFinder2 with the gene 
expression data of yeast cell cycle. 

We tested GeneNetFinder2 on the dataset of the yeast cell cycle obtained from the 
Yeast Genome Project [5], which contains a total of 6,178 yeast genes. After 
removing redundant genes, 1,290 yeast genes were selected for identification of 
regulations. Using the R1 score, 1,378 gene regulations were identified between the 
1,290 yeast genes. 1,083 (78.6%) out of the 1,378 gene regulations have supporting 
evidences in literatures or databases [1-8, 10] and previous studies [11, 12]. The 
remaining 295 gene regulations are considered uncertain. 

From the gene regulations with supporting evidences, we found 60 multiple-
separate regulations by grouping those with the same target gene at the same time 
point (Table 1). For example, genes RHC18 and RAD27 activate gene MBP1 after a 
short delay, so their regulatory relation is represented by {+RHC18, +RAD27}(T) → 
+MBP1(T+1). For every pair of genes with known transcription factors, we also 
found multiple-combined regulations in which a target gene is not regulated by any 
single gene of the multiple regulators but by a combination of them (Table 2). 
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Table 1. Gene regulations with multiple-separate regulators in the yeast cell cycle. Two genes 
X and Y have individual regulatory relation with their target gene Z. 

{X, Y} → Z 
{+ABF1,+CAC2}(T) → +SWI6(T+1) 
{+MIF2,-ASF2}(T) → +GCN4(T+1) 
{+ASF2,+RLF2}(T) → +ABF1(T+1) 
{-ASF1,-ESC4}(T) → +MBP1(T+1) 
{+CBF2,+ESC4}(T) → -NDD1(T+1) 
{-HTA1,+HTA3}(T) → +SWI4(T+1) 
{-HTA1,-HHF1}(T) → +FKH2(T+1) 
{+RFA2,+POL2}(T) → +ABF1(T+2) 
{+CTF4,+DPB2}(T) → +ABF1(T+1) 
{-POL30,-RFC5}(T) → -DAL82(T+1) 
{-CDC2,-TOF1}(T) → +SWI6(T+1) 
{+CDC9,+POL1}(T) → -GCN4(T+1) 
{-PRI2,-POL2}(T) → -YAP7(T+1) 
{-POL12,-POL1}(T) → +MBP1(T+1) 
{-CDC2,-DPB2}(T) → +MBP1(T+2)  
{+GAS1,+EXG1}(T) → +SWI6(T+1) 
{+CWP1,+CWP2}(T) → +SWI4(T+1) 
{+EPT1,-LPP1}(T) → -INO4(T+1) 
{+LPP1,+PSD1}(T) → -INO2(T+2) 
{+CNM67,-SPC42}(T) → +SWI4(T+1) 
{+RHC18,+RAD27}(T) → +MBP1(T+1) 
{+RAD54,+RAD27}(T) → +SUT1(T+1) 
{+RAD54,+RHC18}(T) → +REB1(T+1) 
{-DUN1,+OGG1}(T) → +FKH2(T+1) 
{-DUN1,-UNG1 }(T) → +SWI6(T+1) 
{+RDH54,-UNG1}(T) → +SWI4(T+1) 
{+RAD5,+RAD51}(T) → +MET31(T+1)  
{-BNI4,+GIN4}(T) → +SWI4(T+1) 
{-MET13,+MET6}(T) → -GCN4(T+1) 
{+MET6,+MET14}(T) → -MET32(T+1) 

{+BNI4,-GIN4}(T) → -NRG1(T+1) 
{+MSB2,+GIC2}(T) → -DIG1(T+1) 
{+MSB2,+GIC2}(T) → -STE12(T+1) 
{+SRO4,+GIC2}(T) → +ABF1(T+1) 
{+MNN1,+OCH1}(T) → +SWI4(T+1) 
{+MNN1,+OCH1}(T) → +SKN7(T+2) 
{+MNN1,+PMT1}(T) → -NRG1(T+1) 
{+MNN1,+PMT1}(T) → +SWI6(T+1) 
{-QRT1,-PMT5}(T) → +MBP1(T+1) 
{-QRT1,-PMT5}(T) → -FKH2(T+2) 
{-PMT5,+PMT1}(T) → -MCM1(T+1) 
{+EMP24,+SEC28}(T) → +REB1(T+1) 
{+CWH41,+EXG1}(T) → +NDD1(T+1) 
{+CWH41,+EXG1}(T) → +FKH2(T+2) 
{-GAS1,+EXG1}(T) → +MBP1(T+1) 
{+PHO3,+PHO5}(T) → -FKH2(T+1) 
{+PHO3,+PHO5}(T) → +MSN2(T+2) 
{-MET1,-MET28}(T) → -NRG1(T+1) 
{+MET16,+MET17}(T) → +UME6(T+1) 
{+MET30,-CLB5}(T) → -RFC3(T+1) 
{-RNR1,-RNR3}(T) → -GCN4(T+1) 
{+BNI4,-BUD9}(T) → -SWI5(T+1) 
{+BNI4,+MSB2}(T) → +SKN7(T+1) 
{+BNI4,-GIN4}(T) → +MBP1(T+1) 
{+BNI4,-GIN4}(T) → +SWI6(T+2) 
{-BUD9,+MSB2}(T) → +SWI6(T+1) 
{-BUD9,+MSB2}(T) → +SWI4(T+2) 
{+MET6,+MET10}(T) → +MET4(T+1) 
{+MET6,+MET14}(T) → +CBF1(T+1) 
{+MET10,-MET28}(T) → +CBF1(T+1) 

  

Table 2. Gene regulations with multiple-combined regulators in the yeast cell cycle. The target 
gene Z is not regulated by any of X and Y individually, but only by a combination of X and Y. 

{X + Y} → Z 
{PHO2+SWI5} → BAS1 
{ORC1+SPG4} → NDE1 
{MNN1+ORC1} →SKN7 
{URA7+GRX7} → UBP14 
{SCJ1+SKY1} → HRB1 
{HTT2+APP1} → RIO2 
{RAD50+CAF40} → DDI3 
{HTZ1+GSH2} → HPF1 
{MNN1+ORC1} → SWI4  

{MNN1+PMT5} → NRG1 
{SWH1+PDR3} →APN2 
{PAH1+CTL1} → SGS1 
{CUP2+CUP9} → NDD1 
{ORC3+BOP2} → SUR4 
{MRP51+VPS30} → PRM4 
{SGO1+RPO31} → RET1 
{ESA1+SLY41} → ECM23 
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4 Conclusions 

This article presented the development of a method for reasoning dynamic gene 
regulatory relations from the time-series gene expression data. Unlike most methods 
that focus on finding regulations between individual genes, our method can identify 
regulations by single regulators and those by multiple regulators that work 
individually or in combination. From the time-series data of gene expression, it infers 
gene regulatory interactions and the temporal aspects of the regulatory interactions. 
The identified gene regulatory interactions and their temporal aspects are stored in the 
regulation list and visualized as a gene regulatory network. 

The methods for identifying gene regulations have been implemented as 
GeneNetFinder2. We tested GeneNetFinder2 on the yeast cell cycle data. In the  
yeast cell cycle data, GeneNetFinder2 identified 1,378 gene regulations, and 78.6% of 
them (1,083 regulations) were verified. Seventeen regulations involve multiple-
combined regulators, and 60 regulations have multiple-separate regulators. The 
approach of GeneNetFinder2 would be useful for identifying gene regulatory 
interactions of several types, especially those with multiple regulators that work in 
combination or individually, and for analyzing and refining known regulatory 
relations.  
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Abstract. Gene regulatory networks have been studied in the past few years 
and it is still a hot topic. This paper presents a different evolutionary method for 
inferring gene regulatory networks (GRNs) using a system of ordinary 
differential equations (ODEs) as a network model based on time-series 
microarray data. An evolutionary algorithm based on the additive tree-structure 
model is applied to identify the structure of the model and genetic algorithm 
(GA) is used to optimize the parameters of the ODEs. The experimental results 
show that the proposed method is feasible and effective for inferring gene 
regulatory networks. 

Keywords: Gene Regulatory Networks, Evolutionary Algorithms, Additive tree 
model, Ordinary differential equations, Genetic programming. 

1 Introduction 

With the development of biological technology and computer techniques, more and 
more methods and models for identifying GRNs are proposed. Erina Sakamoto used 
the ordinary genetic programming (GP) to identify the structures and the least mean 
square (LMS) to evolve the parameters of the ODEs [1]. Lijun Qian applied the GP to 
identify the structure of model and Kalman filter to estimate the parameters [2]. Vilela 
identified neutral biochemical network models from time-series data, combining 
Monte Carlo method to evolve the parameters [3]. Yang used flexible neural tree 
model to reconstruct the GRNs [4].  

In this paper, we propose a new hybrid evolutionary method to identify the GRNs 
using the system of the ODEs. We apply the evolutionary algorithm based on the 
additive tree model to identify the structures and the improved genetic algorithm to 
estimate the parameters in the ODEs. The partitioning method [5] is applied in the 
process of identifying the structure of the system. Each equation in the ODEs is 
separately inferred. 

The paper is organized as followed. We describe concrete methods in section 2 and 
perform two different experiments to validate our method in section 3. In section 4, 
discussions and conclusions are finally made.  



142 G. Li et al. 

 

2 Method 

2.1 Structure Optimization of Models 

2.1.1  The Introduction of the Additive Tree Model 
GP is a popular method to identify the structure of the system of the ODEs. But its 
encoding representation is complex and its running efficiency is low. So we evolve its 
encoding method and propose the tree-structure based evolution algorithm to identify 
the structure of the additive tree models [6]. To fit our needs, we encode the right-
hand part of the ODEs into an additive tree individual, as shown in Figure.1. 

 
Fig. 1. An additive tree model which represents an ODE 

In the generation of the additive tree, instruction and operator sets I0 and I1 are 
adopted as: I0 = {+2, +3, ..., +N}, I1 = F∪T = {∗, /, sin, cos, exp, rlog, x, R}  

Here F = {∗, /, sin, cos, exp, rlog } are the function sets and T = {x, R} are the 
terminal sets, where +N,∗, /, sin, cos, exp, rlog, x, and R denote addition, 
multiplication, division, sine, cosine, exponent, logarithm, system inputs, random 
constant number taking N, 2, 2, 1, 1, 1, 1, 0 and -1 arguments respectively. N is an 
integer number which is the maximum number of the ODE terms, I0 is the instruction 
set of the root node and I1 is the instruction set of other nodes.  

As the evolving process is so complex and time-consuming, we take the 
partitioning method in inferring the system of the ODEs. Through the use of the 
partitioning method, a candidate equation for a signal variable is integrated by 
substituting references to other variables with data from the observed time series [5]. 
Therefore each equation is evolved independently in parallel. 

2.1.2  The Process of Evolving the Structure of the ODEs 
Our structural evolutionary process is the standard evolutionary process. The genetic 
operators are adopted as followed. 

(1) Selection. We adopt EP-style tournament selection method to select the 
parents for the next generation.  

(2) Crossover. Through the comparison of the predefined crossover probability 
Pc and the randomly generated probability, we select two individuals to perform 
the crossover operation. And we randomly select one nonterminal node for each 
additive tree. Then we swap the selected subtree of these two individuals. 
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(3) Mutation. We have three different mutation operators to generate the next 
offspring from the parents.  

1) Randomly select a terminal node and replace it with another terminal node 
which is randomly selected from the T terminal sets, or replace it with a subtree 
which is randomly generated using the predefined generation method. 

2) Randomly select a functional node and replace it with a terminal node 
which is randomly selected from the T terminal sets. 

2.2 Fitness Definition 

In our study, fitness evaluation function is used in both structure and parameters 
optimization. As we infer the GRNs from gene expression time-series data, the sum of 
squared error (SSE) may be the optional fitness function, which is defined as: 
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where 
0t  is the starting time, tΔ  is the time interval, T is the number of all data 

points, )( 0 tktxi Δ+ is the actual time-series data of the i-th sample, and 

)( 0
' tktx i Δ+  is the actual evaluation value of the ODEs we finally infer. 

)( 0
' tktxi Δ+  

is calculated using approximate fourth-order Runge-Kutta method. 

2.3 Parameter Optimization of Models  

2.3.1  Encoding.  
Each equation as an individual can be represented as a vector with varying 
dimensions. As each equation has many different parameters and they will be changed 
with the evolution of the equation, we adopt floating point numbers to represent the 
parameters of the ODEs.  

2.3.2 Fitness Evaluation 
As we have already defined the fitness evaluation function above, we could adopt the 
same fitness function in the GA.. 

2.3.3.   The Process of Evolving the Parameters of the ODEs Using  
  Improved GA 

(1) Selection. In this paper, we adopt Roulette Wheel Selection method to select 
the individuals which have higher degree of fitness values for next generation. 

(2) Crossover and Mutation. In our study, we adopt the standard FGA operator 
method to generate our crossover and mutation operators. 
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2.4    Summary of the Proposed Algorithm 

As the construction and parameters of the ODEs are evolved separately, the 
construction optimization or the parameter optimization is performed while the other 
one stays the same. The procedure of the evolution of the ODEs can be described as 
followed: 

(1) Randomly initialize a population. 
(2) Structure optimization is performed using the additive tree models until we 

get the predefined generation. 
(3) Parameter optimization is performed using GA while the structure of the 

equation is fixed. 
(4) If the optimal solution is found, then stop; otherwise go to step (2). 

3 Experimental Results 

In our study, we select one biochemical system and one real GRN to confirm the 
effectiveness of our proposed method. We run our program in a PC with 2.00GHz 
Pentium Dual processor and 2 GB of RAM. Experimental parameters are summarized 
in Table 1. As GA algorithm is very time-consuming, we could adopt parallel genetic 
algorithm while referring the large network. 

Table 1. Parameters for experiments 

 Exp.1 Exp.2
Population size 50 200 
Generation 100 100 
Crossover rate 0.7 0.7 
Mutation rate 0.1 0.1 
Step size 0.01 0.01 
Data point  30 10 

3.1 E-Cell Simulation  

In our first experiment, we use the data of E-cell system which is a metabolic network 
and consists of three substances. E-cell simulation is a software package for cellular 
and biochemical modeling and simulation [7]. This metabolic network can be 
represented approximately as follows: 

311
1 xxk

dt

dx −=  

 
22311

2 xkxxk
dt

dx −=   (2) 

 
22311

3 xkxxk
dt

dx +−=
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Note that the parameters k1, k2 and k3 are unknown for the simulation experiment. 
We use three time-series datasets generated by E-cell system with different initial 
values for the experiment. Experimental parameters are shown in Table 1. By 
applying our method, we obtain the following equations: 

 
31

1 263.10 xx
dt

dx −=  

 
231

2 462.17576.9 xxx
dt

dx −=   (3) 

 
231

3 406.17583.9 xxx
dt

dx +−=  

The time-series data generated by Eq. (3) is shown in Fig. 2. The system of Eq. (3) 
gets the MSE (mean square error) is 1.628* 910 − . Through comparing two curves in 
Fig. 2, we can see that the models are almost identical to the target ODEs.  

 

Fig. 2. Time series of the acquired model for E-cell simulation 

We also have made further comparison to examine the effectiveness of our 
proposed approach with GP+RLS and GP+KF. Obviously, the parameters of our 
model are closer to the targeted model than GP+RLS and GP+KF. And the GP+KF 
need 1000 individuals while our initial population size is just only 50. 

Table 2. Obtained Parameters by GP+RLS[8],GP+KF[2] and Our Method 

 True value GP+RLS GP+KF Our Method
11w  -10.32 -9.64 -10.34 -10.263 

21w  9.72 13.42 8.87 9.576 

22w  -17.5 21.8 -17.42 -17.462 
31w  -9.7 -5.63 -9.74 -9.583 

32w  -17.5 12.64 17.15 17.406 

3.2 Regulator and Effector Gene Interaction Network 

In the next two experiments, we use our method for the S-system to infer the GRNs. 
The S-system [9] is a type of power-law formalism described as follows: 
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Where X is the vector of dependent variable, α and β are vectors of non-negative 
rate constants and g and h are the matrix of kinetic orders, n is the number of state 
variables or reactants Xi.  

To confirm the effectiveness of our proposed algorithm, we adopt the modeling of 
the dynamics of the small-scale gene network as a case study [10]. The parameters of 
the genetic network are given in Table 3. Experimental parameters are shown in  
Table 1. The used instruction set I0 = {+2, +3, +4}, F = {∗, ax}, and we get the 
inferred parameters for this model in Table 4. We can see that the parameters we 
obtained are very close to those in the original system. 

Table 3. Parameters of the genetic network system 

i 
iα  1ig

2ig  3ig 4ig 5ig  

1 5.0   1.0  -1.0 
2 10.0 2.0     
3 10.0  -1.0    
4 8.0   2.0  -1.0 
5 10.0    2.0  
 

iβ  
1ih 2ih 3ih 4ih 5ih  

1 10.0 2.0     
2 10.0  2.0    
3 10.0  -1.0 2.0   
4 10.0    2.0  
5  10.0     2.0 

Table 4. Parameters estimated by our method 

i iα  
1ig  

2ig 3ig 4ig 5ig  

1 4.839   0.865  -0.927 
2 9.896 1.826     
3 9.923  -0.839    
4 7.872   1.928  -1.162 
5 4.839    1.817  
 iβ  

1ih  
2ih 3ih 4ih 5ih  

1 9.726 1.792     
2 9.879  1.858    
3 9.916  -0.853 1.921   
4 9.861    1.932  
5  10.293     1.824 

4 Conclusion  

In this paper, we proposed a hybrid evolutionary method for referring GRNs. The 
experimental results show the effectiveness and accuracy of our proposed method. 
Our method has two advantages: (1) the evolved additive tree model is robust and 
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easy to analyze by using traditional techniques. Because the evolved additive tree 
model is simple in form, we can acquire the best structures of the ODEs only by a 
small population in referring the GRNs; (2) with partitioning, each ODE of the ODEs 
can be inferred separately and the research space reduces rapidly, so we can acquire 
the best system very fast.  
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Abstract. Support vector machines (SVM) are a widely used state-of-the-art 
classifier in molecular diagnostics. However, there is little work done on its 
overfitting analysis to avoid deceptive diagnostic results. In this work, we 
investigate the important problem and prove that a SVM classifier would 
inevitably encounter overfitting for gene expression array data under a standard 
Gaussian kernel due to the built-in large data variations from DNA 
amplification mechanism in the transcriptional profiling. We have found that 
SVM demonstrates its own special overfitting characteristics on array data, in 
addition to showing that feature selection algorithms may not contribute to 
overcoming overfitting, and discussing overfitting in biomarker discovery 
algorithm. 

Keywords: Support vector machines, Overfitting, DNA amplification, 
Biomarker. 

1 Introduction 

As a state-of-the art machine learning algorithm, the standard support vector machine 
(SVM) and its variants are widely employed in microarray and other omics data 
classification and biomarker discovery [1-3]. However, it often suffers from 
overfitting problem, which is a less addressed problem in machine learning 
community but plays an essential role in robust diagnostics in translational 
bioinformatics. The overfitting simply means that a learning machine loses its 
learning generalization capabilities. Although it may achieve some good results on 
some training data, it has no way to generalize to new testing data. Given its 
importance in omics data analysis and machine learning, SVM overfitting deserves a 
serious investigation [2]. In this work, we mainly focus on analyzing SVM overfitting 
by using benchmark microarray datasets, i.e., gene expression array data.  

As a special high-dimensional data, gene expression arrays can be represented as a 
n×m, nm  matrix X = [x

1
, x

2
x

n
]T after preprocessing, where each row represents a 

single sample (observation) that is a diseased or healthy subject, and each column 
represents a gene (variable). The number of genes is usually much greater than the 
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number of samples. Although there are a large number of genes, only a small number 
of them have meaningful contributions to data variations.  

The standard support vector machine (SVM) algorithm for microarray data 
classification can be described as follows, if we assume they are linearly non-
separable. Given a gene expression training dataset consisting of n samples across total 
m genes and corresponding label information 1{ , } ,d

i i ix c =  where X = [x
1
, x

2
x

n
]T , x

i
∈ m and 

c = [c
1
,c

2
c

n
]T , c

i
∈{−1,1},  the SVM algorithm calculates an optimal separating 

hyperplane O
h

: wT x+b = 0  in m  to attain the maximum margin between the '-1' 

(negative) and '+1' (positive) sample types. This is equivalent to solving the following 
quadratic programming problem: 

min
w ,ξ ,b

1

2
|| w ||2 +C ξ

i

i=1

n


s.t. c

i
(wT u

i
+ b) ≥1−ξ

i
, i =1,2n,

ξ
i
≥ 0

                                         (1) 

It employs a decision function f (x ') = sign( α
i
c

i
k(x

i
x ')+b)

i=1

n

  to determine the type of 

an unknown sample x '∈ m ,  where the vector α = [α
1
,α

2
α

n
]≥ 0  is the solution of the 

dual problem of the QP in Eq. (1) and k(x
i
x ')  is a kernel function mapping samples 

, 'ix x  into a same or higher dimensional feature space. Although different kernel 

choices are available, we focus on two most representative kernels: linear and 
standard Gaussian kernels (where bandwidth sigma is set as 1) due to their popularity 
in this work. The former and latter map two samples into a same dimensional or an 
infinite dimensional feature space respectively in SVM classification.  

In our studies, we have investigated SVM overfitting on microarray classification 
using six benchmark datasets, and had following interesting findings. First, contrary 
to a general assumption that a nonlinear decision boundary is more effective in SVM 
classification [1], we found that a SVM classifier will suffer from overfitting under 
Gaussian kernels and demonstrate their own characteristics. Second, we rigorously 
proved that SVM would inevitably encounter overfitting under a standard Gaussian 
kernel, besides demonstrating feature-selection algorithms maynot overcome it. Third, 
we provided that the biological reason for SVM overfitting, in addition to discussing 
the role of overfitting in biomarker discovery.  

This paper is organized as follows. Section 2 presents the details of SVM 
overfitting and conducts a rigorous kernel structure analysis. Section 3 demonstrates 
that the transform-based and filtering-based feature-selection algorithms are unable to 
overcome overfitting and improve SVM performance, besides investigating related 
biological reasons for overfitting. Finally, we discuss the role of overfitting in 
biomarker discovery and our ongoing and future work before concluding our paper.  
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2 Analysis of Support Vector Machine Overfitting 

We employ six benchmark data in our experiment, whose detailed information on 
these data can be found in Table 1 [3-8]. To demonstrate our results’ generality, we 
implement SVM for each dataset under a 50% holdout cross-validation (HOCV) 
model selection, where 100 trials of training and test data are randomly generated for 
each dataset. Compared to other model selections such as k-fold and leave-one-out 
cross validation (LOOCV), it has a large number of trials in training and test to obtain 
robust analysis results. Table 2 illustrates SVM performance under linear and 
Gaussian kernels on six datasets in terms of three classification measures and their 
standard deviations. It is interesting that overfitting can be easily detected from the 
complementary average sensitivities and specificities under the Gaussian kernel. For 
example, the average sensitivities for Stroma and Colon data are 100% and their 
corresponding average specificities are 0.0%. On the other hand, there is no 
overfitting associated with the ‘linear’ kernel, though the classification performance 
is far from the expectations from a molecular diagnostic viewpoint. The question is 
‘why does a SVM classifier encounter overfitting under the Gaussian kernel?’ We 
answer this question by conduct SVM kernel matrix analysis as follows. 

Table 1. Six benchmark gene expression array data sets 

Dataset #Genes #Samples 

 
Stroma 18995 13 inflammatory breast cancer + 

34 non-inflammatory breast cancer  
Colon 2000 22 controls + 40 cancers 
Medulloblastoma 5893 25 classic + 9 desmoplastic 
Prostate 12625 59 controls + 77 cancers 
BRCA1 

3226 7 BRCA1 mutations +15 non-BRCA1 mutations 
BREAST 

24188 46 breast cancer patients with distant metastasis within 5 year + 51 

breast cancer patients remain disease-free within 5 years 

Table 2. SVM classification results and standard deviations under the 50% HOCV 

Dataset Average Classification Rates (%) Average Sensitivity(%) Average Specificity (%) 

kernel:‘Gaussian’    

Stroma 72.70±06.48 100.0±00.00 00.00±00.00 

Colon 62.81±06.41 100.0±00.00 00.00±00.00 

Medulloblastoma 73.47±07.55 00.00±00.00 100.0±00.00 

Prostate 55.81±06.06 95.00±21.90 05.00±21.90 

BRCA1 65.82±12.20 98.00±14.07 02.00±14.07 

BREAST 47.25±05.08 69.00±46.48 31.00±46.48 

kernel:‘linear’    

Stroma 73.83±07.02 92.87±06.58 25.45±15.82 

Colon 80.74±07.20 87.46±07.38 70.91±16.67 

Medulloblastoma 78.18±09.72 48.23±31.49 95.68±19.34 

Prostate 91.37±03.20 90.37±04.36 92.78±05.80 

BRCA1 74.18±11.32 92.04±10.50 45.78±33.40 

BREAST 63.04±05.48 65.81±11.20 61.59±13.17 
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As an interface between input data and a learning machine, a kernel matrix 
contains all priori knowledge for an SVM classifier and derives its generalization 
bound. It is natural to turn to kernel matrices to analyze overfitting. Interestingly, we 
have found that SVM kernel matrices of all datasets are the identity or near identity 
matrices under the standard Gaussian kernel. A near identity matrix is a matrix whose 
diagonal entries are all ‘1’s but its non-diagonal elements are zero or approximately 
zero. Specially, we treat population data are viewed as the training dataset to calculate 
the kernel matrix, which includes all possible training samples in an SVM 
implemented by any cross validations. Obviously, such a kernel matrix not only 
makes an SVM lose its generalization, but also demonstrates special characteristics in 
classification.  

Figure 1 illustrates that all six Gaussian kernel matrices are identity or near the 
identity matrices. The sub-figure 1 in Figure 1 shows that the minimum values of all 
possible square distances between the samples 2

i jx x− are in the interval 7.501 11.687(2 , 2 ).  It 

is easy to find that any non-diagonal kernel entry is < exp(−23.136 )  for the prostate data, 
and they all are 7.501exp( 2 )< −  for the other five datasets. Such findings are further 
highlighted by the sums of non-diagonal entries in each kernel matrix (the sub-figure 
2), where the sums are zero for all five data except the prostate data. Although the 
non-diagonal kernel entry sum on prostate data is

≠

−×=
ji

ijk 410156.3 , the sub-figure 3 

shows there are only 18 lower-triangle elements 1010−>  in its kernel matrix i.e., the 
matrix is a near identity matrix with all eigenvalues equal to 1. 

Since an identity or near identity kernel matrices can only represent the concept of 
identity and have no way to generalize to other new data, it is the reason why an SVM 
classifier with the Gaussian kernel encounters overfitting. However, all linear kernel 
matrices are regular Gram matrices with a unique eigenvalue corresponding to each 
sample. The sub-figure 4 shows the eigenvalues of the linear and Gaussian kernel 
matrix of Prostate data, which indicates that their SVM kernel matrices are a normal 
matrix and near-identity matrix from an eigenvalue standing point.  

In fact, an SVM classifier will demonstrate special characteristics in gene 
expression array classification due to overfitting: it can only recognize the majority 
type of a training data no matter the type of a test sample. The following theorem 
states the special characteristic in classification and its proof is skipped for the limit of 
space. 
 
Theorem 1. Let X = [x

1
, x

2
,x

n
]T , x

i
∈ m  be a binary training dataset with label 

information: c = [c
1
,c

2
c

n
]T , { 1,1}ic ∈ − , drawn from a population microarray profile 

D ∈ N×m  (N>n), inputted to a SVM specified by Eq. (1) with a kernel ( )k x y⋅ . If the 

kernel term is zero or approximately zero, i.e., k(x
i
x

j
) ~ 0 for , ,i jx x D i j∀ ∈ ≠ , 

then, (1) the bias term in Eq. (1) 1 2

2

n n
b

n

−= , where 1 { | 1}i in c c= =  and 2 { | 1}i in c c= = − . 

(2) 'x D X∀ ∈ − , its class type can be determined by 1 2( ') ( )f x sign n n= − , i.e., 
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where ( ') 0f x = means SVM cannot determine the class type of 'x  and the 
corresponding classification rate will be zero  
 

Fig. 1. The sub-fig 1 (NW) shows that the minimum values of all possible square distances
between the samples; sub-fig 2 (NE) shows the sums of all kernel matrix non-diagonal entries; 
sub-fig 3 (SW) visualizes the non-diagonal entries 1010−> in the lower triangle Gaussian kernel 
matrix for the prostate data; sub-fig 4 (SE) displays the eigenvalues of the linear and Gaussian
kernel matrix of prostate data 

Note that choosing different sigma values instead of setting 1σ  in the Gaussian 
kernel still cannot avoid overfitting or increase classification performance. For 
instance, we selected the σ 2 value as the mean of non-diagonal elements in the kernel 
matrix for Colon and Medulloblastoma data and implemented SVM with the Gaussian 
kernel under 1000 trials of 50% HOCV. We had the following results: the average 
classification, sensitivity, and specificity and their STD are 0.689742±0.098169, 
0.932122±0.072402, 0.292699±0.257365 for the colon data; and 0.729882 
±0.078509, 0.012167 ±0.099167, 0.996115±0.047601 for the medulloblastoma data. 
They still encountered overfittting in spite the change of values of the sigma, and their 
kernel matrices are still identity or near the identity matrix. Similar cases also 
happened for the other data sets. 

3 SVM Overfitting under Feature Selection 

We have found that general feature selection algorithms can not overcome SVM 
overfitting. The feature selection algorithms range from statistical tests based filtering 
algorithms (e.g., t-tests) to transform-based feature selection techniques such as 
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principal component analysis (PCA), independent component analysis (ICA), 
nonnegative matrix factorization (NMF), and their different variants [9-11,4]. We first 
employed Bayesian two-sample t-test as a representative to investigate the impact of 
filtering-based feature selection algorithms on overfitting [12]. As such, we selected 
top 100, 50 and 10 differentially expressed genes ranked by it from each dataset, 
which will work as input data for an SVM classifier. We have found that the low-
dimensional data generally are unable to avoid overfitting under the standard 
Gaussian kernel for all three model selections: 100 trials of 50% HOCV, LOOCV, 
and k-fold CV (k=10). This result suggests that SVM overfitting seems to have less 
relationship with input data dimensionality. Moreover, we run each gene under an 
SVM classifier with the standard Gaussian kernel, and found that some single genes 
even suffered from overfitting under LOOCV also, that is, the SVM classifier can 
only recognize the majority sample type for this single gene.  

Note that selected top genes ranked by the Bayesian t-test show some level 
improvements in classification on some data under the linear kernel. However, the 
improvements are not consistent for all data. For example, SVM classification of the 
100 top-ranked genes, the average classification rate for Colon data is 83.97%, which 
is greater than the original 80.12% performance on full data. But the average 
classification rate of Prostate data is 85.75%, which is much less than the original 
91.37% level performance on its full data.  

Moreover, we have found that overfitting cannot be avoided or overcome through 
integrating SVM with transform-based feature selection algorithms. We implemented 
PCA-SVM, ICA-SVM and NMF-SVM algorithms in our experiments. Specially, we 
employed a 100% explained variance percentage (EVP) to conduct PCA feature 
selection, which is a ratio between the accumulative variance from the selected data 
and the total data variance. For example, the explained variance percentage ρ

r
 from 

the first r PCs is defined as,
1 1

/

r n

r i j

i j

ρ λ λ
= =

=  , where iλ  is the data variance on the thi  

PC. We employed a projected-gradient nonnegative matrix factorization (PG-NMF) 
and FastICA algorithm to implement NMF and ICA respectively for their fast and 
robust convergence [12,10]. The number of independent components (ICs) was 
selected as the dimension of the input data in ICA-SVM. The matrix decomposition 
rank is selected as 2 ~ 10r =  in NMF-SVM. Specially, the best average classification 
rate among the 9 rounds of 100 trials of classifications is counted as the final average 
classification rate for the NMF-SVM algorithm.  

We have the following findings based on our simulations. First, it seems that  
PCA-SVM, ICA-SVM, and NMF-SVM classifiers have no statistically significant 
advantages over SVM in performance under the liner kernel (data not shown). 
Second, it seems that none of them can be free from overfitting under the Gaussian 
kernel, though NMF-SVM may avoid overfitting on some datasets due to NMF’s 
parts-based learning mechanism occasionally. Table 3 includes the average 
classification rates, sensitivities, and specificities and their standard deviations of the 
three algorithms under the Gaussian kernel on three datasets. 
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It is clear that PCA-SVM and ICA-SVM overfittings are still rooted in the built-in 
large data variations between samples: 2|| || ,i jx x−  which are further amplified in the 

transform-based projections in following SVM classifiers. Finally, the exponential 
transform in Gaussian kernels causes distances between two different samples to be 
zero or approximately zero in the feature space such that the classifiers lose 
discriminant capabilities and encounter overfitting. Although NMF-SVM 
demonstrates potential in overcoming overfitting by avoiding this term involved in 
computing kernel entries, the NMF’s stochastic nature and high-complexity limit its 
consistency, stability, and its application to large datasets with more samples.  

Table 3. PCA-SVM, ICA-SVM, and NMF-SVM classification performance 

Dataset Average Classification Rates (%) Average Sensitivity (%) Average Specificity (%) 

pca-svm-gaussian 
   

Stroma 
72.70±06.48 100.0±00.00 00.00±00.00 

Medulloblastoma 
73.47±07.55 00.00±00.00 100.0±00.00 

BREAST 
47.25±05.08 69.00±46.48 31.00±46.48 

ica-svm-gaussian 
   

Stroma 
71.70±06.48 100.0±00.00 00.00±00.00 

Medulloblastoma 
73.47±07.55 00.00±00.00 100.0±00.00 

BREAST 
47.25±05.08 69.00±46.48 31.00±46.48 

 
nmf-svm-gaussian 

   
Stroma 

72.70±06.48 100.0±00.00 00.00±00.00 
Medulloblastoma 

82.18±08.99 58.98±27.03 91.98±08.11 
BREAST 

58.13±06.99 65.05±12.62 52.53±16.50 

 
Biological Root for Overfitting. Up to now, all our experimental results suggest that 
the large built-in variations between biological samples are responsible for SVM 
overfitting. The question is ‘which biological factors are responsible for the large 
built-in variations between biological samples?’ The answer is rooted in DNA 
molecule amplification process in transcriptional profiling technologies used in array 
technologies. DNA amplification techniques are essential for array expression data to 
detect cancers in a molecular level through monitoring gene expression changes. 
Microarray techniques generally amplify DNA molecules as targets for hybridization 
by quantitative polymerase chain reaction (PCR) amplification in the case of cDNA 
arrays, or direct synthesis in the case of oligonucleotide arrays [14]. The raw PCR 
fluorescence data is fitted into an exponential curve and the exponential nature of the 
quantitative PCR amplification determines the exponential increase of the biological 
sample expression variations in profiling [14]. Moreover, since all DNA and RNA 
molecules follow similar hybridization kinetics, a heterogeneous probe can 
simultaneously hybridize thousands of DNA sequences arrayed on a solid substrate in 
the microarray technology. The heterogeneous hybridizations mechanism contributes 
to the increase of the already exponentially amplified transcription signal variations 
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between samples. Thus, a microarray profile is characterized by large built-in 
variation between samples.  

4 Discussion and Conclusion 

In this work, we analyzed SVM overfitting on gene expression array data and 
theoretically proved that an SVM classifier will inevitably encounter overfitting by 
demonstrating special classification characteristics by only recognizing the majority 
type for any test samples. In addition, we demonstrated that general transform-based 
and filtering-based feature selection algorithms actually cannot contribute to 
overcoming overfitting effectively by integrating with an SVM classifier. In addition 
to pointing out the biological root of overfitting, we showed that SVM classifiers 
integrated with PCA, ICA, and NMF have same level performance in microarray data 
classification as the a standard SVM classifier. It is noted that single-gene overfitting 
can be employed to identify effective biomarkers for gene expression array data, if we 
view such overfitting as a gene-switch mechanism, i.e., a gene encounters overfitting 
means its gene switch ‘closed’ for providing meaningful diagnostic information. We 
designed a filter-wrapper biomarker identification algorithm by taking advantage of 
signee-gene overfitting to search biomarkers among the top-ranked genes without 
overfitting (algorithm details not shown). We applied it to medulloblastoma data and 
identified two biomarkers: NDP and CDC25A identified among 178 top-ranked non-
overfitting genes by using Bayesian t-test. The total SVM accuracy achieved under 
the two biomarkers achieves 97.06% with 100.0% specificity and 88.89% sensitivity, 
which is much higher than all previous at most 82% level classification. Moreover, 
both biomarkers were reported as meaningful gene markers related to brain tumor 
diseases in previous studies [15]. 

It is worthy to point out that simply changing Gaussian kernel parameters will not 
contribute to overcoming SVM overfitting. However, we would like to further 
investigate potential overfitting overcome algorithms by integrating improved NMF 
algorithms in support vector machine classifications. In the future work, we plan to 
employ sparse coding techniques or nonnegative parameter argument approaches to 
improve the generality and robustness of data representation in NMF and decrease the 
complexities of NMF by exploring embedding wavelet based multi-resolution 
techniques in NMF [16]. 
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Abstract. In the last decade many researchers proposed tools and methods for 
the automatic generation of synthetic biological devices with desired functions. 
However, advances in synthetic biology have been limited by a lack of 
frameworks meeting the essential requirements of standardization, modularity, 
complexity and re-use. The present work tries to cope with the standardization 
issue by the adoption of model exchange standards like CellML, BioBrick 
standard biological parts and standard signal carriers for modeling purpose. The 
generated models are made of SVP modular components. Model complexity 
includes more interaction dynamics than previous works. The inherent software 
complexity has been handled by a rational use of ontologies and rule engine.  
The database of parts and interactions is automatically created from publicly 
available whole system models. Built on this automatic modeling component, a 
genetic algorithm has been implemented, that searches the space of possible 
genetic circuits for an optimal circuit meeting user defined input-output 
dynamics. The system has been successfully tested on two test cases. This work 
proposes a new approach able of pushing forward the complexity managed by 
genetic circuits automatic design tools. 

Keywords: Biological system modeling, Design automation, DNA, Expert 
systems, Genetic algorithms. 

1 Introduction 

Historically, biology has made less use of a mathematical approach, compared to 
other scientific disciplines (such as physics and chemistry). However, biology is now 
closely linked to information science that tries to make up for this shortcoming by 
providing the typical results of biochemistry and molecular biology with a set of 
analytical and numerical tools, models, algorithms, and databases.  

The definition of standardized interfaces for genetic components (e.g. PoPs and 
RIPs) has led to the development of drag-and-drop tools, in which the components are 
taken from a palette and placed on the design for being connected with hypothetical 
wiring as can be seen in many software for the design of electronic circuits [1].  
One of the first tools of this kind is Biojade [2], followed by very flexible software, 
like TinkerCell [3]. An interesting approach to modularity has been achieved  
with Asmparts [4], which describes each biological component with a SBML file. 
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Also web applications like GenoCAD [5] appeared recently, which implements an 
algorithm of syntax check of the circuits designed [6]. 

In addition to aided design, tools for the automatic design and optimization of 
genetic circuits have appeared [7], also specifically for BioBrick systems [8][9]. They 
can assist the designer through the generation, storage, research and simulation of 
synthetic biological networks but with some limitations. The existing tools may not 
adopt standard signal carriers as PoPs and RiPs, may not accurately model the 
transcription and translation steps, may not take into account non genetic interactions, 
may use hypothetical components, may produce not exchangeable output, may be 
difficult to be configured or to be extended with additional biological parts, may not 
label the entities with standard identifiers, may not represents the parts as modules, 
may require the user to define the network topology. A sequence of biological 
components can be automatically transformed into a set of reactions, for the 
simulation of the resulting system. In most cases it is however necessary human 
intervention, for example to set the value of certain kinetic parameters. To our best 
knowledge no tool exists which does not show a couple of these limitations. 

This is the context of the present work, a tool named ARChITeCt (Automatic 
geneRation of genetic CIrcuiT models from biobriCk parts), which aims at building a 
system capable of generating gene networks that have desired input-output 
characteristics overcoming some of the limitations of the previous approaches.  

Moreover, our tool is the only capable of using a library of parts, dynamically 
generated from other system models available from public databases [10]. The tool 
automatically infers the chemical and genetic interactions occurring between entities 
of the repository models and applies them in the target model if opportune.  The 
repository models have to be modeled by a specific CellML standard, the Standard 
Virtual Parts (SVP) [11] formalism and the components have to be annotated with 
OWL for unique identifiers [12], or more in the future. We believe that this detail 
could foster the characterization of biological components [13][14]. 

The output of the automatic process is a sequence of readily composable biological 
components, deposited in the registry of parts, and a complete CellML kinetic model 
of the system. A stimulation protocol can be specified by CellML. The kinetic 
parameters are automatically extracted from the models in public repositories. 
Accordingly, a model can be generated and simulated from a sequence of BioBrick, 
without any human intervention.  

The major part of the existing tools applies only to very simple systems with a 
limited number of interaction dynamics. This is due to the exponential increase of 
complexity that arises from a more realistic scenario. Actual tools present a 
moderated degree of accuracy in the prediction of the behavior, principally due to the 
lack of consideration of many cellular factors [15]. Despite the advances in molecular 
construction, modeling and fine-tuning the behavior of synthetic circuits remains 
extremely challenging [16]. We tried to cope with this issue of scalability by means of 
ontologies coupled with a rule engine [17]. Model complexity includes more 
interaction dynamics than previous works, including gene regulation, interaction 
between small molecules and proteins but also protein-protein and post-transcriptional 
regulation. Ontologies are now pervasive in biomedicine [18] and represent a 
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powerful tool for the researchers working in this field. In fact, to achieve our goal we 
used OWL ontologies for the description of the domain and Jess rules for adding 
complex logic. Ontologies have been yet used in conjunction with CellML [19][20] 
and to address the problem of collaboration among system biologists [21][22]. 

A genetic algorithm can then search in the space of gene networks that better 
exhibit the desired input-output behavior. The system has been tested using the 
existing SVP models archive on the web for the generation of two sample systems. 

2 Material and Methods 

The search algorithm used is a genetic algorithm defined in such a way that the 
chromosomes represent real biological plasmids. The candidate solutions are 
transformed into a CellML model by an expert system, called MCE (Model 
Construction Engine). The engine adopts a hybrid strategy based on OWL and Jess 
rules. This choice allows the use of the many ontologies created for the world of 
molecular biology, to exploit the effectiveness of ontologies in the representation  
of the entities of a domain, but also exploits the flexibility and simplicity of 
implementation of Jess rules. The whole path from genotype to fitness can be 
summarized in the following steps: 

• The Genetic algorithm chromosome is translated into a syntactically checked 
sequence of biological genes on one or more plasmids; 

• The CellML models in the repository are translated in OWL ontologies and are 
joint to an intensive domain ontology; 

• The OWL ontologies are translated in Jess facts organized as triples; 
• Also the candidate biological system is represented as Jess triples; 
• The Jess engine uses OWL inference rules and domain rules to infer the occurring 

biological interactions; 
• The resulting system is represented as a modular CellML model; 
• An ode simulation of the model is compared to the target behavior to compute the 

fitness. 

Different versions of the genetic algorithm were implemented. The population is 
randomly initialized and then enters the evolutionary cycle. The first step is the 
determination of the value of fitness for each individual. In the elitist version the best 
individual is selected to be added back in the next generation. The genetic operators 
are single point crossover and mutation operators. Two different natural selection 
strategies have been tested: Weighted Roulette and Best Chromosomes. A given 
percentage of individuals is selected for the next generation, which is repopulated 
randomly to replace the non-selected individuals. The GA parameters have been 
settled based on heuristics and a trial and error process. The algorithm has been 
developed using the JGAP (Java Genetic Algorithms Package) framework. 
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2.1 Model Construction Engine 

The model construction step (Fig. 1) involves the reconstruction of the molecular 
dynamics, the process of transcription, translation, regulation of transcription and the 
interactions between chemical species, between enzymatic species and between 
chemical species and enzymatic species. This has to be contextualized to the host cell 
and quantified. The necessary information could be scattered in multiple models of the 
repository. Once logically reconstructed, the model has to be translated into a CellML 
model, in terms of components, variables, connections, sums of flows, flow equations, 
initial values and multiple encapsulations. This process normally engages an 
experienced researcher for many hours, combining different tools and data sources [23, 
24], both in the reconstruction phase and the implementation phase, not without 
generating errors and often severe headaches. In the transition from CellML to Jess an 
additional stage has been introduced: the introduction of a semantic layer based on 
OWL-DL. 
 

 

Fig. 1. The Model Construction Engine uses a combination of OWL ontologies and Jess rules 
to achieve its task. The transition between CellML to OWL and from OWL to Jess is performed 
by XSLT transformations. 

3 Results 

The architectural choices give important effects in terms of implementation 
complexity. The total code volume is high for the Java and C++ components, while it 
is limited for the remaining components, which actually enclose most of the 
complexity of the system. The Jess components are characterized by a high number of 
compact and fragmented rules.  

In the first testing scenario the BugBuster and ElectrEcoBlu iGEM project models 
were taken from the CellML repository and dropped in the ARChITeCt models 
repository folder. The target model is a hybrid system, which produces pyocianin, as 
ElectrEcoBlu [25], in order to be able to detect the output signal electrically, but 
which responds to the presence of pathogenic organisms, as in BugBuster [26], rather 
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than to pollutants. The system found several admissible solutions for the given design 
objective. The repressilator is an oscillatory synthetic gene network designed by 
Elowitz et al. [27]. The network has been implemented in the bacterium Escherichia 
coli and is obtained through three genes connected in mutual repression, in such a 
way that each gene represses the next gene in the circuit. The output of the model 
obtained by the Construction Engine Model includes 30 components, 23 import, 6 
equations, 24 variables, 56 connections and 2 units and takes some hours to be 
developed by hand but a few minutes with the aid of ARChITeCt. The Model 
Construction Engine processing time is strongly dependent on the dimensionality of 
the repository, and is in the order of a few tens of seconds. Also the phenotype length 
affects the elaboration.  

4 Discussion 

The MCE component proved to handle properly the automatic generation of the 
kinetic models of systems characterized by different mechanisms of gene regulation, 
interaction between small molecules and proteins but also protein-protein and post-
transcriptional regulation, and by means of PoPs and RIPs signal carriers. The logic 
required is enclosed in a few thousand lines of code.  The search algorithm has been 
able to identify optimal solutions in the formulated test cases. In the first test case 
there are biological components and interactions coming from two different models of 
the repository. The genetic algorithm showed sensitivity to parameter variations and 
premature convergence issues. A proper setting of the parameters, however, 
guarantees to obtain the optimal solution. The same configuration of the first test case, 
named ElectrEco-Buster, was valid in the Repressilator test case.  

ARChITeCt is the only system capable of generating a system directly from the 
sequence of its component parts which considers non genetic interactions. Only 
TinkerCell and ARChITeCt have a database of parts automatically populated. In fact, 
TinkerCell can connect to RegulonDB in order to get a qualitative list the parts and of 
their interactions, but also with the Standard Biological Parts knowledgebase (SBPkb) 
[28], which build on the previous work of the Provisional BioBrick Language 
(PoBoL) [29], but does not contain kinetic information. These databases are the result 
of a manual data insert. Only ARChITeCt automatically builds its knowledge base 
from whole system models. Finally, ARChITeCt is the only system that can harness 
the power of semantic knowledge representation and rule business logic modeling. 

5 Conclusion 

This work, which represents a proof of concept rather than a ready-to-use tool, based 
on what has been done by Cooling et al., offers an innovative way to the 
characterization of biological components. The intelligent system and the 
combinatorial optimization algorithm developed, allow the automatic design and 
automatic modeling of genetic circuits, based on the reuse of models built according 
to synthetic biology standards, and encourage the characterization of new biological 
components. This work also proposes a technological approach to handle the high 
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complexity and evolving nature of its biological domain, in accordance with 
technological standards already established in this field, such as ontologies. The 
creation of a web-based platform, built on ARChITeCt, that stores and makes 
available models of characterized biological components, for flexible sharing among 
researchers, represents the following development step. To make ARChITeCt usable 
in practice two factors should also be considered: robustness and biological 
feasibility. The delivered systems robustness with respect to parameter uncertainties, 
systemic uncertainties, noise, etc. should be included in fitness calculation, also 
through the use of multi-objective genetic algorithms; It is also important to enrich the 
rules, with constraints that ensure as much as possible the identified systems being 
biologically feasible. Finally, future reworks should adopt the more widely spread and 
interoperable SBML language, taking benefits of the recent introductions in the 
standard and of several  experiments [30], combining the knowledge coming from 
genomics, proteomics, transcriptomics and dynamical systems theory. Moreover with 
SBML it is possible to convert the SBML into multiple modeling approaches, e.g. 
ode, stochastic, flux balance, Boolean, whereas in CellML this is not possible. The 
tool source code is available at http://tinyurl.com/ky8mwrk . 
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Abstract. A FitzHugh–Nagumo (FHN) model with delayed coupling is 
considered to investigate the stability and oscillatory behavior of the solutions 
due to the coupling strength and delay. Two theorems of sufficient conditions 
are given to guarantee the stability and oscillation of the solutions by 
constructing of Liapunov functional and applying the Chafee’s limit cycle 
criterion. Computer simulations are provided to illustrate the correctness of our 
theoretical analysis. Some results in the literature about coupled FHN systems 
are extended. 

Keywords: coupled FHN model, equilibrium, instability, oscillation. 

1 Introduction 

It is well known that the FitzHugh–Nagumo (FHN) model with delayed coupling will 
exhibit rich dynamical behavior than a simplified version of FHN equation. In the 
past two decades, many researches have studied the various dynamical behaviors such 
as stability, oscillation, bifurcation and periodic solutions for different models [1-8]. 
In [1], the authors have investigated the effects of time delay on bifurcation and 
synchronization in two synaptically coupled FHN neurons as follows: 

( )( )

( )( )

31
1 1 1 1 2

1
1 1 1

32
2 2 2 2 1

2
2 2 2

tanh ,

,

tanh ,

.

dv
v av w c v t

dt
dw

v b w
dt

dv
v av w c v t

dt
dw

v b w
dt

τ

τ

= − + − + −

= −

= − + − + −

= −
                     

(1) 

where ( )1v t  and ( )2v t  represent the transmembrane voltages, ( ) ( )1 2,w t w t  

model the time dependence of several physical quantities related to electrical 
variables. Some bifurcation diagrams are obtained numerically or analytically from 
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the mathematical model and the parameter regions of different behavior are clarified. 
Fan and Hong extended model (1) to two delays system: 
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 (2) 

The authors regarded the delay 1 2τ τ τ= +  as a parameter to investigate the 

stability and bifurcation to the model (2). They have shown that under certain 
assumptions the steady state of the model is asymptotically stable. Under another set 
of conditions, there is a critical value of the parameter, the steady state is stable when 
the parameter is less than the critical value and unstable when the parameter is greater 
than the critical value [2]. Zhen and Xu have consider a three coupled FHN neural 
system with one delay as follows [3]: 
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 (3) 

where ( )( ) ( )1,3,5if u t iτ− = are sufficiently smooth sigmoid amplification 

functions such as ( )tanh x  and ( )arctan x . The method of Lyapunov functional 

is used to obtain the synchronization conditions of the neural system. While Murza 
[4] has discussed the oscillation patterns in a symmetric network of modified FHN 
neurons. The author described the building block structure of a three-dimensional 
lattice shaped as a torus, and identify the symmetry group acting on the coupled 
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differential systems located at the nodes of the lattice. By means of the explicit 
expressions for eigenvalues and eigenvectors, the existence of limit cycles arose from 
the Hopf bifurcation which depends on the interneuronal couplings is shown. 
Motivated by the above models, in this paper, we will discuss the following n coupled 
FHN model: 
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 (4) 

Where ( ), , , 1,3,5, , 2 1i i i ic d i nβ ε = − , and ( )2 1,2, ,ib i n=   are constants, 

0 1iε<  .  

By means of Chafee’s criterion: If a class time delay system has a unique unstable 
equilibrium point, all solutions of this system are bounded, this system will generate a 
limit cycle. Namely, the system has a non-constant periodic solution. We will 
investigate the existence of periodic solutions for model (4). 

Preliminaries 

The linearization of system (4) about the zero point leads to the following 
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The matrix form of system (6) is as follows: 

 ( ) ( ) ( )'U t PU t QU t τ= + −  (6) 

where ( ) ( ) ( ) ( ) ( )1 2 3 2, , , , ,
T
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. 

Lemma 1. Suppose that matrix ( )A P Q= +  is a nonsingular matrix. Then, system 

(6) has a unique equilibrium point. 

Proof. An equilibrium point 1 2 3 2, , , ,
T

nU u u u u∗ ∗ ∗ ∗ ∗ =    is the solution of the 

following algebraic equation: 

 0PU BU AU∗ ∗ ∗+ = =  (7) 
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Assume that U ∗  and V ∗  are two equilibrium points of system (7), then we have 

 ( ) ( ) ( ) 0P U V Q U V A U V∗ ∗ ∗ ∗ ∗ ∗− + − = − =  (8) 

Since A  is a nonsingular matrix, implying that 0U V∗ ∗− =  and U V∗ ∗= . This 
means that system (6) has a unique equilibrium point. Obviously, this equilibrium 

point is exactly the zero point. Noting that the activation function ( )tanh u t  is a 

monotone increasing function, and only ( )tanh 0 0= . This implies that system (4) 

has only a unique equilibrium point. 

Lemma 2. Suppose that the constants ( )2 0 1, 2, , , 0,0 1i i ib i n d ε> = < <  , 

and ( )2 4 0 1,3,5, , 2 1i ic d i n+ < = − . Then all solutions of system (4) are 

bounded. 

Proof. Note that the activation function ( )tanh u t  is continuous nonlinear function, 

and ( )tanh 1u t ≤ . Since 0id <  and ( )2 4 0 1,3,5, , 2 1i ic d i n+ < = − , this 

implies that there exist constants 0ik >  such that for any values iu  we have 
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From (4) we get 
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 (10) 
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Noting that (10) is a first order linear differential system. Since 2 2 10, 0i ib k −> >  

( )1, 2, ,i n=  , it is easy to know that the eigenvalues of system (10) are negative 

as ( ) ( ) ( )2

2 2 1 2 1 2 2 1

1
4 0 1,2, ,

2 i i i i ib k k b i nε− − −
 + − − > =   ; or are complex 

numbers with negative real parts as ( ) ( )2

2 2 1 2 1 2 2 1

1
4 0

2 i i i i ib k k b ε− − −
 + − − <   

( )1, 2, ,i n=  . Thus, all solutions of system (10), as well as the system (4) are 

bounded based on the theory of the first order linear system of differential equations 
with constant coefficients. 

2 Stability and Oscillations of the Solutions 

In this paper, we adopt the following norms of vectors and matrices [11]: 
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= , where E  is the identity matrix, which for the 

chosen norms reduce to ( ) ( )2
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Theorem 1. Suppose that ( )A P Q= +  is a nonsingular matrix, and the eigenvalues 

of matrix A  are less than zero. Constants ( )2 0 1, 2, ,ib i n> =  , 0id < , 

0 1iε<  , 0 iβ<  and ( )2 4 0 1,3,5, , 2 1i ic d i n− < = − . And 

 ( )2 1 2 1 2 2 11 , 1,2,3, , .i i i ik b i nβ ε− − −> + > =   (11) 

Then the trivial solution of system (4) is stable. 

Proof. Under the assumptions, the zero point is a unique equilibrium point of model 
(4). We shall prove that all solutions converge to the trivial solution as t  tends 

toward to infinity. Noting that ( )0 1,3,5, , 2 1i i nβ< = − . Consider the 

Liapunov functionals as follows: 
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Note that ( )( ) ( )tanh i iu t u tτ τ− ≤ − , thus, 
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Calculating the upper right derivative ( )2 1iD V t+
−  of ( )2 1iV t−  along the solutions 

of (4), using (9), we get 
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and 
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ε+

− −= ≤ − + =   (13) 

Let [ ]1 2 2, , ,
T

nV V V V=  , then we have 

 ( )D V A U t+ ≤ . (14) 

Since all eigenvalues of matrix A  are less than zero, this means that 0D V+ < , 
implying that all solutions converge to the trivial solution. 

Theorem 2. Suppose that ( )A P Q= +  is a nonsingular matrix, constants 2 0ib > , 

( )1, 2, ,i n=  , 0id < , 0 1iε<  , and 2 4 0i ic d+ <  

( )1,3,5, , 2 1i n= − . In addition that 

 ( ) ( )( )exp 1Q e pτ τ μ− > . (15) 

Then all solutions of system (4) are oscillatory. 

Proof. Under the restrictive condition, system (4) has a unique equilibrium point, and 
all solutions of system (4) are bounded. We shall prove that the unique equilibrium 
point is unstable. From (4), we have 
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Let ( ) ( )2

1

n

ii
v t u t

=
= , then ( ) 0v t ≥  for any 0t >  and system (16) can be 

rewritten as a matrix form 

 
( ) ( ) ( ) ( )dv t

P v t Q u t
dt

μ τ≤ + −  (17) 

Consider the scalar delay differential equation 

 
( ) ( ) ( ) ( )dz t

P z t Q z t
dt

μ τ= + −  (18) 

According to the comparison theorem of differential equation, there exists a 0t∗ > , 

such that ( ) ( ) , ,v t z t t t t τ∗ ∗ = ∈ +  , and ( ) ( ) ,v t z t t t τ∗≤ ≥ + . We claim 

that the trivial solution is unstable under the assumptions. If this is not true, then the 
characteristic equation associated with (18) given by 

 ( )P Q e λτλ μ −= +  (19) 
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Will have a real non-positive root say 0λ∗ < . Thus, e e
λ τλ τ
∗∗− = , from (19) one 

can obtain 

 ( )Q e P
λ τλ μ
∗

∗ ≥ −  (20) 

Therefore 

 
( )

( )( ) ( )

( )
1

pPQ e eQ e

P P

λ τ μ τμ τλ τ τ

λ μ λ τ μ τ

∗
∗ +−

∗ ∗
≥ =

+ +
 (21) 

Using formula ( )e e
λ τ λ τ
∗

∗≥ , from (21) we have 

 

( )( ) ( )

( ) ( ) ( )1

pP

P
Q e e

Q e e
P

λ τ μ τμ τ

μ τ
τ

τ
λ τ μ τ

∗ +−

−
∗

≥ ≥
+

 (22) 

Inequality (22) contradicts (15). Hence, the trivial solution is unstable. Based on the 
Chafee’s criterion, system (4) generates a limit cycle. Namely, there exists an 
oscillatory periodic solution. 

3 Computer Simulations 

Example 1. In system (4), Let 6n = , Consider a six coupled FHN system. 

We first select the parameters as follows: 1 1.48c = , 3 1.55c = , 5 1.75c = , 

7 1.65c = , 9 1.35c = , 11 1.65c = ; 1 8.95d = − , 3 7.58d = − , 5 6.65d = − , 

7 6.68d = − , 9 4.8d = − , 11 5.5d = − ; 1 1.25β = , 3 1.45β = , 5 0.45β = , 

7 0.55β = , 9 0.35β = , 11 0.85β = ; 1 0.085ε = , 3 0.095ε = , 5 0.105ε = , 

7 0.102ε = , 9 0.098ε = , 11 0.085ε = ; 2 0.45b = , 4 0.26b = , 6 0.45b = , 

8 0.28b = , 10 0.38b = , 12 0.45b = , time delay selected as 1.5τ = . Thus, the 

conditions of Theorem 1 are satisfied. The trivial solutions of this system are 

convergent (see Figure 1). When the parameter values are selected as 1 0.27c = , 

3 0.58c = , 5 0.89c = , 7 0.68c = , 9 0.62c = , 11 0.65c = ; 1 0.95d = − , 

3 0.58d = − , 5 0.65d = − , 7 0.68d = − , 9 0.8d = − , 11 0.5d = − ; 1 0.55β = , 

3 0.85β = − , 5 0.95β = , 7 0.45β = − , 9 0.85β = , 11 1.35β = − ; 

1 0.085ε = , 3 0.095ε = , 5 0.075ε = , 7 0.098ε = , 9 0.09ε = , 
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11 0.092ε = ; 2 0.25b = , 4 0.16b = , 6 0.24b = , 8 0.18b = , 10 0.28b = , 

12 0.24b = , time delay selected as 0.8τ = . It is easy to check that the conditions of 

Theorem 2 are satisfied. The trivial solutions of this system are oscillatory (see Figure 
2). To our knowledge, no results about such oscillation analysis of six coupled FHN 
model were appeared in the literature. Thus, our criterion is new method. 

 

Fig. 1. Covergence of the solutions for a six coupled FHN system, delay: 1.5 

 

Fig. 2. Oscillation of the solutions for a six coupled FHN system, delay:0.8 
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4 Conclusion 

This paper discusses an any n coupled FHN neurons model in which the synaptic 
strength of self-connection for each neuron is different. Two theorems are provided to 
determine the stability and  periodic oscillatory behavior of the solutions based on 
constructing of the Liapunov functional and the Chafee’s criterion of limit cycle. 
Computer simulations illustrate the effectiveness of our criteria. 
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Abstract. A restrained optimal perturbation method is proposed to study one-
dimensional variable coefficient backward inverse heat conduction problem. 
We determine the initial temperature distribution from final measurement data. 
Owning to the ill-posedness of this problem, a regularization term is introduced 
in the objective function, which based on the thought of regularization 
technique. And we give a brief description about the application in Genetic 
regulatory networks. Numerical experiments show that the method is feasibility 
in the determination of initial condition.  

Keywords: Genetic regulatory networks, backward heat conduction problem, 
restrained optimal perturbation method, finite difference method. 

1 Introduction 

As we all known, evolution partial differential equation can be used in heat diffusion 
procedure, ocean acoustic propagation, physical or mathematical systems with a time 
variable and processes that behave essentially like heat diffusing through a solid. In 
this paper, we aim to solve a kind of inverse problems of evolution equation. 

Inverse heat conduction problems appear in many important engineering science 
and technological fields, and they have been applied to obtain accurate thermal 
quantities such as surface temperatures, heat flux distributions, heat sources, thermal 
conductivity and heat transfer coefficients [1] and so on. These problems have been 
studied by many authors and many different methods have been applied to solve the 
inverse heat conduction problems [2-10]. However, in many dynamic heat conduction 
situations, it is also necessary to calculate the initial temperature with some 
temperature measurements given at time 0t T= > , this is usually referred as the 
backward heat conduction problem (BHCP). Generally, it is severely ill-posed and it 
belongs to inverse heat conduction problems. There have been many approaches 
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developed for solving the BHCP, such as regularization techniques [14,15], fictitious 
time integration method [17], iterative boundary element method [1,16], finite 
difference method [18], finite element method [12], quasi-reversibility method [19], 
and other methods[11,13,20]. 

In this paper, we consider the backward inverse problem in the reverse process of 
heat transfer equation. Inspired by the conditional nonlinear optimal perturbation 
(CNOP) method, which is proposed by Mu.M et al. [21,22], we propose a restrained 
optimal perturbation method to estimate the initial temperature.  

This paper is organized as follows. In the next section, we will present the 
mathematical formulation of the BHCP. We will use the finite difference 
approximation to discrete the space derivative in section 3, with transforming the heat 
conduction problem into the system of ordinary differential equations (ODEs). In 
section 4, we will give a brief description of the restrained optimal perturbation 
method and apply it to solve the BHCP, and the spectral projected gradient algorithm 
is used to obtain the optimal perturbation. In the fifth section, we give the sensitivity 
analysis of the initial problem. In section 6, an outline how the retrained optimal 
perturbation method was used to solve the genetic regulatory networks is listed. In the 
last section, numerical experiments will be given to investigate the applications of this 
method, and we give numerically test for the stability of this method. The conclusion 
and discussion are presented in section 7. 

2 Mathematic Formulation of the Inverse Problem 

In this section, we will consider the variable coefficient backward heat transfer 
problem governed by the equation 

2

2

( , ) ( , )
( )

u x t u x t
c t

t x
ρ α∂ ∂=

∂ ∂
， ,10 ≤≤ x  Tt ≤<0 ,                 (1) 

with the initial condition 

( ,0) ( )u x f x= , 10 ≤≤ x ,                             (2) 

and the boundary conditions 

(0, ) (1, ) 0u t u t= = , Tt ≤<0 ,                            (3) 

where the constants 0ρ > , 0c>  are density and specific heat of the material 

respectively, ( )tα  is the known thermal conductivity. The direct heat problem aims 

to determine the temperature distribution ( , )u x t  for a given boundary heat status and 

an initial temperature distribution. The inverse problem is to approximate the initial 
temperature ( )f x with the overspecified data at time t T=  as follows: 

( , ) ( )u x T g x= ， 0 1x≤ ≤ ,                             (4) 

in which ( )g x  is considered as a known function. 
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3 Finite Difference Approximation 

We divide the interval [0,1]  into M  mesh points with spatial step size 1/h M=  in 

the x  direction, and mesh points ix  are given by ,  0,1, 2ix ih i M= =  , where 

M  is an integer number.  
Consider the central difference with respect to the space derivative in equation (1), 

we have the following semi-discrete equation: 

1 1
2

( ) ( ) 2 ( ) ( )
( )i i i iu t u t u t u t

c t
t h

ρ α + −∂ − +
=

∂
,                       (5) 

where ( )iu t  is the approximation of  ( , )u ih t . 

If we note 1 2 1( ( ), ( ), , ( ))T
MU u t u t u t−=  , and apply equation (5) to all the 1M −  

interior mesh points of the interval [0,1] , the problem (1)-(3) can be replaced by the 

system of ordinary differential equations (ODEs) as following: 

( )
U

F U
t

∂ =
∂

,                                    (6) 

0 0tU U= = ,                                     (7) 

in which ( ) ( )F X t AXα=
 

, 0 1 2 1( , , , )T
MU f f f −=  , and (0, ]t T∈ , where F  is a 

linear operator, the matrix A  is of order 1M − , and will be given by 

2

2 1 0 0 0 0 0

1 2 1 0 0 0 0
1

0 0 0 0 1 2 1

0 0 0 0 0 1 2

A
chρ

− 
 − 
 =
 

− 
 − 




       



. 

4 A Restrained Optimal Perturbation Method 

4.1 A Brief Introduction 

In this section, we will give a brief introduction to the restrained optimal perturbation 
method. Assuming that the mathematical model is as following: 

( )
U

F U
t

∂ =
∂

,                                       (8) 

0 0tU U= = ,                                        (9) 

in which 1 2 1( ( ), ( ), ( ))T
MU u t u t u t−=  , F  is a nonlinear (or linear) operator, and 

( , ) [0, ]x t T∈Ω× , Ω  is a domain in nR  and T < +∞ , 0U  is the initial estimate 
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value which can be obtained from the long experience value. Supposing R  is the 
propagator from 0  to time T , hence, for the fixed point 0T > , the solution 

0( , ) ( )( )U x t R U T=  is well defined. Let ( , )U x t  and ( , ) ( , )U x t u x t+  be the solution 

to problem (8)-(9) with initial estimate value 0 0U u+ , where 0u  is the initial 

perturbation. We have 

0( ) ( )( )U T R U T= ,                                   (10) 

0 0( ) ( ) ( )( )U T u T R U u T+ = + .                            (11) 

So ( )u T  describes the evolution of the initial perturbation 0u . The perturbation 

0u δ  is called the optimal perturbation, if and only if 

0
0 0( ) min ( )

u
J u J uδ = .                               (12) 

It must satisfy the following condition: 

0 0( )( ) ( )E R U u T G Tδ δ= + − ≤ ,                      (13) 

here, the error E  is sufficiently small, where )(TG  are discrete values of the 

observational data. 
Generally, the inverse problem belongs to ill-posed problem, in order to 

overcoming the difficulty of ill-posedness, a regularization term is introduced in the 
objective function, so 0( )J u  can be defined as 

0 0 0 0 0( ) ( )( ) ( )( )J u R U u T R U T Uλ= + − + ,                    (14) 

where 0λ >  is a regularizing parameter. 
The above constrained optimization minimum value problems can be transformed  

into the following Lagrangian problem:  

0
0 0 0 0( ) min ( ) ( )( ) ( )

u
J u J u R U u T G Tδ μ= + + − ,                 (15) 

where 0μ >  is a Lagrange multiplier. 

In this paper, spectral projected gradient (SPG) algorithm is adopted to solve the 
above Lagrangian problem, and the detailed description of this algorithms can be 
found in Birgin et al. [23,24]. 

4.2 Application of This Method 

Now, we will use restrained optimal perturbation method to determine the initial 
distribution. 

Firstly, the Euler scheme is adopted to solve the ordinary differential equations 
(ODEs) (6), the time interval (0, ]T  is divided into N  small cells equally and let the 



 A Restrained Optimal Perturbation Method for Solving a Kind of Inverse Problem 179 

 

time step size k T N= . The notation jU  are used for the approximations of the 

( )U jk , so we have the following scheme 

1 ( ),j j jU U kF U+ = +                                 (16) 

where 1 2 1( ( ), ( ), , ( ))j T
MU u jk u jk u jk−=  , and for 1,2, ,j N=  . 

Secondly, we give the initial estimates for the initial values 0U , as the description 

of restrained optimal perturbation method in section 4.1, and our aim is searching for 

0u δ . In this paper, the discrete values of the additional condition are 

1 2 1( ) ( , , )T
MG T g g g −=  . 

When we find out the 0u δ , the initial estimates 0U  plus 0u δ  can be treated as 

the initial values, then inverse heat conduction problem is changed into the direct 
problem. 

5 Stability Analysis 

In this section, we give the sensitivity analysis of the initial problem. 
Firstly, we introduce the inner product in Hilbert Space 2 ( )H L= Ω , which 

defined as 

 ( , )u v uvdx
Ω

=  , (17) 

and the corresponding norm is  

 
1 1

22 2( , ) ( )u u u u dx
Ω

= =  . (18) 

Next, we define the operator 

 
2

2

u
Lu

x

∂= −
∂

, 0 1x≤ ≤ , (19) 

then equation (1) can be written as 

 ( ) 0
u

m t Lu
t

∂ + =
∂

, (20) 

 
0

(0)u u= , (21) 

in which, 
( )

( ) 0
t

m t
c

α
ρ

= > . 

To check the sensitivity, we also need to introduce the following lemma firstly. 
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Lemma 1. The solution of problem (20)-(21) satisfies the following a priori error 
estimate: 

0
( ) ,u t u≤

 
[0, ]t T∀ ∈ .                             (22) 

Proof. Multiplying equation (20) by ( )u t , we get 

( , ) ( ( ) , ) 0
u

u m t Lu u
t

∂ + =
∂

.                              (23) 

Considering the boundary condition, we have 

1

2

0

( ( ) , ) ( )( , ) ( ) ( ) 0
u

m t Lu u m t Lu u m t dx
x

∂= = >
∂ .                 (24) 

By using the Cauchy-Schwarz inequality, we obtain 

21
( , ) 0

2

u
u u u u

t t t

∂ ∂ ∂= = ≤
∂ ∂ ∂

,                      (25) 

thus 

 0u
t

∂ ≤
∂

, (26) 

Integrating equation (26) from 0  to t , it is not difficulty to get the estimate 

 
0

( ) (0)u t u u≤ = . (27) 

Finally, we briefly discuss about the dependence of the solution on the continuous 
initial values. Giving the initial condition a small perturbation *

0u , the corresponding 

solution denotes as *u . Therefore, the equation (20)-(21) can be rewritten as: 

 
*

*( ) 0
u

m t Lu
t

∂ + =
∂

, 0 t T< ≤ , (28) 

 * *
0(0)u u= . (29) 

then, we have the following corollary: 

Corollary 2. Suppose we have *
0 0u u ε− ≤ , here 0ε > , then the following results 

holds 

 * ( ) ( )u t u t ε− ≤ . (30) 
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Proof. We denote *
0 0 0u u uδ = − , *( ) ( )u u t u tδ = − , from (20), (21), (28), (29), we 

can obtain the problem  

 ( ) 0
u

m t L u
t

δ δ∂ + =
∂

, (31) 

with the initial condition 

 0(0)u uδ δ= . (32) 

From lemma 1, we get 

 0u uδ δ ε≤ ≤ . (33) 

6 An Outline of the Application in Genetic Regulatory 
Networks 

Genetic regulatory networks is the system that contain DNA、RNA、protein and 
other small molecule and the interaction and influence with each other. The aim of 
genetic regulatory networks analysis is build a mathematic model and research the 
interrelationships between the molecules.  

Now, there are many tools using in genetic regulatory networks, such as directed 
graphs [25], Boolean networks [25,26], Bayesian networks [25,27], differential 
equations [25,29], stochastic equations [29] and so on. Directed graphs and Boolean 
networks are simple models, so the simulations are qualitative and rough. Bayesian 
networks is a probability model, it can quantitatively and randomly describe the 
regulatory networks. Differential equations can quantitatively and exactly predict the 
whole system. Though stochastic equations can give an exact simulation, it seldom 
uses in practical application because of the computation difficulty. Here we give two 
differential equation models and illustrate the reasons why restrained optimal 
perturbation method can be used in genetic regulatory networks. 

The first model is an ordinary differential equation: 

 ( )i
i

dc
f c

dt
= , 0 1i≤ ≤ . (34) 

This equation is always called kinetic equation or rate equation. Here, 

1 2[ , , ] 0T
nc c c c= ≥  are the concentration of different components, : n

if R R→  

are nonlinear functions. In most cases, nonlinear equations can better describe the real 
situation of the organism, so we often consider ( )if x  are continuous, differential and 

monotonical increasing functions. The simplest example is sigmoid function or 
hyperbolic function. The simplest ordinary differential equation model is: 

 
1

p
i

ij j i
j

dc
c b

dt
ω

=

= + , (35) 
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where ijω  indicates how much the level of gene j  influence gene i , ib  is a 

constant bias term and it model the activation level of the gene in the absence of any 
other regulatory input.  

In equation (35), knowing the parameters ijω  and the initial condition, we can 

give an exact description to the regulatory networks. But ijω are usually unknown, 

then we can use the experimental dates to estimate the parameter, this is the so-called 
reverse engineering. On the other hand, we find that equation (35) are the same with 
the model, which the restrained can be used to solve, so we can infer that ROP can be 
used to solve the genetic regulatory networks. 

The second model is a partial differential equation as following: 

 
2

2
( )i i

i i

c c
f x d

t x

∂ ∂
= +

∂ ∂
, 1 ,  1i n x l≤ ≤ < < , (36) 

on the boundary 0x =  and x l= , suppose no diffusion occurs, then the boundary 
can be  

 
2 2

2 2
(0, ) ( , ) 0i ic t c l t

x x

∂ ∂= =
∂ ∂

. (37) 

Equation (36)-(37) is a reaction diffusion equation [25] and is similar to heat 
conduction equation, so the restrained optimal perturbation method can also be used 
to solve the problem. 

7 Numerical Examples 

In this section, we do some numerical implementations on the restrained optimal 
perturbation method by giving two examples, numerical results are presented for 
small values of the final time, we take 0.1,  0.2T = . 

7.1 Example 1 

We consider the backward heat conduction problem with the following given data 

 ( ) sin( )t tα = , ( , ) sin( )exp(cos( ))u x t x tπ= . (38) 

Giving cρ π= = , 0.1h = , 0.001k = , with a uniform mesh containing 100N = , 

we give the initial estimate 0 0( ,0)[1 ( )]U lu x ran xδ= + , where the ( ) ( 1,1)ran x ∈ −  for 

[0,1]x∈  is standard random numbers, (0,1)l∈  is a constant, 0δ  is the percentage 

of noise. The initial estimate value, optimal perturbation, numerical solution and the 
exact solution are given in Figuers 1-2. 
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Fig. 1. The left figure shows the exact results and numerical results for the solution ( )f x  

when 0.78λ = , 50μ = , 0.90l = , 0 0δ = . The right figure shows the exact results and 

numerical results for the solution ( )f x  when 0.80λ = , 50μ = , 0.90l = , 0 0.08δ = . 
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Fig. 2. The left figure shows the exact results and numerical results for the solution ( )f x  

when 0.80λ = , 40μ = , 0.80l = , 0 0.20δ = .  The right figure shows the exact results and 

numerical results for the solution ( )f x  when 0.80λ = , 40μ = , 0.85l = , 0 0.15δ = . 

7.2 Example 2 

Since there are no theoretical results available about the stability of this method 
proposed, we give numerical stability analysis of the solution with respect to the 
random noisy data 

 *
1( , ) [1 ( )] ( , )u x T ran x u x Tδ= + , (39) 

where ( ) ( 1,1)ran x ∈ −   for [0,1]x∈  is the standard random number, ( , )u x T  is the 

exact final value obtained by solving the direct problem and 1δ  is the percentage of 

noise. Now we consider the noisy input data for this example, other given data are as 
in example 1, and we give 200N = , the results are given in Figure 3. 
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Fig. 3. The left figure shows the exact results and numerical results for the solution ( )f x  

when 0.60λ = , 50μ = , 0.90l = , 0 0δ = , 1 0.05δ = . The right figure shows the exact 

results and numerical results for the solution ( )f x  when 0.85λ = , 40μ = , 0.85l = , 

0 0δ = , 1 0.15δ = . 

8 Conclusion 

In this paper, we considered the backward heat conduction problem and proposed to 
determine the initial temperature by the restrained optimal perturbation method firstly, 
based on the initial estimate. The stability test of the numerical solution were 
illustrated and shown that our method is useful and effective, and this algorithm can  
be used to solve the nonlinear and two-dimensional inverse problem. 
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A Knowledge-Guided Approach for Inferring Gene 
Regulatory Networks 
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Abstract. In the reconstruction of gene regulatory networks (GRNs) from time 
expression data, a reverse engineering approach is often adopted to reproduce 
possible fitting models of GRNs. However, two major tasks must be underta-
ken: one is to optimize the accuracy of inferred network behaviors; and the oth-
er is to designate valid biological topologies for target networks. To achieve the 
above two goals, this work presents an integrative modeling framework that 
combines knowledge-based and data-driven input sources to infer gene regula-
tory networks. Experiments have been conducted to validate the proposed ap-
proach. The results show that our framework can successfully infer solutions.  

Keywords: reverse engineering, systems biology, knowledge-driven, structural 
correctness, optimization. 

1 Introduction 

The purpose of developing a computational framework to infer GRNs is to elucidate 
the causality of gene expression processes to generate new possible pathways. To 
achieve these objectives, biologists employ modern high-throughput experimentation, 
e.g., DNA microarrays, to capture a large number of regulatory interactions among 
genes in a time-series format. The temporal measurements are thus made available to 
be the input of a mathematical function. Ideally, the above data-driven inference 
should be able to apply the gene expression data to model GRNs and would at  
the same time characterize both the magnitude of the genetic interactions and the 
scaffolding of the network [1]. In practice, however, the parameter values of a compu-
tational model cannot provide detailed guidance regarding a biological system,  
because the information on genetic processes that is recorded by the time series is 
mainly implicit [2]. Therefore, scientists now advocate inferring the computational 
models by integrating knowledge-based data (i.e., prior knowledge datasets, PKDs) 
into the original modeling methods [3].  

To construct the correct pathways, biological scientists have collected prior know-
ledge datasets as precisely as possible, regarding the gene functions, the causal links, 
and the partial topology of the biological systems (e.g., [4, 5]). Although PKDs still 
contain different degrees of data inconsistency on account of the various experimental 
settings and purposes, these databases serve as useful resources for providing the 
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structural relationships as a practical guideline for inferring genetic networks. There-
fore, applying qualitative behavior that is obtained from PKDs to network modeling 
has been considered to be a complementary strategy to construct the genetic dynamics 
in a way that has biological meaning.  

In this study, we propose an integrative framework that exploits the advantages of 
knowledge-based and data-driven inference strategies to derive a computational mod-
el of gene regulatory networks. The goal of this procedure is not only to fulfill the 
deficiencies of prior research on knowledge-based GRN modeling but also to have a 
better understanding of how to exploit the existing literature and bio-software, to help 
us to build a comprehensive framework. To validate the proposed approach, we used 
different datasets taken from the literature to examine and demonstrate how our ap-
proach operates in practice. 

2 The Proposed Method 

2.1 PKD Source Selection and Data Pre-processing 

The first step of a knowledge-based approach is to select the prior knowledge  
resources. Without losing generality, in the following we take the network of yeast 
DNA repair genes as an example to explain how the proposed framework works.  

Once the target network and the dataset are determined, the source of PKDs from 
the existing literature is then selected. For this dataset, we can exploit the software 
YeastNet version 2 [6] as the main source of genetic structures of yeast DNA repair 
genes. The software has calculated confidences in pair-wise genetic interactions  
from the collected databases, and it suggests 102,803 linkages among 5,483 yeast 
genes. 

To form the regulatory network of DNA repair genes and construct useable prior 
knowledge, we can reference two benchmark papers, including [7] and [8], then  
incorporate genes labeled ‘repair’ into a regulatory network according to the biologi-
cal function. Furthermore, based on this network, we can use YeastNet to build  
the connection relationships (i.e. an adjacency matrix) among the chosen genes.  
Once the matrix for the genes is built, the procedure of constructing desired  
prior knowledge, which includes 71 paired connections in the network, is then 
 completed. 

2.2 Mapping Knowledge onto the Computational Model 

In the GRN modeling, equations are often used to represent the network structure and 
to describe some extent of simplicity of chemical dynamics. To date, one of the most 
prominent and well-researched ordinary differential equations (ODEs) models,  
S-system, has been considered suitable to characterize the gene regulations [9]. It 
consists of a set of tightly coupled ODEs, in which the synthesis and degradation  
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process are approximated by the power law functions. The corresponding S-system 
model can be described as follows: 

, ,

1 1

 =  -  ,  

                       

i j i j

N N
g hi

i j i j
j j

dX
X X i

dt
α β

= =

∀∏ ∏
synthesis degradation

                            (1) 

In the above equation, Xi is the expression level of gene i and N is the total number 
of genes in a genetic network. The parameters αi and βi∈[0, 10] are rate constants; gi,j 
and hi,j∈[-3, 3] are kinetic orders that reflect the interactions from gene j to i in the 
synthesis and degradation processes, respectively.  

To simplify the task of network inference, Maki et al. [10] proposed an efficient 
strategy to decouple the above tightly coupled model into N independent differential 
equations, each of which refers to one gene. In general, the most advantageous feature 
of S-system for parameter estimations is that the range of kinetics can be set either by 
a default or an indicative search range representing the intensity and the regulatory 
relationship. In the first case, if the structural information remains unknown, we can 
then set gi,j and hi,j within the default range: usually [-3, +3]. In contrast, if knowledge 
can indicate some structural interactions, the kinetics can be identified within a specif-
ic range or an exact value. For instance, if the regulation from gene j to gene i has 
been known as a positive relationship, then the range of its kinetics is set into (0, +3]. 
The kinetics value is set to zero if the regulation does not exist.  

Before going through the process of knowledge mapping, we firstly exhibit how 
the components of S-system can be used to represent a network topology. Figure 1a 
shows the visualized topology transformed from the adjacency matrix constructed. In 
the graph, we take gene UNG1 (with a link toward OGG1), as an example to illustrate 
the network topology. The corresponding pathway diagram is expressed in Figure 1b. 
As shown, the input magnitude (flux-in) of UNG1 may be affected by OGG1  
(i.e. gung1, ogg1), and this is the synthesis process of UNG1 (equation 2). Mean-
while, the output magnitude (flux-out) of UNG1 depends on the concentration level of 
UNG1 (i.e. hung1, ung1) and may be affected by OGG1 (i.e. hung1, ogg1) as well. 
They are depicted in equation 3. The concentration of UNG1 at the next time step is 
determined by a calculation of the magnitude of synthesis minus that of degradation 
(equation 4). Similarly, a larger example from the perspective of OGG1 in Figure 1c 
with the same computation process can be completed through equations 5 to 7. 
 

ung1, ogg1 

1 1 OGG g
ungsynthesis process α=S                (2)

ung1, ung1 1, 1

1 1 1 UNG OGG ung oggh h
ungdegradation process β=D              (3)

1UNG  - 
•

= S D                        (4)
ogg1, ung1 ogg1, msh2 ogg1, 6

1 1 2 6 UNG MSH MSH mshg g g
oggsynthesis process α=S      (5)

ogg1, 1 ogg1, ung1 ogg1, msh2 ogg1, 6

1 1 1 2 6  OGG UNG MSH MSHogg mshh h h h

oggdegradation process β=D     (6)

1OGG  - 
•

= S D                       (7)
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Fig. 1. Network topology for the S-system representation 

2.3 PKD Modeling Algorithm Using the Reverse-Engineering Approach 

To infer numerical values for the kinetic orders in S-system, an efficient reverse-
engineering approach is needed. Here, we adopt the hybrid GA-PSO approach, (de-
scribed in our previous work [11]) which combines two optimization procedures, 
genetic algorithm and particle swarm optimization, to exploit their respective advan-
tages. In this study, we implement the PKD modeling algorithm with the GA-PSO 
approach to train the decoupled S-system by a proposed objective function as below.  

fobj(i) = MSE(i) + Structure(i),  for i = 1, 2, 3, …, N               (8) 

In the above equation, the first part of the function is the mean squared error 
(MSE) of gene i over the time period t. The second part of the objective function is to 
prioritize a preferred network topology for an inferred GRN model in which the esti-
mated skeletal structure can dovetail with the structure given by prior knowledge. 
With the structural priority defined in the proposed objective function as the guidance 
for the skeletal structure, the computational algorithm is able to find a preferred net-
work structure that is in accordance with the suggested structure (prior knowledge). In 
this way, a target network structure can be derived during the process of evaluating 
candidate structures.  

3 Experimental Results and Discussion 

To validate the proposed framework, we performed different sets of experiments to 
exploit the PKDs modeling algorithm. Due to the space limitation, here we take a 
small popular artificial network as an example to illustrate how the proposed frame-
work works. In this set of experiments, our method was employed to model the  
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five-node artificial network ([12]) from a time series data profile of thirty simulation 
time steps. The genes in the network had the relationships below: 
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Following the procedure of the PKDs modeling algorithm (section 2), without los-
ing generality, we assumed that the genetic relationships mentioned above can be the 
prior knowledge and serve as the source information. The knowledge was used to 
build an adjacency matrix to describe connection relationships of this network. Then, 
the algorithm mapped the connection relationships and constraints onto the kinetic 
orders of the S-system. After that, the GA-PSO approach was activated to infer the 
gene expression profiles and the numerical values of kinetic orders according to the 
proposed objective function (i.e. equation 8). Thirty independent runs were con-
ducted; each of which continued for 1,500 iterations with a population size 800. 

After the runs of inferring GRN models were performed, the algorithm summed up 
the numerical values in the parameter sets for the S-system, in which 50 parameters 
(i.e., gi,j and hi,j) of each run were analyzed. The numbers of runs in which the para-
meters gi,j and hi,j violated the structure priority were then calculated (due to the space 
limitation, the details of these violations are not shown here).  

To determine a final inferred model with the desired kinetic orders, there are two 
model selection strategies used. First, if there were some runs in which all parameters 
fitted the suggestion about the connection relationships, and then the model with the 
lowest MSE value was chosen. Second, if there was no single run that can produce a 
model to fit the structural suggestion for all genes (this usually happens in a real data-
set), drawing on the nature of a decoupled S-system, the algorithm chose to take the 
best structural fitting model with a desired MSE (i.e. smaller than the threshold) of 
genes in different runs. In this set of experiments, the first strategy was adopted. 

Figure 2 compares the inferred (produced by the selected model) and target gene 
expression profiles (i.e. network behaviors), in which the behavior of the inferred 
model (left) is almost identical to that of the target network (right). In addition, a 
comparison between the values of the chosen and expected kinetic orders was made 
and the results are shown in Table 1. As can be seen, very similar values can be ob-
tained by the proposed approach. 

 

Fig. 2. Overview of the network behaviors of the five-gene artificial network 
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Table 1. Comparison of kinetic orders between the inferred and the expected numerical values 

The above results show that, the most important contribution of our framework is to 
discover the plausible pathway diagram(s) (see Figure 3), which can be drawn through 
the inferred kinetic orders (Table 1). Taking this five-gene network as an example, we 
can find that although the final inferred GRN model coordinated with the expected struc-
tures perfectly, and therefore the plausible pathways of the model were consistent with 
those of the expected model, there were still some gene regulations (i.e., gi,j or hi,j) out of 
the preferred connection relationships. Further examination shows that g3,1 and g3,4 were 
against the suggestion in 2 and 9 runs out of 30 runs, respectively. Under such situation, 
in considering the plausible pathways of a network, one needs to keep in mind that there 
are two possible scenarios behind the diagram(s) as described below. 

First, in spite of fitting all genetic relationships of the inferred model, some kinetic or-
ders still deviated from the preferred topology given by the prior knowledge. The reason 
is that it is easier to the inferred models to meet the targeted network dynamics by behav-
ing this way. In this case, one can examine the unfitted kinetic orders by looking into the 
biological meanings of the corresponding genes. These unfitted topologies are perhaps 
essential for the further in vivo experiments. Second, if the final inferred model did not 
match all the genetic relationships, the existence of some links can thus not be sure. 
These links were in contravention of the expected structures. One possible solution to 
such a situation is to give a threshold for looking into these most unfitted genes and for 
considering whether to design new experiments in terms of biological context. 

Obviously, this set of experiments lies in the first scenario. Since the artificial data-
set was used, we considered the suggested topology is equal to the ‘true’ topology. 
Hence, g3,1 and g3,4 were regarded as the parameters which tried to capture the target 
network behaviors. We thus discarded additional analyses of these two genes. These 
results demonstrated that if we derive connection relationships from the existing bio-
logical knowledge and directly encode the information in the form of topology con-
straints to prioritize the search solutions, then the meaningful solutions corresponding 
to similar network behaviors can be obtained. In this way, the inferred kinetic orders 
will suggest some attempts at new experimental design. These results indicated the 
effectiveness of the presented framework that has successfully integrated the PKDs 
into the GA-PSO network modeling approach with an objective function weighting 
both the curve-fitting and the structural priorities. 

 

Gene-id i gi,1 gi,2 gi,3 gi,4 gi,5 hi,1 hi,2 hi,3 hi,4 hi,5 αi βi 

1 
(expected)

(inferred) 

0 0 1 0 -0.1 2 0 0 0 0 15 10 

0 0 0.9926 0 -0.1221 2.0013 0 0 0 0 14.0093 9.2967 

2 
(expected)

(inferred) 

2 0 0 0 0 0 2 0 0 0 10 10 

2.0000 0 0 0 0 0 2.0000 0 0 0 10.0000 10.0001 

3 
(expected)

(inferred) 

0 -0.1 0 0 0 0 -0.1 2 0 0 10 10 

0 -0.0934 0 0 0 0 -0.0951 2.0064 0 0 10.1508 10.1553 

4 
(expected)

(inferred) 

2 0 0 0 -1 0 0 0 2 0 8 10 

1.9963 0 0 0 -0.9903 0 0 0 1.9632 0 8.1886 10.2462 

5 
(expected)

(inferred) 

0 0 0 2 0 0 0 0 0 2 10 10 

0 0 0 2.0000 0 0 0 0 0 2.0000 10.0000 10.0000 
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Fig. 3. Overview of the pathway diagram of the five-gene artificial dataset 

4 Conclusion 

The need of integrating the knowledge-based and data-driven inference strategies has 
been emphasized and addressed in order to construct network models with both cor-
rect network structures and behaviors. This study proposes a systematic framework 
that combines the strength of both knowledge and data to construct the ODEs network 
model. Experiments have been reported to validate the proposed approach. The results 
show that the knowledge-driven modeling approach is able to derive the parameter set 
implied by the available biological meanings and to reconstruct the corresponding 
gene expression profiles. The results confirm that the proposed approach can take 
advantages of using PKDs to interpret the network regulatory relationships. 
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Abstract. Alopecia is a research focus in clinical dermatology. Compare with 
other skin diseases diagnosis, it is a tough task to measure the effects of hair 
treatment. In the paper, we propose a framework for hair analysis and mea-
surement based on digital image, which includes hair numbers in the region of 
interested, hair diameter and hair length. Several techniques are considered in 
our research: an improved classical iterative thresholding method for hair image 
segmentation motivated by divide and conquer design paradigm, skeleton  
extraction method for hair counting, and curvature analysis method for cross 
hair partition. Experiments are performed to demonstrate the effectiveness and 
robustness of our system.  

Keywords: Hair counting, Hair measurement, Iterative thresholding method, 
Skeleton extraction, Image segmentation, Gauss Curvature. 

1 Introduction 

Hair loss is very common that most of the time it is considered a normal variation and 
not a disease. Most people lose about 50 to 100 head hairs a day. These hairs are re-
placed — they grow back in the same follicle on your head. If you're losing more than 
that, though, something may be wrong. The medical term for hair loss — losing 
enough hair that a person has visibly thin or balding patches — is alopecia [1]. Hair 
counting and measurement is an important part to discriminate alopecia from hair 
normal physiology variation. 

Researchers began hair loss measurement from 1983. All of them majored  
in choosing valid region and analysis method in medical. At first, they selected sam-
ple hair region and observed the hair organization cell through microscope [2].  
In 1996, Courtois M et al [3] reported the data using phototrichogram method in 10 
male subjects, balding and non-balding, by observations at monthly intervals over a 
period of 8-14 years. In 2002, Amornsiripanitch invented a new method to measure 
all parameters of hair cycles which called DIHAM (Digital Image for Hair Analysis 
and Measurement). The method would help identifying the defects of hair cycle in all 
men and women. These defects could be monitored in general follow up, in specific 
treatment and in research to find a better hair cycle control factors. In addition, expe-
riment shows that more than 320 hairs per image cannot be measured with 100% 
reproducibility by hand [4]. 
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Hairs’ magnification in the image is different with camera parameters setting. For 
example, there are about 400 hairs in a 1600*1200 image, and also hair number can 
change to 30 with the same resolution. Influenced by hair magnification, a robust 
image segmentation algorithm is necessary. There are many image segmentation algo-
rithms in the current, such as threshold method, level set method, k-means, watershed, 
and so on. Among them, threshold method is chosen with less parameter, more effi-
cient and less manual intervention. In our paper, we proposed an improved iterative 
thresholding method for hair image segmentation, and also give a proof for our im-
provement. For hair counting, a simple way is hair thinning through skeleton selec-
tion, which records the two ends of single hair and also the cross-points of crossed 
hairs. For hair measurement, crossed hairs are separated based on Gauss Curvature 
considering image noises.  

Aside from the introductory section, the remainder of this paper is organized in five 
sections. Section 2 is devoted to an improvement iterative thresholding method for 
hair region segmentation. Hair counting and measurement is explained in section 3 
and 4. We guarantee the performance of our system by experiments in section 5. Fnal-
ly, section 6 draws the conclusion and our future works. 

2 An Improved Iterative Thresholding Method 

2.1 Iterative Thresholding Method and Convergence Analysis 

The iterative selection method proposed by Ridler and Calvard [5] is based on a two-
classes segmentation problem. At iteration n, a new threshold nT  is established using 

the average of the interested object and the background class means [6]. The iterations 
termination is decided by the changes nn TT −+1 . When the change is sufficiently small, 

the current 1+nT is the two-class segmentation threshold. Leung and Fam [7] and Trus-

sel [8] realized two similar methods. Yanni and Horne [9] improved initialization of 
threshold by the two assumed peaks as 2/)( minmax1 ggT +=  where maxg  is the high-

est nonzero gray level and ming is the lowest one. Level set method is based on the 

curve evolution with a speed from initial defined curve to totally disappearing. Sup-
pose the initial arbitrary curve as two class separation boundary, it can be recorded by 
an initial threshold 1T , and in the method threshold changes from 0~1T . Compared 
with level set method, the solution space of iterative thresholding method is 
from 11 ~ +nTT , and actually it is a very narrow space. The discussion and convergence 
analysis of thresholding method is in the following.  

Consider the two-classes image segmentation. The initial threshold 
is 2/)( minmax1 ggT += , and it is 2/)( )()( nnn GGT −+ +=  after nth iteration, 

where )(nG+ and )(nG−  are the mean gray value of ROI intra-region and its extra-region  
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respectively. Iteration terminates when the changes 2/)()(1 nnnn GGTT −++ Δ+Δ=−  is 

near to zero. )(nG+Δ and )(nG−Δ are calculated as follows. 
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where, I is pixel gray value with its coordinate ),( yx , and ΔΩΔG is the mean gray 

value in evolutional region in nth iteration. Similarly, we can get  
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As iteration, the interested object region is reduced gradually until object is sepa-
rated from its background by the current threshold. Suppose object gray value smaller 
than background in range [0~255], we know 0)( ≤− ΔΩ+ GG n , and also 0)( ≤− −ΔΩ nGG . 

So 0)( ≤Δ + nG and 0)( ≤Δ − nG . We summary formula (1) and (2) to get 
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Suppose −+ Ω≤Ω , which means object region in image is smaller than its back-

ground region. We get 
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(4)

When 0→ΔΩ , the threshold descends near to zero, and when +Ω→ΔΩ , 

imageΩ→ΔΩ+Ω− )( . If we want to expand the segmentation threshold range, one way 

is that we can change the ratio between +Ω and −Ω which means to increase propor-
tion of object region in the image.  

2.2 An Improved Iterative Thresholding Method 

In our research, we proposed an improved iterative thresholding method. We divides 
the original image into n blocks, choose one block of them to keep the original color 
and others are masked with pixel RGB value (0, 0, 0). A new image is created. The 
new image is executed via the iterative thresholding method. In our pipeline, number 
of n new images are created and processed via segmentation algorithm orderly. The 
segmentation threshold will reduce rapidly as we expect. Our algorithm is illustrated 
in Figure 1.  
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Fig. 1. Illustration for our proposed algorithm. Input image is divided into n parts. There are n 
images are segmented via iterative thresholding method (ITM) orderly. Lastly, we combine 
them as one image. 

In the improved algorithm, the segmentation parameter is the block number n. In 
order to divide an image into n parts, integer n is factorized as the product of two 
numbers with a constraint given by: 

integerandnn

nnntosubject

nnminimize

0, 21

21

21

>
×=

+
                     (5) 

In hair images, we found that many hairs crossed together, and also pseudo-cross 
phenomena were caused by image segmentation. Figure 2 in the following shows an 
example of hair segmentation results. We can see the contours evolution with n set-
ting. Other results will be illustrated in experiments. 

 

 
Fig. 2. Isocontours plot of image segmentation with n blocks. A is the original hair image, and 
B, C, D show the segmentation results with n=0, n=2, and n=4 respectively. 

3 Hair Counting  

How many hairs are in the region of interested (ROI)? The similar computer aided 
problems are involved in blood cell image recognition, crop seed detection in obser-
vation area, human face recognition, etc. For the problem of hair counting, there are 
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several situations as usual: single hair, double hairs crossed, and three or more hairs 
crossed. One method is to partition them one by one, and then to count number of 
objects. It is a complex problem to segment hairs into partitions with single hair one 
by one exactly. Instead of it, a simple way is to find intersection points in each labeled 
hair region. If returned number of intersection points was zero, it means that a single 
hair lies in the region. Similarly, we can know how many hairs are in each partition.  

Skeleton preserves 2D or 3D shapes topological and size characteristics of the orig-
inal. Binary image skeleton solves the problem of intersection points via junction 
points in hairs’ skeleton. In this technique thinning algorithms reduce binary images 
to their skeletons by an iterative shrinking process in which each contour pixel is 
analyzed. If certain removal criteria are satisfied, that pixel is deleted. In our frame-
work, we mainly refer to Alexandru Telea’s approach [10], which is an improvement 
of fast matching method (FMM) through an arbitrary boundary parameterization. It is 
robust and efficient with respect to noisy boundaries for endpoints and junctions of 
the skeleton. So the total hair number in ROI is the sum of total junctions number plus 
the total single hair number. One example of hair skeleton and counting is show in 
Figure 3. In labeled region a, hair number is 4, and in regions b, c, d, e, hair number is 
3, 4, 3, 2 respectively. 

 

Fig. 3. Hair counting via junction points in skeleton. Image A is the original image with hair 
regions labeled with a, b, c, d and e, and right part is the process of labeled regions in steps 
image segmentation and junction points’ detection in skeleton. 

4 Hair Segmentation and Measurement 

Hair measurement helps doctors to analyze the biological parameters of hair growth, 
which includes hair diameter and hair length basically. It is observed that only half 
hairs are single, nearly half hairs are double crossed together, and seldom hairs are 
three or more crossed together. For single hair, we can get its diameter and length 
through minimum ellipse labeling. Hair diameter equals to the shortest ellipse axis 
and hair length equals to the longest ellipse axis. For crossed hair, we take double 
crossed case as an example to illustrate our algorithm.  
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To begin with, we quote the definition of curvature K in the plane curve [11] as fol-
lows: 

2/322 ]),(),([
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σσσσσ
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+
−=  (6)

Where ),()(),( σσ uguxuX  ⊗= , ),()(),( σσ uguxuX  ⊗= , ),()(),( σσ uguyuY  ⊗= , 
and ),()(),( σσ uguyuY  ⊗= . ⊗ is the convolution operator, while ),( σug  denotes a 
Gaussian of widthσ , and ),( σug , ),( σug are the first and second derivatives of 

),( σug  respectively. The partition point on the contours is the point with minimum 
curvature, which is a negative quantity.  

A line crossing through two contour points is the partition border. The first point 
with minimum curvature lines on the contour, and it is necessary to find another 
point. We have calculated the junction via skeleton algorithm and we can fit a straight 
line between two points (partition point a and junction point b). This line has intersec-
tion points with contour. We select the right point d as another partition point.  
Because point d and point a should be located on both sides of point b. Figure 4 
shows the process of line fitting. 

 

Fig. 4. Illustration of border partition via line fitting. Image A shows the processing of straight 
line fitting, and Image B shows the partition result. 

The process for crossed hair partition as two steps in the following: 

Step 1: Curvature calculated 
In the step, we extract the edge contours from the edge-map, and fill the gaps in the 

contours. Then compute curvature at a low scale for the contour. 
Step 2: Line fitting 
It is to find the minimum curvature and its contour points. Line fitting is done be-

tween two points: contour points and junction point. We calculate all intersection 
points and their position relation. Make sure the right point as another contour points, 
and partition crossed hairs with three points. 

5 Results and Evaluation 

To demonstrate the performance of our research, experiments were done on an Intel 
Dual Core Processor 1.66GHz computer with 2G memory. Hair image database was  
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provided by Ellead Company in Korea. First, we show the image segmentation results 
using our proposed algorithm. Second, hair counting and measurement results were 
shown via the comparison with manually counting. Third, for hair measurement per-
formance are tested also via the comparison with manually partition.  

5.1 Hair Segmentation Experiments 

As we mentioned in section 2, pseudo-cross phenomena are caused by image segmen-
tation. An example is shown in Figure 5. Actually, hairs inside the black rectangle are 
two single hairs, but they are crossed after image segmentation. Skin color is influ-
enced by light and hair shadow. The properties of refraction and reflection make skin 
darker around hairs. In special cases, parts of hair roots are hidden under the skin. Our 
proposed algorithm can avoid the problem as much as possible. In hair images, it is 
the common situation that hairs are close together without crossing. In the example, 
the segmentation threshold reduces from 105 to 80 in gray value [0~255].  

 

Fig. 5. Image segmentation. Left image is the original image, middle image is pseudo-cross 
phenomena, and left image shows the correct result with our proposed algorithm. 

5.2 Hair Counting Evaluation and Measurement 

The hair counting results through our proposed method (P.M.), and the manual evalu-
ation (M.E.) as well as the absolute and relative differences are shown in Table 1.  
The absolute error is controlled below 6, and relative error is about below 10%.  
Hair width and hair length are the average of all single hair with pixels measurement. 
The crossed hair measurement is only a reference when a doctor focuses on one hair 
region as his case study. The test data and its’ results were listed in Figure 6.  

In automatic counting system, the robustness of image segmentation algorithm is 
critical. In Figure 7, we showed the measurement results with our segmentation algo-
rithm and iterative thresholding method respectively. We can see the influence caused 
by the image segmentation (special in regions with black box). The evaluation results 
were shown in Table 2. We can see the errors in A.1 which were caused by image 
segmentation. In hair counting and average of hair length, the error is in an acceptable 
range. But the average of hair width has a large error. Because the connect region was 
detected as a single hair, which enlarged the hair in width direction. And also, as error 
occurred, system was running with a longer time. 
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Fig. 6. Hair image and its’ counting results from A to H. The read points are the junctions in 
the crossed hair region. 

 

Fig. 7. Comparison with iterative thresholding method (A.1) and our improved algorithm with 
n=4 (A.2) 

To demonstrate the processing of hair measurement, Figure 8 shows the partition re-
sult visually, and the evaluation is shown in Figure 9. We select the single hairs in  
original images using Photoshop software manually. For hair diameter manual result is 
6.6879 pixels, and our method result is 6.5612 pixels. Absolute error is 0.1267 pixels, 
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and relative error is 1.89%. For hair length manual result is 37.1663 pixels, and our me-
thod result is 35.3406 pixels. Absolute error is 1.8257 pixels, and relative error is 4.91%. 

 

Fig. 8. Two examples for crossed hair partition. There is an example in each row. From left to 
right they are original images, segmented images, line fitting with points on the contours, and 
partition result. 

 

Fig. 9. Evaluation of crossed hair partition. From left to right they are the crossed hair with 
manual partition, the manual visual result, and the automatic visual result. 

Table 1. Hair counting results comparison between proposed method and manually counting 

Image No. Image size P.M. M.E. abs. Diff. rel. Diff. Hair width Hair Length CPU time (s) 

A 287*210 32 33 1 3.03% 6.6501 40.4291 3.4063 

B 253*270 13 13 0 0.00% 7.8937 90.2869 3.3125 

C 278*320 45 49 4 8.16% 7.4405 44.7577 5.2500 

D 297*297 33 33 0 0.00% 6.5702 44.5838 5.2813 

E 348*353 32 35 3 8.58% 5.4099 48.9374 4.3594 

F 324*337 24 23 1 4.35% 6.6825 57.6405 4.4531 

G 397*525 147 153 6 3.92% 5.0203 38.0637 19.1719 

H 437*391 105 108 3 2.78% 4.0944 41.4821 16.7969 

Table 2. Comparison with iterative thresholding method and our improved algorithm with 
n=4 

Image No. Image size P.M. M.E. abs. Diff. rel. Diff. Hair width Hair Length CPU time (s) 

A.1 365*554 83 80 3 3.75% 8.3348 40.6492 14.5469 

A.2 365*554 78 80 2 2.50% 4.8555 37.9398 6.3594 
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6 Conclusion and Future Works 

In the paper, we proposed a framework for digital hair analysis and measurement. To 
avoid the pseudo-cross phenomena caused by image segmentation, we improved the 
classical iterative thresholding method with divide and conquer design paradigm us-
ing number of (n-1) masks. It can enlarge the candidate threshold space. The curva-
ture of plane curve is useful for crossed hairs partition. Experiments demonstrate our 
method is efficient with high performance. There still have some problems caused by 
image segmentation, skeleton, and partition. For example, the tiny hairs in our images 
couldn’t be detected, and in the current system, we detect them manually. We will 
continue to improve our system in the follow-up research. 
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Abstract. Effectively extracting EEG data features is the key point in Brain 
Computer Interface technology. In this paper, aiming at classifying EEG data 
based on Motor Imagery task, Deep Learning (DL) algorithm was applied. For the 
classification of left and right hand motor imagery, firstly, based on certain single 
channel, a weak classifier was trained by deep belief net (DBN); then borrow the 
idea of Ada-boost algorithm to combine the trained weak classifiers as a more 
powerful one. During the process of constructing DBN structure, many RBMs 
(Restrict Boltzmann Machine) are stacked on top of each other by setting the 
hidden layer of the bottom layer RBM as the visible layer of the next RBM, and 
Contrastive Divergence (CD) algorithm was also exploited to train multilayered 
DBN effectively. The performance of the proposed DBN was tested with different 
combinations of hidden units and hidden layers on multiple subjects, the 
experimental results showed that the proposed method performs better with 8 
hidden layers. The recognition accuracy results were compared with Support 
vector machine (SVM) and DBN classifier demonstrated better performance in all 
tested cases. There was an improvement of 4 – 6% for certain cases. 

Keywords: Deep Learning, Motor Imagery, EEG, Brain-computer interface, 
Ada-boost. 

1 Introduction 

Brain-computer interface is a communication control system without depending on the 
normal output pathways that composed by brain, peripheral nerve and muscles, that can 
transfer brain information and realize control by using computer or electrical device to 
analyze the brain activities under specific task [1].  

A lot of studies have done by Shang-Lin Wu and his follows indicates that using the 
common spatial pattern (CSP) for feature extraction from EEG and the linear 
discriminate analysis (LDA) for motor imagery classification obtained an average 
classification accuracy of 80% for two subjects [4]. Additionally, Yohimbe Tom ita et 
al. proposed bimodal approach that using near infrared spectroscopy (NIRS) 
simultaneously with EEG to measure the hemodynamic fluctuations in the brain during 
stimulation with steady-state visual evoked potentials (SSVEP) made the wrong 
classification for 9 classes for 13 subjects [7,18]. The studies conducted by Like’s 
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group demonstrated that combining multi-scale filters and Principal Component 
Analysis (PCA) to enhance the classification performance in identifying EEG signals 
works and achieve a classification accuracy of 91.13% [2]. 

Deep Learning is a new field in itself in the machine learning whose motivation is to 
simulate the human brain’s mechanism to explain the data by the composition of 
multiple non-linear transformations of the data, with the goal of obtain more abstract 
and ultimately more useful representation [3-5].  

Despite the success of DBN, its application in Electroencephalogram (EEG)-based 
Brain Computer Interaction (BCI) is still rare. The main difficulty is the enormously 
high feature dimensionality spanning EEG channel, frequency, and time [10]. Deep 
Learning algorithm has shown superior learning and classification performance in 
fields such as computer vision, natural language processing and other areas for its 
excellent feature extraction capabilities except the field of EEG data analysis [15]. In 
this paper, a classify method was proposed based on deep learning with Ada-boost 
algorithm. Using this method, the misclassification rate of EEG signals decreased even 
using fewer channels. The final powerful classifier is combined by several weak 
classifiers which are trained using single channel data. 

The sections below are our learning method and experiments. Section 2 mainly 
describes the RBM and DBN method and Section 3 presents our experimental results 
on MI EEG dataset. 

2 Method 

2.1 Theory of Deep Learning 

Deep learning algorithm focus on learning multiple levels of representation of raw data 
automatically, using a deep architecture which composed of many hidden layers. This 
algorithm automatically extracts the high-level features necessary for classification 
which involving more meaningful information that hierarchically depends on other 
features. Here we use DBN model which formed by a plurality of RBM, each RBM is 
trained greedily and unsupervised [5]. 

An RBM has a single layer of hidden layer that are disconnected with the units in the 
same layer and have undirected, symmetrical connections to the units in the visible 
layer which makes it easy to compute the conditional probabilities. The key issue of 
training the RBM is to get generative weights. As shown in Fig. 1, W represents the 
weights between visible and hidden layers, b, c correspond to the bias of visual and 
hidden layer respectively [3]. 

The type of RBM we employed in this work is Gaussian RBMs which use 
real-valued visible units for training the first layer of the DBNs. Fig. 1 shows the 
structure of the RBM: 
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Fig. 1. Structure of RBM 

2.2 Classification of MI Based on Deep Belief Net 

Now, let v represents the feature vector containing only one channel features. An RBM 
defines a joint distribution on it, regard as the visible units in DBN and h, the hidden 
units as follow format [13]: 
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Where Vj,hj are the binary states if visible unit i and hidden unit j, ai, bj are their biases 
and wij is the weight between them. The network assigns a probability to every possible 
pair of a visible and a hidden vector via this energy function: 
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The probability that the network assigns to a training data can be optimized by 
adjusting the weights and biases to lower the energy of it. The derivative of the log 
probability of a training vector with respect to a weight calculated as follow: 
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Where the first item is the expectation of əE(v,h)/əwij responds to the training set D 
and the hidden variables are sampled according to the conditional distribution of the 
dataset on p(h|v), given a randomly selected training sample, v, the binary state, hj , of 
each hidden unit, j, is set to 1 with probability 
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Where σ(x) is the logistic sigmoid function 1/(1+exp(-x)). vihj is then an unbiased 
sample. 

For no direct connections between visible units in an RBM, it is also the way to get 
unbiased sample of the visible unit similar as hidden unit, given a hidden vector 
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For training an RBM classifier, the joint distribution of data and class labels, the visible 
vector is concatenated with binary vector of class labels. The energy function becomes: 
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Where l is the binary class label and wij is the weights between hidden and label units. 

2.3 Boost of the Single Channel Deep Belief Net 

Based on the former test performance of the single channel, we adopt the idea of 
Ada-boost algorithm [8] that combine the weak classifier to one more powerful 
classifier [19][20]. Here the channel C3, C4, Fc4 were chose as the meta data and the 
combination tactics to boost each weak classifiers refer to follow [15][16]: 
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Where ck is the estimated coefficient for each DBN model and each DBN model is 
produces a discrete classification for input data [17]. 

The whole structure of our model based on DBN shows as follow: 

 

Fig. 2. Structure of the final model 

3 Experiment 

3.1 Experimental Data 

The experimental data was collected from 4 subjects, all of them are students, male and 
without brain disease history. 30 trials left-hand imagination EEG data and 30 right 
ones were selected as sample for analysis for each subject. Fig. 3 shows the way to get 
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the final data which contained 7s data, of which the search adopted the data from 3s to 
7s, sample rate is 250HZ/s and each of them contained 4s data, which means that each 
of them have 1000 sample points.  

For the EEG data, de-noising processing and filtering were applied such as 
Elec-tro-Oculogram (EOG) as well as separated the data according to the channel. The 
EOG is removed by the Neuroscan software. And for the filtering work, this paper 
mainly analyzes the frequency band of 8-30Hz. So an elliptic filter was designed, with 
band-pass from 8 to 30Hz. And then converted the time domain data to frequency 
domain data via FFT (Fast Fourier Transformation) algorithm.  

 

Fig. 3. Experiment time distribution for one trial 

3.2 Test on Combine of the Single Channel 

For each subject, 20 trials were selected as the train set from the total data with the 
remaining data to be the test samples from each channel. The weights were randomly 
initialized and the turning parameters were set as: learning rate for weight and biases = 
0.07, momentum=0.5 and weight decay = 0.002. Four to sixteen layers were trained and 
tested for each channel of every subject. The results for eight layers worked better than 
others and the performance of nine and ten or more layers were very similar. In the 
paper we have not shown results for all of the layers due to space limitations. Table 1 
shows the result of the classification performance with 7,8, 9, 10 layers respectively, 
using a fixed layer size of 2048 under the same condition and the result shows that the 
average recognition rate of DBN with 8 hidden layers is 0.81 which is higher than 
others. 

The result for every subject with different hidden layers lists as Table 1 and the 
number represent the recognition accuracy rate: 

Table 1. Performance of DBN with different layers 

Subjects 
DBN 

7 hidden layers 8hidden layers 9 hidden layers 10 hidden layers 

SHY 73% 85% 83% 80% 

XB 56% 65% 59% 58% 

ZJH 44% 77% 78% 74% 

WDM 82% 95% 94% 96% 
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According to the results above which shows that the DBN classifier outperform 
others with 8 hidden layers, then we did the test for the different combination of hidden 
units under this condition, the result shows that there’s no obvious effect on the 
performance. Table 2 shows the final performance of the recognition rate of all cases. 

Table 2. Performance of DBN with different hidden nodes 

Subjects 

DBN_8 layers 

2000-800

-700-600

-500-300

-200-900 

3000-1800-1

700-1600-15

00-1300-120

0-900 

4000-1100-

1200-1300-

1400-1500-

1600-900 

5000-2100-2

200-2300-24

00-2500-260

0-900 

6000-310

0-3200-33

00-3400-3

500-3600-

1900 

8000-2100-

2200-2300-

2400-2500-

2600-1900 

SHY 83% 84% 84% 85% 84% 85% 

XB 65% 66% 65% 65% 65% 64% 
ZJH 73% 75% 77% 77% 75% 74% 
WDM 96% 94% 93% 95% 95% 95% 
 
The performances of SVM based on the same input features was further 

investigated.Fig.4 shows the contradistinction of recognition accuracy for DBN and 
SVM, the performance of SVM is inferior to that of DBN and the discrepancy is 
particularly evident for subject ZJH and WDM. 

 

 

Fig. 4. The recognition accuracy of DBN vs. SVM 

3.3 Experiment on Time Series 

The experimental data was by time segments, and each section contains 1s as data to be 
classified. Fig.4 presents the performance of classification with different subjects. 
From the figure we can see that the average recognition rate of first 2 seconds can reach 
83%, while the last 2 seconds is lower, we can explain that at the beginning of the 
experiment the subjects can preferably focus on the motor imagery experiment, but 
with the passage of time, the subjects may get absent-minded which would affect the 
validity of the experimental data, and finally leads to the low recognition accuracy.  
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Fig. 5. Classification accuracy of time series 

4 Conclusion 

In this paper, a DBN classifier model for the classification of MI pattern is proposed. In 
the research, results showed consistent improvements for all tested cases over SVM 
through multiple cross-validation experiments. The test on different combination of 
hidden units was conducted, and it is found that the number of nodes had no obvious 
effect on the performance of classification. The experimental results showed that Deep 
Learning algorithm performs effectively on the task of classification with MI data. And 
the experimental results of time series show that the performance of classification 
depends on concentration of the subjects, for the accuracy rate is affected greatly by the 
status of the subject. Deep learning plays an important role in the process of 
classification because it can learn the advanced abstract representation from numerous 
unlabeled data. Our study suggests that DBN has great potential to be a powerful tool 
for the BCI research.  

For the next stage, we’ll try to employ this algorithm into classification of 
Multi-class based on EEG data, and merge more channels in order to take full use of the 
EEG data information to achieve better recognition results. 
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Abstract. Electroencephalogram (EEG) is one of the oldest techniques 
available to read brain data. It is a methodology to measure and record the 
electrical activity of brain using sensitive sensors attached to the scalp. Brain’s 
electrical activity is visualized on computers in form of signals through BCI 
tools. It is also possible to convert these signals into digital commands to 
provide human-computer interaction (HCI) through adaptive user interfaces. In 
this study, a set of statistical features: mean entropy, skew-ness, kurtosis and 
mean power of wavelets are proposed to enhance human sleep stages 
recognition through EEG signal. Additionally, an adaptive user interface for 
vigilance level recognition is introduced. One-way ANOVA test is employed 
for feature selection. EEG signals are decomposed into frequency sub-bands 
using discrete wavelet transform and selected statistical features are employed 
in SVM for recognition of human sleep stages: stage 1, stage 3, stage REM and 
stage AWAKE. According to experimental results, proposed statistical features 
have a significant discrimination rate for true classification of sleep stages with 
linear SVM. The accuracy of linear SVM reaches to 93% in stage 1, 82% in 
stage 3, 73% in stage REM and 96% in stage AWAKE with proposed statistical 
features. 

1 Introduction 

Human-Computer Interaction (HCI) research is not only based on mouse and keyboard 
actions anymore; nowadays, HCI research includes interface interaction in 
environments where sensor-equipped systems collect data to know more about users’ 
activities, preferences, needs and interactions [1]. The new techniques and sensors 
provide a real-time data acquisition to understand users’ daily activities. These 
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advancements may be helpful to increase the occurrence of expected outcomes such as 
improving performance of the users in their daily activities [2]. Using such extensive 
knowledge about the users’ states, it is possible to design of new adaptive systems and 
interfaces which will bring new perspectives into the HCI research field [3]. 

There are various methods to obtain user data [4]. However, most of them don’t 
address the need of having direct and real time extensive data to understand users’ 
neurophysiological states to design adaptive systems accordingly [5, 6].  For these 
purposes, Brain Computer Interface (BCI) technologies provide new sensing 
techniques to collect data [7]. BCI technologies enables HCI researchers to 
understand the state of users relying on changes in electrical, chemical and blood flow 
due to reaction of brain toward specific stimuli [8]. Techniques in BCI aim to provide 
a communication system that understand users’ states by interpreting brain signals 
and react accordingly through an output device like computers [9] – [13]. 

HCI researchers suggest that using electroencephalogram (EEG) is very feasible 
and relatively cheaper to obtain neurophysiological states of users [14, 15]. Using 
EEG data, it is possible to design adaptive user interfaces that understand users’ real 
states [16, 17]. There are quite a number of such systems suggested by HCI 
researchers [18, 19]. For instance, researchers proposed the possible interfaces may be 
designed to adjust information flow, manage interruptions and cognitive load and 
sense users’ cognitive and emotional levels (e.g. confusion – frustration and 
satisfaction – realization etc.) based on neurophysiological and cognitive states of 
users [20]. 

It is also possible to design real-time adaptive interfaces that sense users’ 
neurophysiological and cognitive states such as alertness and vigilance. Detecting 
alertness and vigilance is an important and challenging HCI topic that requires 
advanced system design for processes controls [21, 22]. Detecting alertness and 
vigilance is very critical because lack of alertness and vigilance may cause serious 
consequences in tasks where users and operators should interact with machines and 
systems such as power plant control, air traffic control and military equipment [23]. 

More than in industry related tasks, being at the state of lack of alertness and 
vigilance is also a serious problem in daily life activities such as driving [24, 25].  

To address the issues that may cause due to lack of alertness and vigilance, HCI 
researchers proposed systems that use real-time analysis of EEG data to detect the 
alertness and vigilance levels of the users and operators of critical systems [26] – [28]. 

Using a real time system that continuously monitor user states based on EEG 
analysis, the general objective of such systems is to provide mechanisms to avoid 
potential accidents due to the decreased vigilance. Researchers believe that EEG-
based technologies are “gold standard” in detection of vigilance and alertness with 
their technological advantages to provide a task independent, non-disruptive method 
for detection [29]. They also believe that using EEG detection; it is possible to design 
systems that improve users’ vigilance and alertness to provide safety in critical tasks 
(e.g. driving and operating mission critical machines etc.) [30] – [32]. 

Although theoretically EEG-based technologies are “gold standard” in detection of 
vigilance and alertness, EEG technology has its own technical issues [33]. For 
instance, EEG signals are non-stationary and non-linear patterns causing difficulty to 
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identify the cognitive tasks since EEG bio-signals are highly subjective and chaotic 
due to brain's multi-functional activities such as body movements, eye gaze, hearing, 
smelling which create various wave patterns behave as noise for particular pattern 
recognition tasks through EEG signals [34]. 

In this study, addressing the similar problem stated above, a systematic of  
EEG signal processing for detecting the alertness states of users in their night sleep  
is introduced. Several statistical features are proposed for linear model construction. 
A linear SVM classifier [35] is employed for vigilance level classification. Moreover, 
a prototype adaptive interface that sense users’ alertness and vigilance is presented. 
This study would be helpful for HCI and BCI researchers who seek for a method to 
accurately interpret EEG signals to detect users’ alertness and vigilance states. This 
paper also would be a guideline for designers who wish to create interfaces that detect 
users’ states for critical tasks such as driving. 

2 Materials and Methodology 

Sleep stages are good way of identification of the level of alertness of the users [36]. 
In this study, it is aimed to achieve a true classification using linear SVM to 
distinguish sleep stages. Following the traditional terminology [37], sleep states are 
labeled as Stage W (Wakefulness), Stage N1 (NREM 1 sleep), Stage N2 (NREM 2 
sleep), Stage N3 (NREM 3 sleep), Stage R (REM sleep) [38]. 

Using EEG, it is possible to classify sleep vigilance in terms of sleep stages [39]. 
In this kind of formalization, vigilance could be addressed as wakefulness - sleep and 
between the levels of vigilance state [40]. To formalize the spectrum ranges, the  
EEG signals are subdivided  into categories of  δ (1–4 Hz), θ (4–8 Hz), α(8–13 Hz),  
β (13–30 Hz) and γ (>30 Hz) [41]. 

Active wakefulness is a state where the eyes are open [42]. In wakefulness state α 
EEG signal frequency power is low [43]. On the other hand, the EEG α power is high 
if the users are in a state of resting [44]. A transition from resting state to sleeping is 
also possible to detect with EEG [45]. In transition, α power decreases and q power 
increases moderately [46]. In extended wakefulness, there is a negative correlation 
with α power and positive correlation with θ power [47]. In this sense, the brain 
activity could be categorized by interpreting the signal power, in theory [48]. 

As discussed in introduction section, it is well known that EEG signals are hard to 
distinguish from each other due to their dynamic, stochastic, non-linear and non-
stationary nature [49]. Thus, in order to detect the alertness and vigilance states’ of 
the users by comparing the concurrent state toward a set of classes, alternative 
methods are required to compensate the shortcomings of traditional ones [50]. 

2.1 BCI (Brain-Computer Interface) Set up 

As suggested by researchers, a typical BCI system should have a set-up with 4 main 
steps which are EEG signal reading, pre-processing, pattern recognition and output 
[51]. These main steps are illustrated in Figure 1 as follows: 
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Fig. 1. Main steps in BCI’s framework 

In EEG acquisition step, EEG signals are recorded using electrodes placed on the 
users’ scalps. After this process, signals are transferred to the pre-processing 
procedure. The pre-processing procedure is employed to remove any occurrence of 
noise in EEG signals. The pattern recognition process classifies the features into 
commands for an output. The output step takes the command and regulates the rest of 
the system. In output step, it is possible to generate a feedback for users or regulate 
the information flow of the system to provide an adaptive interface. The design of 
proposed prototype adaptive interface is discussed in the following sections of this 
paper. 

2.2 Data Acquisition and Pre-processing 

In EEG acquisition step, silver-plated electrodes are employed for the recordings. 
Following 10–20 international electrode placement procedure [52], C3–A2 standard 
settlement is applied [53]. EEG signal recordings are acquired using a Grass Model-
78 Polysomnography [54]. 

After EEG acquisition, a filter is applied for the EEG recordings between 0.3 and 
50 Hz and digitized them (12-bit resolution with sampling rate of 128 Hz per channel) 
to enable using all eight channels of the instrument simultaneously [55, 56]. With 
almost 1000 Hz sampling rate, each channel could be read distinctly which also help 
to have a real-time data processing [57].  
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2.3 Pattern Recognition from EEG Signals Using DWT 

Discrete wavelet transform (DWT) is generally used for discriminating the non-
stationary signals with various frequency patterns while Fourier Transform is applied 
to stationary signals [58]. Since EEG like signals contain plenty of non-stationary 
patterns, the discrete wavelet transform is chosen instead of Fourier Transform for 
signal analysis [59]. Basically, the discrete wavelet transform is a decomposition of 
signals into a set of wavelets which are continuous functions obtained by dilation, 
contraction and shifting of a single particular function called wavelet prototype [60] 
as follows: 
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where )(, tkjΨ  is the base of discrete wavelet transform (DWT) and the time variable 

of the transform is still continuous. The coefficients of DWT may be extracted from 
the continuous time function as 
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After the DWT basis )(, tkjΨ  is set, a function can be represented in wavelet form as 

 ΨΨ=
j k
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Discrete wavelet coefficients play an important role in feature extraction from real-
time data. The major priority to analyze the data with DWT is continuity of signals. 
Another issue typically takes place in the number of decomposition levels of DWT 
setup which is important for adjusting signal multi-resolution. The number of 
decomposition levels is generally selected from the dominant frequency component of 
the signal and levels are selected from the parts of signal which have high correlation 
with frequencies needed for true classification. Since EEG signals don't contain 
highly useful frequency components above 30 Hz, the number of levels of 
decomposition is selected as 4 from D1 to D4 and a final approximation A4 is also 
employed as shown in Table 1.  
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Table 1. Decomposition levels with corresponding frequency ranges 

Decomposed signal  Frequency range (Hz)

D1 32-64 
D2 16-32 
D3 8-16 
D4 4-8 
A4 0-4 

 
The usage of optimum wavelet types is also important since different wavelet types 

yield different efficiency in different data types. If the data is more like discontinuous, 
sharp wavelet types such as Haar wavelets are generally used; otherwise smooth 
wavelets are employed. 

On the other hand, another important issue for pattern recognition takes place in 
true features that can discriminate the classes. In this study, several features are 
employed for feature selection by means of one-way ANOVA test which is generally 
used for measuring the discriminating significance of independent variables in 
statistical analysis [61]. 

For this purpose, such features: mean entropy, skew-ness, kurtosis and mean power 
of wavelet segments are extracted from DWT signals (number of epochs = 14400) 
and those features are evaluated whether they are significantly discriminating features 
for pattern recognition. 

Entropy is often used as a measure of disorder or complexity in pattern recognition. 
The wavelet energy entropy of each segment of EEG signal can also be a good feature 
for pattern discrimination. Wavelet mean entropy is calculated from the wavelet 
spectra of any input signal )(tx  in N  scaled time-frequency window area where 

NEEEEEE ...,,, 4321=  represents the total signal power of each area 
jE  on 

different scale domains in which jp  becomes 
E

E j to normalize distribution of each 

component that satisfies 1
1

=
=
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j
jE  for wavelet mean entropy )( pSWT  estimation. 

Mean entropy of wavelets show the average complexity of entire signal in time-
frequency domain such that it does not vary depending on the time or frequency 
changes. 

Similarly, skew-ness is employed to find asymmetry of probability distribution 
around its mean while kurtosis is used for finding the peakedness degree of 
corresponding distribution. Skew-ness and kurtosis degree of each wavelet can be a 
good indicator of particular patterns in EEG signal. 

Mean power is also used to find similarity in segments of signal in terms of 
potential of EEG signal. Table 2 shows the equations of proposed features with their 
corresponding signals from a 15 minutes Stage REM sleep as follows: 
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Table 2. Signals of proposed features from a 15 minutes Stage REM sleep 

Signals Obtained From Coefficients of Proposed 
Features 
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A collection of 72000 rows of data is prepared with corresponding classes and one-

way ANOVA test is applied for feature selection. Table 3 shows the ANOVA results 
as follows: 
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Table 3. One-way ANOVA test results 

 Sum of Squares df 
Mean 

Square 
F Sig. 

M
ean E

ntropy 

Between 

Groups 
87,702 4 21,925 3875,398 ,000 

Within 

Groups 
407,318 71995 ,006   

Total 495,020 71999    

K
urtosis 

Between 

Groups 
3272,715 4 818,179 246,937 ,000 

Within 

Groups 
238541,332 71995 3,313   

Total 241814,047 71999    

S
kew

-ness 

Between 

Groups 
454,057 4 113,514 236,762 ,000 

Within 

Groups 
34517,588 71995 ,479   

Total 34971,645 71999    

M
ean pow

er 
(A

lpha B
and) 

Between 

Groups 
13962307617471,470 4 

3490576904

367,868 
876,474 ,000 

Within 

Groups 
286721572295297,500 71995 

3982520623,

590 
  

Total 300683879912769,000 71999    

M
ean pow

er (B
eta 

B
and) 

Between 

Groups 
3375047581652,782 4 

8437618954

13,196 
371,331 ,000 

Within 

Groups 
163591404194001,600 71995 

2272260631,

905 
  

Total 166966451775654,300 71999    

 
According to ANOVA test; proposed features have a significant relation with 

corresponding classes with p-value < 0.001. Finally, 4 numbers of selected features: 
mean entropy, skew-ness, kurtosis and mean power of wavelets are employed in 
linear SVM [62] for true classification of sleep stages. 

3 Experimental Results 

Proposed BCI system is tested with participants (n=20; 9 females and 11 males) at 
“Dr.Suat Seren Breast Illnesses Education and Research Hospital”. The subject group 
with an age rate of 18 to 65 years (average=33.5) and a Body Mass Index (BMI) of 
7.3kg/m2 is asked to participate in the experimental study. All the subjects are 
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reported as healthy and normal (passed the neurological screening, not sleep-
deprived, no medication and alcohol during the course of the study and no deviations 
from usual circadian cycle). EEG recordings are obtained and inspected by two well-
trained neurologists with years of EEG experiences. Also, neurologists are employed 
to verify the EEG readings’ accuracy for the state of indicated alert, drowsy or sleepy 
states of subjects. Stage 2 is not evaluated in the experiment due to lack of data 
obtained at the hospital. Table 4 shows the performances of linear SVM in sleep 
stages recognition with proposed features as follows: 

Table 4. classification performance of SVM with proposed features in sleep stages 

Classes  Classifier Type True False Accuracy 

Stage 1 SVM Linear 6696 504 0.93 
Stage 3 SVM Linear 5904 1296 0.82 
Stage REM SVM Linear 5256 1944 0.73 
Stage AWAKE SVM Linear 6912 288 0.96 

 
SVM classification results in very successful accuracies with proposed features: 

mean entropy, skew-ness, kurtosis and mean power of wavelets in time-frequency 
domain. Here, totally 7200 feature vectors are gone through a classification process. 
These total 7200 vectors are obtained from 15 minute EEG signals that their classes 
are predetermined manually by 2 Head Doctors at Dr.Suat Seren Breast Illnesses 
Education and Research Hospital. According to experimental results, the accuracy of 
linear SVM reaches to 93% in stage 1, 82% in stage 3, 73% in stage REM and 96% in 
stage AWAKE with proposed statistical features. 

4 Design Adaptive Interface for Attention Levels 

The set of proposed BCI system is described in previous parts and illustrated in 
Figure 1. Accordingly, the last step is to give feedback to users on their alertness 
levels. Although it is not implemented in the actual system, a simple adaptive 
interface is developed which works as a display that assists users of the system on 
their level of alertness as well as changing the nature of the work flow when it is 
necessary. In monitoring states, the alertness levels of the users is displayed as a 
visual feedback as in Figure 2. 

 

 

Fig. 2. Visual feedback interface for alertness levels 
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Accordingly, the four level bars show the alertness levels of the users (from critical 
to good). For example, proposed framework uses the pitch of the sound to indicate the 
degree of the sleep level, as well as displaying images in forms of icons to show the 
alertness levels. Users may click on the differently painted attention level bar to hear a 
sound that resembles their attention level. It is also possible to view a linear graphic to 
follow the level of the alertness by clicking the “graph” button. 

The monitoring interface changes if there is a change in attention levels which may 
be mission critical. For instance, if the system detects the users’ level of alertness and 
vigilance is dropping down to critical states that may create some implications on 
operational tasks of the users, an audio-visual warning is provided to alert the user as 
illustrated in Figure 3. 

 

Fig. 3. Warning interface for operational tasks 

The system is designed to combine visual and audio signals in a way to create a 
meaningful interaction where the forms of the alert carry information. Once the users 
are warned about their attention status, they are also provided a question to stop their 
operation and take a rest. Hence, the information flow and the operation of the system 
modify the way of interaction. Additionally, it is also possible to share the real time 
data of the users’ alertness in a network for alternative uses. For instance, in systems 
where the operations are carried by multiple users depending on each other’s actions 
(e.g. driving in a highway, military operations etc.), when there is a user with low 
level of alertness, the system may alert the other users in the system so the other users 
may follow their tasks precociously.  

5 Conclusions 

This study introduces an adaptive user interface for vigilance level recognition that 
applies a linear SVM classifier using a set of statistical features: mean entropy, skew-
ness, kurtosis, and mean power of EEG wavelets in time-frequency domain. One-way 
ANOVA test is employed for feature selection. EEG signals are decomposed into 
frequency sub-bands with discrete wavelet transform (DWT) and selected statistical 



 Investigation of New Statistical Features for BCI Based Sleep Stages Recognition 221 

 

features are employed in SVM for recognition of human sleep stages (stage 1, stage 3, 
stage REM and stage AWAKE). Empirical results significantly supports that the 
proposed statistical features achieved an accuracy of linear SVM reaches to 93% in 
stage 1, 82% in stage 3, 73% in stage REM and 96% in stage AWAKE. Thus, the 
proposed method would be helpful to accurately interpret EEG signals to detect users’ 
alertness and vigilance states. Based on the method, it is possible to design an 
adaptive interface which detects users’ states for critical tasks. Such an adaptive 
interface design is also introduced as a part of this study. This study would guide HCI 
and BCI researchers who would like to design similar systems for critical tasks such 
as drowsiness detection for drivers. 
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Abstract. Effective discrimination of attention deficit hyperactivity disorder 
(ADHD) using imaging and functional biomarkers would have fundamental 
influence on public health. In this paper, we created a classification model using 
ADHD-200 dataset focusing on resting state functional magnetic resonance 
imaging. We predicted ADHD status and subtype by deep belief network (DBN). 
In the data preprocessing stage, in order to reduce the high dimension of fMRI 
brain data, brodmann mask, Fast Fourier Transform algorithm (FFT) and 
max-pooling of frequencies are applied respectively. Experimental results 
indicate that our method has a good discrimination effect, and outperform the 
results of the ADHD-200 competition. Meanwhile, our results conform to the 
biological research that there exists discrepancy in prefrontal cortex and 
cingulate cortex. As far as we know, it is the first time that the deep learning 
method has been used for the discrimination of ADHD with fMRI data. 

Keywords: ADHD, fMRI, Deep Learning, Deep Belief Network. 

1 Introduction 

Attention deficit hyperactivity disorder (ADHD) is one of the most common childhood 
disorder and can continue through adolescence and adulthood with the problems of 
attention, hyperactivity, or acting impulsively [1]. The American Psychiatric 
Association's Diagnostic and Statistical Manual, Fifth edition (DSM-5) [2], is usually 
used by mental health professionals to help diagnose ADHD. However, diagnose based 
on sole clinical and rating measure may be unreliable for it may have relationship with 
the clinicians, cultures and countries. Therefore, objective methods for diagnose of 
ADHD have great importance. 

Functional magnetic resonance imaging (fMRI) is a functional neuroimaging 
technology, depending on blood oxygenation level dependent (BOLD), which defines 
activity in the healthy and diseased human brain [3]. In recent years, a growing number 
of functional neuroimaging have been applied in the research of ADHD. It is reported 
that abnormality of areas in the dorsal anterior cingulate cortex (dACC), ventro medial 
prefrontal cortex (vmPFC), and cerebellum when analysis task-related fMRI data [4-5]. 
Wolf et al. [4] applied to 12 healthy and 12 ADHD adults using independent 
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component analysis in a working memory task. Zhu et al. [6] for the first time proposed 
a resting-state fMRI based PC-FDA classifier using features of regional homogeneity 
(ReHo) to discriminate children with ADHD. The leave-one-out cross-validation 
accuracy can be as high as 85%. But the subjects for the experiments were only 20. Due 
to the scarcity of data, few studies were for the automated diagnose of ADHD. 
Fortunately, the 1000 Functional Connectomes Project (FCP) provided a model which 
includes large-scale datasets [7]. Upon this model, ADHD-200 Consortium established 
aggregate resting-state fMRI dataset and phenotypic data. On the global ADHD-200 
competition, Eloyan A et al. [8] from Johns Hopkins University achieved the best 
score. They mainly use rs-fc-fMRI based on decomposition of CUR along with 
gradient boosting. Furthermore, a motor network segmentation and random forest 
algorithm are used for prediction. In this paper, three datasets from ADHD-200 
competition are applied to discriminate ADHD with typical controls.  

Deep belief network (DBN) is a generative probabilistic model which has raised a 
lot of interest since the successful implication of greedy layer-wise training using 
restricted Boltzmann machine (RBM) [9-11]. DBN has been used to the application of 
image processing [9], audio classification [12], object recognition [13-14], natural 
language processing [15] and so on. However, DBN has never been applied to the 
discrimination of ADHD. 

A deep belief network with three hidden layers is utilized to discriminate the ADHD 
of three types with control. From the experimental results, it achieves higher accuracy 
than ever. The sections below are our learning method and experiments. Section 2 
mainly describes the RBM and DBN method and Section 3 presents our experimental 
results on ADHD dataset.   

2 Method 

The building blocks of a Deep Belief Network (DBN) are the Restricted Boltzmann 
Machines (RBMs), which are used to represent each layer of a DBN architecture. 

(a) Restricted Boltzmann Machine 

A DBN is a hierarchical structure consisting of multiple stacked RBM. RBMs are 
undirected graphical models including two layers: visible units and hidden units (see 
Fig. 1). The visible units that represent observations connect to the hidden units that 
represent features. But no connections are established within visible units or hidden 
units. The simplest RBM use Bernoulli distributed units in which the visible and hidden 
units are both binary. To adapt to the real-valued data, the Gaussian-Bernoulli RBMs 
with real-valued input for visible units and binary output for hidden units are used. It 
makes RBMs suitable to build blocks to learn DBNs for its valid greedy learning 
method. 
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Fig. 1. Structure of RBM 

In RBMs, the joint probability distribution between v and h can be written as: 
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Where vi,hj∈｛0,1｝, wij is the weight between vi and hj , bi is the bias of visible unit 
and aj is the bias of hidden unit. Z is obtained by the sum of e-E(v,h). The probability of a 
visible unit which is assigned by the model is: 
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Where θ=(w,b,a) and σ(x)=(1+e-x)-1. 
An RBM is pre-trained to maximize the log-likelihood ㏒p(v) . The derivative of 

the log probability with respect to the weights is given by: 

 ( ) eljivjiij hvhvwvp mod/log ><−>=<∂∂  (5) 

The update rule for the weights follows the gradient of the log likelihood as: 

 ( )eljidatajiij hvhvw mod><−><=Δ ε  (6) 

Where ε is the learning rate and the angle brackets manifested the expectations relative 
to the distribution specified in the subscript. It takes exponential time to compute the 
exact value of term <vihj>model. The Contrastive Divergence (CD) [16] approximation 
to the gradient can be used. Then the new update rule is :  

 ( )reconjidatajiij hvhvw ><−><=Δ ε  (7) 
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Where the term <vihj>recon represents the expectation of reconstructions produced by 
initializing the data from the hidden units and then updating the hidden units according 
to the data as visible units, it proves to work well in practice and to detect good features 
adequately.   

2.1 Deep Belief Networks 

After understanding how to build a RBM, It becomes much easier to construct a DBN 
by stacking RBMs. While the first RBM consisting of visible layer and first hidden 
layer is trained, the parameters, θ1 ,of this RBM is also obtained. It defines a prior 
distribution over first hidden units which are obtained by marginalizing over the space 
of visible units. The idea behind the DBN, which is training by a stack of RBMs, is to 
keep the p(v|h,θ1) defined by the first RBM, but to improve p(v) by replacing p(h|θ1) by 
a better prior over the hidden units. The better prior must have a smaller KL divergence 
than p(h|θ1) from the aggregated posterior to improve p(v).  

Considering training second RBM, which is the network formed by using samples 
from the aggregated posterior of first RBM as training data. It is simple to initialize the 
second RBM which has the visible and hidden units swapped in first RBM. Then the 
second RBM has visible units h and hidden units h2. We makes p(h|θ2) be a better 
model of the aggregated posterior of p(h|θ1) as the same of first RBM. 

In the same way we could train a stack of RBMs. Then a feed-forward network of 
multiple layers can be initialized by the bottom-up recognition weights of the resulting 
DBN. The network can be fine-tuned by the back-propagating err derivatives, which is 
given by a final “softmax” layer that computes a probability over class labels. Softmax 
regression is also called multinomial logistic regression, which can deal with 
classification problem of the multi-class. In other words, it can be seen as the expansion 
of logistic regression. The weights in all lower layers are fine-tuned and the weights  
of final layer are back-propagated by the derivative of the log probability of the correct 
class. The process of bottom-up training and up-bottom fine-tuning is displayed in  
Fig. 2. Red arrows stand for the generative process and green arrows for the fine-tuning 
process. 

 

Fig. 2. Architecture of DBN 
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3 Experiments 

3.1 Process of Data  

MRI data and scan parameters of ADHD were released on the ADHD-200 Global 
Competition website (http://fcon_1000.projects.nitrc.org/indi/adhd200/). The fMRI 
data is time-series of 3D images which size is 49*58*47. Due to the inevitable 
interference during the experimental procedure, in order to analysis data effectively, a 
series of preprocessing are conducted in spm8 [17] such as realign, slice time, 
co-register, normalize, smooth. More information about the preprocessing steps can be 
found in [18]. 

To reduce the dimension, three strategies are involved. First, divide the 3D images to 
48 areas according to brodmann template which is a region of human cerebral cortex 
defined on its cytoaerchitectonics, or structure and organization of cells. Then, assume 
that the highest frequency of voxels in some areas may be different during the scanning 
procedure. So the fast Fourier transform algorithm (FFT) is used to transform data from 
time domain to frequency domain. At last, execute max-pooling of frequencies in each 
voxel to select the frequency which has the maximum value of amplitude. After FFT 
and max-pooling every voxels have only one property and the number of properties in 
each area depends on the number of voxels. We can use the properties for analysis after 
preprocessing. 

3.2 Application of DBN to ADHD Data 

In this paper, we apply DBN to the preprocessed ADHD data for learning features of 
each area. The properties in each area are viewed as the observations of the first layer in 
the DBN, which is composed of three hidden layers training with greedy RBMs. The 
data collected by different institutions came from various experimental environment 
and scan parameters, so we discriminate the ADHD vs. Typically Developing Controls 
(TDC) separately by training different DBNs for different sites. The diagnose of each 
subject is given according to the DSM-5 with regard to the score of inattentive, 
hyper/impulsive, IQ measure and so on. Actually, for the data of every site we train 48 
DBNs, and discriminate the class of subject by every DBN, for the numbers of 
observations are different from one area to another. Also, in order to exclude the 
occasionality of the data collected from individual area, we combined properties from 
some areas to one vector of features.  

4 Results 

The ADHD-200 Global Competition divided the datasets into training and test sets. We 
test the DBN on the ADHD hold-out set for KKI, Peking-1 and NYU, with softmax as 
the classifier. For KKI dataset, the training subjects are 83, and test subjects are 11; for 
Peking-1 dataset, the training subjects are 85, and test subjects are 50; and for NYU the 
training subjects and test subjects are 222 and 41 respectively.  
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As NYU dataset in the ADHD-200 competition achieved the lowest discrimination 
results. So in this paper, the proposed method was particularly tested on the NYU 
dataset of 48 areas to discriminate control with ADHD (regardless of subtypes). The 
results of 48 regions (excluding 7 empty regions) are shown in Fig. 3. It can be inferred 
that the average discrimination performs effectively in the area of 9, 10 and 11, 18, 30. 
On the other hand, according to brodmann definition [19], area 9, 10, 11 stands for 
prefrontal cortex, area 18 plays a role in the visual cortex and area 30 is part of 
cingulated cortex and the average accuracies of the visual cortex and cingulated cortex 
are more than 50%. Thus we combine the data of prefrontal cortex (area 9, 10 and 11) to 
one vector of features, and carried the same operation for the data of visual cortex (area 
17, 18 and 19) and the data of  cortex (area 23, 24, 26, 29, 30, 31 and 32). Then use 
them as the input observations of the DBN.  

 

Fig. 3. Discrimination accuracy of NYU in 48 areas 

The average accuracy of the four classes, including control and three ADHD 
subtypes, is shown in Table 2. It can be seen that the accuracy of the method we 
proposed above is better than the discrimination accuracy achieved by the team in the 
ADHD-200 competition which are 35.19%, 51.05% and 61.90% for NYU, Peking-1 
and KKI respectively. By performing DBN on prefrontal cortex, our average accuracies 
are 37.41%, 54.00% and 71.82%. Compared with the competition results, our accuracy 
respectively improved 2.22 percent, 2.95 percent and 9.92 percent, which is shown in 
Table 3. Meanwhile, the accuracies on cingulated cortex are 37.07%, 54.00% and 
72.73%, which is also higher than the accuracies of ADHD-200 competition. However, 
the accuracies are lower on visual cortex since the subjects were scanning on the resting 
state. The results are receivable as it has been confirmed that there indeed exists 
disparity in prefrontal cortex and cingulated cortex between control and ADHD [20]. 
The details are shown in Table 1. All the results above demonstrate that our method can 
obtain a better performance. 

Table 1. Discrimination accuracy 

Site ADHD-200 Prefrontal cortex Visual cortex Cingulate cortex 
NYU 35.19 37.41 34.39 37.07 
Peking-1 51.05 54.00 51.20 54.00 
KKI 61.90 71.82 68.82 72.73 
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In addition, the prediction of ADHD is conducted using the neural network with one 
hidden layer. The data used for prediction in the model is from the prefrontal cortex. 
The neural network performs little better than the DBN in one dataset. In general, the 
proposed method by this paper performs better. The comparison of DBN and NN with 
two different numbers of layers is shown in Fig. 4. 

 

Fig. 4. The comparison of DBN and NN 

5 Conclusion 

In this paper, deep belief network, one of the deep learning models, is applied for 
feature extraction. Experiments were carried out on NYU, Peking-1 and KKI. The 
proposed method was proved to be effective in discriminating between ADHD and 
control. And the accuracy of prediction has improved in some degree compared with 
the results published in ADHD-200 competition. It may be feasible to apply this 
method to other studies on psychiatric disorders. 

The results use part of brain regions but achieves better performance, and verifies 
that there is difference between ADHD and control in prefrontal cortex and cingulated 
cortex. In the future, we will expand our research brain regions, which may leads to a 
better discrimination performance. In addition, the DBN with different layers will be 
realized to achieve better performance. By considering the above factors, there is a 
reason to believe that the discrimination performance based on the proposed method 
can be more effective. 
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Abstract. Attention Deficit Hyperactivity Disorder (ADHD) is one of the most 
common diseases in school aged children. In this study, we proposed a method 
based on social network to extract the features of the ADHD-200 resting state 
fMRI data between ADHD conditioned and control subjects. And the 
classification is done by using the support vector machine. The innovation of this 
paper lies in that: firstly, in the social network, the edge is defined by correlation 
between two voxels, where the threshold is proposed based on the optimal 
properties of small world; secondly, in the procedure of feature extraction, 
besides the traditional network features, we also exploit the new features such as 
assortative mixing and synchronization. We obtain an average accuracy of 
63.75%, which is better than the average best imaging-based diagnostic 
performance 61.54% achieved in the ADHD-200 global competition. Compared 
with the proposed method, the result of the method based on traditional features 
is 61.04% , which verified that the proposed method based on new features is 
better than traditional one. 

Keywords: ADHD, fMRI, social network features, svm. 

1 Introduction 

Attention Deficit Hyperactivity Disorder(ADHD), one of the most commonly found 
behavioral disorders, is characterized by inappropriate inattention and hyperactivity. 
And these behaviors may last for a particular length of time and result in impairment 
throughout their life[1]. At present, the information that leads to this disorder is limited 
and the existing diagnoses rely largely on the physiopathologic symptoms. In fact, it is 
very difficult to classify the ADHD symptoms and normal by medicine clinical 
diagnoses accurately. Thus, there have great significance on the further studies on 
objective diagnosis of ADHD. 

Functional magnetic resonance imaging (fMRI) is a widespread tool to measure 
brain activity in a non-invasive way, because fMRI images obtained using blood 
oxygen level dependent (BOLD) contrast show signal fluctuations at rest. These 
fluctuations have been shown to be coherent across widely separated brain regions such 
as sensorimotor cortices [2-3]. Studies have demonstrated ADHD related abnormalities 
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in the interactions among brain regions supporting the implementation and 
maintenance of attention control [4]. And we use the resting state brain fMRI data as 
comparison to reflect the abnormalities in ADHD brains. 

Recent advances in graph theoretical approaches have allowed us to characterize 
properties of brain networks. As one of the typical features of social network, the small 
world properties of brain networks are affected by normal aging and brain diseases [5] 
such as Alzhermer's [6] disease, epilepsy [7] and schizophrenia [8]. fMRI data can 
provide us the time-series of intensity values for each voxel, then the brain network can 
be constructed based on the correlation of the time-series. We choose social network 
features such as small world properties and degree of connectivity to discriminate the 
difference of ADHD and control brains fMRI data. 

In this study, we use a large dataset from the ADHD-200 Global Competition 
challenged teams. It provides us an important opportunity to test fMRI data diagnosis 
for the reason that the ADHD-200 dataset collects data from 776 participants from 
multiple institutions contrast to the previous studies on fMRI-based diagnoses only 
included 39 participants on average [9]. The details of the dataset and methods used in 
our study are explained in Section 2. The experimental results including the description 
of the experiment are presented in Section 3 and the conclusion from the experiment 
shows in Section 4. 

2 Materials and Methods 

2.1 Dataset and Processing 

The data used in the present work is from the New York University Child Study Center 
(NYU) and Kennedy Krieger Institute (KKI) , which are part of the eight datasets of 
ADHD-200 Global Competition. Because the classification results on NYU dataset are 
the worst among ADHD-200 datasets at present, we choose it to compare with the 
average best results. NYU dataset contains a total number of 216 subjects including 118 
ADHD whose age range from 7.17 to 17.61 (mean age 11.13) and 98 healthy controls 
whose age range from 7.17 to 17.96 (mean age 12.15). For processing, the resting state 
fMRI data are first subjected to a series of preprocessing steps, including 1) 
removement of a central spike caused by magnetic resonance signal offset, 2) slice 
timing, 3)realign, 4) image registration to make image fuse between various imaging 
ways, 5) normalization, 6) spatial smoothing [10]. 

Then the Brodmann’s Interactive Atlas is applied to measure the functional 
connectivity among brain regions, which facilitates fMRI analysis understanding by 
providing access to all of the functions that have been associated with each of the 
Brodmann areas or corresponding gyri [11]. The details of Brodmann areas for brain 
are provided in Fig. 1. As known, social network analysis have been applied in various 
field such as mathematics, physics,information science, economics and scientific 
cooperation[12]. As for brain network, few properties such as small world properties 
are used and we will apply other more features of better effects in this paper. 
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Fig. 1. Brodmann Cortical Areas 

2.2 Network Construction 

fMRI data can be viewed as 4-D video so that the 3-D volumn of brain is divided into 
small voxels. The correlation of intensity time-series can be an indication of how 
synchronous the activities of two voxels are. Symmetric correlation matrixes are 
produced by Pearson’s correlation coefficients between the time series of each possible 
pair of voxels of brain regions for each subject[13]. Each correlation matrix is 
thresholded into a binary graph to investigate the properties of brain functional networks. 

There is no definitive way currently to select a precise threshold in brain networks 
studies. In the present study, we use a new method to choose the proper threshold to 
obtain the most economical network. To diagnose small world properties, the 
characteristic path length and clustering coefficient were compared with the same 
metrics estimated in random networks configured with the same number of nodes, 
mean degree Kran, and degree distribution as the network of interest, under the 
constraint that Kran>㏒(n). Typically, in a small world network, we expect the ratio γ>1 
and the ratio λ≈1 [14-15]. Based on these, we select a threshold that makes γ and λ 
optimal under the constraints at the same time, thus the most economical network can 
be constructed. 

2.3 Small World Properties 

Small world parameters of a network were originally proposed by Watts and Strogatz. 
The clustering coefficient Ci(0< Ci <1) is a ratio that defines the proportion of possible 
connections[16]. The average of the clustering coefficients over all nodes Cnet 
quantifies the local inter-connectivity of a network and can be written 

 
nodes of  triplesconnected ofnumber 

network on the  trianglesofnumber 3×=
net

C  (1) 

And high values of Ci imply the most of nearest neighbors of that nodes are also 
nearest neighbors of each other. The Lnet of a Li network is the mean of the n-1 
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minimum path lengths (Li) between the index node and all other nodes in the network. 
Lnet is an indicator of overall routing efficiency of a network[17]. To evaluate the small 
world properties, we generated 100 degree-matched random networks and scaled the 
Cnet and the Lnet of the real networks with the mean γ and λ (2) of all the random 
networks[18]. Typically, a small world network should fulfill the following conditions: 
γ>1 and λ≈1[15]. A scalar summary of small-worldness is therefore the ratio σ, which 
is typically ＞1 [19].  

 
ran

net

ran

net

L

L

C

C == λγ                                (2) 

These conventional measures have been recently applied to many structural and 
functional brain networks studies[5-6]. 

2.4 Assortative Mixing 

Assortative mixing is one of social network features and a network is said to show 
assortative mixing if the nodes in the network that have many connections tend to be 
connected to other nodes with many connections. Many networks show assortative 
mixing on their degrees, a preference for high degree nodes to attach to other high 
degree nodes while others show dis-assortative mixing that high degree nodes attach to 
low degree ones[20]. Assortative mixing can have a substantial effect on the behavior 
of networked systems.  

The networks that we might want to break up such as the social networks appear to 
be assortative and therefore are resilience, at least against simple targeted attacks. And 
yet at the same time the networks, including technological networks such as the 
Internet, appear to be dis-assortative and are hence particularly vulnerable[21]. In this 
paper, we use the assortative mixing as one of the brain network features to distinguish 
the ADHD brains form controls. For the practical purpose of evaluating r (assortative 
mixing) on an observed network,we can define as       
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Where ji, ki are the degrees of the nodes at the ends of ith edge, with i=1,…,M. 

2.5 Other Properties and the Classification Method 

Other properties of the social network are applied in the study, which may have better 
performance in the analysis. We quantify the dynamical implications of the 
small-world phenomenon by considering the generic synchronization of oscillator 
networks of arbitrary topology. The small world route produces synchronizability more 
efficiently than standard deterministic graphs, purely random graphs and ideal 
constructive schemes. However, the small world property does not guarantee 
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synchronizability, the synchronization threshold lies within the boundaries, but linked 
to the end of the small world region[22]. The synchronization is quantified by the ratio 
S(5) with λ2 and λN indicating the second smallest eigenvalue and the largest 
eigenvalue of the coupling matrix of the network, respectively. 

 
N

S
λ
λ2=  (4) 

The hierarchical organization implies that small groups of nodes organize in a 
hierarchical manner into increasingly large groups while maintaining a scale-free 
topology. The degree of clustering characterizing the different groups follows a strict 
scaling law, which can be used to identity the presence of a hierarchical organization in 
real networks[23]. And we define the hierarchical exponent β as 

 β−kkC ~)(  (5) 

Support Vector Machine (SVM) can be characterized as a machine learning 
algorithm which maximizes the predictive accuracy without over-fitting the data to be 
trained and is capable of resolving linear and nonlinear classification problems. SVM 
works by mapping data to a high dimensional feature space and categorized, even when 
the data are not linearly separable. A separator between the categories is found and the 
data are then drawn into a hyperplane. Then, the characteristics of new data can be used 
to predict the group where a new record should belong. The boundary among the two 
categories can be defined by a hyperplane after the transformation. The kernel function 
of mathematical function is used in transformation. It supports the linear, Radial basis 
function (RBF) Polynomial and Sigmoid kernel types.  

3 Experimental Results 

The data preprocessing is applied to all resting state fMRI data from the ADHD-200 
Global Competition, and the detailed steps have been described in Section 2. The 
preprocessed fMRI data that written into MNI space at 3 mm * 3 mm * 4 mm voxel 
resolution are divided into 48 regions according to the Brodmann areas. It is 
noneffective on some regions of 12, 13, 14, 15, 16, 31 and 33, for the data in these 
regions are empty. Then the network of each region is constructed by the correlation 
coefficient in the datasets of NYU and KKI. We calculate the properties of the social 
network such as small world properties and synchronization in each region network, 
and then train our SVM classifier with these properties. During the training and testing 
of SVM classifier, we used each subject in the dataset once as the validation data, and 
selected the optimal arguments by repeating this process the same times as the number 
of subjects with grid search algorithm. By a certain SVM training, we can obtain the 
average classification accuracy of 63.75% and 78.21% corresponding to NYU and KKI 
dataset respectively, which is better than the average best imaging-based diagnostic 
performance of 61.54%, achieved in the ADHD-200 global competition[24]. 
Particularly emphasized, among the ADHD-200 global competition, NYU dataset 
achieves the lowest classification accuracy.  
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Table 1. The average accuracy of different features used 

 NYU KKI 
All features 0.6375 0.7821 
Small world 

properties 
0.6104 0.7786 

Others 0.6316 0.7750 
 
In order to make comparison, the classification has been performed in three ways to 

test the accuracy between the ADHD brain and controls, also to test the effect of social 
network features.  The three ways are respectively features of small world properties 
only, all features of social network analysis, and the other properties. The results of the 
average accuracy are shown in Table 1. And the results of detailed region in three ways 
show in Fig. 2. The best accuracies of the NYU and KKI dataset are 72.22% and 
85.71% , separately appear in the region of 40 and 9. 

 

(a) 

 
(b) 

Fig. 2. NYU and KKI experimental results. (a) shows the accuracy of detailed regions in three 
ways of NYU dataset. (b) shows the accuracy of detailed regions in three ways of KKI dataset. 
The blue indicates the accuracy of all features in classification while the red indicates the 
accuracy of small world properties used. On the right one, the green means the accuracy of the 
other features used in the classification. 
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Seen from Fig. 2, we can find that the average accuracy among regions by using all 
features of social network is higher than that by only using small world properties. And 
also it can be seen that, there exists the same trend between the new features only and 
small world properties for both datasets, which in some degree verifies that the 
proposed method has a better effect than the one based on small world properties. 

4 Conclusion 

In this paper, a feature selection method based on social network analysis is applied, 
which can obviously reduce the computational complexity before SVM training. Nine 
kinds of features were extracted from the brain images and then used for training 
classifiers. It can be concluded from the experimental results that, the proposed method 
obtain a good performance of classification between ADHD diagnosed and control 
subjects. Also, we found that the features of assortative mixing and synchronization can 
be more effective in the classification than the traditional small world properties. The 
region of intermediate frontal, granular frontal and supramarginal gyrus corresponding 
to the area 8, 9 and 40, apparently have better performance in the classification, thus we 
have reason to consider that there exists obvious difference in these regions between 
ADHD and healthy subjects. 

In the future work, we will verify the feasibility of the method for classification of 
other brain diseases, since we obtain a good result by applying the proposed method to 
classify between the ADHD diagnosis and controls in this paper. On the other hand, the 
classification accuracy may improve effectively if personal characteristic factor such as 
age, IQ etc. are also taken into account. And Future research will be needed to focus on 
this question. 
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Abstract. A novel communication channel from brain to machine, the research 
of Brain-computer interfacing is attracted more and more attention recently. In 
this paper, a novel method based on Bayesian Network is proposed to analyze 
multi motor imagery task. On the one hand, the channel physical position and 
mean motor imagery class information are adopted as constrains in BN 
structure construction. On the other hand, continuous Gaussian distribution 
model is used to model the bayesian network nodes other than discretizing 
variable in traditional methods, which would reflect the real character of EEG 
signals. Finally, the network structure and edge inference score are used to 
construct SVM classifier. Experimental results on the BCI competition data and 
lab collected data show that the average accuracy of the two experiments are 
93% and 88%, which are better comparing to current methods. 

Keywords: EEG, Motor Imager, Bayesian Network, Gaussian Distribution. 

1 Introduction 

Brain-computer interfacing (BCI) is a new method with providing a novel 
communication channel from men to machines and is used to date primarily for 
intentional control. It has received increasing attention in recent years and more and 
more alternative applications of BCI technology are being explored [1]. Basically, 
BCIs require the users to follow a specific computer-generated cue before performing 
a specific mental control task. In order to analysis EEG signal, especially motor 
imagery(MI) EEG signal, Numerous analysis methods have been proposed for 
classification of two or multiple MI classes (e.g., imaginary movements of left hand, 
right hand, tongue, or foot). The most famous is the common spatial pattern method 
(CSP) [2] and its various extensions [3,4] are widely used for extracting 
discriminative spatial (or joint spatio-spectral) patterns that contrast the power 
features of spatial patterns in different MI classes. For tackling multi-class problems, 
an information theoretic feature extraction method [5] and other extensions of CSP 
[6,7] have been proposed.  

There are still many useful discriminant methods have been proposed, including 
analysis based on self-regression model[8], algorithm based on wavelet transform[9], 
neural networks[10], etc.  
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Among these methods, although the CSP is a popular method in BCI applications, 
it is very sensitive to noise, and often over-fits with small training sets. The weakness 
of SVM method is that the optimal parameters are manually selected which has much 
restriction during the parameters searching. 

What’s the most important is that all these methods have one thing in common, 
that is, they regard the problem of motor imagery EEG analysis as pattern 
classification and extract features of different imagery pattern, such as frequency, 
regression coefficients, and then build a discriminant analysis model. Under certain 
conditions these methods achieved good results. However, on the one hand, there are 
too much noise in EEG signals which affect the classification results. On the other 
hand, most methods do not use the channel space position and high time resolution. 

Because of the powerful combination of prior knowledge and data distribution, as a 
kind of graphical model, bayesian network (BN)can accurately describe the causal 
relationship between variables [11]. At present, the applications of BN in EEG are 
mainly focus on analysis and discrimination. Guosheng Yang et al. [12] studied 
Bayesian network for emotion recognition by analyzing the EEG data under different 
emotion. Kwang-EunKO et al. [13] and X Li et al. [14] applied BN to identify the 
fatigue status of the vehicle driver. 

In this paper, considering the space position of each EEG channels and low Signal 
to Noise Ratio of EEG signal, BN is modified to be suitable for multiclass motor 
imagery BCI analysis with event-related processing of accumulating. There are three 
major steps of this paper: constrains calculation of every node’s parent and son set, 
optimal BN structure searching, SVM discrimination based on edge difference and 
score distribution. All three steps are finished automatically.  

The paper is organized as follows: Section 2 introduces the methodology of the 
proposed method; Section 3 introduces the experiment and results; Section 4 is the 
discussion and conclusion. 

2 Methodology 

2.1 Modeling EEG Data with Bayesian Networks  

A Bayesian network is a graphical model for probabilistic relationships among a set 
of variables. The learning task in Bayesian networks can be separated into two 
subtasks: structure learning and parameter estimation. The Bayesian network structure 
aims to identify the best topology and implies a set of conditional independence 
relations among the variable involved as long as these variable are valid. Besides 
independencies, the graph structure of a BN can also be used in certain domains to 
represent cause effect relationships through the edges and their directions. In these 
case, the parent of a node are taken to be the “direct causes” of the quantity 
represented by that node. The parameters define the conditional probability 
distributions for a given network topology. 

In this paper, in order to make analysis logic as simple as possible, one node in the 
network is one EEG channel. Therefore, edges among the nodes in BN indicate the 
relationship among the corresponding channels. 
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Bayesian network structure learning proposed in this paper can be divided into the 
following three steps: 

1. The mean signal for every class BCI is calculated, based on which the set of father 
and son of BN is studied.  

2. The fisher criterion is used to determine whether any two nodes are independent or 
conditional independent, and then the parents-children node sets 1PC of every node 

can be obtained.  
3. Calculate the distribution of each node with Gaussian distribution, then search the 

optimal BN structure based on the BIC score with greedy method. 

2.2 Scoring Based on Gaussian Distribution  

In this paper, the Gaussian distribution is applied to simulate the probability density 
function of the continuous EEG signals. Given a channel Xi  and its continuous 

parent Y , the conditional probability density function can be expressed as: 
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Where iW   is the weight matrix, iμ  is the mean value, and iΣ  is the covariance 

matrix. 
Suppose that there exists m  independently, identically distributed training 

cases D  , so the log-likelihood is 

 log ( , )
1

m
L f y x Di i

i
∏=
=

                                 (2) 

Combining Eqs.(1) and(2), then we get the complete data log likelihood as follows:  
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Then we can estimate the parameters of the Gaussian distribution via Eq.(3), and 
obtain the result 
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Where [ ']E YX  is a conditional second moment; the other can be rewrite similarly. So 
given a training data set, the mean value, the weight matrix and the covariance matrix 
can be obtained by Eq.(4), and thus the probability density or the conditional 
probability density can be got by Eq.(1), with above conditions, the entire score of a 
network can be obtained. 
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2.3 Edge Difference 

Definitely, there is a BN G i, j（ ） for every try i  MI BCI class j . Theoretically, 

different activation areas have different BN structure, i.e. G . After the simplest 
summation of G along all tries for given MI BCI class j , the statistics of every edge 

is acquired and the total edge matrix jE  are got. The value of jE indicates the 

number tries that have edge ( ) je m,n from node m  to node n . The larger the 

( ) je m,n is, the more common it shows. If the value of ( )e l, p  is much larger in MI 

class i  than that in MI class j  , it means that it has much discriminate ability 

between MI class i and j . Therefore, those edges with the largest difference between 

different MI classes are used to make classification.  

3 Experiment and Results 

3.1 Data Source 

In order to test the proposed method performance, three experiments are made on 
three different datasets: Our own data set, Graz BCI competition III (dataset IIIa). 

3.2 Data Preprocessing  

The number of EEG channel in three datasets are different with 64, 11 respectively, 
which is shown in figure 2. Theoretically, more channels means more edges to be 
chosen. However, the complexity will also increase nonlinearly. According to the 
research results of neuroscience, the MI tasks are major correlated to Brodmann area 
4 and 6, which are positioned at the channels of  FC3, FC4, C5, C3, C1, CZ, C2, C4, 
C6, CP3 and CP4 with symmetrically distributed around brain as shown in figure 
2(b). Thus, these channels are adopted in this paper, which is shown as figure 2(b).   

 
Fig. 1. Electrode montage of three datasets. a: IIIa dataset of Graz BCI competition III, b: our 
own. 

The main work of preprocessing is to remove the Electro-Oculogram(EOG) and 
filtering .The EOG is removed by the Neuroscan software. And for the filtering work, 
this paper analyzes the frequency band of 8-30Hz, which is just the band of α wave 
and β wave. So an elliptic filter was designed, with band-pass from 8 to 30Hz. 
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3.3 BCI IIIa Experimental Results  

As we all know, one trial indicates one imagery pattern in motor imagery task. Therefore, 
during analyzing the motor imagery EEG data, BN was constructed for each try.  

The 20 tries statistical results of edges in BN for all the left and right imagery 
pattern are shown in figure 2 (for convenience, here only takes k3b as an 
example).The horizontal axis stands for edges made up by different channels, and the 
vertical axis represents the total number of occurrences of an edge in the 20 trials. 

For all the subjects, the calculation results show that there exist significant 
different edges between the left and right motor imagery pattern, although the edge 
with significant difference is varying across subjects. Taking k3b as an example, the 
significant different edge is channel (1,4). 

 

 
(a)           (b)             (c) 

Fig. 2. Statistical results of BN edges of one subject (a) BN edges statistic on 20 left motor 
imagery trials (b)BN edges statistic on 20 right motor imagery trials (c) BN edges statistic 
difference on 20 left and right motor imagery trials 

Table 1. BCI III Experimental Results 

 Significant different  
Edges 

Recognition rate 
BN        PCA+Fisherscore 

k3b FC3→C3  85%            43.33% 
k6b C5→CP3 94%             53.33% 

l1b C4→C6  100%             40% 
average   93%          45.55% 

Table 2. BCI competition results for BCI III data IIIa  

 k3b k6b l1b 

1 0.8222 0.7556 0.8000 

2 0.6872 0.4333 0.7111 

3 0.9482 0.4111 0.5222 

BN 0.7853 0.6931 0.8154 

The experimental results of recognition rate for the proposed method are shown in 
table 1. Both the significant different edges and the corresponding recognition rate are 
provided. In order to evaluate the performance of BN, PCA+FisherScore[15] method 
is applied to make a comparing on the two data sets. The results are shown in table 1. 



246 L.-h. He and B.  Liu 

On the other hand, the results of kappa coefficient is listed on table 2 together with 
the top three results[16] of BCI competition for motor imagery data IIIa.  

It can be seen from table 1 and table 2 that the average recognition rate of proposed 
method is 76.67%, which is much higher than PCA+Fisher Score method, whose 
performance is only 45.55%. As for the Comparing with the top three best winner, 
BN shows better performance on more than half sub-datasets. 

3.4 The Experimental Results of Collected Data 

For the collected experiment data of the five subjects, carrying out the same 
processing in accordance with the BCI IIIa data, and the experimental results are 
shown in Table 3. 

Table 3. Collected data experimental results 

 Significant different Edges Recognition rate 
BN      PCA+Fisherscore 

Subject1  2→9  (16) 80% 53.33% 
Subject2  8→9  (17) 80% 46.67% 
Subject3  1→4  (13) 85% 40% 

Subject4  4→10 (-20) 95% 53.3% 
Subject5  8→9  (20) 8→11 (20) 100% 60% 
average   88% 50.67% 

 
It can be seen from table 3 that the proposed BN method overwhelm the 

PCA+Fisher Score method with 88% recognition rate, comparing with only 50.57% 
recognition rate of  PCA+Fisher Score method.  

4 Discussion and Conclusion 

In this paper, a method based on BN for the discriminate analysis of motor imagery 
EEG is introduced. And in order to prove the effect of the proposed method, 
PCA+Fisher Score is adopted to contrast. The experimental results indicate that the 
proposed improvements are very effective to improve the discriminant analysis 
results.  
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Prediction of Molecular Substructure Using Mass 
Spectral Data Based on Metric Learning 
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Abstract. In this paper, some metric learning algorithms are used to predict the 
molecular substructure from mass spectral features. Among them are 
Discriminative Component Analysis (DCA), Large Margin NN Classifier 
(LMNN), Information-Theoretic Metric Learning (ITML), Principal 
Component Analysis (PCA), Multidimensional Scaling (MDS) and Isometric 
Mapping (ISOMAP). The experimental results show metric learning algorithms 
achieved better prediction performance than the algorithms based on 
Elucidation distance. Contrasting to other metric learning algorithms, LMNN is 
the best one in eleven substructure prediction.  

Keywords: Data mining, molecular structure, metric learning. 

1 Introduction  

Gas chromatography coupled with mass spectrometry (GC-MS) is a key analytical 
technology for high-throughout analysis of small molecules [1]. A lot of mass spectral 
libraries have been created [2-5] and various mass spectral similarity measures [6-10] 
have been developed for the spectrum matching. When the spectrum of an unknown 
compound does not exist in the reference library, mass spectral classification is an 
important and complementary method to aid and benefit the mass spectral library 
searching. 

So many classification methods based on mass spectral data have been developed. 
Varmuza first transform EI spectra into spectral features and then use a set of mass 
spectral classifiers to predict presence or absence of 70 substructure[11]. However, the 
chemical structure information contained in mass spectra is difficult to extract because 
of the relationship between MS data and chemical structures are too complicated. To 
improve the prediction performance, some feature selection methods were used: Genetic 
algorithm (GA) [12].As for the development of classifiers, from simple Artificial neural 
network (ANN)[13] , linear discriminant analysis (LDA) and partial least squares 
discriminant PLS (DPLS) to complex decision tree and Adaboost have all been used for 
prediction [14, 15]. Metric learning is a potentially effective method for the prediction 
of molecular sub-structure. In fact, the performance of many classification algorithms 
depends on the metric over the input space. Several existing methods were developed  
to explore distance information and showed excellent performance in standard data sets 
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[16-18]. In this paper, total four metric learning algorithms are used to compare the 
prediction performance, among them are Information-Theoretic Metric Learning 
(ITML) [18, 19], Large Margin Nearest Neighbor (LMNN) [17, 20], Discriminative 
Component Analysis (DCA) [21, 22] and Isometric Mapping [23-25] algorithm.  

2 Materials and Methods 

2.1 Mass Spectra and Substructures Dataset 

To evaluate the performance of different algorithms, a mass spectral features dataset 
with corresponding molecular substructure information have been taken from NIST 
mass spectral library. First, we randomly select 5172 molecules from NIST MS 
library. Software MassFeatGen was employed to transform the original mass peak 
data into an 862 mass features. The corresponding 11 molecular substructure are 
extracted from PubChem molecular fingerprint. The details of the molecular 
substructure are listed in table 1.  

Table 1. Substructures used for the construction of datasets 

Structure 
NO. 

Chemical structure  Molecular equation Number  
of objects 

1 

 

4-methylbenzenethiol 529 

2 

 

3-methylbenzenethiol 451 

3 

 

o-cresol 589 

4 

 

1-chloro-2-methylbenzene 527 

5 

 

4-methylcyclohexanol 670 

6 

 

4-methylcyclohexanethiol 691 

7 

 

3-methylcyclohexanol 819 
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Table 1. (Continued.) 

8 

 

3-methylcyclohexanethiol 620 

9 

 

2-methylcyclohexanol 
 

927 

10 

 

2-methylcyclohexanethiol 535 

11 

 

1-chloro-2-
methylcyclohexane 

591 

2.2 Algorithm 

Information-Theoretic Metric Learning 
Given a set of n points { }nxxx ,...,, 21  in Rn, we seek a matrix A which 

parameterizes the Mahalanobis distance, 

                   )()(),( ji
T

jijiA xxAxxxxd −−=                     (1) 

Samples are similar: uxxd jiA ≤),(  for a relatively small value of u , samples 

are dissimilar: lxxd jiA ≥),(  for sufficiently large l , our problem is to learn a 

matrix A that parameterizes the corresponding Mahalanobis distance. 
Given similar samples S and dissimilar samples D, the distance metric learning 

problem is 

              ));(||);((min AxpAxpKL
A

 (2) 

Subject to                 
uxxd jiA ≤),(

      Sji ∈),(  

                           
lxxd jiA ≥),(

       Dji ∈),(  
S represents the similar samples and D represents dissimilar samples, enlightened 

by low-rank kernel learning problem, it can be seen below:  

            ),(
2

1
),(

2

1
));(||);(( 0

11
0 AADAADAxpAxpKL ldld == −−  (3) 

       nAAAAtrAADld −−= −− )det(log)(),( 1
0

1
00  (4) 
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The step of this algorithm can be seen below:  
Algorithm  Information-theoretic metric learning

   Input: X: input d × n matrix;   S: set of similar pairs   D: set of dissimilar pairs; 

u , l : distance thresholds;    A 0 : input Mahalanobis matrix;  γ: slack parameter 

c: constraint index function 
Output:   A: output Mahalanobis matrix 

1. jiAA ij ,0,0 ∀←← λ  

2. ujic ←),(ξ  for ;),( Sji ∈  otherwise ljic ←),(ξ  

3. repeat 
  3.1. Pick a constraint Sji ∈),( or Dji ∈),(  

  3.2. )()( ji
T

ji xxAxxp −−←  

3.3. 1←δ if Sji ∈),( , -1 otherwise 

3.4. ←α min ))
1

(
2

,(
),( jic

ij p ξ
γδλ −  

3.5.
pδα

δαβ
−

←
1

 

3.6. )/( ),(),(),( jicjicjic δαξγγξξ +←  

3.7. αλλ −← ijij  

3.8. AxxxxAAA T
jiji ))(( −−+← β  

4. until convergence 
return A 

 

The parameterγ controls the tradeoff between satisfying the constraints and 

minimizing ),( 0AADld . 

Large Margin Nearest Neighbor (LMNN) 
LMNN learn the matrix A with the help of semidefinite programming for every 

sample ix , the similar samples should be close and the dissimilar samples should 

be far away, it can be represented as following: 

    ),(min
,

j
Nji

i
A

xxd
i


∈

 (5) 

then constraining dissimilar sample lx
 
to be one point further away than similar 

sample jx . The resulting can be stated as: 

              ),(1),(,,, jijiyylNji xxdxxd
ili

≤+∀ ≠∈  (6) 

The final optimization problem becomes: 

        +
∈ lji

ijlj
Nji

i
A

xxd
,,,

),(min ξ  (7) 
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 ijljijiyylNji xxdxxd
ili

ξ+≤+∀ ≠∈ ),(1),(,,, , 0≥ijlξ , A = 0      (8) 

Here the variables ijlξ
 
represent the amount of violations of the dissimilar samples. 

The sum is minimized.  

3 Experiments and Discussions  

We evaluated LMNN,DCA,ISOMAP and adaboost algorithm based on our data set, 
experimental results were obtained by averaging over multiple runs. and the 
weighting parameter was set to 0.5, maximum number of iterations was set to 1000, 
 

5-fold cross-validation classification error
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Fig. 1. The error of the algorithms for the classification of the substructure of molecules 

Table 2. The classification error of the algorithms  

5-fold cross-validation classification error 

No. Euclidean ISOMAP Adboost SVM DCA PCA MDS ITML LMNN 

1 0.1093 0.1123 0.0908 0.0925 0.0925 0.1138 0.1157 0.1012 0.072 

2 0.1052 0.0985 0.084 0.079 0.0814 0.0929 0.0959 0.0923 0.0685 

3 0.1051 0.118 0.098 0.103 0.0873 0.1159 0.1107 0.0995 0.0801 

4 0.1091 0.11 0.0926 0.0924 0.0925 0.1104 0.1053 0.1054 0.088 

5 0.1168 0.1251 0.1073 0.1073 0.1514 0.11 0.1094 0.1123 0.0901 

6 0.134 0.1398 0.1194 0.1209 0.122 0.1349 0.1367 0.1294 0.1128 

7 0.1466 0.1415 0.1278 0.1423 0.1434 0.1303 0.1331 0.1406 0.1073 

8 0.1321 0.1283 0.1127 0.1086 0.1637 0.1266 0.1216 0.1217 0.1063 

9 0.1563 0.1655 0.1382 0.1624 0.1301 0.1552 0.1525 0.1466 0.1237 

10 0.1201 0.1203 0.1082 0.0937 0.1121 0.1109 0.1107 0.1191 0.0904 

11 0.1277 0.1338 0.1154 0.1036 0.1201 0.1194 0.1188 0.1226 0.0932 
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validation step was set to 35 and suppress output was set to 1. As DCA algorithm,  
the percentage of positive constraints to be produced was set to 0.2. For all the 
algorithms, the output dimensions were set as 18. K value of KNN was set as 3. The 
main results on the data sets are shown in Fig. 1 and Table 2. 

From the Fig.1 and Table 2, we can see that ITML, DCA, LMNN algorithms 
improves classification ability.  We use the squared Euclidean distance as a baseline 
method. The results show that LMNN is the most effective algorithm to improve the 
KNN classification accuracy.  

4 Conclusion 

In this paper, we show the problem of metric learning with multiple features and 
compare several Metric Learning algorithms for the classification of the substructure 
of molecules. Our experimental results show that metric learning algorithms achieved 
better prediction performance than the algorithms based on Elucidation distance. The 
LMNN is the best one among these algorithms.  
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Abstract. In this study, total seven similarity measures were combined to 
improve the identification performance. To test the developed system, 28,234 
mass spectra from the NIST replicate library were randomly split into the 
training set and test set. PSO algorithm was used to find the optimized weights 
of seven similarity measures based on the training set, and then the optimized 
weights were applied into the test set. Simulation study indicates that the 
combination of multiple similarity measures achieves a better performance than 
single best measure, with the identification accuracy improved by 2.2 % and 
1.7% for training and test set respectively. 

Keywords: mass spectra, compound identification, similarity measures. 

1 Introduction  

Gas chromatography mass spectrometry (GC-MS) is one of the most widely used 
analytical tools for the analysis of chemical or biological samples in many fields [1]. 
One of the most important procedures for the analyses of GC-MS data is compound 
identification. Many commercial and academic mass spectral libraries have been 
created [2-5], and various mass spectral similarity measures have been developed for 
compound identification, including dot product, composite similarity[6], probability-
based matching system [7], Hertz similarity index[8], normalized Euclidean distance 
and absolute value distance (ABS_VD) [9]. 

Stein and Scott compared five of the most popular spectral similarity metrics and 
concluded that the best performance was achieved by the proposed composite 
similarity[6]. Koo et al. [10] introduced a composite similarity measure that integrates 
wavelet and Fourier transform factors and showed that their similarity measures 
perform better than the dot product with its composite version. Kim et al. [11] 
developed a statistical approach to find the optimal weight factors through a reference 
library for compound identification. Kim et al. [12] also proposed a composite 
similarity measure based on partial and semi-partial correlations. Most recently,  
Koo et al. [13] compared the performance of several spectral similarity measures and 
found that the composite semi-partial correlation measure provides the best 
identification accuracy. 
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In order to further improve the compound identification, we developed a method 
that combines the results of multiple mass spectral similarity measures. A filter 
method is used to define a subset of the reference spectral library [14, 15]. Particle 
swarm optimization (PSO) [16] algorithm is used to optimize the weight of each 
similarity measure. By using the combination of multiple similarity measures with the 
optimized weights, the final compound identification is implemented.  

2 Materials and Methods 

2.1 NIST EI Mass Spectral Library 

The NIST/EPA/NIH Mass Spectral Library contains two EI mass spectral libraries, 
the main and the replicate EI MS library. In this study, the replicate EI mass spectra 
are used as a query library. A total of 28,234 mass spectra were extracted from the 
replicate library, of which 5844 mass spectra were randomly selected as training 
dataset while the remaining 23,290 mass spectra were used as test dataset. The main 
EI MS library of NIST/EPA/NIH Mass Spectral Library 2005 (NIST05) containing 
163,195 mass spectra was used as reference library. 

2.2 Similarity Measures 

Let X=(x1,x2,…,xn) and Y=( y1,y2,…,yn) be the query and reference mass spectra, 
respectively. The weighted spectra are as follows [6]: 

 1( ,......, )w w w
nX x x=  (1) 

 1( ,......, )w w w
nY y y=

  (2) 

where 
w a b
i i ix x m= ·  and 

w a b
i i iy y m= · , i=1,…,,n, mi, is m/z value of the ith 

fragmention, n is the number of mass-to-charge ratios considered for computation, a 
and b are the weight factors for peak intensity and m/z value, respectively. 
Throughout this work, with (a,b) = (0.5, 3).  

Absolute Value Difference (ABS_VD) 

 

_
1

1
( , )
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= -å  (3) 

The sum of the difference between the corresponding weighted intensity values of the 
query and reference mass spectra.  

Euclidean Distance 
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Stein and Scott’s Composite Similarity Measure  
The similarity measure is derived from a weighted average of two items. First item is 
defined in equation (5). The second item is defined a ratio of peak pairs as follows: 
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where n=1 if the first intensity ratio is less than the second, otherwise n=-1. xi, yi are 
non-zero intensities having common m/z value and Nc is the number of non-zero 
peaks in both the reference and the query spectra. The composite similarity is: 
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where Nx is the number of non-zero peak intensities in the query spectrum.  

Discrete Fourier and Wavelet Transform Composite Similarity Measure 
The original spectral signal 1 2( , , ..., )nX x x x= is converted by Discrete Fourier 

transform (DFT) into a new signal 1 2( , , .. ., )f f f
f nX x x x=  as follows:  
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The converted signal consists of real and imaginary part. We only use the real part of 

a signal is 1 2( , , ..., )FR FR FR FR
nX x x x= .  

 
 



258 L.-H. Liao et al. 

 

The discrete wavelet transform (DWT) convert a discrete time domain signal into a 
time-frequency domain signal. A signal pass through a low-pass filter and a high-pass 
filter, two subsets of signals are formed: approximations and details:  

 Approximation DWT:   
1

[2 1] 1, ...,
n

A
k d

d

x x g k d k n
=

= − − =  (10) 

 detail DWT:        
1
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n

D
k d

d

x x h k d k n
=

= − − =  (11) 

where g and h are low-pass and the high-pass filter respectively. In literature [10] only 
use real part in DFT and detail part in DWT.  
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2.3 Performance Measurement 

The accuracy is the proportion of the spectra identified correctly in query spectra. 
Therefore, the accuracy of identification can be calculated by: 

 
num ber of spectra m atched correctly

accuracy
num ber of spectra queried

=   (14) 

3 Results and Discussion 

3.1 Constructing the Sub-reference Library 

In order to construct the sub-reference library, a similarity measure is selected from 
seven similarity measures based on its computation time. We randomly selected one 
hundred mass spectra as query data and change the size of reference library. As the 
size of reference library increase, the computation time is increased as shown in Fig.3. 
Since SS measure needs much more computation time than others, it will make the 
other measures cannot be clearly observed, we removed it from Fig.1.  

Fig. 2. depicts the relationship between identification accuracy and the number of 
top ranked compounds. With the increase of the number of the top ranked 
compounds, the accuracy of compound identification is increased. The DFTR and 
DWTD both outperform the other five measures in every rank. Overall, except DFTR 
and DWTD, the rest similarity measures have similar identification performance.  
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Fig. 1. Computational time of seven similarity measures 
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Fig. 2. Identification accuracy and corresponding rank number plot for seven similarity 
measures 

3.2 Combine Multiple Similarity Measures (MUL_SM) for Compound 
Identification 

Based on ABS_VD measure, the mass spectra of the top 100 ranked compounds 
identified by ABS_VD measure for each query spectrum were selected from the 
reference library NIST05 to construct the sub-reference library. PSO algorithm was 
used to find the optimized weights of multiple measures for training mass spectra. 
The optimized weights were then applied to the test dataset to find whether the 
identification performance of using multiple similarity measures (MUL_SM) is 
improved. From the training dataset  the identification accuracy of MUL_SM 
exceeds the DFTR and DWTD about 2.2% and reaches to 80.0%.  

Table 1 lists the identification results of the MUL_SM and each of the six 
similarity measures, respectively. The results show that the identification performance 
of MUL_SM outperforms any single spectral similarity measure. To study the 
influence of the size of filter subset on identification, the size of sub-reference library 
was set as 100, 500 and 1000, respectively. With the increase of the size of the sub-
reference library from 100 to 1000, the identification performance of each similarity 
measure has a very smaller increment.  
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Table 1. Compound Identification Performance of test set based on ABS_VD filter 

Size of filter 

Similarity    subset 

Measures 

Accuracy at Rank (%) 

1 1-2 1-3 

100 500 1000 100 500 1000 100 500 1000 

MUL_SM 82.7 83 83 91.5 91.8 91.9 94.5 94.8 94.9 

DFTR 81.1 81.3 81.4 90.5 90.8 90.9 93.9 94.2 94.4 

DWTD 81.1 81.4 81.4 90.5 90.7 90.8 93.6 93.9 94 

Correlation 79.3 79.3 79.4 89.1 89.1 89.2 92.4 92.5 92.6 

Cosine 79.2 79.3 79.4 88.9 89.1 89.2 92.3 92.5 92.5 

Euclidean 79.3 79.4 79.4 89 89.1 89.2 92.4 92.5 92.5 

SS 78.3 78.5 78.5 88.7 89 89 92.5 92.8 92.9 

4 Conclusion 

In order to improve the compound identification performance, the identification 
difference of seven mass spectral similarity measures was combined. ABS_VD was 
used as filter to reduce the computational time. To verify the identification of 
combination, the query data came from NIST replicate library was split into training 
set and test set. Training set was used to find optimized weights of seven similarity 
measures through PSO algorithm.  After the optimized weights were applied into the 
test set, we concluded that the combination multiple similarity measures (MUL_SM) 
achieve better performance than single best measure (DFTR or DWTD).  
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Abstract. The phylogenetic classification of DNA fragments from a variety  
of microorganisms is often performed in metagenomic analysis to understand 
the taxonomic composition of microbial communities. A faster method for  
taxonomic classification based on metagenomic reads is required with the  
improvement of DNA sequencer's throughput in recent years. In this research 
we focus on naïve Bayes, which can quickly classify organisms with sufficient 
accuracy, and we have developed an acceptably fast, yet more accurate classifi-
cation method using improved naïve Bayes, Weightily Averaged One-
Dependence Estimators (WAODE). Additionally, we accelerated WAODE 
classification by introducing a cutoff for the mutual information content,  
and achieved a 20 times faster classification speed while keeping comparable 
prediction accuracy. 

Keywords: Metagenomic analysis, phylogenetic classification, naïve Bayes. 

1 Introduction 

Metagenomics is the relatively new study of analyzing the genomic information of 
microorganisms obtained directly from environmental samples, such as soils or hu-
man bodies, without the need for cell culture [1, 2, 3]. A major task of the analysis is 
elucidating the taxonomic composition of the sampled microbial communities. To 
understand this composition, the phylogenetic classification of raw sequence reads 
into groups representing the same or similar taxa needs to be performed. A biological 
classification defines the rank, such as phylum, class, order, family, genus, and often 
species; phylogenetic classification is performed at each taxonomic level [4, 5, 6, 7].  

Metagenomic phylogenetic classification methods can be divided into two  
predominant approaches: homology-based versus composition-based. 

The homology-based approach is accomplished by comparing metagenomic frag-
ments against a reference database using a sequence homology search tool, such as 
BLAST [8, 9, 10, 11]. Basically, this approach finds similarities between sequences 
through a heuristic sequence alignment process. The approach generally has high 
accuracy, but requires excessive computation time, linearly proportional to the 
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amount of query data analyzed. The latest DNA sequencing technology, such as Illu-
mina’s HiSeq2500, can generate approximately 6 billion DNA fragments per run. The 
amount of metagenomic data generated, and requiring analysis, will become ever 
larger in the near future. Thus, reducing computational time for metagenomic phylo-
genetic classification is of upmost importance. 

Composition-based approaches bypass the sequence alignment process to find si-
milarities between a fragment and known sequences by extracting compositional fea-
tures from DNA fragments. These features are generally used as inputs for supervised 
learning methods. The accuracy of composition-based approach is lower than that of 
homology-based approaches. However, once this approach constructs a model, the 
amount of calculation required for classification is much smaller than that for homol-
ogy-based approaches. Therefore, this approach can classify reads more quickly than 
homology-based approaches. Currently, numerous composition-based metagenomic 
phylogenetic classification methods have been proposed based on various supervised 
machine learning methods, such as the support vector machine (SVM) [4] and naïve 
Bayes (NB) [5]. 

The SVM is a binary classification algorithm and generally has high accuracy. 
Even in the metagenomic phylogenetic classification problem, the SVM-based  
method, PhyloPythia [4], shows better performance than the other classification  
algorithms. However, SVM predictions are not as fast for complex classification 
problems, because it needs to use a non-linear kernel. It is also slow for problems with 
many classes, because it is a binary classifier and performs multiple predictions for 
such problems. Conversely, the classification accuracy of NB is relatively low, but its 
classification speed is much faster than the SVM. 

We focus on the naïve Bayes method in this research. Naïve Bayes methods can 
perform taxonomic classification in a short time. Our aim is to develop a method fast-
er than SVM-based methods, but more accurate than standard NB-based methods. To 
tackle these competing demands, we apply an extended NB algorithm to the problem. 
We use Weightily Averaged One-Dependence Estimators (WAODE) [12] for the 
metagenomic phylogenetic classification, because previous studies in other research 
fields have shown it to perform well in various extended NB applications [12, 13]. 
Unfortunately, the classification speed of our WAODE-based method is slower than 
that of standard NB-based methods. A major task in machine learning studies is re-
ducing the learning time required for constructing the model. In contrast, only a small 
effort has been spent on improving machine learning classification times. Therefore, 
we attempt to improve classification speed in our WAODE algorithm implementation. 

2 Methods 

We applied WAODE to metagenomic phylogenetic classification, because previous 
studies have shown WAODE’s performance to excel in extended naïve Bayes appli-
cations [12, 13]. 
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Fig. 1. Structure of WAODE 

2.1 Weightily Averaged One-Dependence Estimators (WAODE) 

WAODE is an extended naïve Bayes classifier that relaxes the conditional indepen-
dence assumption of NB, and consists of multiple one-dependence estimators [12]. 
One-dependence estimator (ODE) is a classifier with a single attribute that is the par-
ent of all other attributes. In WAODE, ODEs are constructed for each attribute, and a 
different weight is assigned for each ODE. WAODE averages the aggregate of the 
weighted ODEs. Figure 1 shows the structure of WAODE. 

Assume that an example E is represented by E = (a1, …, an), where ai is the value 
of attribute Ai. The WAODE classifier for an example E is then defined as 

 , 
(1)

 

where C is class variable, c is the value of class variable C, ai is the value of attribute 
Ai, and Wi is the weight of the ODE in which attribute Ai is the parent of all other  
attributes. 

In WAODE, the approach for determining the weight Wi uses the mutual informa-
tion between attribute Ai and class variable C, as shown in Eq. (2).  

  
(2)

 

WAODE estimates the base probabilities P(ai, c) and P(aj | ai, c) as follows: 

 , 
(3)

 

 , 
(4)

 

where F(·) is the frequency with which a combination of terms appears in the training 
data, N is the number of training examples, ni is the number of values of attribute Ai, 
and k is the number of classes. 

2.2 Simplification of Weightily Averaged One-Dependence Estimators 

In WAODE, ODEs are built for all attributes A1, …, An, and the aggregate of the 
weighted ODEs are averaged. When the number of attributes in a dataset is large, the 
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number of ODEs comprising the WAODE, and the amount of calculation required by 
Eq. (2) both increase. Thus, we aimed to reduce classification time by decreasing the 
number of ODEs comprising the WAODE. 

WAODE uses the mutual information between attribute Ai and class variable C as a 
measure of the importance of attribute Ai. In this study, we introduced the cutoff value 
of mutual information tWAODE to WAODE. Our new algorithm uses nothing but those 
ODEs corresponding to the attributes which obtain mutual information higher than the 
cutoff value tWAODE. We named the algorithm t-WAODE. For an example E the t-
WAODE classifier is defined as: 

 .
 (5)

 

2.3 Characterization Vectors 

Many methods for metagenomic fragment classification use k-mer frequency as an 
input vector for supervised learning [4, 5]. We also used k-mer frequency as the input 
vector for our classifier. A popular method for computing k-mer frequency extracts k-
mers while sequentially displacing the input DNA sequence one by one from the top, 
counting each k-mer as it proceeds (Fig. 2). 

PhyloPythia uses 5-mer frequencies as an input vector at the rank of genus for op-
timum results [4]. Thus, we also employed 5-mer frequencies as our input vector. 

 

Fig. 2. Computing k-mer frequency 

3 Results and Discussion 

We compared WAODE and t-WAODE against the SVM and standard NB existing 
phylogenetic classification methods. We applied 10-fold cross-validation to evaluate 
the performance of the classifiers. All experiments were performed on a 2.93 GHz 
Intel Xeon X5670 CPU supplied with 54 GB of RAM. 

As with PhyloPythia, we used the LIBSVM [14] package version 3.17 as a library 

for SVM, and employed a radial basis function (RBF), defined as 
2

ji xx
e

−−γ  .  
We wrote the code for the NB-based predictor and the WAODE-based predictors 
using the C programming language. 

3.1 Dataset and Parameter Settings 

We used simulated metagenomic samples drawn from existing sequences. We built a 
core library of Bacterial and Archaeal genomes derived from the NCBI reference 
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sequence database (RefSeq) comprised 380 distinct organisms, containing 531 chro-
mosomes and plasmids, belonging to 48 different genera, as our main data source. We 
used MetaSim software [15], which simulates metagenomic fragments from given 
genome sequences, with empirical error option to generate metagenomic reads with 
lengths of 100 bp. The total number of fragments was 319,972, and the dataset had 48 
classes and 1,024 attributes. 

The performance of the SVM with a Gaussian kernel depends on the regularization 
parameter C and the kernel width γ. Our t-WAODE algorithm depends on a cutoff 
value of mutual information, tWAODE. To determine optimal values for C, γ and tWAODE, 
we generated 16,000 fragments and applied 10-fold cross-validation. We determined 
the cutoff value of t-WAODE enabling the fastest prediction when accuracy is permit-
ted to decrease 0.l %. 

3.2 Evaluation Method 

We used prediction accuracy and classification time as our performance measure-
ment. However, the deviation between the number of fragments in each class is quite 
large in the metagenomic dataset we used. For example, the maximum number of 
fragments belonging to a class is approximately 35 times as large as the minimum. 
Prediction accuracy, which is the ratio of correctly predicted cases to all cases, is 
inappropriate for the evaluation of such an unbalanced dataset. Because the area under 
the receiver operating characteristic (ROC) curve [16], AUCROC, is effective against 
such an unbalanced dataset, we used AUCROC to evaluate the prediction accuracy of 
each classifier for each class. AUCROC is a criterion for the evaluation of a ROC 
curve, and an AUCROC of 1.0 represents a perfect classification. An AUCROC of 0.5 
represents a random classification. We obtained 48 values resulting from the  
AUCROC  evaluation. Therefore, in this study we plotted the characteristic of each 
prediction method, based on these AUCROC values, and we used the area under the 
curve (AUC) of the plot obtained through the following steps to comprehensively 
evaluate a prediction accuracy of the classifiers: 

1. A target class is defined as positive examples, and other classes are defined as neg-
ative examples. We calculate AUCROC for each class, and obtain values of AUCROC 
for each class  x1, x2, …, xn, where n is the number of classes. 

2. We sort x1, x2, …, xn  in ascending order. 
3. For sorted values  x’1, x’2, …, x’n of AUCROC, we calculate the ratio of each 

classes whose AUCROC are more than x’1. This ratio is plotted on a graph having 
the cutoff value of  AUCROC  as the abscissa and the rate of class whose AUCROC 
is more than cutoff value as the vertical axis. 

4. The same operation as in step 3 is performed for the other sorted values x’2, …, x’n. 
5. We calculate the area under the curve obtained from the above steps. 

To compute the classification times, we used the gettimeofday() function. For eva-
luating the classification time of each classifier, we performed the same calculation 
three times, and used their median value. 
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3.3 Results of Evaluation Tests 

Our experiment compared WAODE and t-WAODE against NB and the SVM. Figure 
3 shows the prediction accuracy characteristic curve for each prediction method. Ta-
ble 1 summarizes AUC and classification times of the SVM, NB, WAODE and t-
WAODE methods. The prediction accuracy of WAODE was lower than that of SVM 
but it much better than NB and the improvement was 0.02. Also, the prediction accu-
racy of t-WAODE slightly decreased compared with WAODE (the difference is 
0.004) but it was still much better than NB (the improvement was 0.016). 

We also checked statistical significance using a Wilcoxon signed rank test to eva-
luate the significance of the difference between the prediction accuracy of each me-
thod. We performed a Wilcoxon signed rank for the  AUCROC  values of the 48 
classes. We used wilcox.test() function of R (version 3.0.1) for calculating the Wil-
coxon signed rank test p-value. Table 2 shows the p-value for prediction accuracies. 
As shown in Table 2, WAODE and t-WAODE outperformed NB, in terms of predic-
tion accuracy, and the differences are statistically significant because the p-values of 
the Wilcoxon signed rank test are smaller than 0.05 (7.11 × 10-14 and 1.42 × 10-14, 
respectively). Although the SVM shows better prediction accuracy than WAODE and 
t-WAODE, the classification time of WAODE and t-WAODE was much shorter than 
that of SVM. Especially, the prediction of t-WAODE became approximately 20 times 
faster than that of WAODE. We expected that t-WAODE method keeps prediction 
accuracy compared with WAODE. However, the difference of the prediction accura-
cy of t-WAODE and that of WAODE was unfortunately significant (the p-value 1.68 
× 10-3 < 0.05) even though the difference was small.  

 

Fig. 3. The characteristic curve of prediction accuracy 
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3.4 Discussion 

We propose t-WAODE as a simplification of WAODE to accelerate classification 
time by introducing a cutoff value for mutual information. We have determined the 
optimal cutoff value by applying a 10-fold cross-validation test to subset of our data-
set. As described above, we determined the cutoff value of t-WAODE enabling the 
fastest prediction when accuracy is permitted to decrease 0.l %. In our study t-
WAODE’s prediction accuracy was slightly lower than that of WAODE. However, as 
shown in Table 3, the optimum cutoff value enables a faster prediction without a de-
crease in prediction accuracy (tWAODE = 0.10). Thus, methods for determining appro-
priate cutoff values that can speedup prediction while keeping acceptable prediction 
accuracies are important for future study. 

Table 1. The accuracy (AUC) and classification time of each method 

  Accuracy (AUC) Classification time (sec.) 

SVM 0.904 207,569 

NB 0.875 125 

WAODE 0.895 120,000 

t-WAODE 0.891 6,053 

Table 2. The p-value of the Wilcoxon signed rank test for prediction accuracy 

  SVM NB WAODE 

WAODE 2.19 × 10-5 7.11 × 10-14
 

t-WAODE 3.63 × 10-10 1.42 × 10-14 1.68 × 10-3 

Table 3. The accuracy (AUC) and classification time when the cutoff value of mutual 
information is changed 

  AUC Classification time (sec.) 

WAODE 0.895 120,000 
t-WAODE  
(tWAODE = 0.01) 0.894 79,296 
t-WAODE 
(tWAODE = 0.05) 0.892 15,986 
t-WAODE  
(tWAODE = 0.10) 0.891 6,053 
t-WAODE  
(tWAODE = 0.15) 0.885 1,287 
t-WAODE  
(tWAODE = 0.18) 0.879 387 
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The t-WAODE algorithm can be applied to other classification problems, although 
we have proposed t-WAODE only for the metagenomic phylogenetic classification 
problem. We expect that t-WAODE’s prediction speed is also faster than that of 
WAODE and yet will maintain sufficient prediction accuracy for other classification 
problems as well. 

4 Conclusions 

In this study we applied WAODE to metagenomic phylogenetic classification, and 
compared it with a SVM-based predictor and a NB-based predictor. Our WAODE-
based predictor achieved better prediction accuracy than the NB-based predictor and 
was a faster classifier than the SVM-based predictor. 

Furthermore, we proposed t-WAODE for an even faster classification speed. The  
t-WAODE algorithm simplifies WAODE by introducing a cutoff value for mutual 
information content. As a result, t-WAODE’s prediction speed is approximately 20 
times faster than that of WAODE, yet it maintains comparative prediction accuracy as 
WAODE. 
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Abstract. In this paper, according to evolutionary information and 
physicochemical properties, we selected eight features, combined with Rotation 
Forest (RotF) to predict interaction sites. We built two models on both balanced 
datasets and imbalanced datasets, named balanced-RotF and unbalanced-RotF, 
respectively. The values of accuracy, F-Measure, precision, recall and CC of 
balanced-RotF were 0.8133, 0.8064, 0.8375, 0.7775 and 0.6283 respectively. 
The values of accuracy, precision and CC of unbalanced-RotF increased by 
0.0679, 0.0122 and 0.0361 over balanced-RotF. Precision values of 
unbalanced-RotF on our four selected testing sets were 0.907, 0.875, 0.878 and, 
0.889, respectively. Moreover, experiment only using two physicochemical 
features showed evolutionary information has effective effects for classification. 

Keywords: protein-protein interaction sites, Rotation Forests, evolutionary 
information, machine learning. 

1 Introduction 

On the basis of the sequence and structural information of protein, some methods have 
been proposed [1-6]. Kini and Evans [1] proposed a unique predictive method that 
detecting the presences of the “proline” because they observed that proline is the most 
common residue found in the flanking segments of interface residues. Zhu-Hong 
You.et al[6] have proposed a novel method only using the information of protein 
sequences, which used the PCA-EELM model to predict protein-protein interactions. 
Many methods to predict the protein-protein interacting sites are motivated by the 
different machine learning methods with characteristics of proteins [5-17]. Minhas F.U. 
et al. [10] presented a novel method called PAIRpred. They selected structure and 
sequence information of residue pairs, combined Support Vector Machine method, 
which achieved good and detailed result. Peng Chen and Jinyan Li [11] trained a SVM 
using an integrative profile by combining the hydrophobic and evolutionary 
information, where they used a self-organizing map (SOM) technique as input vectors. 
Based on the Random Forest method, B.L.et al. [12] presented a new method with the 
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Minimum Redundancy Maximal Relevance method followed by incremental feature 
selection. What they took into consideration included the five 3D secondary structures. 

2 Methods 

2.1 Defining the Protein Interaction Sites 

In our article, we adopted the Fariselli’s [7] method to define the definition of surface 
residues and interface residues. If a residue’s RASA is at least 16% of its MASA, it is 
defined to be a surface residue, or it is defined to be a non-surface residue. If a surface 
residue’s difference between ASA and CASA is greater than 1 Å2, than it is defined to 
be an interface residue, otherwise it is defined to be a non-interface residue.  

2.2 Features  

In this paper, we adopt eight features to express interaction sites. These features as 
follows: sequence profiles, entropy, relative Entropy, conservation Weight, accessible 
surface areas, sequence variability, hydrophobicity [18] and polarity. The first six 
values of features could be obtained in HSSP database [19]. 

2.3 Creating Sample Sets 

From what we have mentioned above, we use these features to describe a residue. Each 
residue is made up by 27 values (Sequence profile is 20 values, and the other features 
is one value.). We used sliding window of size 5. Therefore, there are 27*5 values in 
each residue’s sample. If a residue doesn’t have enough neighbors, we substitute the 
zero for its value.  

2.4 Rotation Forests 

In our paper, we constructed classifiers using Rotation Forests [20]. Rotation Forests, 
including many decision trees, is an ensemble learning method for classification. Its 
output decided by the mode of outputs of decision trees. In our experiment, we used 
Rotation Forest algorithm in Waikato Environment for Knowledge Analysis (WEKA) 
[21] to construct classifiers.  

2.5 Datasets 

In our experiment, we chose the proteins in bos Taurus organism as our training and 
testing datasets. We downloaded proteins of whose resolution is less than 3.5Å2 in bos 
Taurus organism from the Protein Data Bank (PDB). Then we gave up those proteins 
whose length is less than 40 residues and sequence similarity is greater than 30%. 
Finally, we obtained 292 chains, 65185 residues. According to the definition of surface 
residues, there were 9291 interface residues and 30899 non-interface residues. Finally, 
we chose them as our datasets, named Bos. Then interface residues were labeled as 
“+1”, and non-interface residues were labeled as “-1”. We have created two training 
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and testing datasets. One is unbalanced named unbalanced-Bos, containing all surface 
sites in Bos. The other one is balanced named balanced-Bos.  

2.6 Measuring Method 

Accuracy, F-Measure, Recall, Precision, Correlation Coefficient (CC) were calculated 
to evaluate the performance of our predictors. ROC Area and ROC curve were also 
used in our article.  

( ) (TP TN FP FN)Accuracy TP TN= + + + +  ( )Recall TN TN FP= +  Pr ecision TP TP FP= +  

(2* * ) ( )F Measure recall precision recall precision− = +

( * * ) ( )( )( )( )CC TP TN FP FN TP FN TP FP TN FP TN FN= − + + + +  

3 Experimental Procedure and Results 

3.1 Experiments on Different Machine Learning Methods 

Experimental Procedure: We make experiments on both balanced Bos and 
unbalanced-Bos using Rotation Forests. We carried out experiments for 10 times and 
we created 10 models for balanced-Bos. We named the experiment balanced-RotF. For 
unbalanced-Bos, we carried out experiment for only once with10-cross validation and 
we named it unbalanced-RotF. Meanwhile we constructed other classifiers by some 
other machine learning methods in WEKA and LIBSVM [22] software. By comparing 
those results on different classifiers, we can make an observation which classifier that 
our sample sets perform on is better. From Figure 1 and Figure 2, we can see the value 
of accuracy, F-Measure and CC of Rotation Forests are higher than that of other 
machine learning methods. The values of accuracy, F-Measure, Precision, Recall and 
CC are 0.8133, 0.8064, 0.8375, 0.7775 and 0.6283，respectively.  

 

Fig. 1. The accuracy, F-Measure, and CC of different machine learning methods on the 
balanced-Bos. Figures on the top left corner, the top right corner, the bottom corner, show  
the accuracy values, F-Measure and CC of ten times of six machine learning methods on the 
balanced-Bos, respectively. 
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Fig. 2. The performances of Precision and Recall on the balanced-Bos. Ten black points show 
performances of ten balanced-RotF experiments we carried out. The vertical axis values show the 
value of recall and the abscissa axis values show the value of precision.  

What we expected was it can achieve high accuracy and also get the high recall and 
precision. Figure 2 shows the values of precision and recall. Obviously, the closer  
that points can approach to the right top corner, the better performances they have. 
Black points in Figure 2, standing for Rotation Forest algorithm, we can observe that 
black points have highest precision. Figure 3 shows performances of different methods 
on unbalanced-Bos. It is obvious that unbalanced-RotF have better performances than 
other methods. The values of accuracy, F-Measure, precision, recall and CC were 
0.8812, 0.7271, 0.8497, 0.6354 and 0.6644, respectively; expect precision of SVM was 
higher. From the three figures, we can make a conclusion that Rotation Forests are 
more suitable for our extracted features. From Table 1, what else we can observe was 
that the some indicator values on unbalanced-Bos were better than balanced Bos. It 
shows information that negative samples contained make irreplaceable contributions to 
the prediction of interaction sites and it should not be abandoned. 

3.2 Experiments on Rotation Forests without Evolutionary Information 

We make experiments only using hydrophobicity and polarity to confirm whether 
evolutionary information of proteins makes contributions to predict interaction sites. 
As the same way, we carried experiments on both balanced-Bos and unbalanced-Bos. 
From Table 2, we can see the average value of accuracy, F-Measure, precision, recall 
and CC was 0.6146, 0.6153, 0.6141, 0.6167 and 0.2292 respectively on balanced-Bos. 
However, the results show all sites including interaction sites and non-interface sites 
were predicted to be non-interaction sites. Rotation Forests with all eight features 
performed better on predication of interaction sites. It indicates that evolutionary 
information has effective effects on classification. 

3.3 Experiments on different Independent Testing Datasets 

In order to measure performances of RotF-classifiers we created in experiments on 
different machine learning methods, we built several independent testing sets, which 
came from escherichia coli (E.coli), bacillus subtilis (B.subtilis), rattus norvegicus 
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(R.norvegicus) and Yeast bacillus (Y.bacillus). We adopted the models which were 
produced by RotF-classifiers, including balanced-RotF and unbalanced-RotF. The 
following Table 3 and Table 4 present the performances of RotF-classifiers on 
independent testing sets, respectively.  
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Fig. 3. Performances of unbalanced-Bos using different machine learning methods. It shows 
accuracy, F-Measure, Precision, Recall, CC and ROC Area using different machine learning 
methods on the unbalanced-Bos.  

Table 1. Performances of Rotation Forests on balanced-Bos and unbalanced-Bos 

 Accuracy F-Measure Precision Recall CC ROC Area 

balanced-Bos 0.8133 0.8064 0.8375 0.7775 0.6283 0.9077 

unbalanced-Bos 0.8812 0.7271 0.8497 0.6354 0.6644 0.8790 

Table 2. Performances of Rotation Forests only using hydrophobicity and polarity 

 Accuracy F-Measure Precision Recall CC ROC Area 
balanced-Bos 0.6146±0.0030 0.6153±0.0061 0.6141±0.0026 0.6167±0.0123 0.2292±0.0059 0.6576 

unbalanced-Bos 0.7509 —1 — 0 — 0.5950 
 1: “—” means all residues were predicted to be non-interface sites. 

 
From the Table 3, we can observe that performances on imbalanced samples were 

good. Values of accuracy of balanced-RotF for these four organisms were 0.8198, 
0.8062, 0.8093 and 0.8044, respectively. Values of ROC Area were 0.8441, 0.8278, 
0.8030 and 0.8350, respectively. Table 4 shows the performances of unbalanced-RotF 
models. Values of precision of unbalanced-RotF models for four testing sets were 
0.907, 0.875, 0.878 and 0.889, respectively. High precision means more positive 
samples were predicted correctly. Figure 4 shows the balanced-RotF models of ROC 
curves on four testing sets and Figure 5 shows the unbalanced-RotF model of ROC 
curves on four testing sets. We can make a conclusion that our classifiers performed 
well on independent testing sets, which confirms that our classifiers are suitable for not 
only the bos Taurus organism, but also for some other organisms. The results 
confirmed that our Rot-classifiers have extensive adaptation. 
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Table 3. Performances of Rotation Forests of balanced RotF models on independent testing 
datasets 

 Accuracy F-Measure Precision Recall CC ROC Area 

E.coli 0.8198 0.7022 0.6976 0.7069 -0.1173 0.8441 

variance 0.0101 0.0181 0.0219 0.0149 0.5703 0.0019 

B.subtilis 0.8062 0.6665 0.6904 0.6442 0.5308 0.8278 

variance 0.0022 0.0037 0.0045 0.0043 0.0052 0.0026 

R.norvegicus 0.8093 0.6094 0.6074 0.6118 0.4835 0.8030 

variance 0.0036 0.0100 0.0074 0.0208 0.0118 0.0025 

Y.bacillus 0.8044 0.6850 0.7089 0.6631 0.5421 0.8350 

variance 0.0088 0.0431 0.0435 0.0459 0.0326 0.0024 

Table 4. Performances of unbalanced RotF model on independent testing datasets 

 Accuracy F-Measure Precision Recall CC ROC Area 

E.coli 0.849 0.692 0.907 0.560 0.630 0.854 

B.subtilis 0.831 0.645 0.875 0.511 0.578 0.839 

R.norvegicus 0.856 0.615 0.878 0.473 0.574 0.814 

Y.bacillus 0.830 0.674 0.889 0.543 0.598 0.847 

 
According to results, we can also observe that values of accuracy, precision, CC and 

ROC Area of unbalanced-RotF models were better than balanced samples. The 
performances of Rot-classifiers in experiments on different machine learning methods 
also proved it, which means imbalanced samples contained the information of all sites 
in proteins, including interface sites and non-interface sites. We took the fully use of 
samples and achieved better results. It meant in our experiment information of 
non-interface sites should not be abandoned. 

3.4 Compared to Other Methods 

For comparison purpose, we make experiments with our sample sets using other 
methods. We make experiments on following websites: SPIDDER [23] 
(http://sppider.cchmc.org/): It uses solvent accessibility, based on artificial neural 
network method. InterProSurf [24] (http://curie.utmb.edu/usercomplex.html): It was 
based on solvent accessible surface area, a propensity scale for interface residues and a 
clustering algorithm to classify interaction sites. 

In order to make a convenient comparison to the method of SPIDDER, we redefined 
interface residues according to the definition of SPIDDER and InterProSurf to 
calculate accuracy, F-Measure, precision, recall and CC. Table 5 shows performances 
on the two methods. The results of SPIDDER achieved high accuracy: 0.723, but the 
values of precision and recall are low. The results of InterProSurf were similar to the 
SPIDDER. Its precision was higher than SPIDDER, but similarity, the value of recall 
was unsatisfactory, only 0.4894. (There were some problems with our experiments on 
InterProSurf. There were 85 chains didn’t obtain predicted results, so the results were 
obtained after deleting these 85 chains).  
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Fig. 4. Balanced ROC curves of four testing sets. It shows ROC curves of four testing sets, which 
produced by balanced-RotF classifiers from the experiment on Rotation Forests. E.coli stands for 
the Escherichia coli, which consists of ten curves, where each curve stands for the experimental 
result of each model from experiment on Rotation Forests. The same as E.coli, B.subtilis, 
R.norvegicus and Y.bacillus stand for the bacillus subtilis, rattus norvegicus and yeast bacillus, 
respectively. 

 

Fig. 5. Unbalanced ROC curves of four testing sets. It shows the ROC curves from four testing 
sets, which produced by unbalanced-RotF classifier from the experiment on Rotation Forests. 
There are four curves in the figure, where different color curves stand for different sample sets. 
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Table 5. Performances of SPIDDER and InterProSurf 

 Accuracy F-Measure Precision Recall CC 

SPIDDER 0.723 0.450 0.510 0.402 0.272 

InterProSurf 0.851 0.608 0.802 0.489 0.226 

4 Conclusion 

In our paper, a new method was proposed to predict the interaction sites. At first,  
we extracted eight features, combined with the sliding window and it contained five 
amino acids. We created two classifiers named balanced-RotF and unbalanced-RotF, 
which showed good performances with high accuracy, F-Measure and CC, especially 
the Recall and Precision. Meanwhile, we make experiments on different machine 
learning methods: RanF, SVM, RT, BN and RBF. The results show that features  
that we selected are more suitable for the Rotation Forests method. What is more,  
we confirmed evolutionary information make contribution to prediction. Moreover, our 
models were tested on independent datasets, which achieved good results, as well, 
which proved that our models have extensive adaptation. For comparison, we made our 
datasets test on other methods. Performances show our results were better than theirs. 
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Abstract. Predicting potential interactions between receptors and ligands can 
provide important clues to the discovery of ligands for orphan GPCRs 
(oGPCRs). In this paper, we develop an improved Laplacian Regularized Least 
Squares method (EstLapRLS) to predict potential receptor-ligand associations. 
The originality lies in the fact that we can utilize more valuable information for 
ligand-receptor interaction prediction based on two estimated matrices. Experi-
mental results show that the proposed method can obtain a high specificity and 
sensitivity on cross-validation tests. 

Keywords: G-protein coupling receptor, Ligand prediction, EstLapRLS method. 

1 Introduction 

GPCRs have been proved to be important targets for pharmaceutical treatment. Using 
computational methods to identify natural ligands associated with GPCRs can gain 
insights into the discovery of new targets. Many different methods have been pro-
posed to predict the association between receptors and ligands during the past years. 
The traditional methods include text mining method [1] and molecular docking [2]. 
Text mining has high requirements on the organizational structure of data source. 
Furthermore, the redundant information existing in the literatures also have a signifi-
cant impact on the accuracy of the prediction. Molecular docking method solely based 
on the crystal structure of the target binding site, but it is often difficult to obtain the 
3-dimensional (3D) structure of GPCR by current experimental methods [3]. There-
fore, it is hard to use it widely because the number of known crystal structures of 
receptors is limited [4-7]. 

In order to tackle the problem, a number of new methods including chemogenom-
ics [8-9], kernel-learning method [10-15], and network-based diffusion methods  
[16-17] have been developed for receptor-ligand prediction recently. The motivation 
of most of these methods is to integrate more feature information from the receptors 
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and ligands [18-19]. For instance, chemical genomics aims to seek all of the possible 
receptor-ligand pairs, which involves not only the feature information of receptors but 
also the information of ligands [20]. The bipartite model methods [16] integrated the 
chemical spaces and genomic spaces as well as the drug-protein interaction network 
into a pharmacological space [21]. As the methods mentioned above did not utilize a 
wealth of unlabeled information to assist prediction, the semi-supervised learning 
method was used to integrate known drug-protein interaction network information as 
well as chemical structure and genomic sequence data [14]. More recently, some me-
thods analyzing the relationships between receptors and ligands based on network 
topological features emerged. Van Laarhoven [15] proposed a method calculating 
Gaussian interaction profile based on known receptor-ligand associations, which 
achieved a high accuracy by using RLS classifier. However, most available methods 
analyzed the features of receptors and ligands, separately [21]. For instance, they 
often neglected the feature relevance information between receptors and ligands, 
which may lead to a high false positive rate. Further, if the known receptor-ligand 
associations in dataset are not very adequate, using only the limited receptor-ligand 
associations or the chemical and genomic spaces information is not efficient. There-
fore, most of the methods mentioned above can not be used to efficiently predict li-
gands for oGPCRs (GPCRs that have no ligands associated with yet). 

In this paper, an improved Laplacian Regularized Least Squares method (Es-
tLapRLS) is developed to utilize both the similarity information and known receptor-
ligand associations to predict possible ligands of GPCRs (including oGPCRs). Accord-
ing to the method, we first construct two estimated value matrices, converting them 
into two weight matrices including inferred information. Then we apply the Es-
tLapRLS method based on the semi-supervised learning framework to discovery po-
tential associations from all of the receptor-ligand pairs. The results showed that the 
proposed method can obtain a high specificity and sensitivity on cross-validation tests. 

2 Materials and Methods 

2.1 Datasets 

All of the receptors (80) and ligands (2,446) in this study were retrieved from the GLIDA 
database [22]. The corresponding number of the known interactions between receptor 
and ligand is 4,050. More information about the dataset can refer to previous reference 
[23]. Further, 71 orphan receptors are obtained from the same database above in order to 
embed oGPCRs into the new network. We constructed a receptor-ligand association 

matrix denoted ( )
r ln n

A
×

 to demonstrate the relationship between each receptor and 

ligand. If the ith receptor binds the jth ligand, ( )
ij

A will be set 1, otherwise 0. 

A normalized Smith-Waterman score [24] was calculated to indicate the similarity 
between two amino acid sequences of GPCRs. A similarity matrix denoted 

( )
r r

r n n
S

×
was constructed to measure the receptor-receptor similarity, where nr 

represents the number of receptors. 



282 Y. Yan, X. Shao, and Z. Jiang 

 

The chemical structure similarity between compounds are calculated by 
SIMCOMP [25] using chemical structures fetched from KEGG LIGAND database 

[28]. A similarity matrix denoted ( )
l l

l n n
S

×
was constructed to measure the ligand-

ligand similarity, where nl represents the number of ligands. 

2.2 Estimated Value Matrix 

We constructed the estimated value matrices based on a basic premise: if a receptor 
binds a ligand, the receptors similar with the receptor have great possibility that they 
can bind with the ligand also. Similarly, if a receptor binds a ligand, ligands similar 
with the ligand have great possibility that they can be bind with by this receptor [26]. 

We define an estimated value matrix ( )
r l

r n n
V

×
 as follows: 

( ) ( )
( )

1

1

l

l

kjk ik

ij
lk ik

n
l

r n

S A
V

S
=

=

=



                               (1) 

( )
r l

r n n
V

×
 is the estimated value between the ith receptor and the jth ligand, which 

represent the possibility whether the ith receptor binds the jth ligand. Similarity, we 

define an estimated value matrix ( )
l r

l n n
V

×
: 

                  ( ) ( )
( )

1

1

r

r

ikk ik

ij
rk jk

n
r

l n

S A
V

S
=

=

=



                              (2) 

This can be interpreted as: the ith receptor is more similar with receptors that bind 
the jth ligand, the estimated value between the ith receptor and the jth ligand is higher. 

2.3 Constructing Weight Matrix 

We constructed the weight matrix ( )
r l

r n n
W

×  based on the estimated value matrix 

( )
r l

r n n
V

× : 

( ) ( ) ( )
2

exp
r ri jrijr pW V V

 = − ∗ − 
 

                        (3) 

where ( )r i
V  is the ith transversal vector of ( )

r l
r n n

V
×

, ( )r j
V  is the jth transversal 

vector of ( )
r l

r n n
V

×
, pr is the control parameter: 

( ) 2

1

1
1

r

r iir

n

rp Vn =

 
 =
 
 

                              (4) 

 



 Predicting Potential Ligands for Orphan GPCRs 283 

 

Similarly, we constructed the weight matrix ( )
l r

l n n
W

×
 based on the estimated  

value matrix ( )
l r

l n n
V

×
: 

( ) ( ) ( )
2

exp
l li jlijl pW V V

 = − ∗ − 
 

                        (5) 

where ( )l i
V  is the ith transversal vector of ( )

l r
l n n

V
×

, ( )l j
V  is the jth transversal 

vector of ( )
l r

l n n
V

×
, pl is the control parameter : 

( ) 2

1

1
1

l

l iil

n

lp Vn =

 
 =
 
 

                              (6) 

2.4 Algorithm Analysis 

Given the weight matrices of receptors and ligands, the normalized graph Laplacian 
will be defined as follows: 

1/2 1/2L D (D W )Dr r r r r
− −= −                           (7) 

1/2 1/2L D (D W )Dl l l l l
− −= −                            (8) 

where Dr and Dl are two diagonal matrices, and the element ( )r ii
D  or ( )l ii

D  is the 

sum of the ith row of Wr or Wl . 
We define a continuous classification function F that is estimated on the graph to 

minimize a cost function, the cost function is defined and derived as follows: 

( )

( )

2 22*

1

22

2
1

1
arg min ( )

1
arg min ( )

( )

l

i i A IK I
i

l
TI

i i A K
i

f y f x f f
l

y f x f f
l l u

γ γ

γγ

=

=

= − + +

= − + +
+




         (9) 

In our model, we have two regular terms 
2

A K
fγ  and 

2

I I
fγ , aiming at adding 

a low complexity correction to the original minimizing empirical error function model 

that is ( )2

1

( )
l

i i
i

y f x
=

−  in order to meet the complexity that it should possess, at 

the same time to keep the calculation simple. 
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We add the estimated value of each receptor-ligand pair vi (which is in ( )
r l

r n n
V

×
or 

( )
l r

l n n
V

×
) to the model, which means , 0i iy s u= = . Therefore, we can get a new 

cost function: 

       

( ) 22*
2

1

1
arg min ( )

n
TI

i i A K
i

f y f x f f Lf
n n

γγ
=

= − + +
      (10) 

 
where n is the number of all the receptor-ligand pairs. According to Belkin 2006 [27], 
we can get: 

1
*

2
I

AF W W lI LW Y
n

γγ
−

 = + + 
 

             (11) 

2.5 Generate the Prediction Results 

We calculated two different cost function matrices Fl and Fr by using the process 

described above based on ( )
r l

r n n
V

×
 and ( )

l r
l n n

V
×

. We carried out the bivariate 

correlation test by using SPSS, finding that the correlation coefficient between Fl and 
Fr was small, which means that the two different cost function value matrices could 
independently reflect the prediction results. In order to assess the comprehensive per-
formance of two cost function, we define a linear combination model for the two cost 
function matrices: 

l rF F Fμ ν θ= + +                            (12) 

where ,μ ν  represent the degree of contribution of the two cost functions, θ  is the 

small revision of the overall prediction. Furthermore, 1, 0μ ν θ+ = → . 

We found that there was an obvious difference between the distribution areas of 
two cost functions. 

Table 1. Descriptive statistics of the two cost matrices 

 Range Minimum Maximum Mean Std.Deviation Variance 

Fl 

Fr 

.25960 .0001189 .2597282 .031046781 .0415899143 .002 

.7298054 .0009623 .7307677 .031933098 .0505467581 .003 

 
As we can see from Table 1, the standard deviation of Fl is 0.0415899143 while the 

standard deviation of Fr is 0.0505467581. In order to combine the two cost functions 
more proportionate, we can select the parameters according to the ratio between the  
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two standard deviations. Since μ:v =0.0505467581:0.0415899143 and 1μ ν+ = , we 

chose μ = 0. 5486 and v = 0. 4514 . Finally, in order to make the minimum of F 0, 

we chose 9. 8037e- 004θ = − . Therefore, we confirmed the parameters of F: 

l rF F F× + ×=0. 5486 0. 4514 - 9. 8037e- 004             (13) 

3 Results and Discussion 

Fig.1 shows the ROC curves and Precision-Recall curves of the three different  
methods. Using the proposed method, we have predicted some receptor-ligand pairs 
such as P28222 (5-hydroxytryptamine receptor 1B) and L000736 (Mianserin), 
P18825 (Alpha-2C adrenergic receptor) and L000520 (ropinirole), which can be  
verified in KEGG [28] and DrugBank [29]. This approved the reliability of our  
prediction. Furthermore, as demonstrated in Table 2, the EstLapRLS method can 
achieve a better precision than two classical methods BLM and NetLapRLS. The 
proposed method increased by 2% and 4% on the AUC scores, and improved by 11% 
and 8% on the AUPR scores comparing with BLM and NetlapRLS methods. We can 
obtain the best results: AUC score of 96.15% and AUPR score of 75.17% with the 
EstLapRLS method.  

 

 

Fig. 1. Performance comparison between three methods 

Table 2. Performance comparison of three methods 

Method AUC AUPR Sensitivity Specificity PPV 

EstLapRLS 96.15 75.17 48.98 99.87 87.7 

BLM 94.34 64.84 28.82 99.81 83.9 

NetlapRLS 92.45 67.25 29.31 99.83 87.5 
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Abstract. Proteins are organic compounds made up of chains of amino acids 
that fold into complex 3-dimensional structures based on their chemical and 
physical properties. A protein is characterized by its 3D structure, which defines 
its biological function. Proteins fold into 3D structures in a way that leads to 
low-energy state. Predicting these structures is guided by the requirement of 
minimizing the energy value associated with the protein structure. However, the 
energy functions proposed so far by biophysicists and biochemists are still in 
the exploration phase and their usefulness has been demonstrated only indivi-
dually. Also, assigning equal weights to different terms in energy has not been 
well-supported. In this project, we carry out a computational evaluation of puta-
tive protein energy functions. Our findings show that the CHARMM energy 
model tends to be more appropriate for ab initio computational techniques that 
predict protein structures.  Also, we propose an approach based on a simulated 
annealing algorithm to find a better combination of energy terms, by assigning 
different weights to the terms, for the purpose of improving the capability of the 
computational prediction methods. 

Keywords: CHARMM, force field, protein structure prediction, simulated  
annealing. 

1 Introduction 

Proteins are organic compounds that are made up of combinations of amino acids and 
are of different types and roles in living organisms. Initially a protein is a linear chain 
of amino acids, ranging from a few tens up to thousands of amino acids. Proteins fold, 
under the influence of several chemical and physical factors, into their 3-dimensional 
structures which determine their biological functions and properties. Misfolding oc-
curs when the protein folds into a 3D structure that does not represent its correct na-
tive structure, which can lead to many diseases such as Alzheimer, several types of 
cancer, etc… [1]. Using computational methods for predicting the native structure of 
a protein from its primary sequence is an important and challenging task especially 
that this protein structure prediction (PSP) problem is computationally intractable. 
The protein’s sequence of amino acids defines a unique native fold which normally 
corresponds to a minimum energy value [2]. In theory, this free energy minimum can 
be computed from quantum mechanics and, thus, should help in predicting the struc-
ture from the sequence. In practice, the theoretical foundation of such functions has 
not been fully established and several energy functions have been proposed. 
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The energy function models proposed so far depend on a number of biophysical 
factors. Their usefulness has been relatively demonstrated by different researchers. 
But, previous work has also shown that the precision of these energy models is not 
well-established [3]. Also, no serious comparative evaluation of these energy func-
tions has been reported. Furthermore, limited work has been reported on the relative 
importance of the terms of the energy function; many decoys per protein, for a num-
ber of proteins, were generated from molecular dynamics trajectories and conforma-
tional search using the A-TASSER program minimizing the AMBER potential [4], 
[5].  

In this work, we carry out a computational comparison of important energy func-
tions that have appeared in the protein structure prediction literature in association 
with ab initio algorithms. We also design a simulated annealing algorithm for deriv-
ing values that should be used as weights for the energy terms based on the native 
structure knowledge on existing golden proteins in the ‘protein data bank’. The ulti-
mate goal is to yield better prediction of the tertiary structure of proteins. 

This paper is organized as follows. Section 2 presents our methodology. Section 3 
describes the energy models used for the comparative work. Section 4 explains the 
algorithm used for optimizing the weights of the energy terms. Section 5 presents the 
experimental results. Section 6 concludes the paper. 

2 Methodology 

The primary structure of a protein is a linear sequence of amino acids connected  
together via peptide bonds. Proteins fold due to hydrophobic effect, Vander Waals 
interactions, electrostatic forces, Hydrogen bonding, etc…. The protein structure pre-
diction (PSP) problem is intractable [6]. Hence, the main computational approaches 
are heuristics for finding good suboptimal solutions and can be classified as: Homol-
ogy modeling, threading, and ab initio methods [7]. For the latter methods, the only 
required input is the amino acid sequence whereas for the first two methods, data of 
previously predicted protein structures are used. 

Ab initio methods predict the 3D structure of proteins given their primary  
sequences without relying on protein databases. The underlying strategy is find the 
best possible structure based on a chosen energy function. Based on the laws of phys-
ics, the most stable structure is the one with the lowest possible energy. We have 
identified three energy models/force fields as the most recognized models for pure ab 
initio PSP methods: the CHARMM model [8], the LINUS energy function [9], and 
AMBER [10]. The different energy functions include different terms and make a  
variety of assumptions. But, the relative merits of these functions in guiding computa-
tional protein structure prediction methods have not been well-studied. In particular,  
a computational investigation of their applicability has not been carried out. We  
believe that conducting such an investigation will serve the PSP research community 
by providing guidelines regarding the applicability of the recognized force fields. 

Our methodology is based on the following steps and activities. We employ our re-
cently developed computational method for PSP, namely the adapted scatter search 
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metaheuristic [3], [11], as the basic platform for analyzing the behavior of the differ-
ent energy functions. The selected energy functions are simulated and incorporated 
into the scatter search algorithm to create different versions of the scatter search based 
program. Then, real-world proteins are selected from a protein databank. The impact 
of the energy functions will be evaluated by computing the widely used root mean 
square deviation (RMSD) of the target structure with respect to the reference/golden 
protein structure. Then, we computationally derive sub-optimal weights for the energy 
terms in order to further improve the prediction. Then, for the ‘winner’ energy func-
tion, we find alternative weights for its terms to replace the commonly-used equal 
weights. This is done by adapting a simulated annealing algorithm that aims to simul-
taneously minimize the energy values of several (golden) proteins whose structure is 
already known. 

3 Energy Functions/Models 

The stability of the three-dimensional structure for protein is determined by the intra-
molecular interactions and interactions with the external environment. The search for 
stable conformations of proteins is based on the minimum total energy of interaction. 
The three recognized energy models, which are selected for our experimental study, 
are described in the following subsections. 

3.1 CHARMM Energy Model 

The Chemistry at HARvard Molecular Mechanics (CHARMM) function [12] is based 
on the dihedral planes representation of proteins that can be defined by the degrees of 
freedom given by the torsion angles. There are four torsion angles present in each 
amino acid in a protein: phi φ, psi ψ, omega ω, and chi χ. Phi is the angle between the 
planes C-N-Cα and N-Cα-C, where N-Cα is the axis of rotation. This angle decides 
the distance of C-C of two amino acids. The chi angle is between the planes formed 
by the atoms of the side chains, and side chains can have as many as five chi angles. 
Fig. 1 shows a segment of a protein backbone. 
 

 

Fig. 1. Segment of a protein backbone with planes of bonds N-Cα and Cα-C, plane A and plane 
B, respectively 
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The CHARMM energy function is given by 
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3.2 AMBER Energy Model 

The AMBER99 model is composed of several all-atom force fields. These fields in-
clude parameters for bonded potential energy terms (stretching, bending, and torsion) 
and nonbonded terms (charge and van der Waals). The original version was 
AMBER94, which was developed to improve on peptide backbone torsion parame-
ters; Kollman and co-workers used RESP charges derived from high-level ab initio 
calculations to parameterize energies [13]. The subsequent force field, denoted as 
AMBER99, is intended for use both with and without polarization effects [14]. 
AMBER99 includes the following terms: 

Vbounded = Kr (r − req )2

bonds

 + Kθ (θ −θeq )
angles

 2
+ Vn

2
[1+ cos(nϕ −γ )]

dihedrals



Vnonbounded =
Aij

Rij
12
−

Bij

Rij
6












+





i< j

 qiqj

4πεRij







Vpol = −
1

2
μiEi

o

i



 

The total energy includes the sum of all the potential fields and the polarization po-
tential energy added in AMBER99. In the first equation , three terms represent contri-
bution to the total energy from “bond stretching, bond angle bending, and torsion 
angle”, in the second one Vnonbonded is the sum of non-bonded energy as “van der 
Waals and electrostatic energies”. In the third equation, Vpol the polarization value is 
calculated for each pair of point charge and induced point dipole moment as μi and Ei 
is the electrostatic field at the ith atom generated by all other point charges qj. 
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3.3 LINUS Energy Model 

LINUS (Local Independently Nucleated Units of Structure) is an ab initio method for 
simulating the folding of a protein on the basis of simple physical principles. LINUS 
involves a Metropolis Monte Carlo procedure, represents a protein by including all its 
heavy atoms (i.e., non-hydrogen atoms). LINUS developed by Srinivasan and Rose in 
1995 is based on simple scoring function includes three components: hydrogen bond-
ing, scaled contacts, and backbone torsion. The hydrogen bonding and the hydrophob-
ic contact scores are calculated between pairs of atoms from residues. The contact 
energy is given by 

 Contact energy = maximum value x 1.0−
dij

2 −σ 2

(σ +1.4)2 −σ 2









 

The scaled contact has both “Repulsive and attractive” terms. The repulsive term is 
implemented by rejecting conformations when the interatomic distance between any 
two atoms is less than the sum of their van der Waals radii. All pairwise interactions 
are evaluated except those involving carbonyl carbons and the attractive term is ap-
plied between the side chain pseudo-atoms. The total energy of the LINUS function 
scoring is given by the negative sum of the three preceding terms: hydrogen bonding, 
scaled contact, and backbone torsion [9]. 

4 Simulated Annealing Algorithm for Energy Terms’ Weights 

Simulated Annealing (SA) is a metaheuristic that deals with optimization problems 
with large search space to find near-optimal solutions. In this paper, simulated anneal-
ing is employed to assign appropriate weights to different energy terms.  SA aims to 
yield a good solution with a minimized objective function value. 

4.1 Algorithm Steps 

The outline of the SA algorithm is shown in Fig. 2 
 
 

Initialize Solution X and initial Temperature T 
while (T > Steady State Temperature  
                  and iteration < MAX_ITERATIONs) 
        for (NUMBER_OF_PERTURBATIONS) 
 Y = Perturb(X) 
 if (F(Y) < F(X) or e (-delta E/T) > random (0,1)) 
  X = Y 
 // end if 
 // end for 
 Update (T) 
// end while 

Fig. 2. Outline of the SA algorithm 
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4.2 Solution Representation 

Each energy term is given a random weight between 0 and 1, where the sum of 
weights must be 1 in any solution. The weight given to ES is called α, that to VW is 
called β, and to Torsion energy is δ. Thus, the obtained total energy for all solution is 
calculated according to the following formula: 
 
Eprotein = α.Golden-ESprotein +  β.Golden-VWprotein + δ.Golden-Torsionprotein 

4.3 Initial Solution 

The initial solution is randomly generated. α, β, and δ are randomly generated with 
values between 0 and 1, such that  α + β + δ = 1 and no single value falls below 1. 

4.4 Initial Temperature, Maximum Iterations, and Number of Perturbation 

Initial temperature is chosen as 400,000 and that of steady state is 15. The maximum 
number of iterations is chosen to be 200 with 3 perturbations in the ‘for’ loop of each 
iteration. 

4.5 Perturbation Method 

The implemented perturbation method alters the weights distribution among the ener-
gy terms. It either takes a certain percentage (0.1) from a target weight factor and 
distributes it to the other 2 weight factors or takes this percentage from two factors 
and adds it to the target third one. 

The method has 3 decisions to take randomly. The first one is which of the weight 
factors (α, β, and δ) to target (whether to take from or add to). The second decision is 
whether to take from the chosen factor or give it more energy. The third decision is 
how to distribute the amount of energy taken/given. 

For example, the algorithm may randomly first choose α as the target, then ran-
domly choose to take from it 0.1 of its value, and then randomly chooses to give 0.3 
of the amount to be taken from α to β and 0.7 to δ. 

4.6 Objective Function 

The objective function to be minimized is the following: 

∑  (Ei – AvgEi)
2,      for i=1 to n 

where n is the number of the selected proteins, Ei (defined in subsection 4.2) is the 
total energy obtained according to the weights distribution by α, β, and δ, and AvgEi is 
the average of the calculated energies, Ei for i=1..n, in the set of proteins according to 
weight distributions.  Effectively, we are minimizing the mean square deviation in 
the values of Ei over the n proteins as the values of the weights vary. 
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The SA metaheuristic algorithm enforces a lower bound of 0.1 for each of α, β, and 
δ in order not to prevent making any of the energy terms negligible. Thus, in any 
perturbed combination of values, the SA algorithm rejects any perturbation that yields 
weight values below 0.1. 

5 Experimental Results 

In this section, we demonstrate the performance of our proposed methods using the 3 
different energy models for generating native-like structures for the backbones of the 
three target proteins. 

5.1 Experimental Procedure for Energy Functions 

In our experiments, we use three subject proteins with known structures in PDB. Our 
reference PDB is the Brookhaven database [15]. The 3 proteins are: 1CRN 
(CRAMBIN) is Plant seed protein (46 AAs); 1ROP (ROP Protein) is Transcription 
Regulation (56 AAs); 1UTG (UTEROGLOBIN) is Steroid Binding (70 AAs).  

We run the scatter search program for predicting protein structures based on each 
of the three energy models. The results are evaluated by computing the target pro-
tein’s structural difference from the reference/golden protein. This is accomplished by 
calculating the root mean square deviation (RMSD), in Angstrom, of the Cα atoms of 
the two proteins [16]. 

5.2 Experimental Results for Energy Functions 

Table 1 gives the RMSD values by Scatter Search using the 3 types of potential ener-
gy function. These results show that CHARMM generates the lowest RMSD values 
for the 3 proteins. Also, the limited experiments reveal that the polarization term add-
ed in AMBER99 may not cause an improvement in the predicted protein structure. 
CHARMM also runs faster than AMBER and has comparable execution time to 
LINUS. 

Although the results in Table 1 demostrate a rather clear tendency in favor of 
CHARMM, this does not yield a final conclusion since the number of proteins that are 
used in the experiment is small. Future work should employ many proteins with vari-
ous sizes and functions in order to establish whether our result may vary with protein 
size and type. 

5.3 Experimental Procedure for Energy Weights 

In order to experiment with weights for energy terms, the real energy values have to 
be obtained. These are the golden energy values obtained from the data retrieved from 
the Protein Data Bank (PDB) file of each protein. The data are the 3D coordinates of 
atoms, torsion angles and amino acids. The total energy value of a protein is the sum 
of the terms of the CHARMM energy function.  
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Two sets of non-homologous proteins have been chosen, where each is made up of 
5 different proteins. The first set contains proteins each with less than 100 amino ac-
ids (AAs), whereas the second contains proteins with more than 100 AAs in each. We 
run the SA algorithm on the data obtained from each set of proteins to generate values 
for the weights of the energy terms. The variation in the weights is also plotted over 
the SA iterations until convergence. Finally, to give an indication of the validity of the 
weight results, we rerun the scatter search program of Mansour et al. [11] to predict 
the structure of a protein, by using the new weights, and compare the resulting RMSD 
with that of the structure produced by using equal weights for the energy terms. 

Table 1. Experimental results for SS on 3 energy functions 

Energy function 1CRN (46 AAs, 326 
atoms) 

1ROP(56 AAs, 420 
atoms) 

1UTG(70 AAs, 547 
atoms) 

 Time (min) RMSD Time (min) RMSD Time (min) RMSD 
CHARMM 964 9.39 1059 11.52 1182 13.56 
AMBER96 1140 11.80 1320 15.84 1800 16.21 
AMBER99 with 
Polarization 

3600 14.39 4200 16.04 5005 18.07 

LINUS 960 13.05 1005 15.22 1200 18.36 

5.4 Results for Energy Weights 

Results of SA for Proteins of Less than 100 Amino Acids. For proteins with less 
than 100 amino acids (1RPO, 1UBQ, 1CRN, 1ROP, and 1UTG), SA converged after 
20 iterations to the objective function value of 5.159x1015. The initial randomly gen-
erated solution was of objective function value of 2.178x1017. Fig. 3 shows the varia-
tions of α, β, and δ as a function of iterations of the SA. The values of the three 
weights at convergence are: α = 0.352; β = 0.105; δ = 0.543. 

 

Fig. 3. Variations of α, β, and δ (x10-1) as a function of iterations 
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Comparing the energy values obtained by using these weights with those obtained 
from the equal weights for the 1ROP protein show that the former ones (using the 
new weights) are lower. Equal weights (0.333) give the energy value of 1.125x106, 
whereas the obtained solution (with α, β, and δ values) gives the value of 426,072. 
Fig. 4 shows the values of ES, VW and Torsion energy terms as a function of itera-
tions and the corresponding values of α, β, and δ. 

After running the scatter search code, the obtained 1ROP protein structure has an 
RMSD with respect to the golden protein of 7 Angstrom in comparison with about 12 
Angstrom, obtained with equal weights [11]. 

 

Fig. 4. Variations of ES, VW and Torsion Energies for 1ROP (in 105 charge units) as a function 
of iterations 

Results of SA for Proteins of More Than 100 Amino Acids. For proteins with more 
than 100 amino acids (1AAJ, 1BP2, 1RPG, 1RRO, and 1YCC), SA converged after 
43 iterations to the objective function value of 1.457x1012. The initial randomly gen-
erated solution was of objective function value of 3.278x1013.  Fig. 5 shows the var-
iations of α, β, and δ as a function of iterations of the SA. The values of the three 
weights at convergence are:  α = 0.104; β = 0.108; δ = 0.788. 

Comparing the energy values obtained by using these weights with those obtained 
from the equal weights for the 1AAJ protein shows that the new weights yield lower 
values. Specifically, equal weights for all energy terms give the value of: 2.305x106. 
The obtained solution (with different α, β, and δ) gives the value of: 742,844. Fig. 6 
shows the values of ES, VW and Torsion energy terms as a function of iterations and 
the corresponding values of α, β, and δ. 

After running the Scatter Search code, the obtained 1AAJ protein structure has an 
RMSD with the golden of 5.84 Angstroms, which is a promising result. 

By inspecting the values of each of the 3 energy terms, it is clear that in the case of 
equal weights, the VW term used to dominate the energy function and, consequently, 
the resulting protein structure. The change in the weight values provides fairer shares 
to the other two terms and, thus, allows them to influence the evolution of the predicted 
structure. We also note that the relative weights are different for different protein sizes.  
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These results show that assigning equal weights to the energy terms does not yield 
the best possible protein structure prediction. But, more experiments are required to 
establish what weights should be assigned for what size-category of proteins. Also, it 
will be useful to apply our approach to other recognized energy functions. 

 

Fig. 5. Variations of α, β, and δ (x10-1) as function of iterations 

 

Fig. 6. Variations of ES, VW and Torsion Energies in 1AAJ (in 105 charge units) as a function 
of iterations 

6 Conclusions 

We have carried out a computational assessment of the ability of three recognized 
energy models for predicting the tertiary structure of proteins using a pure ab initio 
algorithm. We have also investigated the merit of assigning unequal weights to the 
terms included in energy functions employed for ab initio protein structure prediction. 

Our experimental results show that the CHARMM energy model tends to yield bet-
ter protein structures than the other two energy functions, next is AMBER without 
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polarization, followed by LINUS and the polarization version of AMBER. We have 
also found that it is more favorable for computational protein prediction methods to 
assign unequal weights to the terms in the energy function.  As a result, we recom-
mend the following weight values for the CHARMM energy function: 0.1-0.3 for the 
electrostatic term, 0.1-0.2 for the Vander Waals term, and 0.6-0.8 for the Torsion 
term, when applied to small to medium size proteins. 

This work has established the merit of the proposed approach. Further work can 
focus on extending the experimental work to a larger number of protein sets that in-
clude proteins with different sizes and functions and on extending to other energy 
models. 
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Abstract. This article proposes a Multiple-Filter (MF) using a genetic algo-
rithm (GA) and Tabu Search (TS) combined with a Support Vector Machine 
(SVM) for gene selection and classification of DNA microarray data. The pro-
posed method is designed to select a subset of relevant genes that classify the 
DNA-microarray data more accurately. First, five traditional statistical methods 
are used for preliminary gene selection (Multiple Filter). Then different relevant 
gene subsets are selected by using a Wrapper (GA/TS/SVM). A gene subset, 
consisting of relevant genes, is obtained from each statistical method, by ana-
lyzing the frequency of each gene in the different gene subsets. Finally, the 
most frequent genes are evaluated by the Multiple Wrapper approach to obtain 
a final relevant gene subset. The proposed method is tested in four DNA-
microarray datasets. In the experimental results it is observed that our model 
work very well than other methods reported in the literature. 

1 Introduction 

In last years many researchers have been devoted to tackle the gene selection and 
classification of microarray gene expression data by proposing a lot of promising 
methods [1,2,3,4,5]. However, the experiment results are still not satisfying to solve 
very high dimensional gene expression data. One of the main reasons is that a DNA-
microarray dataset contains ten thousands of genes and a very small number of expe-
rimental samples or observations about a cancer. This means that thousands of genes 
are irrelevant or noisy or redundant for typical gene selection and classification algo-
rithms. To extract a subset of relevant genes from microarray data is necessary to 
reduce dimensionality and to explore this new reduce space to find a small gene sub-
set with the higher classification accuracy. In order to overcome this obstacle, we 
propose a Multiple Filter a Genetic Algorithm combined with Tabu Search and Sup-
port Vector Machine (MF-GA-TS-SVM) approach that consists of 2 basic steps: in 
the first step, a preprocessing data is performed using 5 statistical filters to make an 
initial selection from biomedical databases. In the second step, the selection and  
classification of subsets features is performed, the selection is effected by a genetic 
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algorithm that combined with a tabu search as a local search method, and the classifi-
cation of the subsets feature is made with a support vector machine and is validated 
using cross-Validation method. With this hybrid method, the most relevant genes are 
researched from 5 public databases obtained from DNA-microarray technology. This 
model performs a gene selection procedure to find subset of genes with higher classi-
fication accuracy in four microarray datasets. This paper is organized as follows.  
Methodology of our model is shown in section 2. Section 3 provides an analysis of 
the experimental results and finally conclusions are drawn in section 4. 

2 Methodology 

The problem of the feature selection can be defined, as the task of selecting a subset 
feature that maximizes the classifier capacity. In this paper, this problem is solved 
with a MRMR approach.  Fig. 1 shows the general process of selection and classifi-
cation of the genes, applying to the following DNA-microarray databases: leukemia, 
colon cancer, diffuse large B-cell lymphoma (DLBCL), Central Nervous System 
(CNS) and lung cancer. 

 

 

Fig. 1. Two main stages for gene selection and classification 

2.1 Multiple-Filter 

The pre-processing procedure is a very important task in gene selection and classifica-
tion. In this process the noisy, irrelevant and inconsistent data have been eliminated.  
First, we normalize the gene expression levels of each dataset into interval [0,1] using 
the minimum and maximum expression values of each gene. Second, five methods of 
data filtering are used to gene selection: between sum square and within sum square 
(BSS/WSS), mutual information (MI), signal to noise ratio (SNR), Wilcoxon test 
(WT) y T-statistic (TS). The main idea is to select a subset of genes obtained by each 
method; each method of filtering uses a relevance value (Ranking) that is assigned to 
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each gene. These five filters are used for their statistical capacity, since a filter priori-
tizes a gene and the other filter prioritizes the other genes (a description of each filter 
is given below). 

BSS/WSS 
We use the gene selection filter proposed by Dudoit [19], namely the ratio of the sums 
of squares between groups (Between Sum Square - BSS) and within groups (Within 
Sum Square – WSS). This ratio compares the distance of the center of each class to 
the over-all center to the distance of each gene to its class. The equation for a given 
gene j has the form: 

 
(1) 

 

Where jx . denotes the average expression level of the gene j through all samples and 

kjx  denotes the average expression level of the gene j on all samples for the relev-

ance of class k. In this work the top-p genes ranked by BSS/WSS are selected. 

Wilcoxon Rank Sum Test 
Wilcoxon rank sum test (denoted W) is a non-parametric criterion used for feature 
selection. This filter is the sum of ranks of the samples in the smaller class.  The 
major steps of the Wilcoxon rank sum test are as follows [9]: 
1. Combine all observations from the two populations and rank them in value ascend-
ing order. If some observation have tied values, is assigned each observation in a tie 
their average rank. 
2. Add all the ranks associated with the observations from the smaller group. This 
gives W. 
3. the p-value associated with the Wilcoxon statistic is found  from the Wilcoxon 
rank sum distribution table. In this case this statistic is obtained directly from Matlab. 

T-Statistic 
The standard t-statistic is the filter most commonly used to identify differentially 
expressed genes. Each sample is labeled into interval {1, -1}. For each gene

jg , the 

mean is 1
jμ  and 1−

jμ , standard deviation 1
jδ  and 1−

jδ  are calculated using only the 

samples labeled 1 and -1 respectively. Then a score ( )jgT  can be obtained by [20]: 
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Mutual Information 
A and B are two random variables with a different probability distribution and a joint 
probability distribution. The mutual information between the two variables I (A; B) is 
defined as the relative entropy between the joint probability and the product of the 
probabilities [9]. 

( ) ( ) ( )
( ) ( ) =

i ja ji

ji

b
ji bPaP

baP
baPBAI

,
log,;   (3) 

Where ( )ji baP ,
, are the joint probabilities of the variables, ( )iaP are the proba-

bilities of the variable A and ( )jbP  is the probability of the variable B. 

Signal to Noise Ratio (SNR) 
SNR Identifies the expression patterns with a maximum difference in the mean ex-
pression between two groups and the minimum variation of expression within each 
group. In this method, the genes are first ranked according to their expression levels 
[10]. 

( ) ( )2121 / σσμμ +−=SNR    (4) 

Where
1μ and 

2μ denotes the average values of expression of class 1 and class 2, 

respectively, 
1σ and 

2σ are the standard deviation of the samples in each class re-

spectively. 

2.2 GA/TS/SVM Wrapper 

In first stage, p=50 genes with the highest top ranking score are selected from the 
multiple filters. In this second stage, a genes subset selection is performed using the 
wrapper method GA/TS/SVM. 

2.3 Genetic Algorithm (GA) 

The technique of Genetic Algorithms (GA’s) was described by John Holland [14].  
This technique is based on the selection mechanisms used by nature, according to the 
fittest individuals of a population are those that survive and can adapt more easily to 
the changes that are produced in their environment. The GAs used a population of 
chromosomes, where each chromosome is a solution to the problem of optimizing 
[10]. The step of the chromosomes to the next generation, is determined by its fitness. 
There are five principal components of a GA: the population, the fitness function, the 
selection operator, the crossover operator and the mutation operator. 
 
A. Initial Population 
The initial population of the GA, this constituted by a chromosome set orbit string, 
which are randomly generated to have a uniform distribution of the chromosomes, 
these chromosomes string represent the possible solutions of the problem. 
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B. Fitness Function and Support Vector Machine 
The Support Vector Machine (SVM), are classifiers that discriminate linearly separa-
ble data classes through an optimum hyper plane, so that the separation margin  
between the positive and negative samples are maximized [13]. The fitness of the 
chromosome is used to select gene subsets with a high classification ratio. In the 
wrapper GA/TS/SVM, SVM is used as a classifier to evaluate the fitness of a each 
candidate gene subset.  
 

C. Selection, Crossover,Tabu Search and Replacement 
Tabu search (TS), was introduced by Fred Glover [17].  As a technique that imple-
ments a memory through simple structure with the objective guiding a local search 
procedure to solve problems of combinatorial optimization with a high degree of dif-
ficulty, exploring the solution space beyond the local optima [18]. It can get a basic 
TS algorithm through the use of a tabu list. At each iteration, the current solutions are 
replaced by the best found solution s' in their neighbourhood N(s). s' Є N(s) such a 
way ∀s''Є N(s), f(S") ≤ f(s') and s' Є Ŝ where Ŝ  is the solution set currently prohi-
bited by the tabu list. Note that selected neighbor s' can or cannot be better than S. 
The TS algorithms stopped when a fixed maximum number of iterations are reached 
or when all movements have been converted in tabu. The main role of the tabu list is 
to prevent the search from cycling. In our case, the tabu list is implemented in the 
following way. Each time a movement (i,j) is carried out. The gene gi is dropped and 
the gene gj is selected, then gi is saved in the tabu list for the next k iterations. Conse-
quently, gj  cannot be reselected during the process. The k value is the residence time 
that the gene gj will be within the tabu list and varies from kmin to kmax. The tabu list 
forbids a new gene selected, this gene can be removed from the tabu list in the next 
iteration if the classification coefficient of the new gene selected is very low. The 
GA/TS/SVM algorithm is described as follows.   

 

Step 1: The GA starts with a population that is generated randomly following a 
uniform distribution and the length of the chromosome is equal to the number of 
genes selected by filter method, which is calculated by the fitness (f(x)) of each chro-
mosome using a support vector machine and after is validated by the K fold cross 
validation method. 

Step 2: Two genetic operators are applied, the selection operator and the crossover 
operator, the selection operator is based on the roulette wheel and the crossover op-
erator is multi-uniform. 

Step 3: The tabu search begins, the initial solution S is the solution obtained by the 
crossover operator. 

Step 5: The neighborhood is generated from the initial solution S, Which is eva-
luated with the support vector machine. 

Step 6: The best solution S’ is searched in the neighborhood and is checked if it is 
restricted by the tabu list, if S’ is tabu, the second best solution of the neighborhood is 
taken, if S’ in not tabu, S’ is taken as the best solution. 

Step 7: It is verified that the solution S’ is greater than or equal to  the threshold 
(S’ >α), if it is greater, the solution S’ is returned to the genetic algorithm to be ap-
plied as the replacement operator, if S’ is not greater than the threshold (S’ <α), S’ it 
becomes the initial solution (S=S’) and  is generated as a  new neighborhood to form 
the solution S, this is repeated n times until S’ is greater than the threshold. 
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Step 8: The worst chromosome is replaced from the population with the solution 
S’, which has been obtained with the tabu search, the new population goes to the  
next generation, the algorithm repeated these steps n times until  the number of gen-
erations established is fulfilled. Fig. 2 shown the iteration process of GA/TS/SVM 
approach. 

 

 

Fig. 2. GA/TS/SVM Wrapper 

The combination of a tabu search and genetic algorithm is performed to obtain a 
good gene subset. 

3 Experiments and Results 

3.1 Experimental Protocol and Datasets 

In order to perform the experimentations, 5 databases of public domain were used, the 
biomedical database of leukemia, colon cancer, lung cancer, CNS and DLBCL. 
Which are described in table 1, the parameters by the GA and the tabu search are 
shown in table 2. 
 



306 H.-M. Alberto Luis et al. 

 

Table 1. Description of Biomedical Datasets 

Dataset Genes/Samples Reference 

Leukemia 7128/72 [1] 
Colon 2000/62 [2] 
Lung 12533/181 [3] 
CNS 7129/60 [4] 
DLBCL 4026/47 [5] 

Table 2. Parameters used for genetic algorithm and tabu search 

Method Parameters  

GA Population 50 
 Chromosome length 50 
 Number of generations 100 
 Crossover rate 0.85 

 Elitism rate 0.5 
TS 
 
 

Size of tabu list 
Aspiration criteria 
Threshold 

5 
Yes 
0.98 

3.2 Results 

In our experimental protocol the data used was obtained by the five filter methods, 
this data is evaluated separately with the algorithm GA/TS/SVM. The genes subsets 
resulting from each evaluation are grouped for their frequency, and the genes with 
greater frequency, are newly evaluated by the algorithm GA/TS/SVM to obtain a final 
gene subset. 

In table 3 the best accuracy rates obtained are shown by the algorithm 
GA/TS/SVM, the first column shows the works reported in the literature with which 
the results obtained were compared  to the proposed method, the second, third, fourth 
fifth and  sixth columns, show the accuracy rates (%) and the number of genes (Ng) 
obtained for each biomedical database. To obtain a better classification rate, the algo-
rithm GA/TS/SVM is run 10 times, which gives us different performances for each 
gene expression dataset. 

Table 3. Comparison with different methods reported in literature 

Authors 
 

Leukemia Colon 
% (Ng) 

Lung 
% (Ng) 

CNS 
% (Ng) 

DLBCL 
% (Ng) 

Hernández et al [6] 92.5 (6) 87.0 (8) - - - -  - - - - 95.44 (12) 
Luo et al [13] 71.3 (5) 80.0 (7) - - - -  - - - - 82.13 (7) 
Yu [14] 96.8 (10) 88.6 (10) 94.7 (10) - - - - - - - - 
Yu et al [15] 
Leung and Hung [16] 

- - - - 
100 (4) 

 - - - - 
96.7(6) 

 - - - - 
95.0 (9) 

92.86 (71) 
- - - - 

- - - - 
- - - - 

Our model 98.6 (8) 96.7(12) 97.8 (10) 93.92 (10) 97.61(12) 
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As shown in Table 4, our model is very competitive on 4 from 5 biomedical  
databases, yielding small subsets of genes with high classification accuracy. Only the 
work of Leung and Hung [16] provides a classification rate of 100 for leukemia. For 
Colon tumor dataset our models have the same classification rate 96.7, they have a 
gene subset of 6 genes and we have a gene subset of 12 genes. With lung cancer, they 
have a small gene subset of 9 genes with a classification accuracy of 95%, but our 
model provides a higher rate of classification (97.8) with 10 genes. For CNS and 
DLBCL datasets and our model provides high classification rates with few genes. 

4 Conclusions 

In this article, we introduced a new method to select genes from the DNA-microarray 
technology. Five filter methods (Multiple-Filter) were used to make a first selection of 
the databases to have many relevant genes. In the Hybrid Wrapper a Genetic Algo-
rithm was combined with a Tabu Search and a SVM classifier (AG/BT/SVM) to find 
a small gene subset. The proposed method is innovative, since it determines a small 
genes subset with high classification accuracy to the five microarray databases, which 
were compared with subsets found in different literatures shown in table 3. In future 
research the combination of other techniques of feature selection will be used, as oth-
er local search methods or other techniques of mining data, the goal is to maximize 
the classification accuracy and minimize the number of genes.  
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Abstract. Globally, the rate of preterm births is increasing and this is resulting in 
significant health, development and economic problems. Current methods for the 
early detection of such births are inadequate. However, there has been some  
evidence to suggest that the analysis of uterine electrical signals, collected from 
the abdominal surface, could provide an independent and easier way to diagnose 
true labour and detect when preterm delivery is about to occur. Using advanced 
machine learning algorithms, in conjunction with electrohysterography signal 
processing, numerous studies have focused on detecting true labour several days 
prior to the event. In this paper however, the electrohysterography signals have 
been used to detect preterm births. This has been achieved using an open dataset 
that contains 262 records for women who delivered at term and 38 who delivered 
prematurely. Several new features from Electromyography studies have been  
utilized, as well as feature-ranking techniques to determine their discriminative 
capabilities in detecting term and preterm records. Seven artificial neural  
network algorithms are considered with the results showing that the Radial Basis 
Function Neural Network classifier performs the best, with 85% sensitivity, 80% 
specificity, 90% area under the curve and a 17% mean error rate.  

Keywords: Electrohysterography (EHG), Preterm Delivery, Term Delivery, 
Artificial Neural Networks. 

1 Introduction 

The World Health Organisation (WHO) defines preterm birth as the delivery of any 
baby born alive before 37 weeks of gestation. In other words, births that occur before 
259 days of pregnancy are defined as preterm and births that occur between 259 and 
294 days, as term. Preterm births have a significant adverse impact on the newborn, 
including an increased risk of death and other health related defects. In 2009, preterm 
births accounted for approximately 7% of live births, in England and Wales [3]. 

During pregnancy, the monitoring of uterine contractions is vital in order to diffe-
rentiate between those that are normal and those that may lead to premature birth. The 
early onset of such contractions can be caused by a number of conditions, including 
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abnormalities in the cervix and uterus, recurrent antepartum hemorrhage and infection 
[8]. In the USA, the cost of treatment is reportedly $25.6 billion, whilst in England 
and Wales, it is estimated to be £2.95 billion, annually [3]. Consequently, in the last 
twenty years, a great deal of research has been undertaken to detect and prevent the 
threat of preterm birth.  

One promising technique, which has gained recognition in monitoring uterine ac-
tivity, is the use of advanced machine learning algorithms and Electrohysterography 
(EHG). This method records signals from the abdominal surface of pregnant women. 
These readings are then used to study the electrical activity produced by the uterus. 
The results are convincing and suggest that it is an interesting line of enquiry to pursue. 

In conjunction with EHG signal processing, the research carried out by Lucovnik et 
al. [8] and Hassan et al. [5] illustrates that extracting features from EHG signals is 
key to finding particular spectral information specific to term and preterm deliveries. 
The aim of this paper is to evaluate features and their use with several advanced ar-
tificial neural network classification algorithms and their ability to distinguish  
between term and preterm births. An open dataset has been used, which contains 300 
records of pregnant subjects (262 term and 38 preterm). The results indicate that the 
selected classifiers, in conjunction with selected features, outperform a number of 
previous approaches. 

The remainder of the paper is structured as follows. Section 2 discusses related 
studies. Section 3 describes the experimental methodology and the selected extracted 
feature sets, including the design of the experiment. The results are presented in sec-
tion 4 before the paper is concluded in Section 5. 

2 Related Studies 

Over the past 20 years, research has focused on the use of pattern recognition tech-
niques to extract features from EHG signals. These include linear and nonlinear me-
thods, in both the time and frequency domains, to improve the results obtained from 
classification algorithms. The extraction of features often forms part of the data pre-
processing stage. In our previous work [4], features such as peak frequency, median 
frequency, root mean square and sample entropy, performed particularly well when 
discriminating between term and preterm records.  

However, it is in the Electromyography (EMG) field that we find some new and in-
teresting works. In one study, Lucovnik et al. [8] investigated whether uterine EMG 
could be used to evaluate propagation velocity (PV). In this study, the electrical sig-
nals of the uterus were measured both in labour and non-labour patients who deli-
vered at term and prematurely. The results indicate that, the combination of power 
spectrum (PS) and PV peak frequency parameters yielded the best predictive results in 
identifying true preterm labour. However, only one dimension of propagation is con-
sidered at a time, which is based on the estimation of time delays between spikes. In 
comparison, Lange et al. [6] estimate the PV of the entire EHG bursts that occur dur-
ing a contraction by calculating the bursts corresponding to a full contraction event. 
The results illustrate that the estimated average propagation velocity is 2.18 (60.68) 
cm/s. No single preferred direction of propagation was found. 

Meanwhile, Alamedine et al. [2] presented three techniques to identify the most 
useful features relevant for contraction classification. These included linear features, 
such as peak frequency, mean frequency and root mean square, and nonlinear  
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features, such as the Lyapunov exponent and sample entropy. In order to choose the 
most suitable features that represent contractions, feature selection algorithms have 
been used. This process involved using a binary particle swarm-optimization (BPSO) 
algorithm and calculating the Jeffrey Divergence (JD) distance. This is a sequential 
forward selection (SFS) algorithm. The results show that the BPSO and SFS algo-
rithms could select features with the greatest discriminant capabilities. In this case, 
out of the six features considered, sample entropy produced the best results. 

Vasak et al. [12] studied whether uterine EMG can identify inefficient contractions. 
This can lead to first-stage labour and caesarean delivery in term nulliparous women, 
with the unplanned onset of labour. In this study, EMG was recorded during spontaneous 
labour in 119 such cases, with singleton term pregnancies in the cephalic position.  
Electrical activity of the myometrium, during contractions, is characterized by its power 
density spectrum (PDS). The diagnosis of labour was made if the patient was in active 
labour, with no increase in dilation, for at least two hours. The data was analysed to  
calculate the Intra-class correlation coefficients. This was achieved by comparing the 
variance of contraction characteristics, within subjects, to the variance between subjects. 

3 Methodology 

The TPEHG dataset contains the raw EHG signals that have been used in our study 
[10]. This data has been pre-processed using data segmentation, feature extraction and 
classification. The study in [7] illustrates how EHG signals can be pre-processed us-
ing various frequency related parameters. The study uses several linear and non-
linear signal pre-processing techniques, via three different channels, to discern term 
and preterm deliveries. The pre-processing technique used in [7] passed the EHG 
signal through a Butterworth filter configured to filter 0.8-4 Hz, 0.3-4 Hz, and 0.3-
3Hz frequencies. However, [9] found that uterine electrical activity occurred within 
1Hz and that the maternal heart-rate was always higher than 1Hz. Furthermore,  
95% of the patients measured had respiration rates of 0.33 Hz or less. Based on these 
findings, in this paper, the raw TPEHG signals have been passed through the same 
Butterworth filter to focus on data between 0.34 and 1Hz. 

3.1 Raw Data Collection 

The raw EHG signals, obtained from the Physionet database [10], have been recorded 
using four bipolar electrodes. These have been adhered to the abdominal surface and 
spaced at a horizontal and vertical distance between 2.5 and 7cm apart. The total 
number of records in the EHG dataset is 300 (38 preterm records and 262 term 
records). Each of the signals were either recorded early, <26 weeks (at around 23 
weeks of gestation) or later, =>26 weeks (at around 31 weeks). Within the dataset, 
three signals have been obtained simultaneously, ‘per record’. This has been achieved 
by recording through three different channels. 

3.2 Feature Selection 

The literature reports that peak frequency, median frequency, sample entropy and root 
mean squares have the most potential to discriminate between term and preterm 
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records. Furthermore, the literature also reports that in EMG studies, features such as 
waveform length, log detector and variance are equally as good at discriminating 
between different muscle activities. To validate these findings, the above mentioned 
features have been ranked using statistical significance, linear discriminant analysis 
using independent search (LDAi), linear discriminant analysis using forward search 
(LDAf), linear discriminant analysis using backward search (LDAb) and gram-
schmidt (GS) analysis. 

The Radial Basis Function Neural Network (RBNC), using the Linear  
Discriminant Analysis Forward Search feature ranking technique showed that, sample 
entropy, waveform length, log detector, and variance provide the best discriminant 
capabilities and are therefore used to evaluate the classifiers used in this paper. 

3.3 Classifiers 

This study evaluates the use of seven advanced artificial neural network classifiers. 
These are the Back-Propagation Trained Feed-Forward Neural Network  
Classifier (BPXNC), Levenberg-Marquardt Trained Feed-Forward Neural Network 
Classifier (LMNC), Perceptron Linear Classifier (PERLC), Radial Basis Function 
Neural Network Classifier (RBNC), Random Neural Network Classifier (RNNC), 
Voted Perceptron Classifier (VPC) and the Discriminative Restricted Boltzmann 
Classifier (DRBMC) (37steps, 2013).  

4 Results 

This section presents the classification results for term and preterm delivery records. 
This has been achieved using the extracted feature set from the 0.34-1 Hz filter on 
Channel 3. Using the 80% holdout technique, the initial validation results have been 
presented. This provides a baseline for comparison against all subsequent evaluations 
that have been performed, using the oversampled dataset. 

4.1 Original Results for 0.34-1 Hz Filter on Channel 3 

The performance of each classifier has been evaluated using the sensitivity, specificity, 
errors, and AUC values. In this trial, the experiments have been repeated 30 times. 
Randomly selected training and test sets have been used in each iteration. 

Classifier Performance 
The first evaluation uses the original TPEHG dataset, which contains 38 preterm and 
262 term records. Table 1, below, illustrates the mean averages obtained over 30 si-
mulations for the sensitivity, specificity, and AUC values. As it can be seen, the 
sensitivities (i.e. the ability to classify a preterm record), in this initial test, are low for 
all classifiers. This is expected because there are a limited number of preterm records 
from which the classifiers can learn. Consequently, specificities are higher than 
sensitivities.  
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Table 1. Original TPEHG Signal (262 Term And 38 Preterm) 

Classifiers Sensitivity Specificity AUC 

BPXNC 0 0.9987 54% 

LMNC 0.0667 0.9519 58% 

PERLC 0.1619 0.8647 57% 

RBNC 0.1286 0.9622 56% 

RNNC 0.0667 0.9474 56% 

VPC 0 1.0000 50% 

DRBMC 0 0.9981 58% 

4.2 Results for 0.34-1 Hz TPEHG Filter on Channel 3 – Oversampled Using 
SMOTE 

In order to solve the class skew problem, the preterm records have been oversampled 
using the Synthetic Minority Oversampling Technique (SMOTE) [11]. This algorithm 
oversamples the minority class (38 preterm records) to 262, which equals the 262 
term samples already provided by the TPEHG database. A new dataset now contains 
an even split between term and preterm records. Using this dataset, the experiment 
has been repeated a further 30 times. 
 
Classifier Performance 
Table 2, illustrates the mean averages obtained over 30 simulations for the sensitivity, 
specificity, and AUC values. As it can be seen, the sensitivities, for all of the algo-
rithms, have significantly improved, while specificities have decreased. In addition, 
the AUC results also show a significant improvement in accuracy for all of the clas-
sifiers. In particular, the RBNC has dramatically improved with an accuracy of 90%.  

Table 2. SMOTE TPEHG signal (262 Term and 262 Preterm) 

Classifiers Sensitivity Specificity AUC 

BPXNC 79% 58% 72% 

LMNC 82% 69% 82% 

PERLC 46% 67% 63% 

RBNC 85% 80% 90% 

RNNC 86% 72% 83% 

VPC 98% 2% 50% 

DRBMC  59% 55% 56% 
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5 Conclusion  

The development of medical information systems has played an important role in the 
biomedical domain. This has led to the extensive use of Artificial Intelligence (AI) 
techniques for extracting biological patterns in data. Furthermore, data pre-processing 
and validation techniques have also been used extensively to analyze such datasets for 
classification problems. In this paper, seven classifiers have been used to classify term 
and preterm records from the TPEHG dataset, filtered between 0.34 and 1 Hz. The 
results demonstrate that the best performing classifier was the RBNC with 85% sensi-
tivity, 80% specificity, 90% AUC and a 17% mean error rate. These results are en-
couraging and suggest that the approach posited in this paper is a line of enquiry 
worth pursuing.  

Perhaps one negative aspect of the work is the need to utilize oversampling to in-
crease the number of preterm samples. A better way would have been to balance the 
dataset using actual recordings obtained from pregnant women who delivered prema-
turely. This will be the focus of future research, alongside a more extensive investiga-
tion into different machine learning algorithms and techniques.  
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Abstract. OncomiRNAs (oncomiRs) are small regulatory microRNAs 
(miRNAs) that play an important role in tumor formation and progression. 
These oncomiRs are found to regulate different types of tumor by targeting a 
large set of cancer driver genes (including oncogenes and tumor suppressor 
genes). In the present work, we have developed a pipeline for the identification 
of frequently occurring and clinically relevant driver genes in pan-negative 
melanoma (absence of mutations in BRAF (affecting V600), NRAS (G12, G13, 
and Q61), KIT (W557, V559, L576, K642, D816), GNAQ (Q209), and GNA11 
(Q209) by integrating oncomiRs regulated genes and frequently mutated genes 
in melanoma pan-negative samples. The preliminary experience has identified 
28 potential driver genes that are regulated by oncomiRs, of which 25 genes are 
associated with drugs, 3 differentially expressed genes are associated with 
metastasis. This analysis provides a method to mine clinically relevant driver 
genes in pan-negative melanomas. 

Keywords: MicroRNA, OncomiRNA, Melanoma, Driver gene. 

1 Introduction 

MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene 
expression. Disregulation of miRNAs can contribute to cancer initiation, progression 
and metastasis. For example, miRNAs are found to regulate different hallmarks of 
cancer by targeting a large set of cancer related genes (including oncogenes and tumor 
suppressor genes). These miRNAs are usually termed oncomiRNAs (oncomiRs). In 
recent years, many databases aiming at annotating the cancer-related miRNAs have 
been developed [including miRCancer [1], PhenomiR [2], somamiR [3], and 
OncomiRD [4], providing information about miRNAs and their target genes in 
cancer. 

Melanoma is a highly aggressive cancer of melanocytes and accounts for 80% of 
deaths from skin cancer [5], with an estimated 76,100 new patients and 9,710 deaths 
expected in the United States in 2014 [5].  The high mortality rate of advanced stage 
metastatic melanoma is largely due to its aggressive behavior and limited treatment 
options. Recently, novel effective molecular-based targeted therapies for the treatment 
of patients whose metastatic melanomas harbor specific driver mutations in BRAF, 
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NRAS, KIT, GNAQ, and GNA11 have emerged. However, more than 30% of tumors 
lack any of these mutations and are called “pan-negative”. Continued investigation for 
novel driver genes in these cases is critical to improve therapeutic outcomes for 
melanoma patients. For example, we recently identified 12 significantly mutated 
genes in “pan-negative” samples (ALK, STK31, DGKI, RAC1, EPHA4, ADAMTS18, 
EPHA7, ERBB4, TAF1L, NF1, SYK, and KDR). 

To uncover other potentially targetable mutations, we analyzed frequently mutated 
genes in melanoma pan-negative samples to identify mutated genes associated with 
oncomiRs. Among the 28 potential driver genes that are regulated by oncomiRs, of 
which 25 genes are associated with drugs. Our findings provide important therapeutic 
implications for “pan-negative” melanomas patients. 

2 Materials and Methods 

2.1 Mutation Data in Pan-Negative Melanomas 

The frequent mutated gene data set were obtained from our previous study [6]. We 
defined a highly mutated gene set in pan-negative melanoma samples. This set was 
defined by mutated gene occurred in at least 10% of pan-negative melanomas. This 
threshold led to selection of 681 highly frequently mutated genes. 

2.2 OncomiRs and Their Target Genes 

We obtained the experimentally verified oncomiRs data from the oncomiRDB 
database [4]. After filtering the duplicate data, 46 melanoma related oncomiRs were 
included in our study. A total of 739 target genes of these oncomiRs were obtained 
from the miRTarBase database [7], which provides the experimentally validated 
miRNA-target interactions. 

2.3 Druggable Human Genes 

The druggable genes are genes or gene products that are known or predicted to 
response to drug. We used the druggable gene set in MelanomaDB database [8], 
which includes the genes associated with drugs from 10 different sources. 

2.4 Analysis of Differential Overlapping Genes 

We obtained 28 over-lapping genes (Table 1) between the sets of highly mutated 
genes (mutation frequency ≥ 10%) and 739 miRNAs target genes. The functional 
annotation analysis of these 28 genes was executed using the DAVID tool [9]. 

Finally, to infer potential therapeutic targets for the treatment of malignant 
melanoma, the expression profiles of genes in melanoma cells were gathered from the 
collected gene expression data (GSE8401, including 31 primary melanomas and 52 
melanoma metastases). We defined upregulation as a fold change of >2, and 
downregulation as a fold change of <-2. 



 Potential Driver Genes Regulated by OncomiRNA are Associated with Druggability 317 

 

3 Results and Discussions 

3.1 Inferring Potential Therapeutic Targets Using Melanomadb 

To infer potential therapeutic targets, we first filtered 739 miRNA targeted genes, and 
obtained 28 overlapped genes with a mutation frequency above 10%. In previous 
investigations on the druggability of highly recurrent mutated genes in breast cancer, 
the authors found that these possible driver genes are poorly targeted by known 
drugs.Of these 28 overlapped genes, 89.3% (25 of 28) are approved to be associated 
with drugs. Driver gene has been applied to clinic, such as RG7204 [10] is an 
effective agent in melanoma patients who harbor BRAF mutation. These overlapping 
genes have a great potential to be a new biomarker. 

Table 1. Overlapping between genes in pan-negative and miRNA targets gene 

Mutation 
frequency 

miRNA targets gene 

>0.1 ARID2 COL5A3 COL7A1 COL3A1 DMD ELAVL4 GRIN2A PTPRO SELE 
TCF4 TP53 TSHZ3 ZEB1 ZFPM2 ZNF804A CARD11 GRM7 CASR APC 
ACVR1C COL1A2 COL4A1 FLT1 NTRK3 PTPRD TP63 FBN1 SMARCA4 

Table 2. The enriched GO terms in 28 overlapping genes 

GO-ID Description Count P value 

43588 skin development 5 1.71E-04 

8544 epidermis development 7 3.40E-04 

7398 ectoderm development 7 3.59E-04 

122 negative regulation of transcription from RNA 
polymerase II promoter 

6 0.017645 

10604 positive regulation of macromolecule metabolic 
process 

9 0.020833 

51172 negative regulation of nitrogen compound metabolic 
process 

7 0.029598 

45934 negative regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 

7 0.031407 

51253 negative regulation of RNA metabolic process 6 0.033302 

9890 negative regulation of biosynthetic process 7 0.033468 

1501 skeletal system development 6 0.034081 

31327 negative regulation of cellular biosynthetic process 7 0.035833 

45892 negative regulation of transcription, DNA-dependent 6 0.037618 

9891 positive regulation of biosynthetic process 7 0.049835 

10557 positive regulation of macromolecule biosynthetic 
process 

7 0.049967 

Note: Count represents the number of genes in each GO category; P value was adjusted by 
using the Benjamini method. 
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We analyzed genes found to be highly mutated in a cohort of 69 “pan-negative” 
melanoma genomes. These targets genes are enriched in epidermis development, 
epidermis development, ectoderm development, regulation of transcription and so 
on(Table 2). These genes have been proved to play a crucial role in biological 
function. Such as ACVR1C involved in multiple signaling pathway, including MAPK 
and TGF-beta signaling pathway [11]. CARD11 is a member of cascade recruitment 
domain family, which take part in T cell and B cell receptor signaling pathway [12]. 
The CARD11 mutation is a common phenomenon in the pathogenesis of Primary 
CNS lymphoma (PCNSL). COL5A3, COL3A1, COL1A2 and COL4A1 are modulated 
by miR-29c in many cancers [13]. All missense mutations in TP53 predicted to have 
an average effect on the protein function in melanoma [6]. 

3.2 Inferring Potential Therapeutic Targets Associated with Melanoma 
Metastasis 

Different kinds of disease usually present vary features, such as gene methylation or 
expression profiles. Therefore, the inferred 28 potential target genes ought to be 
further filtered for a given progressing period. We utilized gene expression data from 
melanoma clinical samples, which includes 31 primary melanomas and 52 melanoma 
metastases, and obtained three target genes overexpressed in melanoma metastasis. 
Among them, SELE and TP63 were the two most important genes studied by many 
researchers. All genes found differentially expressed in our results accord with report 
in breast cancer [14-16]. 

The TP63 gene is a homologue of TP53 family, which plays a role in tumor 
progression by dysregulating proliferation and differentiation. Overexpression of 
the TP63 gene is strongly associated with the diagnosis of lung cancer and cervical 
cancer [17, 18], suggesting this marker can apply in assessing cancer risk. Moreover, 
the previous studies reveled that p63 was reckoned with a marker of epithelial 
derivation, as it was overexpressed in cutaneous tumors [19]. More importantly, in 
squamous carcinoma of the lung, patients with the amplification and overexpression 
of TP63 have prolonged survival [13]. TP63 contains one tumor suppressors isoform 
(TATP63) and two oncogenes isoforms (ΔTP63; dNTP63) [20]. The oncogenic activity 
of the TP63 isoform may explain why we see its overexpression in melanoma.  

E-selectin (SELE) is a soluble adhesion molecule and has low expression in normal 
endothelial cells [21, 22]. But the SELE expression is induced rapidly when it binds 
transcription factors such as NF-κB and AP-1. Increased expression of SELE has been 
widely reported on endothelial cells when a cancer occurred, such as colorectal cancer 
and lung cancer [23, 24]. SELE acts as a mediator of the adhesion cascade and 
improve the metastatic potential. In clinic, SELE expression was decreased by using 
Cimetidine and it improve therapeutic effects in colorectal metastasis cancer patients 
[25]. While many studies show that SELE participates in metastasis, the mechanism 
of its regulation is not fully understood. A study showed that the increased level of 
SELE in metastatic melanoma cells was two folds higher than the concentration found 
in primary melanoma cells[26]. The increased level of SELE in melanoma patients 
was a poor prognosis. Since SELE plays a vital role in metastasis, its levels can be a 
useful marker for the recurrence in melanoma. Hence, the detection of SELE may be a 
quick and auxiliary method to evaluate the metastatic potential of melanoma. 
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The third differential mutated gene was COL7A1, which encodes a component of 
type VII collagen. The study of Teresa Odorisio et al. [27] showed that the amount of 
type VII collagen indicate an involvement of TGF-β pathways in modulating disease 
variability. The research of COL7A1 mainly aims at dystrophic epidermolysis bullosa, 
where COL7A1 mutation predisposing to cutaneous squamous-cell carcinoma [28]. 
Though there is no evidence suggesting that it is associated with melanoma 
progression and metastasis, it has been found to be key determinant of lung metastasis 
in osteosarcoma and its encoding protein is a breast cancer bone metastasis-associated 
peptidase regulators [29]. Besides, recent study [30] suggested that VII collagen 
overexpressed in dystrophic epidermolysis bullosa patient group with a higher 
inherent risk of developing skin cancer.  COL7A1 plays a vital role in disease 
development. Whether it plays the same role in melanoma progression needs to be 
further verified.  

In all, these three genes execute quite important biological functions. The aberrant 
mutations cause the dysregulation of normal cell and may cause cancer. Numerous 
studies have indicated that these three mutation genes are associated with risk of 
several cancers, including lung cancer, colorectal cancer [30-32]. Among these genes, 
only COL7A1 was less reported in cancers. In our study, it has a potential to be 
targeted in melanoma. 

4 Conclusion 

With increasing knowledge of gene mutation profiles, we can use it to identify cancer 
driver genes. In this study, we systematically integrated different sources of data in 
melanoma “pan-negative” samples. Combining mRNA targets gene with highly 
mutated genes, we identified 28 potential drug target genes by overlapping these data 
sets. 

These 28 identified genes may act as potential targets for therapeutic agents in 
melanoma patients without harboring BRAF, NRAS, KIT, GNAQ, and GNA11 driver 
mutations. Though this method seems feasible, it inevitably missed other potential 
target genes in melanoma. Our study provides a new perspective of potential 
druggable mutation genes and 3 differentially expressed genes related to melanoma 
metastasis, especially in pan-negative melanoma samples. 

In summary, we integrated oncomiRs regulated genes and frequently mutated 
genes in melanoma pan-negative samples. We identified 28 potential driver genes 
associated withmelanoma. Future biological experiments will be applied to determine 
whether these mutations are driver or passenger in melanoma. The strategies adopted 
in this study may also uncover targets that can be translated into clinical therapeutic 
for other cancers. 
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Abstract. Detection of ventricular tachycardia (VT) and ventricular fibrillation 
(VF) in electrocardiography (ECG) has clinical research significance. The com-
plexity of the heart signals has changed significantly, when the heart state 
switches from normal sinus rhythm to VT or VF. With the consideration of the 
non-stationary of VT and VF, we proposed a novel method for classification of 
VF and VT in this paper, based on the Lempel–Ziv (LZ) complexity and empir-
ical mode decomposition (EMD). The EMD first decomposed ECG signals into 
a set of intrinsic mode functions (IMFs). Then the complexity of each IMF was 
used as a feature in order to discriminate between VF and VT. A public dataset 
was utilized for evaluating the proposed method. Experimental results showed 
that the proposed method could successfully distinguish VF from VT with the 
highest accuracy up to 97.08%. 

Keywords: ventricular fibrillation, ventricular tachycardia, the Lempel–Ziv 
complexity, empirical mode decomposition (EMD). 

1 Introduction 

Ventricular fibrillation (VF) and ventricular tachycardia (VT) are both life-threatening 
arrhythmia. Once a patient was regarded as VF, high-energy defibrillation is required 
[1]. Nevertheless, a patient with VT demands the low-energy cardio-version instead. 
However, if a normal sinus rhythm or VT is misinterpreted as VF, the patient will 
suffer an unnecessary shock that may damage the heart. Conversely, if VF is incor-
rectly interpreted as VT, the result is also life-threatening. Therefore, an effective 
detection method to distinguish VF from VT has clinical research significance [2]. 

Many VF detection methods have been proposed for ECG arrhythmia recognition 
in the literature, such as a sequential hypothesis testing algorithm [13], total  
least square-based prony modeling algorithm [16], correlation dimension method  
[6], Lyapunov exponent method [5], an approximate entropy and its improved  
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approximate entropy method for automatic diagnosis of  VF and VT [7,8], a mod-
ified sample entropy that measures the time series complexity [19], qualitative chaos 
analysis based on symbolic complexity [17,18],  the method based on Lempel-Ziv 
(L-Z) computation complexity measure [9]. 

Zhang et al. [9] proposed a complexity-based method for VF and VT detection. 
However, this method appeared to some limitations [13]. It could achieve a satisfacto-
ry result only when the sample length was not very short. With the decreasing of the 
sample length, it was very hard to distinguish VT from VF. 

Empirical mode decomposition (EMD) was first proposed in 1998. With well  
defined instantaneous frequency, a finite set of band-limited signals that is termed 
intrinsic mode functions (IMFs) are decomposed from original signal. It’s a new tech-
nique to analysis nonlinear and non-stationary signals. 

In this paper, we presented a novel method for detection and recognition of ECG 
using the LZ complexity and EMD. The method demonstrated a high accuracy rate in 
the classification of VF and VT. Furthermore, the proposed method suited short data 
length and noisy recording in physiological signals. 

2 Detection of VF and VT Using the LZ Complexity and IMFs 

2.1 Data Selection 

We selected ECG signal files from MIT-BIH Malignant Ventricular Ectopy Database 
(MIT-BIH Database) and Creighton University Ventricular Tachyarrhythmia Data-
base (CU Database). In CU Database, it contains a total of 35 single-channel records; 
we selected 100 episodes of VF from it. Similarly, 100 episodes of VT were taken 
from MIT-BIH Database. The four-second times of the data is selected. The frequen-
cy of all these signals is 250 Hz, resolution of 12 bit. We gave it a normalized before 
used these samples. 

2.2 LZ Complexity 

The LZ complexity algorithm was first proposed by Lempel and Ziv [3]. It has been 
widely applied in the biomedical signals including detects VF and VT, study the brain 
function and brain information transmission [4]. 

The detailed algorithm for the signal X (t) can be summarized as follows: [11] 

(1) Given a discrete-time signal X of N samples (X = x1 , x 2  . . . x N ), converted the 

original x m (m=1~N) into a sequence of symbols P = u(1), u(2), . . ., u(n), in which each 

u(i) is a character of a finite alphabet a=0,1. (n represents the length of the sample). 
(2) Let S and Q denote two subsequences of the sequence P and SQ be the  

concatenation of S and Q, while sequence SQπ is derived from SQ after its last cha-
racter is deleted (π respects the operation to delete the last character in the sequence). 

(3) W (SQπ) as the vocabulary of the sequence SQπ that is formed by all its  
substrings. 

(4) At the beginning, c(n)(the complexity counter)=1, S = u(1),Q= u(2), SQ = u(1), 
u(2) , and then SQπ = u(1). 
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(5) In general, suppose that S = u (1), u (2) . . ., u(r), Q= u(r+1) and therefore, SQπ 
= u(1), u(2), . . ., u(r). If Q∈ w (SQπ), then Q is a subsequence of SQπ, not a new se-
quence. 

(6) The value of S is fixed and renew Q to be u(r+1), u(r+2), then judge if Q be-
longs to w (SQπ) or not. 

(7) Repeat the previous steps until Q does not belong to w (SQπ). Now Q= u(r+1), 
u(r+2)…., u(r + i) is not a subsequence of SQπ = u (1), u (2) . . ., u(r + i−1), the 
counter c (n) is increased by one. 

(8) Thereafter, S and Q are combined and renewed to be u (1), u (2) . . ., u(r + i), 
and u(r+i+1), respectively. 

(9) Repeat the previous steps until Q is the last character. At this time, the number 
of different substrings is defined as c (n), c (n) is usually between zero and one [15]. 

2.3 Empirical Mode Decomposition (EMD) 

The EMD [5, 12] can separate a segment of ECG signal x (t) into n IMFs: E1 (t), E2 
(t)…, En (t) and a residue signal r. Only when each IMF satisfies two basic condi-
tions, the signal x (t) can be reconstructed as a linear combination: 


=

+=
N

j

rtEntx
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)()(                                 (1) 

Given an input signal x (t), r (t) =x (t), j=0. 
(1) Set g (t) = x (t). 
(2)Get the maxima and minima of the g (t). 

(3) Generate the upper and lower envelopes )(teu  and )(tel , respectively by 

connecting the maxima and minima separately with cubic spline interpolation. 
(4) The local mean m (t) is defined:  

2/))()(()( tetetm lu +=
                           (2) 

(5) The m (t) value is subtracted from the original signal g (t), i.e., redefine g (t) as: 
 )()()( tmtgtg −=                             (3) 

(6) Decide whether g (t) is an IMF or not according to the two basic conditions as 
described in the above. 

(7) Repeat steps (2)–(6).  When an IMF g (t) is obtained, jump to the next step. 
(8) Define E1 (t) = g (t) when the first IMF is got. E1 (t) is the smallest tem-

poral scale in x (t). To find the rest of the IMF components, define the residue 
signal r1 (t) as: r1 (t) = x (t) −E1 (t). 

(9) Set g (t) =r1 (t). Repeat the previous steps and can get E2 (t), E3 (t)….En (t). 

2.4 The Algorithm Based on LZ Complexity and EMD 

EMD is a nonlinear and non-stationary signal processing technique. It can represent  
any temporal signal into a finite set of amplitude and frequency modulated (AM-FM) 
oscillating components [14]. 
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Our proposed algorithm is defined as follows: 

(1) Given a discrete-time signal X , X =( 1X , 2X ,……, NX ), where N represents 

the samples of X . Define MX ={ 1*)1( +− mNx , 2*)1( +− mNx ,…… mmNx +− *)1( } 

(M=1~N), where m represents the length of each sample. 
(2) According to the following formula, make these samples be normalized. 

σ/)(' xXX MM −= ,                               (4) 

Where x andσ represent the mean and the standard deviation of the sample MX . 

(3) Repeat steps (2) until all samples are normalized. Calculate the complexity of 
VT and VF using those samples first, and then get the accuracy for detection of VT 
and VF according to the assessment formula of the algorithm performance. 
(4) Get IMFs of ECG signals. EMD technique is applied to decompose ECG sig-
nals into five IMFs. 
(5) For the first IMF of VT and VF, calculate the complexity of them and get the 
accuracy for detection. Repeat this step until the other IMFs are calculated. 

3 Classification Performance on VF and VT 

A sample of ECG epochs from MIT-BIH Database and CU Database are plotted in 
Fig.1. And the first IMF1–IMF5 of it showed in Fig.3. It’s found the waveform of the 
first IMF of VT and VF is not uniform. This is exactly consistent with the theoretical. 

When the LZ complexity analysis was performed, calculate the values of each epi-
sode with the method described previously. The results calculated from an episode of 
VF and an episode of VT is presented in Fig.2. Based on the assessment formula, we 
can draw that the classification results for 63.10% of accuracy from Fig.2. As we 
know, the clinical signals are very complex, so the results are not good. 
 

 

                  (a)                                     (b) 

Fig. 1. Examples of ECG signal epochs: (a) VF time domain signal and (b) VT time domain 
signal 
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            (a)                                         (b) 

Fig. 2. (a)The complexity was calculated for different VT and VF episodes. The dotted hori-
zontal line is the threshold. (b) The box-plot of the complexity of VT and VF from ECG data. 

After EMD, the complexity of each IMF is computed. From the result, the first 
IMF1 accuracy for detection of VT and VF can reach 93.56%. The effect of the first 
IMF5 detection is shown in Fig.4. For the IMF1–IMF5, the performances on classifi-
cation of VF and VT patterns are shown in Tables 1. The classification results using 
the LZ complexity-EMD algorithm methods can reach an accuracy of 97.08%, re-
spectively. 

 

 
                    (a)                                       (b) 

Fig. 3. Examples of a segment of ECG signals: (a) represent the first five IMFs of VF (b) 
represent the first five IMFs of VT 
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                     (a)                                       (b) 

Fig. 4. (a) The complexity was calculated after EMD for different VT and VF episodes. The 
dotted horizontal line is the threshold (b) the box-plot of the complexity of VT and VF after 
EMD. 

From Tables 1, it can be found the accuracy of each IMF for distinguish of VT 
from VF is higher than only using the LZ complexity. According to the relevant lite-
rature, the frequency of VF and VT is not the same. After EMD, ECG signal is de-
composed into different frequency IMF. The same IMF of VT and VF are used as a 
feature in order to discriminate between VF and VT. So the results are good than only 
using the LZ complexity. The proposed method has greatly improved the effect of the 
classification. In the clinic application, we can use the IMF1 and IMF5 to distinguish 
VF from VT. 

Table 1. The classification of VF and VT using EMD and complexity analysis 

Method Component VF  VT  
Accuracy 

(%) 

  
Sensitivity 

(%) 

Specificity 

(%) 

Sensitivity   

(%) 

Specificity   

(%) 
 

Complexity  64.11 62.09 62.09 64.11 63.10 

Complexity 

and EMD 

IMF1 87.12 100.00 100.00 87.12 93.56 

IMF2 82.04 68.16 68.16 82.04 75.10 

IMF3 77.21 73.18 73.18 77.21 75.20 

IMF4 88.13 90.28 90.28 88.13 89.21 

IMF5 98.15 96.01 96.01 98.15 97.08 

4 Discussion and Conclusions 

In this paper, a method of VF and VT detection based on the LZ complexity and 
EMD was proposed. We used the complexity of each IMF as a feature to discriminate 
between VF and VT. The accuracy of each IMF in distinguishing of VT from VF is 
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much higher than only using the LZ complexity. We can use the IMF1 or IMF5 of 
ECG signals to distinguish VF from VT in the clinic application. The proposed me-
thod suited short data length and noisy recording in physiological signals. Further-
more, this method has greatly improved the classification rate. However, there were 
two limitations of this study. One limitation was that other dataset(s) would be re-
quired for a validation using this method. Another limitation was that it also needs 
other methods to compare with this proposed method for VF and VT detection. To 
obtain better results, we need to make more efforts to improve the efficiency of the 
algorithm and may consider adding a classifier. 
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Abstract. Protein structure prediction is an important area of research in 
bioinformatics. In this research, a novel method to predict the structure of  
the protein is introduced. The amino acid frequencies, generalization dipeptide 
composition and typical hydrophobic composition of protein structure are treated 
as candidate feature. Flexible neural tree and neural network are employed as 
classification model. To evaluate the efficiency of the proposed method, a 
classical protein sequence dataset (1189) is selected as the test dataset. The 
results show that the method is efficient for protein structure prediction.  

Keywords: protein structure prediction, flexible neural tree, neural network. 

1 Introduction 

The structural classes are one of most important attributes of protein, which plays a 
significant role in both experimental and theoretical researches in Proteomics. On one 
hand, the data of protein sequence database has been growing so fast that 
corresponding research hardly catch up with the pace of it. On the other hand, the 
traditional methods can't meet the needs of users[1].  

The concept of protein structural classes has been proposed by Levitt and 
Chothia ,which are divided proteins into four structural classes: all-α, all-β, α+β and 
α/β in 1976[2]. The definition by K C Chou is showed in Table 1. 

Table 1. The definition of 4 categories of protein structural 

 helical structure folding structure anti-parallel 

folding structure 

parallel folding 

structure 

all-α ≥40% ≤5%   

all-β ≤5% ≥40%   

α+β ≥15% ≥15% ≥60% ≤15% 

α/β ≥15% ≥15% ≤15% ≥60% 

                                                           
* Corresponding author. 
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There are a variety of methods to prediction the structure of protein. These 
methods are put into 3 categories: classic prediction methods, experimental methods 
and machine learning methods. The classical prediction methods mainly include 
homology modeling[4], fold recognition[5-7] and ab initio prediction[8]. The 
experimental methods gradually became popular, since 1960. There are two kinds of 
experimental methods: the NMR and X-ray crystallography[9]. Nowadays, with the 
development of machine learning, the machine learning methods play an important 
role in protein structure prediction. A variety of machine learning algorithms, such as 
Support Vector Machine(SVM)[10], Hidden Markov Model(HMM)[11], Neural 
Network(NN)[12-13] and Naive Bayesian classification[14] are widely used in protein 
structure prediction. 

2 Dataset 

To validate our proposed classify mode, a classical datasets: 1189 dataset is 
selected[15]. 1189 dataset contains 1092 protein domains, including 223 all-α class, 
294 all-β class, 241 α+β class and 334 α/β class. The sequence homology of this 
dataset is below 40%. It was found through long-term that the performance of 
classification is strongly affected by sequence homology of dataset. In this method, 
the results of classification will be more objective to value the validity of proposed 
result. The Fig.1 shows the four structural classes in the SCOP.  

 

Fig. 1. Four kinds of protein structure in SCOP 

3 Feature Selection 

3.1 Amino Acid Frequency 

Amino Acid Frequency (AAF) is based on statistical property to analysis of protein 
tertiary structure[16]. The feature include a protein as 20 elements of the vector, in  
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which each element represents the corresponding frequency of amino acids. The 
feature vector of protein P can be represented by Eq.1. 

1 2 20[ , , , ]P f f f=   (1) 

The N is the length of a protein .The fi is the corresponding amino acid residues. 
Eq.2 stands for AAF a protein. 
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For one thing, the feature of AAF has the ability to represent the amino acid type 
influence on protein structure. For another thing, AAF has a large number of  
information about protein structure.  

3.2 Generalized Dipeptide Composition(GDC) 

Amino acid composition information reflects the frequency of the amino acids in 
proteins, without considering the amino acid sequence information. Idicula Thomas 
and Chou[18] pointed out amino acids and amino acid sequence information is one of 
most important in large number of protein features. A protein sequence can be 
expressed as a 400-dimensional vector. Eq.4 show the amino acid composition. 
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(3) 

Xk
ξ is the frequency of the ξ kind of protein species dipeptide in the k protein. 

3.3 Amino Acid Composition(AAC) 

According to the definition by Levitt and Chothia[19], there are some major 
differences between the structure of helix and folding, which is amino acid molecules 
arrangement, in different structures of the protein sequence.  

In this research, the amino acid side chains and water lead to the special 
composition of a protein sequences. According to Lim’s research, 6 kinds of 
hydrophobic compositions( including (i, i+2), (i, i+3), (i, i+2, i+4), (i, i+5), (i, i+3, 
i+4), (i, i+1, i+4) ) frequently exist in the protein. Based on the theory of Rose’s[19], 
there are 7 categories of hydrophobic amino acid composition meet the requirements. 
The 7 categories of hydrophobic patterns show in Table 2. 
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Table 2. 7 categories of hydrophobic amino acid patterns 

No. Motifs Occurrence in β  Occurrence in α 

1 hhpphh under represented and not frequent over represented and frequent 

2 pphhpp under represented and not frequent over represented and frequent 

3 hhpp under represented and not frequent over represented and very 
frequent 

4 pphh under represented and not frequent over represented and very 
frequent 

5 hphp over represented and frequent under represented and not 
frequent 

6 phph over represented and frequent under represented and not 
frequent 

7 pphhh over represented and very frequent under represented and not 
frequent 

4 Methods 

4.1 Flexible Neural Tree 

A function instruction set T and set F are used to generate a FNT model, which is 
described as 2 3 1{ , , , } { , , }N nS F T x x= ∪ = + + + ∪  , where + ( 1,2, , )i i n=   denote 

non-leaf nodes’instructions and taking i arguments, 1 2, , , nx x x . The structure of a 

non-leaf node is showed as Fig. 2 and structure of a FNT is showed in Fig. 3. 

 

Fig. 2. Non-leaf node of flexible neural tree with a terminal instruction set T={x1,x2,…,xn} 
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Fig. 3. Typical representation of FNT with function instruction set {+1,+2,+3,+4} and terminal 
set {x1,x2,x3,x4}, which has four layers 

Based on the defined function instruction set and terminal instruction set, the 
evolution process of FNT is recursively[21]. The general learning process of construct 
the FNT model can be described as follows: 

STEP1 Randomly create an initial FNT population and its 
corresponding parameters. 
STEP2 Find the proper tree structure with PI PE 

algorithm. In this step, considering the effect of 
parameters on the structure selection, before select the 
better structures of population we use PSO to simply 
optimize the parameters of every tree in population . 
This way, we can reduce the impaction of parameters on 
better structure select. 
STEP3 If a proper structure is found, then go to STEP4, 

otherwise go to STEP2. 
STEP4 Parameter optimization is achieved by the PSO. In 

this step architecture of FNT model is fixed. 
STEP5 If no better parameter vector is found for a long 

time or the Specific maximum number of local search is 
reached, then go to STEP6, otherwise go to STEP4. 
STEP6 If satisfactory solution is found, then the 

algorithm is stopped, otherwise go to STEP2. 

4.2 Neural Network 

Neural network consists of input layer, hidden layer and output layer. Experiments 
show that compared with the single-layer network, multilayer neural network has 
better ability to process information, especially for complex information processing 
ability. 
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The ωih
(1) is input layer of the No.i hidden layer neurons and the first h the weights 

of connections between neurons. The ωhj
(2) is the first h hidden layer neurons 

connected to the output layer first j neuron weights. Eq.5 is the result of No.h neuron 
in the hidden layer. 

(1) (1)

1

( )
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i
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1, 2, ,h k=   
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Eq.6 is the result of No.j neuron in the output layer. 
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5 Classification Model 

Based on four binary NN and FNT ensemble classification models are constructed a 
novel classification mode. So, No.1 classification model ,the feature of the 
generalized dipeptide composition feature and FNT model are treated as classifier. 
No.2 classification model, the feature of AAF, AAC and Hydrophobic Amino Acid 
Combination feature and NN model is employed. No.3 classification model, the 
feature of generalized dipeptide composition feature and NN model are used. No.4 
classification ,the feature of AAF, AAC, Generalized Dipeptide Composition and 
Hydrophobic and FNT model are adopted. 

The results of each classifier output using hamming distance. Calculating the 
minimum output to achieve the Hamming distances of the classification. Some cases 
have more than one category code equals the distance and the minimum distance, at 
this time will be different weighting the output of the classifier. Finally, the samples 
of unknown categories based on the specific situation for special treatment. The code 
of 4 classifiers show in Table 3. 

Table 3. The coding of each classifiers 

 No.1 classifier No.2 classifier No.3 classifier No.4 classifier 

all-α 1 0 0 0 

all-β 0 1 0 0 

α+β 0 0 1 0 

α/β 0 0 0 1 
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6 Result and Analysis 

In this research, we found that the parameter of each classifiers meet the requirement of 
Table 4 and Table 5, the accuracy of prediction of protein structure classes will reach the 
maximum. Curve according to the fitness of four classifiers is shown in Figure 4. 

Table 4. The information of each classifiers 

Classifier Classification 

model 

 

Feature Input 

number 

Training 

generation 

Hidden layer  

notes of NN 

No.1 NN AAF+ 
GDC 

420 1200 15 

No.2 FNT GDC 400 1000 NA 

No.3 NN GDC 400 1000 7 

No.4 FNT AAF+ 
AAC+ 
GDC 

430 1400 NA 

Table 5. The parameter of PSO algorithm 

V_max Position_max 
Particles 

number  
C1 C2 

2 0.02 60 2 2 
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Fig. 4. The four categories of fitness function curve 
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Table 6. Comparison of accuracies between different methods(1189 dataset) 

Algorithm all-α(%) all-β(%) α+β(%) α/β(%) overall(%) 

Logistic regression[19] 57.0 62.9 25.3 64.6 53.9 

Stacking C 
ensemble[19] 

NA NA NA NA 58.9 

PseAAC[20] 48.9 59.5 26.6 81.7 56.9 

SVM+AA 
composition[21] 

NA NA NA NA 57.8 

RQA & PCC[22] 63.0 77.5 24 88.5 63.6 

This paper 65.32 80.23 45.2 86.12 65.2 

7 Conclusion 

In this paper, the hybrid feature extracted by AAC, GDC, AA Composition and 
Hydrophobic Amino Acid Combination were used to present a protein sequence. The 
1189 databset protein sequences were used for conducting all the experiments. 
Compared with other traditional methods, the method will largely improve the 
classification accuracy. However, the model exists some drawbacks. Firstly, the 
number of feature is so large that waste a great many of storage space. Secondly, the 
NN model hardly explain the principle of biology. Thirdly, the feature is mostly based 
on the statistical feature. Since the experiment was not considered homologous 
extracted information, so that the information of dataset 1189 is enough. Therefore, in 
future work should focus on considering the information extracted protein homology. 
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Abstract. In this paper, we study the Transcription Factor Binding Sites 
(TFBS) prediction problem in bioinformatics. We develop a novel 
parameterized approach that can efficiently explore the space of all possible 
locations of TFBSs in a set of homologous sequences with high accuracy. The 
exploration is performed by an ensemble of a few Hidden Markov Models 
(HMM), where the size of the ensemble is the parameter of the algorithm. The 
ensemble is initially constructed through the local alignments between two 
sequences that have the lowest similarity value in the sequence set, the 
parameters of each HMM in the ensemble are revised when the remaining 
sequences in the set are scanned through by it one by one. A list of possible 
TFBSs are generated when all sequences in the set have been processed by the 
ensemble. Testing results showed that this approach can accurately handle the 
cases where a single sequence may contain multiple binding sites and thus has 
advantages over most of the existing approaches when a sequence may contain 
multiple binding sites.  

Keywords: parameterized algorithm, Hidden Markov Model (HMM), 
Transcription factor binding site, dynamic programming. 

1 Introduction 

Transcription Factor Binding Sites (TFBS) are subsequences found in the upstream 
region of genes in DNA genomes.  A transcription factor, which is a specialized 
protein molecule, may bind to the nucleotides in the subsequences and thus may 
affect some relevant biological processes.  Research in molecular biology has 
revealed that transcription factor binding sites are important for many biological 
processes, including gene expression and regulation.  An accurate identification of 
TFBSs is thus important for understanding the biological mechanism of gene 
expression and regulation. Classical experimental methods are time consuming and 
expensive [6,7]. Recently, a few new experimental methods such as ChIP-chip and 
ChIP-seq have been developed for TFBS identification [17]. Although the throughput 
of these methods is high, processing the large amount of complex data generated by 
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these methods remains a challenging task [17]. Computational methods that can 
accurately and efficiently identify TFBSs from homologous sequences are thus still 
convenient and important alternative approaches to rapid identification of TFBSs.   

Since TFBSs for the same transcription factor have similar sequence content in 
homologous sequences, the most often used computational approaches make the 
prediction by analyzing a set of homologous sequences and identifying subsequences 
that are similar in content. The locations of a TFBS may vary in different homologous 
sequences. To determine the location of a TFBS in each sequence, we need to 
evaluate all possible starting locations among all sequences to find the optimal 
solution. The total number of combinations of subsequences that need to be examined 
is exponential and exhaustively enumerating all of them is obviously impractical 
when the number or the lengths of the sequences are large. To avoid exhaustive 
search, a large number of heuristics have been developed to reduce the size of the 
search space, such as Gibbs sampling based approaches AlignACE [19], 
BioProspector [16], Gibbs Motif sampler [15], expectation maximization based 
models [1, 2], greedy approaches such as Consensus [8], and genetic algorithm based 
approaches such as FMGA [14] and MDGA [4]. 

Of all these approaches and software tools, Gibbs Motif sampler is a tool based on 
a stochastic approach. It computes the binding site locations by Gibbs sampling [15, 
16, 19]. Consensus uses a greedy algorithm to align functionally related sequences 
and applies the algorithm to identify the binding sites for the E. coli CRP protein [8]. 
MEME+ [2] uses Expectation Maximization technique to fit a two component 
mixture model and the model is then used to find TFBSs. MEME+ achieves higher 
accuracy than its earlier version MEME [1]. However, the prediction accuracy is still 
not satisfactory. 

Genetic algorithm (GA) simulates the Darwin evolutionary process to find an 
approximate optimal solution for an optimization problem. GA based approaches 
have been successfully used to solve the TFBS predicting problem, such as FMGA 
[14] and MDGA [4]. FMGA was declared to have better performance than Gibbs 
Motif Sampler [15] in terms of both prediction accuracy and computation efficiency. 
MDGA [4] is another program that uses genetic algorithms to predict TFBSs in 
homologous sequences. During the evolutionary process, MDGA uses information 
content to evaluate each individual in the population. MDGA is able to achieve higher 
prediction accuracy than Gibbs sampling based approaches while using a less amount 
of computation time. 

So far, most of the existing approaches use heuristics to reduce the size of the 
search space. However, heuristics employed by these approaches may also adversely 
affect the prediction accuracy. For example, GA based prediction tools cannot 
guarantee the prediction results are the same for different runs of the program. A well 
defined strategy that can be used to efficiently explore the search space and can 
generate deterministic and highly accurate prediction results is thus necessary 
to further improve the performance of prediction tools.  

Recent work has shown that an ensemble of HMMs can be effectively used to 
improve the accuracy of protein sequence alignment [21]. In this paper, we develop a 
new parameterized algorithm that can predict the locations of TFBSs with an 
ensemble of Hidden Markov Models (HMMs), where the size of the ensemble is the 
parameter. The approach uses an ensemble of profile HMMs to generate a list of 
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positions that are likely to be the starting positions of the TFBSs. As the first step, we 
construct the ensemble from the local alignment of two sequences. The ensemble 
consists of HMMs that represent the local alignments with the most significant 
alignment scores. We then align each profile HMM in the ensemble to each sequence 
in the data set, the parameters of the HMMs are also changed to incorporate the new 
information from the new sequence. This procedure is repeated until all sequences in 
the dataset have been processed. As a parameter, the number of HMMs in the 
ensemble can be adjusted based on the needs of users. We have implemented this 
approach into a software tool EHMM and our experimental results show that the 
prediction accuracy of EHMM is higher than or comparable with that of the existing 
tools. Our testing results suggest that EHMM has the potential to provide some 
assistance to the ENCODE Project. 

2 Algorithms and Methods 

The method selects the two sequences that have the lowest similarity to initialize the 
ensemble. The similarity between each pair of sequences in the set is computed by 
globally aligning the two sequences.  A local alignment of the selected sequences is 
then computed.  The alignment results are then used to construct an ensemble that 

consists of k  HMMs, where k  is a positive integer. The algorithm selects the local 

alignments with the k  largest alignment scores and each of such local alignments can 

be used to construct an HMM. An ensemble of k  HMMs can thus be constructed 

based on the local alignments with k  most significant alignment scores.  
We then progressively use the HMMs to scan through each remaining sequence in 

the set. Each sequence segment in a sequence is aligned to each HMM in the 

ensemble and the alignments with the k most significant scores are selected to update  
 

 

(a)                                                                  (b) 

Fig. 1. (a) An ensemble is constructed from local alignments. (b) The ensemble is updated 
progressively. 
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where N  is the set of all types of nucleotides, iaC  represents the number of times 

that nucleotide a appears in column i , ),( aMet i is the emission probability for 

state iM to emit nucleotide a . ),( 1+ii MMet is the probability for the transition 

from iM to 1+iM  to occur; ),1,,( cibiP +  is the number of times that nucleotide 

b appears in column i and nucleotide c appears in position 1+i ; ),1,,( −+ibiP  is 

the number of times that nucleotide b appears in column i and a gap appears in 

column 1+i . ),( 1+ii MDet  is the probability for the transition from iD  to 1+iM to 

occur; ),1,,( biiP +− is the number of times that a gap appears in column i and 

nucleotide b appears in column 1+i ; ),1,,( −+− iiP  is the number of times that 

gaps appear in both columns i  and 1+i  . More details of the algorithm can be found 
in [5]. 

2.2  Updating Ensemble 

The remaining sequences in the set are processed based on the profile HMMs in the 
ensemble. For each of the remaining sequences, we evaluate the average similarity 
between it and the two sequences that have been selected to initialize the ensemble. 
The remaining sequences can thus be sorted based on an ascending order of this 
similarity value.  This order is the execution order of the remaining sequences in the 
set. 

Each of the remaining sequence is scanned through by each profile HMM in the 
execution order and subsequences that have the k  most significant alignment scores 
are selected. The algorithm uses a window of certain size to slide through the 
sequence. The size of the window is set to be 1.5 times of the average lengths of all 
subsequences in the alignments used to construct the ensemble. The window moves 
by 1bp each time and each subsequence in the window is aligned to each HMM in the 
ensemble. The alignment can be computed with a dynamic programming algorithm. 
The recursion relation for the dynamic programming is as follows.  

]},,[),(],,,[),(max{],,[ 1111 jiMSMDetjiDSDDetjiDS sssssss ++++=    (7) 

                 
]},1,[),(

],,1,[),(),(max{],,[

11 jiMSMMet

jiDStMepDMetjiMS

sss

sissss

+
+=

++

             (8) 



 A Parameterized Algorithm for Predicting Transcription Factor Binding Sites 345 

 

where Wji ≤≤≤0 are integers that indicate the location of subsequence t  

included in the window; ],,[ jiDS s and ],,[ jiMS s  are the dynamic programming 

table cells that store the maximum probability for states iD  and iM to generate the 

subsequence ]...[ jit ; it is the nucleotide at position  i in t . More details of the 

algorithm can be found in [5]. 
The algorithm then selects k  subsequences with the largest alignment scores. We 

thus obtain in total 2k candidates for updating the HMMs in the ensemble. We pick 

k  subsequences that correspond to the largest k alignment scores from the 2k
candidates. The parameters of each profile HMM are then updated based on these 
additional k subsequences. Specifically, the additional subsequence changes the 
counts that appear in (2), (3), (4), (5), and (6). The process is applied progressively to 
other remaining sequences in the set until each sequence in the set has been 
processed. The locations of the sequence segments used to construct each HMM in 
the ensemble are then output as the possible binding sites. 

2.3 Computation Time 

We assume the set contains m  sequences, each sequence contains n  nucleotides, 

and the binding site contains l  nucleotides.  The construction of the initial ensemble 

needs )( 222
knnmO +  time. The computation time needed to scan through a 

sequence with a single HMM is )( 2nlO . The total amount of computation needed by 

the approach is thus )( 22222 knnmnkmlO ++ .     

3 Experimental Results 

We have implemented this approach and integrated it into a software tool EHMM. 
We tested its accuracy on a biological dataset cyclic-AMP receptor protein (CRP). 
This dataset consists of 18 sequences, each of which consists of 105 bps [17]. Twenty 
three binding sites have been determined by using the DNA footprinting method, with 
a motif width of 22 [16]. 

Figure 4 compares the prediction accuracy of EHMM with three other 
computational methods: Gibbs Sampler [8], BioProspector [9], and MDGA [3]. The 
value of the parameter is set to be 10=k  in all the tests. It can be seen from the 
table that EHMM can achieve comparable accuracy with other tools in homologous 
sequences that contain a single binding site. However, sequences 1, 2, 6, 9, and 17 
contain two TFBSs and all three other tools fail to recognize the second one. Table 1 
shows the errors of the predicted locations of the second binding site in these 
sequences by EHMM. For most of them, EHMM can thus accurately identify the 
locations of both motifs. In particular, EHMM obtains excellent prediction results on 
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Table 1. The errors of the locations of the second  TFBS predicted by EHMM 

Seq.# 1 2 6 9 17 
Error -1 -1 -1 1 -4 

 
 

 

Fig. 5. (a) Prediction accuracy of the EHMM, GS,  BP, GA on data sets BATF, EGR1, 

FOXO1, and HSF1. (b) Prediction accuracy of the EHMM when k  is 6,8,10, and 12 
respectively. 

 

Fig. 6. (a) Computation time needed by the four programs on all data sets. (b) The ROC curve 
for the four programs. 

The size of the ensemble can be changed by the user to balance the prediction 
accuracy and the computation time needed for prediction. Figure 5 (b) shows the 
prediction accuracy on data sets BATF, EGR1, FOXO1, and HSF1 when the value of 

the parameter k  is 6,8,10, and 12. It can be seen from the figure that the prediction 
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accuracy improves when the size of the ensemble increases and the prediction 
accuracy becomes steady when the value of the parameter is 10. The testing results 
also show that a parameter value of 10 is thus sufficient to achieve satisfactory 
prediction accuracy in practice. 

Figure 6 (a) shows the computation time needed by the four programs on all data 
sets in seconds. It can be seen from the figure that EHMM is computationally more 
efficient than the other three programs. Figure 6 (b) shows the ROC curve of all four 
programs computed based on the four testing data sets. The horizontal axis in the 
figure is the value of 1-specificity and the vertical axis represents the sensitivity. It is 
also clear from the figure that EHMM is on average the most accurate program of all 
four programs. 

4 Conclusions 

In this paper, we developed a new parameterized approach that can accurately and 
efficiently identify the binding sites with an ensemble of HMMs. Experimental results 
show that this approach can achieve higher or comparable accuracy on sequences 
with a single binding site while its accuracy on sequences with multiple binding sites 
is significantly higher than that of other tools.  Our approach thus may provide a 
useful computational tool for the ENCODE project [32], whose goal is to identify all 
functional elements in human genome sequences.  

Our previous work has demonstrated that introducing additional parameters to the 
algorithms for some bioinformatics problems may significantly improve the accuracy 
of the results [10-13, 22-29]. Our future work will focus on the development of new 
approaches that can exploit these parameters to further improve the accuracy of 
binding site prediction. 

Acknowledgments. Y. Song’s work is fully supported by the University Fund of 
Jiangsu University of Science and Technology, under the Number 635301202 and 
633301301. 
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Abstract. This work proposes a novel hot routes inferring approach without the 
support of real road network. Discovery of hot routes is important to the 
applications that requiring classifies the traffic flow or profiles the dynamic of 
the city, such as targeted advertising, traffic management and control. The 
advances of location-acquisition technologies have led to a huge collection of 
objects’ trajectories in the road network, which give us the chances to finding 
hot routes conveniently. However, it is difficult to effectively detect hot routes 
without the support of the available road map. To address this issue, we first 
develop a Road Network Constructing Algorithm (RNCA) that extract road 
network from vehicular trajectories using image processing methods, and then 
propose a Hot Route Inferring Algorithm (HRRA) based on the extracted road 
network. Meanwhile, a novel road matching operation is also developed to 
match trajectory points onto roads. We have conducted extensive experiments 
on real dataset of taxi trajectories. Simulation results show that the proposed 
RNCA and HRRA are both effective and efficient. 

Keywords: Data mining, Image processing, Vehicular Trajectories, Hot routes, 
Road network. 

1 Introduction 

In recent years, as the mature of the positioning technology and the universal of the 
positioning device, a variety of mobile terminals in different application areas 
generate a large amount of trace data. These data is rich in knowledge that reflects 
people's movement regularity, the traffic conditions, and the structure of the road 
network. Today, the associated trajectory mining is getting hotter, one significant 
study of them is inferring hot route from vehicular trajectory. The hot route, which 
can be informally defined as the route that frequently followed by multiple objects 
during a certain time, reveals people's moving behavior patterns and attention/ 
reliance to the geographical area.  

Gaffney et al. [1] have proposed a hot route detection algorithm FlowScan, which 
is able to detect effectively the global hot route in the city, and correctly identify the 
splitting/joining, overlapping, and slack of the hot routes. However, this algorithm 
requires not only the support of a road network with good topology, but also the 
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accuracy of the road matching algorithm. That is, without the road network or the 
accurate road matching algorithm, this algorithm will be helpless.  

How to address this problem? One naive solution is to divide the space into grid 
with small size, and map the GPS points into these grids. Then the hot route detection 
is converted to hot grid sequence detection. In this way, like the FlowScan, we can 
define the directly density-reachable grids according to the common trajectories 
between adjacent grids, and use the depth-first search or breadth-first search to detect 
hot routes. However, this approach has its defects. If the grid is large, one grid may 
cover more than one road, so that the final hot routes will be too large in width to 
express the finer actual path. If the grid is small, one grid may only cover a partial 
region of a road, so that the trajectory amount in one grid will be too few to 
mistakenly lose many hot routes.  

In view of the above discussion, the key issue of the hot route detection is the 
support of the road network. If the road network can be constructed easily, the hot 
route detection will be no longer a problem. From this straightforward idea, this work 
develops a rapid road network constructing algorithm (RNCA), and then proposed an 
effective hot route inferring algorithm (HRRA) based on RNCA. The proposed hot 
routes detecting processes are roughly as follows: firstly, constructing the road 
network from vehicular trajectories using image processing methods; and then 
matching the trajectories to roads; finally detecting hot routes like the above naive 
solution. 

2 Related Work 

This section briefly introduces the previous works associated with the hot route 
detection, including the road network construction, route inferring, and trajectory 
pattern mining techniques. 

2.1 Road Network Construction 

There have been a few other existing algorithms for building maps with vehicular 
GPS trajectories such as  image processing-based methods[2, 3], clustering-based 
methods [4-6], machine learning-based methods [7], and a few other methods [8-10]. 
However, these algorithms are either high time costly, or sensitive to the granularity 
and noise of the positioning points, or require an auxiliary reference map. 

2.2 Route Inferring 

Work [11] proposed a route inference method to identify the popular routes by the 
means of the routable graph, which is constructed on the basis of collective 
knowledge. Explicitly, given a location sequence, this algorithm find out the top-k 
routes, which sequentially passing these locations within the specified time span, from 
the routable graph. Work [12] also investigated the problem of popular route 
planning. This work designed a transfer network, and derived a reasonable transfer 
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probability for each transfer node in the network. Then the most popular route 
between two given locations can be inferred by the transfer probability of each 
transfer node. However, the popular routes between given query locations only tell 
that these routes are popular among the optional paths between these locations, while 
may not most popular in the whole area. 

3 Road Network Construction 

3.1 Bitmap Construction 

In order to extract road network with vehicular trajectories, we need to convert the 
geographical space including a tremendous amount of GPS points into a bitmap, i.e. 
discretize the geographical range into gridded space with cells of small size. In this 
way, each pixel in the bitmap corresponds to a grid cell, and the gray value of each 
pixel is equal to the number of points in the corresponding grid cell. 

Definition 1: Trajectory Bitmap. Let S be a two-dimensional geographical space 
containing massive trajectories, the trajectory bitmap of S, denoted by Gbit, is defined 
as: Gbit={ g1,g2,…,gl×c}, l>1, c>1, Gray(gi)≥0, i>0, where l is the number of grid lines 
in longitude direction, c is the number of grid columns in latitude direction, gi is the 
ith pixel, and Gray(gi) denotes the gray value of pixel gi. Here the pixels (or grid 
cells) are numbered line by line from the bottom of the bitmap.  

For convenience, we consider the grid cell on the road as ROAD grid, and denote 
the grid cell not on the road as NON-ROAD grid. Then the corresponding pixels of 
them are represented as ROAD pixel and NON-ROAD pixel, respectively. 

3.2 Binarization of Gray-Scale Image 

The aim of image binarization is to converts a gray-level image to a black and white 
image with a suitable threshold. That is, this operation removes the grid cells not on 
the road and retains the cells on the road.  

The key problem of the binarization is how to choose the threshold. Artificially 
choosing a fixed threshold is not appropriate, when the threshold is set too large, the 
ROAD grid with few points will be incorrectly removed; on the other hand, when 
threshold is set too small, many NON-ROAD grids with a lot of points may be 
retained improperly. To overcome this disadvantage, we use a hybrid thresholding 
method to take advantage of both global and local information. As the vehicle 
travelling along the road, the number of points in ROAD grid is commonly more than 
that in NON-ROAD grid, i.e. the gray scale of ROAD pixel is higher than that of the 
NON-ROAD pixel; consequently, when the r×r neighbors of a ROAD pixel include 
more than one NON-ROAD pixel, the gray scale of this ROAD pixel will be no less 
than the average gray scale of its r×r neighbors. In view of this analysis, we can easily 
differentiate the ROAD pixels from NON-ROAD pixels by the means of local 
average gray scale. Similarly, we can use the global average of all the nonzero pixels 
to filter out the dark pixels. After binarization, the final image will contain object 
pixels of 1s and background pixels of 0s. 
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Let Avgglobal be the average value of all the non-zero pixels in the whole Gray-scale 
image, and Avgr×r (g) be the average value of the r×r neighbors of pixel g, then the 
threshold of pixel g, denoted by TH(g), is defined by: 

TH(g)=t1×Avgglobal+ t2×Avgr×r (g)                           (1) 

where ti∈[0, 1], t1+ t2=1, r=2n+1, n∈N. With the TH(g) we can determine the binary 
value of pixel g, if Gray(g) more than TH(g), the value of pixel g is set to 1, otherwise 
set to 0. Note that, the weight t1 should be less than t2 in equation (1), because too 
large weight of the Avgglobal will cause many grid cells on the light-traffic road to be 
incorrectly deleted. 

3.3 Morphology 

After the above binarization process, the resulting binary image will only contain the 
pixels on/near the roads, i.e. it shows a rough outline of the road network. However, 
the binarization process will inevitably lead to "lumps", "holes", "cracks" or "pits" in 
the binary image. The "lumps" may pull some disconnected roads too close, and the 
"cracks" or "holes" will cause the road disruption. To thin the bloated roads, we can 
use morphology erosion or thinning operation. In order to fill the road gaps and 
smooth the road borders, we use the morphology dilation or bridge operation. The 
detailed steps of morphology operation are as follows. 

Thinning 
Thinning is a morphological operation that is used to remove selected foreground 
pixels from binary image. The result of thinning operation is a single pixel thick, but 
topologically equivalent binary image. The thinning of a set X by structuring element 
B, denoted by X B⊗ , can be defined in terms of the hit-or-miss 

transform: ( )X B X X B⊗ = −  , where"  "denotes the hit-or-miss transform, 

( ) ( )cX B X E X F=    , and B=（E, F）. The more usual process to thin X is 
using a sequence of structuring elements B1, B2, …, Bn to generate output sequence 

1 1 2 1 2 1, , , n n nX X B X X B X X B−= ⊗ = ⊗ = ⊗ , where Bi is rotated version of Bi-1, 
i=1, 2, …, n.  

With the thinning process, we can greatly reduce the probability of connecting the 
disconnect roads in the dilation step, which is described in dilation process in next 
section. 

Dilation 
In this work we employ the dilation operation to fill gaps among ROAD pixels of 
each road. The dilation process is performed by laying the structuring element B on 
the image X and sliding it across the image in a manner similar to convolution. It also 
changes all pixels covered by the structuring element into object pixels whenever the 
origin of the structuring element coincides with an object pixel in the image. The 
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dilation can be defined as: { }: pX B p B X φ⊕ = ∩ ≠ , where Bp is the structuring 
element shifted with its reference point to pixel p in the image.  

In most dilation algorithms, the typical structuring element is a symmetric 3×3 or 
5×5 mask, and only one structuring element can be used throughout the dilation 
process. However, this methodology is not suitable for our situation of constructing 
road network. Because the road is a directional line and we can only dilate the ROAD 
pixels along the direction of the road, while the pixels in the roads in different 
directions will have different structuring element. For example, given a pixel p of an 
east-west road, then its structuring element should be "horizontal"; similarly, the 
structuring element of the south-north pixel should be "perpendicular". It is easy to 
get the direction of the road by checking the vehicular orientation in each ROAD grid. 

Then we can calculate the structuring element of each pixel conveniently. 
Accordingly, every background (white) pixel that is touching an object (black) pixel 
in mask is changed into an object pixel.  

Skeletonization 
The skeleton of an object pattern is a line representation of the object, which can be 
interpreted as medial axis or symmetrical axis in mathematical morphology. It should 
preserve the topology of the object, be one-pixel thick.  

Through above the thinning and dilation process, the binary image will become a 
shape-like skeleton, but dilation operation also brings some undesirable small 
"bumps". Therefore, we need to further skeletonize the binary image. Skeletonization 
is the skeleton extraction process by reducing foreground pixels in a binary image to a 
skeletal remnant. Let X denotes a binary image and let B be a structuring element. 
Then the skeletonization process of X can be defined as: 

0
( ) ( )n

k k
Skel X Skel X== 

                        (2) 

where ( ) ( ) [( ) ]
k

Skel X X kB X kB B= −   . Note that X kB  denotes k successive 

erosions of X B, and n is the final step before X is eroded to empty set. 

Cleanning 
This is the final step of binary image processing that cleaning up the noisy short 
segments, the lengths of which are less than 4 pixels. After this process, the image can 
be viewed as a map of the road network. The formal definition of the road network is 
detailed in the following. 

Definition 2: Road Network. Given a trajectory bitmap Gbit, execute binarization 
and morphology operations to it, then the resultant bitmap will be a road network, 
which can be expressed as: Groad={ g1', g2', …,  gi', …}, where i∈(1, l×c], gi'≠gj', 

gi'=gk, i≠j, k>0,Gray(gi')=1, 1≤|N(gi')| ≤4, road bitG G⊆ , and N(gi') denotes the directly 

adjacent grids of grid gi' in Groad. 
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4 Road Matching 

The purpose of road matching is to match the GPS points map onto the road that the 
vehicle traveling on. Many researchers have proposed a lot of effective, but high-
complexity algorithms [13-17] to improve the matching accuracy. However, since our 
road network structure is simple, does not include the roundabout, flyovers, and other 
complex structures we do not need to use these complex algorithms.  

In our situation, we can easily accomplish the road matching by just matching one 
point into the nearest grid within a specified r-neighborhood. For one GPS point p, if 
the grid gi, where p is located in, is a constituent part of the road network, we match p 
into gi directly; otherwise, if gi is not a constituent part of the road network, we match 
p into the nearest grid gj, within the r×r neighbors of grid gi.  

Definition 3: Road Matching. Given a GPS point p, a road network Groad, the 
matching of p, denoted by Matchroad(p), is defined by 

( )
( )

,                                      

,  , ( , )

              

arg  min
i i road

road

j i road j ig N g

g g G
Match p

g g G g Dist p g
γ∈

∈
=

∉

 =

     (3) 

where gi is the grid the point p located in, Nr(gi) denotes the r×r neighbors of grid gi in 
Gbit, Dist(p, gj) denotes the distance from point p to the center of grid gj. Note that r 
should be adjusted according to the size of the grid cell. When the grid width is small, 
such as 30m, we may need to search the 5×5 neighbors; when the grid width is large, 
such as 50m, just searching 3×3 neighbors will be done, in the situation that the width 
of the urban roads are generally no more than 100m. After road matching process, any 

trajectory Ti={p1, p2, …, pm}, m>1, will be translated to { }1 2,  ,  ,  i i i

i nT g g g= … , 

road

i

j Gg ∈ , 1

i i

j jg g +≠ , 1j ≥ , 1n > .  

5 Hot Route Inferring 

The hot route is a general path in the road network which contains heavy traffic. It 
represents a general flow of the moving objects in the network. If there is heavy 
traffic between two grid cells in the road network, then the two grids are very likely 
part of one hot route. Similarly, if a sequence of adjacent grids (i.e. a road segment) 
contains quite a number of common trajectories, we can consider this grid sequence to 
be a complete hot route. Based on this naive idea, we give several relative definitions 
and detailed algorithm of the hot route detection, which are introduced in the 
following. 
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5.1 Definitions 

Definition 4: Hot route. Hot route can be expressed as a sequence of road segments 
which share a high amount of traffic in a period of time. Generally, it should have the 
following properties: 
1. Direction: one hot route should have the start and end points. 
2. Length: the geographic distance from the start to the end point. It should not be too 

short. 
3. Weight: used to identify the popularity of one hot route. 

Note that the hot route in this paper is no longer a sequence of road segments in the 
strict sense, but a sequence of grid cells due to the definition of road network Groad.  

Definition 5: Traffic of gird. Let Trafstart(g) denotes the set of trajectories started at 
grid g, Traffinish(g) denotes the set of trajectories ended in grid g, Trafpass(g) denotes 
the set of trajectories that passed through grid g, and Traf(g) denotes the union of the 
three set, defined by Traf(g)= Trafstart (g)+ Traffinish (g)+ Trafpass (g), then |Traf(g)| 
denotes the traffic of gird g. 

Definition 6: Directly traffic-reachable. Grid g1 is directly traffic-reachable to an 
adjacent grid g2, w.r.t. minimum traffic threshold λ, if all of the following hold true. 
1. |Traf (g1)∩Traf(g2)|≥λ. 
2. ∀T∈{Traf (g1)∩Traf(g2)}, T must travel through g1 and g2 successively. 

Definition 7: Route traffic-reachable. For a grid cell chain L=(g1, g2, …, gn), grid g1 
is route traffic-reachable to an adjacent grid gn w.r.t parameters λ and ε, if L satisfying 
the following conditions: 
1. gi is directly traffic-reachable to gi+1. 
2. For every sub-chain Li= (gi, gi+1, …, gi+ε) of the chain L, |Traf(gi)∩Traf(gi+1)∩…∩ 

Traf(gi+ε)|≥λ, 1≤ε<n, i≥1. 
3. ∀T∈{Traf(gi)∩Traf(gi+1)∩…∩ Traf(gi+ε)}, T must travel through gi, gi+1, …, gi+ε 

successively. 
Definition 8: Hot Route Start. A grid g is a hot route start w.r.t. λ, if any one of the 

following conditions is satisfied: 
1. ∃g'∈N(g), |Trafstart(g)-Traf(g')|≥λ. 
2. ∃g'∈N(g), |Trafpass(g)-Traf(g')|≥λ, ∀g''∈N(g), g'' is not directly traffic-reachable 

to g. 
3. ∃g'∈N(g), |Trafstart(g)+Trafpass(g)-Traf(g')|≥λ, |Trafstart(g)-Traf(g')|<λ, |Trafpass(g)-

Traf(g')|<λ, and ∀g''∈N(g), g'' is not directly traffic-reachable to g. 

5.2 Discovering Hot Routes 

To find all the hot routes having complex behavior patterns, such as splitting, joining, 
and overlapping, requires only two steps: (1) finding out all the hot route starts based 
on Definition 8; (2) detecting hot routes from the hot route starts according to 
Definition 7.  

The first step can be easily accomplished by simply traversing all grids of the road 
network, if one grid can meet one condition of Definition 8, this grid will be a hot 
route start, else just skip this grid and check the next grid. The second step is 
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somewhat complicated. That is, it can be executed by initializing a hot route start to a 
hot route at first and then iteratively add all the route traffic-reachable grids to it. 
However, the key problem is how to effectively search the route traffic-reachable 
grids in the road network. Considering the directly traffic-reachability of ROAD 
grids, each grid has no more than four directly traffic-reachable grids, then we can 
construct a quad-tree for the searching space of each hot route start, in which the hot 
route start corresponding the root node and its directly traffic-reachable grids 
corresponding to the child nodes of the root node. Obviously, it’s easy to find out all 
hot routes by traversing this tree using depth-first search or breadth-first search. 
During the searching, if the grids in the sliding window satisfy the conditions of 
Definition 7, add the end grid in the window to the hot route, and then slide the 
window forward one grid; otherwise, end the search in current branch (in this time 
one hot route is finished) and start the search in next branch. Repeat this process until 
all the branches are completed.  

The complexity of the quad-tree construction is: number of ROAD grids × (average 
traffic of ROAD grids)2, and the complexity of the depth-first search is: number of hot 
route starts × average length of hot routes. 

6 Experiments 

6.1 Dataset Description 

In our experiments, we use a real trajectory dataset that generated by 13, 798 taxis 
traveling 3 hours in Shenzhen City. The dataset contains totally 2,448,245 GPS 
points, from which 94,824 trajectories are extracted.  

6.2 Parameters Setting 

There are two input parameters in the proposed RNCA: the lines l and the columns c 
of the grids, which control the size of the grid. They should be adjusted according to 
the size of the geographical space, as well as the width of the road. In this experiment, 
the length and width of the grid should be less than most of the width of the road, in 
order to ensure a grid can be included in one road. Hence, a non-strict range, namely 
10m~50m, is usually reasonable. 

There are two input parameters in the HRRA: the minimum traffic threshold λ, and 
the window width ε. The first parameter λ cannot be set a constant, because it is an 
application or traffic dependent threshold. Due to the lack of domain knowledge, we 
herein adopt an alternative approach that changing the first condition of Definition 6 
to: |Traf(g1)∩Traf(g2)|/|Traf(g1)∪Traf(g2)|≥λ, and |Traf(g1)|≥|∪ {Traf(gi)}|/n, n>0, 
where gi is the ROAD grid, and n is the number of ROAD grids. In this way, λ will be 
a traffic-independent decimal in the range [0, 1], which can be determined based on 
the statistical data of the traffic. 

The second parameter, ε controls how long the common objects must travel 
together to generate a hot route. It is closely related with the grid size. When the grid 
is small, such as the width of 20 meters, a value of 2 is too loose since it will lead to 
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many overlong hot routes that too many roads contribute to one hot route; when the 
grid is large, such as the width of 100 meters, a value of 10 is too strict since it will 
cause too few hot routes. In common sense, the ε grids of 200~500 meters in a hot 
route is usually reasonable. That is, if the grid width is 50 meters, ε, should be in 
range of 4~10. 

6.3 Effectiveness 

In order to demonstrate the effectiveness of the proposed RNCA, we make two 
intuitive but empirical comparisons. 

First of all, we compare the effects of different thresholding polices in bitmap 
binarization, as shown in Fig. 1. We can see that the identified roads amount increase 
dramatically with the decrease of the weight of global average, which explains the 
ineffectiveness of the binarization strategy with only global threshold, and the 
effectiveness of our composite thresholding scheme of global average and local 
average. 

Secondly, the impacts of different structuring elements to dilation operation in 
morphology process are demonstrated in Fig. 2. It shows that the traditional 3×3 mask 
sticks many different road segments together too badly, and contrarily, our mask 
policy separate these segments from each other very well. 

The final road network generated by RNCA is illustrated in Fig. 3, from which we 
can see most of the roads are identified except some backstreets or the railway due to 
too few or no trajectories in them. 

Next, we analyze the effectiveness of the proposed HRRA. Fig. 5 shows the 
comparison of the hot route amounts with different parameter values. In Fig. 5(a), the 
numbers of the detected hot routes decrease with the increase of the window width, 
here λ=0.10, =3, and the grid width is about 50 meters. However, the "ε=3" 
generates too many short routes (length<5), the "ε=5" produces too few long routes 
(length≥5), and the "ε=4" detects most modest routes.  

Fig. 5(b) illustrates the numbers of the detected hot routes with different directly 
traffic-reachable thresholds, here ε=3 and the other parameters are same to the above 
experiment. Through this comparison, we can carefully give a conclusion that λ≤0.08 
will be a too loose condition, λ≥0.12 will be a too strict condition, and 0.08<λ<0.12 
could be a suitable range. 

 

  
(a) t1=1.0, t2=0.0 (b) t1=0.5, t2=0.5 (c) t1=0.2, t2=0.8 

Fig. 1. Road network comparison with different weight of equation (1) 
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(a) 3×3 mask (b) mask in the shape of road direction 

Fig. 2. Comparison of different structuring elements in dilation operation 

 
Fig. 3. Final road network Fig. 4. Detected hot routes 

 

 

 
(a) Different window 

widths 

 
(b) Different traffic-

reachable thresholds 

 
(c) Different road 

matching strategies 

Fig. 5. Effectiveness evaluation with different parameters 

Fig. 5(c) illustrates the numbers of the detected hot routes with different road 
matching strategies, here ε=3 and λ=0.10. In this Fig., we can see that both the 3×3 
and the 5×5 neighbors matching strategies can effectively detect the hot routes, while 
the no neighbor strategy will miss most of the hot routes.  

Finally, to demonstrate detection quality of the HRRA, we need to furthermore 
check whether HRRA can recognize complex behaviors of the hot routes such as: 
splitting, joining, and overlapping. The zoomed region A, B, and C in Fig. 4 
respectively shows the three complex behaviors. From this Fig. we can see that the 
proposed HRRA can clearly identify these behaviors. 
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6.4 Efficiency 

In this experiment, we also test the efficiency of RNCA and HRRA with respect to 
the number of GPS points. Fig. 6 shows the running time of them as the number of the 
points increases from 400,000 to 2,400,000. As the curve in Fig. 6(a) shows, the 
running time increases linearly with respect to the number of objects, and it is no 
more than 3 minutes when the data amount reaches 2.4 million. As the Fig. 6(b) 
shows, the running time, which is so small (only a few seconds) that even can be 
negligible, also increases linearly in a smoother manner with respect to the number of 
objects.  

It should be noted that once the road network is completed, we can keep using it, 
without the need to execute the construction algorithm whenever detect hot routes, till 
the real road structure is changed. From this point, the time cost of RNCA could be 
neglected. Thus, the total process time of our solution is very small. 

 

 
(a) Efficiency of RNCA 

 
(b) Efficiency of HRRA 

Fig. 6. Efficiencies of RNCA and HRRA 

7 Conclusion 

In this paper, we study the problem of hot route detection without available road 
network, by considering vehicular trajectories. We propose an effective road network 
construction algorithm based on the mathematical morphology, and present a suitable 
road matching method for the road network composed by grids. On the basis of these 
preprocessing, we propose a hot route detection algorithm, and give the normative 
definitions and the detailed description of which. To show the effectiveness of our 
solution, we perform comparable experiments using real data sets. The experimental 
results demonstrate that RNCA can extract most of the streets, and our HRRA can 
detect the hot routes effectively with a certain range of parameters. Furthermore, we 
study the efficiencies of RNCA and HRRA; the experimental results show that when 
the data amount reaches multimillion degree, the running times of them are only a few 
minutes or seconds. 
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Abstract. In order to deal with the problems of the slow convergence and easily 
converging to local optima, a classification learning PSO is proposed based on 
hyperspherical coordinates. The method of determination of poor performance 
particle is presented, and the swarm is divided into three parts where three 
learning strategies are introduced to improve the swarm to escape from local 
optima. Additionally, to decrease outside disturbance, the particle positions and 
velocities are updated in hyperspherical coordinate system, which improve the 
probability flying to the optimal solution. The simulation experiments of three 
typical functions are conducted, and the results show the effectiveness of the 
proposed algorithm. Consequently, CLPSO-HC can be used as an effective 
algorithm to solve complex multimodal problems. 

Keywords: Particle swarm optimizer, Multimodal problem, Cartesian 
coordinate, Hyperspherical coordinates. 

1 Introduction 

Since Kennedy and Eberhart [1] proposed the particle swarm optimization (PSO), it has 
been widely used in science and engineering field, and achieved satisfactory effect [2]. 
Since PSO has simple concept and easily applied process, it received extensive 
attention in the academia. In [3] the author introduced a contraction factor, and then put 
forward a contraction factor PSO variant. In order to strengthen information exchange 
between particles, Mendes proposed the complete information PSO [4]. In [5] the 
author proposed an adaptive distance ratio with neighbor cooperative PSO (FDR-PSO). 
In [6] the author used one-dimensional (1-D) group to search each dimension variable, 
which will raise potential search space. In [7], the author presents a variant of particle 
swarm optimizer (PSO) based on the simulation of the human social communication 
behavior (HSCPSO). In HSCPSO, each particle initially joins a default number of 
social circles that consist of some particles, and its learning exemplars include three 
parts. In [8] the author gives a novel learning strategies, to enhance the capacity of 
exploration of particles.  

Experience shows that PSO has good performance in solving most optimized 
problems, but for the complex multimodal optimization problems, PSO easily occurs 
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"premature" phenomenon mainly due that the multi-peak problems contain more local 
optimal solution, and the probability of individuals get into a local optimal solution will 
increase. Additionally in order to solve the contradiction between population 
convergence rate and premature phenomenon, scholars generally use improved 
learning strategies [9], and mixed different algorithms [10], etc. At the existing various 
PSO, the updating strategy of the speed and position of particles is in the cartesian 
coordinate system. However, in the cartesian coordinate system, a small disturbances 
change of the particle in the process of flying will result in a great flight angle change of 
particle in D dimension space, which make particle be far away from the optimal orbit. 
Therefore, seeking a kind of particle velocity and position update coordinates which is 
less affected by the outside world, will improve the algorithm efficiency. 

In conclusion, this paper proposes improved learning strategies, and it can guide the 
particles that fall into local optimal solution of the particles to seek a new learning 
sample and enhance population's ability to jump out of local optimal solution. In order 
to reduce the interference of external environment, the updating process of the particle's 
velocity and position proceed in spherical coordinates, which will improve the ability 
to escape from a local minimum. 

2 Standard PSO 

In the standard PSO, each particle represents a potential solution and each particle 
realize the best flight by its own ‘cognitive’ and ‘communication’ between groups. 
Assuming that population size N, at the iteration time t, each particle in D dimension 
can adjust its performance according to Eq.(1) and (2) 
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It can be seen that the particle's velocity consists of three parts: (I) ( )iv t is the 

particle velocity that has the ability of expanding the search space, which make the 

algorithm hold the global optimization ability; (II) ( )ip t is particle’s history optimal 

position (pbest) called "self-knowledge" learning, which show particles thinking (their 
own learning ability); (III) ( )p tg is the best particle position in the swarm (gbest), called 

"social part" learning, which denotes the ability of learning particles to the entire 
population. Learning factor c1 and c2 represent the influence of gbest and pbest, which 
can adjust learning factor to change the convergent speed of particle swarm.  
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3 The Proposed Algorithm (CLPSO-HC) 

3.1 The Identification and Classification of Poor Particles 

PSO is a kind of swarm intelligence algorithm based on learning from each other 
between the swarms, and from basic evolution equation of PSO shown in Eq.(1) it 
means that once the learning samples of the particles in the population are in the state of 
local optimal solution, the entire population will easily to fall into local optimal 
solution. Based on this thought, finding and classifying the poor particle in the swarm 
and them, and taking the corresponding learning strategies according to the 
characteristics of each individual, will increase the ability of the particles jumping out 
of local optimal solution. Algorithm 1 gives the identification process of poor particle  

 

After the identification of the poor populations (WP), according to their quality the 
swarm will be divided into three categories: (I) the worst performance individual WI; 
(II) the common performance individual MI; (III) the best performance individual BI. 

3.2 Three Kinds of Learning Strategy 

Based on observation of the social life, the members that affect the collective 
performance in a collective have the following classification according to work 
performance: (I) the most influence collective achievement individual; (II) the 
generally affected collective performance individual; (III) small affected collective 
achievement individual. Correspondingly the corresponding measures for these 
individuals commonly is that the worst capabilities in business should learn from the 
best employees in the collective, poor capabilities should be properly learn from the 
best employees in the collective and need affirm its own one; strongest capacity should 
continue to play its special features. Therefore, in CLPSO-HC, the poor individual  
performance is choose to update their learning exemplar. Figure 1 shows the particle 
update strategy. 
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Fig. 1. Particles update strategy 

3.3 Update of Particle Velocity and Position Based on the Spherical 
Coordinates 

In basic PSO and various improved PSO versions, the particle's velocity and position 
update are proceed in cartesian coordinates, where its drawback is that the small 
coordinates changes will make individuals in the swarm deviate from the optimal 
solution orbit. So to reduce the external disturbance influence in flight process of the 
particles, the particle's velocity and position updating is proceed in spherical 
coordinates. Figure 2 shows in 2 dimension variable, the corresponding relation of 
cartesian coordinates and spherical coordinates for the individuals. 
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Fig. 2. Corresponding position particles in different coordinate system 
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The conversion process of D dimension variable x in cartesian coordinates and 
spherical coordinates (r, Ø) is as follows: 

)cos( 11 φrx =  

)cos()sin( 212 φφrx =  

)cos()sin()sin( 3213 φφφrx =  

  

)cos()sin()sin()sin( 12211 −−− = nnn rx φφφφ   

)sin()sin()sin()sin( 1221 −−= nnn rx φφφφ   

Algorithm 2 shows the pseudo code in the transformation of cartesian coordinates 
and spherical coordinates  

Based on the above strategies, the algorithm 3 shows the proposed CLPSO - HC 
pseudo code. 

 

4 Simulation Experiments 

In order to test the effectiveness of the proposed algorithm, we compared the proposed 
algorithm CLPSO-HC with the basic particle swarm optimization (BPSO) and CPSO 
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algorithm [6]. Due to the space limitations in the article, we only give the convergence 
characteristics of the multimodal detection function (Rastrigin, Schwefel and 
Weierstrass function [3]). The experiment setting is: all algorithm iteration number is 
200, the population size is 30, all testing function for 30 dimension, and other 
parameters setting is the same to initial one. The simulation platform is Pentium Core 
Duo, 1.8 GB of RAM CPU with 2 GB of RAM, and Matlab R2008B. Figure 3 shows 
the algorithm convergence characteristic curve, and in order to further test running 
effect of CLPSO-HC, the statistical analysis of computational results is carried out in 
independent running 30 times for each algorithm. Table 1 shows the statistical results 
of different algorithms in three test function, where B is the optimal value; W is the 
worst value, and B is average value. 

Table 1. The results comparison for different algorithms 

Algorithm 
Weierstrass  Schwefel Rastrigin 

B W M B W M B W M 

BPSO 5.2915 15 7.4 4.3e+003 9.2e+003 6.7e+003 
11

1 
134 126 

CPSO 0.7500 4 2.6 2.1e+003 4.9e+003 3.6e+003 90 127 108 

CLPSO-HC 1.9e-010 3.3e-004 1.6e-004 1.5e+003 2.1e+003 1.7e+003 54 60 58 

 

0 1000 2000 3000 4000 5000 6000
10

-6

10
-4

10
-2

10
0

10
2

(a) Weierstrass

 

 

BPSO

CPSO
CLPSO-HC

0 2000 4000 6000
10

3.2

10
3.4

10
3.6

(b) Schwefel

 

 

BPSO

CPSO
CLPSO-HC

 

0 1000 2000 3000 4000 5000 6000
10

1

10
2

10
3

(c) Rastrigin

 

 

BPSO

CPSO
CLPSO-HC
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It can be seen from the convergence characteristic Figure 3 , CLPSO-HC has better 
convergence properties in complex multimodal problems, and Table 1 also show that 
the algorithm have better performance compared with the other two algorithms. 
Therefore, CLPSO - HC can be regarded as an effective method for solving complex 
multimodal problems. 

5 Conclusions 

In view of the defects of basic particle swarm optimization (PSO) in solving complex 
multimodal problems, we put forward a kind of classification learning strategy based 
on the spherical coordinates, and then propose a new particle swarm (CLPSO – HC for 
short). Each individual in the swarm choose different learning samples based on the 
particle operating characteristics, and the spherical coordinates is adopted to update 
position and speed of the particles instead of cartesian coordinates which reduce the 
outside disturbance to the flying trajectories of the particles. The simulation results of 
three multimodal problems show that the CLPSO-HC is an effective method for 
solving complex multimodal problems. In addition, hybrid approach with other new 
intelligent algorithm can effectively improve the performance, next, we will design 
CLPSO – HC hybrids with the one proposed by [11][12][13]. 
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Abstract. As the multimodal complex problem has many local optima, basic 
PSO is difficult to effectively solve this kind of problem. To conquer this defect, 
firstly, we adopt Monte Carlo method to simulate the fly trajectory of particle, 
and conclude the reason for falling into local optima. Then, by defining distance, 
average distance and maximal distance between particles, an adaptive control 
factor (Adaptive rejection factor, ARF) for pp and pg was proposed to increase 
the ability for escaping from local optima. In order to test the proposed strategy, 
three test benchmarks were selected to conduct the analysis of convergence 
property and statistical property. The simulation results show that particle swarm 
optimizer based on adaptive rejection factor (ARFPSO) can effectively avoid 
premature phenomenon. Therefore, ARFPSO is available for complex 
multimodal problems. 

Keywords: Particle swarm optimizer, Adaptive rejection factor, Monte  
Carlo simulation. 

1 Introduction 

Particle Swarm Optimization (PSO) [1] is a random search algorithm based on 
population which has been widely applied in the field of social science, natural science. 
Compared with other intelligence algorithm, PSO is easy to implement. But the basic 
PSO is easily fall into local optimal solution when in optimizing complex multimodal 
problems due to the loss of diversity of population, which affects the basic PSO apply 
in practical application. For better applying PSO to solve practical problems, many 
scholars proposed some improvement strategies in view of the basic PSO. 

For example, Clerc [3] gives a shrinkage factor based on basic PSO, ant the author 
proposed PSO variants with contraction factor. Mendes [4] proposed a complete 
information PSO which fully use particle information in the each dimension of 
population to enhance the population of potential search space. Zhan [5] proposed a 
orthogonal learning PSO to improve the learning strategy.  In [6], the author presents a 
variant of particle swarm optimizer (PSO) based on the simulation of the human social 
communication behavior (HSCPSO). In HSCPSO, each particle initially joins a default 
number of social circles that consist of some particles, and its learning exemplars 
include three parts. In [7], the author proposed an improved PSO based on dynamic 
                                                           
* Corresponding author. 
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neighborhood to improve the ability to escape from local optima. The above improved 
PSOs have achieved a satisfactory result, but at convergence velocity and precision.  

Recently, Blackwell [8] put forward a kind of dynamic update rule to enhance the 
operation efficiency of PSO. Wan [9] proposed a hybrid algorithm to improve the 
performance of PSO. All in all, the existing improvement algorithm are derived from 
the population diversity and improved particle learning samples, the mixed algorithm 
which have obtained the certain effect, but there is still room for improvement on the 
precision. 

Therefore, in order to effectively improve algorithm's ability to jump out of local 
optimal solution, and the precision of the algorithm, this paper proposes an adaptive 
rejection factor particle swarm (ARFPSO). Firstly, we used the Monte Carlo method to 
simulate the population flight path to conclude the reason why population is easily 
trapped in local optimal solution; secondly, by defining the distance, the average 
distance between and maximum distance between the particles, we put forward a kind 
of adaptive exclusive factor to control the distance between particle’s history optimal 
position (pp) and best particle position in the swarm (pg) which can improve the 
population's ability to jump out of local optimal; Finally, the proposed algorithm is 
compared with several algorithms by the convergence of algorithms and statistical 
analysis. 

2 Standard PSO 
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−−+−⋅=
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   )()1()( tvtxtx ididid +−=                           (2) 

where )(tvid denotes the velocity dth dimension of particles ith at time t; )(txid is the 
position dth dimension of particles ith at time t; r1 and r2 are evenly distributed random 
number between [0, 1]; w is inertia weight which decided the particle history velocity 
influence on the particle trajectories, and in this paper we selects a linear gradient 
method )2/(9.0 Ttw ×−=  to determine its value which is a decreasing inertia from 0.9 
to 0.4 to ensure convergence of the algorithm [4]. c1 and c2 are constant which 
determine ppid (particle’s history optimal position, pp) and pgd (best particle position in 
the swarm, pg) learning ability, c1 = c2 = 2 here. 

3 PSO Based on Adaptive Rejection Factor 

3.1 Particle Velocity Factor Analysis Based on Monte Carlo Simulation 

From population evolution equation shown in Eq (1), it can be seen that the particle's 
velocity will determine its flight path, which can decide whether the population can 
search to the global optimal solution. In addition, each dimension of a particle is 
independent, and the operation of each particle is independent for each other. 
Therefore, by studying motion trajectory of any dimension of any particle, and it is 
enough to explore the running rule of the whole population. In view of this, the 
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evolution equation shown in Eq (1) and (2) can be equivalent to Eq (3) and (4) whose 
symbol significance is consistent with Eq (1) and (2). 

))(())(()()1( 21 txptxptvwtv gp −+−+⋅=+ φφ                   (3) 

)()1()( tvtxtx +−=                            (4) 

After Eq (4) deformation, we can get Eq (5), 
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Let Eq (4) and (5) be into Eq (3), we can obtain Eq (6), 
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It can be seen from the evolution equation (4), if the speed of individuals in the 
swarm is 0, which is individual to stop flying, the population will be lost their search 
ability. Therefore, to explore the influencing factors of population evolution, we should 
firstly understand the factors affecting population speed. Additionally, it can be seen 
from the evolution equation (6), the factors influencing particle velocity at time t 
contains two parts: (I) inertial part, namely the particle velocity )(tv and )1( −tv  at 

last iteration; (II) learning part, at time t particle’s history optimal position pp, and best 
particle position in the swarm pp.  

There are four random variables in Eq(6), the population running track analysis in 
the existing literature [3-4] have almost omitted the evolution equation of random 
items, which lack the general. To overcome its shortcomings, we adopt the classical 
theory of random process-Monte Carlo simulation to determine the influence of inertia 
and learning part of algorithm and find the strategy jump out of local optimal solution. 

Monte carlo simulation platform is: the Pentium Core Duo, 1.8 GB of RAM with 2 
GB of RAM, CPU R2008B with Matlab. The simulation parameters setting is: 
maximum number iterations 5000; population size 200; random number generator for 
the machine running time, the rand (' state ', the sum (100 * clock)); inertia weight for a 
linear gradient; accelerated constant c1=c2=2 speed range between [-100 100]. Figure 1 
shows the speed memory value simulation diagram in the hypothesis of pp= pg, and it 
can be seen that no matter how the initial speed after 2800 iterations, the speed of 
population individuals are 0 and the population stop evolution. Figure 2 shows the 
probability density distribution of k3 of affecting learning ability factor in [-2 2].  
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In conclusion, when pp is close to pg (no matter how much the population the initial 
speed of the swarm), population will lose the ability to explore search space. Similarly, 
if the swarm did not converge to global optimal solution, the entire population will be 
trapped in local optimal solution. 
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Fig. 1. Memory value changes Based on the monte carlo simulation 

3.2 Adaptive Rejection Factor 

On the above conclusions, this paper puts forward a kind of adaptive strategy to control 
the distance between pp and pg , which called adaptive rejection factor (Adaptive 
rejection factor, ARF), to improve the population's ability to jump out of local optimal. 
To better understand the strategy, three defined is introduced as follows: 

Definition 1 (Distance between the particles): 

       jijixxD
d

k jkikij ≠∀−=  =
,)(

1
                   (11) 

Definition 2 (Maximum distance between the particles): 

)max( ijDMAXD =
                                 

(12) 

Definition 3 (Average distance between the particles): 
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Fig. 2. Probability density distribution of learning factor 
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Table 1. Algorithm results comparison in 60 independent run 

Algorithm 
Rosenbrock  Ackley Griewank 

Best Worst Mean Best Worst Mean Best Worst Mean 

ARFPSO 53.82 66.39 57.28 2.1203 3.0087 2.3487 5.32e-004 1.86e-003 1.2e-003 

BPSO 265.37 297.27 281.84 8.0778 12.8761 11.7208 15.0541 17.2376 16.8635 

FIPS 53.99 69.81 63.35 7.4823 11.2643 10.1862 0.1596 0.5071 0.3861 

 
The proposed ideas are as follows: when the distance between the pp and pg is less 

than the average distance between particles in a population, it shows that they are 
relatively close to each other, but does not rule out an accident. Therefore, in order to 
prevent the population information loss caused by additional strategy, the distance 
between the pp and pg is lower than AD at N (1/10 of maximum number of iterations) 
consecutive generation, the exclusive factor is stimulated. Algorithm 1 gives exclusive 
factor pseudo code. 

 
 

Algorithm 1. Pseudo-code of adaptive 
rejection factor 

1: stay_num=0 

2: If Dpg<AD 

3:    stay_num= stay_num+1; 

4:    If stay_num>N 

5:     For each particle 

6:          pp=pp+rand()×MAXD; 

7:      End For 

8:   End If 

9: End If 

 
 
The proposed ARFPSO step is shown below : 
【Step 1】Initialization: population size(PS), w, position and velocity 
【Step 2】Initialization: particle’s history optimal position(pp), best particle position 

in the swarm( pg) 
【Step 3】Initialization: staynum=0, Maximum iterations MAXT 
【Step 4】Computing: position and velocity for each particle 
【Step 5】Computing: fitness function value for each particle 
【Step 6】Computing and updating: each particle pp and the swarm pg 
【Step 7】Run algorithm 1 
【Step 8】If MAXT is not, return step 4, else go to step 9     
【Step 9】Record result    
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4 The Simulation Experiment and Analysis 

4.1 Design of Simulation Experiment 

In order to test ARFPSO ability to jump out of local optimal solution, we adopted the 
combination of the qualitative and quantitative analysis for different test function, 
namely the convergence property and statistical analysis to test performance of the 
algorithm. ARFPSO is compared with PSO with inertia weight w (wBPSO) and 
complete information PSO (FIPS) [4]. Rosenbrock, Ackley and Griewank are selected 
to test the algorithm performance. Parameter settings of algorithm:  maximum number 
of iterations of all algorithms (MAXT) is 1000; population size (PS) is 30; function 
dimension is 60; other parameters are the same to that proposed by author. Simulation 
platform is: Pentium Core Duo, 1.8 GB of RAM with 2 GB of RAM, CPU and Matlab 
R2008B. Figure 3 shows the algorithm convergence characteristics. Table 1 gives the 
optimal value, average value and the worst of each algorithm in 60 independent run 
from quantitative analysis. In order to further analyze ARFPSO performance 
statistically significant, we adopted the boxed statistic figure shown in figure 4. 

4.2 Simulation Experiments for Convergence Characteristics 

From the convergence characteristics (Figure 3), it can be seen that ARFPSO has 
obvious advantages compared with other algorithms in Ackley and Griewank function, 
and this conclusion is supported by the results shown in table 1. In Rosenbrock 
function, ARFPSO and FIPS had the similar performance, but the box statistical results 
shows that ARFPSO has the advantage compared with FIPS. In short, from the 
algorithm convergence characteristic and box statistical results (Figure 4), ARFPSO 
can effectively solve the multimodal problems. 
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Fig. 3. The convergence characteristics for different algorithms 
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Fig. 4. Box statistical results in 60 independent run 

4.3 Computational Complexity Analysis 

As adaptive rejection factor of PSO (ARFPSO) stems from basic PSO and is introduced 
the corresponding strategy, we need analyze the computational complexity to explore 
whether the introduced strategies increase the computational complexity. With T 
denotes the maximum number of iterations; the total number of particles is N; D 
denotes dimensions of the decision variables.  The computational complexity of the 
adaptive rejection factor is T1(N)=O(N×T), the basic PSO computational complexity 
T2(N)=O(N×D×T), so ARFPSO computational complexity is T(N)=O(N×D×T)+ 
O(N×T)≈O(N×D×T)= T2(N). Therefore, the complexity of ARFPSO and basic PSO 
are in the same order of magnitude, theoretically. 

In order to further test algorithm computational complexity, three algorithms, 
Rosenbrock, Ackley and Griewank function are used to test averaged running time of 
each algorithm in 30 independent run based on simulation platform Pentium Core Duo, 
1.8 GB of RAM CPU with 2 GB of RAM, Matlab R2008B, where each algorithm 
conducted at each iteration 3×104 function evaluation, Table 2 shows the independent 
running time of each algorithm, it can be seen that ARFPSO has the same order of 
magnitude as other algorithms at run time, which indicated the introduction of strategy 
did not increase the computational complexity. 

Table 2. Algorithm running time (3×104FES) (Unit: seconds) 

Algorithm Rosenbrock  Ackley Griewank 

ARFPSO 58 69 74 
BPSO 43 48 65 
FIPS 62 72 79 

5 Conclusions 

In view of the defect of the basic PSO in solving complex multimodal problems, this 
paper proposes an adaptive rejection factor PSO. First of all, by Monte Carlo method to 
simulate the population trajectory, we can conclude that when the distance between 
particle’s history optimal position (pp) and best particle position in the swarm (pg) is too 
close, the population flight velocity will be close to zero, which makes population lose 
the ability to explore further. On this conclusion, the paper puts forward a kind of 
exclusive factor to improve the population's ability to jump out of local optimum. 
Rosenbrock, Ackley and Griewank function are used to test the proposed algorithm 



378   Y. Liu et al. 

 

performance, the simulation results show that: (1) compared with other algorithms, 
ARFPSO has faster convergence speed and the ability to jump out of local optimal 
solution, and ARFPSO achieves statistically significant results; (2) the introduction of 
strategy did not increase the computational complexity. Therefore, ARFPSO can be 
regarded as an effective method for solving complex multimodal problems; (3) to 
further improve ARFPSO performance, the strategies in [10][11][12] will be integrated 
into the proposed algorithm. 
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Abstract. Feature selection is essentially important for high dimensional  
feature characterization problems. In this paper, we propose a weighted feature 
selection algorithm based on bacterial colony optimization (BCO) for 
dimensionality reduction. The weighted strategy is used for reducing the 
redundant features as well as increasing the classification performance, which 
considers the frequency of features being selected by bacterial colony 
optimization(BCO) as well as the repeated appearance in the same individual. 
The contributions of features in classification will be evaluated and kept in 
‘Achieve’. The learning mechanism used in BCO considers the randomness 
which avoids the ignorance of unseen features as well as disengages from the 
local optimal error. Benchmark datasets with varying dimensionality are 
selected to test the effectiveness of the proposed feature selection method. The 
significance of the proposed weight feature selection algorithm is verified by 
comparing with three recently proposed population based feature selection 
algorithms.  

Keywords: Bacterial Colony Optimization, Feature Selection, Classification. 

1 Introduction 

Most problems in reality are described as high dimensional feature characterization, 
which is computationally expensive if it works directly with raw data in terms of 
computational cost, time consuming, storage cost as well as the performance 
influence.  

Therefore, many techniques have been developed to address such issues. Among 
them, feature selection and feature extraction as the important preprocessing 
techniques are commonly used for dimensionality reduction. Feature selection is 
generally regarded as a special case of feature extraction, even though feature 
selection(FS) and feature extraction have something in common, and each of them has 
their unique set of methodologies. Feature extraction is to convert the existing high 
dimensionality features into lower space, and a new subset is created after the process 
of feature extraction. However, it is an irreversible process. While feature selection is 
to select a subset from the available features space and eliminate redundant features or 
features with little or no conducting information. Feature extraction methods like 
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Wavelets[1], PCA coefficients[2], etc, can be more accurate. In many practical cases, 
predefined features may be difficult to interpret, highly computational complexity, as 
well as could degrade the performance of algorithms or models[3]. Therefore, the 
need for Feature Selection(FS) approaches or Feature-based classifiers is imperative 
in such situations. 

As there is no specific feature selection technique that can be applied for all types of 
issues, numerous feature selection methods are proposed by researchers for a variety of 
applications. In recent decades, biological intelligence approaches based on stimulating 
the intelligent behaviors of real organisms have been developed. More specifically, 
evolutionary computation based algorithms and swarm intelligence based algorithms 
have been implemented for feature selection, such as Genetic Algorithm(GA)[4], 
Differential Evolution(DE)[5], Particle Swarm Optimization(PSO) [6], Ant Colony 
Optimization(ACO)[7, 8] as well their combinations like the hybrid GA-ACO-PSO[9].  

Even so, when confronting with high dimensional features, it also shows some 
difficulties to achieve higher performance and lower dimensional features 
simultaneously. To enhance the efficiency, the efforts have been made to seek the 
improvement. One of strategy is to embed the filters such as mutual information(MI) 
in biological intelligence learning methods[18, 19]. Admittedly, filters themselves are 
a group of feature selection algorithms[13,15,16]. The interest of filters is that they 
can provide the correlations between the features and the class labels, which guide the 
feature selection process. However, the shortcoming is that the computational 
demands are tough[17]. The combination of filters and biological intelligence learning 
methods(belonging to wrappers) surely can improve the classification performance, 
while the computational cost is largely increased at the same time. Actually, the 
computational cost is also an essential problem in high dimensional feature problems. 
Thus, minimization of both selected features and computational cost, maximization of 
classification performance needs to be considered simultaneously in further 
development of feature selection methods. 

In this paper, a weighted bacterial colony optimization has been developed for 
feature selection in classification. Three objectives are considered in the process of 
feature selection. Classification performance is the most important objective to 
pursue. On the basis of considerable classification performance, the number of 
features will be reduced at large. Additionally, the computational cost is also 
considered in the proposed feature selection methods.    

This paper is organized as follows. Section 2 gives a brief introduction of the 
original optimization--Bacterial Colony Optimization(BCO). Section 3 describes the 
main principle of the proposed BCO feature selection method. Experiments on 
benchmark datasets will be conducted in Section 4. Finally, the corresponding 
conclusion will be given in Section 5. 

2 Bacterial Colony Optimization 

Inspired by behaviors of E.coli bacteria, Bacterial Colony Optimization(BCO) is 
proposed by Niu[10], which absorbs the advantages of two well known bacterial 
based algorithms: Bacterial Foraging Optimization [11] and Bacterial 
Chemotaxis(BC) [12], imitates the foraging behavior of bacteria, and investigates the 
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communication mechanism between artificial bacteria as well as the artificial 
bacterial colony. It is proved that the BCO is a superiority optimization algorithm in 
terms of the efficiency searching performance as well as computational cost. For that, 
it must be more interesting to apply it for feature selection in classification. 

In BCO, the comprehensive lifecycle model of artificial bacteria consists of four 
sub-models, namely Chemotaxis & Communication model, Reproduction model, 
Elimination model, and Migration model. The main model is Chemotaxis & 
Communication which involves two unique behavior(tumbling and swimming) which 
lead to two different forms of position adjustment. Fig.1 shows the Chemotaxis & 
Communication behaviour of bacteria in BCO. At the very beginning, the bacterial 
colony is randomly distributed in the whole region. Except the globe best, there also 
exist many other local optimal positions which may create a barrier to search for the 
globe best. Thus, the communication strategy between the groups is added to reduce 
the computational cost as well as avoid the locally optimal solution.  

 

 

Fig. 1. The Chemotaxis & Communication mechanism in BCO[10] 

As shown in Eq. 1 and Eq. 2, the difference is the the tumbling behavior by using 

iturbulent . iturbulent is the turbulent direction variance of the thi bacterium. 

Actually, it represents the processing of tumbling that the bacterium changes the 
swimming direction randomly. ]1,0[∈if , Eq.3 shows the changing of chemotaxis 

step size )(iC with the iteration, and maxiter is the maximal number of iterations, 

jiter is the current number of iterations. 
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While the remaining models: reproduction model, elimination model, and 
migration model are operated conditionally. More specifically, once the predefined 
rules are satisfied, then it can be realized. Since the conditional rules defined in 
proposed feature selection method are different, the descriptions are excluded in this 
section. More details can refer to [10]. 

3 Bacterial Colony Optimization Feature Selection 

The purpose of the feature selection techniques in classification is to select a subset 
from the available features space by eliminating redundant features and maximizing 
the classification performance. Thus, two objects are normally considered, they  
are: minimization the number of features and maximization the classification 
performance. Fundamentally, as the number of features increase, the classification 
accuracy can increase, while if the number of features decrease, then the classification 
accuracy will decrease to some extent. As a matter of fact, these increases and 
decreases are not linear positive correlation. More specifically, when feature vectors 
reach certain values, the classification performance may keep stable, or even decrease. 
Thus, it is rather crucial to select appropriate number of features for classification. 
 

 

Fig. 2. The overall frame of the proposed methods 

The proposed feature selection method in this paper adopts the weighted strategy to 
eliminate redundant features as well as improve the classification performance. The 
weights of each feature are changing with the selected frequency by BCO as well as 
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mutual information between features and class label. Fig.2 also shows the overall 
frame of the proposed methods. In what follows, the mechanism of weighted BCO 
feature selection will be described in details. 

3.1 Weight Determination  

Weight of each feature in BCO feature selection method represents probability of 
being selected for replacing the repeated features. The larger weight means the higher 
probability being considered. In the process of optimization, the features selected by 
BCO may be repeated. To enhance the classification accuracy, the repeated ones will 
be deleted. However, the repeated features have shown their existence in population, 
so they will be assigned with lower weights to avoid the repeated appearance.  

Assume that the weight of feature is: ],...[
1 Hff WWW = , and H is the total 

number of features.. In the process of initialization, all the weight are equal to 1, 

namely ]1,...1[0 ，=W . After that, bacteria will select the better positions obey their 

rule to update the positions. Assume that if  is a repeated feature in the process of 

optimization. For example, if the position of thm bacterium 

is }4,2,5,4,2,1{=mPop , then the 2 and 4 are repeated features. Thus, to obtain 

the unique features in population as well as enhance the optimization performance, 

the weight 
if

W will be updated correspondingly as follows:  

H
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WW

ts

ii
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s
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- t

）（
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By this way, the repeated features will keep lower values of weights, while features 
without being selected by population would have higher weights, which to some 
extent, efficiently enhances the feature distribution and effectively ensures more 
evaluated features in population. The weights of all features will be sorted in 
descending order, and save the resultant sequence of features 

}',...,'{' 1 HssSequence = with the larger weights locate in the front and the smaller in 

the end, namely 
1+

≥
ii ss WW ( 1,...1 −= Di ). Therefore, the new version of weight 

and the sequence are all updated again. By this way, the weight of each features 

],...[
1 Hff WWW =  will be updated consistently.  

Since the features vectors in BCO represent the special positions that artificial 
bacteria find in the process of foraging, it is critical to ensure the unique of features in  
specific feature vector in order to effectively and efficiently enhance the classification 

performance. Suppose the position of thm bacterium is },...,{ 1 Dm ffPop = , where 

D is the dimension of the position which equals to the expected number of features to 

be selected. Assume that the population of thi bacterium is ],...[ 1 Di ffPop = , and 

there are n redundant features. So after deleting, it needs another different n features 
to feed the population. For that, those features will choose from sequence of weight. 
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After updating, the newly population is ],...,,,...[
11 nssnDi ffffPop −= . However, 

if the redundance still exists, the randomness of feature will be selected to realize the 
unique of the feature in population. Thus, in the third strategy, the features only with 
the frist n highest weights are provided for filling the gaps. To avoid the resultant 
feature vector still with certain features repeatedly, the randomness is added to update 
the population when the redundant feature occurs after the adding of n features with 
highest weights. Since the ‘tumbling’ behavior of bacteria has enhanced the 
occurrence of randomness, the probability of adding extra randomness, to some 
extent, is conditionally operated.  

In this paper, both the weights and randomness are adopted in the process of feature 
selection. Even though the randomness in this updating process is conditionally 
operated, it also avoids the several repeated features distribution all the time. Besides, 
the BCO algorithm itself also considers the randomness to avoid local optimal. 

3.2 Randomness Realization  

As is illustrated previously, randomness is an critical strategy to realize the dynamic. 
In the proposed feature selection method, randomness has been realized in different 
ways. In the previous section, weighted determination adopts the conditional 
randomness to ensure that all the features are unique in each vector. The redundant 
features are replaced by features with higher weights. The detail realization has been 
illustrated in perviously section.  

Besides, the tumbling behavior of bacteria employs the randomness direction 
selection to decide the new foraging orientation. The purpose of tumbling is to seek 
the better position, so not all features in a vector need to experience the tumbling 
process. A variable Achieve is defined to mark the performance of features, that is to 
say, as long as the features occur in the population, it will be evaluated and the 
performance of it will be marked as well as kept in Achieve . The feature with higher 
value in Achieve  means the more critical it is than other features. Assume that the 

position of thi bacterium is ],...[ 1 Di ffPop = , and the contribution of each feature 

in population is marked as ],...,[ 1 Di acacAchieve = . Firstly, sort the values 

],...,[ 1 Dacac with ascending order. Based on the ascending order, the features in 

datasets are optimized with varying dimensionality, e.g. the frist 
)/3( Dround features(with smaller values of ‘Achieve’) are updated. 

The tumbling process in the proposed feature selection method is realized using the 
following equation: 

i
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The equation presents how the thd dimension of the position of thi bacterium is 

updated.Where )(iC is the chemotaxis step, )(iCk is the chemotaxis step in 

the thk iteration. Here, a linear decreasing chemotaxis step is adopted. )(iΔ is a 

random direction angle of thi bacterium, which provides another randomness in the 
BCO feature selection method, ]1,1[)( −∈Δ i .  

3.3 Fitness and Classifier  

In BCO, population is initialized with random distribution of the features. For a given 
number of features, the objective for optimization is to maximize the classification 
performance or classification accuracy, which can be regarded as minimizing the 
classification error, it can represented as: 

rateerrorFitnessMinimize _: =  (9) 

In each datasets, the half of the samples are provided for training and the rest of 
them are for testing. With selected features chose by BCO, the classifier, i.e. k-
Nearest Neighbor algorithm(KNN), offers the class categories for samples. Thus, the 
fitness is obtained by comparing the difference between the real class label and the 
class label obtained by classifier. The fitness is also considered as the error rate which 
can be used as the guidance for the optimization strategies for bacteria. Besides, the 
position of each bacterium is updated according to the principle of chemotaxis & 
communication and reproduction, while the rules of elimination and migration are not 
considered in this paper.  

4 Experiment Results and Discussions 

K-Nearest Neighbor algorithm(KNN) classifier(with 4=K ) is used as the classifier to 
offer the class label in comparison with target class. Three population based feature 
selection methods: Ini_PSO[6], DEFS[5], and GA[14] are used to compare with the 
proposed feature selection method. The four benchmark datasets with different 
number of features and samples are introduced to test the effectiveness of the 
proposed feature selection algorithm, the detail information of the datasets has been 
shown in Table 1. The first three datasets are selected from the UCI machine learning 
repository(https://archive.ics.uci.edu/ml/datasets.html), the fouth dataset is available 
online from (http://cilab.ujn.edu.cn/datasets.html).  

One deficiency in population based algorithm is the time consuming since the 
optimization performance largely depends on the randomness search process. So  
the total computational time need to be controlled to some extent. As is known to all, 
the larger population size it has, the better performance it may achieve, while the 
computational cost is also increasing at the same time. Thus, to solve the time 
consuming issue, the population of the algorithm needs to be controlled at certain 
level, e.g. no more than 100. Also, the number of iterations also impact the 
computational complex. So, the maximal number of iterations can not be too large. 
For that, the population size of all three compared feature selection methods are 
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defined as 50=Pop , and the max_iterations is 50=iter . The minimization 

number of feature 1min_ =fea , and the maximization number 

is 25max_ =fea . The boundary chemotaxis step minC and maxC in Equation 6 are 

set as 1 and 10 respectively. 

As for PSO, parameters are set as: 7298.0=w , 5.121 == cc , 6max =v . While 

for DEFS, and GA, crossover rate=0.8, mutation rate=0.001. For the proposed feature 

selection, the learning probability is equal to )1(randfi = , while the maximal and 

minimal chemotaxis step size are 10max =C , 1min =C respectively. Fig.3 and Fig.4  
show the average classification accuracy of eight benchmark datasets over the 10 
 

Table 1. Description of Datasets 

Dataset Features classes instances 

Wine 13 3 178 
Lung 56 3 32 
Madelon 500 2 1000(4400) 
Colon 2000 2 62 
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Fig. 3. Average classification accuracies across ten runs for different datasets( KNN classifier) 
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repeated runs. Meanwhile, Table 2 also shows the average classification accuracy of 
the proposed feature selection with the given number of feature selection, while 
Tables 3 gives the corresponding computational time consuming to select the number 
of features in Tables 2. 

The figures of all datasets show the effectiveness of the proposed weighted BCO 
feature selection algorithms since it can reach more classification accuracy in 
comparison with three other well known population based feature selection 
algorithms in most cases. Compared with the DEFS, the proposed feature selection 
algorithm BCO is not bad, instead, it can obtain the higher classification accuracy 
when the desired number of selected features are small. As is shown in Figs.3, when 
the number of features to be selected are small, BCO can get the highest classification 
accuracy. Besides, the first four datasets prove that the BCO can select the best 
features for classification in comparison to the compared three other population based 
algorithms. In contrast, the earlier proposed feature selection algorithm GA and PSO 
have poorer ability of feature selection, especially in high dimensional datasets. 
Among four feature selection algorithm, GA has the poorest feature reduction 
capacity, since it is the earliest contribution of feature selection, which ignores the 
difference of the feature dependence on the classification. Even though the PSO has 
better performance than GA, it also pays less attention to special features. In contrast, 
DEFS treats different features with different weights according to the results of fitness 
comparison. However, the weight determination of it is largely different from this 
paper. Overall, in terms of classification accuracy, the weighed BCO feature selection 
has shown the effectiveness for feature selection in classification. 

Table 2. The average accuracy of classification achieved by BCO(KNN classifier) 

datasets 
Total 
features 

Number of features 

1 3 5 7 9 11 13 
wine 13 0.8202 0.9551 0.9775 0.9775 0.9775 0.9775 0.9775 
Lung 56 0.5075 0.9375 0.8750 0.9375 0.9375 0.9375 0.9375 
Madelon 500 0.8000 0.8400 0.8000 0.8200 0.8400 0.8400 0.8600 
Colon 2000 0.9535 0.9070 0.9767 0.9535 0.9302 0.9535 0.9535 

It is difficult to select the fewer number of features with higher classification when the 
total number of features are very large, since the population size as well as the time of 
iterations in BCO is limited. Even so, with different number of total features, the 
computational complex is different. When handling the large available feature selection 
problems, the evaluation process will spend more time than smaller feature cases.  

Table 3. The computational time (seconds) spend by BCO(KNN classifier) 

datasets 
Total 
features 

Number of features 

1 3 5 7 9 11 13 
wine 13 2.1552 3.7801 2.4011 1.6119 1.6576 1.6930 1.0211 
Lung 56 3.4345 2.8781 3.2143 2.0379 1.8814 1.6018 1.3815 
Madelon 500 4.4089 3.5664 3.5883 5.8666 4.5184 3.7546 3.2486 
Colon 2000 4.3592 4.4428 4.5511 3.7617 5.1396 4.0708 3.0188 
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The computational time of each dataset that BCO costs in each run are given in 
Tables 3. It is shown that the about 4 seconds that Colon dataset(with 2000 features) 
spends in each run. It is acceptable region of the time consuming. Admittedly, the 
PSO feature selection spends the smallest computational time, however, the 
classification performance of it is really unacceptable. Whatever, the performance of 
the classification is the more important than time consuming.  

5 Conclusion and Future Work 

A weighted feature selection using BCO has been proposed in this paper. The weight 
in the proposed feature selection methods is used to remove the repeated features in 
the same vector, as well as evaluate the contributions of the features in population 
which further determinate the probabilities of being selected to be updated by the 
randomness. A range of datasets have been introduced, and the proposed feature 
selection methods using BCO proves to be effective in selecting the small number of 
features. Compared to three other population based feature selection methods, the 
BCO feature selection method can achieve higher classification accuracy. Besides, the 
proposed method overcomes the biggest flaw that the common population-based 
swarm intelligence methods may involve. The highly computational costly is 
consistently reduced by avoiding the excessive iteration in the searching procedure. 

Even though the proposed method can exceed the PSO and GA in feature selection, 
while in the datasets with large number of features(over ten thousand), BCO still need 
to spend more iterations to obtain the considerable classification accuracy. Thus, in 
our future study, under a prerequisite of keeping the classification performance, more 
efforts will focus on reducing the computational complex. 
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Abstract. Image segmentation is of great importance in the fields of computer 
vision, face recognition, medical imaging, digital libraries, and video retrieval. 
This paper presents a novel method for image segmentation based on a Hybrid 
particle swarm algorithm, which combines the advantages of swarm intelligence 
and the natural selection mechanism of artificial bee colony algorithm. 
Experimental results show that the proposed method can reach a higher quality 
adequate segmentation, reduce the CPU processing time and eliminate the 
particles falling into local minima. 

Keywords: Image segmentation, Particle Swarm Optimization (PSO), Hybrid 
Particle Swarm Optimization (HPSO). 

1 Introduction 

There is a great source of inspiration for creating metaheuristic algorithms in nature and 
individuals interact constantly within a species or a population, which can obtain useful 
information to improve their adaptation by interacting with each other in the same 
species or population, such intraspecific interaction (heterogeneous coevolution) and 
interspecific interaction (homogeneous coevolution) in an ongoing cycle of adaptation, 
which are called symbiotic coevolution in biology[1].With the development and use of 
concepts, there are many algorithms have been used to solve difficult optimization 
problems, such as Genetic Algorithm (GA) ,Differential Evolution (DE), Particle 
Swarm Optimization (PSO) and so on.  

Image segmentation is considered as an important basic operation for meaningful 
analysis and interpretation of images acquired, which is the first step for image 
understanding, feature extraction and recognition. There are four different types for 
image segmentation commonly, including texture analysis based methods, histogram 
thresholding based methods, clustering based methods and region based split and 
merging methods. In all of them, the thresholding method is a simple but effective 
method for the segmentation of images, which can divide an image into related sections 
                                                           
* Corresponding author. 
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or regions, consisting of image pixels having related data feature values. According to 
the selected threshold, each pixel belongs to a determined class is labeled, which is 
giving as a result pixel groups sharing visual characteristics in the image. The key of 
image segmentation is how to efficiently select the optimal thresholding. Many 
methods for segmentation have been proposed in these years[2].Particle swarm 
optimization is a kind of swarm intelligence algorithm proposed by Kennedy and 
Eberhart in 1995, which basically consists of a number of particles that collectively 
move in the search space in search of the global optimum. However, a general problem 
with the PSO algorithms is that of becoming trapped in a local optimum. In order to 
overcome this problem, we introduce a new bio-inspired image segmentation algorithm 
based on Hybrid Particle Swarm Optimization (HPSO) to compute threshold selection 
for image segmentation. In this approach, the segmentation process is considered as an 
optimization problem, we use domain search strategies to improve the traditional PSO 
algorithm. Results showed that the Hybrid Particle Swarm Optimization (HPSO) based 
image segmentation executed faster, eliminate the particles falling into local minima 
and were more stable than the traditional PSO algorithm. 

2 Image Thresholding  

There are two categories of thresholding techniques including bi-level and multi-level. 
One limit value is chosen to segment an image into the object and the background in 
bi-level thresholding techniques. The optimal multilevel thresholding problem can be 
configured as multi-level optimization problem. When an image is composed of several 
distinct objects, multiple threshold values have to be selected for proper segmentation 
[3][4]. 

Let there be L intensity levels [0, 1. . . L-1] of a given image .Then one can define: 

                                                   (1) 

Where I represents a specific intensity level, N represents the total number of pixels 
contained in the image.  represents the number of pixels for the corresponding 
intensity level I. The total mean  can be calculated as: 

                                                             (2) 

The bi-level thresholding can be extended to generic n-level thresholding and 
assume tj to generic n-level thresholding (j=1…n-1). The pixels of a given image will 
be divided into n classes D1…Dn, which represent multiple objects or even specific 
features on such objects. The optimal threshold is the one that maximizes the 
between-class variance which is generally defined by: 

                                                (3) 
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Where j represents a specific class in such a way that and  are the probability 
of occurrence and mean of class j, which can be defined by: 

                                      (4) 

                                            (5) 

The segmentation process is considered as an optimization problem, and the problem 
of n-level thresholding is reduced to an optimization problem to search for the 
thresholds tj that maximizes the objective functions, generally defined as: 

                                   (6) 

The standard deviation can evaluate the stability of the algorithm, the following 
index is used: 

                                 (7) 

Where N is the repeated times of each algorithm,  is the best fitness value of the ith 
run of the algorithm,  is the average value of  [5][11]. 

3 Image Segmentation Algorithm Based on Hybrid Particle 
Swarm Optimization (HPSO)  

3.1 Traditional Particle Swarm Optimization (PSO)  

In PSO model, the potential solutions of each optimization problem can be seen as a 
bird in the search space, which is called particle. Each particle has a velocity and 
searches the solution space iteratively which determines the direction and rate of 
particles fling and a position vector which determines the current position of the 
particle. 

All particles have a fitness value determined by the function and need to be 
optimized. The particle swarm algorithm is initialized to be a group of random 
particles, and then we can search for the optimal solution through an iterative method. 
After several iterations, we can obtain the optimal solution of the optimization problem.  
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We focused on real-coded particle position. Each individual position of the initial 
population is randomly generated, which matches the corresponding fitness values of 
different sizes [4]. 

The PSO is a population-based technique, similar in some aspects to evolutionary 
algorithms [8], except that potential solutions (particles) move, rather than evolve, 
through the search space. The rules of particle dynamics that govern this movement are 
inspired by models of swarming and flocking. In PSO population, each particle has a 
position and a velocity, and experiences linear spring-like attractions towards two 
attractors: One is its previous best position, the other is best position of its neighbors. 

In mathematical terms, each individual’s direction of movement is 
manipulated according to the following equations: 

 (8)

 (9)

Where the ith particle is represented as in the 
D-dimensional space, the rate of velocity for particle i  is represented 
as , pbest is the best position found so far of the ith particle, 
gbest is the best position of any particles in its neighborhood, χ is known as 
constriction coefficient, c1 and c2 are learning rates, r1 and r2 are two random 
vectors uniformly distributed in [0, 1], and t is the time step[5][6].The PSO 
algorithm can be summarized in the table 1. 

Table 1. The PSO algorithm 

1. Initialize the population. 

2. Calculate the fitness values of the particles 

  3. Update the best experience of each particle 

4. Choose the best particle 

5. Calculate the velocities of the particles. 

6. Update the positions of the particles. 

7.Until requirements are met 

8.If the requirements are not met go back to step 

3.2 Hybrid Particle Swarm Optimization (HPSO) 

In this paper, a hybrid particle swarm optimization (HPSO) has been proposed, which 
combines the advantages of swarm intelligence and the natural selection mechanism of  
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artificial bee colony algorithm, using the domain search strategies to the particle’s best 
position to eliminate the particles falling into local minima [7]. 

For each particle, we should search population particle according to the formula (9), 
then the search in result as the domain particles. Search the entire field, if individual 
best of the domain particle is better than the historical individual best position; let the 
domain best as the local best of the particle. 

                         (10) 

Where k ∈ (1, 2,..., size) and j ∈ (1, 2,..., D) are randomly chosen indexes, 

and k has to be different from i , r is a random number between[-1,1].  
With the increase of the number of iterations, the value of  will 

gradually decrease, In other words, the searching space of the particle will gradually 
shrink, which will also help improve the accuracy of the algorithm. To model the 
swarm, each particle moves in a multidimensional space according to position and 
velocity values which are highly dependent on information of the local best, the domain 
best and the global best[9]. 

3.3 Image Segmentation Algorithm Based on HPSO 

The particles in the Hybrid Particle Swarm Optimization (HPSO) are evaluated for the 
fitness function, which is defined as the between-class variance  of the image 
intensity distributions previously represented in (6). The segmentation procedure can 
be summarized by the following steps: 

(1)Initialize swarm: Initialize the particles’ positions and velocities. In the 
beginning, the particles’ velocities are set to zero and their position is randomly set 
within the boundaries of the search space. The search space will depend on the number 
of intensity levels L, i.e., if the frames are 8-bit images then the particles will be 
deployed between 0 and 255. 

(2)For each particle in the swarm, update Particles’ fitness according to the formula (4). 
(3) Using formula (10), the fitness function is used to evaluate the domain best, if 

personality best of the domain particle is better than the historical best of the particle, 
let the domain best as the local best of the particle. 

(4) Update Particles’ velocity and position vectors according to the formula (8) and (9) 
(5) Stopping criteria can be a predefined number of iterations without getting better 

results or other criteria, depending on the problem, then the global best is the Optimal 
threshold, else go to step (2); 

(6)The Optimal threshold is used for image segmentation. 
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The flowchart of the Hybrid Particle Swarm Optimization (HPSO) process is given 
in Fig.1. 

 

Fig. 1. The Flowchart of the proposed Algorithm 

4 Experiment Result 

In this section, the traditional Particle Swarm Optimization (PSO) and the Hybrid 
Particle Swarm Optimization (HPSO) based image segmentation which proposed in 
this paper was programmed in MATLAB [10]. The proposed methods are tested on a 
few common images including Penguins, Koala and Lighthouse. Fig. 2 illustrates 
different test cases along with the histograms of the images.  
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       (a) Penguins                   (b) Koala                      (c) Lighthouse 

   
(d) The histograms of Penguins  (e) The histograms of Koala   (f)The histograms of Lighthouse 

Fig. 2. The images and the histogram  

 
(a)                                         (b) 

 
                    (c)                                          (d) 

Fig. 3. The result of segmentation with 2, 3, 4 thresholds with PSO of ‘Penguins’ (a) Original 
(b)(c)(d) The result of segmentation with 2, 3, 4 thresholds 
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The images are tested to evaluate the performance of the proposed algorithm. The 
Population size for the two methods are set to 30, the max iterations of the two methods 
are set to be 100, the learning rates are , a total of 20 runs are 
performed[8]. 

The first one is tested on the followed image of ‘Penguins’, the goal is to segment the 
image for 2, 3, 4 thresholds with the traditional Particle Swarm Optimization (PSO) and 
the Hybrid Particle Swarm Optimization (HPSO), the results are shown in Fig 3 and Fig 
4 .The other one are tested on the image of ‘Koala ’ with the same method, the results 
are shown in Fig 5 and Fig 6. The last one are tested on the image of ‘Lighthouse’, the 
results are shown in Fig 7 and Fig 8.The conducted experiments show that the proposed 
method yields adequate segmentations.  

  
(a)                                     (b) 

 
                   (c)                                       (d) 

Fig. 4. The result of segmentation with 2, 3, 4 thresholds with HPSO of ‘Penguins’  
(a) Original (b)(c)(d) The result of segmentation with 2, 3, 4 thresholds 
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(a)                                       (b) 

 

                     (c)                                      (d) 

Fig. 5. The result of segmentation with 2, 3, 4 thresholds with PSO of ‘Koala’  (a) Original 
(b)(c)(d) The result of segmentation with 2, 3, 4 thresholds  

 

(a)                                          (b) 

Fig. 6. The result of segmentation with 2, 3, 4 thresholds with HPSO of ‘Koala’ (a) Original 
(b)(c)(d) The result of segmentation with 2, 3, 4 thresholds  
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                  (c)                                         (d) 

Fig. 6. (Continued.) 

 
                      (a)                                       (b)    

 
                    (c)                                        (d) 

Fig. 7. The result of segmentation with 2, 3, 4 thresholds with HPSO of ‘Lighthouse’ (a) Original 
(b)(c)(d) The result of segmentation with 2, 3, 4 thresholds  
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(a)                                       (b) 

     
                    (c)                                         (d) 

Fig. 8. The result of segmentation with 2, 3, 4 thresholds with HPSO of ‘Lighthouse’ (a) Original 
(b)(c)(d) The result of segmentation with 2, 3, 4 thresholds  

The standard deviation and CPU process time were selected as the measures for 
comparing the output of different methods. As we can see from the standard deviation 
and CPU processing times are brought in Table 1, the Hybrid Particle Swarm 
Optimization (HPSO) has the least the standard deviation values in comparison with 
the traditional Particle Swarm Optimization (PSO), which is the more stable. The 
Hybrid Particle Swarm Optimization (HPSO) has been proven in the literature to 
require less CPU processing time for finding thresholds in comparison to the traditional 
Particle Swarm Optimization (PSO), especially for higher threshold numbers. The 
results illustrate that the Hybrid Particle Swarm Optimization (HPSO) is more efficient 
than the traditional Particle Swarm Optimization (PSO), in particular, when the level of 
segmentation increases, thus being able to find the better thresholds with more stability 
in less CPU processing time. 
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Table 2. STD and CPU process time of different methods 

Test image Thresholds PSO HPSO 

  STD Computational time STD Computational time 

Penguins 2 0.0953 0.3912 0.0089 0.3635 

3 1.0951 0.4887 0.1039 0.4575 

4 2.8349 0.5965 0.2614 0.5067 

Koala 2 0.0776 0.4134 0.0467 0.4352 

3 1.2658 0.4998 0.1953 0.4846 

4 2.6067 0.6047 0.6386 0.5575 

Lighthouse 2 0.2586 0.3934 0.0278 0.3846 

3 1.5413 0.4967 0.1225 0.4569 

4 3.2364 0.5956 0.3576 0.5483 

5 Conclusion 

In this paper, it proposed a novel method for image segmentation based on a Hybrid 
particle swarm algorithm (HPSO) for solving the problem for delineating multilevel 
threshold values and to overcome the disadvantages of traditional Particle Swarm 
Optimization (PSO) in terms of trapping in local optimum. Results have been evaluated 
in terms of quality of the output images and computational time to obtain them, which 
indicate that the Hybrid Particle Swarm Optimization (HPSO) is more efficient than the 
traditional Particle Swarm Optimization (PSO), specifically when the level of 
segmentation increases, the novel method for image segmentation based on a Hybrid 
particle swarm algorithm (HPSO) can find the better thresholds with more stability in 
less CPU processing time. 
 
Acknowledgment. This work was supported in part by the National Natural Science 
Foundation of China under Grant 61105067 and 61174164,the General Project of 
Education Department of Liaoning Province under Grant L2013446 and the 
Engineering research center of the IOT Information technology integration of Liaoning 
Province open-funded projects. 

References 

1. Frank, A.: Models of symbiosis. American Naturalist 150, 80–99 (1997) 
2. Couceiro, M.S., Ferreira, N.M.F., Machado, J.A.T.: Application of fractional algorithms in 

the control of a robotic bird. Journal of Communications in Nonlinear Science and 
Numerical Simulation-Special Issue 15(4), 895–910 (2010) 

3. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative 
performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004) 



402  Y. Liu et al. 

 

4. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differential 
evolution algorithm. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems 
and Human 38, 218–237 (2008) 

5. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.F.: An efficient method for 
segmentation of images based on fractional calculus and natural selection. Expert Systems 
with Applications 39, 12407–12417 (2010) 

6. Baßstürk, A., Günay, E.: Efficient edge detection in digital images using a cellular neural 
network optimized by differential evolution algorithm. Expert System with 
Applications 36(8), 2645–2650 (2009) 

7. Chen, S., Wang, M.: Seeking multi-thresholds directly from support vectors for image 
segmentation. Neurocomputing 67(4), 335–344 (2005) 

8. Guo, R., Pandit, S.M.: Automatic threshold selection based on histogram modes and 
discriminant criterion. Machine Vision and Applications 10, 331–338 (1998) 

9. Sathya, P.D., Kayalvizhi, R.: Modified bacterial foraging algorithm based multilevel 
thresholding for image segmentation. Journal Engineering Applications of Artificial 
Intelligence 24(4) (2011) 

10. Saha, P.K., Udupa, J.K.: Optimum image thresholding via class uncertainty and region 
homogeneity. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 
689–706 (2001) 

11. Zhang, Y., Li, S., Dong, X.: Multiple Neural Network Model Based on Data Partition Using 
Feature Clustering. Information and Control 42(6), 693–699 (2013) 

 

 

 



D.-S. Huang et al. (Eds.): ICIC 2014, LNBI 8590, pp. 403–412, 2014. 
© Springer International Publishing Switzerland 2014 

Neural Network Based on Self-adaptive Differential 
Evolution for Ultra-Short-Term Power Load Forecasting 

Wei Liu1, Hui Song2, Jane Jing Liang2,*, Boyang Qu2,3, and Alex Kai Qin4 

1 State Grid Henan Economic Research Institute, Zhengzhou, China 
liuwei830610@163.com 

2 School of Electrical Engineering, Zhengzhou Univerisity, Zhengzhou, China 
3 School of Electric and Information Engineering, Zhongyuan University of Technology, 

Zhengzhou, China 
hsong320@163.com, liangjing@zzu.edu.cn, qby1984@hotmail.com 

4 School of Computer Science and Information TechnologyRMIT University,  
Melbourne 3001, Victoria, Australia 

kai.qin@rmit.edu.au 

Abstract. Ultra-short-term power load forecasting, which is a complex and 
nonlinear optimization problem, is an important problem in power system. 
Self-adaptive Differential Evolution (SaDE), whose control parameter (mutation 
factor F, crossover factor CR) and mutation strategy are changed gradually and 
adaptively according to the previous search performance, has been a widely used 
optimization algorithm among so many improved Differential Evolutions for its 
strong ability of global numerical optimization and good convergence 
characteristic. SaDE is employed to optimize a two-layer Neural Network (NN) 
for the problem of Ultra-short-term power load forecasting. The result shows that 
SaDE has higher accuracy comparing with Back Propagation (BP) when it is 
applied in Ultra-short-term power load forecasting. 

Keywords: Ultra-short-term power load forecasting, Self-adaptive Differential 
Evolution, Neural Network, Back Propagation. 

1 Introduction 

Power load forecasting plays a very important role in managing and researching 
power system, and it also makes the most use of electricity and eases the conflict 
between supply and demand for the analysis of the existing electric energy [1]. 
According to the time length of the prediction, the power load forecasting can be 
classified to ultra-short-term power load forecasting, short-term power load 
forecasting, medium long-term power load forecasting and long-term power load 
forecasting [2]. In terms of power system dispatching and management, 
ultra-short-term power load forecasting which varies from an hour to a week is the 
most important. 
                                                           
* Corresponding author. 
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Intelligent prediction methods do not need prior knowledge about parameters, the 
structure of process model, a complex system to establish a mathematical model, thus 
these methods are efficient for time-varying, nonlinear, multi-variables and 
uncertainty ultra-short-term power load forecasting [3]. Intelligent forecasting 
methods include Expert System (ES) [5], Support Vector Machine (SVM) [4][6][7], 
Back Propagation Neural Network(BPNN) [8][9] and so on. The main drawback of 
the ES is that it learns nothing from the environment and has ambiguous relationship 
between rules, low efficiency and adaptability. The main disadvantage of SVM is that 
it is difficult to handle large-scale training samples and solve multi-classification 
problems. BPNN is widely to calculate large-scale complex training samples as well 
as to slow the speed of convergence during training process used for power load 
forecasting in recent years. 

The shortcomings exist both in classical and intelligent power load forecasting 
models, so more attentions are focused on various methods which combine 
optimization algorithms and predictive models. Many researchers have done a series 
of researches and many applications, and then make a conclusion that using 
optimization algorithms to optimize predicted models has a stronger ability to adapt 
the changes of the environment [1]. 

Recently, many heuristic algorithms have been proposed to be combined with 
neural networks to solve Ultra-short-term power load forecasting problem, such as 
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Tabu Search (TS)[1]. 
Evolutionary Algorithm (EA) which imitates the evolutionary process of individuals 
to find the optimal solution is based on the evolution theory of nature. Differential 
evolution (DE), which is a branch of EA, is one of the best heuristic algorithms 
proposed so far. It can find the global optimal solution effectively by mutation, 
crossover and selection operation with floating-point coded individuals. DE can be 
used to solve a variety of optimization problems in power system for its good 
robustness. 

The success of Traditional DE in solving a specific problem crucially depends on 
appropriately choosing trial vector generation strategies and their associated control 
parameter values. What’s more, its associated parameter settings require high 
computational costs and different strategies coupled with different parameter settings 
may be required in order to achieve the best performance at different stages of 
evolution [3]. So a Self-adaptive Differential Evolution (SaDE) [10], in which both 
trial vector generation strategies and their associated control parameter values are 
gradually self-adapted by learning from their previous experiences in generating 
promising solutions, is employed to optimize the weights in the neural network for 
solving ultra-short-term power load forecasting problem. The result shows that 
compared with BPNN, it is easier to find global optimum and has a higher accuracy 
with SaDE-NN in Ultra-short-term power load forecasting. 

The rest of this paper is organized as follows. Section 2 gives a brief introduction 
about Back Propagation Neural Network. The main idea of Self-adaptive Differential 
Evolution and Neural Network Based on Self-adaptive Differential Evolution model  
employed in this work are described in detail in Section 3. Section 4 introduces the 
experimental setup and presents the results. Conclusions and future work are given in 
Section 5. 



 Neural Network Based on Self-adaptive Differential Evolution 405 

2 Back Propagation Neural Network 

Back Propagation Neural Network was proposed by Dr. Werbos in 1974[11], which is 
the most widely used Feedforward Neural Network. BP Neural Network can 
approximate a highly nonlinear function in arbitrary precision, in which error back 
propagation algorithm is adopted to adjust the network parameters.  

The basic idea of the algorithm is as follows: The learning process of BPNN 
includes signal transmission and error back propagation. During the signal 
transmission, the sample transmits from the input layer to output layer after 
calculating each hidden layer’s neurons. If the actual output is different from desired 
output, then error back propagation process will work. Error passes through the 
hidden layer to output layer step by step in some units and is assigned to all unites of 
each layer to acquire the error of each layer. The error signal is regarded as the basic 
information for correcting weights of each unit. Signal transmission and error back 
propagation is repeated again and again. Adjusting weights is the learning process of 
neural network, which is conducted until the output error reaches to the target range 
or a predetermined number of iterations. Fig.1 is a typical three layer BPNN structure. 

 

x
i 1

x
n− xn  

Fig. 1. Structure of BPNN 

where, 0 1, ,..., ...,j nx x x x  is the input value of BPNN, 1 2, ,..., ...,k lo o o o is predictive 

value, ijv  and jkw ( 1, 2,..., , 1, 2,..., , 1, 2,..., )i n j m k l= = = are the input and output 

weights of BPNN respectively. If the input node is n and the output node is l, BPNN 
expresses the mapping relationship from n independent input variables to l independent 
output variables. BPNN acquires associative memory and ability to predict through 
training the network. 
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3 Neural Network Based on Self-adaptive Differential Evolution 

3.1 Self-adaptive Differential Evolution 

Differential evolution (DE) was originally presented by R. Storn and K. V. Price in 
1995 [12]. It has been proven to be one of the most competitive EAs [13][14]. The 
key control parameters are kept the same and are given in advance according to 
experience in traditional DE. So it is very difficult to determine the parameters in 
practice. F determines the rate of convergence. CR is sensitive to the complexity of 
the problem and has much to do with the characteristic of the optimization problem. 
In order to find the real global optimal solution, parameters should be changed for 
many runs. Generally speaking, it will spend a lot of time to find proper parameters. 
However, in the evolutionary process of SaDE, mutation strategy and control 
parameters can be gradually self-adapted according to their previous experiences of 
generating promising solutions. 

The core of the SaDE is as follows: 
a. Trial Vector Generation Strategy Adaptation 

A candidate pool with several different strategies is used. In the process of 
evolution, with respect to each target vector in the current population, one strategy 
will be chosen from the candidate pool according to a probability(all probabilities of 
strategies in the candidate pool are summed to 1) learned from its previous experience 
of generating promising solutions and applied to perform the mutation operation [9]. 
If one strategy has more possibility to be successful, it will be more possible to be 
selected to generate solution in current generation. 

Various strategies have been proposed for mutation operation, and five most 
frequently used strategies are used in this task as below [10][15][16]:   

Mode 1: DE/rand/1(Basic Differential Evolution) 

1 2 3
, , , ,

*( )i i ii G r G r G r G
V X F X X= + −

                          
(1) 

Mode 2: DE/best/1 

1 2
, , , ,

* ( )= + −i ii G best G r G r G
V X F X X                           (2) 

Mode 3: DE/rand_to_best/1 

1 2
, , , , , ,

*( ) *( )i ii G i G best G i G r G r G
V X F X X F X X= + − + −

                
(3) 

Mode 4: DE/ best/2 

1 2 3 4
, , , , , ,

*( ) *( )i i i ii G best G r G r G r G r G
V X F X X F X X= + + + −

              
(4) 

Mode 5: DE/ rand/2 

1 2 3 4 5
, , , , , ,

*( ) *( )i i i i ii G r G r G r G r G r G
V X F X X F X X= + + + −

               
(5) 
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where, ,best GX is best individual achieved so far in the population at generation G. F is a 
control mutation factor while 1 2 3 4 5, , , ,i i i i ir r r r r are mutually integers randomly generated 
within the range [1,NP], which are different from the individual i. ,i GV  is the new 
position after mutation. 

b. Parameter Adaptation 
F, CR, NP are very difficult to determine in traditional DE, so the parameter F 

which is described in detail how it changes in [9]is approximated by a normal 
distribution with mean value 0.5 and standard deviation 0.3, denoted by N(0.5,0.3) in 
SaDE. CR, which generally falls into a small range for a given problem, but this 
algorithm can perform consistently well, is also a normal distribution with mean value 
CRm (which is initialized to 0.5 and then adjusted gradually according to the 
possibility of entering the next generation within the previous LP generations for 
every strategy).Standard deviation Std=0.1, denoted by N (CRm, Std). 

Using this method to determine the F and CR, a SaDE algorithm is developed and 
both trial vector generation strategies and their associated parameter values are 
gradually self-adapted by learning their previous experiences of generating promising 
solutions. 

3.2 The Process of Neural Network Based on Self-adaptive Differential 
Evolution 

Self-adaptive Differential Evolution which is applied to train the weights of NN 
includes the following steps: 

a. According to the input and output (x, o) determine the number of input layer 
nodes n, hidden layer nodes m and output layer nodes l. Randomly generate 
the initial population 1, ,{ , }G G NP GP X X=  , NP is the population size, and 

1
, , ,{ , , }D

i G i G i GX x x=  , 1, ,i NP=   uniformly comes from the range 

min max[ , ]X X , where 1
min min min{ , , }DX x x=  and 1

max max max{ , , }DX x x=  , 

* *D n m m m l l= + + +  is the individual length. Set the initial median of 
( )kCR CRm ,generation counter 0G = , strategy probability 

( ,k Gp , 1, ,k K=  , K  indicates the number of available strategies), learning 

period( LP ) 

b. Calculate the fitness values of the population individuals. 
1

( )
1 x

f x
e−=

+
is 

the excitation function. Normalize the original data input and output samples: 

0.1 0.8 ( min )

max min

0.1 0.8 ( min )

max min

old old
new k k
k old old

k k

old old
new k k
k old old

k k

x x
x

x x

o o
o

o o

+ × −
=

−

+ × −
=

−

                            (6) 

c. K=1, 2,…m is the number of samples. xk
old and yk

old, xk
new and yk

new   

represent the input and output of the network which are unprocessed and 
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processed respectively. Firstly, calculate the output of hidden layer H 
according to the input data x, weights ijv between input and hidden layer and 

threshold a. 

1

( ) 1, 2,...,
n

j ij i j
i

H f v x a j m
=

= − =                          (7) 

m is the nodes of hidden layer and f is the excitation function of hidden layer. 
Secondly, according to the output of hidden layer H,

 
weights jkw between 

hidden layer and output layer, threshold b calculate o which is the predicted 
output of BPNN. 

1

1,2,...,
m

k j jk k
j

o H w a k l
=

= − =                        (8) 

Then, according to predicted output o and expected output p calculate 
predicted error e of neural network. 

1,2,..., 1,2,...k k k
t t te P o k l t NP= − = =                     (9) 

The fitness function is set as: 

1

( ) ( )
t

l
k

k

fit t abs e
=

=                                  (10) 

Calculate every particle’s fitness value by (10), search for each particle’s best 
position achieved so far. 

d. WHILE stopping criterion is not satisfied , DO 
(i) If G LP> , for each strategy, calculate strategy possibility 

Gkp , ( 1,k K=  ) by equation ,
,

,
1

k G
k G K

k G
k

S
P

S
=

=


 , 

1

,

, 1 1

, ,

0.01

( 1,2,..., ; )

G

k g
g G LP

k G G G

k g k g
g G LP g G LP

ns

S
ns nf

k K G LP

−

= −
− −

= − = −

= +
+

= >



   and update the Success and Failure 

Memory by removing ,k G LPns − and ,k G LPnf − from them, respectively. 

(ii) For each target vector ,i GX , select one strategy k  using stochastic 

universal sampling, and assign a control parameter iF  by randomly sampling 

from a normal distribution (0.5,0.3)N . Set the other control parameter 

CR according to the principles: if G LP>= , update the median of CR  using 
( )k kCRm median CRMemory= first; after that, with regard to each strategy k , 

for each individual iX , assign a ,k iCR  value by sampling from a normal 

distribution ( ,0.1)kN CRm , and if , 0k iCR < or , 1k iCR > , sample a new one. 
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(iii) Produce a new population, and generate each trial vector ,
k
i GU  using 

the associated trial vector generation strategy k  and control parameters iF , 

,k iCR  set in (ii) 

(iv) For each ,
k
i GU , if there is any variable outside its boundaries, randomly 

reinitialize this vector. 
(v) For each ,

k
i GU , use (10) to evaluate it first, and go on selection 

afterwards. If , ,( ) ( )k
i G i Gf U f X≤ , then , 1 ,

k
i G i GX U+ = , , 1 ,( ) ( )k

i G i Gf X f U+ = , 

, , 1k G k Gns ns= + , store ,k iCR into kCRMemory , and at the same time, if 

, ,( ) ( )k
i G best Gf U f X≤ , then , ,

k
best G i GX U= , , ,( ) ( )k

best G i Gf X f U≤ ; Otherwise, 

if , ,( ) ( )k
i G i Gf U f X> ,then , , 1k G k Gns ns= + . After completing 

aforementioned operation, store ,k Gns  and ,k Gnf ( 1, ,k K=  ) into the 

Success and Failure Memory, respectively. 
(vi) Update the generation count 1G G= + . 

e. END WHILE 

4 Experimental Results 

This experiment is carried out based on the electricity industry, whose data is 
obtained through the system of monitoring and analyzing key power industry. There 
are 96 sampling points for everyday. Two models which are BPNN and SaDE-NN are 
used to predict the power load of one day. According to the recorded load data of 
October, November, December, precious 29 days in December, related days (related 
days of everyday are 20 days)  and related sampling points(related points for every 
sampling point are 34 points) of these 29 days are regarded as train data to predict the 
load of 30th, December. The related days are the same days in the previous two 
months, the same days in previous weeks, and the previous days except for the first 
two cases in these 20 days about the current day. The related sampling points are 9 
points about yesterday, 9 points before and after the same sampling point(the 
sampling point is included) about the day before yesterday, 8 points about yesterday 
in last week, 9 points before and after the same sampling point(the sampling point is 
excluded) about the day before yesterday in last week. So the number of data used as 
training input is 54.What’s more, the prediction of each algorithm concludes the 
whole day’s prediction and every point’s prediction during one day. They are defined 
as follows: 

BPNN1: The data of the whole day is regarded as a whole prediction output (the 
dimension of the output is 96) and the predicted mode is BPNN. 

SaDE-NN1: The data of the whole day is regarded as a whole prediction output 
and the predicted mode is SaDE-NN. 

BPNN2: Every point in one day is regarded as the output (the dimension of the 
output is 1) and the predicted mode is BPNN. Each time only one point is predicted. 

SaDE-NN2: Every point in one day is regarded as a whole prediction output and 
the predicted mode is SaDE-NN. 
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The parameters used in this task are set as follows: 
The structure of NN1: 54 input nodes, 20 hidden nodes, 96 output nodes 
The structure of NN2: 54 input nodes, 20 hidden nodes, 1output node 
Dimension: 1121 
Population size: 150 
MaxFES (Maximum Fitness Evaluation): 40000 
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Fig. 2. The whole day as a sample to be optimized 
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Fig. 3. Every point in one day as a sample to be optimized 
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Table 1. The error rate which is below 3% 

 BPNN1 SaDE-NN1 BPNN2 SaDE-NN2 

Error rate<3% 0.6146 0.6458 0.6874 0.8125 

 
Some conclusions could be made from the result as follows: 
• SaDE-NN performs better than BPNN which shows that Self-adaptive has 

improve the diversity of the solutions; 
• To predict every point has a better result than regard the whole day as a sample; 
• The accuracy of SaDE-NN is higher than BPNN obviously. 
From these three points, we could know that SaDE has a better global search 

ability which helps it avoid being trapped into local optimum, and avoids finding 
suitable parameters which is very difficult. After applying SaDE to optimize the 
weights of the neural network, the prediction is much more better which shows that 
the accuracy of SaDE-NN is higher than BPNN obviously for Ultra-Short-Term 
Power load forecasting. 

5 Conclusions 

In this paper, an improved DE(SaDE) is applied to optimize the weights of the neural 
network. What’s more, two experiments are used to test the property of SaDE-NN. 
The result shows that SaDE-NN has better global search ability to find optimal 
solution when it is used in ultra-short-term power load forecasting problems. The 
result of error rate also makes us know that when every point is regared as training 
sample, the result is much more better. Another phonomenan could be see is that the 
prediction arccuracy is a little worse which shows that the collected data is not good 
enough, so a better predited system to obtain data will be applied in ultra-short-serm 
power load forecasting, what’s more, more algorithms will be used to predict power 
load and more better and fast algorithms will be used for online forcast. 
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Abstract. This paper proposes a new variant of bacterial foraging optimization, 
called Bacterial Foraging Optimization with Neighborhood Learning (BFONL). 
In the proposed BFO-NL, information sharing among each individual can be 
realized by using a von Neumann-style neighborhood topology. To demonstrate 
the efficiency of BFO-NL in dealing with real world problem, this paper  
improves the original mean-variance portfolio model into Two-Period dynamic 
PO model considering risky assets for trading, then uses BFO-NL to automati-
cally find the optimal portfolios in the advanced model. With a five stock  
portfolio example, BFO-NL is proved to outperform original BFO in selecting 
optimal portfolios. 

Keywords: Neighborhood learning, bacterial foraging optimization (BFO),  
von Neumann-style, portfolio optimization. 

1 Introduction 

Bacterial foraging optimization (BFO) was firstly proposed by Passino in 2002 [1]. It 
inspired by the foraging behavior of E.coli bacteria. BFO has attracted increasing 
attention as its strong optimization capabilities in solving optimization problems. The 
analysis and improvement of this algorithm are mainly from two aspects. Some 
researchers redesigned mechanism of the algorithm to improve the efficiency, such as 
the behavioral model of bacteria(BCO) proposed by Niu [2] which contains 
Chemotaxis, Communication, Elimination, Reproduction and Migration, Tang [3] 
constructed a novel biologically methodology for complex system. On the other hand, 
researchers proposed hybrid algorithm by integrating other algorithms into BFO, such 
as a hybrid approach involving genetic algorithms (GA) and bacterial foraging (BF) 
algorithms presented by Kim [4], Bacterial Swarm Optimization(BSO) which 
combined Bacterial Foraging Optimization (BFO) algorithm with Particle Swarm 
Optimization (APSO) algorithm to balance between exploration and exploitation [5], 
Bacterial Foraging-Tabu Search Metaheuristics(BTS) incorporated Tabu Search into 
BFO [6] and so on.  
                                                           
* Corresponding author. 
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Untill date, BFO has been successfully applied to a number of engineering prob-
lems, such as economic load dispatch [7], optimal control [8], PID controller design 
[9] , machine learning [10] and some multi-objective optimization problems [11] etc. 
However, there are very few studies on BFO to deals with portfolio selection problem 
in the literature. The first mathematical formalization for portfolio selection problem 
is Mean-Variance model, which was proposed by Markowitz in 1952 [12]. The stan-
dard Markowitz portfolio framework explains the trade-off between returns and risk. 
As the high computational complexity and the far too many input parameters, this 
model is less used in practice. A large numbers of researchers dedicateed in the evolu-
tion of Markowitz model, such as Konno and Yamazaki introduced a Mean Absolute 
deviation (MAD) model [13], Speranza [14] introduced a more general model with a 
weighted based on MDA, Speranza [15] presented a general mixed integer model 
including real world constraints. However, the investors usually invest continuously 
rather than at intervals or only once in the real world. So this paper extend the original 
single-period mean-variance portfolio model into Two-Period dynamic PO model 
firstly, which consider a financial market with risky assets for trading 

From the descriptions of BFO above, it can be seen that few literatures are consi-
dering the information communication to improve the performance of the algorithm. 
Based on our previous works [16], this paper proposes a novel communicational  
bacterial foraging optimization here called Bacterial Foraging Optimization with 
Neighborhood Learning (BFO-NL). With the neighborhood learning mechanism,  
the diversity of the swarm is increased and the search efficient is improved. Then,  
to verify the performance of the proposed BFO-NL, it is used to solve to solve the 
improved dynamic Markowitz model. The results were compared to those obtained 
from heuristic methods based on the original BFO.  

2 An Overview of Bacterial Foraging Optimization 

Bacterial foraging optimization (BFO) is a stochastic optimization technique that 
imitates the social foraging behavior of swarms of bacteria [1, 17]. Since its introduc-
tion in 2002, it has drawn increasing attention from researchers in different scientific 
and industrial fields. One of the attractive characteristics of BFO lies in the fact that it 
simulates the bacterial foraging behavior driven by an underlying control system at a 
micro level. The control system consists of chemotaxis, reproduction, and elimina-
tion-dispersal events. Its concrete biological context can be found in [1]. For saving 
space, here we omit it and mainly focus on the improvements and applications of 
BFO. The pseudo code of BFO is briefly presented as following. Note that the swarm-
ing mechanism in BFO is neglected here due to its expensive computation cost and 
low improvement in the solution quality [18]. 

Like other stochastic optimization algorithms, BFO does also suffer from the 
common problems of premature convergence and oscillation and so on [19]. In order 
to alleviate these issues, diverse BFO variants have been proposed which were  
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mentioned in the introduction. This paper we attempt to hybridize the concept of 
‘neighbor topology’ and the idea of ‘neighbor learning’ in the context of PSO to im-
prove the performance of BFO, as presented below. 

3 Bacterial Foraging Optimization with Neighborhood 
Learning 

For most of swarm intelligence algorithms, learning from neighbor information is one 
of critical features and important driving forces for the efficient search. To achieve 
fast convergence and excellent exploitation, it is valuable, even for evolutionary algo-
rithms, to obtain the direction information of neighborhood to guide the search [20]. 
In the context of PSO [21] and DE [20], it has been proved that neighbor learning 
could improve the performance on some problem instances (especially for multi-
modal functions), in terms of convergence rate and solution quality. Further, a neigh-
borhood topology termed as von Neumann is more efficient over a variety of prob-
lems instances than other static topologies (e.g., ring, star and pyramid) in terms of 
solution quality [22]. Therefore, in this paper only the von Neumann-style neighbor-
hood topology is explored in the context of BFO. 

In this section, we investigate how to integrate the neighbor topology (i.e., von 
Neumann [22]) and the neighborhoods’ position information into the search behavior 
of bacteria, and propose a bacterial forging optimization algorithm with neighbor 
leaning, which is named as BFO-NL. Inspired on the position update formula of PSO, 
we propose a novel bacterial position update equation as presented in the following: 

( ) ( ) ( ) ( ) ( )( ), 1, , , , , * , * , , , , , ,+ = + −P i j k ell P i j k ell W C i k NP l j k ell P i j k ell   (1)
 

 
where W  is a system parameter that controls the tradeoff between exploration and 
exploitation, k -th reproduction, and ell-th elimination events, and ( , 1, , )NP i j k ell+  

is the position information of the best-performing neighbor learned by bacterium i .  
Note that the neighborhood topology is static for easy to program, which  

means that each bacterium cannot change its neighborhood indices during the entire 
course of optimization. The dynamic population topology is beyond the scope of this 
paper. Further, at the initialization stage of optimization, each bacterium’s neighbor-
hoods are decided based on the indices of population rather than the geographical 
locations of population for avoiding excessive distance calculations. Through the 
detailed description above, the pseudo-code of BFO-NL is given as Table 1. 
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Table 1. Pseudo code of the BFO-NL algorithm 

Algorithm BFO-NL 
Begin
Step 1. Initialization. The population P  is randomly distributed 
in the search space with dimensionD . The costs of all bacteria J
are evaluated according to the cost function ( )f P .

Step 2. Elimination loop: 1 edell to N ( edN  is the number of elimina-
tion-dispersal events) 
Step 3. Reproduction loop: 1 rek to N ( reN  is the number of reproduc-
tion operations) 
Step 4. Chemotaxis loop: 1 cj to N ( cN  is the number of chemotaxis 
operations)
    [a].For 1i to S ( i  and S  are the index and total number of bacte-
ria, respectively) 
    [b].Cost calculation: ( , , , ) ( ( , , , ))J i j k ell f P i j k ell , and Let ( , , , )tJ J i j k ell ,

    [c].Position update: according to equation (1)(where ( , )C i k  is the
step size for bacterium in the k-th reproduction loop, and is a D-
dimensional vector randomly distributed in [-1,1]), 
    [d].Cost calculation: ( , 1, , ) ( ( , 1, , ))J i j k ell f P i j k ell ,
    [e].Swimming Operations: set 0m (where m  is a counter for swim-
ming),
        [1].While sm N (where sN  is a maximum number of swimming) 
        [2].Let 1m m ,
        [3].If ( , 1, , )J i j k ell < tJ  // if the bacterium finds a better position 
with lower cost 
        [4].Let tJ = ( , 1, , )J i j k ell ,
        [5].Position re-update: according to equation (1), 
        [6].Cost re-calculation: ( , 1, , ) ( ( , 1, , ))J i j k ell f P i j k ell ,
        [7].Else set 0m ,
        [8].End While. 
    [f]. End For i  . 
Step 5. Reproduction: calculate the bacterial health index 

1 ( , , , )Nc
jhJ J i j k ell , sort all bacteria in the increasing order, and 

then substitute the first half of bacteria for the remaining bac-
teria in one-to-one fashion. 
Step 6. Elimination-dispersal Events: each bacterium is re-
initialized within the whole problem space with probability edP .
End  

4 BFO-NL for Dynamic Portfolio Model 

4.1 Dynamic Portfolio Model 

In this section, a multi-period and dynamic portfolio model based on the previous 
work [23] will be formulated. We consider a financial market including risky assets 
for trading. An investor intends to invest his wealth among the assets at the beginning 
of period 1 for a continuous T-period investment. And he can reallocate his wealth in 
every beginning of each of the following periods.  
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Suppose that the initial capital is M  which remains constant in the later periods 
and the transaction costs of assets of all the transaction costs for buying or selling 
keep unchanged for all kinds of assets in each period. All the investment for each 
period is a consecutive time periods. Then the wealth is increased from the preceding 
period to the next period, and the investor expects that the cumulative fortune at the 
end of T period is great. Some notations are introduced as follows: 

( )1 2, , ,t t t t
nx x x x=   is the proportion of money allocated in each asset at the t th 

period, and 
1

1
n

t
i

i

x
=

= . 

0t
ix ≥  means there is no short sales. 

( )1 2, , ,t t t t
nξ ξ ξ ξ=   indicates the amount of each asset at the t  th period the 

investor has invested.  
t
ip is the price of the i  asset at the t  th period. 

t
iR  represents the expected rate of revenue of the i asset at the t th peirod, and 

( )t t
i iR E r= , 1, 2, ,i n=  . 

t
ir  means the yield of the i asset at the t th period, and 

1

1

t t
t i i

i t
i

p p
r

p

−

−

−
= . 

cov( , )t t t
ij i jσ =  is the covariance of 

ir  and 
j

r  . 
b
ik  and s

ik  are the transaction fee for buying and selling the i  asset 

respectively. 
tM  is the total amount of the t th period. 

Based on these assumptions, the total amount tM  and the investment proportion 
t
ix  at the t  th period can be expressed as follows: 

1

n
t t t

i i
i

M p ξ
=

=
 

t t
t i i
i t

p
x

M

ξ
=  

Set tI  is the yield at the t th period. So the relationship of the revenue between the 

t  th period and the 1t − th period can be formulated: 

 ( ) ( ) ( )11t t
tf x I f x−= +  (2) 

So at the end of the Tth period, the total revenue can be expressed by ( )Tf x  
as follow: 

 1 1

1 11

( ) M* {1 [ ( ) (1 )* *( )])}
T n n

T t t b t t s t t
i i t i i i t i i i

i it

f x R x k x x k x xμ μ− −

= ==

= + − − + − − ∏ （  (3) 

where 
1

1

0,      

1,      

t t
i i

t t t
i i

x x

x x
μ

−

−

 ≤= 
≥
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Based on these defined variables, the function ( )Tf x  and ( )Tg x denote the 

revenue and risk of the dynamic T-period portfolio optimization problem can be 
obtained as below. 

1 1

1 11

max ( ) * {1 [ ( ) (1 )* *( )])}
T n n

T t t b t t s t t
i i t i i i t i i i

i it

f x M R x k x x k x xμ μ− −

= ==

= + − − + − − ∏ （  (4) 

 
1 1

min ( )
n n

T T T T
ij i j

i j

g x x xσ
= =

=  (5) 

Then our dynamic portfolio optimization model can be formulated by 
introducing a preference coefficient: 

 ( ) ( ) ( ) ( ){ }max max 1 T TF x f x g xλ λ= − ∗ − ∗  (6) 

where λ is a preference coefficient, which distributes in [0,1]. Different λ  represent 
different preference to estimate the terminal fortune. 

4.2 Numerical Experiments 

In this section, a two-period numerical example is given to verify the effectiveness of 
the proposed algorithm. Besides, we also compare the proposed model with four types 
of investors to identify the influence of different preferences. 

We assume that an investor chooses five stocks from Shanghai Stock Exchange 
for his investment and intends to make two periods of investment with initial wealth 
10, 000 yuan. The wealth can be adjusted at the beginning of each period. The 
historical data about the assets from Jan. to Jun. in 2011 are collected and set every 
three months as a period [24-25]. The relation number is as follows: 

[ ]1 0.5750,0.4650,0.0775,0.1450,0.1125R =  

[ ]2 0.01675,0.00859,0.05146,0.04227,0.09462R =
 

1 [ 0.5435, -0.0964, -0.0040, 0.0878, 0.0488;

        -0.0964, 0.0492, 0.0084, -0.0185, -0.0090;

        -0.0040, 0.0084, 0.0031, -0.0011, -0.0015;

        0.0878, -0.0185, -0.0011, 0.0145, 0.0077;

     

σ =

   0.0488, -0.0090, -0.0015, 0.0077, 0.0053;]

 

2 [ 0.01002,0.00319,0.01093,0.00025,0.01786;

        0.00319,0.00934,-0.00057,-0.01612,-0.01779;

        0.01093,-0.00057,0.02392,0.01793,0.04677;

        0.00025,-0.01612,0.01793,0.05139,0.07250;

      

σ =

  0.01786,-0.01779,0.04677,0.07250,0.15965;]
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Table 2. Numerical results with different λ  

Algorithm 

0.15λ =  0.3λ =  

BFO BFO-NL BFO BFO-NL 
t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 

1x  0.5324 0.0068 0.4953 0.0022 0.4697 0.0009 0.3485 0.0644 

2x  0.3958 0.0249 0.4552 0.0000 0.4644 0.0803 0.5967 0.0112 

3x  0.0033 0.0164 0.0460 0.0293 0.0050 0.2576 0.0004 0.0535 

4x  0.0599 0.2224 0.0003 0.1240 0.0293 0.0376 0.0506 0.0063 

5x  0.0086 0.7296 0.0031 0.8444 0.0316 0.6236 0.0037 0.8646 

Income percent 0.4994 0.0789 0.4997 0.0860 0.4935 0.0739 0.4849 0.0854 
Risk percent 0.1263 0.1116 0.1003 0.1323 0.0916 0.0807 0.0455 0.1263 
Terminal-max 2.064e+000 2.080e+000 1.501e+000 1.513e+000 
Terminal-min 1.979e+000 2.009e+000 1.451e+000 1.466e+000 
Terminal-mean 2.018e+000 2.055e+000 1.470e+000 1.494e+000 
Terminal-std 2.637e-002 6.488e-004 1.414e-002 1.422e-002 
 
Suppose that the investor has the same original proportion in every asset, i.e. 

0 0ix = . And the transaction cost of each asset at each period maintain unchanged, 

i.e., 0.00065b
ik = , 0.00075s

ik =  in this two-period experiment. The parameters in 

these two algorithms are set below: the data of bacteria in the population is 50, and 
chemotactic steps are 100, the number of elimination-dispersal events is 2, the num-
ber of reproduction steps is 5. The value of λ is set as 0.15, 0.3, 0.5, 0.65 to represent 
different investors based on various preference to estimate the terminal fortune, re-
spectively. After conducting a total of 20 runs for each experimental setting, the cor-
responding optimal investment strategies obtained are shown in Table 2~3. 

4.3 Experimental Results 

Tables 2~3 display the numerical results with four different λ  which are obtained by 
the BFO and BFO-NL. The corresponding computational results including the optim-
al investment strategy, income percent and risk percent for each period, and the max 
value, the min value, the mean value and the standard deviation of the terminal wealth 
on this two-period portfolio selection are also listed as follows. And the mean relative 
performance by these two methods is shown in Figs 1~4. Note that all the results 
should be multiplied by the value of initial amount10,000. 

In Tables 2~3, ix repents the amount of i  th ( i =1,2,…,5) asset on the t th 

( t =1,2) investment periods. It can be seen that for almost of all the different risk  
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preferences, BFO-NL can get the better mean value of the terminal wealth and the 
smaller standard deviation. And the Figures 1~4 also demonstrate the same results. 
According to these tables and figures, we can conclude that: 

Table 3. Numerical results with different λ  

Algorithm 

0.5λ =  0.65λ =  

BFO BFO-NL BFO BFO-NL 
t=1 t=2 t=1 t=2 t=1 t=2 t=1 t=2 

1x  0.3923 0.0323 0.2639 0.0214 0.3922 0.0155 0.2169 0.0304 

2x  0.5668 0.0144 0.6702 0.3257 0.5578 0.3642 0.6919 0.3851 

3x  0.0066 0.7257 0.0001 0.3257 0.0136 0.4083 0.0030 0.3851 

4x  0.0059 0.0439 0.0566 0.0016 0.0031 0.0987 0.0215 0.1178 

5x  0.0284 0.1837 0.0093 0.3257 0.0333 0.1134 0.0667 0.0815 

Income percent 0.4930 0.0566 0.4719 0.0502 0.4894 0.0387 0.4566 0.0357 
Risk percent 0.0577 0.0335 0.0273 0.0270 0.0579 0.0126 0.0211 0.0103 
Terminal-max 8.936e-001 8.968e-001 5.333e-001 5.391e-001 
Terminal-min 8.600e-001 8.861e-001 5.190e-001 5.357e-001 
Terminal-mean 8.747e-001 8.908e-001 5.251e-001 5.370e-001 
Terminal-std 7.852e-003 1.975e-003 3.542e-003 1.126e-006 

i) Comparing the experimental results presented in Tables 2~3, it verifies that the 
modified algorithm outperforms BFO in terms of result qualify and result robustness, 
which illustrates the effectiveness of the proposed algorithm repeatedly. And the 
Figures 1~4 also testify this results. 
ii) Based on the data of the related terminal value listed in Tables, we can find that the 
optimal investment profit depend on the value of λ . The fitness value decreases 
along with the increase of the preference coefficient λ  and this trend consists with 
the structure of the fitness function. Moreover, all the income percent and risk percent 
reduce with the rise of λ . 
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5 Conclusions and Future work 

This paper presents a new variant of original BFO algorithm that incorporates the 
information interaction based on a neighbor learning strategy. By introducing this 
mechanism, the search information can be made full use by bacteria and help to avoid 
trapping into local minima. The comparative experiment of the proposed algorithm 
(BFO-NL) is evaluated by testing on eight benchmark functions. Related results 
indicate that it can provide better quality solutions. In order to demonstrate the 
performance of BFO-NL, we apply it to a dynamic portfolio optimization model and 
compare the results with the original BFO. For the two-period portfolio model, 
numerical results show that BFO-NL is feasible and effective. 

However, further work may focus on optimizing the performance of this proposed 
algorithm and extensive study of application in more complex problems to evaluate 
the performance of BFO-NL. 
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Abstract. In this paper structure-redesign-based Bacterial Foraging Optimiza-
tion (SRBFO) is proposed to solve portfolio selection problem. Taking advan-
tage of single-loop structure, a new execution structure is developed in SRBFO 
to improve the convergence rate as well as lower computational complexity. In 
addition, the operations of reproduction and elimination-dispersal are rede-
signed to further simplify the original BFO algorithm structure. The proposed 
SRBFO is applied to solve portfolio selection problems with transaction fee and 
no short sales. Four cases with different risk aversion factors are considered in 
the experimental study. The optimal portfolio selection obtained by SRBFO is 
compared with PSOs, which demonstrated that the validity and efficiency of 
our proposed SRBFO in selecting optimal portfolios. 

Keywords: Bacterial foraging, portfolio selection, execution structure. 

1 Introduction 

Swarm intelligence is becoming important area of hi-tech research and its associated 
technology developing rapidly. Bacterial Foraging Optimization (BFO) as a new comer 
of swarm intelligence has obtained much attention from various areas, and  
widely applied to electrical engineering and control [1], artificial neural networking 
training [2] and image segmentation [3] and so on. Although BFO has succeeded in 
solving many real-world practical problems, it still has disadvantages of its slowly 
convergence rate and computational complexity. To improve the performance of 
BFO, many BFO’s variants are developed, including parameters modification [4] and 
hybrid algorithms [5] etc. 

This paper redesigned the structure of BFO, which provided a new idea to further 
improve the convergence performance of BFO. To demonstrate the effectiveness of 
SRBFO we proposed, experiments on portfolio selection problems with transaction 
costs and no short sales were conducted. Results obtained by SRBFO compared with 
PSOs are presented and testified the efficiency of SRBFO.  

                                                           
∗ Corresponding author.  
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2 Structure-Redesign-Based Bacterial Foraging Optimization  

BFO is a population-based random search algorithm proposed by K. M. Passino [12] in 
2002 according to the competition and collaboration mechanisms in the process of 
searching for food in the human intestinal of Escherichia coli groups. Main four bac-
terial-specific activities, chemotaxis, swarming, reproduction, elimination and dispersal 
are imitated to update position for bacteria to search for optimal solutions in BFO [6,7]. 

Although the BFO has been succeeded in solving many optimization problems, it 
still poses the slow convergence rate because of its nested implementation structure. 
To obtain fast convergence speed and low time consumption, SRBFO is proposed by 
redesigning the original BFO implementation structure. 

The main idea of the structure in SRBFO is inspired from the structure executed in 
GA, PSO and some other intelligent algorithms. Taking advantage of single-loop 
execution structure, SRBFO uses single-loop structure to replace the original triple 
nested structure used in BFO.  The Pseudo-code of SRBFO is presented in Table 1. 

The reproduction operation and elimination-dispersal operation are nested within 
chemotactic operation, which determined by the reproduction frequency (Fre), elimi-
nation-dispersal frequency (Fed) and the current number of chemotaxis. In addition, a 
cumulative value of fitness function is used in BFO to assess the health status of bac-
teria. However, this accumulated mechanism may eliminate the most current healthy 
bacterium, and thus affect the convergence rate. In SRBFO, the current value of fit-
ness function replaced by the original cumulative value is employed to simplify the 
complexity of computation in the process of reproduction.  

Table 1. Pseudo-code of SRBFO  

SRBFO 

Begin 

 For (Each run) 

   Calculate the fitness function J, and set J=Jlast;; 

   For (Each chemotaxis ) 

Update the position of bacteria by tumbling (Chemotaxis);  

Calculate fitness function J; 

     If (J<Jlast; and the maximum swimming steps are not met) 

      Swimming (Chemotaxis);  

End If 

If mod(the current number of chemotaxis, reproduction frequency Fre)==0 

        Reproduction operation; 

End If 

If mod( the current number of chemotaxis, disperse frequency Fed)==0  

       Dispersal operation; 

End If  

End For  

End For  

End 
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3 SRBFO for Portfolio Selection Problems 

3.1 Portfolio Selection Model 

Markowitz's ‘Mean-Variance’ model established the basic and complete analytical 
framework of portfolio, while it has many strict assumptions, including the effective-
ness of markets, ignoring transaction costs and invertors risk aversion and so on.  
These limitations restrict it to be further widely applied into many realistic portfolio 
optimization problems. To address these problems, an improved model is proposed in 
[8]. In the model, the transaction fee of selling and buying assets and no short sales are 
considered, investors’ return and risks can be expressed as: 
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Pursuing of maximizing benefit and minimizing risks are two tradeoff objectives in 
portfolio selection problems. A risk aversion factor λ was introduced to balance the 
two tradeoff objectives. The multi-objective problem is also transferred into single 
objective problem by using risk aversion factor.  The mathematical model can be 
described as follow: 
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In this model, there are n assets can be selected to invest, ri indicates the expected 
return vector, xi is the investor’s investment ratio in each asset, 00 >ix  indicates the 
original investment ratio in asset. 0>ix  represents there is no short sales. ijσ  
represents the return covariance between asset i and asset j. ki

b is the transaction ex-
pense ratio of buying asset , and ki

s is the transaction expense ratio of selling asset . In 
general, the fee of selling assets in the financial market is greater than buying. 

1]，[0∈λ  is risk aversion factor determined by investors, the smaller the value of λ is, 
the larger risk the investor can bear. 

3.2 Encoding 

Each bacterium represents a potential solution in solving the portfolio selection prob-
lem. The fitness function calculated according to Eq. (3). The encoding of a bacterium 
is given in Eq. (4) and the constraints dealing with Eq. (5). 
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4 Experiment Result and Discussion 

In the portfolio selection problems, we supposed there are eight assets can be chosen 
to invest. Parameters including the covariance of assets and the expected return of 
assets are simulated according to actual condition and our experiences. Four different 
risk aversion factors are considered in the portfolio selection problems. The parameters 
are shown as follow.  
 

ijσ = (0.0034, 0.0063, 0.0025, 0.0002, 0.0024, 0.0025, 0.0007, 0.0013;  
0.0063, 0.0027, 0.0059, 0.0029, 0.0069, 0.0039, 0.0062, 0.0044; 
0.0025, 0.0059, 0.0001, 0.0011, 0.0028, 0.0033, 0.0037, 0.0017; 
0.0002, 0.0029, 0.0011, 0.0061, 0.0019, 0.0004, 0.0029, 0.0003; 
0.0024, 0.0069, 0.0028, 0.0019, 0.0003, 0.0020, 0.0015, 0.0005; 
0.0025, 0.0039, 0.0033, 0.0004, 0.0020, 0.0024, 0.0013, 0.0005; 
0.0007, 0.0062, 0.0037, 0.0029, 0.0015, 0.0013, 0.0005, 0.0008; 
0.0013, 0.0044, 0.0017, 0.0003, 0.0005, 0.0005, 0.0008, 0.0017) 
R = (0.0013, 0.0036, 0.0002, 0.0022, 0.0016, 0.0013, 0.0017, 0.0009) 
λ = (0.15, 0.4, 0.65, 0.9) 

 

The transaction expense ratio of buying asset is set as 0.00065, and selling asset is fixed 
at 0.00075 according to the paper [8]. 

In order to verify the performance of SRBFO, SPSO and PSO are selected for 
comparison. We set c1=c2=2, and inertia weight w=1 for PSO, wstart=0.9 and wend=0.4 
are used in PSO. In SRBFO, the length of chemotaxic step Csz=0.2, the swimming 
length is set to 2. The probability of elimination/dispersal is set to 0.3. The new para-
meters of reproduction frequency and elimination-dispersal frequency are set as: 
Fre=24, Fed=48. All the experiment runs 50 times, the iterations is 300, the size of 
population p=50. The initialized ratio of each asset is 0.125 to make the sum of all 
assets ratio equal to 1. 

The experimental results of the best ratio invested in asset (the value of x), return, 
risk, maximum, minimum, mean, standard deviation obtained by three algorithms of 

0.65λ =  and 0.9λ =  of 50 runs are given in Table 2. The convergence curves of BFO 
and PSOs of four different risk aversion factors are shown in Fig. 1 and Fig. 2. 
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Fig. 1. Convergence curve of SRBFO and PSOs  

Table 2. Experimental results of 0.65λ =  and 0.9λ =  

 
0.65λ =  0.9λ =  

PSO SPSO SRBFO PSO SPSO SRBFO 

x1
 

9.0247e-002 1.3272e-001 2.2527e-003 1.8845e-002 1.0237e-001 1.7415e-002 

x2
 

3.0378e-007 1.0102e-001 4.8515e-003 3.4078e-012 9.5280e-002 1.4952e-003 

x3
 

5.4316e-019 1.0683e-001 2.4028e-002 7.5124e-019 1.0912e-001 1.3949e-002 

x4
 

1.3466e-001 1.3664e-001 1.1544e-001 2.6916e-001 1.4036e-001 5.6223e-002 

x5
 

2.2599e-001 1.3709e-001 3.1322e-001 1.3989e-001 1.4178e-001 1.0352e-001 

x6
 1.7900e-001 1.3364e-001 1.1544e-001 1.9494e-001 1.4889e-001 3.4477e-001 

x7
 

1.1017e-001 1.0407e-001 1.1544e-001 2.1799e-002 1.1328e-001 5.5388e-002 

x8
 

2.5994e-001 1.4799e-001 3.0932e-001 3.5537e-001 1.4892e-001 4.0724e-001 

Return 1.0027e-003 1.4605e-003 8.7423e-004 8.0246e-004 1.4308e-003 5.3681e-004 

Risk 1.3824e-003 2.3787e-003 1.3066e-003 1.3401e-003 2.3447e-003 1.2461e-003 

Max 7.8282e-004 1.0870e-003 7.0806e-004 1.5692e-003 2.0762e-003 1.3616e-003 

Min 5.4765e-004 1.0350e-003 5.4331e-004 1.1258e-003 1.9671e-003 1.0678e-003 

Mean 6.5486e-004 1.0611e-003 6.4973e-004 1.3210e-003 2.0238e-003 1.2573e-003 

Std 5.3968e-005 1.2725e-005 3.6809e-005 1.0488e-004 2.6525e-005 6.6794e-005 

Analyzing the results, the performance of SRBFO is obviously better than that  
PSOs. SRBFO maintains good global search capability as well as convergence speed 
and may be more suitable for solving these difficult portfolio selection problems. 
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Fig. 2. Convergence curve of SRBFO and PSOs 

5 Conclusion 

In this paper, we developed SRBFO by redesigning the executive structure of original 
BFO to reduce its computational complexity and make it convergence to global opti-
mum faster. SRBFO and other two PSOs were used to solve the complex portfolio 
selection problems with different risk aversion factors. Experimental results obtained 
verified the performance of the proposed SRBFO and indicated that SRBFO is more 
suitable for solving these difficult portfolio selection problems than SPSO and PSO. 

Future work will continue pay attention to optimize the efficiency of SRBFO. In 
addition, more intelligence algorithms will be used to solve more difficult portfolio 
selection problems [9], such as Bacterial Colony Optimization [10], and Mul-
ti-objective Bacterial Foraging Optimization [11], etc.   
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Abstract. This research is motivated by both the indispensable need for optimi-
zation in container terminals and the recent advances in swarm intelligence. In 
this paper, we try to address the Integrated Yard Truck Scheduling and Storage 
Allocation Problem (YTS-SAP), one of the major optimization problems in 
container port, which aims at minimizing the total delay for all containers. Bac-
terial colony optimization (BCO), a recently developed optimization algorithm 
that simulates some typical behaviors of E. coli bacteria, is introduced to ad-
dress this NP-hard problem. In addition, we designed a mapping schema by 
which the particle position vector can be transferred to the scheduling solution. 
The performance of the BCO is investigated by an experiment conducted on 
different scale instances compared with PSO and GA. The results demonstrate 
the competitiveness of the proposed approach especially for large scale and 
complex problems. 

Keywords: Yard truck scheduling, Storage allocation, Container terminal,  
Bacterial Colony Optimization (BCO). 

1 Introduction 

As an intermodal interfaces between sea and land in the global transportation net-
work, container terminals are forced to study the optimal logistics management in 
marine transportation faced with competitive environment. The comprehensive re-
view on operations research at container terminals can be found in [1]. Yard cranes 
(YCs), quay cranes (QCs), and yard trucks (YT) are three fundamental equipments in 
typical container terminals. Two important decisions related to the logistics cost and 
operational efficiency of container terminals are developing strategies for scheduling 
yard truck and allocating storage space to discharging containers. Therefore, the va-
riant that will be discussed here is the Integrated Yard Truck Scheduling and Storage 

                                                           
∗ Corresponding author.  
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Allocation Problem (YTS-SAP). The YTS-SAP problem is a very prominent field of 
research, and various researchers have employed different approaches. e.g., the exact 
solution algorithms (linear programming et al.) and heuristic algorithms (genetic algo-
rithm et al) [2,3,4,5]. 

The YTS-SAP has been proved to be a NP-hard problem. Regarding such NP-hard 
problem, exact solution methods are only suitable for small sized problems. To deal 
with large scale problems, recent research has focused on developing efficient heuris-
tics, in which swarm intelligence is one of the promising one. Bacterial Colony Opti-
mization (BCO) is a relatively new swarm intelligence algorithm, which simulates 
some typical behaviors of E. coli bacteria. To the best of our knowledge, BCO-based 
approach for YTS-SAP hasn’t been presented in the literature so far. Therefore, a 
BCO-based approach is proposed for this task by comparing the performance with 
GA and PSO.        

2 Problem Description 

The YTS-SAP model used in this paper is the same as that used in literature [4] and 
the notations and mathematical model are given as follows. 

J + :  the set of loading jobs with the cardinality of n+ . J −  : the set of discharging 

jobs with the cardinality of n− . J  : the set of all jobs ( )J J+ −∪  with | |J n= . 

[ , )i ia b  : a soft time window for container i based on the crane schedules. ia  is the 

starting time of job i , that is, job i   should be processed at or after ia  . The due 

time of job i , ib  can be violated with a penalty. id   :  delay of job i . iw : start 

time of service at job i . R  :  the set of all routes indexed by r , where | |R m= . 

,r rι κ : two dummy jobs to denote the initial and final location of each YT. ,i io d  : 

denote the origin and destination of job i ,respectively. 'J  { }r r RJ ι ∈= ∪ . ''J  

{ }r r RJ κ ∈= ∪  

L  :  the set of all yard locations for all loading and discharging jobs with indices 

p and q . pqτ  :  the travel time of YT along the shortest route between yard loca-

tion p  and q . kζ :  where k K∈ , the index for the storage location (SL) k , 

where K  is the set of all SLs. 

it         the processing time of job i  

          k

,

,

if Request  is a loading request

if Request  is a discharging request and allocated to SL

i i

i

o d

o

i

i kξ

τ

τ
=it

 

ijs        the setup time from the drop-off  location of job i  to the pick-up loca-

tion of job j  
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if Request  is a loading request

if Request  is a discharging request and allocated to SL
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o

i
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τ

τ
=ijs

 

ikx        1= ,if  job i  is allocated to SL k  

   0= ,otherwise 

ijy        1= ,if job i  is connected to job j  in the same route 

  0= ,otherwise 
 

Mathematical model: 

i
i J

Minimize d
∈


 Subject to  

1,ik
i J

x k K
−∈

= ∀ ∈            (1)        1,ik
k K

x i J −

∈

= ∀ ∈              (2)

''

1, 'ij
j J

y i J
∈

= ∀ ∈             (3)               
'

1, ''ij
i J

y j J
∈

= ∀ ∈            (4) 

, ' ''i iw a i J J≥ ∀ ∈ ∪         (5)        i it b , ' ''i id w i J J≥ + − ∀ ∈ ∪   (6) 

i ij(1 ) t s , ' and ''j ij iw M y w i J J J+ − ≥ + + ∀ ∈ ∈
      (7)

, ,
i ii o dt i Jτ += ∀ ∈              (8)          

k, ,
ii o ik

k K

t x i Jξτ −

∈

= ∀ ∈          (9) 

, ,
i iij d os i J and j Jτ += ∀ ∈ ∈                       (10)

k , ,
jij o ik

k K

s x i J and j Jξτ
−

∈

= ∀ ∈ ∈                    (11)

, {0,1}, ', ''ik ijx y i J j J and k K∈ ∀ ∈ ∈ ∈                 (12)

, ' ''iw i J J∈ℜ ∀ ∈ ∪
 
        (13)       ,it i J −∈ℜ ∀ ∈                 (14) 

,ijs i J and j J−∈ℜ ∀ ∈ ∈                          (15)

3 Methodology 

3.1 The Background of Bacterial Colony Optimization 

Bacterial colony optimization (BCO) is a recently developed optimization algorithm 
which is inspired by a lifecycle model of Escherichia coli bacteria[6,7]. The lifecycle 
model of E.coli bacteria contains four key stages: chemotaxis and communication, 
elimination, reproduction, and migration. In chemotaxis and communication stage, 
bacteria tumble toward optimum directed by two kinds of information: personal  
previous information, group information, and a random direction. Tumbling and 
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swimming are two activities of bacteria chemotaxis. Optimal searching director and 
turbulent director altogether decide the searching director while bacteria tumbling, the 
position is updated using (16). In the process of swimming, turbulent director does not 
participate in it as shown in (17). 

i best

( ) ( 1) ( )

*[ *(G ( 1)) (1 )

*( ( 1)) ]
i

i i

i i

best i i

Position T Positin T C i

f Positin T f

P Positin T turbulent

= − +
− − + −

− − +

                 (16) 

best

( ) ( 1) ( )

*[ *(G ( 1)) (1 )

*( ( 1))]
i

i i

i i i

best i

Position T Positin T C i

f Positin T f

P Positin T

= − +
− − + −

− −

              (17) 

where i represent the ith bacterium. bestP  and bestG  denote the best previous position 

of the ith  bacterium and the historically best position of the entire swarm. {0,1}if ∈  

and iturbulent  is the stochastic direction employed in the ith  bacterium. 
( )C i represents the chemotaxis step size.  The detail introduction and the whole com-

putational procedure can be referred to [6]. 

3.2 Total Solution Representation   

Fig. 1 is an example to illustrate our mapping mechanism. In this example, we assign 
two trucks to handle three discharging jobs and three loading jobs, in the situation that 
three potential locations is available to the discharging jobs. In addition, we assume 
that the first three jobs are discharging jobs. According to the scheduling results, the 
first truck will handle jobs 4, 1, 6, sequentially, while the second truck is assigned to 
handle jobs 3, 2, and 5, sequentially. The location solution is that the first discharging 

job is located in 2ς , the second discharging job is located in 1ς , the last discharging 

job is located in 3ς , as shown in Fig. 2. 

  

  
 

Fig. 1. An example for encoding scheme of YTS-SAP 

11: 4 1 6Route L → → → 22 : 3 2 5Route L → → →

2ς 1ς 3ς

   

 

Fig. 2. Decoding of encoding scheme illustrated in Fig. 1 
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3.3 Job and Storage Allocation Solution Representation 

In order to convert the position vector to a job permutation, Smallest Position Value 
(SPV) rule is introduced which is firstly proposed by Tasgetiren et al [8]. We sort the 
elements of position vector in ascending order so that the job permutation is con-
structed. For example if a particle with six dimensional vector is given as following: 
9.0 -5.3 2.1 -0.2 7.8 5.2. After using SPV rule the particle becomes: 6 1 3 2 5 4.  
Similarly, SPV rule is applied to construct the permutation of storage locations. 

3.4 Truck Solution Representation 

The algorithm used for this mapping named Truck Assignment Algorithm is de-
scribed in the following flow chart. 
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Fig. 3. Flowchart of the Truck Assignment Algorithm 

3.5 Fitness Evaluation 

In YTS-SAP, the delay of job k  processed by truck m  implied by particle i , 

imd ( )k  equal to immax{0, ( ) b (k)}imC k − ,where ( )imC k is the completion time 

and imb (k) is the due time of job k . Let ( )mo i be the summation of delay generated 

by jobs assigned to truck ( 1,2, , )m m M=  based on the schedule iπ  implied by 

particle i , the objective of YTS-SAP is to minimize the total delay of jobs, i.e.       

1

( ) ( ) m (1,2, , )
M

m
m

O i o i M
=

= =  . 
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4 Computational Experiments 

The effectiveness of the BCO was evaluated compared with other well-known algo-
rithms, namely GA and PSO. Based on the recommendation by Shi et al. [9], the parame-

ters of SPSO with linear inertia weight is set as follows: 0.9startw = , 0.4endw = , 

1 2 2c c= = . The parameters involved in GA were set to be the same as literature [10]. 

The parameters for BCO are recommended by Ref. [6]. Considering both the required 
computational time and the quality of the solution, we set the population size and the 
maximum number of iterations of three algorithms as 200 and 80, respectively. All algo-
rithms were tested on a set of instances with their data generated from the same manner 
that literature [4] generates. All algorithms are run 10 times on six different size in-
stances. The obtained means and variances by all algorithms are presented in Table 1. 
Each problem is denoted as  ( , , , )N N M L+ −  which is characterized by loading jobs 
( N + ), discharging jobs ( N − ), trucks ( M ) and storage locations ( L ).  

Table 1. Comparison with different algorithms for six test instances 

No. ( , , , )N N M L+ −  Algorithm Mean STD 
1 (15,15,10,15) GA 3.1983e+003 900 
  SPSO 2.3328e+003 663 
  BCO 4.1066e+003 1217 

2 (25,25,15,25) GA 1.0437e+004 2566 
  SPSO 1.0596e+004 1793 
  BCO 1.0806e+004 1873 

3 (38,37,20,37) GA 2.2093e+004 2340 
  SPSO 2.4925e+004 2440 
  BCO 2.1606e+004 1442 

4 (50,50,30,50) GA 2.9443e+004 3408 
  SPSO 3.2520e+004 2199 
  BCO 2.6582e+004 3495 

5 (100,100,40,100) GA 1.2872e+005 3912 
  SPSO 1.3517e+005 5573 
  BCO 1.1973e+005 7594 

6 (150,150,50,150) GA 2.5533e+005 7866 
  SPSO 2.6523e+005 7856 
  BCO 2.4735e+005 9664 

 
According to Table 1, BCO surpasses all other algorithms on problem 3, 4, 5 and 

6, while SPSO performs best only on problem 1 and GA dominates only on problem 
2. Obviously, BCO performs better than PSO and GA. It may be attributed to the fact 
that with the help of communication and the ability of migration, BCO is able to keep 
the tradeoff between the local exploitation and the global exploration [6], while GA 
and PSO are easy to be trapped in local optima. Furthermore, we can observe that the 
larger and more complex the problem is, the better BCO will perform.  
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5 Conclusion and Future Work 

This paper presents a BCO method for Integrated Yard Truck Scheduling and Storage 
Allocation Problem employing an effective problem mapping mechanism in which 
Smallest Position Value rule and a novel Truck Assignment Algorithm are used to 
transfer the particle position vector to the job scheduling solution. Based on the result 
of the three algorithms on the six chosen test instances, we can draw a conclusion that 
BCO algorithm can find the optimal area in the search space especially for large scale 
problems compared with GA and PSO. In our future study, this work would be ex-
tended to apply the Multi-objective Bacterial Foraging Optimization [11] to solve 
multi-objective scheduling problems in container terminal. 
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Abstract. Class imbalance poses serious difficulties to most standard two-class 
classifiers, when applied in performing classification in the context of multi-
modal biometric authentication. In this paper, we propose a system, which  
exploits the natural capabilities of one-class classifiers in conjunction with the 
so-called Real AdaBoost to handle the class imbalance problem in biometric 
systems. Particularly, we propose a decision rule for the fusion of one-class 
classifiers to effectively use the training data from both classes. By treating this 
decision rule as the base classifier, the Real AdaBoost is then employed to fur-
ther improve its performance. An important feature of the proposed system is 
that it trains the base classifiers with different parameter settings. Hence, it is 
able to reduce the number of parameters, which are normally set by the user. An 
empirical evaluation, carried out on the BioSecure DS2 database, demonstrates 
that the proposed system can achieve a relative performance improvement of 
5%, 13%, and 14% as compared to other state-of-the-art techniques, namely the 
sum of scores, likelihood ratio based score fusion, and support vector machines. 

Keywords: Class imbalance, one-class classification, boosting, Real AdaBoost. 

1 Introduction 

Biometric authentication is the process of verifying a human identity using his/her 
behavioural and physiological characteristics. It is well-known that multimodal bio-
metric systems can further improve the authentication accuracy by combining infor-
mation from multiple biometric traits at various levels, namely, sensor, feature, 
matching score, and decision levels. Fusion at matching score level is generally pre-
ferred due to the trade-off between information availability and fusion complexity [1]. 

A common practice in many reported works on multimodal biometrics is to view 
fusion at matching score level as a two-class classification problem, where the vector 
of matching scores is treated as a feature vector, and can be classified into one of two 
classes: genuine user/impostor [1]. However, recent studies have indicated that most 
standard two-class classifiers are inadequate, when applied to problems, characterized 
by class imbalance [2]. Class imbalance is a common problem in multimodal biome-
tric authentication, where the samples of the impostor class greatly outnumber the 
samples of the genuine user class. It is not uncommon for class imbalances to be in 
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the order of 500:1. The skew data distribution makes standard two-class classifiers 
less effective, particularly when predicting genuine user class samples. Under-
sampling has been widely used to counteract the class imbalance problem in the bio-
metric literature [1]. An obvious shortcoming of under-sampling is that it may cause 
the classifiers to miss important aspects in the data, pertaining to the impostor class, 
since the optimal class distribution is usually unknown. 

Over the years, the machine learning community has addressed the issue of class 
imbalance in many different ways. Among others, the two most popular techniques 
are one-class classification and boosting. One-class classification is naturally quite 
robust to the class imbalance problem by defining the decision boundary using single 
class samples rather than distinguishing between samples of the two classes [3]. In 
[4], [5], the authors suggested that one-class classifiers are particularly useful in han-
dling extremely imbalanced data sets in feature spaces of high dimensionality, while 
two-class classifiers are suitable for data sets with relatively moderate degrees of 
imbalance. On the other hand, boosting is the technique, which can be used to im-
prove the classification performance of the classifier regardless of whether the data is 
imbalanced [6], [7]. The aim of boosting is to combine multiple (base) classifiers in 
order to develop a highly accurate classifier system. It is known to reduce bias and 
variance errors as it focuses on the samples, which are harder to classify [6]. Particu-
larly, boosting weighs each sample to reflect its importance, and places the most 
weights on those samples, which are most often misclassified by the preceding clas-
sifiers [6], [7]. Boosting is very effective at handling the class imbalance problem 
because the small class samples are most likely to be misclassified. The Real Ada-
Boost [8] seems to be the most representative boosting algorithm. It is also resistant to 
classification noise, which appears very naturally in biometric applications. 

In this paper, we propose a system, which inherits both virtues of one-class classifica-
tion and the Real AdaBoost in order to advance the classification performance of imba-
lanced biometric data sets. The system works by firstly developing a decision rule, based 
on Bayesian decision theory as applied to the fusion of one-class classifiers to efficiently 
and effectively use the training data from both the genuine user and impostor classes. 
Next, the Real AdaBoost is employed, which treats the above decision rule as the base 
classifier to further improve its performance. The conventional Real AdaBoost trains the 
base classifiers on a variety of data sets, constructed from the original training data. In 
our technique, a new training procedure is introduced to train these classifiers on the 
same data set, but with different parameter settings. The target is to reduce the number of 
free parameters, which have to be specified by the user. An empirical evaluation is car-
ried out using the BioSecure DS2 [9], which demonstrates that the proposed system 
achieves significantly improved results in terms of Half Total Error Rate (HTER) as 
compared to state-of-the-art techniques, including the sum of scores [1], likelihood ratio 
based score fusion [10], and support vector machines (SVM). 

The remainder of the paper is organized as follows: Section 2 discusses in detail 
the proposed system. Section 3 presents extensive experiments using data from the 
BioSecure DS2, and discusses the results. Section 4 is dedicated to conclusions and 
further work. 
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2 The Proposed System 

This section will begin by introducing the decision rule, used for the fusion of one-
class classifiers. Next, the Modified Real AdaBoost will be presented to enhance the 
verification accuracy and reduce the number of free parameters. 

2.1 The Decision Rule 

A large number of one-class classifiers have been proposed in the literature. Among 
others, the initial one-class classifier that was selected is Gaussian Mixture Models 
(GMM), which has been demonstrated to successfully estimate the biometric match-
ing score distributions and converge indeed to the true density with a sufficient num-
ber of training samples [3], [10], [11]. Let us assume that )|( Gwp x ( )|( Iwp x ) is 

the density estimates of the genuine (impostor) matching scores, where x  is a test 
matching score vector, and Gw  ( Iw ) is the genuine (impostor) target class. General-

ly, )|( Gwp x  and )|( Iwp x  can be directly utilized to render a biometric decision 

as in [3]. In this work, we are interested in combining these probability estimates to 
effectively exploit both genuine user and impostor class samples. Based on Bayesian 
decision theory [12], the combination can be given as: 

 Assign Gw→x  if τ≥− )|()|( IG wpwp xx  (1) 

where   is the decision threshold. Equation (1) holds by assuming that the prior 
probabilities are equal (i.e., )()( IG wpwp = ), and different costs are assigned to the 

False Rejection Rate (FRR) and False Acceptance Rate (FAR) [1]. In practice, it is 
possible to combine the one-class classifiers using the log-likelihood ratio test [10] as: 

 Assign Gw→x  if ( ) τ≥)|(/)|(log IG wpwp xx  (2) 

Although the log-likelihood ratio test is the optimal test for deciding that test sample 
x  corresponds to a genuine user or an impostor, it is a bad idea to employ it as the 
base classifier in the Real AdaBoost as rescaling it may have a detrimental effect on 
the overall generalization error [8]. The decision rule in (1) has a distinct advantage 
since its outputs lie in the range ]1,1[ +− . In general, such decision rule has three 

parameters to be set by the user, namely: the numbers of mixture components, i.e., 

GN  and IN , used to model the densities of genuine and impostor matching scores, 

and the fraction rejection Tf . By definition, Tf  controls the percentage of target 

samples, rejected by the classifier during training. While the number of mixture com-
ponents can be found using the GMM fitting algorithm in [13], there is no effective 
means for the optimal selection of Tf . In [3], the value of Tf  was optimized on the 

training set. However, the fraction rejection value obtained through the optimization 
process does not necessarily provide the optimal performance on the test set. One 
straightforward reason for this is that biometric data suffers from various forms of 
degradation, caused by the manner a user interacts with a biometric device, and 
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changes in the acquisition environment [14]. In what follows, we present the idea of 
exploiting the Real AdaBoost to reduce the computational effort used to estimate such 
parameters. 

2.2 Modified Real AdaBoost 

Real AdaBoost [8] is the generalization of Discrete AdaBoost [15], where each of the 
base classifiers generates not only hard class labels, but also real valued “confidence-
rated” predictions. It is observed to be tolerant with regards to classification noise, 
and is capable of providing better performance, as compared to the Discrete Ada-
Boost.  
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Fig. 1. The Real AdaBoost algorithm 

Let )},(),...,,(),,{( 2211 mm yyyX xxx=  be a sequence of m  training samples, 

where ix  is a vector of matching scores, and iy  is its associated class label, i.e., 

}1,1{ +−∈iy , where  -1 denotes an impostor, and +1 denotes a genuine user. Fig. 1 

shows the Real Adaboost algorithm. In step (1), the weights of each sample are se-
lected to be uniformly distributed for the entire training data set, i.e., miD /1)(1 = .  

In step (2), T  base classifiers are trained, as shown in steps (2a)-(2c). In step (2a), 
the base classifier )|()|()( IGt wpwpg xxx −=  is trained using the entire training 

data set and a different tfT 01.0= . This is the key difference from the conventional 

Real AdaBoost, which trains the base classifiers using a variety of data sets or feature 
sets. In step (2b), the weight updating parameter tα  is determined such that the 

bound on the generalized training error is minimized as in [8], [15]. Next, the weight 
distributions of the genuine user and impostor classes for the next iteration (i.e., 
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)(iDt ) are updated and normalized (steps (2c)). After T  iterations of step (2), the 

final hypothesis )G(x  is obtained as a linear combination of the T  weak hypothe-

ses (step (3)). As can be seen, the base classifiers are generated using various values 
of Tf . Hence, no training is required to find its optimal value. In general, each base 

classifier is known to make errors, however the patterns, which are misclassified by 
the different classifiers are not necessarily the same. 

3 Experiments 

Experiments were carried out on the BioSecure DS2 [9], which is the desktop scena-
rio subset of the BioSecure database. The database contains still face, 6 fingerprint 
(i.e., thumb, middle, and index fingers of both hands) and iris matchers from 333 
persons. A detailed description of the BioSecure DS2 database can be found in [9]. It 
should be noted that the BioSecure DS2 database has a class imbalance in the order of 
524:1. By exhaustively pairing the available face, fingerprint, and iris matchers with 
respect to multimodal fusion (using different biometric traits), we obtain 13 possible 
combinations. Experiments were conducted using the functions provided by the Data 
Description Toolbox 1.9.1 [16]. The performance in terms of the a priori Half Total 
Error Rate (HTER) was evaluated using the tools, proposed in [17]. 

We first evaluate the influence of the number of rounds of boosting T  on the pro-
posed system. It should be noted that when T  is increased, the range of the fraction 
rejection Tf , used by the base classifier, is increased accordingly. For example, if 

10=T , then the range of Tf  should be from 0.01 to 0.1 (i.e., 1001.0 × ). Fig. 2 de-

picts the matching performance of the proposed system as a function of T . It can be 
empirically observed that the proposed system does not overfit, even when 50=T . 
This clearly contradicts the spirit of the bound on the generalized error, which sug-
gests that boosting will overfit if it runs for too many rounds [8], [15]. In fact, the 
HTER across the 13 possible combinations do not change for ]50,...,10[=T . 
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Fig. 2. The HTER (%) of the proposed system as a function of ]50,...,1[=T  

Table 1 shows the detailed results of the proposed system across 13 fusion  
possibilities, which are then compared with other state-of-the-art techniques, includ-
ing the sum of scores (abbreviated as SUM) [1], likelihood ratio based score fusion 
(abbreviated as LR) [10], and SVM. In Table 1, Dr-Tr and Dr-Te denote the decision 
rule, described in Section 2.1, when Tf  is optimized on the training set and when  
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Tf  is directly optimized on the testing set, respectively. The following observations 

can be made: 

• When appropriate Tf  is selected, the Dr-Te offers a significant advantage as it 

outperforms other state-of-the-art techniques. In practice, it is not easy to estimate 
the appropriate value of Tf  even when it is optimized because biometric training 

data is usually different from testing data. The results of the Dr-Tr further confirm 
this observation. Nevertheless, it is important to note that the Dr-Tr achieves sig-
nificant lower error rates, with respect to the SUM and SVM. 

• The proposed system performs best as it provides a performance improvement in 
terms of average HTER of 5%, 13% and 14% as compared to the LR, SVM, and 
SUM. Indeed, it is shown to achieve higher verification accuracy, relative to the 
Dr-Te, which optimizes Tf  directly on the testing set. 

Table 1. The HTER (%) of different techniques accross 13 possible combinations of the 
BioSecure DS2 datababase. Note that * indicates the lowest HTER. 

 SUM LR SVM Dr-Tr Dr-Te 
Proposed 
System 

Face + Right thumb finger 5.34 4.46 5.16 4.81 4.36* 4.54 
Face + Right index finger 3.49 3.44 3.12 3.59 2.92* 2.92* 
Face + Right middle 
finger  

5.42 4.94 6.10 5.56 5.15 3.79* 

Face + Left thumb finger 4.27 3.74 3.74 4.36 3.84 3.64* 
Face + Left index finger 3.18 3.75 3.17* 3.71 3.47 3.44 
Face + Left middle finger 3.95 3.42* 4.37 4.00 3.44 3.88 
Face + Iris 5.67 4.80 4.70 4.63 4.63 4.46* 
Iris + Right thumb finger 6.85 6.39 6.58 6.65 6.14* 6.21 
Iris + Right index finger 4.15 3.42 3.76 3.26 3.26 3.25* 

Iris + Right middle finger 6.53 5.38 6.81 5.76 5.35* 5.58 
Iris + Left thumb finger 6.55 6.16 6.19 6.06 6.06 5.57* 
Iris + Left index finger 4.98 4.75 5.19 4.74 4.61 4.49* 
Iris + Left middle finger 5.72 5.14 6.34 5.57 5.44 5.04* 

Mean 5.08 4.60 5.01 4.82 4.51 4.37 

4 Conclusions 

In this paper, a new system has been proposed by first developing a decision rule for 
the fusion of one-class classifiers. Next, the Real AdaBoost is employed, where this 
decision rule is treated as the base classifier and is trained using the entire training 
data, but with different parameter settings (i.e., fraction rejection). In general, this 
system offers many distinct advantages. It is shown that it can effectively exploit the 
entire set of the training data, and efficiently handle the class imbalance problem, 
while reducing the computational effort for estimating the optimal value fraction  
rejection, which is difficult to achieve in practice. Experiments carried out on the 
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BioSecure DS2 database, demonstrate that the proposed system can provide signifi-
cantly better performance as compared to other state-of-the-art techniques, including 
the sum of scores, likelihood ratio based score fusion, and support vector machines.  
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Abstract. Cancer cells are to some extent regarded as similar to undifferen-
tiated cells, such as embryonic stem cells and induced pluripotent cells. Howev-
er, cancer cells can be reprogrammed using standard reprogramming  
procedures. Thus, it would be interesting to observe the result of cancer cell re-
programming. In this paper, we reanalyzed publically available mRNA expres-
sion and promoter methylation profiles during reprogramming of non-small-cell 
lung cancer cell lines, using the recently proposed principal component analy-
sis-based unsupervised feature extraction. Six genes, TGFBI, S100A6, CSRP1, 
CLDN11, PRKCDBP, and CRIP1, were commonly found (P = 0.003) in the 100 
top-ranked genes with aberrant expression or aberrant promoter methylation. 
Because all six genes were related to cancer in the literature, they might be new 
therapeutic targets for treatment of non-small-cell lung cancer. 

Keywords: principal component analysis, feature extraction, non-small-cell 
lung cancer, aberrant promoter methylation, reprogramming. 

1 Introduction 

Because cancers are regarded to be similar to undifferentiated cells to some extent [1], 
it would be interesting to observe the outcome of cancer cells that are further repro-
grammed. Mahalingam et al. [2] recently measured gene expression and promoter 
methylation profiles during non-small-cell lung cancer (NSCLC) cell line repro-
gramming. They observed that reprogramming drastically changed both gene expres-
sion and promoter methylation profiles and concluded that reprogramming could 
reverse aberrant gene expression and promoter methylation profiles that might cause 
cancer progression. However, the integration of gene expression analysis and promo-
ter methylation profiles for multiple sample classes has remained partial. In this  
paper, we applied recently proposed principal component analysis (PCA)-based unsu-
pervised feature extraction (FE) [3,4,5,6,7] to gene expression and promoter methyla-
tion profiles. This allowed us to integrate gene expression and promoter methylation 
analysis over multiple sample classes. We identified six genes with aberrant gene 
expression and promoter methylation that were negatively correlated with each other. 
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These genes were extensively reported to be related to cancers. This suggests the 
usefulness of PCA-based unsupervised FE for the multiclass problem. 

2 Approaches 

Gene expression and promoter methylation profiles were downloaded from Gene 
Expression Omnibus (GEO) using GEO ID: GSE35913. The file including gene ex-
pression, GSE35911_SampleProbeProfile.txt.gz, was provided as a supplementary 
file in the subseries GEO ID: GSE35911. Columns annotated as “AVG_Signal” were 
used. Promoter methylation profiles were obtained from “Series Matrix File(s)” in the 
subseries GEO ID: GSE35912. They consisted of eight cell lines, H1 (ES cell), H358 
and H460 (NSCLC), IMR90 (Human Caucasian fetal lung fibroblast), iPCH358, 
iPCH460, iPSIMR90 (reprogrammed cell lines), and piPCH358 (re-differentiated 
iPCH358) with three biological replicates. In total, there were 3 replicates × 8 cell 
lines × 2 properties (gene expression and promoter methylation) = 48 samples. 

Probes were embedded into a two-dimensional space by applying PCA to either 
gene expression or promoter methylation. Based on biological considerations, PC2s 
were employed for FE. The top 100 outliers were selected for gene expression and 
promoter methylation profiles.  
Disease associations with genes were investigated by Gendoo [8], a literature-based 
disease-gene association database. 

For gene expression, probe annotations were based on the “Accession”  
column (for RefSeq gene ID) or “Symbol” column (for gene symbol) in the 
GSE35911_SampleProbeProfile.txt.gz file. For promoter methylation, GPL8490-
65.txt available from the GEO ID: GSE35912 file was used and the “Accession” col-
umn was used to assign a Refseq gene ID to each probe. 

To confirm a negative correlation between promoter methylation and gene expres-
sion based on PCA, a two-step analysis is required as follows: 

1. Compute correlation coefficients of selected principal components (PCs) between 
gene expression and promoter methylation. 

2. If the correlation coefficients are negative (positive), probes corresponding to the 
same gene should have equally (oppositely) signed PC scores between gene ex-
pression and promoter methylation. 

To confirm this point, the first 100 top-ranked probes having positively (negative-
ly) larger PC scores were extracted for PC1 (PC2) of gene expression. Then, PC1 
(PC2) scores for promoter methylation of probes corresponding to genes attributed to 
the selected probes by gene expression were extracted. If PC scores selected for pro-
moter methylation were significantly negative (positive) and if correlation coefficients 
of PC1 (PC2) between promoter methylation and gene expression were positive (neg-
ative), or if PC scores selected by promoter methylation were significantly positive 
(negative) and if correlation coefficients of PC1 (PC2) between promoter methylation 
and gene expression were negative (positive), PC1 (PC2) represented a negative cor-
relation between gene expression and promoter methylation. Significance was tested 
using one sample t-test of PC scores in promoter methylation of the selected probes. 
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3 Results 

Figure 1 shows the two-dimensional embedding of probes when applying PCA to 
either gene expression or promoter methylation. Contributions of PC1 and PC2 to 
overall gene expression (promoter methylation profile) were 91 (84)% and 3 (6)%, 
respectively. Figure 2 shows the contribution from each sample to PC1 and PC2 for 
gene expression and promoter methylation. To apply PCA-based unsupervised FE to 
gene expression/promoter methylation, it is important to determine which PC is bio-
logically meaningful. First, because promoter methylation is thought to suppress gene 
expression, selected PCs for gene expression and promoter methylation should be 
negatively correlated. 

Table 1 shows the correlation coefficients of PC1 and PC2 between promoter  
methylation and gene expression. Because PC1s are positively correlated, probes 
corresponding to the same gene should have oppositely signed PC scores for gene 
expression and promoter methylation (see Approaches). To determine this, we  
selected the 100 top-ranked probes with high PC1 scores for gene expression,  
and tested whether PC1 scores for promoter methylation in 100 probes that shared 
genes with the selected 100 probes for gene expression were negative. PC1 scores for 
promoter methylation were significantly positive (P = 2.2×10-8). PC1s therefore do 
not represent a negative correlation between gene expression and methylation, and 
were thus  excluded as PCs for FE. Because PC2s were negatively correlated, probes 
corresponding to the same gene should have equally signed PC scores for gene ex-
pression and promoter methylation. To determine this, we selected the 100 top-ranked 
probes with low PC2 scores for gene expression and tested whether PC2 scores for 
promoter methylation of the 100 probes that share genes with the selected 100 probes 
for gene expression were negative. PC2 scores for promoter methylation were signifi-
cantly negative (P = 0.0001). PC2s therefore represent a negative correlation between 
gene expression and methylation, and thus were used as PCs used for FE.  

 

Fig. 1. Two-dimensional embedding of probes when applying PCA to gene expression (top) or 
promoter methylation (bottom). Horizontal (vertical) axis: PC1 (PC2). 
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Although PC2s represented a global negative correlation between gene expression 
and promoter methylation, the contribution of PC2s was as low as a few percent, thus, 
it was not clear whether each gene reflected a negative correlation. To confirm this, 
we selected 100 top-ranked probes with high PC2 scores for gene expression and 
promoter methylation and identified six probes sharing the same genes for gene ex-
pression and promoter methylation. The probability that six probes were accidentally 
included in both sets was 0.003. Thus, the two sets of 100 probes had significant over-
lap. Figure 3 shows the sample contributions to PC2 for gene expression and promo-
ter methylation of individual genes. Generally, individual gene base correlations  
between gene expression and promoter methylation were more significant than that 
between PC2s (−0.62, Table 1). Thus, our PCA-based unsupervised FE system suc-
cessfully selected genes with a negative correlation between gene expression and 
promoter methylation. 

 

Fig. 2. Contributions from samples to PCs. (a) PC1, (b) PC2 for gene expression, (c) PC1, and 
(d) PC2 for promoter methylation. 
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Table 1. Pearson correlation coefficients (P-values) of PCs between gene expression and 
promoter methylation profiles 

 Promoter methylation profile 
PC1 PC2 

Gene expression 
 

PC1 0.58 (0.003) 0.59 (0.002) 
PC2 −0.59 (0.002) −0.62 (0.001) 

4 Discussion 

4.1 Biological Significance 

Although our PCA-based unsupervised FE system successfully selected six genes 
with a negative correlation between gene expression and promoter methylation, the 
biological significance was not clear. Table 2 shows disease association with the six 
genes reported by Gendoo [8].  

Table 2. Disease association with the six selected genes related to cancer/tumors only reported 
by the Gendoo server 

Gene Symbol Disease Associations (P-values) 

TGFBI 
Neoplasms, Radiation-Induced (3×10-5); Neoplasm Invasiveness 
(2×10-4); Cell Transformation, Neoplastic (6.7×10-3); Bronchial 
Neoplasms (0.02); Cocarcinogenesis (0.03) 

S100A6 
Skin Neoplasms (1.1×10-11); Pancreatic Neoplasms (1.8×10-11); 
Adenocarcinoma (3.6×10-8); Melanoma (6.4×10-8); Precancerous 
Conditions (9.1×10-8); 

CSRP1 
Carcinoma, Hepatocellular (1.3×10-2); Liver Neoplasms (0.014); 
Prostatic Neoplasms (0.017) 

CLDN11 No associations 

PRKCDBP 
Lung Neoplasms (4.9×10-4); Hamartoma (5.0×10-4); Glioblas-
toma (7.9×10-3); Adenoma (0.012); Carcinoma, Non-Small-Cell 
Lung (0.013) 

CRIP1 
Carcinoma, Hepatocellular (0.025), Liver Neoplasms (0.028), 
Prostatic Neoplasms (0.033) 

 
Table 2 shows that many disease associations have been reported for TGFBI, 

S100A6, CSRP1, PRKCDBP, and CRIP1 genes. Among the six selected genes, only 
CLDN11 was not related to cancer disease. Thus, the PCA-based unsupervised FE 
system successfully selected genes that appear to be important during reprogramming 
of NSCLC. 
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4.2 Gene Expression/Promoter Methylation Profile of Individual Genes 

Generally, induced pluripotent stem cell (iPC/iPS/piPC) lines exhibited similar gene 
expression and promoter methylation profiles, with suppressed gene expression and 
hypermethylated promoters (Fig. 3). This observation is coincident with the idea that 
promoter methylation suppresses gene expression and the conclusion by Mahalingam 
et al. that reversal of gene expression during reprogramming is mediated by hyperme-
thylation. However, the behavior of other cell lines, H1, H358, H460, and IMR90, 
were not straightforward. For example, TGFBI had  the highest upregulation in the 
IMR90 cell line while S100A6 was most upregulated in the H358 cell line. This di-
vergence is often observed in genes/cell lines for both gene expression and promoter 
methylation. This suggests that cancer cell lines could be successfully reprogrammed 
into specific cell types, possibly pluripotent cells. 
 

 

Fig. 3. Gene expression (first and third columns)/promoter methylation profile (second and 
fourth columns) of individual genes. “cor” represents Spearman correlation coefficients be-
tween gene expression and promoter methylation. “P” represents associated P-values. 

 



 Integrative Analysis of Gene Expression and Promoter Methylation 451 

 

 

 

Fig. 3. (Continued.) 
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4.3 Detailed Views of Selected Genes 

This section will discuss the selected genes individually from a biological perspective. 
TFGBI has four fasciclin extracellular domains about 140 amino acid residues in 

length. It is thought that the FAS1 domain represents an ancient cell adhesion domain 
common to plants and animals. The relationship between TGFBI expression and can-
cer is unclear. One study identified TGFBI as a tumor suppressor [9], whereas another 
reported TGFBI promoted metastasis [10]. Irigoyen et al. [11] reported TGFBI ex-
pression was associated with a better response to chemotherapy in NSCLC. There-
fore, TGFBI seems to function as both tumor suppressor and promoter depending 
upon the specific tumor microenvironment present [12]. Although the function of 
TGFBI is currently unclear, the publication of many reports linking cancer and TGFBI 
expression indicates the PCA methodology was useful.   

S100A6 is a member of the S100 protein family of low-molecular-weight proteins 
found in vertebrates and characterized by two calcium-binding sites with a helix-loop-
helix ("EF-hand type") conformation. S100A6 is upregulated in cancer [13,14].  
Functionally, cancer progression by S100A6 was mediated via the suppression of 
CacyBP/SIP-mediated inhibition of cancer cell proliferation and tumorigenesis [15]. 
The large number of papers reporting the upregulation of S100A6 in cancers suggests 
our methodology was successful.  

CSRP1 has two LIM protein structural domains, composed of two contiguous zinc 
finger domains, separated by a two-amino acid residue hydrophobic linker. LIM-
domain containing proteins play roles in cytoskeletal organization, organ development 
and oncogenesis. LIM-domains mediate protein-protein interactions that are critical to 
cellular processes. Two independent studies identified CSRP1 as suppressive in tumors 
[16,17]. Zhou et al. [16] also hypothesized CSRP1 as a tumor suppressor by literature 
search analysis. CSRP1 was also reported to be methylated in HCC more frequently 
than in non-HCC [18]. However, Hu-Lieskovan et al. reported upregulation of CSRP1 
in cancer cell lines [19]. Thus, although it is unclear whether CSRP1 is a tumor  
suppressor or oncogene, as there was more than one paper reporting a relationship 
between CSRP1 expression and cancer, our methodology was successful. 

CLDN11 is a member of the claudin proteins that are important tight junction com-
ponents, which establish a paracellular barrier to control the flow of molecules in the 
intercellular space between cells in the epithelium. Silencing of CLDN11 was asso-
ciated with increased invasiveness of cancer [20]. Collective migration of cancer-
associated fibroblasts was enhanced by overexpression of tight junction-associated 
proteins CLDN11 and occludin [21]. Although the Gendoo server failed to report 
cancer association with CLDN11, these studies suggest a relationship between cancers 
and CLDN11. Thus, our methodology also worked for CLDN11. 

PRKCDBP, also known as cavin-3, is a member of the cavin proteins that consist 
of cavin-1, -2, -3 and -4. Cavin proteins are localized to caveolae, flask-shaped lipid 
rafts that are critical for signal transduction. PRKCDBP is also a tumor suppressor, 
since its expression was downregulated in various cancers. Hernandez et al. [22] re-
cently demonstrated that cavin-3 forms a complex with other cavin family proteins. 
They also showed that the cavin-3 lacking NSCLC cell line H1299 exhibited a 7.6-
fold increase in surface caveolae by restoration of cavin-3. In their hypothesis, cavin-
3 mediated signal transduction of the ERK/Akt signaling pathway, which is critical 
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for oncogenesis. As seen in Fig.3, the expression of PRKCDBP in cancer cell lines 
was less than that of IMR90, a fully differentiated cell line, which is coincident with 
the hypothesis that PRKCDBP is a tumor suppressor. However, PRKCDBP expres-
sion is reduced in ES/iPS cell lines. Thus, currently it is not clear whether a reduction 
of PRKCDBP expression always mediates cancer progression. A more detailed inves-
tigation is required. All of these studies suggest PRKCDBP has a potentially critical 
role in NSCLC, supporting the correctness and/or usefulness of our methodology.   

CRIP1 contains a LIM domain, as does CSRP1. Similar to CSRP1, the relationship 
between CRIP1 expression and cancer is unclear. Although CRIP1 is expressed in 
various tumors, suggesting it is oncogenic, a lack of CRIP1 expression is also corre-
lated with a worse prognosis of patients, indicating CRIP1 is a tumor suppressor [23]. 
However, hypomethylation of CRIP1 in cancer was also observed, suggesting CRIP1 
is oncogenic [24]. In addition, its cellular role is still unclear. Since many articles 
reported a relationship between aberrant CRIP1 expression and cancer, our methodol-
ogy to detect NSCLC-related genes was successful.   

5 Conclusion 

In this study, we applied recently proposed PCA-based unsupervised FE to publically 
available gene expression/promoter methylation samples during reprogramming of 
NSCLC cell lines. Our unsupervised method identified a number of cancer-related 
genes. This demonstrates the superiority of PCA-based unsupervised FE, because the 
results were more robust compared with previous studies as there was reduced arbitra-
riness. For PCA-based unsupervised FE, only PCs that need to be considered for fur-
ther analyses should be specified, e.g., FE. We identified six genes with a negative 
correlation between gene expression and promoter methylation. All six genes were 
related to cancer disease. Because these genes were not previously reported as related 
to NSCLC, they might be new drug targets for the treatment of NSCLC. 
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Abstract. Protein sub-cellular localization prediction is an important and mea-
ningful task in bioinformatics. It can provide important clues for us to study the 
functions of proteins and targeted drug discovery. Traditional experiment tech-
niques which can determine the protein sub-cellular locations are almost costly 
and time consuming. In the last two decades, a great many machine learning al-
gorithms and protein sub-cellular location predictors have been developed to 
deal with this kind of problems. However, most of the algorithms can only 
solve the single-location proteins. With the progress of techniques, more and 
more proteins which have two or even more sub-cellular locations are found, it 
is much more significant to study this kind of proteins for they have extremely 
useful implication in both basic biological research and drug discovery. If we 
want to improve the accuracy of prediction, we have to extract much more fea-
ture information. In this paper, we use fusion feature extraction methods to ex-
tract the feature information simultaneously, and the multi-label k nearest 
neighbors (ML-KNN) algorithm to predict protein sub-cellular locations, the 
best overall accuracy rate we got in dataset s1 in constructing Gpos-mploc is 
66.1568% and 59.9206% in dataset s2 in constructing Virus-mPLoc.   

Keywords: N-terminal signals, pseudo amino acid composition, Physicochemi-
cal properties, Amino acid index distribution, multi-label k nearest neighbor. 

1 Introduction 

Protein is the bearer of life activities, it takes responsibility for the whole life process. 
But it can only work normally when they are in special and correct localizations. 
Since the post-genomic age, large number of protein sequences were generated, rely-
ing on biochemical experiment to determine the subcellular locations of proteins is 
unpractical. A lot of classifiers and predictors which can only deal with single-
location proteins have been developed, but some proteins may belong to two or even 
more subcellular locations, according to the report of DBMloc, more than 30% of 
proteins have more than one subcellular locations [1], so it is a common phenomenon 
for proteins to have multiple sub-cellular locations [2], however, there are only a 
handful of predictors can deal with this kind of proteins.   
                                                           
* Corresponding author. 
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In this paper, we use four feature extraction methods simultaneously, they are  
N-terminal signal [3], pseudo amino acid composition, physical and chemical proper-
ties and amino acid index distribution. Then use multi-label k nearest neighbor algo-
rithm to predict the subcellular locations and got satisfied results by Jack Knife test. 

2 Dataset 

In this paper, we choose to use two datasets. One is dataset s1 in constructing Gpos-
mploc [4], it was established specialized for Gram-positive bacteria proteins and in-
cludes both singleplex and multiplex sub-cellular location proteins. This benchmark 
dataset includes 523 gram-positive bacteria protein sequences (519different proteins), 
classified into 4 sub-cellular locations. Among the 519 different proteins, 515 belong 
to one location and 4 to two locations. None of the proteins has ≥25% sequence iden-
tify to any other in the same subset. The four subcellualr locations are shown in Fig.1. 

 
Fig. 1. Four subcellular locations of Gram-positive bacteria proteins 

The other dataset is s2 in constructing Virus-mPLoc [5]. It includes both singleplex 
and multiplex subcellular location proteins and was established specialized for viral 
proteins. This benchmark dataset includes 252 locative protein sequences (207 differ-
ent proteins), classified into 6 subcellular locations. Among the 207 different proteins, 
165 belong to one subcellular location, 39 to two locations, 3 to three locations, and 
none to four or more locations and none of the proteins has ≥25% sequence identity 
to any other in the same subset (subcellular location). The six subcellular locations are 
shown in Fig.2. 

 

Fig. 2. Six subcellular locations of virus proteins 
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3 Feature Extraction Mehtods 

3.1 Pseudo Amino Acid Composition 

Most of the feature extraction methods are based on the frequency of single or several 
residues in a protein sequence, but ignored the position information between residues. 
To avoid losing the protein sequence order information, Chou proposed a kind of 
protein descriptor, it is pseudo amino acid composition [6]. In this kind of feature 
extraction model, the feature vector is expressed by the following equation: 

)](,,,,,[F 20120201921 Nvvvvvv <= ++ ηη                   (1) 

The first twenty components is the same as amino acid composition method, reflect 
the information of protein composition. The following η  sections reflect the protein 

position information which can incarnate its unique advantage. 
Use A to represent amino acid residue, then the protein sequence can be expressed as: 

N54321 AAAAAAP =                           (2) 

1A is the first residue of protein P, N denote the length of the protein sequence. The k 

correlation factor of each residue in this protein sequence can be represented as: 
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The sequence information of the k most adjacent residues are contained in the k th 
correlation factor, ki,iΩ + is coupling factor,  
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If the k correlation factor is calculated, each dimension of the protein feature vector 
can be represented as: 
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ω is weight factor, generally defined as 0.05, if is the occurrence frequency of the 

residues in this protein sequence. The value of η  should neither too small nor too 

big. In this paper, we set it to be 20. 
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3.2 Physicochemical Properties Model 

In this model, all the protein amino acid residues are divided into three groups includ-
ing neutral, hydrophobic and polar according to their seven physicochemical proper-
ties. The seven physicochemical properties are hydrophobicity, normalized vander 
Waals volume, polarity, polarizibility, charge, secondary structures and solvent acces-
sibility.  

According to the seven properties of amino acids residues, compute occurrence 
frequency of the residues manifested as polar, neutral and hydrophobic in a protein 
sequence. The calculation formula is: 

N

n
f polar

polari =,                                     (6) 

N

n
f neutral

neutrali =,                                   (7) 

N

n
f chydrophobi

chydrophobii =,                            (8) 

.72,1 =i  polarif , represents the frequency of amino acid which are characterized by 

polar, the other two represents the frequency of neutral and hydrophobic amino acid, 
N is the length of the protein sequence. So in this feature extraction model, we get a 
21 dimension feature vector. Each protein sequence will be represented by a 21 di-
mension feature vector. The distribution situation of amino acids properties are 
showed in table 1.  

Table 1. The distribution situation of amino acids properties 

Property polar neutral hydrophobic 
hydrophobicity RKEDQN GASTPHY CLVIMFW 
normalized vander Waals GASCTPD NVEQIL MHKFRYW 
polarity LIFWCMVY PATGS HQRKNED 
polarizibility GASDT CPNVEQIL KMHFRYW 
charge KR ANCQGHILMF

PSTWYN 
DE 

secondary structures EALMQKRH VIYCWFT GNPSD 
solvent accessibility ALFCGINW RKQEND MPSTHY 

 
The 20 capitals denote the 20 amino acids respectively, the left column shows the 

seven properties of the amino acids, and the line represents the distribution situation 
of the 20 amino acids under a property. 
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3.3 Amino Acid Index Distribution 

In this kind of model, the feature vector of the protein sequence can be represented by 
the following formula: 

],,;,,;,,[ 202120212021AAID zzzyyyxxxF =  (9) 

Firstly, we introduce the first 20 dimension vectors. It is the combination of statis-
tical information and physicochemical values which can be represented by the follow-
ing formula: 

iii fJx =    20,2,1 =i  (10) 

iJ is the physicochemical values of the 20 amino acids, the physicochemical val-

ues of the 20 amino acids are as follows: JA=0.486, JC=0.2, JD=0.288, JE=0.538, 
JF=0.318, JG=0.12, JH=0.4, JI=0.37, JK=0.402,JL=0.42, JM=0.417, JN=0.193, 
JP=0.208, JQ=0.418, JK=0.262, JS=0.2, JT=0.272,JV=0.379, JW=0.462, 
JY=0.161, if is the frequency of the 20 amino acids in the corresponding protein se-

quence. iJ and if are independent to each other.  

Secondly, the following 20 dimension feature vectors is 2-order center distance in-
formation, it does not only includes the statistical information and physicochemical 
values, but also contains position information. The formula is as follows: 
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Where jip , is the position number of i th amino acid. 
−

ip is the mean position num-

ber of i th amino acid. T is the total number of protein sequence.   
Last, if the 2-order center distance information cannot cover sufficient location in-

formation, we can extract 3-order center distance information.  The formula is as 
follows: 
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The 3-order center distance information is almost the same as 2-order center distance 
excetp the order number, we can get much more and different protein information 
through change the order number. We may get unsatisfied results with the increasing 
order for it may contain much redundant information. In this paper, we used the first 
40 dimension vectors. 
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4  Multi-label k Nearest Neighbor 

Design an effective algorithm is an important step in the process of protein subcellular 
localization. Most algorithms existed can only deal with proteins with one subcellular 
location, such as nearest neighbor, neural network and so on. Seldom algorithms can 
be used to handle protein multi-site localization problem. Zhou and Zhang developed 
the multi-label k nearest neighbor [7-8] on the basis of traditional k nearest neighbor 
algorithm, which can deal with multi-label learning [9] problems.  

There are also some other multi-label algorithms, such as OVR-kNN and BP-MLL 
[10]. The OVR-k NN algorithm is also  transformed from the traditional k nearest 
neighbor algorithm, it needs to statistic the proportion of all the labels  after the k nearest  
neighbor are determined, then the labels whose proportion  is bigger than half the  
threshold  will be the label of the test sample. It is derived from the popular back-
propagation algorithm and it introduced a novel error function to capture the characteris-
tics of multi-label learning. But using this method exist the long prediction time problem.   

For a test sample, we can find out the k nearest neighbor easily, then according to 
the statistical information of the train sample labels, conditional probability and Bias 
decision theory to predict the labels of the test sample. For detail, firstly, compute the 
prior probability of all the labels no matter it is train or test sample,  
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lL1  represents that the sample have label l , correspondingly, lL0 represents that  

the sample do not have label l, )(l
jXδ is the membership of label l, s is smoothing 

exponential. 
Secondly, compute the posterior probability.  
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l
jE  represents that there are exactly j samples have label l among the k nearest 

neighbor, ][ je  counts the number of those there are exactly j samples have label l 

among the k nearest neighbor in all training sets. ][' je  counts the number of those 

there are exactly j samples without label l among the k nearest neighbor in all training 
sets. 
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Last, compute the label vector and label membership vector of the test sample. 
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)(lCT is the number of samples which have label l among the k nearest neighbor. 

5 Results and Conclusions 

In multi-label learning system, the popular evaluation metrics used in single–label 
system are unsuitable, it is much more complicated. Evaluation metrics for multi-label 
learning include the following five items. 

Hamming Loss: 


=

Δ=
tn

i
ii

t

Lxh
mn

hHLoss
1

|)(|
11

)(

                  

    (19) 

Where tn  is the number of test sample, )( ixh and iL represent predicted label and 

actual label, respectively, Δ is symmetric difference between two sets. It is used to 
evaluate the degree of inconsistency between the predicted label and actual label. 

One-error: 
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The value of )( ixE is 1 if the top-ranked label is in the set of proper labels, other-

wise it is 0. It is used to evaluate the probability of top-ranked label of sample is not 
in the proper label set. 

Coverage: 
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It is used to evaluate how many labels we need, on the average, to go down the list 
of labels in order to cover all the proper labels of the test sample. 

Ranking Loss: 
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−

iL is the complementary set of iL . It is used to evaluate average fraction of label pair 

that are reversely ordered for the samples. 

Average Precision: 
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It is used to evaluate the average prediction accuracy of sample label. 
For the first four evaluates metrics, smaller value indicates better performance, for 

the last one, on the contrary, bigger value indicates better performance. 
In multi-label learning statistical prediction, there are three cross-validation  

methods which are often used to evaluate the performance and effectiveness of the 
classifiers, they are independent dataset test, sub-sampling test and jackknife test. 
Jackknife test is considered to be the most objective and rigorous test method, so in 
this paper, we used the Jack knife test method which can reflect higher efficiency of 
the predict algorithm,   

Protein precursors include special sorting signals [11] which is called N-terminal 
signal and can instruct the protein enter into special subcellular locations, so it con-
tains large amount of protein information, but it is not very closely linked to the rest 
amino acids, so we divide the protein sequence into two parts (the N-terminal signal 
and the rest amino acid sequence) to extract much more protein information. In this 
paper, we use the following four feature extraction models to extract the protein fea-
tures simultaneously: N-terminal signals, PseAAC [12], physicochemical property 
and amino acid index distribution, then use the multi-label k nearest neighbor algo-
rithm to predict the subcellular locations of virus and Gram-positive bacteria proteins. 
For we have extracted relative enough feature information, so we got satisfied results 
by Jack knife test. We can get a label set from the test process each time, if the pre-
dicted label set is the same as the original label set totally, it is  regarded as correct, 
or it is not correct even if there is only one label is wrong. The experimental results on 
the two datasets are showed in the following two tables, k varies from one to five. The 
best results on each metrics are shown in bold face. 

Table 2. Comparision results of ML-KNN with different number of nearest neighbors 
considered for s1 dataset 

 
k 

Evaluation criterion 
Hamming 
Loss 

One-
error 

Coverage Ranking 
Loss 

Average 
Precision 

1 0.164 0.329 0.518 0.169 0.809 
2 0.173 0.275 0.398 0.129 0.845 
3 0.144 0.285 0.415 0.135 0.839 
4 0.152 0.273 0.413 0.134 0.844 
5 0.152 0.287 0.422 0.137 0.838 
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Table 3. Comparision results of ML-KNN with different number of nearest neighbors 
considered for s2 dataset 

 
k 

Evaluation criterion 
Hamming 
Loss 

One-
error 

Coverage Ranking 
Loss 

Average 
Precision 

1 0.123 0.377 1.048 0.133 0.775 
2 0.167 0.409 1.143 0.152 0.756 
3 0.179 0.413 1.167 0.153 0.748 
4 0.179 0.401 1.218 0.165 0.748 
5 0.179 0.377 1.214 0.159 0.753 

 
It can be seen from the table 2 that the best performance is when the number of 

nearest neighbor is 2 for s1 dataset, the best overall accuracy rate we have achieved is 
66.1568%. It combined the following three feature extraction models: N-terminal 
signals, PseAAC, physicochemical property, if the four models are used to extract 
features simultaneously, the overall accuracy rate is only 63.2887%, From table 3 we 
can see that we can get the best results when the number of nearest neighbor is 1 for 
s2 dataset, the four models are combined simultaneously and the best overall accuracy 
rate 59.9206%. For dataset s1, the 4 protein sequences which have 2 subcellular loca-
tions are predicted accurately, 338 protein sequences of the 515 protein sequences 
which localized to only one subcellular location are predicted accurately. For the da-
taset s2, all the protein sequences which have two or more subcellular locations( the 
39 protein sequences localized to two subcellular locations and the 3 protein se-
quences localized to 3 subcellular locations ), we have predicted all their subcellular 
locations accurately, for the 165 proteins which have only one subcellular location,  
65 of them are predicted accurately.  

Table 4. Comparision results of different feature extraction method  

dataset Feature extraction method 
N+PseAAC N+PseAAC+PC N+PseAAC+PC+AA

ID 
S1 55.0669% 66.1568% 63.2887% 
S2 55.9524% 58.7302% 59.9206% 

 
As we can see from the table 4, only rely on single feature extraction model to ex-

tract features is far from enough, remarkable performance may be achieved if several 
models are combined, but if inappropriate model is included in, the result may be 
opposite for large amount of redundant information have affected and disturbed the 
computation to some extent. So it is important to choose the appropriate feature ex-
tract methods for different datasets.   

Although the feature extraction methods and algorithm used in this paper have got 
satisfied performance, seeking much more efficient and accurate methods are still a 
difficult and meaningful task which need much more efforts. 
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Abstract. It is known that the observed PPI network is incomplete with low 
coverage and high rate of false positives and false negatives. Computational 
approach is likely to be overwhelmed by the high level of noises and 
incompleteness if relying on local topological information. We propose a global 
voting (GV) model to predict protein function by exploiting the entire topology 
of the network. GV consistently assigns function to unannotated proteins 
through a global voting procedure in which all of the annotated proteins 
participate. It assigns a list of function candidates to a target protein with each 
attached a probability score. The probability indicates the confidence level of 
the potential function assignment. We apply GV model to a yeast PPI network 
and test the robustness of the model against noise by random insertion and 
deletion of true PPIs. The results demonstrate that GV model can robustly infer 
the function of the proteins. 

Keywords: Diffusion Geometry, PPI Network, protein function prediction. 

1 Introduction 

The advancement in high-throughput technologies has resulted in a rapidly growing 
amount of data in many genome research fields [16], [21], [12], [30], [9], [29], [15]. 
Then, inference of protein functions is one of the most important aims in modern 
biology [26]. However, in spite of the advancement in protein function characterizing 
techniques, even for the most-studied model species, such as yeast, there is a 
proportion of about 10% to 75% uncharacterized proteins [26], [27]. We are therefore 
facing an increasing demand of approaches for functional annotation for ever-growing 
amount of proteins. The vivo methods are usually labor-intensive and associated with 
high rate of false measurement of protein functions [2], [11]. In addition, it is somehow 
impractical to experimentally identify the functions for all individual proteins within 
one cell [2]. Therefore, the development of more sophisticated silico models assisting 
the interpretation of the wealth of observed data has been receiving more and more 
attention to meet this demanding challenge in recent years [2], [27], [28]. 

The traditional approaches in computational functional annotation first characterize 
each protein by a set of features, for example, the sequence and structure, and use machine 
learning algorithms to predict annotation based on those features [1], [23]. Recent 
developments in large-scale experiments have led to the new representation for protein 
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relationship, protein-protein interaction (PPI) network, with nodes representing proteins 
and edges representing the identified interactions [16], [21], [12], [30], [9], [29], [15], [27]. 
Many approaches have been proposed to computationally predict the protein functions 
based on the PPI network [26], [25], [16], [28]. Those approaches basically aim at 
predicting the function of unannotated proteins from functional annotated ones in the 
network by which the connections among all proteins are described. We can break the 
approaches into two broad categories: direct methods and module-assisted methods as 
reviewed in [26]. For the direct methods, the basic assumption behind is that the closer the 
two proteins in the network the more likely they have similar function. The majority rule 
(MR) algorithm proposed in [25], also known as neighborhood counting, predicts the 
function of a protein from the known functions of its neighbors in the network. MR 
assigns a protein the function which is most common to its neighbors. There are variants 
of MR algorithm proposed in [3], [10]. Apparently the simplicity and effectiveness give 
MR a distinct advantage over other approaches. However, its performance can be easily 
affected by the false measurement in the network due to its dependency on local 
neighborhood [26]. In [20], [13], [31]; the cut-based and flow-based algorithms exploit the 
entire topology of the network and provide a more robust strategy to predict protein 
function. Vazquez [31] predicts the function of a protein by maximizing the number of 
edges that link proteins assigned with the same function. This type of methods can predict 
the function of protein with a relatively higher precision but normally have computational 
difficulty for solving the optimization problem. The probabilistic approaches based on 
Markov random field (MRF) are other kind of methods for protein annotation [14], [5], 
[6]. The pioneering MRF based method and its variants have shown good performance in 
the prediction of protein function in the network. For the module-assisted methods, also 
known as indirect method, the basic assumption is that the coherent subset of proteins in 
the network is a functional module in which unannotated components can be characterized 
by functional known ones. As our approach is not in this category, we refer interested 
readers to [26] for a review of the module-assisted methods. 

Here, we develop a global voting model for the protein function prediction solely 
based on the topology of PPI network. Along with the development of GV model, we 
introduce six new concepts for protein: protein function vector, protein function 
matrix, protein voting vector, protein voting matrix, predicted function vector and 
predicted function matrix. The GV model elegantly finishes the procedure of the 
function prediction for all unannotated proteins by a simple matrix product of protein 
function matrix and protein voting matrix. The predicted function vector assigns each 
unannotated protein a list of potential functions with each attached a probability score. 
To exploit the entire topology of the network, we integrate the heat diffusion 
weighting scheme into global voting model to enhance its understanding of the PPI 
network. Fig. 1 illustrates the basic idea of proposed global voting model for the 
application of protein function prediction. Fig. 1(A) demonstrates a toy PPI network 
consisting of 7 proteins and 9 PPI in the network. The line between two proteins 
indicates there is a PPI between them. Fig. 1(B) demonstrates the mechanism of the 
function prediction by global voting model. To predict the function for protein Pi, all 
of annotated proteins in the network vote based their weight with Pi, for example, Wij 
denotes the weight between protein Pi and Pj. Global voting model would basically 
assign the function to unannotated protein based on weighting the functions of all 
annotated proteins in the network. This voting strategy is efficient since it predicts 
function for all unannotated proteins at once. 
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2 Methods 

2.1 Global Voting Model 

To present global voting model for the prediction of the proteins in the network, we 
introduce a set of the new definitions to understand the voting process. We define 
three vectors, namely protein function vector, protein voting vector and predicted 
function vector, and three matrices, namely protein function matrix, protein voting 
matrix and predicted function matrix. In Fig. 2, we can see the three matrices with 
columns in each matrix representing the corresponding vectors. 

 
Fig. 1. Global voting model for function prediction of PPI network 

 
Fig. 2. Global voting procedure 

Protein Function Vector and Matrix. We define protein function (PF) vector for 
representing the function of a protein. The PF vector for a protein is defined as a high-
dimensional vector with the dimensionality equal to the total number of the functional 
categories. For example, 424 functional categories, determined by the finest grain 
classification scheme in MIPS, will give a 424 dimensional PF vector for each protein in 
the network. The component of a PF vector is either ‘1’ or ‘0’. The ‘1’ denotes that the 
protein has the corresponding function and ‘0’ denotes the protein does not have the 
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corresponding function. The PF vector is a compact form in representing all possible 
functions for one protein. We define the protein function (PF) matrix for representing the 
function of all annotated proteins. The PF matrix is formed by placing the PF vector of 
each annotated protein at the column of the matrix. Therefore, the PF matrix is a F by N 
matrix, where F denotes the dimensionality of the PF vector and N denotes the number of 
the annotated proteins in the network. The left matrix in Fig. 2 illustrates the PF vector 
and PF matrix, and how they are related to each other. In addition, as the PF vector and 
PF matrix are normally sparse with few ones and lots of zeros, they can be easily stored 
as a sparse vector / matrix for computational efficiency. 

 
Protein Voting Vector and Matrix. We define protein voting (PV) vector for 
representing the similarities between one specific unannotated protein and all 
annotated ones in the network. The PV vector for a protein is defined as a high-
dimensional vector with the dimensionality equal to total number of the annotated 
proteins in the network. The component of a PV vector is a floating value measuring 
the similarity between the unannotated protein and one annotated protein in the 
network. We define the protein voting (PV) matrix for representing the similarities 
between all unannotated proteins and all annotated ones in the network. The PV 
matrix is formed by placing the PV vector of each unannotated protein at the column 
of the matrix. Therefore, the PV matrix is a N by M matrix, where N denotes the 
number of the annotated proteins and M denotes the number of unannotated proteins 
in the network. The middle matrix in Fig. 2 illustrates the PV vector and PV matrix, 
and how they are related to each other. 

 
Predicted Function Vector and Matrix. We define predicted function (PRF) vector 
for representing the probability of the potential function assignments to an 
unannotated protein. The PRF vector for a protein is defined as a high-dimensional 
vector with the dimensionality equal to the total number of functional categories. The 
PRF vector is normalized to have a length of one. The component of a PRF vector is a 
floating value measuring the probability to assign a specific function to the 
unannotated protein. The higher the value is, the more likely the protein has  
the corresponding function. For example, if the second component in PRF vector has 
the largest value among all components, the function defined by the second functional 
category is of the highest probability to be assigned to the protein. We define the 
predicted function (PRF) matrix for the probabilities of the potential function 
assignments to all unannotated proteins in the network. The PRF matrix is formed by 
placing the PRF vector of each unannotated protein at the corresponding column of 
the matrix. Therefore, the PRF matrix is a F by M matrix, where F denotes the 
number of the dimensionality of the PF vector and M denotes the number of 
unannotated proteins in the network. The right matrix in Fig. 2 illustrates the PF 
vector and PF matrix, and how they are related to each other. 

Based on the definition of the vectors and matrices above, the global voting model 
elegantly predicts all unannotated proteins at once in the network by matrix product, 
the product of PF matrix and PV matrix. The produced PRF vector in PRF matrix 
records the probabilities of all potential functions for each unannotated protein. The 
PV matrix is critical for the prediction of functions of unannotated proteins in network 
as it basically transfers the similarity among proteins in the network to functional 
similarity among proteins. A good PV matrix should reflect the intrinsic similarity 
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among proteins insensitive to false positive and false negative PPIs in the network. 
The use of diffusion based concepts demonstrates good performance in bioinformatics 
applications [17], [18]. We therefore use the heat diffusion based weighting strategy 
to form the PV matrix. We present the details of how heat diffusion based PV matrix 
can be formed below. 

2.2 Diffusion Based PV Vector and Matrix 

Heat kernel measures the amount of the heat that passes from node i to any other node 
j within a certain period of time. The amount of heat transferred between a pair of 
nodes can thus be used to represent the affinity of two nodes and thus serve as the 
corresponding entry in PV matrix. 

 
Heat Kernel. The PPI network is denoted as a graph G=(V, E), where V is the set of 
notes, E is a set of edges. We define the adjacency matrix A below. 
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Where Ai,j represents the connectivity between node i and node j and 1 indicates an 
interaction exists between a pair of nodes. The heat kernel can be expressed as the 
eigenfunction expansion by graph Laplacian described below. 
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Where Ht is the heat kernel and L  is the normalized graph Laplacian. By Spectral 
Theorem, the heat kernel can be further expressed as follows: 
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where kλ is the kth eigenvalue of the Laplacian and kφ  is the kth normalized 

eigenfunction, Ht (i, j) is defined as heat affinity between node i and j in this paper. 

PV Vector and Matrix. Heat kernel qualitatively measures the intrinsic relationship 
between all pairs of nodes in the network since it exploits the topology of the entire 
network. Our PV vector and matrix, defined based the heat diffusion similarity, 
reflects the hidden relationships among the nodes in the nodes. Suppose we have a set 
of proteins with N annotated ones and M unannotated ones. We have a N *M PV 
matrix while each column of the matrix is a PV vector. The entry (i,j) in PV matrix is 
given by the heat affinity between ith annotated protein and jth unannotated protein. 
The higher the value is, the stronger the pair of proteins is connected to each other, 
the more likely they have similar function. The description of global voting algorithm 
is explained in Algorithm 1. 
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Algorithm 1. Global voting for protein function prediction 
• Given PPI network with N annotated proteins and M unannotated proteins. The 

level of functional categories is F 
• Define the graph representation G for PPI network 

• Compute the graph Laplacian L  for the PPI network 
• Compute the heat kernel H by exponentiating the graph Laplacian and produce 

the heat affinity matrix 
• Define a F*N PF matrix and a N*M PV matrix for the global voting model 

according to the description in this section. 
• Compute the F*M PRF matrix for the protein function prediction for each 

unannotated protein. 
• The PRF vector is normalized to length ‘1’ and each of its components represents 

the probability of a specific functional assignment to an unannotated protein. 
• The predicted functions of an unannotated protein can be assigned according to 

the descending order of probability in a PRF vector. 
• Return the predicted functions 

3 Results 

We evaluate the predictive performance using the area under ROC curve (AUC) [24], 
[22]. Second, we evaluate the success rates (percentage of predictions that are correct) 
[31], [20] in the original network for the different fractions of unannotated proteins. 
Third, we evaluate the success rates in the noisy network at different rates of false 
positive and false negative PPIs in network. We verify our approach on two PPI 
networks: DIP-Core (S. cerevisiae) [4] and Yeast network [31]. We call DIP and 
VAZ, respectively. The functional classification is adopted from the MIPS 
classification scheme [19] and consists of 17 high level functional categories. The 
functional classification is obtained from the finest MIPS classification scheme [19] 
and comprises 424 functional categories. 

 

Fig. 3. Prediction performance evaluated by AUC 
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Fig. 4. Prediction performance evaluated by Balance Accuracy 

3.1 Cross-Validation and Prediction Performance 

We performed cross-validation test on the DIP network to examine the accuracy of 
our prediction of the protein function. A C-folds cross-validation function-prediction 
approach randomly divides all annotated proteins with C folds with equal number of 
members. The validation test starts with assuming that a given subset of annotated 
proteins is classified as unannotated ones, and then predicts them by remaining 
annotated proteins. The prediction performance is evaluated by comparison between 
the original annotations and predicted annotations. The above procedure is performed 
on every set of proteins and thus is able to evaluate generalized performance of the 
prediction method. We follow the experimental details of cross-validation in [8] to 
design our validation. The 10-fold (C=10) cross-validation is used to evaluate and 
compare our method to existing methods in this test. Two tests are carried out to 
assess the function prediction result for each functional category: assessment by area 
under ROC and assessment by balance accuracy. Both assessments are based on the 
four performance indexes [8], whose definitions are as follows: True Positive (TP), 
True Negative (TN), False Positive (FP), False Negative (FN). 

Assessment by area under ROC. We first assess the performance by the area under 
curve (AUC) of receiver operating characteristic (ROC) for each functional category. 
The value of AUC can be interpreted as the probability that a randomly selected 
protein that has the function (a true positive) is given a higher score by the predictor 
than a randomly selected protein that does not Hanley and McNeil (1982). The higher 
the AUC value, the better the prediction result. An AUC score of 0.50 indicates a 
prediction by chance and the degree to which the AUC is over 0.50 indicates how 
much better our function prediction are than [3]. In our test result, we compare the 
prediction performance of GV model with two other protein function predictors: 
classification via regression (CVR) and random forests (RF). They are reported as the 
best two predictors in performance according to the comparison result in [24]. We use 
experimental result data in for CVR and RF[24], and compare to our method on the 
same data (DIP network).The comparison of AUC for each functional category is 
shown in the Fig. 3. There are total17functional categories and the last three bars are 
the average AUC for all functional categories of each method used in comparison. As 
we can see from the Fig. 3, the AUC scores for our method are consistently higher 



Global Voting Model for Protein Function Prediction from PPI Networks     473 

than the other two methods (CVR and RF) in all functional categories, with most of 
scores over 0.80. It indicates that GV is a better predictor for protein function 
prediction in all possible functional categories. 
 

Assessment by Area under ROC. We then assess the performance by balance 
accuracy (BA) for each functional category, which is defined as the square root of the 
product of sensitivity, (TP/(TP+FN)) and specificity, TN/(TN+FP). As in the case of 
real protein data, links (true positive PPIs) are often missing due to various reasons, it 
is a desirable quality for the predictors to be robust against incompleteness. In order to 
demonstrate this robustness of GV method, we test GV method on the DIP network at 
four different levels of the removal of true PPIs original network. The assessment 
results are shown in Fig. 4. ‘Del’ denotes the ratio of the number of the removed PPIs 
to the number of the total PPIs in original network, which are 0.2, 0.4, 0.6, 0.8, 
respectively. In the Fig. 4, BA values are displayed for all 17 functional categories 
with bars. The last three column bars indicate the average value of BA for all 
functional categories under certain level of deletions of PPI. As we can see from the 
Fig. 4, for each individual functional category, most BA scores are above 0.70. As for 
the average value, average BA is 0.77 for the original data, and is 0.69 even for the 
data with 60% removal ratio. The test result indicates that GV is a good predictor for 
each possible individual functional category. In addition, it is encouraging that the BA 
remains to be a good predictor as the removal ratio increases. It indicates that GV 
model is able to address the problem of incompleteness of PPI network.  

Table 1. Success rates in DIP network test 

 

Table 2. Success rates in VAZ network test 

 



474    Y. Fang et al. 

3.2 Function Prediction in Clean PPI Network 

In this experiment, success rates test is carried out on DIP and VAZ data for our 
method and other methods (MR mainly) in comparison. Success rates are defined as 
percentage of predictions that are correct [31], [20]. We first randomly choose a 
percentage of annotated proteins and classify them as unannotated ones. The 
remaining annotated proteins are used to predict the function for them. There are 
several criteria to judge whether a protein is correctly assigned function [8]. In this 
work, the function protein is correctly predicted if more than half of the functions are 
correctly predicted. 

We first test GV method on DIP network and compare to MR. The comparison 
result is shown in Table 1. In the table, ‘FOU’ denotes the ratio of unannotated 
protein number to total original protein number while K represents the group of 
protein with K degree of connectivity in the PPI network. We test two methods at 
three different  ‘FOU’ levels (0.20, 0.40, 0.60). In addition, we show success rate 
(SR) for the proteins at different levels of degree (the number of direct interacted 
proteins, denoted as K). The case K= 1 is not considered because the MR method 
finds only a trivial implementation in this case. It is clearly to find out the GV method 
outperforms the MR method with a higher success rates at different test conditions. 
For detailed comparison, the experimental result is analyzed in the following two 
perspectives: 1) the success rates at different K, 2) the success rates at different level 
of ‘FOU’. We are interested in the prediction performance at different degree of K, 
particularly smaller K. Based on the result on the table, the performance of GV and 
MR is comparable at a higher level K, for example, larger than6. It is reasonable 
because the directly linked neighbors are able to provide enough information for 
function prediction when the degree K for an unannotated protein is large enough. 
However, the success rates for MR drops quickly when K goes down to a lower level, 
for example, less than 3. The success rates for GV remains  reasonably stable when 
the degree K for an unannotated protein goes down to a lower level (even 2). The 
performance comparison of two methods at lower K is obvious and can be explained 
as follows. Because the MR is heavily dependent on the local topological connection 
and blind to the global view of the structure of network, therefore, when K is at a 
small scale, MR loses the basis of prediction. However, GV predicts the protein 
function in a globally consistent manner, therefore is less affected by the degree of a 
protein. The comparison result highlights the global property of our GV methods. We 
are also interested in the prediction performance at different levels of ‘FOU’. We can 
see from the table, the GV method consistently performs better than MR method at all 
levels of the ‘FOU’. We are particularly interested in the predictive performance at a 
higher level of ‘FOU’. Our GV method is able to correctly predict about 
87%functions even when ‘FOU’ is at 0.60, while MR gives about 75% success rates. 
This advantage of GV model is contributed by the global voting based on considering 
all of possible annotated proteins in the network. 

We then test GV method on a more challenging network (VAZ) and compare to 
method of MR and GO. The comparison result is shown in table 2. The ‘FOU’ and 
Kin the table have the same notation as the table 1. We test two methods at three 
different ‘FOU’ levels (0.20, 0.40, 0.60). In addition, we show success rate (SR) for 
the proteins at different levels of degree (the number of direct interacted proteins, 
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denoted as K). We are expecting the success rates are worse than that of DIP network, 
because the functional categories used in this test are the finest one (424). Other than 
the experimental setting used in the Table 1, we compare GV method to GO (global 
optimization) method [31] at ‘FOU’ of 0.40. For GO method, we used the success 
rates reported in [31] at ‘FOU’ of 0.40. Although the success rates for all of three 
methods are relatively lower, GV method is still consistently higher than other two 
methods. 

4 Discussion and Conclusion 

The advancement in high-throughput technologies for identification of PPIs has 
prompted the need for the computational annotation of protein functions in various 
organisms to reduce the costly and labor-intensive web-lab experiments. It is a 
challenging problem of computational prediction as the experimental data are 
inherently associated with high rates of false positive and false negative and 
somewhat incomplete observation for the entire PPI network. Those properties of PPI 
network data stirs up many concerns incomprehensive analysis in understanding the 
PPI network [7], [32]. We propose global voting model for systematic functional 
annotation using PPI network.  
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Abstract. It seems that every biological process involves multiple protein-
protein interactions. Small subsets of residues, which are called “hot spots”, 
contribute to most of the protein-protein binding free energy. Considering its 
important role in the modulation of protein-protein complexes, a large number 
of computational methods have been proposed in the prediction of hot spots. In 
this work, we first collect lots of articles from 2007 to 2014 and select nine 
typical data sets. Then we compare the nine data sets in different aspects. We 
find that the maximum number of interface residues used in the previous work 
is 318, which can be selected as the fittest training data set used in predicting 
hot spots. At last, we compare and assess the features used in different works. 
Our result suggests that accessibility and residue conservation are critical in 
predicting hot spots. 

Keywords: proteins-protein interaction, hot spots, computational method, 
training data. 

1 Introduction 

Protein-protein interactions play an important role in almost all biological processes 
such as signal transduction, transport, cellular motion, and regulatory mechanisms. 
Researches of residues at protein-protein interfaces has shown that only a small 
portion of all interface residues is actually essential for binding [1]. These residues are 
termed as hot spots which contribute a large fraction of the binding free energy and 
are crucial for preserving protein functions and maintaining the stability of protein 
interactions. Recent years, several studies discovered that small molecules which 
bound to hot spots in protein interfaces can disrupt protein-protein interactions [2]. 
So, identifying hot spots and revealing their mechanisms can provide promising 
prospect for medicinal chemistry and drug design [3-4]. 

Experimental methods have been used to identify hot spot residues at protein-
protein interfaces. For example, alanine scanning mutagenesis has been used to 
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identify protein-protein interface hot spots [5]. Because of the high cost and low 
efficiency of experimental method, public databases of experimental results such as 
the Alanine Scanning Energetic Database (ASEdb) [6] and the Binding Interface 
Database (BID) [7] contain only a limited number of complexes. 

Besides the experimental methods, a large number of computational methods have 
been proposed in the prediction of hot spots. Tuncbag et al. [8] constructed a web 
server Hotpoint to predict hot spots effectively. Darnell et al. [9] also provided a web 
server KFC to predict hot spots by using decision trees. Cho et al. [10] developed two 
feature-based predictive support vector machine (SVM) models for predicting 
interaction hot spots with features including weighted atom packing density, relative 
accessible surface area, weighted hydrophobicity and molecular interaction types. Xia 
et al. [11] introduced both a SVM model and an ensemble classifier to boost hot spots 
prediction accuracy. Recently, Ye et al. [12] used network features and 
microenvironment features to predict hot spots. 

Although these approached have obtained good performance, there are still some 
problems remaining in this field. Though many features have been used in the 
previous studies, effective feature subsets have not been found yet. Moreover, most 
existing approaches use very limited data from experiment-derived databases, 
therefore the training data is insufficient, which may lead to pool prediction 
performance. Cheng et al. [13] also found that a rational selection of training sets had 
a better performance than random selection.  

To assess their data sets, we compare the methods with each other and with a 
overlapping set of hot spots.In this paper, we collect 9 data sets about hot spots from 
2007 to 2014. Firstly, we compare their training sets and analysis the same subsets 
they used. Then, we list the features they used and give a heuristic conclusion. 

2 Datasets and Methods 

(a) Datasets 

We collect 2600 articles with a simple query of protein-protein interactions, hot spots 
prediction and computational methods on PubMed. Then we obtain 30 articles by 
cutting off the remaining ones whose topics are not concerning about hot spots. 
Finally, we select nine typical articles which are used the computational methods to 
predict hot spots, including APIS [11], KFC2 [14], RF [15], NFMF [12], ELM [16], 
KFC1 [17], MINERVA [10], DSP [18], and βACVASA [19].  

Then we get data sets from the nine articles from the tables in the main text or from 
their supplements. The training data sets in these studies were all extracted from 
ASEdb [6] and the published data by Kortemme and Baker [1]. Then filtering 
methods were used to eliminate data redundancy by querying sequence identity. As a 
result, only a subset of the interface residues was chosen, and the interface residues 
with binding free energy (ΔΔG) ≥2.0 kcal/mol are defined as hot spots [15, 17, 21]. 
The dataset from BID was used as test sets. BID categorizes the effect of mutations as 
strong, intermediate, weak or insignificant. The residues having strong interaction 
strengths are considered as hot spots in this study. Details of the data sets are listed in 
supplement Table S1-S9. 
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(b) Framework 

As described in Fig.1. We first collect data from literature which is explained in 
section 2.1. Then we compare their data in different aspects such as their scale and 
features. We use Venn Diagrams [22] to analysis these complexes. At last we obtain 
the overlapping data in the nine works. 

 

Fig. 1. The framework of our method. Firstly, we collect 9 data sets from literatures. Then we 
compare the number of hot spots and non-hot spots, the complexes and features respectively. 
Finally, we obtain the overlapping data. 

3 Results and Discussions 

(a) Comparison of the Number of Training and Test Data Sets 

Table 1 and 2 shows the number of training and test data sets in different works. From 
Table 1, we find that the number of training data sets really make a big difference. 
The KFC2 method has only 132 interface residues while RF, NFMF and ELM have 
the largest number (318) of interface residues. Then we also find that the number of 
hot spots and the number of non-hot spots are different in different works except 
NFMF, RF and ELM (the training data set of them are the same) However, the 
training data sets used in creating machine learning methods, such as APIS, RF, 
KFC1, MINERVA, DSP, and βACVASA, contain more non-hot spot residues than 
hot spot residues. To avoid biased predictions, the training data set of interface 
residues in KFC2 contains 65 hot spot residues and 67 non-hot spot residues.  

From Table 2, we can see that almost all the number of test data sets is the same. 
Test data sets do not exist in DSP and βACVASA. The number of test data set in RF 
is the same as that in ELM, which is original from MINERVA. Two residues which 
are not in protein interfaces have been removed, so there are 125 residues in RF, not 
the number 127. Xia et al. [11] used exactly the same dataset as the one used in Cho 
et al. [10] for the purpose of comparing APIS and MINEVAR. So the number of their 
test data sets is also 127. 

 



 Comparative Assessment of Data Sets of Protein Interaction Hot Spots Used 481 

 

Table 1. The number of training data sets in different works 

Dataset Number of hot spots Number of non-hot spots Total number 
APIS 62 92 154 
KFC2 65 67 132 
RF 77 241 318 
NFMF 77 241 318 
ELM 77 241 318 
KFC1 60 189 249 
MINERVA 119 146 265 
DSP 76 145 221 
βACVASA 86 148 234 

Table 2. The number of test data sets in different works 

Dataset Number of hot spots Number of non-hot spots Total number 
APIS 39 88 127 
KFC2 39 87 126 
RF 38 87 125 
NFMF 38 86 124 
ELM 38 87 125 
KFC1 50 62 112 
MINERVA 39 88 127 
DSP NA NA NA
βACVASA NA NA NA

NA: Not Available 

(b) Comparison of the Protein Complexes Used in the Previous Works 

We list the complexes in each work. Considering the training data sets of NFMF, RF 
and ELM are same, so we just list the other 7 data sets in Table 3. The overlapping 
complexes are underlined. Then we use Venn Diagrams [22] to distinguish each 
other. Because the works in DSP and βACVASA do not contain test data sets, we 
don’t use these data sets. We first divide the rest 5 data sets into 2 groups. The one 
group is combining the data from APIS, KFC2 and ELM, the other is combining 
those from the remaining two methods KFC1 and MINERVA. From Fig.2, we can 
see that the dataset in ELM has the widest range of complexes among the three works 
(APS, KFC2, and ELM). So we choose the dataset from ELM as an additional set to 
join into the other group and use Venn Digrams to obtain the overlapping data. 
Apparently, from Fig.3, we also find that the complexes used in ELM contain the 
widest range of the whole. To further study, we list all the training data in supplement 
Table S 1-7 and the same data in supplement Table S8. We find that the data set of 
ELM contains the maximum amount of complexes and almost cover every data set of 
the rest. 
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Fig. 2. The number of complexes in APIS, ELM and KFC2.The 3 complexes only exist in 
ELM are 1dn2, 1jck and 1jtg. 1f47 and 1nmb only exist in ELM and KFC2. The 15 complexes 
which all works contain are 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1fc2, 1fcc, 1gc1, 
1jrh, 1vfb, 2ptc, and 3hfm. 
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Fig. 3. The number of complexes in KFC1, ELM and MINERVA. The complex only exists in 
ELM is 1jck and those only in KFC1 are 1bsr, 1dx5 and 3hhr. The 2 complexes only exist both 
in ELM and KFC1 are 1dn2 and 1jtg and those only exist in ELM and MINERVA are 1a22, 
1f47, 1fc2, 1fcc, 1jrh and 2ptc. All works contain 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 
1gc1, 1nmb, 1vfb, and 3hfm. 

Table 3. The complexes used in the previous works 

Method Complexes 
APIS 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1fc2, 1fcc, 1gc1, 1jrh, 

1vfb, 2ptc, 3hfm 
KFC2 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1f47, 1fc2, 1fcc, 1gc1, 

1jrh, 1nmb, 1vfb, 2ptc, 3hfm 
ELM 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dn2, 1dvf, 1f47, 1fc2, 1fcc, 

1gc1, 1jck, 1jrh, 1jtg, 1nmb, 1vfb, 2ptc, 3hfm 
KFC1 1a4y, 1ahw, 1brs, 1bsr, 1bxi, 1cbw, 1dan, 1dn2, 1dvf, 1dx5, 1gc1, 1jtg, 

1nmb, 1vfb, 3hfm, 3hhr 
MINERVA 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1f47, 1fc2, 1fcc, 1jrh, 

1nmb, 1gc1, 1vfb, 2ptc, 3hfm 
DSP 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dvf, 1f47, 1fc2, 1fcc, 1gc1, 

1jrh, 1jtg, 1nmb, 1vfb, 2ptc, 3hfm, 3hhr 
βACVASA 1a22, 1a4y, 1ahw, 1brs, 1bxi, 1cbw, 1dan, 1dfj, 1dvf, 1dx5, 1f47, 1fc2, 

1fcc, 1gc1, 1jck, 1jrh, 1jtg, 1nmb, 1vfb, 2ptc, 3hfm, 3hhr 
The same complexes in all works are underlined. 
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3.1 Comparison of the Features 

Table 4 gives the number of features used in different works and the methods of 
feature selection. And the details of features are described in supplement Table S9.We 
find that all models use Accessibility, Residue Conservation as features because of 
their importance in protein-protein interactions.  

However, the computational of accessibility is a little different in the 5 works. The 
work in MINERVA had proved that the absolute values of solvent accessibility and 
surface area burial ( ASAΔ ) had only a limited capacity to distinguish hot spots from 
other interface residues. To compensate that, they introduced the concept of relative 

surface burial ( rSB ). The relative surface burial was calculated as follows:  

 )(/)( iASAASAiSB monoir Δ=  (1) 

Here )(iASAmono is solvent accessibility of the i-th residue in a monomer. 

In the work of APIS, for accessible surface area (ASA) and relative ASA (RASA), 
they obtained five residue attributes: total (sum of all atom values), backbone (sum of 
all backbone atom values), side-chain (sum of all side-chain atom values), polar (sum 
of all oxygen, nitrogen atom values) and non-polar (sum of all carbon atom values). 
The structure information was calculated by PSAIA [23]. In addition, the relative 
change in ASA (RcASA) was calculated as follows: 
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Here )(iASAcomp  is solvent accessibility of the i-th residue in a complex. 

In the work of KFC2 and NFMF, they calculated the solvent accessible surface area 
using the program NACCESS [24]. In RF, they computed the relative accessible 
surface area (rel_ASA) of the ith residue is described in formula (2). 

Table 4. The number of features used in different works 

Methods Initial number Final number Feature selection 
MINERVA 54 12 Tree-decision 

APIS 62 9 F-score 
KFC2 47 14 SVM 

RF 57 19 RF 
NFMF 75 10 RF 

4 Conclusions 

In our work, we compared nine data sets from previous work. And we discuss the 
same training data set they all used. We think that the training data set of ELM may 
be the most suitable subsets to predict hot spots. In the end, we compare the features 
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and find two features used in all works are important for protein-protein interactions. 
We hope that this paper can give a possible way to select training data sets and 
features for researchers in this field. In our future work, we will build a database that 
contains data both from the experimentally detected hot spots and computationally 
predicted hot spots. 
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Abstract. Recent developments in the high-throughput technologies for  
measuring protein-protein interaction (PPI) have profoundly advanced our abili-
ty to systematically infer protein function and regulation. To predict PPI in a 
net-work, we develop an intrinsic geometry structure (IGS) for the network, 
which exploits the intrinsic and hidden relationship among proteins in the net-
work through a heat diffusion process. We apply our approach to publicly 
available PPI network data for the evaluation of the performance of PPI predic-
tion. Experimental results indicate that, under different levels of the missing and 
spurious PPIs, IGS is able to robustly exploit the intrinsic and hidden relation-
ship for PPI prediction with a higher sensitivity and specificity compared to that 
of recently proposed methods.  

Keywords: Diffusion Geometry, PPI Network, protein function prediction. 

1 Introduction 

Protein-protein interactions play important roles in assembling molecular machines 
through mediating many essential cellular activities [12], [14], [8], [18], [6], [17], [11]. 
It is of important biological interest to analyze protein-protein interaction (PPI) network 
for deep understanding protein functions in cellular processes and biochemical events. 
The recent advancement in high-throughput technologies such as two-hybrid assays, 
tandem affinity purification, and mass spectrometry have provided tremendous amounts 
of PPIs in biological networks [15], [16]. The wealth of experimentally identified PPIs 
provides more opportunities in the exploration of protein functions and regulation in 
various organisms. However, the labor-intensive experimental data are inherently asso-
ciated with high false positives and false negatives which stir up many concerns in 
comprehensive analysis in understanding the PPI network [5], [20]. In addition, the 
identified PPI networks are somewhat incomplete as it is impractical to experimentally 
verify all individual PPIs within one cell [1]. These limitations can be complemented by 
the computational models for predicting PPIs from noisy experimental observations 
[16]. The complementary in silico approaches have been receiving more and more at-
tentions in the assistance of PPI network analysis [1], [16], [12], [9], [21], [7], [10]. 

The computational approaches for the prediction of PPIs have been developed  
over the years [16]. One of well-established propagation method, the shortest path  
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propagation, has been recently introduced for the prediction of the PPI in networks [12]. 
Their approach achieves a good performance in PPI prediction with specificity of 85% 
and sensitivity of 90%. However, although it is able to capture the global structure of the 
network, it should be noticed that the shortest path propagation is known to be sensitive 
to the  short-circuit topological noise. The addition of spurious PPI would significantly 
affect the shortest path propagation. The random walk based diffusion propagation gains 
its advantage by progressively exploiting all possible linkages among proteins in the 
network [13], [22]. It is therefore robust to the local noisy interactions. Authors in [22] 
introduce this propagation strategy to PPI prediction in the network and demonstrate 
good performance in their experiments. However, it is an open research for choosing an 
appropriate parameter of steps for the propagation process. This parameter determines 
the degree to which the global structure of a network is exploited. A higher step of the 
propagation allows exploiting more global structure however reduces the resolution to 
differentiate proteins. A smaller step of the propagation allows preserve a relatively high-
er resolution but the revealed structure is more sensitive to noise [19]. Contrast to random 
walk based diffusion propagation, the heat diffusion, governed by the eigenfunctions of 
the Laplacian operator on network, can take account all of the local information at once 
to produce a consistent global solution. 

In this paper, the heat diffusion is used to define the intrinsic geometric structure 
(IGS) of PPI network. Because the heat diffusion across the network aggregates struc-
tural information about all the possible paths connecting two nodes in network, it 
captures the intrinsic relationship among nodes. Similar to random walk based diffu-
sion propagation, the extent to which heat diffuses across the network is scaled by the 
parameter of the dissipation time, which controls how globally the network structure 
is exploited. We propose a maximum likelihood based algorithm to determine the 
optimal dissipation time to balance the exploitation of the local and global structure of 
the entire PPI network. And the intrinsic geometric structure (IGS) of PPI is defined 
as the revealed structure in the heat diffusion process by the optimal dissipation time. 
Basically, the IGS organizes the proteins in the heat featured space according to their 
interactions in the network and has the following three desirable properties: 1) it  
organizes information about the intrinsic geometry of a PPI network in an efficient 
way; 2) it is stable under a certain number of missing and spurious interactions. 3) it 
faithfully interprets the implicit relationship with physics meaning supported.  

2 Methods 

2.1 Heat Kernel on Network 

Heat transfer is a flow process of thermal energy from one region of matter or a phys-
ical system to another, which is mathematically governed by the heat equation. Heat 
Kernel provides a fundamental solution to heat equation in the mathematical study of 
heat conduction and diffusion. The heat kernel records the evolution of temperature in 
a region whose boundary is held fixed at a particular temperature (typically zero), 
such that an initial unit of heat energy is placed at a point at some time. Intuitively, we 
could imagine that applying a unit amount of heat at one node i and allow the heat 
flow on the network across all of the edges, heat kernel measures the amount of  
the heat that passes from the node i to any other node j within a certain unit of time. 
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Given a graph constructed by connecting pairs of data points with weighted edges, the 
heat kernel quantitatively codes the heat flow across a graph and is uniquely defined 
for any pair of data points on the graph. Suppose there is an initial heat distribution on 
network at time 0. The heat flow across the network is governed by the heat equation 
u(x, t), where x denotes one node in the network and t denotes the time after the ap-
plication of unit heat. The heat kernel provides the fundamental solution of the heat 
equation [2]. The heat kernel is closely associated with graph Laplacian by: 

t
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Where Ht denotes the heat kernel, L denotes the graph Laplacian and t denotes time. 

 
Fig. 1. Determination of optimal heat dissipation time 

2.2 Intrinsic Geometric Structure 

Heat kernel provides a transform by which the relationship among the data points is rede-
fined according to the re-organization of all of the data simultaneously. The transform 
thus define a new relationship among proteins according to their topological connections. 
However, the heat kernel dynamically characterizes the proteins in the network from a 
local to global structure in the original network because it encapsulates the information 
about the heat flow over the time. The heat flow gradually aggregates information from 
local to global regions. At short time, heat kernel captures the local connectivity or topol-
ogy of the network, while for long times the solution gauges the global geometry of the 
manifold on which the graph resides. However, there is one question remaining to an-
swer: how to determine an appropriate time to balance how globally the structure of the 
entire network is exploited. The statistical interpretation of Ht(i, j) arises from an explora-
tion process: starting at node i, and exploring the entire network in all possible connec-
tions, the probability that j has been reached at the time t is Ht(i, j) [19]. Based on the 
statistical interpretation, we proposed an approach to determining the time at which the 
likelihood for all of the observed PPIs is maximized. We formulate the optimization 
problem as follows. The likelihood function for the 
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Where PPIk denote the kth pair of the protein-protein interaction, n is the number of 
the total observed PPI in the network, t denotes the heat dissipation time and P(PPIk 
|t) denotes the probability that, starting from one node in kth pair of PPI, another node 
is reached by the time t , and equals to the value provided by heat kernel Ht(PPIk). In 
practice, it is convenient to convert to logarithm of likelihood function, defined as: 
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We are about to solve the following optimization problem to find the optimal time. 

),,,|(ln 21 nPPIPPIPPItLmaxargt =                        (4) 

Basically, the IGS organizes the proteins in the heat featured space according to 
their interactions in network and has the following two desirable properties: 

1. It organizes information about the intrinsic geometry of a PPI network in an  
efficient way, 

2. It is stable under a certain number of missing and spurious interactions, 
3. It faithfully interprets the implicit relationship with physics meaning supported. 

Fig. 1 illustrates the process of determination of the optimal time. By observation, 
likelihood value increases initially and monotonically decreases after obtaining its 
maximum at time around 1.5. We then set the optimal time for the PPI network 1.5. 
We notice that the likelihood increases rapidly and then decreases slowly after cross-
ing the optimal time. The likelihood remains stable while the heat distributes evenly 
on the network after a long dissipation time. 

3 Results 

To test the performance of IGS in PPI prediction in network, we carry out two experi-
ments based on the experimental setting in [3], [12] and our new design of experiments 
against false positive and false negative PPIs in network. First, Two-class classifier test 
to differentiate the protein-protein interaction (PPI) and protein-protein non-interaction 
(NPPI) at different noise levels. For the evaluation of the performance, we use the 
ROC (receiver operating characteristic curve, a graphical plot of the sensitivity versus 
(1-specificity)) curve and precision-recall curve. We verify our approach on a publicly 
available and a high confidence S. cerevisiae network [4]. It consists of 9,074 interac-
tions amongst 1,622 proteins (we denoted it as CS2007 hereafter).  

3.1 Two-Class Classifier Test 

To validate the performance of IGS for differentiating the PPI and NPPI, we use the 
receiver operating characteristic (ROC) curve and precision recall (PR) curve as  
the criteria. Both curves reflect how well IGS can robustly differentiate the PPI from 
the NPPIs based on the revealed and intrinsic relationship among proteins. To plot the 
ROC curve and PR curve, we should first define true position (TP), false positive 
(FP), true negative (TN) and false negative (FN). The TP measures the intersection 
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between the new assigned PPIs set and the ground truth PPIs set, FP denotes the  
assigned edges which are not in the set of ground truth PPIs set, TN denotes the inter-
section of new assigned NPPIs and ground truth of NPPIs, and FN denotes new  
assigned NPPIs which are not in the set of ground truth NPPIs. The ROC and PR 
curve are computed based on heat affinity given by IGS as follows. 

1. We vary the threshold from minimum to maximum value in the heat affinity 
set among all pairs of proteins. 

2. For a given threshold, we compute the true positive (TP) function, true negative 
(TN) function, false positive (FP) function and false negative (FN) function. 

3. Based on the values obtained in the previous step, we compute the sensitivity 
rate (TP/(TP+FN)) and specificity rate (TN/(TN+FP)), precise (TP(TP+FP)) 
and recall (TP/(TP+FN)). To plot the ROC curve, the horizontal axis 
represents (1-specificity), and the vertical axis represents sensitivity. To plot 
the PR curve, the horizontal axis represents recall, and the vertical axis 
represents precision. 

To demonstrate the robustness of IGS, we remove a fraction of true positive PPIs in 
the original network and plot the ROC curve at different levels of the removal of 
edges. The ROC curves are shown in the Fig. 2. The illustrated results are encouraging 
in terms of the prediction performance of PPI from the incomplete network. Without 
the removal of true PPI, the area under the ROC is nearly 1.00 and we can have speci-
ficity and sensitivity both over 0.95. The corresponding false positive rate (1-
specificity) and false negative rate are all below 0.05. In addition, we find the IGS is 
very robust to the removal of the true PPIs in the network. As we can see from the Fig. 
2, IGS performs pretty well even with 60% edges removed from the network. This 
result is appealing as most of the PPI network is incomplete with a large fraction of 
missing PPI in the observation in real scenario. Furthermore, IGS outperforms the 
MDS embedding method in this test [12]. They report a specificity 0.85 and sensitivity 
0.90 in the experiment [12]. 

 

Fig. 2. Sensitivity-Specificity test of IGS method 
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4 Discussion and Conclusion 

The silico approaches for prediction of PPI in network have been receiving more and 
more attentions, however, are facing challenging because of the inherently spurious 
and missing PPIs presence in observed measurements. The geometric based ap-
proaches, which are only based on the topology of the PPI network, are very promis-
ing as those approaches are fully independent from other prior knowledge except for 
topology of the PPI network. We proposed a novel geometric description, intrinsic 
geometric structure for the protein-protein interaction network. IGS reflects the hid-
den and implicit relationship among proteins.  
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Abstract. c-Yes is a member of Src tyrosine kinase family and it is over 
expressed in human colorectal cancer cells. c-Yes tyrosine kinase is an 
attractive target due to its inhibition controls colon tumorigenesis, metastasis 
and angiogenesis. High throughput virtual screening and docking methods were 
employed to identify novel inhibitors based on the three dimensional structure 
of c-Yes. Kinase domain of c-Yes is modelled with reference to the crystal 
structure available for Src kinase structure and simulated for 100 ns to obtain 
ensembles with distinct conformation of the active site. Seven ensembles 
obtained from molecular dynamics (MD) trajectory and one homology model 
were used to screen library of the 2 million Enamine HTS compounds. A 
library of 159 Src kinase inhibitors and 6319 associated decoys is used for 
validation. Based on the score values, 25 compounds were shortlisted and 
reported as novel inhibitors of c-Yes kinase for further development of potent 
drugs to treat colorectal cancer.  

Keywords: c-Yes kinase inhibitors, Src family, high throughput virtual 
screening, molecular dynamics simulation. 

1 Introduction 

Many cell processes are controlled by the protein phosphorylation driven activation 
and inaction of tyrosine kinases. The cytoplasmic tyrosine kinase family includes c-
Src, c-Yes, fyn, c-Fgr, lyn, lck, hck, blk, and yrk. Three of these (c-Src, c-Yes and 
Fyn) are widely expressed in human colorectal cancer cells (1, 2). Many studies 
confirm the role of c-Src kinase in cancer and chances exist for each member of this 
family to have a non-redundant role. Evidently, gene knock-down studies confirm that 
silencing of c-Yes reduces cancer cell migration while c-Yes oncogenic signaling is 
not shared with c-Src (3-5). In addition, the c-Yes is the cellular complement of the v-
Yes protein expressed by Yamaguchi avian sarcoma virus and it is also found to be 
over-expressed in the WNV infected cells (6). These findings confirm the role of c-
Yes in viral assembly and propagation, as well. c-Yes has high homology with the 
other Src family members. Structures of Src kinase family members invariantly 
contain SH2, SH3 and kinase domains. The crystal structure of c-Src kinase (PDB 
entry 2SRC) reveals the structural organization  and active and inactive conformations 
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of the active site (7). The active site cleft has the Try416 which undergoes 
phosphorylation during activation of the kinase. This residue is located at the 
activation loop which adopts different conformations associated with the activated 
and deactivated states. This loop is made up of 404-432. A short helix formation in 
this loop buries Tyr416 and influences the inactive conformation of the active site 
(auto-inhibition). The crystal structure of c-Yes kinase is not reported yet. Hence, the 
homology modeling and MD simulation methods were employed to build the three 
dimensional structure and to generate the ensembles for identifying novel inhibitors 
specific to c-Yes kinase. Many potent inhibitors of Src kinase family are available in 
the literature (8-16) and they are more specific to c-Src kinase and only few show c-
Yes kinase inhibition. In this study, the molecular modeling and simulation methods 
were employed to find novel inhibitors specific to c-Yes kinase. 

2 Computational Methods 

The protocol shown in figure 1 explains the method of identification of the potential 
inhibitors of c-Yes kinase. The workflow is discussed in detail in the following 
subsections. 

2.1 Preparation of Compound Library 

Enamine collection of 2.2 million compounds for advanced HTS was downloaded. 
The 2D to 3D conversion was performed using Ligprep program (17) to generate 
number of possible states (tautomers, stereoisomers), ionization at a selected pH range 
(7±2), and ring conformations (1 ring conformer). Energy minimization of the 3D 
conformers was performed with the OPLS_2005 force field (18). For each ligand 
molecule, 32 stereoisomers and tautomers were generated and the stereoisomers for 
specified chiralities was retained. Only one low energy ring conformation was 
generated. The data set of about 460 c-Yes kinase specific inhibitors (downloaded 
from Bindingdb database) was analyzed for the level of diversity using the Tanimoto 
principle. With the resultant diverse set of actives, the physico chemical properties 
were calculated using the Qikprop module (Table 1).  

Table 1. Physico-chemical properties of known inhibitors of c-yes/src kinase inhibitors 

Property Molecular 
Weight 

Polar  
surface area

Hydrogen 
bond donor 

Hydrogen 
bond acceptor 

Molar  
refractivity 

Cut-off 
values 

450 ±75 100 ±20 2 ±1 5 ±1 120 ±10 

 
Based on these physico-chemical parameters the initial compound library was 

filtered and the subset was made with about 5283 compounds satisfying drug-like 
properties. The Ligfilter module was used for filtering based on the cut-off values 
given in the Table 1. Along with the resultant library of 5283 compounds, 159 Src 
kinase inhibitors (actives) and 6319 decoys (inactives) were included to validate the 
screening protocol as well as to identify the early matching of novel hits from the 
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Enamine compound library (subset). A total of 11761 compounds were subjected for 
High Throughput Virtual Screening (HTVS), Standard Precision (SP) and Extra 
Precision (XP) screening methods available with Glide module (19, 20) of 
Schrodinger Suite. 

 

Fig. 1. Protocol used to screen the compound library and find the novel c-yes kinase inhibitors 

2.2 Preparation of Target Protein (c-yes Kinase) 

Since the crystal structure c-yes kinase is not yet reported, the three dimensional 
structure was built using homology modeling technique with reference to the close 
homolog human Src kinase. Many crystal structures of human c-Src kinase are 
available in protein databank. Particularly, the crystal structure (PDB ID: 2SRC) 
taken as template adopts more open conformation of the catalytic cleft compared to 
others. Sequence alignment for target (Uniprot id: P07947) and the template shows 
that 84% residues are identical and 92% are similar. The model was built using 
Modeller software package and the final model was chosen based on the DOPE score. 
The model was then subjected for "Protein preparation wizard" to assign proper bond 
order, charge, protonation state and for minimization prior to screening process. 
Optimization of the hydrogen bond network and His tautomers were performed and 
proper ionization states were predicted. 180° rotations of the terminal angle of Asn, 
Gln, and His residues were assigned, and hydroxyl and thiol hydrogen atoms were 
sampled as per the regular protocol. An all-atom constrained energy minimization 
was performed using the Impref module with RMSD cutoff of 0.30 Å. The grid was 
generated based on active site amino acids Val281, Lys295, Glu339, Met341, 
Asp386, Arg388, Asp404 and Tyr416. Same procedure was followed for preparing all 
eight structures. 
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2.3 MD Simulation and Virtual Screening 

In addition to screening based on the homology model, there are seven ensembles 
with open conformation of active site of c-Yes kinase domain and these were selected 
using conformational clustering of the 100 ns MD simulation trajectory. The SH2 and 
SH3 domains were excluded from the calculations. MD Simulation was carried out 
using Gromacs simulation package (21) with OPLS force field. Minimization and 
equilibration were performed to attain the system free of steric clashes and to have 
constant temperature and pressure. Unrestrained production runs were carried out for 
100 ns with 2fs time step and the coordinates were saved at 1 ps time interval. From 
the 100ns trajectory 10 ensembles were obtained using the conformational clustering. 
Out of these only 7 adopt open conformation (Figure 2) and the remaining 3 are with 
closed conformation. All the ensembles with open conformation were used to screen 
the 11761 compounds using screening methods discussed above. 

3 Results and Discussion 

Homology model of c-Yes kinase is validated by Ramachandran plot (22) and 
confirmed the accuracy of the model by 89.5%, 8.9% and 1.6% residues, which are in 
most favourable, additionally allowed and generously allowed regions, respectively. 
Important segments such as loop (339-345) at the hinge region which is known to 
interact with many Src kinase inhibitors, catalytic loop (381-388) and activation loop 
(404-432) together make the active site/ATP binding site of c-Yes and c-Src. Amino 
acids in these segments are more conserved and hence these segments are structurally 
conserved throughout the Src family. Particularly, Tyr416 exists in activation loop of 
both c-Yes and c-Src kinases and it is important for phosphorylation driven switching 
of kinase between active and inactive forms. From the 100 ns trajectory formed by 
simulation of c-Yes kinase in explicit solvent system, seven ensembles were selected 
were selected and identified by conformational clustering with 2.5Å rmsd cut-off 
value. Each ensemble has different active site conformation from others with respect 
to the orientation of the activation loop. Each of them subjected for screening a library 
of 11761 compounds includes subset of Enamine compound library, actives and 
decoys. 

Each screening process produced respective hit list that includes actives, decoys 
and the new compounds from the library. The compounds with glide score lesser than 
-8.8 kcal/mol were selected as novel c-Yes kinase inhibitors. In addition, selection 
was made when their score supercedes that of the actives and when their score values 
are lesser than that of decoys. The resultant compounds were subjected for further 
screening using SP and XP docking methods to assess the mode of binding at the 
active site. Finally, 25 compounds satisfying above criteria were selected (Figure 3).  
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Fig. 2. Seven MD ensembles (C#), homology model (HM) and c-Src kinase (2SRC) are shown. 
The activation loop and catalytic loop are shown in cyan and green, respectively.  

 

Fig. 3. List of compounds selected based on the score from high throughput virtual screening 

4 Conclusion 

In silico methods expedite the process of identification of novel inhibitors of target 
protein. Present study employed MD simulation and HTVS to identify inhibitors of c-
Yes tyrosine kinase for which the X-ray crystal structure is not available. Simulation 
of modelled c-Yes kinase yielded 7 ensembles with distinct active site conformations 
and they were subjected for independent virtual screening of library of ~2 million 
compounds. Physicochemical parameters of known Src kinase inhibitors were used 
for initial filtering. The resultant compound library along with actives and decoys was 
subjected for HTVS, SP and XP methods, subsequently. As a result, 25 compounds 
were shortlisted based on scores and reported as a potent c-Yes kinase inhibitors. 
Present study helps further experimental studies for development of potent drugs 
based on the shortlisted compounds for treatment of human colorectal cancer. 
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Abstract. In this paper, we develop a novel graph theoretic approach for 
protein threading. In order to perform the protein sequence-structure alignment 
in threading both efficiently and accurately, we develop a graph model to 
describe the tertiary structure of a protein family and the alignment between a 
sequence and a family can be computed with a dynamic programming 
algorithm in linear time. Our experiments show that this new approach is 
significantly faster than existing tools for threading and can achieve comparable 
prediction accuracy. 

Keywords: protein threading, graph theoretic approach, dynamic programming. 

1 Introduction 

Threading is one of the most important computational approaches to determining the 
tertiary structure of a newly sequenced protein molecule [3, 4, 6, 12]. Threading based 
methods align a sequence to each available tertiary structure template in a database 
and the template that is most compatible with the sequence is its predicted tertiary 
structure. The set of sequences that fold into the same tertiary structure is a protein 
family.  

A threading based method often uses the statistical information from both the 
primary sequence content of the sequences in a protein family and their tertiary 
structures [3, 6]. Recent work [4, 12] has shown that the prediction accuracy can be 
significantly improved by including the two-body interactions between amino acids 
while aligning a sequence to a structure template. 

Heuristics have been incorporated into the alignment process to reduce the 
computational cost [3]. On the other hand, threading algorithms based on optimal 
sequence-structure alignment have also been developed [4, 12]. However, these 
algorithms are not guaranteed to be computationally efficient in all cases. An accurate 
alignment algorithm that has low computational complexity is thus highly desirable 
for protein threading. 
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Our previous work has shown that efficient and accurate parameterized algorithms 
are available for some NP-hard problems in practice [7-10]. In this paper, we 
introduce a new approach for efficient sequence-structure alignment. We model a 
structure template with a conformational graph and preprocess a sequence to construct 
an image graph. Aligning a sequence to a structure template corresponds to finding 
the minimum valued subgraph isomorphism between the conformational graph and 
the image graph. We show that the sequence-structure alignment can be performed in 
linear time based on a tree decomposition of the conformational graph.  

In order to test and evaluate the efficiency and accuracy of the algorithm, we 
implemented the algorithm into a program PROTTD and compared its performance 
with that of PROSPECT II [4] and RAPTOR [12]. Our experiments showed that, on 
average, PROTTD is about 50 times faster than PROSPECT II to obtain better or 
same alignment accuracy. In addition, we compared the accuracy of our approach 
with that of RAPTOR at all similarity levels. Our testing results showed that 
PROTTD achieved significantly improved fold recognition accuracy on both 
superfamily and fold levels. 

2 Threading Models 

(a) Energy Function for Protein Threading 

Alignments are scored with a given energy function and the goal of protein threading 
is to find the alignment with the minimum score. We used an energy function that is 
the weighted sum of mutation energy mE , singleton energy sE , pair-wise energy

pE , 

gap penalty
gE  and an energy term ssE  that arises from the secondary structure 

matching respectively. The overall alignment score tE can be computed as follows. 

                 ssssqqppssmmt EWEWEWEWEWE ++++=               (1) 

where mW , 
sW , 

pW , 
gW and 

ssW are relative weights for the corresponding energy 

terms.  A detailed description of these energy terms can be found in [12].   

(b) Problem Description 

Structural units in a structure template include cores and loops. A core contains a row 
of residue locations where the tertiary structure is highly conserved during the 
evolution. In contrast, a loop consists of the residue locations in between two 
consecutive cores and its tertiary structure can be highly variable during the evolution. 
To reduce the computational difficulty for the sequence-structure alignment, gaps are 
not allowed to appear in core regions.   

In our new threading algorithm, we define the possible residue locations that can 
be aligned to a given core to be its images. To determine the images for a given core, 
we use its profile specified in the structure template to scan its mapped region and 
select the residue locations with the k  lowest alignment scores, where k  is a small 
parameter that can be determined with a statistical cut-off. 
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Based on the structure units contained in a structure template, we model the two-
body interactions among them with a conformational graph. In particular, we use 
vertices to represent cores in the structure template and cores next to each other in the 
backbone are joined with directed edges from left to right. 

In contrast, undirected edges connect two vertices if there exists a two-body 
interaction with its interacting amino acids contained in the two corresponding cores.  
For a given sequence that needs to be aligned, the images of each core can be 
efficiently determined in linear time. Using vertices to represent images, two vertices 
are joined with an undirected (directed) edge if the vertices of their corresponding 
cores are joined with an undirected (directed) edge in the conformational graph. In 
addition, values are assigned to vertices and edges in an image graph, the value 
associated with a vertex is its alignment score on the corresponding core profile; the 
value of a directed edge is the score of aligning the sequence part between its two 
ends to the corresponding loop profile in the structure template; the value of an 
undirected edge is the sum of the energies of all two-body interactions with two ends 
from the two cores respectively. 

An alignment thus corresponds to an embedding of the conformational graph into 
the image graph. The alignment score is the sum of the values of vertices and edges 
selected in the image graph to embed the conformational graph. The problem of 
optimally aligning a sequence to a structure profile thus can be formulated as a 
minimum valued subgraph isomorphism problem.  

3 Threading Algorithms 

(a) Tree Decomposition and Tree Width 

Definition 3.1. ([6]) Let ),( EVG =  be a graph, where V  is the set of vertices in 

G , E denotes the set of edges in G . Pair ),( XT  is a tree decomposition of graph G  

if it satisfies the following conditions: 
1. ),( FIT =  defines a tree, the sets of vertices and edges in T  are I and 

F respectively, 
2. },|{ VXIiXX ii ⊆∈= and  Vu∈∀ , Ii∈∃ such that 

iXu∈ , 

3. Evu ∈∀ ),( , Ii∈∃ such that iXu∈  and iXv∈ , 

4. Ikji ∈∀ ,, , if k  is on the path that connects i  and j  in tree T , then 

kji XXX ⊆∩ .  

The tree width of the tree decomposition ),( XT  is 1||max −∈ iIi X . The tree width of  

G  is the minimum tree width over all possible tree decompositions of G . 

(b) Algorithm for Optimal Alignment 

A dynamic programming table with up to tk entries is maintained in each tree node in 
a tree decomposition of the conformational graph G . For a tree node that contains t  
vertices, each entry in the table stores the validity and the partial alignment score 
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associated with a certain combination of the images of all t  vertices. The table thus 
contains a column for each tree node to store its image in a certain combination and 
two auxiliary columns V and S to store the validity of the combination and its partial 
alignment score.  Figure 1(a) shows the flowchart to fill all tables in a tree. 

 

Fig. 1. (a) The flowchart of the approach. (b) For each entry in the table of iX , the tables in its 

children jX and kX are queried to compute its validity and partial alignment score. 

Starting with the leaves of the tree, the algorithm follows a bottom-up fashion to 
compute the  V and S for each entry in the table contained in all tree nodes. For a 
leaf 

lX  that contains t  vertices },...,,{ 21 txxx , a combination of their images 

},...,,{ 21 tiii  is valid if they follow the same relative order as the t  vertices the leaf 

contains, and its partial alignment score can be computed with 

                    
=

=
g

m
mt swiiiS

1
21 )(),...,,(                         (2)  

where gsss ,...,, 21 are the corresponding structure units that are determined from 

the combination of images
tiii ,...,, 21

 and have 
lX marked, )( msw  is the value 

associated with the structure unit ms . 

For an internal node iX , without loss of generality, we assume that it has two 

children nodes jX and kX , and the vertices contained in iX , jX , and kX are 

},...,{ 2,1 txxx , },...,,{ 21 tyyy  and },...,,{ 21 tzzz respectively. The sets 

ji XX ∩ and ki XX ∩ are often not empty and we assume them to be 

},...,,{ 21 puuu  and },...,,{ 21 qvvv  respectively.  

As can be seen from Figure 1 (b), to determine the validity of a combination of 
images tiii ,...,, 21  for vertices txxx ,...,, 21 in 

iX , the algorithm first checks if it 

follows the same relative order as that of vertices in 
tX . Secondly, the images for 

vertices in ji XX ∩  and ki XX ∩  are determined from the combination. 
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The algorithm then enumerates and queries the entries in the dynamic 
programming tables of jX and 

kX  that contain the same image assignments for 

vertices in 
ji XX ∩  (for the table in 

jX ) and ki XX ∩  (for the table in
kX ). The 

combination is set to be valid if at least one valid entry is found in each table during 
the query procedure. The partial alignment score for a valid combination can be 
computed with 


=

++=
g

m
mkvvjuut swXiiMSXiiMSiiiS

qp
1

21 )(),,...,(),,...,(),...,,(
11

      (3) 

where 
puu ii ,...,

1
 and 

qvv ii ,...,
1

 are the image assignments for vertices in 
ji XX ∩  

and ki XX ∩  respectively. ),,...,(
1 juu XiiMS

p
 and ),,...,(

1 kvv XiiMS
q

are the 

minimum alignment scores over all the valid entries in the tables for jX and kX that 

assign
puu ii ,...,

1
 to vertices puu ,...,1 and 

qvv ii ,...,
1

 to vertices qvv ,...,1  

respectively. ms ’s ( gm ,...,2,1= ) form the set of structure units with
iX marked 

and )( msw is the value associated with ms . 

The optimal alignment can be obtained by searching the table in the root node for a 
valid entry with the minimum alignment score. The running time of the algorithm is 

)( nkO t , where n  is the number of vertices in a conformational graph. The overall 

time complexity for the algorithm is thus )( tkMNO + , where M and N  are the 

sizes of the sequence and the structure template respectively.  

4 Experiments and Results 

We have implemented this algorithm into a program PROTTD. We constructed the 
conformational graph for each of the 3890 available structure templates compiled 
using PISCES [11]. Table 1 provides the statistics on the tree widths of all available 
3890 structure templates obtained with PROTTD. Table 1 suggests that the tree 
decomposition based alignment can achieve a high computational efficiency. 

We varied the value of the parameter k  in PROTTD and performed sequence-
structure alignment for protein pairs in the DALI test set [2]. The alignment accuracy 
is evaluated based on the structural alignments provided by FAST [14]. We obtain the 
alignment accuracy by computing the percentage of residues that are aligned with no 
error and those aligned with a shift of less than four amino acids. Table 2 shows the 
percentage of pairs where PROTTD outperforms PROSPECT II in alignment 
accuracy for different values of k . It can be clearly seen from the table that, 
compared with PROSPECT II, PROTTD can achieve satisfactory alignment accuracy 
when its parameter k is greater than 5. 

Table 1. The distribution of tree widths for 3890 structure templates 

Tree Width 0 1 2 3 4 5 6 >6 
Percentage(%) 2.85 5.91 12.03 17.81 21.85 15.60 10.77 13.18 
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Table 2. The percentage of sequence-structure pairs in DALI test set where PROTTD 
outperforms PROSPECT II 

Parameter k=3 k=5 k=7 k=9 
Percentage(%) 39.57 55.64 85.32 86.91 
 
Table 3 shows the amount of relative speed up gained with PROTTD averaged on 

all pairs in the DALI data set. It can be seen from the table that PROTTD is 
significantly faster than PROSPECT II for sequence-structure alignment.  

Table 3. The average amount of speed up PROTTD achieved on the DALI data set 

Parameter k=3 k=5 k=7 K=9 
Average Speed-up 97.52× 57.83× 39.73× 23.61× 

Table 4. The fold recognition performance for both PROTTD and RAPTOR. Top1 and Top5 
are percentages of correctly identified protein pairs and those among the top 5 in the ranking of 
Z-scores. 

PROTTD RAPTOR 
Family Superfamily Fold Family Superfamily Fold 

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 
82.0 86.1 56.3 68.9 40.2 63.2 84.8 87.1 47.0 60.0 31.3 54.2 

 
We evaluated the fold recognition performance of PROTTD using the lindahl 

dataset [6], which contains 941 structure templates and protein sequences. In the 
dataset, 555, 434, and 321 sequences have at least one matching structural homolog at 
the family, superfamily, and fold levels. Since Z-score provides a confident measure 
for an alignment score, we ranked all structure templates based on the Z-scores 
associated with each sequence-structure alignment. Table 4 compares the prediction 
accuracy of PROTTD with that of RAPTOR [12] in lindahl data set at family, 
superfamily and fold levels respectively. It is clear from the table that PROTTD has 
significantly improved recognition accuracy at both superfamily and fold levels. 

5 Conclusions 

In this paper, we introduce an efficient parameterized graph algorithm for protein 
threading. Based on this algorithm, we are able to efficiently align a sequence to a 
structure template with high accuracy. Since HP model [1] and protein structure 
alignment [13] have been extensively used for structure analysis.  Exploring the 
potential of our approach to be applied to them would be the goal of our future work. 
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