
Chapter 5
The Divergence of the Casimir Stress

I shall be telling this with a sigh... Two roads diverged in a
wood, and I—I took the one less traveled by

Robert Frost, The Road Not Taken

5.1 The Casimir Force in Real Media

In the last chapter, we revisited Casimir’s original problem of a cavity formed by two
perfect mirrors, making a simple modification: an inhomogeneous medium with a
continuously varying permittivity profile was introduced into the cavity. Under these
conditions, we found that the Casimir-energy of the system, construed as a simple
mode summation, can be stated exactly. If this is the case, we might reasonably
expect that a generally finite and physically meaningful result can be obtained for
systems embodying small-scale inhomogeneities, without incorporating additional
information about the microphysical details of their structure.

Nevertheless, Casimir’s model—involving a cavity formed by two perfectly re-
flectingmirrors,whichwe adopted in our investigation—represents a highly idealised
case. There are no perfect mirrors in nature, and real media are both dispersive and
dissipative. To predict the behaviour of a realistic physical system, we require a cal-
culus with the capacity to incorporate these phenomena within its description. As
discussed in Chap. 2, Lifshitz theory offers such an apparatus [1] that fits fairly well
with experimental results [2, 3].

Our aim in this chapter is to repeat our previous thought-experiment, but us-
ing a more realistic model involving dispersive dielectric rather than perfect mir-
rors.1 The case of macroscopic materials embedded within a fluid is of experimental

1 The main results in this chapter were published in [4].

© Springer International Publishing Switzerland 2015
W.M.R. Simpson, Surprises in Theoretical Casimir Physics, Springer Theses,
DOI 10.1007/978-3-319-09315-4_5

91

http://dx.doi.org/10.1007/978-3-319-09315-4_2


92 5 The Divergence of the Casimir Stress

interest [2], and in this case the Casimir force must be computed using the stress
tensor within the fluid. In this problem, we seek the value of the force when the
fluid is inhomogeneous—for example, when there is a variation in the density of the
fluid.2

5.2 The Regularised Stress in the Continuum Limit

In Chap.2, we derived the general form of the stress tensor from which the Casimir
forces in a system can be determined. The formalism is written in terms of the
electromagnetic Green function, which describes the field produced by charges and
currents within the system (2.2.9), (2.2.10). The ground state of the coupled system
of electromagnetic field and dielectric is one with non–zero current density within
the media [5, 6], consistent with the fluctuation-dissipation theorem [7]. Casimir–
Lifshitz forces arise from the interaction of these ground-state currents.

The stress tensor, however, contains the same divergent contribution that ap-
peared in Casimir’s original work, and must also be regularised. As we discussed
in Sect. 2.3.3, this is typically achieved by subtracting from the total Green func-
tion an auxiliary Green function associated with an infinite homogeneous medium
[6, 8–11]. One can then compute a finite stress tensor for the system that depends on
the dielectric functions of the material at imaginary frequencies. Only then can the
force be derived. Both Casimir’s and Lifshitz’ regularisations give identical results
in the limiting case of a cavity sandwiched between perfectly reflecting mirrors.3

5.2.1 The Stress Tensor for a Rectangular Cavity

The usual expression for the stress tensor, when applied to a medium that is defined
piece–wise along a single axis, is known to be finite.4 To be explicit, for a region of
width a where ε and μ are homogeneous, the value of the regularised stress tensor
at a point x can be written in terms of the reflection coefficients (as opposed to the
Green functions) associated with sending q–polarised (q = s, p) plane waves to the
right (rq R) and to the left (rq L ) of this point [10, 12, 13],

σxx (x) = 2�c
∑

q=s,p

∞∫

0

dκ

2π

∫

R2

d2k‖
(2π)2

w
rq Lrq Re−2aw

1 − rq Lrq Re−2aw
, (5.2.1)

2 For example, sugar dissolved in water under gravity produces an inhomogeneous fluid. This can
easily be verified with a laser—light rays entering the fluid become curved.
3 See Sect. 2.4.2.
4 Significantly, this is not the case for all of the components of the stress tensor: near the boundaries
between distinct homogeneous regions, the lateral components of the stress diverge, but the normal
component remains finite.
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Fig. 5.1 We consider a medium that is inhomogeneous along x , dividing it into N homogeneous
slices of width a. The local value of the regularised stress tensor (5.2.1) is then investigated within
the medium in the limit as a → 0. For the purposes of illustration only the permittivity ε(x) is
shown here. Our analysis holds for both inhomogeneous permittivity and permeability

where w = (n2κ2 + k2‖)1/2, k‖ = |k‖|, and n is the value of the refractive index
in the homogeneous region surrounding x . The reflection coefficients are functions
of the imaginary frequency, ω = icκ , the (real) in–plane wave–vector k‖, and the
material parameters of the media to the right and to the left of the homogeneous
region. This equation is identical to Eq. (2.4.26) which was derived in Sect. 2.4. The
advantage of writing the stress tensor in this form is that the regularisation procedure
of Lifshitz theory is automatically implemented [10]. The contributions to the stress
arise entirely from inhomogeneities in the system. In this chapter we will investigate
the behaviour of (5.2.1) in the limit as the piece–wise definition of the medium
(see Fig. 5.1) becomes a continuous function (a → 0).

5.2.2 An Anticipated Divergence

Beforewe proceedwith amore lengthy argument, let us consider (5.2.1) in a cavity of
width a. This quantity is finite whenwe integrate over k‖ due to the exponential decay
of the field across the cavity at imaginary frequencies, the rate of decay becoming
increasingly rapid as k‖ increases. Indeed, once k‖ becomes sufficiently large then
the field cannot reach the boundaries of the cavity at all and the reflection coefficients
correspondingly tend to zero. However, upon shrinking a, this convergence becomes
slower, a higher value of k‖ being required before the field fails to make a round trip
across the cavity. Given that a continuous medium can be understood as the limit
where a → 0, and the refractive index contrast between the cavity and the walls
becomes infinitesimal, we should ask whether the reflection coefficients vanish fast
enough as a → 0 in order for the stress (5.2.1) to be finite. It seems that they do
not: changing variables in (5.2.1) to ζ = aw, and ξ = ak‖, we find the whole
integral multiplied by a−3. Meanwhile in this limit the reflection coefficients would
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94 5 The Divergence of the Casimir Stress

in general have contributions linear in a, which would still leave a term proportional
to a−1 within the stress tensor: a term which diverges in the continuum limit, where
a → 0. This remains a suspicion, however. In what follows, we will try to make this
argument more precise.

5.3 Transfer Matrices for the Electromagnetic Field

To describe the Casimir stress in an inhomogeneous medium, we will slice it into
N homogeneous portions of equal width a, with Na = L . In order to evaluate this
quantity, we must be able to determine the ‘left’ and ‘right’ reflection coefficients of
both polarisations, rLλ and rRλ (λ = 1, 2), for any slice of the multilayer structure.5

To achieve this, we must first develop a formalism for tracking the behaviour of
the electromagnetic field throughout this structure. In this case, we will deploy the
transfer matrix technique for our analysis of the field [13–16]. In what follows, we
will derive transfer matrices suitable to our inquiry.

5.3.1 Single-Interface Transfer Matrix

We begin by determining the boundary conditions on the electromagnetic field at a
sharp interface between two homogeneous half-spaces.

5.3.1.1 Boundary Conditions for the Electric Field

For the electric field, recalling that ∇ · D = 0, we integrate over a volume such that
the boundary sits between its upper and lower surface, where

∫

V

∇ · D dV = 0. (5.3.1)

We can shrink the walls of the volume so that all the flux of the field enters or leaves
through the top and bottom surfaces, and

∫

V

∇ · D dV =
∫

D · dS =⇒ D1 · x̂
S + D2 · (−x̂
S
) = 0. (5.3.2)

5 This technique may be similarly employed to recover the Green function. See Appendix C.
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This determines continuity conditions at the boundary for the normal component
of D:

D1 · x̂ = D2 · x̂, (5.3.3)

where x̂ is the vector normal to the interface.We can derive conditions for the tangen-
tial component of the electric field by applying Faraday’s law to a small rectangular
loop positioned across the boundary:

∫

S

∇ × E dS = − ∂

∂t

∫
B dS. (5.3.4)

Again, we consider the limiting case where the sides are permitted to contract to zero
length, preventing any magnetic flux from cutting the surface, so that

∫

S

∇ × E dS =
∮

E dl = 0 =⇒
b∫

a

E1 · dl +
d∫

c

E2 · dl = 0

=⇒ E1 · 
l + E2 · (−
l) = 0. (5.3.5)

This determines continuity conditions at the boundary for the tangential component
of E:

E1 · t̂ = E2 · t̂, (5.3.6)

where t̂ is the vector parallel to the interface.

5.3.1.2 Boundary Conditions for the Magnetic Field

We proceed similarly for the magnetic field. Recalling that ∇ · B = 0, we find that

B1 · x̂ = B2 · x̂. (5.3.7)

Recalling that ∇ × H = ∂D
∂t , we also determine that

H1 · t̂ = H2 · t̂. (5.3.8)

In summary, the boundary conditions for the electromagnetic field at an interface
between two planar media are such that

1. the in-plane components6 of E and H are continuous across the interface.
2. the normal components7 of D and B are continuous across the interface.

6 i.e. the components that lie in a plane parallel to the plane of the interface, and therefore orthogonal
to the plane of incidence.
7 i.e. the components that are normal to the interface.
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Fig. 5.2 Reflection in the
plane. The incident
wave-vector k1 (the yellow
arrow) strikes an interface
and is partially reflected. The
incident and reflected
wave-vectors both lie in the
plane of incidence. Two
polarisations are depicted: the
blue arrows depict the
polarisation in which the
electric field lies parallel to
the plane of incidence; the red
arrows depict the polarisation
that lies orthogonal to it

5.3.1.3 s and p Polarisations

We consider two polarisations of the electromagnetic field separately. Convention-
ally, we separate the field into one polarisation in which the waves have electric field
orthogonal to the plane of incidence (the plane of the incident and reflected waves),
and another in which the electric field lies parallel to it (i.e. the magnetic field is
orthogonal to the plane of incidence). We refer to these as s and p polarisations
respectively. Because of the linearity of Maxwell’s equations, an arbitrary sum of
the two polarisations is the solution for a general plane wave (Fig. 5.2).

5.3.1.4 Boundary Conditions Applied to the Electric Field

Consider a single interface between twomedia:medium1{ε1, μ1, n1 = √
ε1μ1} and

medium 2 {ε2, μ2, n2 = √
ε2μ2}. Real media are dispersive,8 so the permittivities

and permeabilities are functions of the frequency ω. We can write an expression for
the field in medium 1, for a given frequency ω, in terms of the s and p polarisations
for waves propagating forwards and backwards:

E1 = E (+)
1s (x)e(+)

1s + E (−)
1s (x)e(−)

1s + E (+)
1p (x)e(+)

1p + E (−)
1p (x)e(−)

1p . (5.3.9)

8 Dissipation is incorporated by including an imaginary component in the refractive index.
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The orientations of the s and p waves are given by the unit vectors

e(±)
1s = x̂ × k̂‖, (5.3.10a)

e(±)
1p = k̂1

(±) × e(±)
1s , (5.3.10b)

where k(±)
1 = ±k1x x̂ + k‖, x̂ is a unit vector normal to the interface, k1x is the

component of the wave-vector normal to the interface, and k̂‖ = k‖/k‖ defines a
plane parallel to the interface.9 Applying the continuity of the in-plane part of the
electric field across the two interfaces,10

E1 · e(±)
1s = E2 · e(±)

2s , (5.3.11)

E1 · k̂‖ = E2 · k̂‖, (5.3.12)

yields the equations

E (+)
1s + E (−)

1s = E (+)
2s + E (−)

2s , (5.3.13)

k1x

n1

[
E (+)
1p − E (−)

1p

]
= k2x

n2

[
E (+)
2p − E (−)

2p

]
, (5.3.14)

having noted11 that

e(±)
1p · e(±)

1s = 0, k̂‖ · e(±)
1s = 0, k̂‖ · e(±)

1p = ∓ck1x

n1ω
. (5.3.15)

Then, applying continuity for the normal component of the displacement field,

D1 · x̂ = D2 · x̂, (5.3.16)

we obtain
ε1

n1

[
E (+)
1p + E (−)

1p

]
= ε2

n2

[
E (+)
2p + E (−)

2p

]
, (5.3.17)

having noted12 that

9 By definition, a polarisation aligned with e(±)
1s excludes any normal component that crosses

the interface; the electric field is therefore orthogonal to the plane of incidence. By definition,
a polarisation aligned with e(±)

1p lies in an orthogonal plane to any polarisation aligned with e(±)
1s .

10 This involves two projections, as there are two orthogonal polarisations that we wish to treat
separately, each of which contains a component in the plane parallel to the interface.
11 For the third identity:

k̂‖ · e(±)
1p = k̂‖ ·

(
k̂1

(±) × e(±)
1s

)
= k‖

k
·
{(±k1x x + k‖

)×
(

x̂ × k̂‖
)}

= ∓ k1x

k
= ∓ ck1x

n1ω
.

12 For this identity:
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x̂ · e(±)
1p = ck‖

n1ω
. (5.3.18)

There is no similar contribution for the s component, whose field is orthogonal to
the plane of incidence, x̂ · e(±)

1s = 0, and therefore has no normal component across
the interface.

5.3.1.5 Boundary Conditions Applied to the Magnetic Field

We determine the magnetic field via

iωB1 = ∇ × E1, (5.3.19)

which implies

B1 = n1

c

[
E (+)
1s (x)e(+)

1p + E (−)
1s (x)e(−)

1p − E (+)
1p (x)e(+)

1s − E (−)
1p (x)e(−)

1s

]
. (5.3.20)

The continuity of k‖ · H gives the boundary condition

k1x

μ1

[
E (+)
1s − E (−)

1s

]
= k2x

μ2

[
E (+)
2s − E (−)

2s

]
. (5.3.21)

Applying the remaining conditions on the magnetic field does not generate any new
equations.

5.3.1.6 The Component Transfer Matrices

From the four equations obtained by applying the boundary conditions, we can form
the matrix equation

⎛

⎜⎜⎜⎝

1 1 0 0
k1x
μ1

− k1x
μ1

0 0
0 0 ε1

n1
ε1
n1

0 0 k1x
n1

− k1x
n1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

E (+)
1s

E (−)
1s

E (+)
1p

E (−)
1p

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1 1 0 0
k2x
μ2

− k2x
μ2

0 0
0 0 ε2

n2
ε2
n2

0 0 k2x
n2

− k2x
n2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

E (+)
2s

E (−)
2s

E (+)
2p

E (−)
2p

⎞

⎟⎟⎟⎠ . (5.3.22)

Clearly, the s and p polarisations are not coupled and can be treated separately. For
the s polarisation

x̂ · e(±)
1p = 1

k1
x̂ ·
{
±k1x x × e(±)

1s + k‖ ×
(

x̂ × k̂‖
)}

= k‖
k1

x̂ ·
{

k̂‖ ×
(

x̂ × k̂‖
)}

= ck‖
n1ω

.
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(
1 1

k1x
μ1

− k1x
μ1

)(
E (+)
1s

E (−)
1s

)
=
(

1 1
k2x
μ2

− k2x
μ2

)(
E (+)
2s

E (−)
2s

)
. (5.3.23)

Rewriting this expression, to express the field quantities on the right in terms of the
field quantities on the left, we obtain:

(
E (+)
2s

E (−)
2s

)
= μ2

2k2x

(
k2x
μ2

+ k1x
μ1

k2x
μ2

− k1x
μ1

k2x
μ2

− k1x
μ1

k2x
μ2

+ k1x
μ1

)(
E (+)
1s

E (−)
1s

)
.

Similarly, for the p polarisation:

(
E (+)
2p

E (−)
2p

)
= n2

2n1ε2k2x

(
ε1k2x + ε2k1x ε1k2x − ε2k1x

ε1k2x − ε2k1x ε1k2x + ε2k1x

)(
E (+)
1p

E (−)
1p

)
.

Thus for an arbitrary interface, composed of a homogeneous medium on one side
with dielectric properties εl andμl , and a second homogeneous medium on the other
side with properties εr andμr , it follows that the s and p transfer matrices connecting
the field across the boundary between the two media are

ts(l, r) = 1

2μl kxr

(
μl kxr + μr kxl μl kx r − μr kxl

μl kxr − μr kxl μl kx r + μr kxl

)
, (5.3.24)

tp(l, r) = nr

2nlεr kxr

(
εl kxr + εr kxl εl kxr − εr kxl

εl kxr − ε2kxl εl kxr + εr kxl

)
. (5.3.25)

We will be considering a stack of homogeneous media of equal width a, indexed
by the parameter m. Consequently, we also require the transfer matrix associated
with the propagation of a field through a homogeneous slice, in which the field
accumulates a phase of eikxma :

�(m) =
(

eikxma 0
0 e−ikxma

)
. (5.3.26)

5.3.1.7 Imaginary Frequencies

In order to compute the Casimir stress or force integrals, we work in imaginary
frequencies: ω → icκ . This transforms the wave vector:

ω2 = c2

n2 k2 = c2

n2

(
k2x + k2‖

)
=⇒ kx =

√
n2ω2

c2
− k2‖ → i

√
n2κ2 + k2‖ .

(5.3.27)
We then denote the imaginary wave number
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wm =
√

n2
mκ2 + k2‖ . (5.3.28)

At imaginary frequency, the transfer matrices are

ts(l, r) = 1

2μlwr

(
μlwr + μrwl μlwr − μrwl

μlwr − μrwl μlwr + μrwl

)
, (5.3.29a)

tp(l, r) = nr

2nlεrwr

(
εlwr + εrwl εlwr − εrwl

εlwr − εrwl εlwr + εrwl

)
. (5.3.29b)

The permittivities ε and permeabilitiesμ are now evaluated at imaginary frequencies:

ε(ω) → ε(iκ), μ(ω) → μ(iκ), n(ω) → n(iκ). (5.3.30)

These quantities are obtained from the dielectric properties for real frequencies by
Hilbert transformation, but remain real-valued on the imaginary axis. The propaga-
tion matrix transforms to

�(m) =
(

e−wma 0
0 ewma

)
, (5.3.31)

which is also real.

5.3.2 Multilayer Transfer Matrix and Reflection Coefficients

Our intention is to track the properties of the electromagnetic field through an inho-
mogeneous medium, by modelling the medium as a stack of homogeneous slices.
To this end, we seek to construct ‘multilayer transfer matrices’ that track wave prop-
agation across multiple interfaces:

Tλ(l, r) =
r−1∏

m=l

�(m + 1)tλ(m, m + 1). (5.3.32)

This object connects the field emerging from the far right-hand side of a stack of
homogeneous slices to the incident field impinging upon the stack in slice l:

(
E (+)

rλ

E (−)
rλ

)
= Tλ(l, r)

(
E (+)

lλ

E (−)
lλ

)
=
(

T11 T12
T21 T22

)(
E (+)

lλ

E (−)
lλ

)
. (5.3.33)

We can now define the reflection coefficients for an interface composed of multiple
slices. If we imagine a wave of unit amplitude incident from the left onto a planar
object represented by T, then the field emerging on the far right, into empty or
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homogeneous space, will consist only of right-propagating waves. It follows that:

(
T11 T12
T21 T22

)(
1
rr

)
=
(

tr
0

)
, (5.3.34)

where tr is the amplitude of thewave emerging on the right-hand side of this structure,
and rr is the amplitude of the wave reflected back. This reflection coefficient is
completely determined by the details of the structure contained in the total transfer
matrix:

T21 + T22rr = 0 =⇒ rr = −T21
T22

. (5.3.35)

Similarly, for a wave incident from the right:

(
T11 T12
T21 T22

)(
0
tl

)
=
(

rl

1

)
. (5.3.36)

The reflection coefficient is again determined completely by the total transfer matrix.

T22tl = 1 =⇒ tl = 1/T22 =⇒ rl = T12
T22

. (5.3.37)

5.3.3 Approximate Transfer Matrices for an Inhomogeneous
Medium

5.3.3.1 Restricted Regime

The Casimir stress within a multilayer dielectric stack, for a given slice of the struc-
ture, may be expressed in terms of its reflection coefficients (5.2.1). However, numer-
ical computations13 suggest that the stress of an inhomogeneous structure, modelled
as a stack of homogeneous slices, diverges as the number of slices increases (i.e. as
we approach the continuum limit, in which the slicing becomes infinitesimally thin).
The suspicion is that the divergence takes place in the integral over k‖. In order to
get an analytic fix on this divergence, we restrict our attention to the regime in which
the in-plane wave vector is large in comparison to the refractive index multiplied by
the frequency, i.e. where nκ/k‖ 	 1. This extends from some finite value of k‖ to
infinity. Under these conditions:

wm =
√

n2κ2 + k2‖ = k‖

√
1 + n2κ2

k2‖
= k‖

(
1 + 1

2

n2κ2

k2‖
+ · · ·

)
∼ k‖, (5.3.38)

13 See Sect. 5.4.2.
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i.e. the quantitywm becomes constant throughout the structure. The transfer matrices
(5.3.29a, 5.3.29b) can also be simplified:

ts(l, r) ∼ 1

2μl

(
μl + μr μl − μr

μl − μr μl + μr

)
, (5.3.39a)

tp(l, r) ∼ nr

2nlεr

(
εl + εr εl − εr

εl − εr εl + εr

)
. (5.3.39b)

These expressions become increasingly exact as k‖ increases. We shall refer to this
approximation as the ‘high wavenumber regime’ (hw-regime). Consider an inhomo-
geneous medium situated in the region x ∈ [0, L]. To describe the Casimir stress in
this medium, we will slice it into N portions of width a, with Na = L , indexed by
m. The slices m = 0 and m = N + 1 contain free space. Restricting ourselves to the
hw-regime, we first rewrite the transfer matrices (5.3.39a, 5.3.39b):

ts(m, m + 1) =
(
1 + 
μm

2μm
−
μm

2μm

−
μm
2μm

1 + 
μm
2μm

)
, (5.3.40a)

tp(m, m + 1) = nm+1εm

nmεm+1

(
1 + 
εm

2εm
−
εm

2εm

−
εm
2εm

1 + 
εm
2εm

)
, (5.3.40b)

where

μm = μm+1 − μm, 
εm = εm+1 − εm . (5.3.41)

For propagation between two slices, we first cross a boundary, then propagate a
distance a. We may define a composite transfer matrix for this process, beginning
with the s polarisation:

τs(m + 1) = �(m + 1) ts(m, m + 1) =
(

e−k‖a 0
0 ek‖a

)(
1 + 
μm

2μm
−
μm

2μm

−
μm
2μm

1 + 
μm
2μm

)
.

Multiplying the twomatrices, and separating the terms, the composite transfer matrix
can be cast in the form
⎛

⎝

{
1 + 
μm

2μm

}
e−k‖a −
μm

2μm
e−k‖a

−
μm
2μm

ek‖a
{
1 + 
μm

2μm

}
ek‖a

⎞

⎠ =
(

e−k‖a 0
0 ek‖a

)
+ 
μm

2μm

(
e−k‖a −e−k‖a

−ek‖a ek‖a

)
.

(5.3.42)

Proceeding similarly for the p polarised waves, the composite transfer matrices for
the two polarisations can be conveniently rewritten in the form
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τs(m + 1) = α + 
μm

2μm
β,

τp(m + 1) = nm+1εm

nmεm+1

(
α + 
εm

2εm
β

)
, (5.3.43)

where

α =
(

e−k‖a 0
0 ek‖a

)
, β =

(
e−k‖a −e−k‖a

−ek‖a ek‖a

)
. (5.3.44)

5.3.3.2 Approximating the Transfer Matrices

Besides working within the hw-regime, wemay simplify the algebra further by limit-
ing our enquiry to the general case of a weakly inhomogeneous medium. The optical
profile of the medium under consideration remains arbitrary; we simply restrict our-
selves either to the case of an inhomogeneity that is small in magnitude but fairly
rapid in variation, or fairly large in magnitude but only slowly varying. Reflections
are the result of inhomogeneities. In the case under consideration, we expect the
reflection coefficients and the Casimir stress to be small. If there is a divergence in
the Casimir stress for even a weakly varying (that is, a weakly reflective) medium,
there is every reason to expect a divergence in a strongly varying (strongly reflective)
medium.

First, to calculate the stress in a cell l, we require the reflection coefficients of
the cell boundaries, rl and rr , and therefore the transfer matrices associated with
propagation of waves from cell l throughout the multilayer stack, travelling to the
left and to the right. We shall consider a configuration for N + 1 cells. Consider the
left transfer matrix for the s polarisation:

TLs =
l∏

m=1

τs (m) =
l∏

m=1

(
α + 
μm−1

2μm−1
β

)

=
(

α + 
μl−1

2μl−1
β

)(
α + 
μl−2

2μl−2
β

)(
α + 
μl−3

2μl−3
β

)
+ · · ·
(5.3.45)

It is not possible to analytically evaluate (5.3.45) unless we make the second
approximation we alluded to: it is equivalent to the Born approximation in quantum
mechanics, where we assume that scattering is weak [15]. In electromagnetism,
this means that the properties of the medium must change slowly as a function of
position. Products of the transfer matrices can then be truncated to first order in 
ε

and 
μ [14]. This approximation is quite well suited to our case, for it is the case
where the value of the stress ought to be minimal. Thus for a weakly inhomogeneous
medium we may neglect terms that are higher than first-order in 
μi and 
εi . It
follows that
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TLs ∼ αl + 
μl−1

2μl−1
βαl−1 + 
μl−2

2μl−2
αβαl−2 + 
μl−3

2μl−3
α2βαl−3 + · · ·

= αl +
l∑

m=1


μl−m

2μl−m
αm−1βαl−m . (5.3.46)

It is convenient to reverse and reindex the sum:

TLs ∼ αl +
l−1∑

m=0


μm

2μm
αl−m−1βαm . (5.3.47)

The matrices in the final lines are then

αl =
(

e−k‖la 0
0 ek‖la

)
, (5.3.48a)

αl−m−1βαm =
(

e−k‖la −ek‖(2m−l)a

−ek‖(l−2m)a ek‖la

)
. (5.3.48b)

Thus the transfer matrix can be written

TLs =
⎛

⎜⎝

[
1 +∑l−1

m=0

μm
2μm

]
e−k‖la −∑l−1

m=0

μm
2μm

e−k‖(l−2m)a

−∑l−1
m=0


μm
2μm

ek‖(l−2m)a
[
1 +∑l−1

m=0

μm
2μm

]
ek‖la

⎞

⎟⎠ . (5.3.49)

For the transfer matrix associated with propagation through the right-hand side of
the structure:

TRs =
N+1∏

m=l+1

τs (m) =
N+1∏

m=l+1

(
α + 
μm−1

2μm−1
β

)

=
(

α + 
μN

2μN
β

)(
α + 
μN−1

2μN−1
β

)(
α + 
μN−2

2μN−2
β

)
+ · · ·

(5.3.50)

We apply the same approximation:

TRs ∼ αN+1−l + 
μN

2μN
βαN−l + 
μN−1

2μN−1
αβαN−l−1 + 
μN−2

2μN−2
α2βαN−l−2 + · · ·

= αN+1−l +
N∑

m=l


μm

2μm
αN−mβαm−l . (5.3.51)

The matrices in the final lines are
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αN+1−l =
(

e−k‖(N+1−l)a 0
0 ek‖(N+1−l)a

)
, (5.3.52a)

αN−mβαm−l =
(

e−k‖(N−l+1)a −e−k‖(N+l+1−2m)a

−e−k‖(N+l+1−2m)a ek‖(N−l+1)a

)
. (5.3.52b)

Thus the right-transfer matrix for s polarised light is

TRs =
⎛

⎝

[
1 +∑N

m=1

μm
2μm

]
e−k‖(N−l+1)a −∑N

m=1

μm
2μm

e−k‖(N+l+1−2m)a

−∑N
m=1


μm
2μm

ek‖(N+l+1−2m)a
[
1 +∑N

m=1

μm
2μm

]
ek‖(N−l+1)a

⎞

⎠ .

(5.3.53)

The form of TLp and TRp, for the p polarisation, can be determined without fur-
ther calculation from their s counterparts by simply substituting permeability for
permittivity and multiplying by the prefactor

nN+1εl

nlεN+1
. (5.3.54)

We can now state the reflection coefficients, applying the same ratios of the elements
of the appropriate transfer matrix as before (5.3.35), (5.3.37). For reflection from
the left of s polarised light, we obtain the coefficient

rLs(l) = −
∑l−1

m=0

μm
2μm

e−k‖(l−2m)a

[
1 +∑l−1

m=0

μm
2μm

]
ek‖la

= −
∑l−1

m=0

μm
μm

e−2k‖(l−m)a

(
2 +∑l−1

j=0

μ j
μ j

) . (5.3.55)

For reflection from the right of s polarised light, we obtain

rRs(l) =
∑N

m=1

μm
2μm

ek‖(N+l+1−2m)a

[
1 +∑N

m=1

μm
2μm

]
ek‖(N−l+1)a

=
∑N

m=1

μm
μm

e−2k‖(m−l)a

[
2 +∑N

m=1

μm
μm

] . (5.3.56)

The reflection coefficients of the p polarisation can be recovered by replacing the
permeabilities with the permittivities. It is convenient to introduce into all the reflec-
tion coefficients an additional phase factor, such that we can associate the reflection
coefficients for each slice with a point xl at the centre of the slice. The complete set
of reflection coefficients are then given as follows: for reflection of s and p polarised
light from the left,
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rLs(xl) = −
∑l−1

m=0

μm
μm

e−2k‖(l−m−1/2)a

(
2 +∑l−1

m=0

μm
μm

) ,

rLp(xl) = −
∑l−1

m=0

εm
εm

e−2k‖(l−m−1/2)a

(
2 +∑l−1

m=0

εm
εm

) ; (5.3.57)

for reflection from the right,

rRs(xl) =
∑N

m=l

μm
μm

e−2k‖(m−l+1/2)a

(
2 +∑N

m=l

μm
μm

) ,

rRp(xl) =
∑N

m=l

εm
εm

e−2k‖(m−l+1/2)a

(
2 +∑N

m=l

εm
εm

) . (5.3.58)

5.4 The Casimir Stress in an Inhomogeneous Medium

To recapitulate briefly, we have approximated the inhomogeneousmedium as a series
of N homogeneous strips of width a (see Fig. 5.1). We have employed the transfer
matrix technique for our analysis of the field [13–16], with the field in strip j + 1
being related to that in j by

Eq( j + 1) = tq( j + 1) · Eq( j), (5.4.1)

where the index q labels the polarization as in (5.2.1), and tq( j + 1) is the transfer
matrix relating the field on the far right of slice j to that on the far right of slice
j + 1. In (6.2.11) the electric field amplitude, Eq is written as a two element vector
containing the right (+) and left (−) going parts,

Eq( j) =
(

E (+)
q ( j)

E (−)
q ( j)

)
. (5.4.2)

We number the transfer matrices in (6.2.11) from 1 to N +1, with ε0 and εN+1 equal
to the vacuum permittivity, and μ0 and μN+1 the vacuum permeability. In each of
these slices tq is given by the usual expression for the transfer matrix in piece–
wise homogeneous media (e.g. [14, 16]). For the imaginary frequencies, ω/c =
iκ , encountered within (5.2.1) the x–directed wave–vector in the j th slice is also
imaginary, k j = iw j , where, w j = (n2

jκ
2 + k2‖)1/2. The limit of N → ∞ and

a → 0 will be taken in the final step of the calculation.
Our object is to apply this formalism to determine whether the stress tensor (5.2.1)

remains finite when the properties of the medium are represented by continuous

http://dx.doi.org/10.1007/978-3-319-09315-4_6
http://dx.doi.org/10.1007/978-3-319-09315-4_6
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functions of position. We suspect that it is not: a divergence of (5.2.1) is anticipated
in the integral over k‖ = |k‖|. Physically—considering the allowed modes on the
real frequency axis—we can picture this divergent contribution arising due to waves
of high k‖ undergoing reflections from the inhomogeneity of the medium. As k‖ is
increased, these waves contribute ever more to the local value of the stress tensor,
when presumably in reality they should not be supported by themedium at all. For the
purpose of identifying this anticipated divergence, we have restricted our attention
to the hw-regime of the integrand in (5.2.1), where the in–plane wave–vector is large
in comparison to the ‘refractive index’ multiplied by the ‘frequency’, n jκ/k‖ 	 1.

5.4.1 The High-Wavenumber Divergence

The integral for the Casimir stress, at a position xl within the multilayer structure,
can now be stated in terms of the quantities we have derived:

σxx (xl) = 2�c
∑

λ=s,p

∞∫

0

dκ

2π

∫

R2

d2k‖
(2π)2

w
rLλ(xl)rRλ(xl)e−2aw

1 − rLλ(xl)rRλ(xl)e−2aw
, (5.4.3)

where
w =

√
n(xl , iκ)2κ2 + k2‖, k‖ = ∣∣k‖

∣∣ , (5.4.4)

and the reflection coefficients rsλ are defined by (5.3.57), (5.3.58). n(iκ) is the refrac-
tive index of slice l evaluated at imaginary frequencies. To examine the behaviour of
the stress in the integral over k‖ we evaluate the integrand above at fixed κ (that is,
for a fixed frequency) and therefore at n(xl) = n(xl , iκ). A semi-infinite part of the
integral over k‖ is taken in the regime of high wave numbers [K ,∞), wherew ∼ k‖.
The quantity we wish to analyse is

I =
∑

λ=s,p

∞∫

K

dky

2π

∞∫

K

dkz

2π
k‖

rLλrRλe−2k‖a

1 − rLλrRλe−2k‖a
. (5.4.5)

It is convenient to rewrite the integral in polar coordinates:

∑

λ=s,p

2π∫

0

dθ

2π

∞∫

K

k2‖dk‖
2π

rLλrRλe−2k‖a

1 − rLλrRλe−2k‖a
. (5.4.6)

If this quantity is divergent, then the stress integral as a whole is divergent. This
is true regardless of the absorbing properties of the medium, or its frequency dis-
persion profile. We can expand the denominator in the expression above in a series of
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ascendingpowers of the reflection coefficients, on the assumption that rLλrRλe−2k‖a< 1,
so that this sum converges for all a and all k‖:

rLλrRλe−2k‖a
(
1 − rLλrRλe−2k‖a

)−1

= rLλrRλe−2k‖a
[
1 + rLλrRλe−2k‖a +

(
rLλrRλe−2k‖a

)2 + · · ·
]

,

(5.4.7)

which can be written more concisely as

∑

n=0

(
rLλrRλe−2k‖a

)n+1
. (5.4.8)

We may now rewrite I and introduce the quantity Iλn :

I = 1

2π

∞∑

n=0

∑

λ=s,p

Iλn, Iλn =
∞∫

K

k2‖dk‖ (rLλrRλ)
n+1 e−2(n+1)k‖a . (5.4.9)

Consider the quantity Is0 = ∫∞
K k2‖dk‖rLsrRse−2k‖a . First, we insert the expressions

for the reflection coefficients:

Is0 = −
∞∫

K

k2‖dk‖

∑l−1
m=0

∑N
m′=l


μm
μm′
μmμm′ e−2k‖(m′−m+1)a

(
2 +∑l−1

m=0

μm
μm

) (
2 +∑N

m′=l

μm′
μm′

) . (5.4.10)

The integral over k‖ can now be evaluated. It is an integral of the form14

∫
x2ecxdx = ∂2

∂c2

∫
ecxdx = ∂2

∂c2

[
1

c
ecx
]

= ecx
(

x2

c
− 2x

c2
+ 2

c3

)
. (5.4.11)

Putting c = −2
(
m′ − m

)
a, and integrating over k‖, we obtain

∞∫

K

dk‖k2‖e−2k‖(m′−m+1)a = K0 e−2K(m′−m+1)a (5.4.12)

where

K0 =
(

K 2

2(m′ − m + 1)a
+ 2K

4(m′ − m + 1)2a2 + 2

8(m′ − m + 1)3a3

)
. (5.4.13)

14 We have set the constant of integration to zero.
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Thus the integral Is0 evaluates as

Is0 = −
∑l−1

m=0
∑N

m′=l

μm
μm′

μmμm′ K0 e−2K(m′−m+1)a

(
2 +∑l−1

m=0

μm
μm

) (
2 +∑N

m′=l

μm′
μm′

) . (5.4.14)

In fact, this quantity can be made arbitrarily large by slicing the medium more
finely—that is, by decreasing the width of each slice by increasing the number of
slices. To see this, we consider the quantity Is0 in the continuum limit. First, we
rewrite the sums as integrals:

l−1∑

m=0

→
x∫

0

dx1,
N∑

m′=l

→
L∫

x

dx2. (5.4.15)

The terms involving the permeabilities can be reexpressed as logarithms.


μm

μm
= μm+1 − μm

μm
→ 1

μ(x1)

d

dx1
μ(x1) = d

dx1
ln [μ(x1)] , (5.4.16)

Similarly,

μm′

μm′
→ d

dx2
ln [μ(x2)] . (5.4.17)

The sums on the denominator of (5.4.14) becomes integrals that can be straightfor-
wardly evaluated:

x∫

0

dx1
d

dx1
ln [μ(x1)] = ln [μ(x)] − ln [μ(0)] ,

L∫

x

dx2
d

dx2
ln [μ(x2)] = ln [μ(L)] − ln [μ(x)] . (5.4.18)

Since the medium is situated in a vacuum, ln [μ(0)] = ln [μ(L)] = ln 1 = 0. Finally,
we arrive at an expression for (5.4.14) in the continuum limit: Is0 is equal to

− (2 + ln [μ(x1)])
−1 (2 − ln [μ(x2)])

−1

x∫

0

dx1

L∫

x

dx2
d

dx1
ln [μ(x1)]

d

dx2
ln [μ(x2)]

(
K 2

2(x2 − x1)a
+ 2K

4(x2 − x1)2a2 + 2

8(x2 − x1)3a3

)
e−2K (x2−x1)a .

(5.4.19)
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This expression clearly diverges. It therefore seems that there is no finite
continuum limit of the regularised stress tensor (5.2.1). Including the additional
terms in the series (5.4.9) will not affect this result [4]. Whilst these contributions
diverge in a similar manner, they represent higher powers of the derivatives of ε

and μ—terms that vary quite independently as the spatial dependence of ε and μ is
changed, and therefore cannot be expected to cancel in general. As the remainder of
the integral over k‖ is finite, we conclude that the whole integral diverges as a → 0.
Consequently (5.2.1) diverges everywhere within an inhomogeneous medium de-
scribed by ε and μ that are continuous functions of position. This is independent of
how these quantities depend on imaginary frequency.

5.4.2 A Numerical Illustration

The divergence demonstrated analytically above was first spotted numerically when
attempting to compute a stress profile for a system similar to the one in [9], and
the results of these numerical computations serve to illustrate the argument. For the
sake of simplicity we consider an impedance-matched system ε = μ = n with the
refractive index profile

n(x) =

⎧
⎪⎨

⎪⎩

3 x ≤ 0,

3 e−x 0 < x < Log 3,

1 x ≥ Log 3.

(5.4.20)

The system contains an imhomogeneous region between x = 0 and x = Log 3. In
order to investigate the properties of this system using the transfer matrix technique
described earlier (but dispensing with the approximations introduced in Sect. 5.3.3),
we divide the inhomogeneous region into N homogeneous pieces (see Fig. 5.3), and
determine the left and right reflection coefficientswithin each piece. It is then possible

Fig. 5.3 The continuous
refractive index profile of the
system, and a piece–wise
approximation using 20
homogeneous slices
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to calculate the local value of the regularised stress. The formula for the stress (5.2.1)
can be rewritten more simply in this case [10], noting that the coefficients depend
only on the magnitude of the wave vector components, and not on the angle between
them15:

σ = �c

π2

∞∫

0

∞∫

0

k‖w
rLrRe−2aw

1 − rLrRe−2aw
dk‖ dκ. (5.4.21)

As N becomes large (i.e. as the cavity width a becomes small), the approximation
becomes increasingly accurate. Prima facie, there should be little to distinguish the
physics of the case N = 400 from the case N = 800, as both approximations of
the continuum case are now very smooth. Nevertheless, as Fig. 5.4 shows, the stress
(though regularised) increases markedly, and it continues to grow as more slices are
added. Why is this happening? Plots of the integrand of the stress (6.2.7), where
the wave number k‖ and the number of slices N are allowed to vary, show that the
integral falls off less and less rapidly with k‖ as N is increased (Fig. 5.5).

Fig. 5.4 The medium, inhomogeneous between x = 0 and x = Log 3, is divided into 100, 200,
400 and 800 homogeneous slices. The local absolute value of the regularised stress tensor (6.2.7)—
normalised in units of �c/π2—is plotted for each case at a given position x . The stress increases
as the number of divisions increases

15 We also note that the electric and magnetic coefficients are equal, due to impedance-matching,
and hence need not be referred to separately.

http://dx.doi.org/10.1007/978-3-319-09315-4_6
http://dx.doi.org/10.1007/978-3-319-09315-4_6
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Fig. 5.5 The integrand of the stress (6.2.7), σ ′, (normalised in the same units as Fig. 5.4) is plotted
for κ = 1 at the centre of the system, with k‖ varying from k‖ = 1 to k‖ = 6, 000 (horizontal axis),
and N ranging from t = 10 to t = 6, 000 (depth axis). As the number of slices N is increased, the
integrand falls off less rapidly with k‖, and thus the integral of the stress converges less rapidly

5.4.3 Speculations on Spatial Dispersion

We might wonder how finite results ought to be extracted from this formalism. The
advantage of the usual regularisation procedure is that it removes an infinite quantity
that does not depend on the inhomogeneity of the medium, which cannot be relevant
to the force. Conversely, here we have a divergent contribution that is due to the
inhomogeneity of the medium. The divergence originates within the fact that the
reflection coefficients (5.3.57), (5.3.58) do not go to zero fast enough as k‖ → ∞ in
the limit where a → 0.

One approach to this problem might be to terminate the integral over k‖ at some
finite cut–off. However, the value of this cut–off would seem to be arbitrary. Alterna-
tively, before the continuum limit is taken, we might just remove some small region
of the sum around the point where k − j = 1, although the size of this region would
also be arbitrary. This problem is reminiscent of that found in the case of spontaneous
emission within an absorbing dielectric, where an additional physical parameter—
equivalent to removing a portion of the dielectric in the immediate vicinity of the
atom—must be introduced in order to obtain a finite emission rate [17, 18].

However, it might be urged that the solution to this problem involves the recog-
nition that, as with other problems in physics, the specific dependence of the dielec-
tric media on both the frequency and the wave vector ought to be included within
the macroscopic description of matter, at the level of the electric permittivity and
magnetic permeability functions. It is a familiar thought that realistic models of

http://dx.doi.org/10.1007/978-3-319-09315-4_6
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macroscopic media must include the phenomenon of temporal dispersion: in linear
and causal time-independent systems, this amounts to the acknowledgement that the
general relation between the electric displacement D and the electric field E, given
by the dielectric response tensor of the medium, ε(r, r′, t − t ′), involves the response
of the system not only at time t but also the delayed response to the field at previous
times t ′ < t ,

D(r, t) =
∫

dr′
t∫

−∞
dt ′ε(r, r′, t − t ′) · E(r′, t ′). (5.4.22)

The time integration can be rewritten as a temporal Fourier transform, and the re-
sponse function replaced by the more familiar frequency-dependent electric permit-
tivity, so that

D(r, t) =
∫

dr′ε(r, r′, ω) · E(r′, ω). (5.4.23)

However, (5.4.22) also acknowledges that the response at a position r depends on
positions within the locality of r, as well as the point of measurement itself. Strictly
speaking, this non-locality holds for all materials at the microscopic level, as they are
made of atoms, and the phenomenological approximation of a continuous medium
is no longer applicable on this length scale. As the wavelength of light is typically
much larger than the interatomic distance, it is generally reasonable to assume that
E(r′) ≈ E(r), yielding a local response

D(r, ω) = ε(r, ω) · E(r, ω). (5.4.24)

Nevertheless, it has been shown that non-local effects must be considered in order
to model the behaviour of the Casimir force at finite temperature [19], and it has
also been noted that this approximation may fail close to the surface of a material
[20, 21]. For a system that is translationally invariant, with a response depending on
the separation r − r′, we may write a new permittivity function by taking a spatial
Fourier transform with the wave vector k, as well as a temporal Fourier transform
with respect to time:

ε(k, ω) =
∫

dr′
t∫

−∞
dt ′ε(r − r′, t − t ′) · E(r′, t ′). (5.4.25)

This non-local dependence is known as spatial dispersion, being formally similar to
temporal dispersion. Properly, a complete model of dispersion requires the dielectric
response of the medium to fall off to its free space (bare vacuum) magnitudes, for
high values of frequency and wave number:

lim
k→∞ ε(k, ω) = 1 and lim

ω→∞ ε(k, ω) = 1. (5.4.26)
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Importantly, if the response of the material falls off fast enough with high wave
numbers, the stress tensor (5.2.1) may turn out to be finite after all. To examine
this question, however, requires detailed empirical information about the material
sample, or a sufficiently well-motivated theoretical model of dielectric, from which
its high-wavenumber response can be modelled. Such probing questions into the
detailed structure of macroscopic media are beyond the scope of this present study
and seem unlikely to yield a fundamental solution: the Casimir energy of a system
without spatial or temporal dispersion can be stated exactly, as we witnessed in the
previous chapter, and the divergence of the stress does not arise from its temporally
dispersive properties.

5.5 Summary Remarks

In this chapter we have examined the local behaviour of the regularised stress tensor
commonly used in calculations of the Casimir force for a dielectric medium inhomo-
geneous in one direction. We have seen that the usual expression for the stress tensor
is not finite anywhere within the medium, whatever the temporal dispersion or index
profile, and that this divergence is unlikely to be removed by simply modifying the
regularisation procedure. These findings hold for all magnetodielectric media.

From our investigation, it is clear that a calculation of (5.2.1) for a piecewise
definition of an inhomogeneous medium does not represent an approximation to
the continuous case. Our result is consistent with earlier findings,16 and illustrates
the generality of the problem of specifying the local value of the electromagnetic
stress tensor at T = 0K when the material parameters vary continuously over space.
Moreover,we identify a divergenceof the local value of the stress tensor that cannot be
removed by the procedure of regularisation usually advocated; it arises specifically
due to the unphysical contribution of high wave numbers in the continuum limit.
This problem does not seem to be widely appreciated in the literature. In [13] and in
[22] reflection coefficients were similarly employed to determine the Casimir force
in systems with increasingly refined inhomogeneous features, but the limits of the
applicability of this technique were not commented on.

A continuously varyingmedium introduces arbitrarily small inhomogeneities into
a system. A possible explanation for the divergence we have identified is that the
Casmir force does not depend on such small-scale inhomogeneities, and a generally
finite and physically meaningful result must be obtained by finding some simple
modification to the existing regularisation procedure.

16 In [9] the stress inside an inhomogeneousmediumwith a similar profile to (5.4.20)was determined
using the exact Green function. However, it was infinite everywhere. An alternative regularisation
was proposed, but this proved unsuccessful [4].
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