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Abstract. We present a moderately exponential time polynomial space
algorithm for sparse instances of Max SAT. Our algorithms run in time
of the form O(2(!7#(9)™) for instances with n variables and cn clauses.
Our deterministic and randomized algorithm achieve pu(c) = £2(

and () = 2, L, .)
terministic algorithm with pu(c) = .Q(Cl;gc) was shown by Dantsin and
Wolpert [SAT 2006] and a polynomial space deterministic algorithm with
wu(e) = .(2(201(6) ) was shown by Kulikov and Kutzkov [CSR 2007].

Our algorithms have three new features. They can handle instances
with (1) weights and (2) hard constraints, and also (3) they can solve
counting versions of Max SAT. Our deterministic algorithm is based
on the combination of two techniques, width reduction of Schuler and
greedy restriction of Santhanam. Our randomized algorithm uses random
restriction instead of greedy restriction.
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respectively. Previously, an exponential space de-
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1 Introduction

In the maximum satisfiability problem (Max SAT), the task is, given a set of
clauses, to find an assignment that maximizes the number of satisfied clauses,
where a clause is a disjunction of literals and a literal is a Boolean variable or
its negation. Max SAT is one of the most fundamental NP-hard problems. In
Max ¢-SAT, we pose a restriction on input instances that each clause contains
at most /£ literals. Max ¢-SAT is NP-hard even when ¢ = 2.

Given an instance of Max SAT with n variables and m = ¢n clauses, one
can solve the problem in time O(m2™). The challenge is to reduce the run-
ning time to O(poly(m)2(!=#)") for some absolute constant p > 0. This is
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a very difficult goal to achieve since the best running time upper bound is

of the form O(poly(m)Q(l_O“;g ©)™) [4, 28] even for the satisfiability problem
(SAT), where the task is to find an assignment that satisfies all the clauses.
Therefore, it is natural to seek for an algorithm for Max SAT which runs
in time O(poly(m)2(!=#(e)") for some pu(c) > 0. Previously, an exponential

space deterministic algorithm with u(c) = Q(Clggc) was shown by Dantsin and

Wolpert [8] and a polynomial space deterministic algorithm with p(c) = £2( 201<C) )
was shown by Kulikov and Kutzkov [24]. In this paper, we prove the following
theorems.

Theorem 1. For instances with n variables and m = cn clauses, Max SAT can
be solved deterministically in time O(poly(m)2(=#()™) and polynomial space,
where p(c) = £2( . 1§g2 e

Theorem 2. For instances with n variables and m = cn clauses, Max SAT can
be solved probabilistically in expected time O(poly(m)2(=#)™) and polynomial
space, where u(c) = “Q(clolg;3 o)

Our algorithms have three new features which were not treated in [8, 24]. (1) Our
algorithms can handle instances with weights. (2) Our algorithms can handle in-
stances with hard constraints (instances of partial Max SAT), i.e., instances in
which some clauses must be satisfied. (3) Our algorithms can count the num-
ber of optimal assignments. Furthermore, if we are allowed to use exponential
space, our algorithms can be modified into the ones that can count the number
of assignments achieving a given objective value. For more formal statements,
see Theorems 4,5,7 and 8.

1.1 Related Work

The complexities of Max SAT and Max CSP (constraint satisfaction problem)
has been studied with respect to several parameters [1-3, 6, 8-11, 14, 15, 19—
26, 29, 30, 32]. Recall that Max CSP is a generalization of Max SAT where
an instance consists of a set of arbitrary constraints instead of clauses. In Max
¢-CSP, each constraint depends on at most ¢ variables.

We summarize the best upper bounds for each parametrization in Table 1.
Here k is the objective value, i.e., the number of constraints that must be satis-
fied, [ is the length of an instance, i.e., the sum of arities of constraints, m is the
number of constraints, and n is the number of variables. We omit the factor in
polynomial in k, 1, m,n there. Note that for Max 2-SAT (and Max 2-CSP), the
best upper bound is of the form O(poly(m)2(1=#)") for some absolute constant
p > 0. However, it is not known whether O(poly(m)2(=#(2)") time algorithms
exist for Max ¢-SAT when ¢ > 3, where p(¢) > 0 is a constant only depending
on /{.
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Table 1. A historical overview of upper bounds

Running time Problem  Space Reference
0(20-4414k) Max SAT polynomial [3]
0(20-10001) Max 2-SAT polynomial [10]
O(20-14501 Max SAT polynomial [1]
O(20-1983m) Max 2-SAT polynomial [9]
0(20-1901m) Max 2-CSP polynomial [9]
O(20-4057m Max SAT polynomial [6]
0(207909") Max 2-CSP exponential [21, 32]
00~ aIM)y o(c) = O(cllogc) Max SAT  exponential [8]
O21=AEIM)Y B(c) = 0(2(13(6)) Max SAT polynomial [24]

02 =7CED™M) ~(c) = o 110g2 ¢ Max SAT  polynomial Theorem 1
0(2(1—5(?3))”)),5(0) = O(cligS o Max SAT polynomial Theorem 2

An alternative way to parametrize MAX SAT is to ask whether at least m+ k&
clauses can be satisfied, where m is an expected number of satisfied constraints
by a uniformly random assignment, see, e.g., [12].

1.2 Our Technique

Our deterministic algorithm is based on the combination of two techniques, width
reduction of Schuler [4, 28] and greedy restriction of Santhanam [7, 27]. Our first
observation is that we can solve Max ¢-SAT in time O(poly(m)Q(lfn(ﬂlc?))")
by slightly modifying Santhanam’s greedy restriction algorithm for De Morgan
formula SAT [7, 27]. To apply the Max ¢-SAT algorithm for general Max SAT, we
adopt the technique of Schuler’s width reduction [4, 28]. Briefly, width reduction
is, given an instance of SAT, to produce a collection of instances of /-SAT such
that the original instance is satisfiable if and only if at least one of the produced
instances is satisfiable. We will see that width reduction can be also applied
to Max SAT instances. Once we recognize the approach of combining greedy
restriction and width reduction works, the analysis of running time basically
follows from the existing analysis.

Our randomized algorithm uses a simple random restriction algorithm for
Max ¢-SAT instead of the greedy restriction algorithm.

1.3 Paper Organization

In section 2, we introduce definitions and notation needed in the paper. In section
3, we present a greedy restriction algorithm for Max formula SAT and its running
time analysis. The algorithm is used to solve Max ¢-SAT. In section 4, we show
a deterministic algorithm for Max SAT and its analysis. In section 5, we present
an exponential space deterministic algorithm for a counting version of Max SAT
and its analysis. In section 6, we show a randomized algorithm for Max ¢-SAT
and its analysis.
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2 Preliminaries

We denote by Z the set of integers. We define —oco as —oco+2 =24+ —00 = —00
and —oo < z for any z € Z. oo is defined analogously. Let V = {x1,...,2,} be
a set of Boolean variables. We use the value 1 to indicate Boolean ‘true’, and
0 ‘false’. The negation of a variable € V is denoted by x. A literal is either
a variable or its negation. An f-constraint is a Boolean function ¢ : {0,1}* —
{0,1}, which depends on ¢ variables of V. Note that a 0-constraint is either ‘0’
or ‘1’ (a constant function). An instance ¢ of Max CSPs consists of pairs of a

constraint and a weight function, i.e., ® = {(é1,w1), ..., (¢m,wn)} where each
¢; is a kj-constraint and w; : {0,1} — {—oo} U Z. For a weight function w,
we denote by w a weight function such that w(1l) = w(1),w(0) = —oo. Note
that a constraint with a weight of the form w(0) = —oo must be satisfied,

i.e., it is a hard constraint. The width of @ is max; k;. We use the notation as
Val(®,a) := 3" | wi(pi(a)) and Opt(P) := max,eo,13» Val(P,a). For an integer
K, we define

#Vals g (D) := |{a € {0,1}" | Val(P,a) > K},
#Opt(P) := |{a € {0,1}" | Val(P,a) = Opt(P)}|.

We are interested in subclasses of Max CSPs defined by restricting the type
of constraints. We denote by y1,...,y, arbitrary literals. In Max SAT, each
constraint must be a clause, i.e., a disjunction of literals of the form y; V- -V y,.
We allow 0-constraints to appear in instances of Max SAT.

3 A Greedy Restriction Algorithm for Max formula SAT

In this section, we present an algorithm for Max CSPs in which each constraint
is given as a De Morgan formula. The algorithm immediately yields an algorithm
for Max ¢-SAT.

3.1 De Morgan Formula and Its Simplification

A De Morgan formula is a rooted binary tree in which each leaf is labeled by a
literal from the set {x1,...,2Zn,x1,...,2Z,} or a constant from {0,1} and each
internal node is labeled by A (“and”) or V (“or”). Given a De Morgan formula
¢, a subformula of ¢ is a De Morgan formula which is a subtree in ¢. Every De
Morgan formula computes in a natural way a Boolean function from {0, 1}" to
{0,1}. The size of a De Morgan formula ¢ is defined to be the number of leaves
in it, and it is denoted by L(¢). We denote by var(¢) the set of variables which
appear as literals in ¢. The frequency of a variable = in ¢ is defined to be the
number of leaves labeled by z or x, and it is denoted by freqy(z).

For any formula ¢, any set of variables {z;,...,z; } and any constants
ai,...,ar € {0,1}, we denote by ¢[z;; = ai,...,2; = ai] the formula ob-
tained from ¢ by assigning to each w;,, z;, the value a;, a; and applying the
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following procedure Simplify. We can similarly define ¢[l;;, = a1,...,l;, = ag]
for any set of literals {l;,,...,l; }. The procedure Simplify reduces the size of
a formula by applying rules to eliminate constants and redundant literals. These
are the same simplification rules used by [13, 27].

Simplify (¢: formula)
Repeat the following until there is no decrease in size of ¢.

(a) If 0 A% occurs as a subformula, where 1 is any formula, replace this subformula
by 0.

(b) If 0 V4 occurs as a subformula, where v is any formula, replace this subformula
by 1.

(¢) If 1 A9 occurs as a subformula, where v is any formula, replace this subformula
by 1.

(d) If 1V occurs as a subformula, where v is any formula, replace this subformula
by 1.

(e) If y V1 occurs as a subformula, where 1 is a formula and y is a literal, then replace
all occurrences of y in ¥ by 0 and all occurrence of y by 1.

(f) If y Av occurs as a subformula, where v is a formula and y is a literal, then replace
all occurrences of y in ¢ by 1 and all occurrence of y by 0.

Fig. 1. Simplification procedure

It is easy to see that Simplify runs in time polynomial in the size of ¢ and
the resulting formula computes the same function as ¢.

3.2 An Algorithm for Max Formula SAT

Mazx formula SAT is a subclass of Max CSPs where each constraint is given as a
De Morgan formula, i.e., an instance is of the form @ = {(¢1,w1), ..., (¢m, wm)}
where ¢; is a De Morgan formula and w; is a weight function. We use the
notation as var(®) := U™ var(¢;), L(®) = YiL(é)>2 L(#i) and freqq(z) =

. \so freqy (). For any instance @, any set of variables {x;,,...,x;_ } and
i:L(¢i)>2 $i 1 k
any constants ay,...,ar € {0,1}, we define as Plx;, = a1,...,z;, = ai] =
{(¢h,w1),. .., (Phy, wm)} where ¢ = @i, = ar,...,x;,, = axl.

We need the following lemma.

Lemma 1. Given an instance @ of Max formula §AT with m constraints, Opt(P)
and #O0pt(®) can be computed in time poly(m)2=(®).,

Proof. We first show the following claim.

Claim. Given an instance @ of Max formula SAT with m constraints and z(di) =
0, Opt(®) and #Opt(P) can be computed in time poly(m).
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Proof. L(®) = 0 means that each ¢; is either ‘0, ‘1, 'x;” or ‘x;’ (for some j).
For each x;, define S;(0),.5;(1) as

Si(0) = Y wi(0)+ Y w(1),

Jibi=x; Jidi=x;
Si(1) = > wi()+ D w;(0).
Jibj=wm; Jidi=x;

If S;(0) = S;(1), then let x; = % (don’t care), if S;(0) > S;(1), then let z; = 0,
otherwise let z; = 1. This assignment achieves Opt(®) where we assign arbitrary
values to don’t care variables. If the number of don’t care variables is d, then
#Opt(®) = 24. O

Let V' = {x;,, zi,. ...} be the set of Boolean variables that appear in constraints
of size at least two. Note that |V’| < L(®). For each assignment a1, ag,... €
{0,1}, we can compute

Opt(Plx;, = a1, i, = aa,...]), #Opt(P[z;, = a1, i, = az,...])

in time poly(m) since L(P[x;, = a1,xi, = as,...]) = 0. Let
K= max  Opt(P[z;, = a1, i, = ag,...]),
ai,az,...€{0,1}

N = Z #Opt(P[z;, = a1, i, = ag,...]),
where the summation is over
{a1,a9,... € {0,1} | Opt(Plz;, = a1, i, = az,...]) = K}.

We have K = Opt(®) and N = #Opt(®) and can compute them in time
poly(m)25(@), O

Now we are ready to present our algorithm for Max formula SAT as shown in
Figure 2.

This is a slight modification of Santhanam’s greedy restriction algorithm for
De Morgan formula SAT [27]. The difference is (1) we use a different definition
of size and frequency, and (2) in the case of L(®) < 5, we need an additional
lemma. We have the following theorem.

Theorem 3. Given an instance ® of Maz formula SAT with n variables and
L(®) = m = cn, EvalFormula computes Opt(®) and #O0pt(P) in time poly(m)
X 2(1_ 32152 )",

Since a disjunction of ¢ literals can be regarded as a De Morgan formula of size
£, the above theorem immediately implies the following.

Corollary 1. Given an instance ® of Max (-SAT with n variables and m =
cn constraints, EvalFormula computes Opt(®) and #Opt(P) in time poly(m)
X2(1*32;252 )”
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EvalFormula(® = {(¢1,w1), ..., (¢m,wm)}: instance, n: integer)

01: if L(®) = cn < n/2,

02:  compute Opt(®), #Opt(®P) by Lemma 1 and return (Opt(P), #O0pt(P)).
03: else .

04:  x = argmaxX,cvar(o) freqq ().

05: (Ko, No) + EvalFormula(®[z = 0],n — 1).

06: (Ki,Ni) < EvalFormula(®[z = 1],n — 1).

07: if KO = Kl.

08: return (Ko, No + N1)
09: else
10: i = argmax;ego,1}{/;} and return (K, N;).

Fig. 2. Max formula SAT algorithm

Proof (of Theorem 3). The proof of Theorem 3 is almost identical to the proof
of Theorem 5.2 in Chen et al. [7], which gives a running time analysis of San-
thanam’s algorithm for De Morgan formula SAT based on a super-martingale
approach.

For an instance @ of Max formula SAT on n variables, define &5 = @. For
1 <7 < n, we define &; to be an instance of Max formula SAT obtained from
®;_1 by uniformly at random assigning the most frequent variable of ®;_;. We
need the following lemma.

Lemma 2 (Shrinkage Lemma with Respect to L(-)). Let ® be an instance
of Mazx formula SAT on n variables. For any k > 4, we have

3/
pe £t 2:50)- (1) ] <2

Let @ be an instance of Max formula SAT with n variables and z(di) =m=cn

1

40)2 and k = pn. We construct the following

for some constant ¢ > 0. Let p = (
computation tree.

The root is labeled @. At first, we pick up the most frequent variable z with
respect to L(®) and set the variable first to 0 then to 1. By simplification, &
branches to the two Max formula SAT instances such as #[z = 0] and @[z = 1].
The children of the current node are labeled by these instances. Repeating this
procedure until we can make a full binary tree of depth exactly n — k. Note that

this computation tree can be made in time poly(m)2"~*. Using Lemma 2, for all
but at most 27* fraction of the leaves have the size L(®,_) < 2L(P) (7’2)3/2 =

2enp3/? = 2ep/? - pn = épn = ’2“ For instances with z(sﬁn,k) < k/2, we
can compute Opt(P,_), #0pt(P,_x) in time poly(m)2¥/? by Lemma 1. For
instances with L(®,_;) > k/2, we can compute Opt(®@,,_), #O0pt(P,,_1) in time
poly(m)2¥ by brute force search. The overall running time of EvalFormula is

bounded by poly(m)27~k{2k/2(1 — 27%) 4- 2k . 27k} = poly(m)Q(lfszlc2 n, O
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4 A Deterministic Algorithm for Max SAT

In this section, we present our deterministic algorithm for sparse instances of
Max SAT based on the combination of the algorithm for Max formula SAT and
width reduction.

Before presenting our algorithm for Max SAT, let us recall Schuler’s width
reduction technique for SAT [28]. Let ¢ be an instance of SAT, ie., & =

{¢1, 02, ..., 0m} where each ¢; is a disjunction of literals. Assume for some i and
0> 0,¢; =1V -VIgVlgg1 V- - Vi) and define @1, := {P\{¢; } }U{(l1V---Vie)}
and &p := P[ly = ---lp = 0]. Then we can observe that ¢ is satisfiable if and

only if at least one of @, Pg is satisfiable. Note that compared with &, the
number of clauses with width more than ¢ decreases in @1, and the number of
variables decreases in @i. The step of producing two instances &, ®g from &
is the one step of width reduction and by applying the reduction recursively, we
obtain a set of instances where the width of each constraint is at most £. After
obtaining a set of /-SAT instances, we can apply an algorithm for /-SAT which
runs in time poly(m)20=#)" for some u(¢) > 0 and decide the satisfiability of
@. Schuler makes use of this observation to design an algorithm for SAT.

We see that width reduction is possible for Max SAT instances. Our algorithm
for Max SAT is shown in Figure 3.

MaxSAT(® = {(¢1,w1),. .., (¢m,wmn)}: instance, ¢, n: integer)
01: if V¢, € &, |V&I‘(¢)¢')| </,

02:  return EvalFormula(®,n).

03: else

04:  Pick arbitrary ¢; = (I1 V -+ -V ly/) such that ¢ > ¢.

05:  Pp {2\ {(¢pi,wi)}}U{(lL V- - Vi,w)}

06: (KL,NL) — MaxSAT(@L,Z,n).

07: ¢R<—¢[Z1=~--:lg:0]‘

08: (Kr, Nr) + MaxSAT(Pr,l,n —1).

09: if K = Kg,

10: return (K, Np + Ng)
11:  else
12: i = argmax;c (., gy {K;} and return (K, N;).

Fig. 3. Max SAT algorithm

The correctness of MaxSAT is guaranteed by the following claim.
Claim. In MaxSAT, if else condition of line 3 holds,
then Opt(®) = max{Ky, Kgr}.

Proof. First note that Opt(®) > max{Ky, Kr}. Let a be an assignment that
maximizes the total weight of satisfied constraints, i.e., a = arg max, Val(®, a).
Ifly =--- =1, = 0 according to a, then Opt(®) = Kgr. Otherwise, a satisfies
(ly V--- V1) and Opt(®@) = K1, holds. O

Now we describe our main theorem and its proof.
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Theorem 4. Given an instance @ of Max SAT with n variables and m = cn
clauses, MaxSAT with appropriately chosen £ computes Opt(P) and #Opt(P)

in time O(poly(m)2(=#eN) “where u(c) is 2 ( ! ) and ¢ > 4.

c2log?c

Proof. The overall structure of the proof is similar to the analysis of width
reduction for SAT by Calabro et al. [4]. We think of the execution of MaxSAT
as a rooted binary tree T, i.e., the root of T is labeled by an input instance &
and for each node labeled with ¥, its left (right) child is labeled with ¥y, (¥g,
resp.). If ¥ is an instance of Max ¢(-SAT) i.e., every constraint ¢; of ¥ satisfies
|var(1;)| < £, then the node labeled with ¥ is a leaf.

Let us consider a path p from the root to a leaf v labeled with ¥. We denote
by L and R the number of left and right children p selects to reach v. It is easy
to see that (1) L < m since the number of constraints is m, (2) R < n/{ since
a right branch eliminates ¢ variables at a time, and (3) ¥ is defined over at
most n — R{ variables. Furthermore, the number of leaves which are reachable
by exactly R times of right branches is at most (ng). Let T(n,m,¥) denote
the running time of EvalFormula on instances of Max (-SAT with n variables
and m = cn clauses, then we can upper bound the running time of MaxSAT
as:

n

poly(m) ; (m; R> T(n — R, m, {)

s 1 ¢
= poly(m) Z (m; R> T(n— Rl,m,0) + Z <m; R)T(n — Rl,m, )
R=0 R=],

We first upper bound the second summation above.

n

poly(m) [ 3 (m i R)T(n — Re,m, 0)

R
R=j,
,,é )
< poty(m) | 3 ("5 )2
R=J,
n
< poly(m) (mt ”)2"/2 < O(poly(m)20=H©m),
20

where the last two inequalities hold when ¢ = «/log ¢ for sufficiently large con-
stant a > 0.
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We move on the analysis of the following summation.

-1
poly(m) Z (m; R)T(n — Rl,m, 0)
R=0

- R\ _(1- (n—RY)
= poly(m) <m; )2< 3“2(%1%)2) '

< poly(m) Z <m; R) 2(1* 5202 (20)2 )(nfRf)

n 1
< poly(m) (m ; 25) o (1= sarzlane ) (n=F0

mg 1
_ poly 3242(2L)2 Z (m - QK) 2—(1— 3202 (20)2 )RK
m+ "2
= p01y (2 32[2(2")2 (1 + 27(173222}25)2 )E> : >
_(1— 1 m+ 5%
< poly ( 32@2(2@2 (eg (1 3242(2c)2)e>

+ 2m
32@2(2c)2 )” 1
2(1 3222(25)2)£

< poly(m) 2

Now we set ¢ = flogc for sufficiently large constant § > 0, then the exponent
is

2m

1
1— n—+
( 3262(20)2) 2(1_3212%2@2)[

_ <1 B 1 > - 2cn
12802¢2 log? ¢ 9B1oB = 1452 10g
1 212882 1og e T
- (1 a 1282¢2log? ¢ M Pl > "

1
S (1 - 2 ) n,
25632c2 log” ¢

where the last inequality is by the choice of 5 and ¢ > 4. This completes the
proof.
O
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Remark 1. Since we are interested in the running time of MaxSAT when ¢ goes
to infinity, we do not give a precise upper bound for small c¢. However, we can
show that the running time is of the form poly(m)2(=#()" for some

u(c) > 0 even when c is small.

5 A Deterministic Algorithm for Counting Problems

In this section, we show how to compute #Vals i () in moderately exponential
time and exponential space.

Theorem 5. Given an instance @ of Max SAT with n variables and m = cn
clauses, MaxSAT2 with appropriately chosen { computes #Vals k() in time

O(poly(m)21=#)™) and exponential space, where u(c) is Q( ! )

c2log? ¢
We need the following lemma.

Lemma 3. Given an instance & of Max formula SAT with n variables, m_con-
straints and L(®) < n, #Valsg(®) can be computed in time poly(m)2L(®) .
2 =L(®)/2 4nd exponential space.

Proof. We first show the following claim.

Claim. Given an instance @ of Max formula SAT with n variables and Z(@) =0,
#Vals x (®) can be computed in time poly(m)2"/2 and exponential space.

Proof. L(®) = 0 means that each ¢; is either ‘0, ‘1, 'z;’ or ‘z;’ (for some j).
Without loss of generality, we can assume that ¢; is either 'z;’or ‘z;” by removing
each ¢; of the form ‘0’ or ‘1’ from @ and replacing K by K — w;(¢;).

We use a slight modification of the algorithm for the subset-sum problem due
to [16]. For brevity, let us assume that n is even and let V; := {x1,..., 2,2}, V2 :=
{Zn/241,--.,2n}. Then @ can be represented as a disjoint union of @1, $y where
®; only depends on V;. Define W; := {Val(®;,a) | a € {0,1}"/?}. We do not
think of W; as a multiset and the size of W; can be less than 27/2.

We are to construct arrays {(s%,t%)}jew, for i = 1,2 such that (1) s is the
jth largest value in W;, (2) tjl- is the number of assignments a € {0,1}"/? such

that Val(®1,a) = s}, and (3) ¢3 is the number of assignments a € {0, 1}"/2 such
that Val(®z,a) > s3.

First, we assume that we have constructed the arrays and show how to com-
pute Vals g (®). Let s be an integer and set s = 0. For each s;, we can find the
smallest s?, such that s; + s?, > K in time poly(n) using binary search. If such
s?, can be found, then update s as s + t]l . t?,. Repeat this for every sjl e Wi.
Then, we have s = #Val> k() in the end.

To construct {(s’,t})}jew,, we first enumerate Val(®;,a) for every a €

{0,1}"/? and sort them in the decreasing order in time poly(n)2"/2. Then, we
can compute {(s?,t%)}jew, from j = 1 inductively in time poly(n)2"/2. O
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Let V' = {x;,, i,. ...} be the set of Boolean variables that appear in constraints
of size at least two. Note that |V’| < L(®). For each assignment a1, asz,... €
{0,1}, we can compute

#Val> g (P[zi, = a1, T, = as,...])
in time poly(m)2"/2 since L(®[x;, = a1, i, = as,...]) = 0. Let

N = Z #VaIZK(Q[.’I)“ =Q1,T;, = a2,.. ])
al,ag,...e{O,l}

We have N = #Vals () and can compute it in time poly(m)2z(q§) 2(n=L(®)/2,
O

Now we are ready to present our algorithm for #Vals x(®) as shown in Fig-
ures 4,5. The running time analysis is almost the same as that for Theorem 4
and we omit it.

EvalFormula2(® = {(¢1,w1),. .., (¢m,wm)}: instance, n: integer)
01: if L(®) = cn < n/2,

02:  compute #Val> k(@) by Lemma 3 and return #Vals x (P).

03: else .

04: = argmaxyevar(e) freqgs ().

05: Ny < EvalFormula2(®[z = 0],n — 1).

06: N «+ EvalFormula2(®[z = 1],n —1).

07: return No + Ni.

Fig. 4. Max formula SAT algorithm

MaxSAT2(® = {(¢1,w1), ..., (¢m,wm)}: instance, ¢,n: integer)
01: if V¢, € @, |var(¢s)| < ¢,

02:  return EvalFormula2(®,n).

03: else

04: Pick arbitrary ¢; = (I1 V- -+ V ly) such that £ > £.

05:  Pp {2\ {(¢pi,wi)}}U{(lL V- - Vi,w)}

06: N < MaxSAT2(®dr,¢,n).

07: @R(—@[h:-“:lg:()].

08: Ng < MaxSAT2(Pg,l,n—{).

09: return Ny + Ng.

Fig. 5. Max SAT algorithm



44 T. Sakai, K. Seto, and S. Tamaki

6 A Randomized Algorithm for Max ¢-SAT

In this section, we present our randomized algorithm for Max (-SAT.

The basic idea of our algorithm is as follows: If L(®) < n/2, then we
use Lemma 1. Otherwise, we choose a subset U of the set of variables V =
{z1,22,..., 25} uniformly at random with |[U| = (1 — p)n, where p is cho-
sen appropriately according to z(di) If the number of constraints which de-
pend on at least two variables in V' \ U is ‘small,” ie., [{¢; € @ | |var(¢;) \
U| > 2}| < pn/(2¢) holds, then we say U is good. Assume U is good and
U = {%i,Tiy, .-, Tiy, }. Then, for every a € {0, 1}IV1] Z(@[xil = a1, T, =
as,...]) < £-pn/(2¢) = pn/2 and Opt(P[z;,, = ai,z;, = a2,...]) can be
computed in time poly(m)2P*/2. Therefore, we can compute Opt(®) in time
poly(m)2pn/2 . 200=P)n — poly(m)2(—P/2)n,

Our randomized algorithm for Max ¢-SAT is shown in Figure 6.

Max/SAT(® = {(¢1,w1), ..., (¢pm,wnm)}: instance, n: integer)

01: if L(®) = cn < n/2,

02:  compute Opt(®) by Lemma 1 and return Opt(®P).

03: else

04:  Pick U CV,|U|=(1—p)n=(1— _3)n uniformly at random.
05 if [{g: € B | [var(é0) \ U| > 2}| > pn/(20),

06: return L.

07:  else /x we assume U = {Ti,, Tig, ..., Tijy } */
08: for each a € {0, 1}V,

09: Dy, +— Plri, = a,xi, = az,...]).

10: compute Opt(Py,.) by Lemma 1.

11: return max, ¢ o 13/v| Opt(Pu,a)-

Fig. 6. Max ¢-SAT algorithm

Note that if Max/SAT does not return L, then it returns Opt(P). We show
that U is good with constant probability. Similar calculation can be found in,

e.g., [5].

Lemma 4. In Max/{SAT, if else condition of line 3 holds, then Max¢SAT
returns L with probability at most 1/2.

Proof. Let X; be a random variable such that X; = 1 if |var(¢;) \ U| > 2,
otherwise X; = 0.
Since Pry[X; =1] < (5)]92 by the union bound, we have

l l
Xl < m = 2en.
Bl 0= = (o)

1€[m]
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By Markov’s inequality,

£, 2
pn| _ p*en _
Py Z:Xiz% < T =l (0 - 1)p.
i€[m] 2¢
Setting p yields the consequence of the lemma. O

By combining the preceding argument and the above lemma, we have the
following theorem.

Theorem 6. Given an instance @ of Max (-SAT with n variables and m=cn
constraints, with the probability at least ;, Max/(SAT computes Opt(P) in time

poly(m)2(172c123 )n.

Max/SAT can be easily modified to compute #Opt(P) and #Vals g (P) as
our deterministic algorithms. If we use Max/SAT instead of EvalFormula in
MaxSAT and MaxSAT2, we have the following theorems.

Theorem 7. Given an instance ® of Max SAT with n variables and m = cn
clauses, Opt(®) and #Opt(P) can be computed in expected time O(poly(m)

x 20 =Ny “where p(c) is Q( ! )

clog3c

Theorem 8. Given an instance @ of Max SAT with n variables and m = cn
clauses, #Vals i (®) can be computed in expected time O(poly(m)21=#)) and

exponential space, where p(c) is 2 ( ! )

clog® ¢

7 Concluding Remarks

In this paper, we present moderately exponential time polynomial space algo-
rithms for sparse instances of Max SAT. There are several possible directions
for future work. First, since our algorithm is partly inspired by the recent de-
velopment in the study of exact algorithms for the circuit satisfiability prob-
lem [7, 17, 18, 27, 31, 33], we may hope that it is possible to make use of such
algorithms and their analysis to improve existing algorithms or design new algo-
rithms for Max CSPs or other problems related to SAT. Second, our algorithm
can count the number of assignments that achieve total weights greater than a
given objective value K in exponential space, however, it seems not obvious to
obtain the same result by polynomial space algorithms. Finally, to improve u(c)
to subpolynomial in 1/¢, say p(c) = £2(1/poly(logc)) is a challenging goal since
it implies non-trivial algorithms for arbitrary size of Max 3-SAT instances.
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