
Cores in Core Based MaxSat Algorithms: An Analysis

Fahiem Bacchus and Nina Narodytska

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, M5S 3H5

{fbacchus,ninan}@cs.toronto.edu

Abstract. A number of MAXSAT algorithms are based on the idea of generat-
ing unsatisfiable cores. A common approach is to use these cores to construct
cardinality (or pseudo-boolean) constraints that are then added to the formula.
Each iteration extracts a core of the modified formula that now contains cardi-
nality constraints. Hence, the cores generated are not just cores of the original
formula, they are cores of more complicated formulas. The effectiveness of core
based algorithms for MAXSAT is strongly affected by the structure of the cores
of the original formula. Hence it is natural to ask the question: how are the cores
found by these algorithms related to the cores of the original formula? In this pa-
per we provide a formal characterization of this relationship. Our characterization
allows us to identify a possible inefficiency in these algorithms. Hence, finding
ways to address it may lead to performance improvements in these state-of-the-art
MAXSAT algorithms.

1 Introduction

MAXSAT is an optimization version of SAT in which the problem is to find a truth assign-
ment that satisfies a maximum weight of clauses. In its most general form, a MAXSAT

problem is expressed as a CNF formula partitioned into hard and soft clauses. Associ-
ated with each soft clause ci is a numeric weight, wi, and with each set of soft clauses
S a cost, cost(S), equal to the sum of the weights of the clauses in S. Various restricted
versions of MAXSAT have also been studied [12]. Like SAT many practical problems can
be encoded as MAXSAT formulas making the development of efficient MAXSAT solvers
an important research problem.

There are a variety of algorithmic approaches to solving MAXSAT including solvers
based on branch and bound, e.g., [10,13], solvers based on conversion to integer linear
programs [5], solvers based on hybrid SAT and MIPs approaches [8], and core based
solvers that use cardinality constraints, e.g., [15,4].

Core based solvers solve MAXSAT by solving a sequence of SAT problems using
the cores returned by these SAT solving episodes to construct the next SAT problem.
The performance of such solvers seems to depend on the structure of the cores of the
original MAXSAT formula. For example, these solvers are quite successful when there
are a large number of hard clauses which tends to reduce the size of the cores that must
be dealt with. Similarly, these solvers do not work well on random problems and it is
known that some types of random problems contain large cores [7]. However, achieving
a clearer understanding of this relationship remains an open research problem.

C. Sinz and U. Egly (Eds.): SAT 2014, LNCS 8561, pp. 7–15, 2014.
c© Springer International Publishing Switzerland 2014

8 F. Bacchus and N. Narodytska

In this paper we point out that core based solvers using cardinality constraints gener-
ate cores of a more complicated formula than the original MAXSAT formula. The cores
they generate are cores of the MAXSAT formula augmented by cardinality constraints.
We show that there is a precise relationship between the cores they generate and cores of
the original MAXSAT formula. Our results could potentially help in obtaining a deeper
understanding of how the structure of the cores of the MAXSAT instance affects the per-
formance of this class of MAXSAT algorithms. More concretely, however, our results
allow us to identify a possible source of inefficiency in such solvers. Developing tech-
niques for removing this inefficiency thus becomes one way of potentially improving
these solvers.

2 Background

A MAXSAT instance F is expressed as a CNF formula that is partitioned into two subsets
of clauses hard(F) and soft(F). Note that in this paper we do not consider F to be
a multi-set of clauses: multiple copies of a hard clause can be discarded, and multiple
copies of a soft clause replaced with one copy with weight equal to the sum of the
weights of the copies.

Definition 1 (Cost). Each clause ci in soft(F) has an associated weight wi. For any
set of soft clauses A ⊆ soft(F) we say that cost(A) =

∑
ci∈Awi, i.e., the cost of A is

the sum of the weights of its soft clauses.

Definition 2 (Solutions of F). A solution of F is a truth assignment π to the variables
of F such that π |= hard(F). The cost of a solution cost(π) is the sum of the weights
of the soft clauses it falsifies: cost(π) =

∑
π �|=ci

wi. The MAXSAT problem is to find a
solution of F of minimum (optimal) cost.

In this paper we assume that hard(F) is satisfiable, i.e., solutions of F exist.

Definition 3 (Cores of F). A core κ of F is a subset of soft(F) such that κ∧hard(F)
is unsatisfiable. Let Cores(F) be the set of all cores of F .

We observe that for any core κ of F and solution π of F , π must falsify at least one
clause of κ. Furthermore, if κ is a core of F then any set of soft clauses A, that is a
superset of κ, A ⊇ κ, is also a core.

3 The Fu and Malik Algorithm

To illustrate the type of MAXSAT algorithms under consideration we first describe one
of the original core based MAXSAT algorithms due to Fu and Malik [9].

Fu & Malik works on restricted MAXSAT problems in which every soft clause has
unit weight. These are called partial MAXSAT problems in the MAXSAT literature.

The algorithm executes a series of iterations, with the i-th iteration operating on the
CNF formula F i, and the first iteration operating on the input MAXSAT formula, i.e.,
F0 = F . Each iteration performs the following steps:

1. A SAT solver is called on F i. Note that the SAT solver ignores clause weights,
regarding both hard(F i) and soft(F i) as ordinary clauses.

Cores in Core Based MaxSat Algorithms: An Analysis 9

2. If F i is satisfiable, then the satisfying truth assignment, restricted to the variables
of F is an optimal MAXSAT solution.

3. Else F i is unsatisfiable and we obtain a core κ from the SAT solver. Now the algo-
rithm constructs the next formula F i+1 in two steps:
(a) For every soft clause c ∈ F i such that c ∈ κ we add to c a literal b which is

the positive literal of a brand new blocking variable (b-variable). Thus in F i+1

the clause c becomes the new clause (c ∨ b). This new clause (c ∨ b) is a soft
clause of F i+1.

(b) We add to F i a new set of hard clauses encoding the cardinality constraint
that the sum of the above newly added b-variables is equal to one. These new
clauses are hard clauses of F i+1.

The added cardinality constraint allows one and only one soft clause of the dis-
covered core to be relaxed by setting its b-variable to true. Each iteration installs an
additional cardinality constraint which permits one more clause to be relaxed. Eventu-
ally F i, for some i, permits the relaxation of a sufficient number of clauses to achieve
satisfaction.

One important point to notice is that if the SAT solver finds F i to be unsatisfiable,
then the core it returns is not a core of the original MAXSAT formula F , it is a core of
the relaxed formula F i. Since we want to increase our understanding of how algorithms
like Fu & Malik are affected by the core structure of the MAXSAT formula, it becomes
important to understand how the cores of F i, generated by the algorithm, are related to
the cores of the original MAXSAT formula F .

4 Cardinality Constraints

Now we present a general formulation of the problem we are addressing. This formu-
lation is applicable not only to the Fu & Malik algorithm, but also to other core guided
algorithms exploiting cardinality constraints like WPM1 [2] and WPM2 [3]. Our results
are also applicable to the lower bounding phase of core guided algorithms that exploit
binary search [15]. However, our results do not directly apply to iterative MAXSAT

solvers, e.g., [6,11].
In general core guided algorithms impose linear inequalities or equalities over the

blocking variables. These linear constraints are usually encoded into CNF and added to
the formula. In some cases these constraints are handled directly without conversion to
CNF, e.g., [1,14]. But even in these cases the constraints serve to restrict the satisfying
models of the formula, so they are in effect “added” to the formula.

For convenience, we will call all such constraints cardinality constraints, although
some of them are actually pseudo-boolean contraints. One important restriction of the
analysis provided in this paper is that the cardinality contraints can only mention the
b-variables and perhaps some other auxiliary variables. In particular, the cardinality
constraints cannot mention any of the variables of F . To the best of our knowledge, this
restriction is satisfied by all existing core guided algorithms.

The cardinality constraints allow various sets of soft clauses to be “turned off” or
blocked by allowing various combinations of the b-variables to be set to true. Since the
b-variables appear only positively in the soft clauses of F i each true b-variable satisfies

10 F. Bacchus and N. Narodytska

some soft clause making it impossible for that clause to contribute to unsatisfiability
(the cardinality constraints do not affect hard(F)).

As seen in the previous section, every time a cardinality constraint is added the soft
clauses of the current formula F i are modified. Current algorithms use two types of
modifications to the clauses in soft(F i):

Adding a b-variable: This involves replacing c ∈ soft(F i) by c ∨ b where b is the
positive literal of a new b-variable. Since c ∈ F i it might already contain some
b-variables added in previous iterations.1

Cloning: This involves adding a duplicate c′ of a clause c ∈ soft(F i) where c′ contains
a new b-variable: c′ = (c∨b).2 The clone c′ is given a weight w and w is subtracted
from c’s weight. Since c ∈ F i, it might be that c is itself a clone added in a previous
iteration. Thus an original soft clause of F might be split into multiple clones, each
with its own sequence of b-variables. The total sum of the weights of all these
clones is always equal to the weight of the original soft clause.

Let cardi be the set of cardinality constraints that have been added up to iteration
i of a MAXSAT algorithm, soft(F i) be the corresponding modified set of soft clauses,
and Bi be the set of all b-variables in F i.

Definition 4 (Solutions of cardi). A truth assignment β to all of the variables of Bi

that satisfies the cardinality constraints in cardi is called a solution of cardi. The set
of all solutions of cardi is denoted by soln(cardi).

4.1 Residues and Reductions

A solution of cardi, β, relaxes various clauses of soft(F i). Each clauses ci ∈ soft(F i)
is an original soft clause c ∈ soft(F) disjoined with some b-variables. If β makes any
of these b-variables true then ci is in effect removed from the formula: β relaxes ci.
If ci is not relaxed by β then it is reduced to the original soft clause c by β: β values
every b-variable so if none of the b-variables in ci are made true, then they must all be
made false, in effect removing them from ci. These two stages of reduction by β—the
removal or relaxation of soft clauses and the reduction of the remaining soft clauses to
original soft clauses—are important in characterizing the relationship between the cores
of F i and those of F . These two stages or reduction are formalized in our definitions
of Residues and Reductions.

Definition 5 (Residues). Let β be a solution of cardi (β ∈ soln(cardi)) and let Ai

be a subset of soft(F i). The residue of Ai induced by β, denoted by Ai ⇓ β, is the
subset of Ai formed by removing all clauses satisfied by β:

Ai ⇓ β = Ai − {ci|ci ∈ Ai and β |= ci}.
Note that in a residue, Ai ⇓ β, the clauses of Ai not satisfied by β are unchanged. Thus
Ai ⇓ β is a subset of Ai which in turn is a subset of soft(F i). Thus a residue is subset
of F i.

1 Some algorithms like WPM2 add at most one b-variable to a soft clause, others like Fu &
Malik can add multiple b-variables to a clause.

2 This type of modification is used in the WPM1 algorithm to deal with weighted MAXSAT.

Cores in Core Based MaxSat Algorithms: An Analysis 11

The next stage of reduction is achieved with the standard notion of the reduction of
a set of clauses by a truth assignment.

Definition 6 (Reduction). Let β ∈ soln(cardi) and Ai ⊆ soft(F i). The reduction
of Ai induced by β, denoted Ai|β is the new set of clauses formed by (a) removing all
clauses satisfied by β from Ai, (b) removing all literals falsified by β from the remaining
clauses, and (c) removing all duplicate clauses and setting the weight of the remaining
clauses to their original weights in F .

In the three steps to compute a reduction we see that step (a) is the same as forming
the residue—removing all satisfied clauses. Step (b) reduces the soft clauses to original
soft clauses of F—as noted above, all remaining b-variables in the clauses after step
(a) must be falsified by β and thus will be removed by step (b). However, step (b) does
not quite produce soft clauses of F as the weights of these clauses might differ from
the weights they had in F (due to cloning). This is fixed by step (c) which removes all
duplicate clauses (due to cloning) and resets the weights back to the original weights.
Thus it can be observed that the reduction of Ai is a subset of the original MAXSAT

formula F .
We make a few observations about residues and reductions. Let A and B be any

subsets of soft(F i) and let β and β′ be any two solutions of cardi.

1. A ⊆ B implies (A ⇓ β) ⊆ (B ⇓ β) and (A|β) ⊆ (B|β).
2. A ⇓ β ⊆ soft(F i) while A|β ⊆ soft(F).
3. A ⇓ β = A ⇓ β′ implies A|β = A|β′ .
4. (A ⇓ β)|β = A|β , although sometimes we will use the notation (A ⇓ β)|β as this

more clearly indicates that reduction has two stages.
5. When the clauses of soft(F i) have more than one b-variable it can be the case that

soft(F i) ⇓ β = soft(F i) ⇓ β′ even when β �= β′.

Example 1. Consider formula F i with soft clauses c1, c2 and c3 (as well as other hard
clauses). Say a run of Fu & Malik discovers the sequence of cores (specified as clause
indicies) κ1 = {1, 2}, κ2 = {2, 3}, and κ3 = {1, 2, 3}. Using b-variables with a
superscript to indicate the core number and a subscript to indicate the clause number,
soft(F3) ⊃ {(c1, b11, b31), (c2, b12, b22, b32), (c3, b23, b33)}, and card3 = {CNF (b11 + b12 =
1), CNF (b22 + b23 = 1), CNF (b31 + b32 + b33 = 1)}.

There are 12 different solutions to card3. However if we compute the residue
of A3 = {(c1, b11, b31), (c2, b

1
2, b

2
2, b

3
2), (c3, b

2
3, b

3
3)} with respect to these 12 solu-

tions we obtain only 5 different residues: {(c3, b23, b33)}, {(c2, b12, b22, b32)}, {(c1, b11, b31),
(c3, b

2
3, b

3
3)}, {(c1, b11, b31)}, and {}.

4.2 The Relationship between Cores(F i) and Cores(F)

We can now present the paper’s main result: a formalization of the relationship between
the cores of F i and the cores of the original MAXSAT formula F . The next theorem
shows that each core of F i corresponds to a union of many cores of F , and that every
solution of cardi adds a core of F to this union.

12 F. Bacchus and N. Narodytska

Theorem 1. κi ∈ Cores(F i) if and only if

κi =
⋃

β ∈ soln(cardi)

κβ where κβ ⊆ (soft(F i) ⇓ β) and κβ |β ∈ Cores(F)

Each κβ in this union is a set of soft clauses of F i that remain after removing all clauses
satisfied by β (i.e., κβ ⊆ soft(F i) ⇓ β), such that its reduction by β (κβ |β) is a core of
F .

Proof. Note that hard(F i) = hard(F) ∧ cardi. Thus a core of F i is a subset of
soft(F i) that together with hard(F) ∧ cardi is unsatisfiable.

First we show that if κi is a core of F i then it is a union of sets κβ satisfying the
stated conditions. For any β ∈ soln(cardi) let κβ = (κi ⇓ β). Then we observe
that (a) since κi ⊆ soft(F i) then κβ = κi ⇓ β ⊆ (soft(F i) ⇓ β) (by observation
1 above), and (b) κβ |β ∈ Cores(F). To see that (b) holds we observe that if κβ|β is
not a core of F then there exists a truth assignment π to the variables of F such that
π |= hard(F) ∧ κβ|β . Since κβ is a residue induced by β, no clause of κβ is satisfied
by β (the residue operation removes all clauses satisfied by β). Therefore, we have that
π |= hard(F) ∧ κβ even though π does not assign a value to any b-variable. Then
〈β, π〉 |= hard(F)∧ cardi ∧ κi since β satisfies all clauses in κi − κβ (these were the
clauses removed from κi when taking its residue with respect to β because they were
satisfied by β) and all clauses in cardi, while π satisfies κβ and hard(F). That is, if
(b) does not hold we obtain a contradiction of the premise that κi is a core of F i. Since
this argument holds for every β ∈ soln(cardi) we see that κi = ∪ κβ .

Second, we show that ∪ κβ is a core of F i. Say that it is not. Then there exists
a truth assignment 〈γ, π〉 that satisfies hard(F) ∧ cardi ∧ (∪ κβ), where γ assigns
the variables in Bi and satisfies cardi while π assigns all of the other variables. Since
γ ∈ soln(cardi) we have that κγ ⊆ (∪ κβ). Furthermore, since κγ ⊆ (soft(F i) ⇓ γ)
no clause in κγ is satisfied by γ; therefore, all literals of Bi in κγ must be falsified by
γ. Since 〈γ, π〉 |= κγ and we must also have that 〈γ, π〉 |= κγ |γ , and since κγ |γ has
no variables of Bi, we must have that π |= κγ |γ . This, however, is a contradiction as
π |= hard(F) and κγ |γ is a core of F .

5 Residue Subsumption in cardi

Theorem 1 allows us to identify a potential inefficiency of MAXSAT algorithms that
compute cores after adding cardinality constraints.

Definition 7 (Residue Subsumption). Let β and β′ be two solutions of cardi. We say
that β residue subsumes β′ if (1) β �= β′ and (2) soft(F i) ⇓ β ⊆ soft(F i) ⇓ β′.

Residue subsumption means that β relaxes (satisfies) all or more of the soft clauses of
F i that are relaxed by β′.

Example 2. Continuing with Example 1, we observed that there are only 5 differ-
ent residues of A3 generated by the 12 different solutions to card3: {(c3, b23, b33)},
{(c2, b12, b22, b32)}, {(c1, b11, b31), (c3, b23, b33)}, {(c1, b11, b31)}, and {}. The empty residue
{} is generated by three solutions of card3 one of which is β which sets b11, b22 and b33
to true. Hence, β residue subsumes all other solutions to cardi.

Cores in Core Based MaxSat Algorithms: An Analysis 13

Our next result shows that when computing a core of F i it is possible to ignore
residue subsumed solutions of cardi.

Proposition 1. Let RS ⊂ soln(cardi) be a set of solutions such that for all ρ′ ∈ RS
there exists a ρ ∈ (soln(cardi)− RS) such that ρ residue subsumes ρ′. Then any

κi =
⋃

β ∈ (soln(cardi)−RS)

κβ where κβ ⊆ (soft(F i) ⇓ β) and κβ |β ∈ Cores(F)

is a core of F i.

Proof. Let

κ+ =
⋃

β ∈ soln(cardi)

κβ where κβ ⊆ (soft(F i) ⇓ β) and κβ|β ∈ Cores(F).

By Theorem 1 κ+ is a core of F i. Let ρ′ ∈ RS be residue subsumed by ρ ∈
(soln(cardi) − RS). κ+ is a union of sets including sets κρ′

and κρ both of which
satisfy the above conditions.

By substituting κρ′
by κρ for each ρ′ ∈ RS we see that κ+ becomes equal to κi

and thus κi must also be a core of F i if this substitution is valid. To show that the
substitution is valid we must show that κρ satisfies the two conditions required for κρ′

.
First, κρ ⊆ (soft(F i) ⇓ ρ) ⊆ (soft(F i) ⇓ ρ′). Second, since κρ is a subset of both
soft(F i) ⇓ ρ, and soft(F i) ⇓ ρ′, neither ρ not ρ′ satisfy any clauses of κρ. Furthermore,
both ρ and ρ′ assign all b-variables so all b-variables left in κρ must be falsified by both
ρ and ρ′. This means that κρ|ρ′ = κρ|ρ and κρ|ρ is already known to be a core of F i.

Theorem 1 shows that when the SAT solver computes a core κi of F i it must refute
all solutions of cardi. The SAT solver might not need to refute two residue subsuming
solutions ρ and ρ′ separately—it might be able to find a single conflict that eliminates
both candidate solutions. Nevertheless, it is possible that the solver ends up construct-
ing two separate and different refutations of ρ and ρ′, eventually unioning them into a
refutation of F i. This can make the core extracted from the refutation larger, and also
requires more time for the SAT solver. From Prop. 1 it can be seen that the solver need
only refute ρ, finding the required κρ. Adding κρ to the core suffices to refute both ρ
and ρ′.

For the Fu & Malik algorithm it has previously been noted that many symmetries
exist over the introduced b-variables [1], and symmetry breaking constraints can be in-
troduced over the b-variables to remove some of these symmetries. These symmetry
breaking constraints serve to reduce the set of solutions soln(cardi). Residue sub-
sumption offers a more general way achieving this result. In particular, Lemma 15 of
[4] introduces an ordering (weight) over all solutions in soln(cardi) and shows that
the introduced symmetry breaking constraints block solutions that are residue subsumed
by other higher weight solutions. In fact, the introduced symmetries define a mapping
between solutions that induce equivalent residues of soft(F i), i.e., solutions ρ and ρ′

where each residue subsumes the other. Residue subsumption as we have defined it
here is more general than symmetry breaking as we don’t need ρ and ρ′ to subsume
each other, we only require that ρ subsumes ρ′.

14 F. Bacchus and N. Narodytska

Example 3. Continuing with Example 2. Given that β which sets b11, b22 and b33 to true
residue subsumes all other solutions to card3, Prop. 1 shows that the SAT solver need
only check if F3 is satisfiable under β. This makes intuitive sense, we have found
3 cores over 3 soft clauses, indicating that they all need to be relaxed. Fu & Malik
would have the SAT solver refute all 12 solutions to card3. Note also that any form
of symmetry reduction restricted to blocking solutions with equivalent residues, would
still have to check at least 5 solutions.

5.1 Exploiting Residue Subsumption

There are two issues that arise when trying to exploit residue subsumption in core based
solvers.

The first issue is that the correctness of the algorithms used in these solvers relies
on certain properties of the formulas F i constructed at each iteration. For example, a
common way of proving the correctness of these algorithms is to prove that the original
MAXSAT formula F is MaxSat reducible to each F i [4]. If we alter cardi so as to
block residue subsumed solutions, this would change F i and we would have to verify
that the new formula continues to satisfy the properties required of it by each algorithm.
Unfortunately, proving these properties can be quite intricate.

However, this first issue is easily resolved. Let F i+ be a modification of F i that
blocks some residue subsumed solutions of cardi. Applying Theorem 1 to F i+ we see
that any core of F i+ returned by the SAT solver is a union over the solutions of cardi

that have not been blocked in F i+. Then Prop. 1 shows that the returned core of F i+

is in fact also a core of F i. That is, the SAT solver will still return cores of F i even
if it has been modified to block residue subsumed solutions of cardi. Furthermore, if
the SAT solver returns a satisfying assignment this assignment must also satisfy F i as
it satisfies a more constrained version of F i.

Core based algorithms use the SAT solver as a black-box, expecting it to return a
solution or core of F i, and as explained above modifying the solver so as to block
residue subsumed solutions of cardi does not impact this functionality. Thus, any core
based algorithm can exploit residue subsumption without affecting its correctness.

The second issue is more difficult to resolve, and remains an open research question.
This is the issue of modifying the SAT solver so as to efficiently block residue subsumed
solutions of cardi. Potentially, extra clauses could be added to cardi, an SMT-like
theory could be consulted during search, or some modification could be made to the
solver’s search. How best to accomplish this is a problem we are continuing to work on.

6 Conclusion

In this paper we have presented a formal characterization of the relationship between
the cores computed by core based MAXSAT algorithms using cardinality constraints and
cores of the original MAXSAT formula. Our main result allowed us to identify a condi-
tion, residue subsumption, that could potentially be used to improve these algorithms.

Cores in Core Based MaxSat Algorithms: An Analysis 15

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted MaxSAT
solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 86–101. Springer, Heidelberg
(2012)

2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfia-
bility testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer,
Heidelberg (2009)

3. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial MaxSAT. In:
Proceedings of the AAAI National Conference, AAAI (2010)

4. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artificial Intelli-
gence 196, 77–105 (2013)

5. Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: International
Conference on Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR), pp. 403–409 (2013)

6. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation (JSAT) 7(2-3), 6–59 (2010)

7. Chvátal, V., Reed, B.A.: Mick gets some (the odds are on his side). In: Symposium on Foun-
dations of Computer Science (FOCS). pp. 620–627 (1992)

8. Davies, J., Bacchus, F.: Postponing optimization to speed up MaxSAT solving. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013)

9. Fu, Z., Malik, S.: On solving the partial max-sat problem. In: Biere, A., Gomes, C.P. (eds.)
SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

10. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient weighted Max-SAT solver.
Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)

11. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 8(1/2), 95–100 (2012)

12. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence
and Applications, vol. 185, pp. 613–631. IOS Press (2009)

13. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds in
MaxSAT. Constraints 15(4), 456–484 (2010)

14. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimiza-
tion. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg
(2009)

15. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for
MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 284–297.
Springer, Heidelberg (2012)

	Cores in Core Based MaxSat Algorithms: An Analysis
	1 Introduction
	2 Background
	3 The Fu and Malik Algorithm
	4 Cardinality Constraints
	4.1 Residues and Reductions
	4.2 The Relationship between Cores(Fi) and Cores(F)

	5 Residue Subsumption in card
	5.1 Exploiting Residue Subsumption

	6 Conclusion
	References

