Fast DQBF Refutation

Bernd Finkbeiner and Leander Tentrup

Saarland University

Abstract. Dependency Quantified Boolean Formulas (DQBF) extend
QBF with Henkin quantifiers, which allow for non-linear dependencies
between the quantified variables. This extension is useful in verification
problems for incomplete designs, such as the partial equivalence check-
ing (PEC) problem, where a partial circuit, with some parts left open
as “black boxes”, is compared against a full circuit. The PEC problem
is to decide whether the black boxes in the partial circuit can be filled
in such a way that the two circuits become equivalent, while respecting
that each black box only observes the subset of the signals that are des-
ignated as its input. We present a new algorithm that efficiently refutes
unsatisfiable DQBF formulas. The algorithm detects situations in which
already a subset of the possible assignments of the universally quantified
variables suffices to rule out a satisfying assignment of the existentially
quantified variables. Our experimental evaluation on PEC benchmarks
shows that the new algorithm is a significant improvement both over
approximative QBF-based methods, where our results are much more
accurate, and over precise methods based on variable elimination, where
the new algorithm scales better in the number of Henkin quantifiers.

1 Introduction

Dependency Quantified Boolean Formulas (DQBF) are an extension of QBF
which allows for non-linear dependencies between quantified variables. Non-
linear dependencies occur naturally in verification problems for incomplete
designs, such as the partial equivalence checking (PEC) problem [10], where a
partial circuit, with some parts left open as “black boxes”, is compared against
a full circuit. The inputs to the circuit are modeled as universally quantified
variables and the outputs of the black boxes as existentially quantified variables.
Since the output of a black box should only depend on the inputs that are
actually visible to the black box, we need to restrict the dependencies of the ex-
istentially quantified variables to subsets of the universally quantified variables.

There has been some success in extending standard techniques of QBF solving
to DQBF [3,9,10], but, generally, it has proven very difficult to scale the classic
algorithms to larger DQBF problems. Frohlich et al. conclude, based on exper-
iments with various techniques from DPLL-based SAT/QBF-solving, including
unit propagation, pure literal reduction, clause learning, selection heuristics and
watched literal schemes, that “it does not perform very well” [9].

A much faster alternative to such precise methods is to approzimate the de-
pendencies, such that all dependencies become linear and DQBF thus simplifies
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Fig. 1. Example of a partial equivalence checking (PEC)
problem. A partial design, consisting here of the two black
Do_ boxes and the OR gate, is compared to the reference circuit
above, here consisting of a single XOR gate. The output
of the complete circuit is 1 iff the completion of the partial
design and the reference circuit compute the same result.

to QBF. For the PEC problem, an overapproximation of the dependencies is
still useful to find errors (if the black box cannot be implemented with addi-
tional inputs, then it can, for sure, not be implemented according to the original
design), but it significantly decreases the accuracy, because errors that result
precisely from the incomparable dependencies of the black boxes are no longer
detected. Consider, for example, the toy PEC problem shown in Fig. 1, where
we ask whether it is possible to implement the XOR gate at the top as an OR
of the two black boxes below, which each only see one of the two inputs x
and xo. This is obviously not possible; however, the three overapproximating
linearizations V1Vaody Jyo, Va1dy1Vaodys and VaiIyaVaody; all result in a
positive answer, because an output that depends on both z; and x5 can com-
pute x1 & z2, which gives the correct result, assuming that the other black box
simply outputs constant 0.

In this paper, we present a new algorithm for DQBF that combines the effi-
ciency of the QBF abstraction with the accuracy of the classic methods [3,9,10].
We focus on the refutation of DQBF, because this corresponds to the identifica-
tion of errors in the PEC problem. Our algorithm identifies situations in which
already a subset of the possible assignments of the universally quantified vari-
ables suffices to rule out a satisfying assignment of the existentially quantified
variables. We call assignments to the universal variables paths. In the PEC ex-
ample from Fig. 1, there are 4 possible paths (122, 2122, 2122, z122). However,
already 3 paths!, z1 22, 122, and 122, suffice to rule out a satisfying assignment
for the existential variables: Since y; does not depend on x5, its value must be
the same for x1x5 and for xyxo; likewise, the value of y» must be the same for
x1z9 and for xixs. For x1x2, both 1 and ys must be 0, because 1 ¢ 1 = 0. How-
ever, if y; = 0 for z1x2, then y; = 0 also for z1x9, which leads to a contradiction,
because y2 must be equal to 1 for x1x2 because 1 0 = 1 and, at the same time,
equal to 0, because 0@ 0 = 0. In our algorithm, we specify the existence of such
a set of paths as a QBF formula. We iteratively increase the number of paths to
be considered and terminate as soon as a satisfying assignment is ruled out.

The proofs can be found in the full version of this paper [8].

Related Work. DQBF was first defined by Peterson and Reif [15] and gained
more attention recently [1,10]. The first investigation of practical methods for
DQBF solving is a DPLL-based approach due to Frohlich et al. [9]. In addi-
tion, there is an expansion-based solver [10]. It is also possible to reduce DQBF

! Later in the paper, we present an optimization that further reduces the number of
paths required in this example to just two.
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to SAT, using skolemization methods similar to those originally developed for
QBF [3]. To the best of our knowledge, there is, however, so far no publicly avail-
able DQBF solver. The idea of partial expansions was used in previous work,
e.g., there is a two-phase proof system for QBF that expands certain paths and
than refutes the formula by propositional resolution [11]. The verification of in-
completely specified circuits has received significant attention (cf. [14,16]); the
connection between DQBF and the PEC problem was first pointed out by Gitina
et al. [10]. On a more general level, the verification of partial designs is related to
the synthesis problems for reactive systems with incomplete information and for
distributed systems (cf. [6,12]). In previous work, we have proposed an efficient
method for disproving the existence of distributed realizations of specifications
given in linear-time temporal logic (LTL) [7] that bounds, similar to the approach
of this paper, the number of paths under consideration.

2 DQBF

Let V be a finite set of propositional variables. We use the convention to denote
the set of all universal variables X', an element € X', and a subset X C X (y €
Y C Y for existential variables, respectively). The standard form of DQBF [9] is

V.Tl.vxg.vxg...ﬂHly1.3H2y2.3H3y3...g0 y (1)

that is, formulas beginning with universal quantified variables followed by the
existentially quantified Henkin quantifier and the quantifier-free matriz ¢. A
Henkin quantifier 95 y explicitly states the dependency for variable y by its
support set H C X, which is the difference to QBF, where the preceding uni-
versal quantification determines the dependency of an existential variable. For
the matrix ¢ we allow negation —, disjunction V, conjunction A, implication —,
equivalence <+, exclusive or @, and the abbreviations true T and false L.

A DQBF formula @ is satisfiable, if there exists a Skolem function f, for each
existential variable y € ), such that for all possible assignments of the universal
variables X', the Skolem functions evaluated on these assignments satisfy the
matrix. An assignment is a function @ : ¥V — {0,1} and a Skolem function
fy: (Hy = {0,1}) = {y} — {0,1}) maps assignments of the dependencies to
an assignment of y. We identify an assignment o by a set {v € V | a(v) =1} C
2V and f, by a function 28v — 2{¥} . We represent a function fy as a binary
decision tree (BDT), where the branching of the tree represents the assignment
of the dependencies and f, serves as the labeling function for the leaves, see
Fig. 2(a)—(c) for examples of BDTs. As a notation for paths, we use sequences
of (possibly negated) variables z € X, e.g., the path x;25 is a shorthand for
the assignment {z1}. A path X C X" of a BDT satisfies a propositional formula
@, if the assignment X U f,(X), i.e., the joint assignment of this path and the
respective labeling, satisfies . A model M of a satisfiable formula @ is a binary
decision tree over X such that (1) every path in the tree satisfies the matrix
and (2) the labels of the leaves are consistent according to the dependencies of
the existential variables, i.e., there exists a decomposition of the decision tree
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Fig. 2. The figure shows the binary decision trees for f,, (a) and fy, (b), their com-
position (c), and a partial model (d) for the PEC problem in Fig. 1

into individual Skolem functions f, for each y € Y. For example, the Skolem
functions of a satisfiable DQBF formula

Va1, T2 ey Y1 an) Y2 @ (2)

are the unary functions f,, and f,,, depicted in Fig. 2(a) and (b), respectively.
Figure 2(c) shows the corresponding model, that is the composition of f;, and
fy.- In this representation, the incomparable dependencies become visible: De-
spite the branching of the tree by both variables z; and o, the results of the
Skolem functions f,, and f,, must be equal on paths that cannot be distin-
guished according to the dependencies, e.g., as yo does not depend on 7, the
paths z1z2 and z122 are indistinguishable for f,, and the result on both paths
is fy,(z2). A DQBF formula is unsatisfiable if there does not exist a model, i.e.,
for all candidate models always at least one path violates the matrix .

QBF Approximation. Given a DQBF formula &, a QBF formula ¥ with
the same matrix is an approximation of @, written & < ¥ if for all existential
variables y € )Y it holds that H, C X,, where H, is the support set of y
and X, C X is the dependency set of y in the QBF formula. Given two QBF
approximations ¥ and ¥’, we call ¥ stronger than ¥’, written ¥ < ¥’ if for
all y € Y it holds that X, C X [10]. In (2), y1 and y2 have incomparable
dependencies as neither {1} C {z2} nor {z2} C {z1}. Hence, in all strongest
QBF approximations, that is Vzi3y;Vaedys and VredysVridy;, at least one
existential variable has more dependencies than before. The resulting inaccuracy
was already highlighted in the introduction on the PEC problem from Fig. 1,
which corresponds to formula (2) with matrix ¢ = (y1 Vya) <> (z1®x2). All QBF
abstractions of (2) are satisfiable despite the DQBF formula being unsatisfiable.

Variable Elimination. The expansion based method for converting a DQBF
formula @ into a logically equivalent QBF formula ¥ [1,5] uses the idea of
unrolling the binary decision tree, e.g., expanding (2) by z1 gives us:

V. Ieny Y2- J0 U1, U1 Plar=0 A @'zy=1 5 (3)
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where |,—p denotes the formula ¢ where all occurrences of  are substituted by
b and ¢ is the formula obtained from ¢ by replacing all occurrences of y; by yj.
In the expansion of x1, only variable y; is duplicated to represent the different
choices of the Skolem function f,, on the paths that differ in the assignment of
x1. Likewise, variable yo is not duplicated. After the expansion of all universal
variables, the resulting existential QBF formula can be solved by a SAT solver.

3 Bounded Unsatisfiability

Instead of expanding the whole binary decision tree it is often possible to deter-
mine unsatisfiability with only a subset of the assignments to the universal vari-
ables. We introduce the notion of partial models that are decision trees which
contain only a subset of the original paths. Formally, a partial model P of a
DQBF formula & is a decision tree over X consisting of paths P C 2% such
that (1) every path in the tree satisfies the matrix and (2) the labels of the
leaves are consistent according to the dependencies of the existential variables
and the selected paths P. As partial models are weaker than models, the exis-
tence of a partial model does not imply the existence of a model, but from the
non-existence of a partial model follows the non-existence of a model.

Lemma 1. Given a DQBF formula ® and a set of paths P C 2. & is unsatis-
fiable if there does not exist a partial model over P.

We turn the idea of non-existing partial models into the bounded unsatisfiability
problem that limits the number of paths under consideration in order to show
that no partial model exists. For a k& > 1, a DQBF formula & is k-bounded
unsatisfiable if there exists a set of paths P C 2% with |P| < k such that there
does not exist a partial model over P.

Theorem 2. A DQBF formula @ is unsatisfiable iff it is k-bounded unsatisfiable
for some k > 1.

4 From DQBF to QBF

We give an encoding of the k-bounded unsatisfiability problem to QBF for a
fixed bound k. Before presenting the general encoding, we show the basic steps
on formula (2) Va1, z2. 34} Y1- I(as} Y2- - The formula is unsatisfiable iff for
all candidate models, there exists a path that violates the matrix . Instead of
expanding all four paths, we restrict the binary decision tree on two paths (but
do not choose which one) and encode the search for the paths as QBF formula

Joy, 27, x5, 25. Yy, yi. Yya, y3. ' V mp? (4)

that asserts that either path violates . This, however, does not accurately rep-
resent the incomparable dependencies of y; and ys. For the assignment depicted
in Fig. 2(d), where only 1 has a different assignment on the two paths, 2 and
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y35 can have different assignment as well, despite the fact that yo does not depend
on x7. To fix this inaccuracy, we introduce a consistency condition that ensures
the restricted choices across multiple paths. For example, the consistency con-
dition for ys in (4) would be (y3 <> y3) V (23 < 23), i.e., either the assignment
of ys is equal on both paths, or the assignment of the dependency x- is different
on both paths. In the following, we describe the general encoding.

We build a QBF formula ¥ that encodes the k-bounded unsatisfiability prob-
lem, i.e., for a given bound k, the satisfaction of ¥ implies that @ is unsatisfiable.
In the encoding, we introduce k copies of the existential and universal variables
in the DQBF formula &. Moreover, we specify a consistency condition that en-
forces that the universal variables can only act according to the assignment of
the dependencies given by the support sets.

bunsat(®, k) = 3zt, ... xl 22 a2 2k vyl oyl wd 2yt
consistent({y1,...,yn} k) = \/ -, (5)
1<i<k

where ©* denotes the formula ¢ where every variable v is replaced by v*. The
consistency condition is given by the formula

consistent (Y, k) /\ /\ ((y ) \/ xt o 1) ) . (6)

YEY (i.4)€(1,....k}> weHy

Theorem 3. A DQBF formula @ is unsatisfiable iff there exists a bound k > 1
such that the QBF formula bunsat(®, k) is satisfiable.

Proposition 4. Let @ be a DQBF formula. For k > 1, the QBF formula
bunsat(P, k) has k - |X| existential and k - |Y| universal variables, respectively,
and the matriz is of size O(|Y| - k? - maxyey |Hy| + k - |¢]).

Reducing the Bound. One critical observation in the QBF encoding in (5) is
that many paths are not needed for proving the unsatisfiability, but for enforc-
ing consistency across the labels in the partial model. The reason for this is that
n (5) we used the weakest QBF approximation of ¢. By using a stronger QBF
abstraction, the QBF formula itself takes care for a part of the consistency condi-
tion. The stronger the QBF abstraction, the better is the dependency modeling
and the fewer paths must be chosen.

Example. Consider again the PEC example from Fig. 1. As we have seen,
there exist two strongest QBF approximations, but both are satisfiable due to
overapproximation. However, we prove unsatisfiability by using a strongest QBF
abstraction together with a bound of two: The formula

o}, 21 Yy, of . 3oy, 2395, 45 (4 < 43) V (2] «» 21)) = (mp' vV =p?)  (7)

is satisfiable (choose arbitrary assignment o with a(x1) # a(z?) and a(xd) =
a(z2)). As the assignment of y, must be the same on both paths (otherw1se
it violates the consistency condition), it holds that either a(y2) # a(zi) o
a(y2) # a(x?), hence the matrix is violated on either path.
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Table 1. Results of the bounded unsatisfiability method on PEC examples

circuit BBs unsat. bound 1 /2  time  circuit BBs unsat. bound 1 / 2 time

1950 100% 100% 27.5% 1931  100% 100% 57.1%
s, 3927 OT.6% 100% 222% .3 908 97.9% 99.8% 48.0%
Dher 0 924 ST6% 996% 17.9% 05 906 95.7% 985% 41.9%

7912 67.9% 95.9% 13.8% 7896  92.5% 97.0% 35.5%

9 870 30.9% 76.2% 16.2% 9 889  88.9% 94.7% 28.9%

1 962 100% 100% 10.8% 1999  100% 100% 4.5%

3959 100% 100% 9.0% 3 997  98.2% 100% 3.4%
adder 5 9059 99.9% 100% 8.9% °F 5 996 9OT.1% 100% 3.3%

7951 99.5% 100% 7.0% Y7 996 94.2% 99.9% 0.7%

9 957  985% 99.9% 6.8% 9 986 84.4% 99.1% 0.8%

The table shows the approx. ratio of the bounded-path prototype using a bound < 2
and the median running time relative to the expansion solver (timeout after 5min per
instance). For every number of black boxes, we generated 1000 random instances.

5 Experimental Results

We have implemented our new method as a prototype that uses the bounded un-
satisfiability method together with a strongest QBF abstraction. In this section,
we report on experiments carried out on a 2.6 GHz Opteron system. The QBF
instances generated by our reduction are solved using a combination of the QBF
preprocessor Bloqger [4] in version 031 and the QBF solver DepQBF [13] in ver-
sion 2.0. As a base of comparison, we have also implemented an expansion-based
DQBF solver using the BDD library CUDD in version 2.4.22.

Table 1 shows the performance of our solver on a number of PEC benchmarks,
including the arithmetic circuits multiplier (4-bit) and adder (32-bit), a 32-bit
lookahead arbiter implementation, and a 32-bit multiplexer [17]. The PEC in-
stances are created as follows: Starting with a circuit, we exchange a variable
number of gates by black boxes and use one copy of the original circuit as the
specification. Random faults are inserted by replacing exactly one gate with a
different gate. With only one exception (instances with more than 7 black boxes
of the multiplier instances), more than 94% of the instances were solved cor-
rectly with bound two, while the number of correctly solved instances by the
QBF abstraction drops as low as 84.4%. The running times in Table 1 are given
relative to the running time of the expansion-based solver. Our solver outper-
forms the expansion-based solver significantly, especially on benchmarks with a
large number of black boxes. For example, with 9 black boxes, the difference
ranges from 37% faster (adder) to more than 5 times faster (lookahead).

Table 1 indicates that an increase of the bound from 1, which corresponds to
the plain QBF approximation, to 2 already results in a significant improvement of
accuracy. Table 2 analyzes the impact of the bound on the approximation quality
in more detail. Here, the benchmark is a circuit family from [10], depicted for two

2 The source code of the benchmarks and tools are available at
http://react.uni-saarland.de/tools/sat14/
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Table 2. Result of the XOR random function example

T T2
| BBs total sat. unsat. bounded unsatisfiable
ﬂ 1 2 3 >3
2 65536 32377 33159 22687 10472 0 0

100% 68.4% 31.6% 0% 0%
3 50000 9273 40727 11257 26169 3115 186
100% 27.6% 64.3% 7.6% 0.5%
4 50000 190 49810 5002 43781 1015 12
100% 10.0% 87.9% 2.0% < 0.1%

The table shows the approximation quality of the bounded-

Fig. 3. XOR template  p,¢h prototype with respect to the number of black boxes.

black boxes in Fig. 3. The circuit uses the XOR, of the inputs as specification and
a random Boolean function as implementation, where black boxes with pairwise
different dependencies serve as inputs to this function. For two black boxes, we
created all 65536 = 2'6 instances of Boolean functions with four inputs. For
more than two, we selected a random subset of 50000 instances.

Table 2 shows an interesting correlation between the plain QBF approximation
and the bounded-path method: The less effective the plain approximation, the
more effective the bounded-path method. With an increasing number of black
boxes, the number of solved instances by the plain QBF approximation (bound
1) decreases by more than a half with every black box. At the same time, the
relative number of instances that are solved with a bound of at most two is
always larger than 90%. With a bound of at most three, nearly all unsatisfiable
instances are detected (> 99%). While the QBF approximation alone thus does
not lead to satisfactory results, a comparatively small bound suffices to solve
almost all instances.

6 Conclusion

We have presented a method for DQBF refutation that significantly outperforms
the previous expansion-based approach on PEC benchmarks. The new method
is based on an improved approximation of the DQBF formula within QBF,
based on evaluating the formula on multiple paths and expressing dependency
constraints as consistency conditions. Our experiments show that considering
multiple paths significantly improves the accuracy, especially with an increasing
number of black boxes. Compared to an expansion-based solver, the running
time of our prototype implementation scales better with the number of black
boxes. In the future, we plan to extend the method to sequential circuits and to
integrate QBF certification [2] in order to identify faulty components.
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