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Abstract In 1930s Paul Erdős conjectured that for any positive integer C in any
infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, . . . , xkd, for
some positive integers k and d, such that | ∑k

i=1 xid |> C. The conjecture has
been referred to as one of the major open problems in combinatorial number the-
ory and discrepancy theory. For the particular case of C = 1 a human proof of
the conjecture exists; for C = 2 a bespoke computer program had generated se-
quences of length 1124 of discrepancy 2, but the status of the conjecture remained
open even for such a small bound. We show that by encoding the problem into
Boolean satisfiability and applying the state of the art SAT solver, one can obtain
a discrepancy 2 sequence of length 1160 and a proof of the Erdős discrepancy
conjecture for C = 2, claiming that no discrepancy 2 sequence of length 1161,
or more, exists. We also present our partial results for the case of C = 3.

1 Introduction

Discrepancy theory is a branch of mathematics dealing with irregularities of distri-
butions of points in some space in combinatorial, measure-theoretic and geometric
settings [1,2,3,4]. The paradigmatic combinatorial discrepancy theory setting can be
described in terms of a hypergraph H = (U, S), that is, a set U and a family of its
subsets S ⊆ 2U . Consider a colouring c : U → {+1,−1} of the elements of U in blue
(+1) and red (−1) colours. Then one may ask whether there exists a colouring of the
elements of U such that in every element of S colours are distributed uniformly or a
discrepancy of colours is always inevitable. Formally, the discrepancy (deviation from
a uniform distribution) of a hypergraph H is defined as minc(maxs∈S |∑e∈s c(e)| ).
Discrepancy theory also has practical applications in computational complexity [2],
complexity of communication [5] and differential privacy [6].

One of the oldest problems of discrepancy theory is the discrepancy of hypergraphs
over the set of natural numbers with the subsets (hyperedges) forming arithmetical pro-
gressions over this set [7]. Roth’s theorem [8], one of the main results in the area,
states that for the hypergraph formed by the arithmetic progressions in {1, . . . , l}, that
is Hl = (Ul, Sl), where Ul = {1, 2, . . . , l} and elements of Sl being of the form (ai+b)
for arbitrary a, b, the discrepancy grows at least as 1

20 l
1/4.

Surprisingly, for the more restricted case of homogeneous arithmetic progressions of
the form (ai), the question of the discrepancy bounds is open for more than eighty years.
In 1930s Paul Erdős conjectured [9] that the discrepancy is unbounded. This conjecture
became known as the Erdős discrepancy problem (EDP) and its proving or disproving
has been referred to as one of the major open problems in combinatorial number theory
and discrepancy theory [1,4,10].
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The problem can be naturally described in terms of sequences of +1 and −1 (and this
is how Erdős himself introduced it). Then Erdős’s conjecture states that for any C > 0
in any infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, . . . , xkd, for
some positive integers k and d, such that | ∑k

i=1 xid |> C. The general definition of
discrepancy given above can be specialised as follows. The discrepancy of a finite ±1

sequence x̄ = x1, . . . , xl of length l can be defined as maxd=1,...,l(|
∑� l

d �
i=1 xid |). For

an infinite sequence (xn) its discrepancy is the supremum of discrepancies of all its
initial finite fragments.

For random ±1 sequences of length l the discrepancy grows as l1/2+o(1) and the
explicit constructions of a sequence with slowly growing discrepancy at the rate of
log3 l have been demonstrated [11,12]. By considering cases, one can see that any ±1
sequence of length 12 or more has discrepancy at least 2; that is, Erdős’s conjecture
holds for the particular case C = 1 (also implied by the stronger result in [13]). For
all other values of C the status of the conjecture remained unknown. Although widely
believed not to be the case, there was still a possibility that an infinite sequence of
discrepancy 2 existed.

The EDP has attracted renewed interest in 2009-2010 as it became a topic of the
Polymath project [14], a widely publicised endeavour in collective math initiated by
T. Gowers [15]. As part of this activity (see discussion in [14]) an attempt has been
made to attack the problem using computers. A purposely written computer program
had successfully found ±1 sequences of length 1124 having discrepancy 2; however, it
failed to produce a discrepancy 2 sequence of a larger length and it has been claimed
that “given how long a finite sequence can be, it seems unlikely that we could answer
this question just by a clever search of all possibilities on a computer” [14].

In this paper we settle the status of the EDP for C = 2. We show that by encoding the
problem into Boolean satisfiability and applying the state of the art SAT solvers, one can
obtain a sequence of length 1160 of discrepancy 2 and a proof of the Erdős discrepancy
conjecture for C = 2, claiming that no sequence of length 1161 and discrepancy 2
exists. We also present our partial results for the case of C = 3 and demonstrate the
existence of a sequence of length 13 900 of discrepancy 3.

2 SAT Encoding

Checking that a ±1 sequence of length l has discrepancy C is quite straightforward and
so for the existence claims the specific encoding details are of limited interest and could
be left as an exercise to the reader. The negative results (that is, our claim that no infinite
discrepancy 2 sequence exists), however, require us to give a short description of our
SAT encoding of the EDP. The encoding in full for all cases discussed in this paper and
the program generating the encoding of the EDP for arbitrary given values of C and l
can be found in [16].

We employ the automata based approach similar to the encoding of temporal formu-
lae for bounded model checking [17]. In Figure 1 we give an automaton that accepts
a ±1 word of length m if, and only if, the word represents a ±1 sequence y1, . . . , ym
such that

∑m
i=1 | yi |> C (and for all m′ < m it holds

∑m
i=1 | yi |≤ C). No-

tice that if a subsequence xd, x2d, . . . , xkd of x̄ = x1, . . . , xl contains less than C
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Figure 1. Automaton AC

elements, then the discrepancy of x̄ cannot exceed C. It should be clear then that if
for every d : 1 ≤ d ≤ � l

C+1� the automaton AC does not accept the subsequence

xd, x2d, . . . , xkd, where k = � l
d�, then the discrepancy of the sequence x̄ does not

exceed C.
The trace of the automaton AC on the subsequence xd, x2d, . . . , xkd can be encoded

by a Boolean formula in the obvious way. To explain representation details, first con-
sider

φ(l,C,d) = s
(1,d)
0

� l
d �∧

i=1

[
∧

−C≤j<C

(
s
(i,d)
j ∧ pid → s

(i+1,d)
j+1

)
∧

∧

−C<j≤C

(
s
(i,d)
j ∧ ¬pid → s

(i+1,d)
j−1

)
∧

(
s
(i,d)
C ∧ pid → B

)
∧

(
s
(i,d)
−C ∧ ¬pid → B

)]

,

(1)

where the intended meaning is that proposition s
(i,d)
j is true if, and only if, the auto-

maton AC is in the state sj having read first (i − 1) symbols of the input word, and
proposition pi is true if, and only if, the i-th symbol of the input word is +1.

Let

φ(l,C) = ¬B ∧
� l
C+1 �∧

d=1

φ(l,C,d) ∧ frame(l,C),

where frame(l,C) is a Boolean formula encoding that the automaton state is correctly

defined, that is, exactly one proposition from each of the sets {s(i,d)j | −C ≤ j ≤ C},
for d = 1, . . . , � l

C+1� and 1 ≤ i ≤ � l
d�, is true in every model of φ(l,C).

The following statement can be easily proved by an investigation of models of φ(l,C)

and the traces of AC . Notice that although φ(l,C) encodes the traces of AC on all sub-
sequences of x̄ they all share the same propositionB—as soon as the automaton accepts
any of these subsequences, the entire sequence should be rejected.

Proposition 1. The formula φ(l,C) is satisfiable if, and only if, there exists a ±1 se-
quence x̄ = x1, . . . , xl of length l of discrepancy at most C. Moreover, if φ(l,C) is
satisfiable, the sequence x̄ = x1, . . . , xl of discrepancy C is uniquely identified by the
assignment of truth values to propositions p1, . . . pl.
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The encoding described above, albeit very natural, is quite wasteful: the size of for-
mula frame(l,C) is quadratic in the number of states. To reduce the size, in our imple-
mentation we use a slightly different encoding of the traces of AC . Namely, we replace
in (1) every occurrence of s(i,d)j with a conjunction of propositions representing the nu-
merical value of j in binary, where the most significant bit encodes the sign of j and the
other bits encode an unsigned number 0 . . . C in the usual way. We denote the resulting
formula φb

(l,C,d).
For example, for C = 2 the values −C . . . C can be represented in binary by 3 bits.

Then φb
(l,C,d) contains, for example,

(¬b(i,d)2 ∧ ¬b(i,d)1 ∧ ¬b(i,d)0 ) ∧ pid → ¬b(i+1,d)
2 ∧ ¬b(i+1,d)

1 ∧ b
(i+1,d)
0

encoding the transition from s0 to s1 having read +1.
We also exclude by a formula frameb(l,C) all combinations of bits that do not corres-

pond to any states of AC . For example, for C = 2 we have

frameb(l,C) =
� l
C+1 �∧

d=1

� l
d �+1∧

i=1

[

¬(b(i,d)2 ∧ ¬b(i,d)1 ∧ ¬b(i,d)0 )∧
¬(¬b(i,d)2 ∧ b

(i,d)
1 ∧ b

(i,d)
0 )∧

¬(b(i,d)2 ∧ b
(i,d)
1 ∧ b

(i,d)
0 )

]

.

The first conjunct disallows the binary value 100, a ‘negated zero’, the other two encode
that AC , for C = 2, does not have neither s3 nor s−3. The following statement is a
direct consequence of Proposition 1.

Proposition 2. The formula φb
(l,C) = ¬B ∧

� l
C+1 �∧

d=1

φb
(l,C,d) ∧ frameb(l,C) is satisfiable

if, and only if, there exists a ±1 sequence x̄ = x1, . . . , xl of length l of discrepancy at
most C. Moreover, if φ(l,C) is satisfiable, the sequence x̄ = x1, . . . , xl of discrepancy
C is uniquely identified by the assignment of truth values to propositions p1, . . . pl.

3 Results

In our experiments we used the Lingeling SAT solver [18], the winner of the SAT-
UNSAT category of the SAT’13 competition [19] and the Glucose solver [20] version,
the winner of the certified UNSAT category of the SAT’13 competition [19]. All exper-
iments were conducted on PCs equipped with an Intel Core i5-2500K CPU running at
3.30GHz and 16GB of RAM.

By iteratively increasing the length of the sequence, we establish precisely that the
maximal length of a ±1 sequence of discrepancy 2 is 1160. On our system it took
Plingeling, the parallel version of the Lingeling solver, about 800 seconds1 to find a
satisfying assignment. One of the sequences of length 1160 of discrepancy 2 can be
found in Appendix A for reader’s amusement.

1 The time taken by the solver varies significantly from experiment to experiment; in one run it
took the solver just 166.8 seconds to find a satisfying assignment.
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Proposition 3. There exists a sequence of length 1160 of discrepancy 2.

When we increased the length of the sequence to 1161, Plingeling reported unsatisfiab-
ility. In order to corroborate this statement, we also used Glucose. It took the solver
about 21 500 seconds to compute a Delete Reverse Unit Propagation (DRUP) certificate
of unsatisfiability, which is a compact representation of the resolution refutation of the
given formula [21]. The correctness of the unsatisfiability certificate has been independ-
ently verified with the drup-trim tool [22]. The size of the certificate is about 13 GB2,
and the time needed to verify the certificate was comparable with the time needed to
generate it. Combined with Proposition 2, we obtain a computer proof of the following
statement.

Theorem 1. Every sequence of length 1161 has discrepancy at least 3.

So we conclude.

Corollary 1. The Erdős discrepancy conjecture holds true for C = 2.

In an attempt to better understand this result, we looked at the smaller unsatisfiable
subset of φb

(l,C) identified by the drup-trim tool. It turned out that the encoding of some
automata traces is not present in the subset. A further manual minimisation showed that,
although � 1161

3 � is 387, to show unsatisfiability it suffices to consider subsequences of
x1, . . . , x1161 of the form xd, . . . , xkd for the values of d ranging from 1 to 358. It
remains to be seen whether or not this observation can be helpful for a human proof of
the conjecture

We also applied our methodology to identify sequences of discrepancy 3, how-
ever, we did not manage to prove the conjecture. Having spent 8 days, 21 hours and
55 minutes (or 770122.2 seconds total), on the encoding of the problem using 380 404
variables and 4 641 640 clauses Plingeling has successfully identified a sequence of
length 13 900 with discrepancy 3. The encoding and the generated sequence can be
found in [16].

Proposition 4. There exists a sequence of length 13 900 of discrepancy 3.

However, the general question of existence of a finite bound on the length of ±1 se-
quences of discrepancy 3 (that is, the Erdős conjecture for C = 3) remains open.

4 Discussion

We have demonstrated that SAT-based methods can be used to tackle the longstanding
mathematical question on the discrepancy of ±1 sequences. For EDP with C = 2
we have identified the exact boundary between satisfiability and unsatisfiability, that
is, we found the longest discrepancy 2 sequence and proved that no larger sequence of

2 It is possible to reduce the size of the certificate by exploiting symmetry. Notice that if a
sequence x1, . . . , xn has discrepancy C so does the sequence −x1, . . . ,−xn. Fixing the value
of one of xi to 1 reduces the search space and hence the size of the certificate. Moreover, one
should fix the value of xi occurring in many subsequences of x1, . . . , xn. E.g. with x60 set to
1, the size of the DRUP certificate becomes 3.6 GB.
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discrepancy 2 exists. There is, however, a noticeable asymmetry between these findings.
The fact that a sequence of length 1160 has discrepancy 2 can be easily checked either
by a straightforward computer program or even manually. The negative witness, that is,
the DRUP unsatisfiability certificate, is probably one of longest proofs of a non-trivial
mathematical result ever produced3, so one may have doubts about to which degree this
can be accepted as a proof of a mathematical statement.

But this is the best we can get for the moment. Essentially, the unsatisfiability proof
corresponds to the verification that the search in a huge search space has been done
correctly and completed without finding a satisfying assignment. It is a challenging
problem to produce a compact proof more amenable for human comprehension.

Finally notice that apart from the obtained results the proposed methodology can be
used to further experimentally explore variants of the Erdős problem as well as more
general discrepancy theory problems.

Acknowledgement. We thank Armin Biere, Marijn Huele, Pascal Fontaine, Donald
Knuth, Laurent Simon and Laurent Théry for helpful comments and discussions on the
preliminary version of this paper.
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A One of the Sequences of Length 1160 Having Discrepancy 2

We give a graphical representation of one of the sequences of length 1160 obtained
from the satisfying assignment computed with the Plingeling solver. Here + stands for
+1 and − for −1, respectively.
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