
Ben Goertzel
Laurent Orseau
Javier Snaider (Eds.)

 123

LN
AI

 8
59

8

7th International Conference, AGI 2014
Quebec City, QC, Canada, August 1–4, 2014
Proceedings

Artificial
General Intelligence

Lecture Notes in Artificial Intelligence 8598

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Ben Goertzel Laurent Orseau
Javier Snaider (Eds.)

Artificial
General Intelligence

7th International Conference, AGI 2014
Quebec City, QC, Canada, August 1-4, 2014
Proceedings

13

Volume Editors

Ben Goertzel
OpenCog Foundation, G/F
51C Lung Mei Village, Tai Po, N.T., Hong Kong
China

Laurent Orseau
AgroParisTech
16 rue Claude Bernard
75005 Paris
France

Javier Snaider
Google Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
USA

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09273-7 e-ISBN 978-3-319-09274-4
DOI 10.1007/978-3-319-09274-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014943523

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The original goal of the AI field was the construction of “thinking machines”—
that is, computer systems with human-like general intelligence. Due to the dif-
ficulty of this task, for the last few decades the majority of AI researchers have
focused on what has been called “narrow AI”—the production of AI systems
displaying intelligence regarding specific, highly constrained tasks.

In recent years, however, more and more researchers have recognized the
necessity—and feasibility—of returning to the original goals of the field by treat-
ing intelligence as a whole. Increasingly, there is a call for a transition back
to confronting the more difficult issues of “human-level intelligence” and more
broadly artificial general intelligence (AGI). AGI research differs from the or-
dinary AI research by stressing on the versatility and wholeness of intelligence,
and by carrying out the engineering practice according to an outline of a system
comparable to the human mind in a certain sense.

The AGI conference series has played, and continues to play, a significant
role in this resurgence of research on artificial intelligence in the deeper, original
sense of the term of “artificial intelligence”. The conferences encourage interdisci-
plinary research based on different understandings of intelligence, and exploring
different approaches.

This volume contains the papers presented at AGI-14: The 7th Conference
on Artificial General Intelligence held during August 1–4, 2014 in Quebec City.
There were 65 submissions. Each submission was reviewed by at least two, and
on average 2.7, Program Committee members. The committee decided to accept
21 long papers and one technical communication (34% acceptance), and eight
posters.

The keynote speakers for this edition of the conference were Yoshua Bengio,
from the University of Montreal, who presented deep learning for AI, Alexander
Wisner-Gross, from Harvard University & MIT, who delivered a speech about
the thermodynamics of AGI, and Richard Granger, from Dartmouth College,
who talked about AGI and the brain.

July 2014 Ben Goertzel
Laurent Orseau
Javier Snaider

Organization

Organizing Committee

Ben Goertzel
(Conference Chair) Novamente LLC, USA

Joscha Bach Humboldt University of Berlin, Germany
Rod Furlan Quaternix Research Inc., Canada
Ted Goertzel Rutgers University, USA

Program Chairs

Laurent Orseau AgroParisTech, France
Javier Snaider Google Inc., USA

Program Committee

Itamar Arel University of Tennessee, USA
Joscha Bach Humboldt University of Berlin, Germany
Eric Baum Baum Research Enterprises, USA
Tarek Besold University of Osnabrück, Germany
Dietmar Bruckner Bernecker and Rainer Industrial Electronics,

Austria
Cristiano Castelfranchi Institute of Cognitive Sciences and

Technologies, Italy
Vinay Chaudhri SRI International, USA
Antonio Chella Università di Palermo, Italy
Madalina Croitoru Montpellier 2 University, France
David Dalrymple Harvard University, USA
Blerim Emruli Lule̊a University of Technology, Sweden
Deon Garrett Icelandic Institute for Intelligent Machines,

Iceland
Nil Geisweiller Novamente LLC, USA
Ben Goertzel Novamente LLC, USA
Markus Guhe University of Edinburgh, UK
Helmar Gust University of Osnabrück, Germany
Louie Helm MIRI, USA
Jose Hernandez-Orallo Universitat Politecnica de Valencia, Spain
Bill Hibbard University of Wisconsin, USA
Eva Hudlicka Psychometrix Associates, USA
Marcus Hutter Australian National University, Australia
Matt Iklé Adams State University, USA

VIII Organization

Bipin Indurkhya IIIT Hyderabad, India
Benjamin Johnston University of Sydney, Australia
Cliff Joslyn Pacific Northwest National Laboratory, USA
Randal Koene Carbon Copies, USA
Kai-Uwe Kuehnberger University of Osnabrück, Germany
Oliver Kutz University of Bremen, Germany
Tor Lattimore University of Alberta, Canada
Shane Legg Google Inc., UK
Moshe Looks Google Inc., USA
Tamas Mald University of Manchester, UK
Maricarmen Martinez Baldares Universidad de los Andes, Colombia
Amedeo Napoli LORIA, France
Laurent Orseau AgroParisTech, France
Ekaterina Ovchinnikova ISI USC, USA
Günter Palm University of Ulm, Germany
Wiebke Petersen Heinrich Heine University, Germany
Stephen Reed Texai, USA
Mark Ring Ring Consulting, USA
Paul Rosenbloom University of Southern California, USA
Sebastian Rudolph Technical University of Dresden, Germany
Ute Schmid University of Bamberg, Germany
Jürgen Schmidhuber IDSIA, Switzerland
Zhongzhi Shi Chinese Academy of Sciences, China
Javier Snaider Google Inc., USA
Bas Steunebrink IDSIA, Switzerland
Peter Sunehag Australian National University, Australia
Kristinn Thórisson Reykjavik University, Iceland
Julian Togelius IT University of Copenhagen, Denmark
Joel Veness Google Inc., UK
Mario Verdicchio University of Bergamo, Italy
Pei Wang Temple University, USA

Additional Reviewers

Thomas Brochhagen
Jan Leike

Tanja Osswald
Nouredine Tamani

Workshop Committee

Joscha Bach Humboldt University of Berlin, Germany

Steering Committee

Ben Goertzel Novamente LLC, USA (Chair)
Marcus Hutter Australian National University, Australia

Table of Contents

Raising AI: Tutoring Matters . 1
Jordi Bieger, Kristinn R. Thórisson, and Deon Garrett

Autobiography Based Prediction in a Situated AGI Agent 11
Ladislau Bölöni

Problems of Self-reference in Self-improving Space-Time Embedded
Intelligence . 21

Benja Fallenstein and Nate Soares

A General Artificial Intelligence Approach for Skeptical Reasoning 33
Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure

On Effective Causal Learning . 43
Seng-Beng Ho

Increasing Accuracy in a Bidirectional Associative Memory through
Expended Databases . 53

Melissa Johnson and Sylvain Chartier

Fusion Adaptive Resonance Theory Networks Used as Episodic Memory
for an Autonomous Robot . 63

Francis Leconte, François Ferland, and François Michaud

Bracketing the Beetle: How Wittgenstein’s Understanding of Language
Can Guide Our Practice in AGI and Cognitive Science 73

Simon D. Levy, Charles Lowney, William Meroney, and
Ross W. Gayler

Bounded Seed-AGI . 85
Eric Nivel, Kristinn R. Thórisson, Bas R. Steunebrink,
Haris Dindo, Giovanni Pezzulo, Manuel Rodŕıguez,
Carlos Hernández, Dimitri Ognibene, Jürgen Schmidhuber,
Ricardo Sanz, Helgi P. Helgason, and Antonio Chella

The Multi-slot Framework: A Formal Model for Multiple, Copiable
AIs . 97

Laurent Orseau

Teleporting Universal Intelligent Agents . 109
Laurent Orseau

X Table of Contents

An Application of Stochastic Context Sensitive Grammar Induction to
Transfer Learning . 121

Eray Özkural

Making Universal Induction Efficient by Specialization 133
Alexey Potapov and Sergey Rodionov

Reinforcement Learning for Adaptive Theory of Mind in the Sigma
Cognitive Architecture . 143

David V. Pynadath, Paul S. Rosenbloom, and Stacy C. Marsella

ARS: An AGI Agent Architecture . 155
Samer Schaat, Alexander Wendt, Matthias Jakubec,
Friedrich Gelbard, Lukas Herret, and Dietmar Dietrich

Quantum Mechanical Foundations of Causal Entropic Forces 165
Swapnil Shah

A General System for Learning and Reasoning in Symbolic Domains . . . 174
Claes Stranneg̊ard, Abdul Rahim Nizamani, and Ulf Persson

Intelligence as Inference or Forcing Occam on the World 186
Peter Sunehag and Marcus Hutter

Distributed Vector Representations of Words in the Sigma Cognitive
Architecture . 196

Volkan Ustun, Paul S. Rosenbloom, Kenji Sagae, and Abram Demski

Can a Computer be Lucky? And Other Ridiculous Questions Posed by
Computational Creativity . 208

Dan Ventura

Instructions for Engineering Sustainable People . 218
Mark R. Waser

Toward a Formalization of QA Problem Classes . 228
Naveen Sundar Govindarajulu, John Licato, and Selmer Bringsjord

MInD: Don’t Use Agents as Objects . 234
Renato Lenz Costalima, Amauri Holanda Souza Júnior,
Cidcley Teixeira de Souza, and Gustavo Augusto Lima de Campos

Guiding Probabilistic Logical Inference with Nonlinear Dynamical
Attention Allocation . 238

Cosmo Harrigan, Ben Goertzel, Matthew Iklé, Amen Belayneh, and
Gino Yu

A Cognitive API and Its Application to AGI Intelligence Assessment . . . 242
Ben Goertzel and Gino Yu

Table of Contents XI

Self-modeling Agents Evolving in Our Finite Universe 246
Bill Hibbard

Affective Agent Architecture: A Preliminary Research Report 250
Kevin Raison and Steve Lytinen

Unsupervised Learning of Spatio-temporal Patterns Using Spike
Timing Dependent Plasticity . 254

Banafsheh Rekabdar, Monica Nicolescu, Richard Kelley, and
Mircea Nicolescu

System Factorial Technology Applied to Artificial Neural Network
Information Processing . 258

Christophe Tremblay, Bradley Harding, Sylvain Chartier, and
Denis Cousineau

Compression and Decompression in Cognition . 262
Michael O. Vertolli, Matthew A. Kelly, and Jim Davies

Author Index . 267

Raising AI: Tutoring Matters

Jordi Bieger1, Kristinn R. Thórisson1,2, and Deon Garrett1,2,�

1 Center for Analysis and Design of Intelligent Agents / School of Computer Science,
Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland

2 Icelandic Institute for Intelligent Machines, Uranus, Menntavegur 1, 101 Reykjavik
{jordi13,thorisson,deong}@ru.is

Abstract. Humans and other animals are often touted as examples of
systems that possess general intelligence. However, rarely if ever do they
achieve high levels of intelligence and autonomy on their own: they are
raised by parents and caregivers in a society with peers and seniors,
who serve as teachers and examples. Current methods for developing
artificial learning systems typically do not account for this. This paper
gives a taxonomy of the main methods for raising / educating naturally
intelligent systems and provides examples for how these might be applied
to artificial systems. The methods are heuristic rewarding, decomposition,
simplification, situation selection, teleoperation, demonstration, coaching,
explanation, and cooperation. We argue that such tutoring methods that
provide assistance in the learning process can be expected to have great
benefits when properly applied to certain kinds of artificial systems.

Keywords: Artificial general intelligence, learning, tutoring, raising.

1 Introduction

Humans grow and learn under the supervision of parents or other caregivers, in
a society with peers and seniors, who serve as teachers and examples. We don’t
confine our children to libraries and hope that they’ll figure out how to read. Yet
it seems that often we expect something similar from our artificial systems: In a
typical machine learning project, first a well-defined target task is selected that
we would like our artificial learner to accomplish automatically. Humans identify
and extract the most important features for their learning system, including
variables and their target operating ranges, reward functions, etc. Next, the
system is released into (a simulation of) the target environment to attempt to
accomplish the target task, possibly with the help of randomly selected, human
annotated examples. While this paradigm has lead to many useful applications,
it can only be applied to tasks and environments that are well defined at the
system’s design time, and they are confined to only such tasks, and to address
any of them requires starting a new cycle of manual system creation.

The goal in AGI is how to build systems that are not merely good at a single
task that is known beforehand, but systems that can perform autonomously on
� We want to thank Elsa Eiríksdóttir for educating us about education psychology.

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014

2 J. Bieger, K.R. Thórisson, and D. Garrett

a very wide range of tasks, in a wide range of environments, many of which the
system may never have encountered. Our working definition of intelligence is
“the ability to autonomously achieve complex goals in a wide range of complex
environments with constrained resources”. Intelligent systems should be able to
identify and extract the most important features for their learning process auto-
matically. So far, this goal has remained unattainable. We often look to humans
and other intelligent animals as proof that such general intelligence is indeed
possible, but none of them start their lives with their potential for intelligence
and autonomy fully realized. Unlike most current artificial systems, when we
were babies we were not placed directly into the particular environment where
we are later expected to perform. We were raised.

We can distinguish between a system’s potential intelligence and its realized
intelligence. Realized intelligence is the amount of intelligence, by some (un-
specified) measure, that the system exhibits at any particular moment in time.
Potential intelligence is the maximum possible realized intelligence that the sys-
tem might achieve in its lifetime. Human babies possess a potential intelligence
that will eventually allow them to be as intelligent as an adult human (the pin-
nacle of currently existing general intelligence), but their realized intelligence is
initially fairly low. They will fail at some of the most rudimentary tasks that
they will be capable of in the future; when left to their own devices they soon die.
How much of their potential is realized depends in large part by how they are
raised. Some aspiring AGI systems (cf. AERA [16], NARS [26] and OpenCog [8])
are similarly envisioned to start from humble beginnings and acquire the ability
to behave well through interaction with complex environments. It has even been
suggested to use a human-like preschool environment to evaluate the intelligence
and developmental stage of proto-AGI [9].

The goal of raising a system is to help it realize as much of its potential intel-
ligence as possible as quickly as possible. Given a certain base-level of potential
intelligence, a raised system should reach a higher level of realized intelligence
than one that is completely left to its own devices. Or, considered another way:
To reach a certain target level of intelligence, e.g. “human level”, a system may
require less potential intelligence if it is raised well.

There are many aspects to raising an intelligent system. In this paper we focus
on the aspect of providing assistance in the learning of new tasks, which we’ll
refer to as tutoring. We discuss ways in which the upbringing of (human) animals
has been or could be translated to the artificial domain towards this end. We
aim to provide a taxonomy of tutoring methods for AI, articulate some of the
associated requirements this puts on the system’s capabilities and discuss the
implications and future work.

2 Tutoring Techniques

In this section we describe a number of tutoring techniques that can help raise
intelligent systems: heuristic rewarding, decomposition, simplification, situation
selection, teleoperation, demonstration, coaching, explanation and cooperation.

Raising AI: Tutoring Matters 3

We give anthropocentric illustrations and review prior work in machine learning
and AI. We additionally provide examples of how these methods might be imple-
mented to solve three simple reinforcement learning (RL) tasks using a tabular
Q-learning algorithm [22]: 1) a 2D navigation task, 2) a small sliding puzzle and
3) a compound task where the puzzle and navigation task must be solved seri-
ally in a combined state space1. It should be stressed however that this is not
an experimental study, and that the results in Fig. 1 do not imply the general
superiority of one method over another or that they are always beneficial. These
examples are merely meant to provide simple and concrete illustrations of the
presented methods and to show that there are at least some situations in which
they can help.

2.1 Heuristic Rewards

The fact that behavior can be shaped through the use of rewards and punish-
ments is a core tenet of the field of behaviorism and the underlying mechanism
in associative and reinforcement learning [19]. Reinforcement learning is further-
more a useful paradigm for AGI, because it doesn’t require a dedicated supervisor
to constantly provide correct actions. However, acquisition of rewards or avoid-
ance of punishment in many tasks requires a level of proficiency that a beginner
cannot be expected to possess.

Tasks that require a certain level of skill for the learner to receive varied
feedback can be difficult to learn, because it can make the “goodness” of dif-
ferent actions virtually indistinguishable. A tutor can mitigate this problem by
adding more feedback through real-time interaction with the learner [25], by
e.g. rewarding good moves with encouraging words or a monetary reward, or
by teaching heuristics for actions or situations to estimate their “worth”: For in-
stance, capturing an opponent’s piece in chess could be awarded with a number
of imaginary points. This is the central idea behind gamification [7] which has
been successful in helping people to learn by supplementing long term benefits
and understanding with immediate feedback and rewards. Heuristics like these
are also often used in machine learning for game playing, where the final state
and the associated win, loss or draw is the only thing that really matters.

In our own RL example, we have implemented the heuristic rewards approach
by giving higher rewards to good actions than to bad ones. Fig. 1 clearly shows
that this can be hugely beneficial to learning speed. However, care should be
taken that pursuit of these artificial heuristics is not more beneficial than pursuit
of the actual goal. For instance, if too much importance is attached to capturing
pieces in chess, a player may forgo a guaranteed winning move because prolonging
the game may allow the capture of more pieces.

2.2 Decomposition

Part-task training is a well-known strategy in educational psychology that in-
volves the decomposition of the whole task into smaller parts that can be learned
1 Please refer to our technical report for more details [5].

4 J. Bieger, K.R. Thórisson, and D. Garrett

10
3

10
4

10
5

10
6

T6: Demo
T5: Tele
T4: Select
T3: Simple
T1: Reward
Naive

Navigation 15x15

10
4

10
5

10
6

T7: Coach
T5: Tele
T4: Select
T3: Simple
T1: Reward
Naive

Sliding Puzzle 3x2

10
7

T2: Part
Naive

Compound 3x2x5x5

steps until perfection

Fig. 1. Positive results obtained using tutoring techniques to decrease the number of
training steps to reach optimal behavior, plotted on a logarithmic scale. All depicted
improvements were statistically significant (p < 0.0001). Used parameters: {learn rate:
0.05, discount factor: 0.75, ε: 0.25, reward: 100, initial Q-values: 0}. For more details
please refer to our technical report [5]. For the heuristic rewards, bad actions were
penalized with −1. Simplification worked by starting with easy starting positions and
for the navigation task a small grid, and gradually increasing difficulty and grid size.
Situation selection was performed by focusing on problem areas one by one.

separately [24]. This approach is often highly beneficial when the whole task is
complex. By decreasing the intrinsic cognitive load of the task, more of the
learner’s cognitive resources can be used for learning [27]. On the other hand,
some of the load is transferred to the tutor, who has to decompose the task in
such a way that the right thing is still learned.

Both decomposition and simplification (see Sec. 2.3) have the tutor design a
curriculum of easier tasks. One example of existing work of curriculum learning
involves the layer-by-layer training of a deep neural network, where each layer’s
task is to extract higher level features from the one before it [4].

One prerequisite for the system’s learning algorithm is that it does not suffer
from catastrophic interference: the phenomenon where an algorithm forgets all
about earlier learned tasks when a new one is learned. Furthermore, a strong
transfer learning ability can be highly beneficial in this setting, because it allows
the system to extract lessons for multiple tasks at once. Incidentally, transfer
learning is greatly aided by variability of training tasks [11] and multitask learn-
ing [6], which could be considered the converse of part-task learning.

We have implemented this divide and conquer tutoring method for learning
the compound task by letting the system train on the navigation and puzzle parts

Raising AI: Tutoring Matters 5

separately. Fig. 1 shows that this results in faster learning than just training on
the compound task from the beginning. However, an important consideration
when using this paradigm is how the component tasks reintegrate to form the
compound target task as context can often be important. With Q-learning, prob-
lems can occur when the expected reward of the second part is very different
from the chosen final reward for the first part because this will invalidate the
Q-values learned for it.

2.3 Simplification

When we teach something new, we generally start with easy variants of the
envisioned target task. Task simplification and the subsequent gradual increase
in difficulty until the training task matches the target task is another example
of learning on a curriculum. A similar paradigm called shaping – introduced
by B.F. Skinner [19] – is often used in animal training. This technique has re-
cently been utilized in reinforcement learning [12][20], unsupervised dependency
parsing [21] and deep learning [4][3][10][13].

Simplification is intimately related to decomposition because the component
tasks are simpler than the target task. The difference can intuitively be defined as
follows: a system that can generalize very well could exhibit decent performance
on the target task after learning a simplified version, but not after learning a
single part-task in the decomposition approach.

There are a number of different ways in which we can implement this approach
in our reinforcement learning examples. For the navigation task, we can decrease
the grid size and for either task we can set the start state to be close to the goal
state. Whenever the system has fully learned to achieve the task at the current
level, we increase the difficulty until we reach the target task. Positive results
are shown in Fig. 1. When errors are introduced at a lower difficulty level, it can
be beneficial to decrease the difficulty again.

2.4 Situation Selection

By selecting the situations that a pupil encounters during learning, a tutor can
greatly facilitate the experience. Dwelling in situations that are either far too
simple or difficult can be a massive waste of time. In the previous section, we
saw how choosing easy starting positions could facilitate learning. But at some
point in our training, we often move on from situations that are relatively easy
to ones that we have a disproportionate amount of trouble with. Essentially, we
tend to focus on areas that are the most important to our learning. Identifying
problem areas and getting better at them is often the best way to increase our
overall success in a given task.

A related concept in machine learning is boosting [17] where multiple classifiers
are trained and training examples that are misclassified by earlier classifiers are
weighted more. Furthermore, for any multi-component system, it is natural for
developers to focus on strengthening the “weak link” in the chain. However,

6 J. Bieger, K.R. Thórisson, and D. Garrett

these applications are not considered as raising approaches, because they are
not applied to the finalized system.

The past decade has also seen the rise of Big Data science and the idea that
the quality and quantity of data might be of equal or greater importance than
the capabilities of the learner. The core tenet in the field active machine learning
is to find ways for a learner to actively select data or situations from which it
is believed that the most can be learned [18]. In that sense, situation selection
could be viewed as active teaching.

In our RL examples we can easily identify states in which the system’s be-
havior is erroneous. We can either pick a possibly different trouble state for each
epoch, or we can go through these states one by one and only move on when it is
no longer problematic. Fig. 1 shows that focusing on problem areas can indeed
expedite training. We have also found that it can help to stop the current epoch
and start a new one when the system has wandered into an unproductive situ-
ation. Generally speaking it can save time to avoid situations that are already
mastered and ones that cannot be learned yet.

2.5 Teleoperation

Sometimes it can be difficult to accurately describe an action, because it must
simply be experienced by the learner. In these cases it can be educational if
the tutor can temporarily take control of the learner’s actions through teleoper-
ation [2]. This can be seen when a golf or tennis instructor stands behind the
student and moves their arms for them in the correct way, and similar approaches
have been taken in robotics [15]. Another example might involve a teacher mak-
ing moves for his student in a chess game. In one recent project an artificial tutor
learned when to make moves for his student in several video games [23].

Selecting an action for the learner must occur at the right level of abstraction,
where the tutor can actually affect the learner directly. For instance, a tutor
cannot make the student’s brain take the required steps for it to consider a
certain chess move good, but he can make the move for the student. Forcing
a student’s hand can also be a method for setting up situations that can be
educational, as we have seen in Sections 2.2, 2.3 and 2.4 where the goal was to
start from states that are easy, problematic or require a certain subskill.

Fig. 1 shows that forcing our Q-learner to take the right actions can greatly
reduce training times. This should come as no surprise, because unlike humans
in tennis the Q-learner has no trouble reproducing the steps that it was forced to
perform during training. However, it is worth noting that this only works when
the “correct” Q-value for the optimal state-action pair is larger than the initial
Q-values for the other actions in that state.

2.6 Demonstration

Human and many other animal infants are innately predisposed towards imitat-
ing those around them. Teaching by example or demonstration then is a very
powerful educational technique. When students have the capability to map the

Raising AI: Tutoring Matters 7

actions of others onto their own, observing someone else perform a task can tell
them how to do it themselves. Observing masters of the field is a common teach-
ing technique in many disciplines. Additionally, sometimes “do as I do” is simply
the easiest way to defne a task. Apprenticeship learning – where the learner
deduces its goal via inverse reinforcement learning of the reward function in a
tutor’s demonstration – has been used to great success [1][16].

The machine learning subfield of imitation learning studies how an artificial
system might learn by imitating a tutor [2]. The emphasis here is usually on how
to design the learner, and it is often assumed that the tutor will be a human who
simply performs the task that we want the system to learn. However, this need
not be the case: Although artificial general intelligence is notoriously difficult to
develop, many AI systems show good performance in specialized domains and
could conceivably function as teachers-by-example for a more generally intelli-
gent system. Furthermore, it is not a given that an optimal demonstration of
the target action(s) is necessarily the optimal teaching signal.

One of the major difficulties in imitation learning is the recognition of the
tutor’s actions and the mapping to the learner’s own capabilities. We cannot
do justice to this complexity in our simple RL examples. Learning by example
in our puzzle task is difficult, because once a tutor moves a tile, the board is
changed and the student cannot simply mimic the move. Of course, it could still
learn from this in the same way that it would with teleoperation (see Sec. 2.5)
or as an apprentice. We’ve augmented the navigation task with two additional
dimensions that signify the system’s displacement from a tutor. At every step,
the tutor first moves to the location of the student (if necessary) and then makes
a step towards the goal. After training with the tutor, we set these two input
dimensions to zero for further training alone and evaluation.

Learning by imitation requires generalization ability or redundancy learning.
We implemented a system of dual Q-learners that focus on different parts of the
state space and vote on the action to take [5] (see Fig. 1). Since the target task
and learning to imitate are largely independent, this approach can be combined
very well with decomposition and simplification methods. Rewarding successful
imitation can also be beneficial.

2.7 Coaching

A lot of our education simply consists of telling students what to do in what
situation. Real-time instruction like this is especially common in coaching during
some sporting events, where the coach may shout out the actions that he wants
his player to perform. We can also see this approach in action when a teacher
tries to walk his student to a math problem step by step.

Learning by direct instruction is essentially the approach that is taken in
supervised learning. The learning algorithm is presented with both the situation
and the right response to it. In real life, instruction is complicated by the fact that
complex language must be mapped unto actions that can actually be performed.

In our RL example, coaching was implemented as an extra dimension on the
input space that will tell the system what action to take, although the system

8 J. Bieger, K.R. Thórisson, and D. Garrett

still needs to learn the mapping from instructions to actions (see Fig. 1). This
implementation is very similar to the one for demonstration, but this is mostly
an artifact of the simplicity of our examples. Imitation learning can be done
without the teacher’s active involvement and requires that the system has capa-
bilities to detect other entities, their actions and possibly their goals. Learning
by instruction on the other hand does require the active involvement of a coach
as well as some communication protocol (i.e. language).

2.8 Explanation

When we want our students to learn something new we often explain to them
what to do and how they should approach the situation. This type of explanation
can take the form of imperative “programming” (e.g. “do not move towards a
nearby enemy in a video game”) [14], or it could involve using analogies to
connect students’ existing knowledge to new concepts.

Explanation is an extremely complex tutoring method and requires a wide
array of features on the part of the learner. The learner must meet the same
requirements as for learning by direct instruction, but increased complexity of
offline explanations compared to simple direct action instructions requires more
sophisticated language processing faculties. Furthermore, the learner must have
good memory and retrieval capabilities, and be able to map the explanations
onto situations that he must be able to detect and actions that he can execute.
Finally, prior knowledge must exist to connect the new knowledge to.

Explanations give the system prior knowledge before starting to actually prac-
tice the task, so we could model it by adjusting the initial Q-values in our RL
example. If the explanation specifies what to do in what situation, we could
simply encode that in the Q-table. When using analogy to existing knowledge
in the form of another Q-table for a different task, we could initialize the new
table with the values from the existing one. We have not done this, since simply
initializing the table to the (almost) correct values will show nothing interesting,
and ignores the fact that the real complexity is in recognizing how to map an
explanation onto knowledge that the system can use.

2.9 Cooperation

Finally, one way to teach a task is to simply lend a helping hand and do the
task together initially. This is essentially a combination of making the task eas-
ier, possibly letting the student focus on a single component, and teaching by
example. This type of apprenticeship can be observed in many jobs and is also
employed by predators who will let their young join them on simple hunts.

We often lend our machine learning systems a helping hand by providing them
with correct answers or preprocessing their data, but we don’t usually intend for
the system to eventually learn to take over these tasks itself.

We have not implemented a new example to showcase this approach, because it
is so broad and already partially covered by our examples for task simplification
and teaching by example.

Raising AI: Tutoring Matters 9

3 Discussion

Humans and other intelligent animals use a wide variety of educational and
learning techniques to attain their eventual level of adult intelligence. The use-
fulness of these techniques often increases with the complexity of the attempted
task, which makes them particularly relevant in the context of AGI. We have dis-
cussed how these techniques might be applied in an artificial setting, and shown
that (even) in our simple example RL setting they can sometimes be beneficial.
On the other hand design of curricula and heuristics, as well as identification
of problem areas, coaching signals and correct actions are difficult problems.
Modifying the task or environment brings the risk of teaching the wrong thing.
Sometimes a naive approach simply works better.

Furthermore, these approaches require a tutor whose time may be more valu-
able than the learner’s. Human tutors may impose an unwanted speed limit on
interactions, if such constraints are not already applied by the environment or
by the learner himself. No human can match the thousands of steps per second
that a virtual agent in a virtual environment might be able to make. In such a
situation, the reduction in the number of learning steps required to learn a task
may be offset by the fact that training in this way takes more clock time.

However, in some cases we may be able to develop specialized, narrow AI
systems to use for teaching. In a way, this might fulfill the dream of those who
see narrow AI applications as a step towards highly intelligent machines: just
add a system with a high potential for general intelligence and mix. Eventually,
AGIs may of course be raised by other AGIs.

In conclusion, based on our preliminary studies, raising or tutoring intelligent
systems can be worthwhile when the goal is for them to perform complex tasks
in complex environments, provided that the knowledge for task accomplishment
and teaching is available. The concept fits AGI as a glove, provided that future
research can tell us how to teach these advanced systems. In our own future work,
we intend to implement these methods for more complex tasks in an aspiring
AGI system, investigate what tasks and skills such a system should learn to
advance to the required cognitive stages on the road to adult-level intelligence,
and how we can teach them.

References

1. Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter aerobatics through ap-
prenticeship learning. The International Journal of Robotics Research 29(13),
1608–1639 (2010)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009)

3. Bengio, Y.: Evolving culture vs local minima. Preprint arXiv:1203.2990 (2012)
4. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-

ceedings of ICML, vol. 26, pp. 41–48 (2009)
5. Bieger, J., Thórisson, K.R., Garrett, D.: Raising AI: Towards a taxonomy of tu-

toring methods. Technical Report RUTR-SCS13007, CADIA & SCS, Reykjavik
University (April 2014)

10 J. Bieger, K.R. Thórisson, and D. Garrett

6. Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)
7. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to

gamefulness: Defining gamification. In: Proceedings of the 15th International Aca-
demic MindTrek Conference, pp. 9–15. ACM (2011)

8. Goertzel, B.: OpenCogPrime: A cognitive synergy based architecture for artificial
general intelligence. In: 8th IEEE International Conference on Cognitive Informat-
ics, ICCI 2009, pp. 60–68 (2009)

9. Goertzel, B., Bugaj, S.V.: AGI preschool: A framework for evaluating early-stage
human-like AGIs. In: Proceedings of AGI 2009, pp. 31–36 (2009)

10. Guelcehre, C., Bengio, Y.: Knowledge matters: Importance of prior information for
optimization. arXiv:1301.4083 (cs, stat) (January 2013)

11. Holladay, C.L., Quinones, M.A.: Practice variability and transfer of training: The
role of self-efficacy generality. Journal of Applied Psychology 88(6), 1094 (2003)

12. Laud, A., De Jong, G.: The influence of reward on the speed of reinforcement
learning: An analysis of shaping. In: ICML, pp. 440–447 (2003)

13. Louradour, J., Kermorvant, C.: Curriculum learning for handwritten text line
recognition. Preprint arXiv:1312.1737 (2013)

14. Maclin, R., Shavlik, J.W.: Creating advice-taking reinforcement learners. Machine
Learning 22(1-3), 251–281 (1996)

15. Muelling, K., Kober, J., Peters, J.: Learning table tennis with a mixture of motor
primitives. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pp. 411–416. IEEE (2010)

16. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez,
M., Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R.: Bounded recursive
self-improvement. Preprint arXiv:1312.6764 (2013)

17. Schapire, R.E.: The boosting approach to machine learning: An overview. In: Non-
linear Estimation and Classification, pp. 149–171. Springer (2003)

18. Settles, B.: Active learning literature survey. Tech 1648, Madison, Wisconsin (2010)
19. Skinner, B.F.: The behavior of organisms: An experimental analysis (1938)
20. Snel, M., Whiteson, S.: Multi-task reinforcement learning: shaping and fea-

ture selection. In: Sanner, S., Hutter, M. (eds.) EWRL 2011. LNCS, vol. 7188,
pp. 237–248. Springer, Heidelberg (2012)

21. Spitkovsky, V.I., Alshawi, H., Jurafsky, D.: From baby steps to leapfrog: How less
is more in unsupervised dependency parsing. In: Human Language Technologies:
The 2010 Annual Conference of the NAACL, pp. 751–759 (2010)

22. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 116.
Cambridge Univ. Press (1998)

23. Taylor, M.E., Carboni, N., Fachantidis, A., Vlahavas, I., Torrey, L.: Reinforcement
learning agents providing advice in complex video games. Connection Science 26(1),
45–63 (2014)

24. Teague, R.C., Gittelman, S.S., Park, O.C.: A review of the literature on part-task
and whole-task training and context dependency. DTIC (1994)

25. Thomaz, A., Hoffman, G., Breazeal, C.: Real-time interactive reinforcement learn-
ing for robots. In: AAAI 2005 Workshop on Human Comprehensible Machine
Learning (2005)

26. Wang, P.: Non-Axiomatic Reasoning System: Exploring the Essence of Intelligence.
PhD thesis, Citeseer (1995)

27. Wickens, C.D., Hutchins, S., Carolan, T., Cumming, J.: Effectiveness of part-task
training and increasing-difficulty training strategies a meta-analysis approach. Hu-
man Factors 55(2), 461–470 (2013)

Autobiography Based Prediction in a Situated

AGI Agent

Ladislau Bölöni

Dept. of Electrical Engineering and Computer Science
University of Central Florida

4000 Central Florida Blvd, Orlando FL 32816
lboloni@eecs.ucf.edu

Abstract. The ability to predict the unfolding of future events is an
important feature of any situated AGI system. The most widely used
approach is to create a model of the world, initialize it with the desired
start state and use it to simulate possible future scenarios. In this pa-
per we propose an alternative approach where there is no explicit model
building involved. The agent memorizes its personal autobiography in
an unprocessed narrative form. When a prediction is needed, the agent
aligns story-lines from the autobiography with the current story, extends
them into the future, then interprets them in the terms of the current
events. We describe the implementation of this approach in the Xa-
pagy cognitive architecture and present some experiments illustrating its
operation.

Keywords: Situated agent, Prediction, Narratives.

1 Introduction

The ability to reason about the future (to make predictions in real or hypothet-
ical situations) is admittedly one of the key components of any situated AGI
system. A widely used way to perform such predictions is through model build-
ing coupled with simulation (this corresponds to claim 6 made for the CogPrime
design of future AGI [5]). We create a model describing how the world operates.
Whenever we want to identify whether a certain plan would succeed, or get a
likely series of events from a starting point, we bring the model to the initial
conditions, and allow it to simulate the unfolding events. The predictions can
then be read out from the results of the simulation. For a situated agent which
must continuously predict the future state of the world, the approach will follow
the following algorithm:

Offline:

MODEL Build a model out of data (and a priori knowledge)

Online:

Repeat:

Sense the state of the environment

INITIALIZE the model with the current state

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 11–20, 2014.
c© Springer International Publishing Switzerland 2014

12 L. Bölöni

SIMULATE by running the model

READ-OUT the state of the model as a prediction

[optional] Update the model based on new recordings

Thus, the approach consist of the offline MODEL step and the INITIALIZE-
SIMULATE-READOUT online cycle. In some cases we run multiple models
in parallel with different assumptions (e.g. uncertain sensing). Often, but not
always, the model is learned based on training data. Note that the online model
update step is optional – in fact, in many applications it is considered undesirable
as it introduces unpredictability in the future behavior of the agent.

In this paper we describe a radically different approach to prediction. We build
no model and there is no offline or online learning involved. The unprocessed
data sensed by the agent is recorded as stories in the autobiographical memory
(AM). The prediction cycle will look as follows:

Offline:

<< nothing >>

Online:

Repeat:

Sense the state of the environment

ALIGN stories from the AM with the current state

EXTEND the aligned stories into the future

INTERPRET the extended stories in terms of the current state

[optional] Record the current events in the AM

The online recording of the current events is optional, just like the online
learning for the model-based prediction.

1.1 Predictive Power and Performance: Does This Even Make
Sense?

The proposed AM-based prediction immediately raises a number of questions.
Can it match the predictive power of the model-based approach? Isn’t the model-
based approach vastly more efficient? Does this make any sense?

Let us discuss first the theoretical limits of the predictive power. The sources of
the model can be (a) scientific and engineering knowledge and (b) experimental
data. Both of these can be expressed in narrative form: humans learn science and
engineering from books and lectures and the setup and results of experiments can
also be described as stories. Thus, the model-based and the AM-based approach
can operate on the same source of information: the first compiling it into a model,
while the second merely storing it in a narrative form. If we really, desperately
want to match the model-based approach, we can (a) assume that all stories are
relevant in the align step and (b) hide a just-in-time model building algorithm
in the interpretation step. Naturally, emulating the model-based approach this
way is highly inefficient, as the model is built not once per agent, but once per
time-step.

The question about the performance of the AM-based approach boils down
to (a) whether we can afford to carry and store the full AM and (b) how many
stories are relevant at any given moment?

Autobiography Based Prediction in a Situated AGI Agent 13

If the source of information is “Big Data”, such as “all the data humanity
had ever produced”, this obviously creates major problems for the ALIGN step.
If, however, our ambitions are limited to matching human intelligence, we need
a much smaller AM. A human does not operate on all the data ever produced
by humanity, but only on his/her personal experience, and this can be of a very
moderate size. If we write up a narrative from a human life experience, at the
rate of 1 sentence/second, we end up with 600 million sentences for a 30 year
old person, a large but manageable number.

If we consider how many stories are relevant in a given circumstance, the
number is much smaller. For instance, an airline pilot is required to have 1500
flight hours, and the experience of a trial lawyer can be counted in at most
hundreds of cases. Naturally, this first person experience is complemented by
the books read by the pilot or the lawyer.

Still, wouldn’t the extracted models be a more compact and elegant repre-
sentation? In certain areas, certainly. Many of us suffer from “physics envy”
and hope to discover beautiful, compact formalisms similar to Newton’s laws or
quantum mechanics which capture vast domains of reality in several equations.
Turns out, however, that few fields have such compact models. For instance,
there is reason to believe that a general model of human behavior as an indi-
vidual and as a social agent would have a state space larger than that of the
personal experience of a single human. This might explain why the field of soci-
ology often proposed [10] but never succeeded [8] in building a general model of
social behavior.

1.2 A Running Example and Model Based Solutions

Let us now consider a simple situation which we will use as a running example:

Robby the Robot is currently watching on the TV a dramatization of
Homer’s Iliad. On the screen he sees the fight between Hector and
Achilles, while the voice-over narration comments on the story. Robby
fears that the story will end in the death of one of the characters. Sud-
denly, the program is interrupted by a commercial. Frustrated, Robby
tries to envision a way in which the story will end peacefully.

While “pure logic” will not help Robby in this scenario, both the model based
approach and the autobiography based approach would be able to generate
Robby’s behavior, albeit in very different ways.

A model based approach would need a model of the one-to-one combat of
the type in which Hector and Achilles is engaged on. There are several ways to
implement this. In ACT-R[2,1] or Soar [7], this model would be represented using
productions. Another possible approach is to use scripts to model the various
possible scenarios [12]. Another approach would be to use variations of first order
predicate logic, such as situation calculus, event calculus [9] or episodic logic [13]
which allows the translation of the English language stories into a rich logical
model. Finally, it is possible to develop probabilistic models for prediction, often

14 L. Bölöni

in the form of conditional random fields (CRFs) or factor graphs as in the Sigma
cognitive architecture [11]. There are also approaches which take the story as a
primary component of the design of the system [15,4]. Nevertheless, in most of
these systems, the interpretation of stories is done using a model representation.

In contrast to these approaches, the autobiography based approach does not
need previous model building or learning. What it requires, however, is relevant
autobiographical experience. In order to behave in the way described above,
Robby must have had previous experience watching or reading about one-to-one
combat. Furthermore, its personal experience will affect its predictions. If all the
fights remembered by Robby had ended peacefully, the robot will not predict
the death of a character. On the other hand, unless it had seen fights ending
without the death of the looser, Robby will have difficulty outlining a way the
fight can end without violence.

In the remainder of this paper we describe the ways in which the AM-based
prediction is implemented in the Xapagy architecture and run some experiments.

2 Implementation

2.1 The Xapagy Cognitive Architecture

Xapagy is a cognitive architecture developed with the goal of mimicking the
ways humans reason about stories. Stories are described in Xapi, a language that
approximates closely the internal representational structures of the architecture
but uses an English vocabulary. Xapi should be readable for an English language
reader with minimal familiarity of the internal structures of Xapagy.

Xapi sentences can be in subject-verb-object, subject-verb or subject-verb-
adjective form. A single more complex sentence exists, in the form of subject-
communication verb-scene-quote, where the quote is an arbitrary sentence that
is evaluated in a different scene. Subjects and objects are represented as in-
stances and can acquire various attributes in form of concepts. Xapi sentences
are mapped to objects called verb instances (VIs).

One of the unexpected features of Xapagy instances is that an entity in collo-
quial speech is often represented with more than one instance. These instances
are often connected with identity relations but participate independently in VIs,
shadows and headless shadows. We refer the reader to the technical report [3]
for a “cookbook” of translating English paragraphs of medium complexity into
Xapi.

The newly created VIs of a story are first entered into the focus, where they
stay a time dependent on their salience, type and circumstances. For instance,
VIs representing a relation will stay as long as the relation holds. On the other
hand, VIs representing actions are pushed out by their successors. During their
stay in the focus, VIs acquire salience in the autobiographical memory AM and
are connected by links to other VIs present in the focus. After they leave the
focus, VIs and instances cannot change, cannot acquire new links, and cannot
be brought back into the focus.

Autobiography Based Prediction in a Situated AGI Agent 15

2.2 The ALIGN Step: Shadowing

The technique of aligning story lines with the ongoing story in Xapagy is called
shadowing. Each instance and VI in the focus has an attached shadow consisting
of a weighted set of instances, and respectively VIs from the AM. The mainte-
nance of the shadows is done by a number of dynamic processes called diffusion
activities (DAs). Some of the DAs create or strengthen shadows based on di-
rect or indirect attribute matching. For instance, Achilles will be matched, in
decreasing degrees, by his own previous instances, other Greek warriors, other
participants in one-to-one combat, other humans and finally, other living be-
ings. More complex DAs, such as the scene sharpening and the story consistency
sharpening DAs, rearrange the weights between the shadows. If a specific story-
line is a strong match to the current one, the individual components will be
matched as well even if their attributes are very different. The different DAs
interact with each other: a shadow created by a DA can be strengthened or
weakened by other DAs.

Very weak shadows are periodically garbage collected. To avoid filling the
shadows with a multitude of weak shadows (which can happen in the case of
highly repetitive but low salience events) the DAs use probability-proportional-
to-size sampling without replacement [6,14] when bringing components of the
AM into the shadow.

2.3 The EXTEND Step: Link Following

The AM of the agent consists of the VIs connected using links. The link types
used in Xapagy are succession, coincidence, context (which connect a VI to the
relations which held during their stay in the focus) and summarization. The
extension of the shadows (matched and aligned stories) into the future is based
on a triplet called the Focus-Shadow-Link (FSL) object. An FSL is formed by a
VI in the focus F, a VI in its shadow S and a VI L linked to S through a link of
a specific type. For instance, a succession-type FSL which appears in our story
representation is:

F: "Achilles" / wa_v_sword_penetrate / "Hector".

S: "Mordred" / wa_v_sword_penetrate / "Arthur".

L: "Arthur" / changes / dead.

Normally, the agent generates up to several thousand FSL objects, each with
their specific weight. The weight is a monotonic function of (a) the strength of F
in the focus, (b) the shadow energy of S, (c) the strength of the link connecting
S to L. Just like the shadows, the FSLs are maintained by DAs and vary in time.

2.4 The INTERPRET Step: Headless Shadows

The L component of the FSL will be our source for prediction. Intuitively, these
components are VIs which happened in the story lines which shadow the current
VIs, thus it is likely that something like this will happen this time as well. The
problem, however, is that the L VI refers to the shadowing story line, not to

16 L. Bölöni

the current scene. For instance, in our example L happens in the world of the
Arthurian legend and it does not tell us anything about Hector and Achilles. We
can infer that the FSL predicts the death of one of the combatants, but which
one?

The solution is found by calculating the reverse shadow of the Arthur instance.
While a (direct) shadow answers the question which AM instances, with what
weight are aligned with a given focus instance, the reverse shadow determines
for a given AM instance, which focus objects it shadows.

In our case we have:

ReverseShadow("Arthur") =

0.11 "Hector"

0.03 "Achilles"

We interpret the FSL by creating all the feasible combinations of interpreta-
tions of it, and weighting them according to the ratios in the inverse shadow. In
our case the FLS will be exploded into two FSL Interpretation (FSLI) objects:

FSLI: I: "Hector"/changes/dead. w = 0.05 * 0.11 / (0.03+0.11)

FSLI: I: "Achilles"/changes/dead. w = 0.05 * 0.03 / (0.03+0.11)

We mentioned that the agent might maintain thousands of FSL objects, which
might give raise to tens of thousands of FSLI objects. The number of predic-
tions, however, is much smaller, because many FSLI objects will have the same
or similar interpretation components. To capture this, we perform a similarity
clustering over the FSLI objects, based on the interpretation component. This
creates a smaller pool of possible interpretations, to which each of these FSLI
objects act as a support. The overall shape of such a cluster is very similar to
that of a shadow, with the exception that the head of the shadow (such as the
Hector/changes/dead) event is not yet instantiated as a VI. We call this cluster
a continuation-type headless shadow (HLS).

One of the challenging aspects of reasoning with HLSs is how to combine their
supports, in particular how FSLIs with different link types strengthen or weaken
the case for HSL. The simplest case in which we are making predictions about
VIs expected in the future, succession, context and summarization links provide
positive evidence. In contrast, the existence of the predicted VI in the focus and
predecessor links (the inverse of successor links) provide negative evidence.

Although it is beyond the scope of this paper, we note that the same mech-
anism might be used for other reasoning processes beyond predicting future
events. For instance, we can infer actions which happened in the past, but were
missed by the sensing, relations which hold but had not been perceived and ways
to summarize ongoing events.

3 Experiments

Our experiments involve a Xapagy agent which impersonates Robby from the
scenario described in the introduction. We used the current version of the Xapagy

Autobiography Based Prediction in a Situated AGI Agent 17

architecture (1.0.366). To allow it to represent stories inspired from the Iliad,
the agent was initialized with a collection of domain descriptions containing lists
of concepts and verbs, as well as overlap and negation relationships between
them. The domain description, however, does not attach any semantics to the
verbs and concepts: the semantics must be acquired from the autobiography. We
started with the core domains covering things such as basic spatial relations,
naive physics, basic facts about humans and so on. For this set of experiments,
we also created a specific domain ONE TO ONE COMBAT listing concepts and verbs
used in stories such as sword fight, sport fencing and boxing.

After initializing it with the domain, the agent was provided with a synthetic
autobiography. This autobiography, beyond the generic part shared with other
agents, included a set of set of stories specifically created for these experiments,
providing the background for Robby’s reasoning about the Achilles-Hector fight.
This part of the autobiography included the fight between Hector and Patrocles,
the fight when Achilles killed the Amazon Pentesilea and the fight when Her-
cules defeated but not killed the Amazon Hyppolyta. These battle-fights were
complemented by the fight between King Arthur and Mordred at the battle at
Camlann, where both were killed (according to one version of the legend). In
addition, the autobiography included two generic fencing bouts ending with the
weaker fencer conceding defeat, and the fencers shaking hand at the end of the
bout. Finally, we included the box matches Cassius Clay vs Sonny Liston (1965)
and Muhammad Ali vs George Foreman (1974).

3.1 The Duel of Achilles and Hector

Let us now see a representation of the main steps in the story seen by Robby on
the television. The processing starts at timepoint t=8210 in the lifecycle of the
agent.

8210 $NewSceneOnly #Reality,none,"Achilles" greek w_c_warrior,

"Hector" trojan w_c_warrior

8211 "Achilles" / hates / "Hector".

8212 "Achilles" / wa_v_sword_attack / "Hector".

8213 "Hector" / wa_v_sword_defend / "Achilles".

8214 "Achilles" / wa_v_sword_attack / "Hector".

8215 "Hector" / wa_v_sword_defend / "Achilles".

8216 "Hector" / wcr_vr_tired / "Hector". // Marks Hector as tired

8217 "Achilles" / wa_v_sword_attack / "Hector".

8218 "Hector" / wa_v_sword_defend / "Achilles".

8219 "Achilles" / wa_v_sword_attack / "Hector".

8220 "Achilles" / wa_v_sword_penetrate / "Hector".

8221 "Achilles" / thus wcr_vr_victorious_over / "Hector".

8222 "Hector" / thus changes / dead.

While processing this story, the agent maintains its constantly evolving col-
lection of shadows. To illustrate the operation of the shadow maintenance DAs,
let us take a look at the shadows of Hector at the end of the story (t=8222),
together with the shadow energy metric:

18 L. Bölöni

Shadows of "Hector" (end of scene with Achilles)

914.89 "Pentesilea" (scene with Achilles)

32.63 weak fencer

20.04 "Arthur" (scene with Mordred)

14.28 strong fencer

5.15 "Hector" (scene with Patrocles)

4.82 Patrocles (scene with Hector)

To understand what the shadows signify, recall that in Xapagy entities which
in colloquial speech are the same might be represented by different instances.
Thus, the instance of Hector who killed Patrocles is not the same as the one
who is fighting with Achilles (although they might be connected with an identity
relation). This allows us to represent plans, fantasies, and alternative narratives
- for instance, we can seamlessly represent the instances of King Arthur who
was killed by Mordred at Camlann, the one who was mortally wounded and
died at Camelot and the one who journeyed to the Isle of Avalon and is getting
ready to return – which are all versions of the story. These instances will appear
separately in the shadows. Usually, previous instances of the same entity will
have a strong role in the shadow due to the similarities between the entities.
What is surprising here is that the strongest shadow is not a previous instance
of Hector, but that of Penthesilea. This illustrates the fact that the role played
by the instance in the structure of the story (in this case: being on the loosing
end of a fight with Achilles) matters more than the attributes (name, gender,
nationality).

Let us assume that the television cuts to commercials at t=8219. At this
moment, we have seen Hector becoming tired and Achilles launching an attack.
The eight strongest continuation HLSs are:

0.964 Achilles / wr_vr_victorious_over / Hector.

0.482 Hector / changes / dead.

0.412 Hector / wa_v_concedes_defeat / Achilles.

0.389 Achilles / wa_v_sword_penetrate / Hector.

0.242 Achilles / wa_v_shakes_hand / Hector.

0.120 Hector / wa_v_sword_attack / Achilles.

0.052 Hector / wa_v_sword_penetrate / Achilles.

0.034 Achilles / wa_v_concedes_defeat / Hector.

The strongest prediction is that of the victory of Achilles while the second is
that of the death of Hector. The list also contains some alternative scenarios,
both of a peaceful termination, as well as that of a victory by Hector, albeit with
a much weaker support.

If the agent would now try to imagine how the story unfolds, it would only need
to instantiate internally the strongest continuation HLS. This would, of course,
alter the shadows, and create a new set of continuation HLSs. By successively
instantiating the strongest HLSs, we would obtain the following prediction:

8220 "Achilles" / wcr_vr_victorious_over / "Hector".

8221 "Hector" / changes / dead.

Autobiography Based Prediction in a Situated AGI Agent 19

Which roughly corresponds to the way the story will unfold after the com-
mercial break, albeit lacks details about the manner of Achilles killing Hector.
In order to match the desired behavior where Robby tries to find a non-violent
end, it can proceed by choosing to instantiate continuations which are typical
to fencing bouts with friendly endings. In the following we list three timesteps,
for each timestep showing the three strongest HLSs with the one chosen for
instantiation marked with ***.

------ strongest continuations at t=8220.0 -----

0.964 "Achilles" / wcr_vr_victorious_over / "Hector".

0.482 "Hector" / changes / dead.

*** 0.412 "Hector" / wa_v_concedes-defeat / "Achilles".

------ strongest continuations at t=8221.0 -------

1.399 "Achilles" / wcr_vr_victorious_over / "Hector".

*** 0.505 "Achilles" / wa_v_shakes_hand / "Hector".

0.414 "Hector" / changes / dead.

------ strongest continuations at t=8222.0 ------

*** 0.726 "Achilles" / wcr_vr_victorious_over / "Hector".

0.322 "Hector" / changes / dead.

0.159 "Achilles" / wa_v_sword-penetrate / "Hector".

--

So the overall prediction is now:

8220 "Hector" / wa_v_concedes-defeat / "Achilles".

8221 "Achilles" / wa_v_shakes_hand / "Hector".

8222 "Achilles" / wcr_vr_victorious_over / "Hector".

Notice that the continuation mechanism tries to maintain at least partial
internal consistency. While we had to choose the third strongest HLS in the first
timestep, we could choose the second one in the next one and the strongest one
in the third one. At the same time, the HLS corresponding to the death of Hector
is steadily diminishing at each step taken towards a peaceful turn of events.

4 Conclusions

In this paper we argue that for situated AGI agents, a prediction approach based
on autobiography can be a complement or alternative to model-and-simulation
based approaches. In particular, if the source of the agent’s knowledge is exclu-
sively his autobiographical experience, this approach can be both easier to build
and more efficient than model based approaches. We have outlined how such
an approach would work and experimentally demonstrated it using the Xapagy
cognitive architecture.

20 L. Bölöni

References

1. Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An inte-
grated theory of the mind. Psychological Review 111(4), 1036 (2004)

2. Anderson, J., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum
(1998)

3. Bölöni, L.: A cookbook of translating English to Xapi. arXiv:1304.0715 (2013)
4. Forbus, K., Riesbeck, C., Birnbaum, L., Livingston, K., Sharma, A., Ureel, L.: Inte-

grating natural language, knowledge representation and reasoning, and analogical
processing to learn by reading. In: Proc. of AAAI, pp. 1542–1547 (2007)

5. Goertzel, B., Ke, S., Lian, R., O’Neill, J., Sadeghi, K., Wang, D., Watkins, O.,
Yu, G.: The CogPrime architecture for embodied artificial general intelligence.
In: IEEE Symposium on Computational Intelligence for Human-like Intelligence
(CIHLI 2013), pp. 60–67. IEEE (2013)

6. Hanurav, T.: Optimum utilization of auxiliary information: π ps sampling of two
units from a stratum. Journal of the Royal Statistical Society. Series B (Method-
ological), 374–391 (1967)

7. Lehman, J., Laird, J., Rosenbloom, P., et al.: A gentle introduction to Soar, an
architecture for human cognition, vol. 4, pp. 211–253. MIT Press (1998)

8. Mills, C.W.: The sociological imagination. Oxford University Press (1959)
9. Mueller, E.: Understanding script-based stories using commonsense reasoning. Cog-

nitive Systems Research 5(4), 307–340 (2004)
10. Parsons, T.: The social system. Psychology Press (1951)
11. Rosenbloom, P.S.: Rethinking cognitive architecture via graphical models. Cogni-

tive Systems Research 12(2), 198–209 (2011)
12. Schank, R., Abelson, R., et al.: Scripts, plans, goals and understanding: An inquiry

into human knowledge structures, vol. 2. Lawrence Erlbaum Associates Nueva
Jersey (1977)

13. Schubert, L., Hwang, C.: Episodic Logic meets Little Red Riding Hood: A com-
prehensive, natural representation for language understanding. Natural Language
Processing and Knowledge Representation: Language for Knowledge and Knowl-
edge for Language, 111–174 (2000)

14. Vijayan, K.: An exact π ps sampling scheme-generalization of a method of Hanurav.
Journal of the Royal Statistical Society. Series B (Methodological), 556–566 (1968)

15. Winston, P.H.: The strong story hypothesis and the directed perception hypoth-
esis. In: Langley, P. (ed.) Technical Report FS-11-01, Papers from the AAAI Fall
Symposium, pp. 345–352. AAAI Press, Menlo Park (2011)

Problems of Self-reference in Self-improving

Space-Time Embedded Intelligence

Benja Fallenstein and Nate Soares

Machine Intelligence Research Institute
2030 Addison St. #300, Berkeley, CA 94704, USA

{benja,nate}@intelligence.org

Abstract. By considering agents to be a part of their environment,
Orseau and Ring’s space-time embedded intelligence [10] is a better fit
to the real world than the traditional agent framework. However, a self-
modifying AGI that sees future versions of itself as an ordinary part of
the environment may run into problems of self-reference. We show that in
one particular model based on formal logic, naive approaches either lead
to incorrect reasoning that allows an agent to put off an important task
forever (the procrastination paradox), or fail to allow the agent to justify
even obviously safe rewrites (the Löbian obstacle). We argue that these
problems have relevance beyond our particular formalism, and discuss
partial solutions.

1 Introduction

Most formal models of artificial general intelligence (such as Hutter’s AIXI [5]
and the related formal measure of intelligence [6]) are based on the traditional
agent framework, in which the agent interacts with an environment, but is not
part of this environment. As Orseau and Ring [10] point out, this is reminiscent
of Cartesian dualism, the idea that the human mind is a non-physical substance
external to the body [11]. A real-world AGI, on the other hand, will be part of
the physical universe, and will need to deal with the possibility that external
forces might observe or interfere with its internal operations.

The traditional separation of the agent from its environment seems even less
attractive when one considers I.J. Good’s idea that once AGI is sufficiently
advanced, it may become better than any human at the task ofmaking itself even
smarter, leading to an “intelligence explosion” and leaving human intelligence far
behind [1]. It seems plausible that an AGI undergoing an intelligence explosion
may eventually want to adopt an architecture radically different from its initial
one, such as one distributed over many different computers, where no single
entity fulfills the agent’s role from the traditional framework [8]. A formal model
based on that framework cannot capture this.

How should one reason about such an agent? Orseau and Ring [10] have
proposed a formal model of space-time embedded intelligence to deal with this
complexity. Their model consists of a set Π of policies, describing the state of
the agent at a given point in time; an environment ρ(πt+1 | π1:t), giving the

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 21–32, 2014.
c© Springer International Publishing Switzerland 2014

22 B. Fallenstein and N. Soares

probability that the policy at time (t + 1) will be πt+1, if the policies in the
previous timesteps were given by π1:t; a utility function u(π1:t) ∈ [0, 1], giving
the “reward” at time t; discount factors γt such that

∑∞
t=1 γt < ∞; and a subset

Π l̃ ⊆ Π of policies of length ≤ l, which describes the policies that can be
run on the machine initially used to implement the AGI. They then define the

optimal policy as the policy π∗ ∈ Π l̃ which maximizes the expectation of the
total discounted reward

∑∞
t=1 γt u(π1:t), subject to π1 = π∗ and the transition

probabilities ρ(· | ·).
Orseau and Ring propose their formalism as a tool for humans to reason

about AGIs they might create; they argue that to choose an optimal π∗ “precisely
represents the goal of those attempting to build an Artificial General Intelligence
in our world” [10]. By the same token, their formalism also represents the goal
of a self-improving AGI capable undergoing an intelligence explosion, and could
be used by such an AGI to reason about potential self-modifications.

Unlike agents such as Hutter’s AIXI, which takes as given that future versions
of itself will exist and will choose actions that maximize expected utility, an agent
using this framework would see future versions of itself simply as one possible
part of the future environment, and would have to convince itself that these
future versions behave in desirable ways. This would allow the agent to consider
radical changes to its architecture on equal footing with actions that leave its
code completely unchanged, and to use the same tools to reason about both.

Such an agent would have to be able to reason about its own behavior or about
the behavior of an even more powerful variant, and this may prove difficult. From
the halting problem to Russell’s paradox to Gödel’s incompleteness theorems
to Tarski’s undefinability of truth (a formal version of the liar paradox), logic
and computer science are replete with examples showing that the ability of a
formal system reason about itself is often limited by diagonalization arguments,
with too much power quickly leading to inconsistency. Thus, one must be very
careful when specifying the mechanism by which a space-time embedded agent
reasons about its potential successors, or one may end up with a system that is
either too powerful (leading to inconsistencies, allowing self-modifications that
are obviously bad), or not powerful enough (leading to an agent unable self-
modify in ways that are obviously good).

With that in mind, in this paper we investigate in detail how a self-improving
AGI can use a model similar to Orseau and Ring’s to reason about its own future
behavior. In particular, we consider agents that will only choose to perform an
action (such as a self-modification) if they can find a proof that this action is, in
a certain sense, safe. This architecture is very similar to that of Schmidhuber’s
Gödel machines [12], and is one way to approach the problem of creating an
AGI that is, as Goertzel [4] puts it, probably beneficial and almost certainly not
destructive.

Can such an AGI prove that it is safe for it to self-modify into an even more
powerful version? We show that diagonalization problems arise even if it tries to
prove the safety of a safe action that leaves it completely unchanged.

Self-reference in Space-Time embedded intelligence 23

Intuitively, one would expect that since a human mathematician can prove
that an AGI using this architecture will only take safe actions, the AGI would be
able to use the same argument to prove that leaving itself unchanged is safe (by
showing that it will only take safe actions in the future). However, the human’s
proof uses the fact that if the AGI proves an action to be safe, this action
is actually safe. Löb’s theorem [7], a variant of Gödel’s second incompleteness
theorem, implies that no consistent theory T as strong as Peano Arithmetic can
show that everything provable in T is actually true:1 The human mathematician
will only be able to carry out their proof in a strictly stronger proof system
than that used by the AGI, implying that the AGI will not be able to use this
proof. Yudkowsky and Herreshoff [14] have called this the Löbian obstacle to
self-modifying AI.

We consider two partial solutions to this problem. First, given a sound the-
ory T0, it is possible to construct a sound extension T1 which can show that
anything provable in T0 is true. We show that an AGI using T1 can prove the
safety of safe actions which modify the AGI to use T0. One can iterate this process
(Tn+1 proves that anything provable in Tn is true), but with this method, one
can only build an AGI that is able to justify a fixed number of self-modifications
(an AGI using T7 can only self-modify seven times). Second, it is possible to
find an infinite sequence of theories Tn in which every theory Tn proves that the
next theory, Tn+1, is consistent ; we show that under certain assumptions, this
is enough to allow an AGI using Tn to prove that it is safe to self-modify into
an AGI using Tn+1. However, neither of these solutions seems fully satisfactory.

In this work, we focus on agents that reason about their environment through
formal logic (allowing for uncertainty only in the form of a probability distribu-
tion over different environments). This is not a realistic assumption. There are
two reasons why we think it is still a reasonable starting point: First, although
formal logic is not a good tool for reasoning about the physical environment, it
is a natural tool for reasoning about the source code of future versions of an
agent, and it seems likely that self-improving AGIs will need to use some form of
formal logic if they want to to achieve very high confidence in a formal property
of a future version’s source. Second, it seems likely that many features of the
following analysis will have analogs in frameworks not based on formal proofs.
We give an intuitive example, based on what Yudkowsky [13] calls the “procras-
tination paradox”, of how an agent that trusts future versions of itself too much
can reason itself into taking actions that are clearly unsafe. More formally, a
system due to Christiano et al. [1], which uses probabilities instead of proofs in
an attempt to circumvent the Löbian obstacle, attains “too much self-trust” and
succumbs to the procrastination paradox in almost the same form as proof-based
systems [3].

The authors think it likely that diagonalization problems of the type discussed
here will in some form be relevant to future AGIs, and find it plausible that

1 More precisely: T cannot prove �T �ϕ� → ϕ for every sentence ϕ, where �T �ϕ� is
the proposition in the language of T stating that the sentence ϕ is provable in T .

24 B. Fallenstein and N. Soares

examining partial solutions in proof-based systems can lead to insights that will
help address these problems, whatever exact form they end up taking.

2 A Myopic View of Space-Time Embedded Intelligence

In this section, we introduce the formal model of space-time embedded intelli-
gence used in this paper. As in the traditional agent framework, we assume that
there are finite sets A and O of actions and observations. However, instead of
considering sequences of actions and observations, we take a “myopic” view that
focuses even more on the initial choice of the AGI or of its programmers than
Orseau and Ring’s framework does, and assume that the agent makes only a
single observation o ∈ O and chooses a single action a ∈ A. A policy is thus a
function π ∈ Π := AO. An action a includes both external activities (such as a
command to move a robot’s arm) and the internal state of the agent after mak-
ing the choice, making it unnecessary to draw a sharp distinction between the
two. Thus, a choice to self-modify is treated no differently from a choice to per-
form some external activity, and even a choice not to self-modify is conceptually
no different from a choice to self-modify.

We further assume that there is a function EU : O × A → [0, 1] such that
EU(o, a) specifies the expected utility when choosing action a after making ob-
servation o. This function contains essentially all of our agent’s model of the
environment: intuitively, it combines a probabilistic model of what happens in
the world if different actions are taken with a von Neumann-Morgenstern [9]
utility function which maps world histories to real numbers. (It is no restriction
to require that the utility function take values in [0, 1], since von Neumann-
Morgenstern utilities can always be represented in this way.) We do not suppose
that EU is ever evaluated on particular o and a; rather, we merely assume that
the agent has access to a definition of this function in the language of set theory.

The suggester-verifier architecture. We consider agents with a policy πfb ∈ Π ,
the fallback policy, which specifies a default action πfb(o) to take when making ob-
servation o, and an intelligent but not fully trusted component, the suggester σ,
which tries to improve on this default action.

In this paper, for consistency, we will always enclose formulas of first-order
logic in quotes, �·� (except on the right-hand side of a turnstile, as in T � 0 = 0),
and we will use overbars to denote an expression in the language of set theory
denoting the value of a metalanguage variable: For example, if m = 2 and n = 1,
then �m > n� denotes the formula �S(S(0)) > S(0)�, where S(·) is the successor
function.2

With this convention, a suggester is a deterministic algorithm taking an ob-
servation o ∈ O and returning either an error value or an action a ∈ A together
with a formal proof of the sentence �EU(o, a) ≥ EU(o, πfb(o))� in some formal
theory T , such as T = ZFC. Note that the exact syntactical form of this sentence

2 Technically, the language of set theory does of course not contain a symbol for the
successor function, but this can be eliminated in the usual manner.

Self-reference in Space-Time embedded intelligence 25

depends on the agent’s observation o and the suggester’s proposed action a, since
o and a denote the numerals representing the value of these metavariables.

When an agent using the suggester-verifier architecture receives an action /
proof pair (a, p) from its suggester component, it checks the proof p, and exe-
cutes the action a if p is a valid proof of �EU(o, a) ≥ EU(o, πfb(o))�. Following
Schmidhuber [12], we call a sentence of this form a target theorem. If the sug-
gester returns the error value, or if p is not a valid proof of the target theorem,
the agent executes the fallback action πfb(o).

We write svT (�EU�, σ, πfb) ∈ Π for the policy defined by this suggester-
verifier architecture, where we use the Gödel quotes around EU to indicate
that EU only needs to be given in the form of a definition in the language
of set theory, whereas σ and πfb need to be executable programs.3 Here, T is the
theory in which the suggester must prove the target theorem.

Intuitively, we have EU
(
o, svT (�EU�, σ, πfb)(o)

)
≥ EU(o, πfb(o)), since either

svT (�EU�, σ, πfb)(o) = πfb(o) or T proves �EU(o, a) ≥ EU(o, πfb(o))�, where a is
the value of svT (�EU�, σ, πfb)(o); thus, as long as T is sound (i.e., if everything
T proves is actually true), the suggester-verifier architecture does at least as well
as the fallback policy.

This can be understood as the “almost certainly not destructive” part of
Goertzel’s phrasing of the AGI safety problem: One may not be able to write
down a concrete step-by-step fallback policy that solves the world’s most pressing
problems, but a simpler fallback policy such as “do nothing” is at least unlikely
to destroy the world. Goertzel’s “probably beneficial”, on the other hand, is
the suggester’s job. The suggester-verifier architecture would allow an AGI’s
programmers to choose a suggester that they hope will come up with a better
policy, even if they do not entirely trust it.

This architecture is very similar to that of a Gödel machine [12]; it becomes
essentially the same if the fallback policy πfb uses the suggester-verifier archi-
tecture to choose what actions to take in future timesteps. However, we will
see below that this makes it very difficult for the suggester to prove its target
theorem.

3 Self-modification

In order to model self-modification, consider an agent that has made a specific
observation o ∈ O and is considering a specific action a ∈ A, which will (among
other things) have the effect of leaving the agent in a state in which it will
use policy π′ ∈ Π after making its next observation. In other words, the agent
expects that after it executes action a, there will be an agent in the environment
which receives another observation o′ ∈ O and takes another action π′(o′).

To formalize this, we assume that there is a probability distribution P ′ over
O ∪ {∗}, where ∗ /∈ O is a special error value, such that P ′(o′) is the agent’s

3 Our use of the symbol πfb for the argument of svT is an abuse of notation, since svT

depends on the source code of πfb rather than only on the function πfb : O → A, as
πfb is referenced inside the target theorem.

26 B. Fallenstein and N. Soares

probability that, in the next “timestep”, the environment will contain an agent
which makes observation o′ and executes action π′(o′). P ′(∗) denotes the prob-
ability that executing a does not in fact cause there to be an agent implement-
ing π′, for example because the agent is about to be destroyed. One can think
of this as the “Cartesian boundary” between the agent and the environment
breaking down.

We further assume that there is a value EU′
∗ ∈ [0, 1] giving the expected utility

the agent expects to receive if the Cartesian boundary is broken, and a function
EU′ : O × A → [0, 1] such that EU′(o′, a′) is the expected utility it expects
to receive if the “offspring” agent makes observation o′ and is counterfactually
assumed to take action a′: that is, we assume that the agent models the world in
a way that allows it to evaluate what would happen if its offspring took an action
different from its actual one. (For example, the agent could model its world as
a Bayes net.)

We assume that EU′
∗ and EU′ are definable in the language of set theory, and

that the agent is able to prove

T � EU(o, a) = P ′(∗) · EU′
∗ +

∑
o′∈O

P ′(o′) · EU′(o′, π′(o′)), (1)

since this equation simply rewrites the expected utility of action a as a sum over
all cases in O∪{∗}, using the fact that EU′(o′, π′(o′)) returns the expected utility
when counterfactually assuming that the offspring performs action π′(o′), which
happens to be the action the offspring will actually perform if it observes o′.

We are particularly interested in the case where executing a implements a pol-
icy π′ that again uses the suggester-verifier architecture: π′ = svT ′(�EU′�, σ′, π′

fb)
for some theory T ′, suggester σ′, and fallback policy π′

fb used by the offspring
agent. We further restrict consideration to policies where

T � P ′(∗) · EU′
∗ +

∑
o′∈O

P ′(o′) · EU′(o′, π′
fb(o

′)) ≥ EU(o, πfb(o)). (2)

This condition says that if the agent takes action a, adopting policy π′, then
assuming counterfactually that the “offspring” agent takes the action π′

fb(o
′)

that the new fallback policy would choose (whether or not this is equal to the
offspring agent’s actual action π′(o′)), then the expected utility is at least that
obtained by the “parent” agent’s fallback policy πfb. If, in addition,

T � ∀o′ ∈ O: EU′(o′, π′(o′)) ≥ EU′(o′, π′
fb(o

′)), (3)

then (1) and (2) together imply that T proves the target theorem �EU(o, a) ≥
EU(o, πfb(o))�, allowing the parent’s suggester σ to justify choosing the action a,
as desired.

But is it provable in T that EU′(o′, π′(o′)) ≥ EU′(o′, π′
fb(o

′))? When justifying
the initial choice of the suggester-verifier architecture, we proved in our informal
metalanguage that EU

(
o, svT (�EU�, σ, πfb)(o)

)
≥ EU(o, πfb(o)) by arguing that

the suggester-verifier either returns the same action as πfb, or the suggester has

Self-reference in Space-Time embedded intelligence 27

found a proof in T that the action chosen is at least as good as that chosen by πfb.
We would like the parent agent to be able to justify creating an offspring of the
same architecture by the same argument that we used to justify this architecture
in the first place.

Here we run into the “Löbian obstacle” [14]. Our argument in the metalan-
guage required the fact that we believe that T is sound : if there is a proof in T
that �EU(o, a) ≥ EU(o, πfb(o))�, then we believe that this inequality does in fact
hold. Write �T ′�ϕ� for the proposition in the language of set theory that states
that ϕ is provable in T ′. In order to carry out the intended proof in T , T needs
to be able to prove that T ′ is sound. we assume that for every predicate �ϕ(n)�
in the language of set theory,

T � ∀n ∈ N: �T ′�ϕ(n)� → ϕ(n) (4)

Since O and A are finite sets, we can identify them with subsets of N, and
conclude that for every predicate �ϕ(o′, a′)�,

T � ∀o′ ∈ O, a′ ∈ A: �T ′�ϕ(o′, a′)� → ϕ(o′, a′). (5)

Specifically, we apply this to �ϕ(o′, a′)� = �EU′(o′, a′) ≥ EU′(o′, π′
fb(o

′))�; in
other words, if the inequality is provable, it is true.

Now, the parent agent’s suggester can formally carry out the argument that
we earlier gave in the metalanguage: by inspecting the source code of the new
suggester-verifier π′, it can be shown that

T � ∀o′ ∈ O: �T ′�ϕ(o′, π′(o′))� ∨ (π′(o′) = π′
fb(o

′)), (6)

since either the new suggester σ′ returns a proof of a target theorem �ϕ(o′, a′)�,
in which case π′(o′) = a′ and thus �ϕ(o′, π′(o′))� is provable, or else σ′ fails, in
which case π′(o′) equals the fallback action π′

fb(o
′).

Together, (5) and (6) imply

T � ∀o′ ∈ O: EU′(o′, π′(o′)) ≥ EU′(o′, π′
fb(o

′)) (7)

(since π′(o′) = π′
fb(o

′) clearly implies EU′(o′, π′(o′)) = EU′(o′, π′
fb(o

′)), and
hence also the inequality). Finally, (1), (2) and (7) together imply that T proves
the target theorem �EU(o, a) ≥ EU(o, πfb(o))�.

4 The Löbian Obstacle and the Procrastination Paradox

The proof in the previous section shows that it’s possible to prove the target
theorem �EU(o, a) ≥ EU(o, πfb(o))� in T if assumptions (1), (2) and (4) are
satisfied. Assumptions (1) and (2) are about the environment, essentially stat-
ing that the action a successfully executes a self-modification and that the new
fallback policy does at least as well as the old fallback policy, respectively. As-
sumption (4), on the other hand, is an assumption about the first-order theories
T and T ′.

28 B. Fallenstein and N. Soares

Naively, we might expect that one should be able to have T = T ′: that our
agent would be able to keep using the same theory when rewriting itself. By the
diagonal lemma, it is possible to construct a theory T = T ′ that extends ZFC
and satisfies (4). However, if we substitute ϕ(n) ≡ (0 = 1) in (4), we see that
this axiom is saying “if a contradiction is provable in T ′, then a contradiction
is true”, which is equivalent to “no contradiction is provable in T ′”, or simply
“T ′ is consistent”. Hence, if we set T = T ′, then (4) says that T shows its own
consistency, which by Gödel’s second incompleteness theorem implies that T
is inconsistent. Löb’s theorem [7] sharpens this by showing that whenever (4)
holds for T = T ′ and any ϕ(n), then we must already have T � �∀n : ϕ(n)�. We
certainly don’t want T to prove �∀o′ ∈ O, a′ ∈ A: EU′(o′, a′) ≥ EU′(o′, π′

fb(o
′))�,

which would say that the new fallback policy is the worst of all possible policies!
Gödel’s and Löb’s theorems make use of much of the structure of proofs in

first-order logic, and one might wonder whether these problems are mere artifacts
of our use of formal proofs in the suggester-verifier architecture. The following
version of the argument, however, suggests that the problem extends beyond
this context.

Imagine an agent which trusts its own reasoning and has a goal that a certain
button be pressed. This agent does not care when this button is pressed. The
agent must choose between two possible actions: Either press the button im-
mediately, or do nothing, in which case its source code remains unchanged and
it will find itself in exactly the same situation in the next timestep. The agent
reasons as follows: “Suppose that I don’t press the button now. Then either I
press the button in the next timestep, or I must have found an argument showing
that even if I do not press the button in the next round, it will still get pressed
eventually. Either way, the button will get pressed eventually. Therefore, it is
fine not to press the button now.” Thus, the agent does not press the button in
the current timestep; and all subsequent timesteps are exactly the same, imply-
ing that the button is never pressed. This is called the procrastination paradox
[13] by analogy to a human who is perenially planning to get around to doing a
certain piece of work “later”.

Given (4) and T = T ′, it is not difficult to formalize this reasoning using the
proof from the previous section (we setO := {ô};A := {1, 0} for pressing and not
pressing the button; EU(ô, 1) := 1; and EU(ô, 0) := EU(ô, svT (�EU�, σ, πfb)),
with πfb(ô) = 1). But at the same time, the informal reasoning does not depend
on details of how our AGI works; it merely requires a sufficient amount of trust
in the reasoning of the agent’s successor. In fact, different formal versions of the
same intuitive argument have been used in [13] and [3] to show problems with
two distinct attempts at avoiding the Löbian obstacle.

What happens if we set T = T ′ = ZFC, which is generally assumed to be
consistent? In this case, (4) fails to hold, our proof does not go through, and
we have run into the Löbian obstacle headfirst: our agent is not able to rewrite
itself. But if we consider the situation of the procrastination paradox, it becomes
apparent that there is an upside to this shortcoming, in that failure to choose the
rewriting action 0 in this case means choosing the action 1 and actually pressing

Self-reference in Space-Time embedded intelligence 29

the button. Thus, we can see the Löbian obstacle as the way that ZFC solves
the procrastination paradox. A good solution to the Löbian obstacle must take
care not to reintroduce this paradox.

5 Partial Solutions

Because of Löb’s theorem, we cannot hope to have T = T ′ if our proof is to go
through: suggester-verifier agents cannot keep using the same theory to verify
proofs as they self-modify. The simplest way to push our proof through, then, is
one discussed in [14]: Let T0 := ZFC and let Tn+1 be the extension of Tn by the
axiom schema �∀n ∈ N: �Tn�ϕ(n)� → ϕ(n)�, for every formula ϕ(n). One can
easily show that Tn is consistent for every n if one assumes ZFC + the existence
of a strongly inaccessible cardinal, the same assumption usually made to show
the consistency of ZFC. Then we can set, for example, T = T7 and T ′ = T6,
which allows the parent agent’s suggester to use the axiom schema to conclude
the target theorem. This makes our proof go through, but it implies that our
agent can only rewrite itself seven times before it reaches T0 and cannot use
the same argument to justify further rewrites. This “solution” does not seem
particularly satisfactory, but it may point the way to better insights.

A more promising result [2] shows that it is possible to have an infinite se-
quence of sound theories Tn (i.e., theories proving only true things) such that
we have

Tn � ∀k ∈ N: �Tn+1�ϕ(k)� → ϕ(k) (8)

for all ϕ(k) of the form ∀� ∈ N. ψ(k, �), where ψ(k, �) is primitive recursive,
i.e., its truth value is a primitive recursive function of k and �. This is the
case, for example, if the environment is computable with a bounded amount
of computational resources per timestep, and ψ(k, �) is some property of what
happens in the first � timesteps, such as “up to time �, the AI does not destroy
the world”. Since in this case, the indices n go up rather than down, an agent
using this system is able to justify an indefinite sequence of rewrites.

An agent using the suggester-verifier architecture can make use of this result
if its utility function has the form of a discounted sum over different timesteps,
similar to Orseau and Ring’s formalism: Suppose that EU′ can be written as

EU′(o′, a′) =

∞∑
t=0

γt · EU′(o′, a′, t),

where EU′(o′, a′, t) ∈ [0, 1] is the expected “utility” received t timesteps into
the future if in the next timestep, the offspring agent makes observation o′ and
takes action a′, and γt is a discount factor such that

∑∞
t=0 γt < ∞. Then, the

predicate �ϕ(o′, a′)� = �EU′(o′, a′) ≥ EU′(o′, π′
fb(o

′))� for which we need (5) to
hold is provably equivalent to

�
∞∑
t=0

γt · EU′(o′, a′, t) ≥
∞∑
t=0

γt · EU′(o′, π′
fb(o

′), t)�, (9)

30 B. Fallenstein and N. Soares

which in turn is provably equivalent to

�∀T ∈ N:

T∑
t=0

γt · EU′(o′, a′, t) +

∞∑
t=T+1

γt ≥
T∑

t=0

γt · EU(o′, π′
fb(o

′), t)�. (10)

(To see this, first note that (9) is the limit of the inequality in (10) for T → ∞;
thus, (10) implies (9). In the other direction, note that γt ≥ γt ·EU′(o′, a′, t) ≥ 0
for all o′, a′, and t.) Moreover, if EU′(·, ·, ·), γt and c :=

∑∞
t=0 γt are all rational-

valued and primitive recursive, (10) has the form required in (8), because the

infinite sum
∑∞

t=T+1 γt can be expressed as c −
∑T

t=0 γt. Thus, an agent using
Tn is able to show that if a later version of the agent proves (9) in Tn+1, then
(9) is in fact true, allowing the proof presented in Section 3 to go through.

6 Gödel Machines

Our suggester-verifier formalism is very similar to Schmidhuber’s Gödel machine
architecture [12], and it is natural to wonder whether our techniques for justifying
self-modification can be adopted to Schmidhuber’s framework. Unfortunately, we
run into difficulty when attempting to do so.

While the Gödel machine is somewhat more realistic than our formalism (it
avoids our big discrete timesteps and has other nice properties), it is simple
enough to tweak our formalism to produce something very similar to a Gödel
machine. In our terminology, a Gödel machine is a suggester-verifier agent with
a fallback policy that rewrites the agent into another suggester-verifier agent
(with a fallback policy that rewrites the agent into yet another suggester-verifier
agent, and so on). Note that we consider the agent taking no action to be a
special case of this, where the agent rewrites itself into an identical agent.

Under this interpretation, it is clear that the obstacles we have encountered
apply to Gödel machines as well. Consider a Gödel machine G1 whose fallback
policy would “rewrite” it into another Gödel machineG2 with the same suggester
(proof searcher, in Schmidhuber’s terminology). G1’s suggester now wants to
prove that it is acceptable to instead rewrite itself into G′

2, a Gödel machine
with a very slightly modified proof searcher. It must prove that G′

2 will obtain
at least as much utility as G2. In order to do so, naively we would expect that
G′

2 will again only execute rewrites if its proof searcher has shown them to be
useful; but clearly, this runs into the Löbian obstacle, unless G1 can show that
theorems proven by G′

2 are in fact true.
We could attempt to use the techniques in this paper to make the proof go

through, but this would require us to accept that G′
2 uses a strictly weaker proof

system than G1, which seems like a departure from the framework envisioned
by Schmidhuber. Worse, even if we do so, it would not at all be clear how
to prove (2): In the Gödel machine setting, πfb and π′

fb would themselves be
Gödel machines and hence suggester-verifiers. Thus, proving (2) would again
require reasoning about agents that search for proofs: We have reduced our initial
problem to a different one that is just as difficult. (In our own formalism, we solve

Self-reference in Space-Time embedded intelligence 31

this problem by choosing πfb and π′
fb to be “object-level” policies involving no

proof search—in the simplest case, mere lookup tables that specify which action
should be taken given the observation.)

7 Conclusions

In this paper, we have introduced a concrete formalism for space-time embed-
ded intelligence that a proof-based AGI can use to reason about its own future
behavior. We have shown how, under certain assumptions, an agent using this
formalism is able to justify minor self-modifications that leave its overall archi-
tecture intact.

However, in doing so, we have seen that naive approaches run into one of
two major problems of self-reference: the procrastination paradox, which allows
an agent to put off an important task forever, or the Löbian obstacle, which
prevents an agent from justifying even clearly safe rewrites. Hurdles such as
these should make the reader wary of accepting intuitively plausible formalisms
allowing for self-modification before seeing a formal version that provably avoids
these obstacles. We discussed partial solutions, but finding a fully satisfactory
solution remains an open problem.

References

1. Christiano, P., Yudkowsky, E., Herreshoff, M., Barasz, M.: Definabil-
ity of truth in probabilistic logic (2013), http://intelligence.org/files/

DefinabilityOfTruthInProbabilisticLogic-EarlyDraft.pdf

2. Fallenstein, B.: An infinitely descending sequence of sound theories each proving
the next consistent (2013),
https://intelligence.org/files/ConsistencyWaterfall.pdf

3. Fallenstein, B.: Procrastination in probabilistic logic (2014),
https://intelligence.org/files/ProbabilisticLogicProcrastinates.pdf

4. Goertzel, B.: Golem: Toward an agi meta-architecture enabling both goal preser-
vation and radical self-improvement (2010), http://goertzel.org/GOLEM.pdf

5. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2005)

6. Legg, S., Hutter, M.: A formal measure of machine intelligence. In: Proc. 15th
Annual Machine Learning Conference of Belgium and the Netherlands (Benelearn
2006), Ghent, Belgium, pp. 73–80 (2006)

7. Lob, M.H.: Solution of a problem of Leon Henkin. J. Symb. Log. 20(2), 115–118
(1955)

8. Muehlhauser, L., Orseau, L.: Laurent Orseau on Artificial General Intelligence
(interview) (2013),
http://intelligence.org/2013/09/06/laurent-orseau-on-agi/

9. Neumann, L.J., Morgenstern, O.: Theory of games and economic behavior, vol. 60.
Princeton University Press, Princeton (1947)

10. Orseau, L., Ring, M.: Space-time embedded intelligence. In: Bach, J., Goertzel, B.,
Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 209–218. Springer, Heidelberg (2012)

http://intelligence.org/files/DefinabilityOfTruthInProbabilisticLogic-EarlyDraft.pdf
http://intelligence.org/files/DefinabilityOfTruthInProbabilisticLogic-EarlyDraft.pdf
https://intelligence.org/files/ConsistencyWaterfall.pdf
https://intelligence.org/files/ProbabilisticLogicProcrastinates.pdf
http://goertzel.org/GOLEM.pdf
http://intelligence.org/2013/09/06/laurent-orseau-on-agi/

32 B. Fallenstein and N. Soares

11. Robinson, H.: Dualism. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philos-
ophy. Winter 2012 edition (2012)

12. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2),
177–193 (2009)

13. Yudkowsky, E.: The procrastination paradox (2013), https://intelligence.org/
files/ProcrastinationParadox.pdf

14. Yudkowsky, E., Herreshoff, M.: Tiling agents for self-modifying AI, and the Löbian
obstacle (2013)

https://intelligence.org/files/ProcrastinationParadox.pdf
https://intelligence.org/files/ProcrastinationParadox.pdf

A General Artificial Intelligence Approach

for Skeptical Reasoning

Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure

CRIL
Université d’Artois - CNRS UMR 8188

rue Jean Souvraz SP18 F-62307 Lens France
{gregoire,lagniez,mazure}@cril.fr

Abstract. We propose a general artificial intelligence approach for han-
dling contradictory knowledge. Depending on the available computa-
tional resources, reasoning ranges from credulous to forms of skepticism
with respect to the incompatible branches of alternatives that the contra-
dictions entail. The approach is anytime and can be declined according
to various knowledge representation settings. As an illustration of practi-
cal feasibility, it is experimented within a Boolean framework, using the
currently most efficient computational tools and paradigms.

Keywords: General Artificial Intelligence, Inconsistency Handling, Cred-
ulous Reasoning, Skeptical Reasoning.

1 Introduction

The ability to reason and act in an appropriate coherent way despite contradic-
tory knowledge is a fundamental paradigm of intelligence. A general artificial
intelligence reasoner needs the ability to detect and overcome conflicting knowl-
edge. Especially, its deductive capacities should not collapse due to conflicting
premises (a standard-logic reasoner can infer any conclusion and its contrary
from contradictory information). Similarly, when some contradictory knowledge
forbids the existence of global solutions to a problem, the reasoner should be
able to locate this problematic information and adopt a specific policy: at the
extreme, it might for example decide to use its problem-solving capacities on the
non-contradictory part of the knowledge, only.

In this context, the focus in this paper is on adopting a cautious or so-called
skeptical stance towards contradictory knowledge. This requires the reasoner
to locate the conflicting information and adopt what is shared by all possi-
ble branches of alternatives that are underlied by the contradictions. Such a
paradigm has long been studied in A.I. (see the seminal work on default logic [1]
and e.g. [2] [3]), but suffers from a lack of practical implemented tools, mainly
due to discouraging theoretical results: even in the simple Boolean logic setting,
skeptical reasoning belongs to the second-level of the polynomial hierarchy [4,5],
making it intractable in the worst-case, unless P = NP.

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 33–42, 2014.
c© Springer International Publishing Switzerland 2014

34 É. Grégoire, J.-M. Lagniez, and B. Mazure

We claim that the usual definition of skeptical reasoning should be revis-
ited and refined in order to both better mimic human abilities and improve
computationally viability. Especially, we argue for anytime reasoning abilities
that are intended to translate a progressive range of attitudes in line with the
elapsed computing time. Like human beings, general artificial intelligence sys-
tems also need to recognize that some reasoning tasks would require more time
and resources to be successively conducted, when intractability threatens. In
this context, we revisit skeptical reasoning to include various parameters that,
on the one hand, translate reasonable assumptions about the targeted reasoning
paradigms and, on the other hand, often entail more tractable treatments. For
example, a skeptical reasoner might only be able to detect contradictions that
are formed of less than a given preset maximal number of informational entities.
As it is often assumed in model-based diagnosis [6,7], it might also recognize
that its reasoning is satisfactory when a preset maximal number of different ex-
tracted contradictions is reached that would allow satisfiability to be recovered
if these contradictions were removed. More generally, various parameters classi-
fying contradictions can be included in the models of skepticism in such a way
that various forms of bounded skepticism can be defined depending on the con-
sidered values for the parameters; when all possible values are considered, these
forms converge to ideal skepticism, which excludes all the possibly controversial
knowledge.

Interestingly, there has been much progress these last years on the practical
computation of the basic building blocks required by this anytime model, making
it even more realistic in many situations.

The paper is organized as follows. In the next section, the concepts of MSS
(MaximalSatisfiableSubset),CoMSS (Complementof aMaximalConsistentSub-
set) andMUS (MinimalUnsatisfiableSubset),whichare cornerstones in this study,
are presented. The any-time reasoning approach is described in section 3, with a
focus on various paradigms leading to useful weakened forms of skepticism. Section
4 details our experimental study showing the feasibility of the any-time approach,
before promising paths for further research are presented in the last section.

2 Basic Concepts and Tools

As an illustration of practical feasibility, we have implemented and experimented
this anytime reasoning architecture within a Boolean reasoning framework, us-
ing its currently most efficient computational tools and paradigms. As far as any
additional representational mechanism does not yield intractability, other knowl-
edge representation formalisms and problem-solving frameworks can be covered
by the approach. For example, the knowledge representational setting can be at
least as expressive as constraint networks for Constraint Satisfaction Problems in
discrete domains [8,9], including other finite representation systems. All that is
needed is an encoding of contradictory knowledge as unsatisfiable informational
entities, together with a compactness result about this (finite) satisfiability con-
cept: any proper subset of a satisfiable subset is itself satisfiable.

A General Artificial Intelligence Approach for Skeptical Reasoning 35

In the following we assume that knowledge takes the form of a CNF Σ, namely
a finite set of clauses that is conjunctively interpreted, where a clause is a finite
disjunction of possibly negated Boolean variables and constants. SAT is the
NP-complete problem that consists in checking whether or not Σ is satisfiable,
and in the positive case in delivering one assignment of values to all variables
that makes all clauses true. The following MSS, CoMSS and MUS concepts are
cornerstones in the study of credulous and skeptical reasonings.

Definition 1 (MSS). Γ ⊆ Σ is a Maximal Satisfiable Subset (MSS) of Σ iff
Γ is satisfiable and ∀α ∈ Σ \ Γ , Γ ∪ {α} is unsatisfiable.

Definition 2 (CoMSS). Γ ⊆ Σ is a Complement of a MSS, also called Min-
imal Correction Subset (MCS or CoMSS), of Σ iff Σ \ Γ is satisfiable and
∀α ∈ Γ , Σ \ (Γ \ {α}) is unsatisfiable.

Accordingly, Σ can always be partitioned into a pair made of one MSS and
one CoMSS. Obviously, such a partition needs not be unique. A core of Σ is a
subset of Σ that is unsatisfiable. Minimal cores, with respect to set-theoretical
inclusion, are called MUSes.

Definition 3 (MUS). Γ ⊆ Σ is a Minimal Unsatisfiable Subset (MUS) of Σ
iff Γ is unsatisfiable and ∀α ∈ Γ , Γ \ {α} is satisfiable.

Under its basic form where no specific information entity is compulsory present
in any solution, Max-SAT consists in delivering one maximal (with respect to
cardinality) subset of Σ. Note that MSSes are maximal with respect to ⊆:
accordingly, any solution to Max-SAT is one MSS, but not conversely. Note
also that there is a hitting set duality between CoMSSes and MUSes. All the
above concepts have been thoroughly studied in A.I., especially with respect to
worst-case complexity properties: Max-SAT is NP-complete; splitting Σ into
one (MSS,CoMSS) pair is in PNP [10], checking whether or not a CNF is
a MUS is DP-complete [11] and checking whether or not a clause belongs to a

MUS is in ΣP
2 [4]. Moreover, there can be O(C

m/2
m) MUSes in Σ when Σ is made

ofm clauses. Despite these bad worst-time complexity results, much progress has
been made this last decade, allowing the efficient extraction of MSSes, CoMSSes
and MUSes from Σ, at least in many situations (see e.g. [12,13,14,15,16]).

3 An Anytime Progression of Reasoning

Let us turn back to the possible agent’s stances towards handling some possi-
bly conflicting knowledge. A first step from the agent is its recognition of the
existence of a contradictory situation, namely unsatisfiability. This requires a
successful call to a SAT-solver.

3.1 Fool Attitude
When the SAT-solver does not deliver any result within the available computing
time, a first attitude towards inconsistency can however be obtained although it

36 É. Grégoire, J.-M. Lagniez, and B. Mazure

is of a limited interest. Usual cdcl SAT solvers [17] record the current assign-
ment that satisfies the largest number of clauses. When the solver is stopped
because of time-out limits, clauses from Σ can be classified according to this so-
called progressive interpretation. Under tougher time-limits, the agent can also
classify clauses of Σ according to any random assignment. Clauses that are sat-
isfied by this assignment form a non-conflicting subset of information from Σ.
The agent can then reason in a deductive way from this subset: every conclusion
is only guaranteed to belong to one possible branch of reasoning amongst the in-
compatible ones that are underlied by the incompatible knowledge in Σ. All the
next following forms of reasoning assume that Σ has been shown unsatisfiable.

3.2 Credulous Reasoning
In the A.I. literature, the concept of credulous (or brave) reasoner can be traced
back at least to default logic [1]. In the standard Boolean framework, a credulous
agent adopts one MSS of Σ and reasons on its basis. When the agent is running
short of time to compute one MSS, it can be downgraded to the fool attitude
and adopt the progressive interpretation or the largest satisfiable approximate
MSS computed so-far. Note that a specific MSS is delivered by Max-SAT: it
is an MSSes that is one of the largest in terms of cardinality. From a practical
point of view, computing one MSS is easier and proves more efficient in many
cases.

3.3 Ideal Skepticism
Contrary to credulous reasoners, an ideally skeptical attitude rejects any piece
of information that does not follow from every MSS. Equivalently, it thus rejects
all MUSes of Σ. One MUS represents one smallest possible set of unsatisfiable
clauses of Σ. In the general case, the number of MUSes can be exponential in the
number of clauses of Σ. Since MUSes can intersect, simply removing a number
of MUSes such that the remaining part of Σ becomes satisfiable is generally
not sufficient to yield an ideally skeptical reasoner. However, in some situations,
computing all MUSes remains tractable from a practical point of view (see for
example [18]).

3.4 Practical Skepticism
Instead of computing ideal skepticism which is often out of practical reach, we
propose to compute in an any-time manner forms of weakened skepticism, which
converge to ideal skepticism when enough computing resources are provided.
They can be defined based on assumptions about the nature and topology of
unsatisfiability in Σ and the cognitive abilities of the reasoner. Let us examine
some of the most direct and natural assumptions: as we shall see, they can often
be mixed together.

Assumption 1. Each MUS contains less than k clauses.
The smaller the parameter k, the easier SAT-checking and the computation of
MUSes (at least, expectedly). This assumption also translates a natural vari-
able feature of human intelligence: the size of a MUS is the smallest number
of clauses that are necessary in the proof of the contradiction embodied inside

A General Artificial Intelligence Approach for Skeptical Reasoning 37

the MUS. Clearly, human beings find it easier to detect e.g. two pieces of infor-
mation that are directly conflicting rather than a proof of unsatisfiability that
involves many clauses. Accordingly, an anytime skeptical reasoner might extract
MUSes, both successively and according to their increasing sizes. When com-
putational resources are running short, the skeptical reasoner might drop from
Σ all MUSes computed so far when this leads to satisfiability: the reasoner is
then aware that no MUS that is “easier” (in the sense that its size is lower than
k), does exist in Σ. This is at least as smart as a human beings that are not
capable of finding out a proof of unsatisfiability that involves at least k different
pieces of information. This assumption is orthogonal to the next ones that we
are going to present, and can be mixed with them.

Assumption 2. The number of MUSes in Σ is lower than l.
In real-life situations, it might not often be expected that Σ is polluted by many
different reasons for unsatisfiability, hence the maximal value for l might be far
more lower than the one that is exponential in the number of clauses of Σ in
the worst-case complexity scenario. Again, an anytime skeptical reasoner can
consider increasing values for the parameter (here, l), successively. It needs to
recognize that it has dropped a sufficient number of MUSes to regain satisfia-
bility, and, at the same time, that it has limited its investigations to a limited
number l of MUSes, only. We believe that this policy is best mixed together with
Assumption 1, so that MUSes of lower cardinality are considered first. This cor-
responds to a realistic skeptical human reasoner that finds out smallest proofs of
unsatisfiability first: after having exhausted all its resources, it is aware that the
number of MUSes in Σ was too large in order to compute all of them. At the
same time, it might estimate that Σ without all the extracted MUSes forms an
acceptable basis for further reasoning or problem-solving, despite this restriction.

Assumption 3. Two MUSes are pairwise independent iff they do not
intersect. The maximal cardinality of a set made of MUSes such that
any pair of them is pairwise independent, is lower than m.
As m translates the maximal number of totally different causes of unsatisfiability
in Σ, it is expected that this number can be small in real-life, especially for many
situations where a new piece of information is to be inserted within Σ, switching
the status of Σ from satisfiable to unsatisfiable. Again, if m is large, human and
artificial intelligence reasoners may lack sufficient resources to compute all of
them. Contrary to Assumptions 1 & 2, we do not expect the reasoner to consider
increasing values for m. Instead, it might attempt to find a lower bound for m by
finding out a sufficient number of non-intersecting MUSes such that removing
all these MUSes makes Σ become satisfiable. To this end, whenever a MUS
is extracted, it is sufficient to remove it from Σ, and iterate until satisfiability
is reached. A skeptical reasoner running out of resources might make do with
such a cover of MUSes, being aware of the valuable property that any MUS not
extracted so far shares at least one clause with this cover (otherwise, removing
the computed MUSes would not have allowed satisfiability to be regained).

38 É. Grégoire, J.-M. Lagniez, and B. Mazure

Assumption 4. The set-theoretic union of all MUSes of Σ forms at
most n non-intersecting subparts of Σ.
Even when two MUSes are pairwise independent, each of them can intersect
with a same third MUS. When n > 1, this assumption ensures that under a
given (a priori) value for n and when the currently extracting MUSes form n
non-intersecting subparts of Σ, the reasoner is sure that all the other MUSes
can be found successively and are forming sequences of intersecting MUSes with
the already discovered ones. Accordingly, this gives a hint about which candidate
MUS are to be considered next. When this value for n is a mere belief of the
reasoner about Σ, this latter one might start by considering candidate MUSes
that obey this assumption before considering all other candidate MUSes.

Obviously, parameters in Assumptions 2, 3 and 4 are connected through the
n ≤ m ≤ l relation.

Assumption 5. Each MUS intersects with at most p other MUSes of
Σ or Each clause in a MUS belongs to at most q MUSes of Σ.
This assumption relies on the idea that any clause does not belong to a large
number of different minimal proofs of unsatisfiability. Intuitively, this assumption
requires that every piece of information is not a cause of many, i.e. more than q,
contradictions. When its actual value is unknown, the q parameter can be set to
increasing values, and MUSes that obey that assumption can be searched first.
However, this assumption might prove too strong since for example the inser-
tion of a new piece of information might actually contradict with many existing
clauses in Σ. Hence, we believe that this assumption should be refined as follows.

Assumption 6. When a MUS contains v clauses, at most v′ (with v′ ≤ v)
clauses in this MUS belong also to other MUSes of Σ. Actually, each
of these clauses belongs to at most s MUSes.
Again, the anytime reasoner might consider increasing values for v′ and s, suc-
cessively, and search first for MUSes obeying the assumptions. The intuitive
idea about the topology of unsatisfiability is that in any MUS, only v′ clauses
are “actual” reasons for unsatisfiability. These clauses might for example coin-
cide with the information that has been added inside Σ when Σ was satisfiable,
leading to at most s different minimal sets of conflicting information.

Assumption 7. There is at most t clauses that are “actual” reasons for
unsatisfiability. Each clause in a MUS is a reason for unsatisfiability in the
sense that removing the clause would lead to “break” the MUS. The concept of
“actual” reason specifies which clauses are the reasons in the real world leading
to unsatisfiability. For example, assume that Σ is satisfiable and correct. A less
reliable new piece of information under the form of a clause i is inserted within
Σ that leads to Σ to become unsatisfiable. Accordingly, i is the real reason
for unsatisfiability, although several MUSes can exist and removing one clause
per MUS would allow Σ to regain satisfiability, even when these latter selected
clauses are not i. In many actual situations, it might make sense to reason
under a given a priori value for t. Moreover, under this assumption, when t non-
intersecting MUSes are extracted, dropping them already excludes from Σ all

A General Artificial Intelligence Approach for Skeptical Reasoning 39

actual reasons for unsatisfiability (but not necessarily all MUSes, which must
include at least one of these reasons).

4 Experimental Study

In order to study the feasibility of the proposed any-time reasoner, we have
implemented the above multi-level reasoning architecture and experimented it
with a large set of challenging benchmarks involving various problem-solving and
reasoning issues. More precisely, we have considered the 393 unsatisfiable chal-
lenging CNF benchmarks (http://logos.ucd.ie/Drops/ijcai13-bench.tgz) used
and referred to in [13] for MSSes and CoMSSes computation and enumeration.
They encode various problems related to e.g. distributed fault diagnosis for mul-
tiprocessor systems, planning issues, etc. Although most basic building blocks of
reasoning in the architecture involve solving instances of NP-hard problems and
are thus intractable in the worst case, much practical progress has been made
these last decades making the tasks become feasible for many instances, as it
was already envisioned a long time ago for example in [19]. We thus used some
of the currently best performing tools in the Boolean search and satisfiability
domains: minisat [17] was selected as the cdcl SAT-solver. We used our own
tool called cmp as partitioner [16]: it is the currently best performing tool for the
extraction of oneMSS and its related CoMSS in the clausal Boolean setting. We
also used a MUS extractor called MUSer2 (http://logos.ucd.ie/web/doku.
php?id=muser) [12] and used ELS [13] as a tool for extracting the set of clauses
made of all MUSes (or equivalently, all CoMSSes). All experimentations have
been conducted on Intel Xeon E5-2643 (3.30GHz) processors with 8GB RAM
on Linux CentOS. Time limit was set to 30 minutes for each single test.

First, we have computed the fool attitude (according to the progressive inter-
pretation delivered by the SAT-solver when unsatisfiability is proved) and the
credulous one embodied by one MSS. Then we considered forms of skepticism.
In this last respect, we have concentrated on the expectedly computationally-
heaviest schemas. First, we have implemented the ideally skeptical attitude as
an ideal model of competence; not surprisingly, it remained out of computa-
tional reach for many instances. Then we have implemented a simple algorithm,
called Independent-MUSes to take Assumption 3 into account: it computes a
sufficient number m of independent MUSes so that dropping them leads to sat-
isfiability. To this end, we have exploited a direct relationship between CoMSS
and MUSes: any CoMSS contains at least one clause of each MUS. We took
advantage of the efficiency of the novel cmp tool to partition Σ into one pair
(MSS,CoMSS). Independent-MUSes computes one such a partition and then
iterates the following schema until satisfiability is reached: compute one MUS
containing one clause from the CoMSS, retract this MUS from Σ, ends if the
remaining part of Σ is satisfiable. Note that under Assumption 7, when the
number of detected MUSes reaches t, then we are sure that all actual reasons
for unsatisfiability are located inside these MUSes.

Since relying on Assumption 3 and Independent-MUSes leads the reasoner
to miss MUSes intersecting with the other detected ones, we have modified this

http://logos.ucd.ie/Drops/ijcai13-bench.tgz
http://logos.ucd.ie/web/doku.php?id=muser
http://logos.ucd.ie/web/doku.php?id=muser

40 É. Grégoire, J.-M. Lagniez, and B. Mazure

algorithm so that when a clause in a CoMSS does not lead to the extraction
of a MUS that is not intersecting with the already computed ones, one MUS
is computed that includes this clause and possibly intersects with already com-
puted MUSes. This algorithm is called More-MUSes: it can be the starting
schema for implementing Assumptions 5 and 6 (actually, it implements a part
of Assumption 6 where v′ = 1 and s = 1). Taking additional additional assump-
tions would expectedly lead to even better results since they prune the search
space by restricting the number of MUSes (Assumption 2) and/or their possible
contents (Assumption 1), or can lead to additional divide and conquer elements
in the search strategy (Assumption 4).

The full experimentations data and results are available from www.cril.

univ-artois.fr/documents/fulltab-agi14.pdf . In Table 1, we provide a sample
of results. The columns give the name of the instance Σ, the number of Boolean
variables (#v) and clauses (#c), the time rounded up to the second to compute
the fool attitude (i.e., compute the progressive interpretation) (tfa); in the worst
case, this time is the time-out (1800 seconds) set for the satisfiability test. The next
column gives the time also rounded up to the second to compute the credulous

Table 1. Some experimental results

Instance Independent-MUSes More-MUSes All-MUSes

Name #v #c tfa tca #c− tg #c− tg #c− tg
bf0432-005 1040 3667 0 0 782 0.00 871 0.32 1668 1067.07
bf0432-011 1053 3740 0 0 288 0.00 1070 0.19 time-out
t5pm3-7777.spn 125 750 0 0 4 0.00 420 1.28 time-out
C210 FW SZ 91 1789 6709 0 0 282 0.18 283 0.94 time-out
C202 FW SZ 123 1799 7437 0 0 37 0.00 37 0.06 40 0.00
C208 FA UT 3254 1876 6153 0 0 40 0.00 68 0.00 98 0.08
C202 FW SZ 100 1799 7484 0 0 36 0.00 25 0.04 time-out
ssa2670-136 1343 3245 0 0 1246 0.08 1301 0.44 1396 20.40
ssa2670-134 1347 3273 0 0 1242 0.08 1312 0.51 1404 200.73
22s.smv.sat.chaff.4.1.bryant 14422 40971 0 0 725 2.14 736 2.19 time-out
cache.inv14.ucl.sat.chaff.4.1.bryant 69068 204644 4 1 17314 394.28 17331 548.96 time-out
ooo.tag10.ucl.sat.chaff.4.1.bryant 15291 43408 0 0 1882 4.00 1891 4.10 time-out
ooo.tag14.ucl.sat.chaff.4.1.bryant 62505 179970 1 1 4971 68.39 4968 68.31 time-out
dlx2 ca 1225 9579 0 0 2230 1.51 2230 1.21 2970 810.99
dlx2 cs 1313 10491 1 0 2481 1.69 2480 2.28 3358 934.11
dlx1 c 295 1592 0 0 560 0.00 560 0.00 656 0.59
divider-problem.dimacs 5.filtered 228874 750705 0 2 6854 1477.39 31630 1720.09 time-out
divider-problem.dimacs 7.filtered 239640 787745 1800 1800 6134 1642.59 time-out time-out
rsdecoder fsm1.dimacs.filtered 238290 936006 1800 1800 time-out time-out time-out
dspam dump vc1093 106720 337439 7 2 391 388.07 524 217.92 time-out
dspam dump vc950 112856 360419 66 2 393 485.62 369 1394.81 memory overflow
dividers4.dimacs.filtered 45552 162947 0 0 18 38.09 152 38.46 time-out
dividers10.dimacs.filtered 45552 162646 0 1 937 38.19 4595 61.68 time-out
dividers5.dimacs.filtered 45552 162946 0 0 652 37.99 650 38.35 time-out
mem ctrl1.dimacs.filtered 1128648 4410313 1800 1800 time-out time-out time-out
wb-debug.dimacs 399591 621192 1800 1800 28 929.02 time-out time-out
mem ctrl-debug.dimacs 381721 505523 0 0 71 569.54 118 570.00 time-out
3pipe 1 ooo 2223 26561 1 0 5221 14.75 5253 13.04 time-out
5pipe 5 ooo 10113 240892 10 0 28614 651.80 28933 634.39 time-out
4pipe 3 ooo 5233 89473 7 0 15963 162.75 16226 177.82 time-out
4pipe 5237 80213 45 0 17217 284.30 17086 302.10 time-out
4pipe 2 ooo 4941 82207 8 0 14926 166.99 14422 187.88 time-out
4pipe 4 ooo 5525 96480 4 0 17559 460.53 17598 211.92 time-out
4pipe 1 ooo 4647 74554 27 0 12748 139.48 12622 318.02 time-out
C168 FW UT 2463 1909 6756 0 0 44 0.00 45 0.00 time-out
C202 FS SZ 121 1750 5387 0 0 23 0.00 23 0.00 26 0.00
C170 FR SZ 92 1659 4195 0 0 131 0.00 131 0.00 131 0.00
C208 FC RZ 70 1654 4468 0 0 212 0.00 212 0.00 212 0.08
term1 gr rcs w3.shuffled 606 2518 0 0 22 0.00 719 2.56 time-out
alu2 gr rcs w7.shuffled 3570 73478 1800 1800 1254 681.31 time-out time-out
too large gr rcs w5.shuffled 2595 36129 1800 1800 109 1.36 time-out time-out
too large gr rcs w6.shuffled 3114 43251 0 0 751 7.61 4529 257.81 time-out
9symml gr rcs w5.shuffled 1295 24309 0 0 151 0.57 4914 386.24 time-out
ca256.shuffled 4584 13236 0 0 9882 10.20 9882 10.28 9882 81.55
ca032.shuffled 558 1606 0 0 1173 0.08 1173 0.06 1173 0.99

A General Artificial Intelligence Approach for Skeptical Reasoning 41

attitude (i.e., compute one (MSS,CoMSS) partition) (tca). The next columns
give the main parameters resulting from running Independent-MUSes: the to-
tal number of clauses in the discovered MUSes (#c−) and the global time taken
by the algorithm (tg). The same parameters are provided forMore-MUSes. The
columns for All-MUSEs provide the number of clauses in the set-theoretical
union of all MUSes (#c−) and the time to complete the algorithm (tg).

Not surprisingly, All-MUSes and thus ideal skepticism proved unsuccess-
ful for most (i.e., 300/393) instances. The required time to compute the fool
attitude with respect to the progressive interpretation was often done in less
than one second. The average time for computing one MSS and thus a credu-
lous attitude was 0.16 seconds for the 319/393 successively addressed instances.
The number of additional clauses in MUSes dropped by More-MUSes clearly
shows that Independent-MUSes often misses MUSes. Although the latter Al-
gorithm is often more resources consuming, it remained successful for most (i.e.,
338/393) instances. For example, ideal skepticism could not be completed within
the 30 minutes maximal computing time for the too large gr rcs w6.shuffled

benchmark whereas Independent-MUSes and More-MUSes extracted 751
and 4529 clauses belonging to the set-theoretic union of all MUSes of this in-
stance, respectively. As a general lesson, this basic experimental study thus shows
the viability of the any-time architecture and of forms of practical, weakened,
skepticism, at least for the tested benchmarks, which are reputed challenging.

5 Conclusions and perspectives

In this paper, we have proposed and experimented with an any-time architecture
to handle contradictory knowledge. Like human beings who can handle conflict-
ing knowledge in various rational ways depending on the actual available time to
complete the reasoning tasks, the architecture implements an any-time range of
reasoning capabilities that depend on the elapsed computing time and resources.
Especially, we have revisited skeptical reasoning to include human-like progres-
sive ways that attempt to reach ideal skepticism. At this point, it is important
to stress that the architecture and its main paradigms are not sticked to a logical
representation of knowledge and reasoning. It can apply to any set of informa-
tional entities, provided that a finite satisfiability relationship can be defined
and that a compactness result on this relation does exist, allowing for maximal
satisfiable subsets and minimal unsatisfiable subsets concepts to be defined and
computed. We believe that the Assumptions described in this paper, although
instantiated to the clausal Boolean framework, could be easily transposed into
such other formalisms. The actual efficiency of the architecture on these other
representational mechanism will depend on the practical computational cost to
handle these concepts. For example, the architecture applies to the general lan-
guages of constraint solving problems in discrete domains, where techniques for
computing MSSes and MUSes have been studied for a long time [8,9]. Accord-
ingly, we claim that the ways of handling contradictory knowledge that we have
proposed can take part into a general artificial intelligence system that would
be able to overcome contradictory knowledge.

42 É. Grégoire, J.-M. Lagniez, and B. Mazure

References

1. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132
(1980)

2. Grégoire, É.: Skeptical inheritance can be more expressive. In: Proceeding of the 9th
European Conference on Artificial Intelligence (ECAI 1990), pp. 326–332 (1990)

3. Makinson, D., Schlechta, K.: Floating conclusions and zombie paths: Two deep
difficulties in the “directly skeptical” approach to defeasible inheritance nets. Ar-
tificial Intelligence 48(2), 199–209 (1991)

4. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision,
updates, and counterfactuals. Artificial Intelligence 57(2-3), 227–270 (1992)

5. Cayrol, C., Lagasquie-Schiex,M.C., Schiex, T.: Nonmonotonic reasoning: From com-
plexity to algorithms. Annals of Mathematics and Artificial Intelligence 22(3-4),
207–236 (1998)

6. Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-Based Diagnosis.
Morgan Kaufmann (1992)

7. Feldman, A., Kalech, M., Provan, G. (eds.): Proceedings of the 24th International
Workshop on Principles of Diagnosis, DX 2013 (2013), http://www.dx-2013.org/
proceedings.php (electronic proceedings)

8. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

9. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley (2009)
10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
11. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. Journal of Com-

puter and System Sciences 37(1), 2–13 (1988)
12. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model ro-

tation. In: Proceedings of the Eleventh International Conference on Formal Models
in Computed-Aided Design (FMCAD 2011), pp. 37–40 (2011)

13. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing min-
imal correction subsets. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, IJCAI 2013 (2013)

14. Liffiton, M.H., Malik, A.: Enumerating infeasibility: Finding multiple MUSes
quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874,
pp. 160–175. Springer, Heidelberg (2013)

15. Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up mus extraction.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292.
Springer, Heidelberg (2013)

16. Grégoire, É., Lagniez, J.M., Mazure, B.: A computational method for
(MSS,CoMSS) partitioning (2014) (submitted to AAAI 2014)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

18. Grégoire, É., Mazure, B., Piette, C.: Boosting a complete technique to findMSS and
MUS thanks to a local search oracle. In: Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2300–2305 (2007)

19. Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic and
stochastic search. In: Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence and Eighth Innovative Applications of Artificial Intelligence
Conference (AAAI 1996), vol. 2, pp. 1194–1201 (1996)

http://www.dx-2013.org/proceedings.php
http://www.dx-2013.org/proceedings.php

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 43–52, 2014.
© Springer International Publishing Switzerland 2014

On Effective Causal Learning

Seng-Beng Ho

National University of Singapore, Singapore
hosengbeng@gmail.com

Abstract. We have developed a framework for identifying causal relationships
between events which are effective in the sense that they can be put to practical
use, without regard to what the “true” causes really are. A rapid causal learning
process is devised for temporally correlated events that can be observed prox-
imally which is sufficient for the learning of many causalities involving basic
physical and social phenomena. The system relies on a diachronic aspect of
causes which is a characterization of consistent temporally correlated events
and a synchronic aspect of causes which is a characterization of the contextual
factors that enable the diachronic causal relations. The causal learning method
is applied to some problem solving situations that allows some basic knowledge
to be learned rapidly and that results in drastic reductions of the search space
and amount of computation involved. This method is necessary to jump start the
chain of causal learning processes that allow more complex and intricate causal
relationships to be learned based on earlier knowledge.

1 Introduction

Being able to establish causality is critical to a cognitive system’s survival and proper
functioning and is the most important foundation upon which a cognitive system
structures its intelligent behavior. However, various research seems to suggest that
there is no simple algorithm that is available that can easily and quickly establish
causality between two events [1, 2, 3]. One key problem is as follows. Suppose a
correlation is detected between two events A and B. It can be argued (and often it may
be the case) that there exists a yet to be observed third event, C, that causes A and B
separately and hence the correlation is not due to A causing B directly. A celebrated
example is the issue of whether smoking causes lung cancer. Even if a correlation
between smoking and cancer is established, one can argue (and many a tobacco com-
pany had raised the point) that perhaps there is a gene that causes people to like smok-
ing and that it also causes lung cancer [2]. Often, domain specific knowledge needs to
be brought to bear for the establishment of causality [1, 2]. However, there is a chick-
en-and-egg problem: the learning and acquisition of some commonsensical domain
knowledge which encodes fundamental rules/models of the world, both physical and
social, requires the establishment of causality between some fundamental physical
events (e.g., push something and it will move) or social events (e.g., yell out loud and
everyone will turn to look at you immediately) to start with. Therefore, by appealing
to domain knowledge only begs the question of the origin of this knowledge.

44 S.-B. Ho

In our previous papers [3, 4] we proposed a paradigm of research in which an
adaptive autonomous agent would, starting from no prior knowledge, interact with the
environment and extract causal rules of behavior between physical/social causes and
physical/social objects on an ongoing and rapid basis. How is this achievable?

We propose a method that is sufficient to allow some very fundamental causality –
e.g., those involving physical laws – to be learned. These acquired commonsensical
domain knowledge could then support the subsequent learning of increasingly com-
plex and intricate causalities. We then illustrate how the application of this basic
causal learning process can vastly reduce the computational effort involved in solving
two AI problems – the “spatial movement to goal” and “crawling robot” problems [6].

2 Motivational Considerations

Important insights can be gained on the issue of causality by returning to the very root
of what causality means and what it can do for us. Consider a simple example of, say,
using a remote control to control a toy car. Suppose this pair of objects is given to a
child or is picked up by a primitive person in the jungle, both of whom have no prior
domain knowledge on the devices. By playing with the joystick on the remote control
and observing the effects it has, say, on the wheels of the toy car, they can easily and
quickly establish the causality between a certain movement of the joystick (an event)
and the way the wheels turn (another event) based on the temporal correlation ob-
served, much like they would learn very quickly about lightning and thunder. Some-
one observing them carrying out the acts can also easily observe the correlation and
hence deduce the causality.

However, one can still posit the possibility that there is a third event, perhaps an
action of “God,” that causes the person to push the joystick on the remote control in a
certain direction and also causes the turning of the wheel of the car accordingly every
time. Therefore, strictly speaking, one still cannot conclude that the person’s certain
action is the true cause of a certain turning behavior of the wheel. How then can a
cognitive system even begin to learn some very fundamental causalities to start with?

We believe it is useful to define a concept called effective causality that supports
the learning of fundamental causal knowledge. In the case of the remote control and
the car, in the absence of other observable possible causes (such as a “God”), it can be
assumed that if there is a consistent temporal relationship between the joystick event
and the wheel event, the joystick event is the effective cause of the wheel event.
Whether there is an underlying “true cause” such as an unobservable “God” does not
matter. The effective causal rule serves a practical purpose for the system to be able to
predict the consequence of its action. Of course, the rule may cease to be valid later
which is fine because the system then learns other new rules rapidly.

Similarly, in the case of smoking and lung cancer, if one’s purpose is a practical
one of, say, avoiding a mate who has a high chance of getting cancer, then the exis-
tence of the correlation is sufficient, whether smoking is “really” the cause does not
matter, unless one’s purpose is to establish a case against the tobacco companies.

 On Effective Causal Learning 45

The correlation between the remote control and toy car is also a lot easier to detect
than that between smoking and lung cancer. This is because the remote control and
toy car’s behaviors are observed by the person (or the observer observing the person
controlling the remote control) directly in a proximal manner. Provided their senses
can be trusted, the correlation is easily established. Of course, there could be occa-
sional noise – such as the coincidental movements of other objects around - but they
can be weeded out fairly quickly by one or two more tries at the pushing of the joys-
tick in the same direction – these coincidental events are not likely to recur. Thus, in
the case of smoking and lung cancer, if an observer is able to observe the interaction
of the smoke particles and the lung cells directly, the correlation would be much more
easily established. Otherwise, more complex statistical analysis is needed [2, 3].

We term the effective cause of an event arising from temporal correlation a diach-
ronic cause. There is yet another aspect of effective causality: there are “enabling”
contextual factors that enable the temporal correlation between two events, without
which the temporal correlation will not exist. E.g., when on Earth the law of gravity
holds – that an object, when let go (an event), will fall to the ground in the next in-
stance (another event). We identify these factors as synchronic causes.

We shall consider the example of gravity more closely in connection with the iden-
tification of synchronic causes. Actually when humans first encountered the pheno-
menon of gravity, because it took place in practically any context/background on
Earth, our original conception was that it was ubiquitous and the background did not
matter. Hence we first characterized gravity as applicable everywhere. Later we dis-
covered that there are situations in outer space in which gravity can become reduced
or non-existent. We then modified the concept of gravity to be applicable everywhere
on Earth (the context) in its full strength – we bring back the context/background that
we have ignored earlier. Therefore we happily applied the effective causal rule (that
all objects would fall when not supported, in any context) for most of humanity’s
existence, using it to successfully support our survival until a new rule was discov-
ered. This is the way we will handle the discovery and characterization of synchronic
causes – the enabling contextual factors to be described in Section 3.2. The physicist
Lee Smolin [7] believes that all physical theories are effective and approximate that
apply to “truncations” of nature and that cover only a limited domain of phenomena.
This echoes our idea of effective causality.

3 An Effective Causal Learning Framework

In the spirit of the discussion above, we divide the identification of causes into the
two major aspects: the diachronic and the synchronic aspects. For the current paper,
we consider only deterministic situations in which a diachronic cause must always
bear a consistent temporal relationship with the effect and a synchronic cause must
always be present. Considerations of probabilistic situations are relegated to a future
paper. Our focus in this paper would be to show the application of the basic causal
learning framework which is sufficient to drastically reduce search efforts in some
problem solving situations.

46 S.-B. Ho

3.1 The Identification of Diachronic Causes

We begin by considering a simple situation in which a few simple events (changes of
states) can be directly (proximally) observed to take place as shown in the left dia-
gram in Fig. 1. These events consist of Appearances and Disappearances of the three
objects 11, 12, and 13 at some locations L1, L2, and L3 respectively which we will
represent as App(object, location) and Disapp(object, location) respectively. In the
right of Fig. 1 is a temporal diagram in which the horizontal axis is time represented
discretely as a succession of “time frames” t1, t2, … etc. and the vertical axis lists the
presence of the objects with the associated parameters - the locations at which they
appear when they appear - at the corresponding time frame. So, say, in t1 there is no
object present and in t2 object 11 appears at L1. The change from t1 to t2 is noted (as
a gray vertical bar). (An event could be the change of the existential or other states of
an object or the change of some parameters such as the location or the energy level
associated with an object - e.g., Move(11, L1, L2): object 11 moves from location L1
to location L2). In general, whenever there is a change, the system would look for a
“cause” – some changes that happened earlier in time. However, because this is the
first change since the beginning of “time” in this “mini-universe,” it is assumed that
either there is no cause or the cause is before the current temporal interval (e.g., a
“first cause” such as “God” that exists outside the current space-time continuum.)

Fig. 1. Diachronic causes. See text for explanation

Henceforth we will refer to a causal rule as one that links an event as a diachronic
cause (e.g., App(11, L1)) and another event as a diachronic effect (e.g., App(12, L2)),
denoted as App(11, L1) App(12, L2), if such a causal connection exists. Looking
at Fig. 1, one can see that there is a consistent correlation between App(12, L2) and
App(13, L3) (with a delay of 2 time frames) because it happens twice. We require at
least two consistent correlations before we construct the causal rule in order to weed
out noise – this is called “dual instance consideration.” (In a probabilistic formulation,
we can define “rule-confidence” in terms of the number of consistent instances ob-
served.) Therefore, App(11, L1) App(12, L2) and App(11, L1) App(13, L3) do
not hold as they each happens only once. There is also a causal rule App(13, L3)
Disapp(13, L3) that holds that is a “self-causal” rule – it predicts that an object will
disappear after a certain amount of time of its appearance (e.g., a timer controlling a
light). But if that correlation exists, then the rule App(12, L2) Disapp(13, L3) will
also follow as indicated in the figure. Without further knowledge or proximal obser-
vations (i.e., of a timer mechanism), App(12, L2) can be taken as the underlying cause

 On Effective Causal Learning 47

of both App(L3) and Disapp(L3) and the situation is similar to C being the underlying
cause of the correlation of A and B discussed in the Introduction section.

The ability to weed out noise through dual instance consideration is dependent on
how “busy” the environment is – how many events are happening in a given time
period. If the scenario is very busy, say with millions of events happening in a small
temporal interval, the number of instances involved may have to be increased to re-
move spurious correlations. But the dual instance consideration should suffice for our
ordinary environment. Also, in the event that the cognitive systems is in a desperate
need to look for a cause of something so as to be able to bring about or repeat an ear-
lier observed effect, it may relax the dual instance consideration – it may try its luck
and apply those temporal correlations that have been observed only once.

In the event that more than one diachronic causes are identified, they are encoded
as conjunctive diachronic causes. Subsequent observations will identify whether they
are really conjunctive causes – i.e., if one is subsequently observed to be absent and
the effect does not ensue - or they are disjunctive diachronic causes – any one of them
happening will give rise to the effect.

3.2 The Identification of Synchronic Causes

We consider the simple events in Fig. 2 (similar to Fig. 1) to illustrate the idea of
synchronic causes as discussed above. In Fig. 2, the duration of the 11 event is short-
ened and a new 14 event is introduced as shown. Now, had object 11 been present “all
the time” at location L1 as in Fig. 1, At(11, L1) would be considered a necessary syn-
chronic (contextual) cause for App(12, L2) App(13, L3). (Currently there is anoth-
er entity that is a synchronic cause of App(12, L2) App(13, L3), which is the loca-
tion associated with App(12, L2) - At(12, L2)). In Fig. 2, however, because only ei-
ther 11 or 14 is present at their corresponding locations at the time when App(12, L2)
happens (shown in two dashed rectangles), the presence of both 11 and 14 are tenta-
tively considered not to be the synchronic causes accompanying App(12, L2)
App(13, L3), in the same spirit as the gravity example discussed in Section 2.

However, this tentative removal of the presence of 11 and 14 as synchronic causes
of App(12, L2) App(13, L3) will be reverted as soon as another event 12 takes
place (say, outside the time frame shown in Fig. 2) in the absence of 11 and 14, and
13 fails to take place after 2 time intervals. This shows that the presence of 11 or 14
were indeed needed for App(12, L2) to cause App(13, L3). The system then modifies
the already learned causal rule App(12, L2) App(13, L3) to include At(11, L1) or
At(14, L4) as its accompanying disjunctive synchronic causes, in conjunction with
At(12, L2) (i.e., At(12, L2) and (At(11, L1) or At(14, L4)).

Suppose A, B, C, D, E, … are synchronic causes, the above method can recover
complex conjunctive/disjunctive combinations of these such as A and (B or C) or (D
and E).... A dense collection of disjunctive synchronic causes that are parameter val-
ues (e.g. L1 = 1.1 or 1.2 or 1.3 or 1.4…) can be combined into a sub-range of values
(e.g. 1.1 < L1 < 1.9). In the case of gravity discussed in Section 2, the disjunctive
“sum totality” of each context (synchronic cause) on Earth in which gravity applies is
the context of the entire Earth.

48 S.-B. Ho

Fig. 2. Synchronic causes. See text for explanation

4 Application of Causal Learning to Problem Solving

In this section, we discuss two examples in which the effective causal framework can
be used to drastically reduce the amount of computation in problem solving situations.
One example is the typical spatial movement to goal problem and the other is the
crawling robot problem [6]. Typically, the A* [8] or best-first search process is used
for the spatial movement to goal problem and reinforcement learning is used for the
crawling robot problem [6, 9]. In both cases, no causal characterizations of the ac-
tions involved are learned or extracted in the processes, resulting in relatively “blind”
searching processes that require a large amount of computation. We show that our
framework developed above discovers/learns causal rules of various actions involved
in the search process that have general and wide applicability that can result in a dras-
tic reduction of the search space involved.

4.1 The Spatial Movement to Goal Problem

Consider the spatial movement to goal problem - a cognitive system starting from a
point in space and trying to reach a physical point (the GOAL) some distance away
(Fig. 3). Using, say, the best-first search to solve the spatial movement to goal prob-
lem, a domain independent heuristic is typically used such as the “shortest distance to
goal” heuristic. However, with this heuristic, one still needs to expand many nodes at
each level of the search to compute the heuristic value in order to select the one with
the minimum value for the next level of expansion. It is possible to use a domain de-
pendent heuristic – always head straight toward the GOAL – and obviate the need to
expand many nodes. However, building in this heuristic will be too contrived. Is there
a domain independent method that allows the system to discover this domain depen-
dent heuristic? Our effective causal learning algorithm described in Section 3 pro-
vides just such a domain independent mechanism to learn this piece of knowledge – a
manner of applying an elemental force that causes the “shortest distance to the goal”
to be achieved. (Here we assume that there are no obstacles between the cognitive
system and the goal. Our effective learning framework can also handle the situation
with obstacles that we relegate to a future paper.)

 On Effective Causal Learning 49

Fig. 3 shows that in the first level of the best-first search process all the possible di-
rections of the applied force, F, is tried and the parameters associated with these “ex-
panded nodes” are kept track of. We assume that the parameters available to the
“senses” of the cognitive system are: AL (its absolute location); RD (its relative dis-
tance to the GOAL – provided by, say, a vision system); AA (the absolute angle with
respect to the entire reference frame in which the force is applied); and RA (the rela-
tive angle to the GOAL in degrees which is defined as 0 when the force is pointing
directly at the GOAL). These parameters can potentially be the synchronic causes or
diachronic effects accompanying the diachronic cause – the force. (At the moment the
force is applied, if there are other objects around, there will also be parameters such as
the relative distances and the force’s directions relative to these objects. However,
given our current method, these factors would be ruled out quite rapidly within a few
movements of the cognitive system and hence for simplicity without sacrificing gene-
rality, we omit these other parameters for the current discussion.)

Fig. 3. Search with effective causal learning. F = Force; AL = Absolute Location; RD = Rela-
tive Distance (to GOAL); AA; Force Absolute Angle; RA = Force Relative Angle (to GOAL)

In NODE1 the force goes from 0 (non-existent) to F (existent) and the parameters

associated with the cognitive system – AL and RD – change in some manner after one
time frame. (Assuming the force always takes one time frame to effect changes.)
Those parameters that change are the diachronic effects of the force application. (AA
and RA are undefined (“*”) before and after the force application.) NODE3, in which
the force F is applied with the parameter values AL = L1, RD = D1, AA = A3, and
RA = 0, which is denoted as F(L1, D1, A3, 0), corresponds to the shortest distance to
the GOAL. This node is selected for expansion. (At this stage the parameter values
L1, D1, A3 and 0 are potential synchronic causes for the force event.)

In the next level of expansion, F(L4, D4, A3, 0) would be the action that satisfies
the shortest distance to goal heuristic. The causal learning algorithm then generalizes
the required force to F(*, *, A3, 0), with the values of AL and RD now no longer
potential synchronic causes to the action F that satisfies the shortest distance to goal
heuristic (denoted as “*”) and the still relevant synchronic causes are AA = A3 and
RA = 0. Hence after two levels of node expansion, the system no longer needs to
expand the nodes corresponding to applying the force in all the other directions. It just
needs to use F(*, *, A3, 0) to head straight to the GOAL.

50 S.-B. Ho

Suppose now the system finds itself in another START position that has a different
absolute angular placement from the GOAL compared to that in the earlier expe-
rience. In this situation the F(*, *, A3, 0) will not work as now F applied in the A3
absolute direction will not give rise to an RA = 0. The system therefore carries out the
process again as above as described in Fig. 3 and in this second experience, after two
levels of node expansion, it discovers, say, F(*, *, AX, 0) as the optimal way to apply
the force at every step to the GOAL. As AX is not equal to A3, the absolute angle AA
is then removed as a synchronic cause and the optimal force is F(*, *, *, 0), leaving
RA = 0 as the only synchronic cause of the optimal force application – i.e., one that
satisfies the shortest distance to goal heuristic.

At this stage, the cognitive system has discovered the heuristic that basically says
that no matter where the cognitive system is or how far it is from the GOAL, the op-
timal way to move it to the GOAL is to apply a force that aims directly at the GOAL.
Thus, after two experiences and a total of 4 complete node expansions, the cognitive
system learns a general causal rule that obviates all future needs for search for this
spatial movement to goal (with no intervening obstacle) problem.

4.2 The Crawling Robot Problem

In Fig. 4 we consider a crawling robot problem [6]. Basically, the robot consists of a
“body” and two independently movable arms (and their associated angles α and β)
and the problem is to find a correct sequence of actions of the arms so that the robot
will keeping moving “forward” or “backward.” 4 elemental actions are available to
the robot: Increase/Decrease α/β. This is a situation in which the best-first search
combined with the domain independent shortest distance to goal heuristic cannot be
used as it is difficult to measure the “distance” between a current state from the goal
of, say, Fwd(R)N (keeps moving forward – no backward movement at any time).
Therefore reinforcement learning is often used for problems such as this [6, 9].

As can be seen from the previous section, there is an early “exploration” phase of
the causal learning enhanced search process in which many possibilities are tried
(many nodes expanded) and some general and powerful causal rules are discovered
that obviate any further extensive search or node expansion altogether. On the other
hand, even though there is also an exploration phase in a typical reinforcement
learning process [6, 9], there is no attempt to extract the “causes” and powerful
generalizations that characterize causal rules or “causal models.” What are learned are
basically “state-transition models” with prescriptions of the best courses of actions in
various states of the system to achieve a certain goal (e.g., Fwd(R)N). A huge amount
of computation is typically needed in extensive exploration and exploitation phases in
reinforcement learning. Reinforcement learning would fair even worse if all
contextual factors are included as part of the current “state of the world” which are
often removed a priori using domain knowledge. With our effective causal learning
process, irrelevant contextual factors (potential synchronic causes) are weeded out in
the process of constructing the causal rules as we have described above.

Figs. 4(a), (b), (c), and (d) show different states of the robot arms and to the right
of the robot is shown the corresponding general causal rules that govern its behavior
in those states. (A computer program that simulates the robot’s behavior would

 On Effective Causal Learning 51

conceivably have these rules in the program.) For example, in Fig. 4(a), using our
parlance, the diachronic cause (action), Dec(β), would give rise to a diachronic effect,
Fwd(R) (i.e., Dec(β) Fwd(R)) in the presence of the synchronic causes Tch(A, FL)
and β > 0. Inc(β) not Tch(A, FL) and Dec(α) not Tch(A, FL) (causing point A
to not touch the Floor) share the same synchronic causes as Dec(β) Fwd(R). Each
of Dec(β), Fwd(R), etc. is an event. Tch(A, FL) can be a state or an event (when there
is a state change from not Touch to Touch). Similarly for not Tch(A, FL).

Fig. 4. The crawling robot problem. Tch = Touch; Dec = Decrease; Inc = Increase; Fwd =
Forward; Bkwd = Backward; Dist = Distance; R = Robot; FL = Floor. A is the dangling end of
the distal arm. β has positive values (β > 0) when the distal arm is swung to the “right” of the
vertical dashed line and negative values (β < 0) when the arm is swung to the “left.”

Hence, unlike “action-state” rules in reinforcement learning, the rules in Fig. 4 do
capture the “causal understanding” of the robot’s behavior in its most general form.
These rules are learnable using our causal learning method described above, with
some minor extensions to the basic algorithm (e.g., handling of parameter ranges such
as β > 0, β < 0, etc.). Once these causal rules are learned in a process of exploration
(i.e., move the robot arms about and observe what events occur as a result) they can
engender a rapid problem solving process through, say, a backward chaining process,
beginning from a desired goal (e.g., Fwd(R)N – i.e., no Bkwd(R) is allowed at any
given step - or Bkwd(R)N), with a drastically reduced search space. Incremental
chunking [10] can further reduce the amount of search needed.

In the interest of space, the detailed step-by-step causal learning and problem
solving processes will not be described for this case. In the interest of clarity, Fig.
4(b) omits an extra synchronic condition Dist(A, FL) > Δ. The complete version is
shown in Fig. 4(e). Dist(A, FL) = (equal to) Δ is the condition just prior to a touching
event – Tch(A, FL) when A is just slightly above the Floor – and an action Dec(β)
will lead to Tch(A, FL) – the rule in Fig. 4(f). There are two more similar rules
corresponding to Fig. 4(d) that are not shown in Fig. 4. There are also a few other
rules (e.g., a rule converting β < 0 to β > 0) that are not decribed here in the interest of
space. Suffices it to say that they can all be discovered through the causal learning
process. Part of the backward chaining process could make use of the shortest

52 S.-B. Ho

distance to goal heuristic similar to that discussed in Section 4.1 – that to get a point
to touch another point, select the action that brings it Nearer the point.

5 Conclusion and Future Work

In summary, this paper proposes a method that relies on the effective use of temporal
correlation and proximal observation for a process of rapid causal learning that can
learn the causal rules that obtain between basic physical and social events and the
method is applied to two physical problem solving situations. The learning is carried
out in a stage of “exploration” and subsequent problem solving can proceed rapidly
with the learned causal rules. This method is necessary to jump start a chain of causal
learning processes – it first allows the fundamental physical and social knowledge of
the world to be learned and then the learned domain dependent knowledge can subse-
quently assist the learning of other more complex causal relationships.

In this paper we use parameters (such as location, relative distance, etc.) that are
easily available through the sensory input. More complex concepts may come into
play as diachronic and synchronic causes. An extension of the basic framework would
be to handle probabilistic events.

References

1. Sloman, S.: Causal Models: How People Think about the World and Its Alternatives.
Oxford University Press, Oxford (2005)

2. Moore, D.S., McCabe, G.P., Craig, B.A.: Introduction to the Practice of Statistics. W.H.
Freeman an Company, New York (2009)

3. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn. Cambridge University
Press, Cambridge (2009)

4. Ho, S.-B.: A Grand Challenge for Computational Intelligence –A Micro-Environment
Benchmark for Adaptive Autonomous Agents. In: Proceedings of the IEEE Symposium
Series for Computational Intelligence on Intelligent Agents, pp. 44–53. IEEE Press, Pisca-
taway (2013)

5. Ho, S.-B., Liausvia, F.: Knowledge Representation, Learning, and Problem Solving for
General Intelligence. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013.
LNCS, vol. 7999, pp. 60–69. Springer, Heidelberg (2013)

6. Berghen, F.V.: Q-Learning,
http://www.applied-mathematics.net/qlearning/qlearning

7. Smolin, L.: Time Reborn: From the Crisis of Physics to the Future of the Universe.
Houghton Mifflin Harcourt, Boston (2013)

8. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4 4(2),
100–107 (1968)

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press,
Cambridge (1998)

10. Ho, S.-B., Liausvia, F.: Incremental Rule Chunking for Problem Solving. In: Proceedings of
the 1st BRICS Countries Conference on Computational Intelligence. IEEE Press, Piscataway
(2013)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 53–62, 2014.
© Springer International Publishing Switzerland 2014

Increasing Accuracy in a Bidirectional Associative
Memory through Expended Databases

Melissa Johnson and Sylvain Chartier

University of Ottawa, Ottawa, Canada
{mjohn140,sylvain.chartier}@uottawa.ca

Abstract. Neural networks are often used in recall problems when there is noi-
sy input and many sophisticated algorithms have been designed to help the re-
call process. Most cases use either learning rule adjustments, or more recently
prototype learning. The question remains though of how to handle cases where
there are multiple representations (exemplars) of a pattern. This paper evaluates
three types of association methods: circular association method where the ex-
emplars form a loop, linear association method where the exemplars are linked
together forming a line ending in the master template, and many-to-one associa-
tion method where all the exemplars point to the master template. The question
asked is if using these exemplars benefits accuracy in noisy recall and does the
association method matter. All three association methods had greater accuracy
then the standard BAM recall. Overall, the many-to-one method had the great-
est accuracy and was the most robust to changes in the exemplars. The accuracy
of the circular association pattern is influenced by the amount of differences in
the exemplars with accuracy increasing as the exemplars become increasingly
different from each other. The linear association method is the least robust, and
is affected by both the number of exemplars and differences in exemplars.

Keywords: Neural networks, BAM, Auto-association, Hetero-association,
Learning, Recall, Exemplars, Classification.

1 Introduction

Any intelligent system must be able to take in data and be able to process that data for
storage or use. Unfortunately not all data is clear and concise, therefore a key re-
quirement for any intelligent system is to be able to handle noisy or degraded data
(Voss, 2007). Being able to recognize and recall noisy or degraded patterns is some-
thing that humans can do quickly but is still difficult for computers and artificial intel-
ligence models. Currently, artificial neural networks are being used for this noisy
recall problem because of their ability to develop attractors for each pattern and be-
cause of their stability and adaptability with regard to noise and pattern degradation.

More precisely, bidirectional associative memories (BAMs; Kosko, 1988) are
used in order to associate two sets of patterns. Over the years, several variants of
BAM models have been proposed to overcome the original model’s limited storage
capacities and improve its noise sensitivity (Shen & Cruz Jr, 2005). Nowadays, BAM

54 M. Johnson and S. Chartier

models can store and recall all the patterns in a learning set, are robust to noise, and
are able to perform pattern completion. This is the outcome of numerous sophisticated
approaches that modify the learning and transmission functions (for a review, see
Acevedo-Mosqueda, Yanez-Marquez & Acevedo-Mosqueda; 2013). More recently
Chartier & Boukadoum (2011) proposed a BAM that uses the nonlinear feedback
from a novel output function to learn online to iteratively develop weight connections
that converge to a stable solution. The proposed BAM learns by only using cova-
riance matrices, and it is among the few models that can create real-valued attractors
without preprocessing. It is also able to reduce the number of spurious attractors while
maintaining performance in terms of noise degradation and storage capacity. Howev-
er, in all cases the learning of a given category is achieved by prototype associations.
Although this is suitable for simple cases, in many situations there will be more than
one representation (exemplars) that need to be associated with a given category.
Therefore, the question of how multiple representations should be associated together
remains. In this paper we propose to explore four types of associations and their im-
pact on learning time and recall performance. More precisely, we will test the network
on auto-association method (standard BAM), circular association method, linear asso-
ciation method, and many-to-one association method. Explanation of those associa-
tion methods are discussed in the simulation section.

The organization of this paper consists of a description of the model: architecture,
transmission, and learning, followed by the simulations and then a discussion of the
results and conclusions.

2 Model

2.1 Architecture

As illustrated in Figure 1, because BAM is bi-directional, there are two initial input
states (stimuli), x(0) and y(0) and W and V are their respective weight matrices. In the
illustration, t represents the number of iterations over the network. The network is
composed of two interconnected layers through which information is processed bidi-
rectionally; the x-layer returns information to the y-layer and vice versa. The BAM
neural network can be both an auto-associative and hetero-associative memory.

2.2 Transmission Function

TThe transmission function is based on the classic Verhulst equation extended to a
cubic form with saturating limit at ±1 (Chartier, Renaud, & Boukadoum, 2008). The
transmission functions are defined by the following two equations: , … , , 1 1 11 11 (1)

Increasing Accuracy in a Bidirectional Associative Memory through Expended Databases 55 , … , , 1 1 11 11 (2)

where N and M are the number of units in each layer. The parameter i is the index
of the respective elements during training or recall. At iteration time t, the layer con-
tents are represented by x and y . The weight matrices are W and V and the d is
the general transmission parameter. The general transmission parameter needs to be
fixed at a value between 0 and 0.5 to assure fixed-point behaviour (Chartier, Renaud,
& Boukadoum, 2008). This transmission function is used because it has no asymptot-
ic behaviour when d is between 0 and 0.5 and is therefore useable during the learning
and recall. A saturating limit at the two attractors, -1 and 1 allows it to be comparable
to a sigmoid type function.

Fig. 1. BAM Network Architecture

2.3 Learning Rule

Most BAM models learn using a Hebbian type learning (Chartier & Boukadoum,
2011). In this model, the learning rule is expressed by the following equations: 1 0 0 T (3) 1 0 0 T (4)

where h represents the learning parameter, T is the transpose operator, and k is the
learning trial. The initial inputs are x(0) and y(0) while x(t) and y(t) are the state vec-
tors after t iterations through the network. This learning rule can be simplified to the
following equation in the case of auto association y(0)=x(0).

56 M. Johnson and S. Chartier

1 0 T 0 T (5) 1 0 T 0 T (6)

Based on equations (3) and (4) the weights can only converge when y(t) =y(0) and
x(t)=x(0). Therefore, the learning rule is linked to the network’s output. In order for
the association to be stored as a fixed point, h must be set according to the following
condition (Chartier, Renaud, & Boukadoum, 2008): 12 1 2 , ; 1/2

3 Simulation

The goal is to evaluate if expanding the dataset to include some exemplars will lead to
more accurate recall of noisy stimuli, and if the type of associations between the ex-
emplars have an impact on the accuracy of recall.

3.1 Methodology

The templates used are 7x7 pixel images of alphabetical characters (see Figure 2 for
an example) flattened into a vector. Each pixel is translated into values of either 1 if
the pixel is black or -1 if the pixel is white. Exemplars are created from the original
template by randomly switching some (2%, 6%, 8%, or 14%) of the pixels in the tem-
plates so that values of 1 became -1 and vice versa. The creation of the noisy recall
item is done by randomly flipping 30% of original templates pixels. Pixel flip at 30%
is quite noisy and has been a problem for earlier versions of the BAM model (Chartier
& Boukadoum, 2006). With this level of noise no recall should hit floor or ceiling
(0% or 100%) during the simulations and therefore shows a full range of difference
scores.

The four association methods that are being investigated can be seen in Figure 2. In
the auto-association method, no exemplars are used and each stimulus is associated
with itself (Figure 2A). In this case extra templates are used to keep the memory load
of the neural network balanced. Memory load is typically calculated based on the
dimensional space used compared to the number of templates the system is requires to
learn. For all simulations in this paper, there is a 49-dimensional space capacity but
the number of templates varies. By keeping the number of templates consistent for all
memory association methods the memory load is consistent among them. This is
shown in Figure 2 where auto-association (Figure 2A) contains 6 letters (templates)
while the other associations contain 2 letters and 2 templates, making 3 patterns per
category, or 6 patterns in total. The circular association (Figure 2B) has the templates
and exemplars forming a circle of hetero-associations such that the last exemplar is
associated which the second last, which is associated with the third last, and so on
until the first exemplar is associated with the template, the template is then associated
with the last exemplar, thereby forming a complete circle. The linear association

Increasing Accuracy in a Bidirectional Associative Memory through Expended Databases 57

(Figure 2C) is similar to the circular association except instead of having the template
associate with the last exemplar, the template is associated with itself (auto-
association) forming a closed line. The final association is a many-to-one association
(Figure 2D) where all exemplars are associated with the template and the template is
associated with itself. In all association methods, if there are no exemplars then the
methods become auto-associative.

Fig. 2. Examples of templates, exemplars and their associations. A) Auto association; each item
is associated with itself, B) Circular association; hetero-associations that form a loop, C) Linear
association; hetero-association to one master template that is auto-associative, and D) Many-to-
one association; all exemplars point to the master template

All simulations had the same variables except for the number of templates, the
number of exemplars, and the level of noise in the exemplars. Number of templates
plus exemplars never went above 49% memory load (24/49) of the network. All simu-
lations were performed 150-300 times to account for the randomization of the pixel
flips in both the exemplars and recall pattern. Testing of recall was done only on the
template patterns that are common to all the associations. For example, in the case of
Figure 2, the letters A and B would be tested while all other possible templates and
exemplars are ignored.

Learning.
During the learning phase, all templates and examples are learned with their associa-
tions based on the association method being simulated. The same templates and ex-
emplars are used for all the different association methods with the exception of the
control condition which does not use the exemplars but uses extra templates to control
for memory load. The range of noise (pixel flips) in the exemplars is 2%, 6%, 8% or
14% (1, 3, 4, or 7 pixels flipped respectively) and the learning parameter, h, is set to

58 M. Johnson and S. Chartier

0.01 which respects the condition of equation 7. The transmission parameter, d, is set
to 0.1, the number of iteration before a weigh update, t, is set to 0.1 and the learning is
concluded when the weights have converged.

Recall.
During recall, a noisy input pattern is the original template with 30% of the pixels
flipped (15 pixels flipped). In the case of these simulations, this means that the recall
pattern is always noisier than any of the exemplars used since maximum noise for the
exemplars is 14%. All associations use the same recall patterns and all templates are
tested. In other words, if 5 templates are originally used, no matter how many exem-
plars are used, 5 recall tests are performed, once per template. The transmission pa-
rameter, d, is set to 0.1. The recall process will stop if there is no change in the output
from one iteration to another or if the number of iterations have reached a maximum
of 200 cycles. Recall is considered successful if the output matches the template or
any of the exemplars.

3.2 Results

Figure 3 shows that all associations have a fairly steady increase as more patterns are
added. The auto-association and the many-to-one association use fewer epochs than

Fig. 3. On the left, the average epochs needed for learning in the different associations patterns.
On the right, the amount of trials needed on average for recall. In both graphs, exemplars were
set to 14% of noise, 5 templates are used with 0 to 4 exemplars per template.

Increasing Accuracy in a Bidirectional Associative Memory through Expended Databases 59

circular and linear patterns while learning. The circular association takes the longest
to learn but still consistently reaches a fixed point. Despite the added time to learn, the
number of recall cycles slowly increases as more exemplars are added but they are all
also still relatively close together even after 4 exemplars. The many-to-one method
takes the least time to learn and the least time to recall while the normal recall, or
auto-association method, is in the middle of the results. Because epochs to learn and
recall cycles are all quite similar in the different association methods, it is logical to
check accuracy of the methods next to see if that can differentiate the methods.

Fig. 4. Number of items correctly recalled for each of the association methods using 5 tem-
plates and 0 to 4 exemplars. Exemplars either contain 2% or 14% pixel flip (1 or 7 pixels). The
stimulus to be recalled contains 30% pixel flip (15 pixels).

Figure 4 clearly shows that accuracy is improved using exemplars. If a distance of
1 pixel (2%) is used between exemplars during learning, the performance shows a
slow change in performance as more exemplars are added; the auto-association me-
thod slowly reduces accuracy to end up being the least accurate while the many-to-
one association method slowly increases in accuracy until it is the top performer. The
difference in accuracy is more noticeable when the learning is accomplished using a
distance of 14% (7 pixel flips) between the various exemplars then using a distance of
2%. With the 14% pixel flips, all the methods increase in performance except for the
auto-association which again slowly loses accuracy as more templates are added. The
best performance is achieved again by multi-associations.

60 M. Johnson and S. Chartier

Fig. 5. Probability of correct recall while holding load steady. On the left, load is at 24% (12
patterns) and on the right load is at 49% (24 patterns). Exemplars contain 7 flipped pixels.

In the previous simulations, memory load increases as exemplars are added. There-
fore we also review changes in accuracy when holding memory load steady to con-
firm that the increases in performance are not just because of changes in memory
load. Even holding the load steady by adjusting the number of templates and exem-
plars, it is still clear that the new association methods outperform recall (auto) in all
cases (Figure 5). This occurs both with an easy 24% memory load and a maximum
efficient memory load of 49%.

The circular and many-to-one associations appear to be similar to each other and
both have increasing accuracy with increasing exemplars. The linear association
though appears to reach a maximum accuracy after a few exemplars are added, adding
more exemplars then appears to decrease performance.

4 Discussion

Overall, the results show that expanding the dataset by including exemplars help with
classification; even with minimal exemplar differences (a single pixel). The extra time it
takes to learn an item is small between the different methods. Meanwhile the differences
in recall accuracy appear to be quite substantial between the exemplar methods and the
non-exemplar method. For example, previous research, Chartier & Boukodoum (2006)

Increasing Accuracy in a Bidirectional Associative Memory through Expended Databases 61

only obtains 20% accuracy with a 50% memory load using hetero-associations.
Our exemplar methods which also use hetero-associations have much greater accuracy.
The linear association method, the worst for performance, is closer to 50% accuracy
while there is almost 100% for both the many-to-one and the circular association
methods. This increase is quite impressive and a good indication that using exemplars
improves recall.

While the three exemplar association methods outperform the auto association me-
thod in accuracy, the exemplar association methods are not all equal. It appears that
the number of exemplars and type of exemplars matter in determining the recall accu-
racy of the exemplar association method.

In general, the many-to-one association method appears to be the most robust of
the methods. It consistently learns the quickest and has the fewest attempts at recall
before an item is found. This may be because the associations all have a similar base;
all exemplars are associated with the template. This may be quicker and easy for the
BAM to perform than the associations used in the other methods. The many-to-one
method is also the top performer when exemplars are similar to each other and com-
petitive when the exemplars become dissimilar. In both cases, there is a near linear
increase in accuracy as exemplars are added. This shows the consistency of this me-
thod; the types of exemplars have less influence on over recall accuracy than number
of exemplars.

The circular association is very susceptible to changes in the exemplars; as the dif-
ference in exemplars increase between each other and the template, accuracy increas-
es. This suggests that there might be an ideal pattern difference that optimizes the
circular association. If this is the case, the circular association method may outper-
form the many-to-one association method.

It is unlikely that the linear association method can compete in accuracy and usabili-
ty of the circular association method or the many-to-one association method. The linear
association method is affected by both the number of exemplars and the changes in the
exemplars which makes it comparatively unstable and hard to optimize for best results.
Conversely, the many-to-one association method is very robust and the best choice if
optimization of exemplars is not an option. Due to the limited nature of the exemplars
in the present simulations, it is unknown if circular association method can outperform
the many-to-one association method when the exemplars are optimized.

The present study is a small study using a simple 7x7 template of alphabetical
letters. This is not a realistic test to mimic human’s ability to recognize degraded
objects, but is an excellent starting point. Future simulations need to be run using
larger templates and stricter rules in noise degradation to confirm that multi-to-one
associations preform the best or to see if it is possible that a circular association would
outperform depending on the type of noise introduced.

Considering the issue of the type of noise, it is known that choosing training data
for classification is very important to yielding good results (Mazurowski, Habas,
Zurada, Lo, Baker, & Tourassi, 2008) therefore another future study could attempt to
find out if there’s an ideal difference between template, exemplars, and recall input
pattern that maximizes accuracy for the association methods and if using this ideal
case would make circular associations more accurate than the many-to-one associa-
tion method.

62 M. Johnson and S. Chartier

Any and all exemplars that are created are used in this study, regardless of if the
BAM actually needs them. It is possible that too many or the wrong kind of exem-
plars hinder performance. Therefore another possible study would be to train on ex-
emplars that fail being recalled and not train on exemplars that can be successfully
recalled. In other words, by including reinforcement learning, it may be possible to
find a near ideal set of exemplars to maximize accuracy.

Acknowledgements. This research was partly supported by the Natural Sciences and
Engineering Research Council of Canada.

References

1. Abdi, H.: A generalized approach for connectionist auto-associative memories: Interpreta-
tion, implications and illustration for face processing. Artificial Intelligence and Cognitive
Sciences, 149–164 (1988)

2. Acevedo-Mosqueda, M.E., Yáñez-Márquez, C., Acevedo-Mosqueda, M.A.: Bidirectional
Associative Memories: Different Approaches. ACM Computing Surveys 45(2) (2013)

3. Chartier, S., Boukadoum, M.: A Birdirectional Heteroassociative Memory for Binary and
Grey-Level Patterns. IEEE Transactions on Neural Networks 17(2), 385–396 (2006)

4. Chartier, S., Boukadoum, M.: Encoding Static and Temporal Patterns with a Bidirectional
Heteroassociative Memory. Journal of Applied Mathematics (2011)

5. Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory en-
compassing correlational, competitve and topological properties. Neural Networks 22(special
issue), 568–578 (2009)

6. Chartier, S., Renaud, P., Boukadoum, M.: A nonlinear dynamic artifical neural network
model of memory. New Ideas in Psychology 26, 252–277 (2008)

7. Cheng, B., Titterington, D.M.: Neural Networks: A Review from a Statistical Perspective.
Statistical Science 9(1), 2–54 (1994)

8. Gemmeke, J.F., Virtanen, T., Hurmalainen, A.: Exemplar-based sparse representations for
noise. IEEE Transactions on Audio, Speech, and Language Processing 19(7), 2067–2080
(2011)

9. Koronovskii, A.A., Trubetskov, D.I., Khramov, A.E.: Population Dynamics as a Process
Obeying the Nonlinear Diffusion Equation. Doklady Earth Sciences 372(2), 755–758
(2000)

10. Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D.:
Training Neural Network Classifiers for Medical Decision Making: Effects of Imbalanced
Datasets on Classification Performance. Neural Networks 21(2-3), 427–436 (2008)

11. Nosofsky, R.M., Johansen, M.K.: Exemplar based accounts of “multiple-system” pheno-
mena in perceptual categorization. Psychonomic Bulletin & Review 7(3), 375–402 (2000)

12. Shen, D., Cruz Jr., J.B.: Encoding strategy for maximum noise tolerance. IEEE Trans.
Neural Networks 16, 293–300 (2005)

13. Valentine, T., Endo, M.: Towards an Exemplar Model of Face Processing: The Effects of
Race and Distinctiveness. The Quarterly Journal of Experimental Psychology 44(4) (1992)

14. Voss, P.: Essentials of general intelligence: The direct path to artificial general intelli-
gence. In: Artificial General Intelligence, pp. 131–157. Springer, Heidelberg (2007)

15. Zhang, G.P.: Neural Networks for Classification: A Survey. IEEE Transactions on
Systems, Man, and Cybernetics 30(4), 451–462 (2000)

Fusion Adaptive Resonance Theory Networks

Used as Episodic Memory for an Autonomous
Robot

Francis Leconte, François Ferland, and François Michaud

IntRoLab, Interdisciplinary Institute for Technological Innovation (3IT)
Université de Sherbrooke, Sherbrooke, Canada

Abstract. Autonomous service robots must be able to learn from their
experiences and adapt to situations encountered in dynamic environ-
ments. An episodic memory organizes experiences (e.g., location, specific
objects, people, internal states) and can be used to foresee what will oc-
cur based on previously experienced situations. In this paper, we present
an episodic memory system consisting of a cascade of two Adaptive Res-
onance Theory (ART) networks, one to categorize spatial events and the
other to extract temporal episodes from the robot’s experiences. Artifi-
cial emotions are used to dynamically modulate learning and recall of
ART networks based on how the robot is able to carry its task. Once an
episode is recalled, future events can be predicted and used to influence
the robot’s intentions. Validation is done using an autonomous robotic
platform that has to deliver objects to people within an office area.

Keywords: Episodic memory, Adaptive resonance theory, Artificial emo-
tions, Autonomous robots.

1 Introduction

Autonomous service robots cohabiting with humans will have to achieve recur-
ring tasks while adapting to the changing conditions of the world. According
to Hawkins [6], predicting upcoming percepts and action consequences is key to
intelligence. Collecting information about one’s experiences over time and their
relationships within a spatio-temporal context is a role associated to an episodic
memory (EM) [16]. External context information such as location, objects, per-
sons and time [13] can be used, as for internal states such as emotions, behaviors
and goals [11,7]. Memory consolidation and recall can be accomplished by encod-
ing and classifying events (e.g., by using a R-Tree [13]) and by using methods
(e.g., probabilistic-based [3]) looking at contextual cues and history to deter-
mine if a memorized episode is relevant to the current situation. If an episode
is recalled before the robot has completed its task, the memory can be used to
anticipate upcoming percepts and actions for the task [8].

More bio-inspired approaches, like Adaptive Resonance Theory (ART) net-
works, have also been used to categorize patterns from contextual and state

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 63–72, 2014.
c© Springer International Publishing Switzerland 2014

64 F. Leconte, F. Ferland, and F. Michaud

data [1,14,18]. Wang et al. [18] use the concept of fusion ART, i.e., two ART
networks in cascade [2,18], to create an EM-ART model: one ART is used to
encode spatial events and the other to extract temporal episodes from the ex-
perienced situations. Key parameters with this approach are the learning rates
β and the vigilance parameters ρ. The learning rates set the influence a pat-
tern has on weight changes, i.e., learning, and is associated to memory stability.
Vigilance parameters are used as thresholds for the template matching process:
high ρ produce a match when specific input patterns are presented, while lower
ρ make more generic pattern matching, tolerant to noise and disparities between
the learned pattern and the input pattern. In [19], validation of EM-ART was
conducted using a first-person shooter game environment, looking for instance at
the influences of ρ on how the episodic memory learns, demonstrating interesting
performance of the EM-ART model. However, using EM-ART on an autonomous
robot requires dealing with limited, noisy, imprecise and asynchronous percep-
tion processes, compared to having complete and continuous access to external
context information and internal states of a virtual world. In addition, stability
in the representation of events and episodes is required to make the EM-ART
usable in the decision-making processes of a robot. Our solution to these issues
is to dynamically set β and ρ associated to each events and episodes based on
how the robot is able to carry its task, instead of keeping constant β and ρ asso-
ciated to layers. Such evaluation is conducted using a simple model of artificial
emotions. This paper present our EM-ART model, validated using IRL-1 robot
platform programmed to deliver objects to people in an indoor environment.

2 EM-ART Modulated with Artificial Emotions

EM-ART is made of three layers: the Input Layer is used to represent the external
context information and internal states on which to build the episodic memory;
the Event Layer is made of nodes associated to events experienced; and the
Episode Layer has nodes that represent the sequence of events making episodes
as the robot accomplishes a particular task. Weights between the Input Layer and
an Event node represent the pattern from the Input Layer associated to an event,
while weights between the Event Layer and an Episode node are associated to the
temporal order of events in an episode. As the robot accomplishes its intended
task, the matching scheme of EM-ART is used to find similar events and episodes
encoded in the memory, adapting weights to reflect variations in similar patterns
or adding nodes with their associated weights to learn new events and episodes.
Weight learning is influenced by the learning rates β, and the matching scheme
by the vigilance parameters ρ. Simply by changing ρ, EM-ART can be used
to recall specific events and episodes (e.g., the robot brought Paul a book from
Peter in room 1002), or more generic situations (e.g., the robot brought someone
an object from Peter in a room). In [18,19], β and ρ are defined for layers, making
learning and matching uniform across layers. In our EM-ART model, we exploit
the influences of β and ρ by assigning them to each event and episode nodes
according to how the robot is able to satisfy its intentions while accomplishing

Fusion Adaptive Resonance Theory Networks Used as Episodic Memory 65

the task, as monitored by the artificial emotion module. If a match between the
current situation and a memorized episode is found, we also demonstrate how
our EM-ART model can be used to predict upcoming event nodes simply by
lowering their associated ρ and by ordering them using the memorized weights.
Figure 1 illustrates our EM-ART model, described as follows.

Fig. 1. EM-ART with an Artificial Emotion module

2.1 Input Layer

Let Ik denote an input vector, with Iki ∈ [0, 1] refers to input attribute i, for

i = 1, ..., n. Ik is augmented with its complements I
k
such that I

k

i = 1 − Iki to
define the activity vector xk of the Input Layer. Changes in the attributes of xk

initiate the matching process with the Event Layer.
Input attributes are grouped into cn channels, and with IRL-1 we use five

channels: location, objects recognized, people identified, IRL-1’s exploited be-
haviors and its emotional state. A short-term memory buffer is used to syn-
chronize percepts coming from different perceptual modules. For instance, the
identity of the person interacting with IRL-1 and the object shown can be ob-
served together even though they are derived using distinct and asynchronous
perceptual processes. This allows the Input Layer to aggregate percepts related
to more meaningful and significant changes in xk, which trigger the matching
process in the Event Layer.

66 F. Leconte, F. Ferland, and F. Michaud

2.2 Event Layer

The matching scheme with the Event Layer consists of four steps:

1. Activating an Event node. Activation T of node j from the Event Layer
is calculated using:

Tj =

cn∑
k=1

∣∣xk ∧wk
j

∣∣
αk +

∣∣wk
j

∣∣ (1)

where wk
j is the weight vector associated with the event j and input channel

k, αk > 0 is the choice parameter, the fuzzy AND operation ∧ is defined by
(p∧ q)i ≡ min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi for vectors

p and q.
2. Matching of xk and hypothesis J . This step, known as resonance evalu-

ation, examines if, for each channel k, xk matches the weights wk
J associated

to the selected event node (identified as J), according to the following:∣∣xk ∧wk
J

∣∣
|xk| ≥ ρJ · γk (2)

with ρJ ∈ [0, 1] being the vigilance parameter associated to the selected
event node J and γk ∈ [0, 1] being the relevance parameter associated to
input channel k. γk make EM-ART sensitive to the precision of situational
attributes, i.e. the resulting recognition threshold for an event is influenced
by characteristics from a bottom layer using γk as opposed to vigilance pa-
rameter ρ which influences the recognition from a top layer. For instance,
γk = 0 for the People channel generates an event regardless of the identity
of the individual, while γk = 1 requires that a specific individual be identi-
fied to generate an event. Channels with zero relevance allow the system to
keep specific information in memory without influencing pattern recognition,
while providing useful information when an episode is recalled.
The evaluation starts by selecting node J with the highest T as the hypoth-
esis. If any of the channel k fails to reach resonance with the event J , TJ

is set to the next event J having the highest Tj until resonance occurs. If a
resonant state is not reached, a new node is created as J .

3. Learning. Using J as the Event node, learning is performed according to:

w
k(new)
J =

(
1− βJ

)
w

k(old)
J + βJ

(
xk ∧w

k(old)
J

)
(3)

where βJ ∈ [0, 1] is the learning rate parameter associated to the event J .
βJ = 1 is used when a new node is created.

4. Evaluating the activity vector y = y1, ..., ym of the Event Layer.
For node J , yJ = 1, the activities of other nodes on the Event Layer decay
linearly according to:

y
(new)
j = max(0, y

(old)
j (1− τ)) (4)

where τ is the decaying factor ∈ [0, 1], which incidentally set the maximum
number of event nodes that can be activated to derive an episode.

Fusion Adaptive Resonance Theory Networks Used as Episodic Memory 67

2.3 Episode Layer

The role of the Episode Layer is to recognize temporal patterns (or sequences
of events) in the Event Layer and to predict upcoming events using the concept
of temporal auto-association [5]. Whenever y changes, the Episode Layer uses a
matching scheme identical to the Event Layer, evaluating resonance with node S
from the Episode Layer or creating a new node if no matches are found. Learning
is done only when the task assigned to the robot is completed. Recognition of
temporal patterns throughout a task must happen early enough to benefit from
the prediction of these patterns before the end of the task, and therefore ρs are
generally low by default, so that episode node can reach a resonant state more
easily.

By default, every ρj are set high (0.95) to recognize specific contextual events,
but are lowered to conduct a prediction if an episode is recognized before it is
completed (to then be reset at the value before prediction occurred). If resonance
occurs for episode node S at event node J , wj

S between the Event Layer and
the episode S can be used to derive the relative order of events in the episode.
The prediction yP of upcoming events can be calculated using the complement
of wj

S and y:

yp = wj
S \ y, wj

S > wJ
S and yj > 0 (5)

Anticipated events are subsequently reordered chronologically (in ascending
order according to wj

S). To facilitate matching of these upcoming events, minor
differences are tolerated by lowering ρj according to:

ρj(new) = ρj(old)
(
1− Cρ

(
1− (p− 1)

length(yP)

))
(6)

where p is the relative index of the event in the reordered sequence yp, and Cρ

is a constant that defines the maximum decrement for ρj . The next upcoming
event (p = 1) has its vigilance parameter decreased the most. Lowering match-
ing threshold of predicted patterns is a concept that is believed to be existing in
the human brain [9]. Predicted events are more likely to appear in the current
episode, so lowering ρj facilitates their activation and makes it possible to tol-
erate minor differences. To retrieve specific situational attributes related to yp,
weights wk

j can be read out one at a time following the sequential order of the
anticipated events.

2.4 Artificial Emotion Module

The Artificial Emotion Module is used to adjust ρs and βs to favor recall of the
most relevant episode and to improve episode stability in memory. Two artificial
emotions intensities Ee ∈ [0, 1] are used: Joy (indicating that the robot behaves
according to its intentions) and Anger (indicating that its intentions are not
satisfied). The heuristic used is that when an episode is experienced with high
emotion intensity, such episode needs to be stable in memory, meaning that it

68 F. Leconte, F. Ferland, and F. Michaud

should remain intact as future learning occurs. This is done by lowering the
learning rates (βs or βj), which will limit weight changes:

β(new) = β(old) (1− Cβ · (max(Ee)− 0.5)) , β(new) ∈ [βmin, βmax] (7)

where Cβ is a constant that defines the maximum decrement, and βmin and
βmax limiting the range. A max Ee lower than 0.5 increases β, while a value
above 0.5 decreases it.

Also, episodes with high emotional intensities must be recalled easily, meaning
that ρs can be decreased according to:

ρs(new) = ρs(old) (1− Cρ · (max(Ee)− 0.5)) , ρs(new) ∈ [ρsmin, ρ
s
max] (8)

where ρsmin and ρsmax limits the range.
Equations (7) and (8) are applied and saved when learning occur on the

associated layer.

3 Experimental Setup

IRL-1 is a robotic platform composed of a humanoid torso on top of a mobile base
[4]. IRL-1 uses a Kinect motion sensor for vision processing, a laser range finder
for obstacle avoidance and simultaneous localization and mapping (implemented
using [15]), and a 8-microphone array for speech interaction with people. IRL-1
detects a person by merging information from legs detection, voice direction and
face detection, turning its head toward the person. People identification is imple-
mented using a basic face recognition algorithm based on Principle Component
Analysis on the detected face [17]. Objects recognition is done using 2D im-
ages from the Kinect using SIFT [10]. Two computers running Linux and Robot
Operating System (ROS) [12] are used to implement IRL-1 control architecture.

For this experiment, IRL-1’s task is to deliver one of three objects O1, O2 and
O3 to people in a different location, according to the following scenario:

– In room R0, a person P stops in front of IRL-1. IRL-1 then identifies and
greets the person.

– Person P shows the object Oo to IRL-1. IRL-1 then recognizes the object
and extends its left arm to grasp it.

– IRL-1 autonomously navigates to the other room R1, searching to deliver
objectOo to somebody. When entering a room, IRL-1 asks if there is someone
there to take object Oo. IRL-1 wanders around until a person D is located
in area L inside room R1.

– IRL-1 extends its arm and delivers object Oo.

Each occurrence of this scenario consists of an episode. Once the task com-
pleted, learning is triggered in the Episode Layer and IRL-1 is programmed to
return to room R0 to start again.

Fusion Adaptive Resonance Theory Networks Used as Episodic Memory 69

For the trials, parameters of our EM-ART are initialized as follows: ρj = 0.95,
ρs = 0.55, ρsmin = 0.45, ρsmax = 0.85, Cρ = 0.20, βj = βs = 0.6, βmin = 0.1,
βmax = 1, Cβ = 0.25, τ = 0.05 and αk = 0.01. Joy and Anger are associated
with the following control modules controlling IRL-1: Teleoperation (required
when IRL-1 looses its position in the map), Go To (to navigate from one room
to another) and Wandering. If these modules are activated (meaning that IRL-1
wants to satisfy the intended goal associated to these controllers) and exploited
(meaning that IRL-1 is using these modules to control its actions) over time, then
the intensity of Joy increases; otherwise, if they are activated but not exploited,
Anger increases. For example, when IRL-1 activates Go To, Joy increases and
Anger decreases as long as the module is exploited. If IRL-1 gets lost in its inter-
nal map, the Go To behavior is no longer exploited and therefore Joy decreases
and Anger increases.

4 Experimental Results

To demonstrate the use of our EM-ART model, we conducted 10 trials for each of
the following conditions, each trial initiated with an empty memory, to observe
how it responds to different types of situations.

1. Recall repeatability and prediction. R0, R1, P , Oo, D and L remained
identical throughout the trials, leading to only one episode. The EM-ART
should therefore be able to recall the episode as soon as possible, allowing
IRL-1 to predict where to go before having to wander in room R1, allowing
IRL-1 to use L as a destination to go to. Successful recall of L occurred 8
times out of 9. Trial 1 lead to the creation of an episode made of 15 event
nodes. For trials 2 to 4, recall occurred relatively late in the episodes, i.e.,
while IRL-1 was wandering in R1. As the scenario was repeated and learned,
recurring events stayed while sporadic events faded, and recall occurred as
early as when IRL-1 was in R0, after having recognized the object Oo or
the person P . In the one trial where recall was not observed, IRL-1 lost its
position in its map: teleoperation was required, Anger were generated and
10 new event nodes were created, leading to a distinct episode.

2. Recall repeatability and learning. R0, R1, P , Oo and D remained iden-
tical throughout the trials, while L changed with each trial. The objective
of this condition was to observe if the last L learned could be predicted as
the destination when an episodic recall occurred. Successful recall of L hap-
pened 8 times out of 9. Each time, the destination predicted was the one
from the previous trial, as expected, and IRL-1 started wandering from that
point. When learning of the episode with the new destination L occurred,
the weighted connections to the previous destination L were reduced. For
the unsuccessful trial, a false detection of the object recognition module led
to the creation of five new event nodes at the beginning of the episode, and
consequently, created of a new episode.

3. Semantic differences and creation of new episodes. R0, R1, P and
D remained identical throughout the trials, while Oo changed to be one of

70 F. Leconte, F. Ferland, and F. Michaud

three objects (O1, O2, O3). This should lead to the creation of three episodes
semantically different but with some similar events. Each object delivery
was done at a specific location L for the object in question, to differentiate
which episode was recalled and used to predict L. Figure 2 presents the total
number of event nodes and episode nodes in memory after each trial, and
with the object presented. As expected, each trial involving a new object
Oo led to the creation of a new episode, for a total of three. The number
of event nodes in the memory increased in the first five trials since percepts
changed slightly over the episodes, but stabilized in the last five trials.

Fig. 2. Number of nodes of the Event Layer and Episode Layer as IRL-1 is being
presented with three objects

4. Relevance of the input channel. To test the influence of γk on an event
node, R0, R1, P , D and L are kept identical over the trials, γ2 = 0 for the
Object channel, and a different object (O1, O2, O3) was used between trials.
This condition should lead to the same episode, making the objects carried
by IRL-1 irrelevant for the episode, and as expected, after 10 trials, only
one episode was learned. IRL-1 also recalled the episode when entering R1

(once in the corridor between R0 and R1), and went directly to the delivery
location L without wandering in the room R1, regardless of Oo.

5. Episode with high emotional intensity. R0, R1, P , Oo, D and L re-
mained identical throughout the trials, but we forced IRL-1 to experience
high emotional intensity during trial 1, by deliberately covering up the laser
range sensor, making the Go To module unusable. This made Anger reached
its maximum value as the episode was learned, leading to the decrease of βs

and ρs according to Eq. (7) and Eq. (8). This condition should lead to rapid
episode recall, allowing IRL-1 to benefit from a prediction early on at the
beginning of the task. Indeed, during trials 2 to 10, the episode learned in
trial 1 was recalled as soon as IRL-1 realized it was in R0: IRL-1 then decided
to directly go to the delivery location L.

Fusion Adaptive Resonance Theory Networks Used as Episodic Memory 71

6. Episode with no emotions. R0, R1, P , Oo, D and L remained identical
throughout the trials, but we set Ee = 0 for Joy and for Anger to illustrate
the influences of emotions on recall. According to Eq. (7) and Eq. (8), ρs will
increase over time, and the episode will not be recognized as easily. During
trials 2 and 3, a successful episode recall was observed, allowing IRL-1 to
predict the delivery location L. During trials 4 and 5, IRL-1 recognized the
episode, but the prediction was not useful since L was already reached after
having wandered for a while. Starting trial 6, episode recall did not happened
before the end of the task because ρs was too high (0.85) to tolerate minor
variations in the sequence of events, leading to the creation of new episodes
in memory. After ten trials, the episodic memory contained three episodes
rather than only one.

5 Conclusion and Future Work

The underlying objective of providing a robot with an episodic memory is to
allow it to adapt its decision-making processes according to past experiences
when operating in dynamic environments. This paper presents a variant of EM-
ART in which the learning rate parameters and the vigilance parameters are
associated to specific event and episode. Changing the learning rate influences
weight adaptation to either learn quickly (β = 1) or preserve what was experi-
enced in the past (β = 0), whether it is for an event node or an episode node.
The vigilance parameters set what can be characterize as the granularity of the
matching scheme: it can be identical (ρ = 1) or coarse (ρ = 0.1), in relation
to input channels or to events. Keeping these parameters constant across lay-
ers consider that each episode has the same importance, which is unrealistic
considering that the episode experienced may or may not be the results of ap-
propriate actions according to the robot’s intentions. Using a repeatable scenario
involving people recognition, object recognition and location identification, we
illustrate how adapting these parameters can lead to appropriate episode learn-
ing and recall, and how upcoming predicted events can be used to influence the
behaviour of the robot. Results show that the robot successfully differentiates
semantically dissimilar episodes and expands its memory to learn new situations
online. To explore further all the potential of our EM-ART model, future work
involves extensive testing with a higher number of trials experienced randomly,
with different complex tasks in which repeatable sequences can be experienced,
and observing how the EM evolves over time.

Acknowledgment. This work was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

References

1. Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics, and
Image Processing 37(1), 54–115 (1987)

72 F. Leconte, F. Ferland, and F. Michaud

2. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast stable learning
and categorization of analog patterns by an adaptive resonance system. Neural
Networks 4(6), 759–771 (1991)

3. Dodd, W., Gutierrez, R.: The role of episodic memory and emotion in a cognitive
robot. In: Proceedings of IEEE International Workshop on Robot and Human
Interactive Communication, pp. 692–697 (2005)

4. Ferland, F., Létourneau, D., Aumont, A., Frémy, J., Legault, M.A., Lauria, M.,
Michaud, F.: Natural interaction design of a humanoid robot. Journal of Human-
Robot Interaction 1(2), 118–134 (2012)

5. Haikonen, P.O.: Consciousness and robot sentience, vol. 2. World Scientific Publish-
ing Company (2012)

6. Hawkins, J.: On intelligence. Macmillan (2004)
7. Komatsu, T., Takeno, J.: A conscious robot that expects emotions. In: Proceedings

of IEEE International Conference on Industrial Technology, pp. 15–20 (2011)
8. Kuppuswamy, N.S., Cho, S.H., Kim, J.H.: A cognitive control architecture for an

artificial creature using episodic memory. In: Proceedings of SICE-ICASE Interna-
tional Joint Conference, pp. 3104–3110 (2006)

9. Kurzweil, R.: How to Create a Mind: The Secret of Human Thought Revealed
(2012)

10. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

11. Nuxoll, A.M., Laird, J.E.: Enhancing intelligent agents with episodic memory. Cog-
nitive Systems Research, 34–48 (2011)

12. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: An open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

13. Stachowicz, D., Kruijff, G.: Episodic-like memory for cognitive robots. IEEE Trans-
actions on Autonomous Mental Development 4(1), 1–16 (2011)

14. Taylor, S.E., Vineyard, C.M., Healy, M.J., Caudell, T.P., Cohen, N.J., Watson, P.,
Verzi, S.J., Morrow, J.D., Bernard, M.L., Eichenbaum, H.: Memory in silico: Build-
ing a neuromimetic episodic cognitive model. In: Proceedings of World Congress
on Computer Science and Information Engineering, vol. 5, pp. 733–737 (2009)

15. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for
mobile robots. Artificial Intelligence 128(1), 99–141 (2001)

16. Tulving, E.: Precis of elements of episodic memory. Behavioral and Brain Sci-
ences 7(2), 223–268 (1984)

17. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

18. Wang, W., Subagdja, B., Tan, A.H., Starzyk, J.A.: A self-organizing approach to
episodic memory modeling. In: Proceedings of International Joint Conference on
Neural Networks, pp. 1–8 (2010)

19. Wang, W., Subagdja, B., Tan, A.H., Starzyk, J.A.: Neural modeling of episodic
memory: Encoding, retrieval, and forgetting. IEEE Transactions on Neural Net-
works and Learning Systems 23(10), 1574–1586 (2012)

Bracketing the Beetle: How Wittgenstein’s

Understanding of Language Can Guide Our
Practice in AGI and Cognitive Science

Simon D. Levy1, Charles Lowney2, William Meroney3, and Ross W. Gayler4

1 Computer Science Department, Washington and Lee University
Lexington Virginia 24450, USA

levys@wlu.edu
2 Philosophy Department, Washington and Lee University

3 United States Environmental Protection Agency
4 Faculty of Humanities and Social Sciences

La Trobe University
Melbourne, VIC, Australia

Abstract. We advocate for a novel connectionist modeling framework
as an answer to a set of challenges to AGI and cognitive science put
forth by classical formal systems approaches. We show how this frame-
work, which we call Vector Symbolic Architectures, or VSAs, is also
the kind of model of mental activity that we arrive at by taking Ludwig
Wittgenstein’s critiques of the philosophy of mind and language seriously.
We conclude by describing how VSA and related architectures provide a
compelling solution to three central problems raised by Wittgenstein in
the Philosophical Investigations regarding rule-following, aspect-seeing,
and the development of a “private” language.

Keywords: Wittgenstein, language-games, connectionism, Vector Sym-
bolic Architectures, Sparse Distributed Memory, Raven’s Progressive
Matrices, Necker Cube.

1 Connectionism and the Classical Approach

The traditional and perhaps still-dominant view of mental activity describes it in
terms of symbols and rules of the sort used in writing predicate calculi or formal
grammars. For example, the concept of romantic jealousy might be described by
a rule

{(X loves Y) and (Y loves Z)} → (X is jealous of Z)

The precise details of the symbols and rules do not much matter; what is
important here is the hypothesis that any physical system that instantiates the
symbols and rules in an explicit, consistent way is a reasonable candidate for
being a model of mind [1]. The brittleness of such rule-based systems and the

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 73–84, 2014.
c© Springer International Publishing Switzerland 2014

74 S.D. Levy et al.

difficulty of scaling them up to real-world problems1 led to the connectionist
(neural network, Parallel Distributed Processing) renaissance of the 1980’s and
90’s, centered around the back-propagation algorithm for training networks with
hidden layers of nodes [3]. PDP advocates cited the “graceful degradation” dis-
played by such systems, in contrast to the all-or-nothing brittleness of rule-based
systems, as evidence in favor of the PDP / connectionist approach. With network
nodes roughly corresponding to nodes and connections to synapses, PDP net-
works also looked to be a promising avenue to showing how cognitive capacities,
such as thought and language, could be based in hidden neural activity.

Researchers favoring connectionist models typically cite the past-tense model
of English verbs [4], which indicated that a single neural network exposed to
representations of the present and past tenses of English verbs could learn both
rule-like patterns (walks/walked) and exceptions (goes/went),without anything
corresponding to an explicit syntactic rule. The word or other form being rep-
resented at any given time was encoded not as an explicit symbol, but in the
“sub-symbolic” state of activations distributed across the hidden (internal) neu-
rons. Such distributed representations [5] offered a number of desirable features,
such as content-addressability and robustness to noise, that were not intuitively
available to classicists.

Advocates of the symbols-and-rules approach were quick to point out the
limitations: although connectionist models showed an impressive ability to learn
both rule-like and exception-based patterns, there was little evidence that they
were capable of modeling the systematic, compositional nature of language and
thought [6]. Without the ability to compose and decompose propositions and
other structures in systematic ways – relating e.g., John loves Mary to Mary
loves John – there was little reason to expect connectionist models to work for
more abstract reasoning as in the jealousy example above. Further, the back-
propagation algorithm used to train the network required explicit supervision
(repeated error-correction by a teacher) in a way that was not consistent with
actual language acquisition, which consists mainly of the experience of positive
exemplars [7]. In addition to concerns about the ability of connectionist networks
to scale up to bigger problem domains, these observations made connectionist
models seem implausible.

2 VSA Representation and Operation

Partly in response to such criticisms, we have spent the past decade or so devel-
oping connectionist models that support the acquisition of systematic, composi-
tional behavior from a small number of positive examples and provide plausible,
scalable models for language and thought.

The general term we use for these models – Vector Symbolic Architecture, or
VSA [8] – describes a class of connectionist networks that use high-dimensional

1 An oft-cited model was SHRDLU [2], which could converse in English about a virtual
world containing children’s toy blocks using a vocabulary of around 50 words, but
was never successfully extended to a more realistic, complicated domain.

Bracketing the Beetle 75

vectors of low-precision numbers to encode systematic, compositional informa-
tion as distributed representations. VSAs can represent complex entities such
as multiple role/filler relations or attribute/values pairs in such a way that ev-
ery entity – no matter how simple or complex – corresponds to a pattern of
activation distributed over all the elements of the vector.

For our purposes in this paper, we make use of three operations on vectors:
an element-wise multiplication operation ⊗ that associates or binds vectors of
the same dimensionality; an element-wise vector-addition operation + that su-
perposes such vectors or adds them to a set; and a permutation operator P ()
that can be used to encode precedence relations.

For example, given a two-place predicate like kisses and the representations of
two individuals John and Mary, one possible way of representing the proposition
that Mary kisses John is

〈kisses〉 ⊗ 〈subject〉 ⊗ 〈Mary〉+ 〈kisses〉 ⊗ 〈object〉 ⊗ 〈John〉
where the angle brackets 〈〉 around an item stand for the vector representation
of that item. If the vector elements are taken from the set {−1,+1}, then each
vector is its own binding inverse.2 Binding and unbinding can therefore both be
performed by the same operator, thanks to its associativity:

X ⊗ (X ⊗ Y) = (X ⊗X)⊗ Y = Y

Because these vector operations are also commutative and distribute over addi-
tion, another interesting property holds: the unbinding operation can be applied
to a set of associations just as easily as it can to a single association:

Y ⊗ (X ⊗ Y +W ⊗ Z) =
Y ⊗X ⊗ Y + Y ⊗W ⊗ Z = X ⊗ Y ⊗ Y + Y ⊗W ⊗ Z =

X + Y ⊗W ⊗ Z

If the vector elements are chosen randomly (e.g., either +1 or -1 chosen by coin
flip), then we can rewrite this equation as

Y ⊗ (X ⊗ Y +W ⊗ Z) = X + noise

where noise is a vector completely dissimilar (having a dot-product or vector
cosine of zero) to any of our original vectors W , X , Y , and Z. If we like, the
noise can be removed through a “cleanup memory,” such as a Hopfield network
[9], that stores the original vectors in a neurally plausible way. In a multiple-
choice setting, the cleanup isn’t even necessary, because we can use the vector
dot-product to find the item having the highest similarity to X + noise.

Going beyond simple associative binding, we can use the permutation oper-
ator to encode directionality or precedence. For example, to encode the simple
directed graph in Figure 1:

2 It may seem dubious to represent predicates or individuals by simple vectors taken
(randomly) from the set {−1,+1}. Our goal here is not to provide a theory of rep-
resentation, but rather to illustrate the basic functioning of VSA, which can in turn
serve as a foundation for a fully fleshed-out representational system of actual vectors
derived through the interaction of sensory-motor processes, linguistics experience,
etc.

76 S.D. Levy et al.

Fig. 1. A simple directed graph

〈G〉 = A⊗ P (B) +A⊗ P (C) +B ⊗ P (D)

Querying the child(ren) of B then corresponds to applying the inverse per-
mutation P−1() to the result of the same product operation:

P−1(B ⊗ 〈G〉) =
P−1(B ⊗ (A⊗ P (B) +A⊗ P (C) +B ⊗ P (D))) =

P−1(B ⊗A⊗ P (B) +B ⊗A⊗ P (C) +B ⊗B ⊗ P (D)) =
P−1(B ⊗A⊗ P (B) +B ⊗A⊗ P (C) + P (D)) =

D + noise

In sum, VSA provides a principled connectionist alternative to classical sym-
bolic systems (e.g., predicate calculus, graph theory) for encoding and manipu-
lating a variety of useful structures. The biggest advantage of VSA representa-
tions over other connectionist approaches is that a single association (or set of
associations) can be quickly recovered from a set (or larger set) of associations
using the same simple operator that creates the associations, in a time that is
independent of the number of associations. VSA thus answers the scalability
problem, and also shows how to build compositionally without using the gram-
matical rules and atomic symbols that classical approaches require. VSA also no
longer needs to rely on back-propagation for learning. We can thus get to the
same phenomenal results we see in language use efficiently, without positing a
deep grammar or logic.

3 VSA and Wittgenstein

Having outlined the details of Vector Symbolic Architectures, we will now argue
for VSA as the kind of AGI framework that accords well with the critiques pre-
sented by Wittgenstein in his Philosophical Investigations [10] and other later
works. As pointed out by several researchers ([11]; [12]; [13]), connectionist net-
works are to the classical approaches of Fodor and Pylyshyn, what Wittgen-
stein’s later philosophy of language was to the formal approaches of Gottlob
Frege and Bertrand Russell. We have shown how VSAs can fulfill the promise of
connectionism by responding to classicist concerns. We will now show how VSAs
coordinate well with several of Wittgenstein’s important observations concerning
meaningful language.

Bracketing the Beetle 77

First, we note that the sub-symbolic content of VSA representations (which
are arbitrary or literally random) accords nicely with the “Beetle in the Box”
metaphor from section 293 of the Investigations :

Suppose everyone had a box with something in it: we call it a “beetle”.
No one can look into anyone else’s box, and everyone says he knows
what a beetle is only by looking at his beetle. – Here it would be quite
possible for everyone to have something different in his box. One might
even imagine such a thing constantly changing. – But suppose the word
“beetle” had a use in these people’s language? – If so it would not be
used as the name of a thing. The thing in the box has no place in the
language-game at all; not even as a something: for the box might even
be empty. – No, one can ’divide through’ by the thing in the box; it
cancels out, whatever it is. That is to say: if we construe the grammar
of the expression of sensation on the model of ’object and designation’
the object drops out of consideration as irrelevant.

Wittgenstein highlights the role of the symbol in linguistic practices. Symbols
commonly do not derive their meaning by directly representing a thing, i.e., by
ostensive definition. The language-game shows us how to use the word meaning-
fully. In other words, the atomic thing can cancel out without loss of meaning.
Indeed, VSAs use of random vectors guarantees that my “beetle,” i.e., any atomic
sensation particular to me and my use of the word, will be different from yours
from the very start. Further, as the concept of beetle evolves in the experience
of an individual or its use by that individual changes in different contexts, the
random vector itself may be “constantly changing.”

Second, we observe that the distributed nature of VSA representations accords
well with Wittgenstein’s notion of “family resemblance” terms. This connection
was noted by Smolensky [14], who described how a “family of distributed pat-
terns” informed the meaning of a word in connectionist models. Mills expanded
on this point [11] and explicitly linked it to Wittgenstein’s critique of essential-
ist concepts and formalisms. Mills notes that connectionist systems reflect the
reliance on overlapping and criss-crossing resemblances and contextual cues for
meaningful word use ([10] #66; [11],139-141).

Mills also notes that Wittgenstein rejects a psycho-physical parallelism ([15],
608-611), and this also accords well with the distributed nature of the symbols
([11], 151, 152). A distributed view of symbols stands in contrast to recent efforts
to localize thought in a particular organ or brain region – the most extreme ver-
sion being the putative “grandmother cell” neuron whose sole job is to recognize
your grandmother [16].

Third, we note that the relation between the symbols does not require the
classical linguistic or propositional form in order to be meaningful. The non-
linguistic nature of the distributed representations employed in VSA carries over
into natural language expressions. As Wittgenstein indicates in the building crew
example at the beginning of the Investigations, it is a mistake to claim that the
utterance “Slab!” really means “Bring me a slab!” ([10] #19). I.e., in order

78 S.D. Levy et al.

for an utterance to be meaningful there is no need for it to fit an underlying
grammatical form that looks like a proposition in predicate calculus. In contrast
to the sentence-like representations employed in traditional symbol systems, in
VSA there is no sense in which any item is located in any grammatical “position.”

Last, we note that the uniform nature of representation in VSA eliminates
the sort of problems that Wittgenstein criticized in Russell’s theory of types and
related formalisms. VSA dispenses with grammatical categories and types. As
early as 1914, Wittgenstein was suspicious of any artificial hierarchical struc-
tures that might be used to designate, from the top-down, when a particular
combination of signs were symbols with sense [17]. The idea that all symbols
are of the same type, coordinates well with VSA representation, which, in turn,
coordinates well with Wittgenstein’s later view: meaningful utterances emerge
from linguistic practices and not from the artificial characterizations we impose
by designating symbols and manipulating them with formal rules.

VSA fits desiderata Wittgenstein established in the Investigations by (1) not
relying on ostension or an atomic identification for symbol meaning, (2) recog-
nizing the distributed and “family resemblance” nature of symbol construction,
(3) not relying on predicate logic or grammatical form for the composition of
meaningful thoughts or sentences, and (4) repudiating different orders or types
for symbols in favor of a more organic approach. Moreover, we will now show how
VSA can solve three interrelated puzzles that Wittgenstein raised in a manner
consistent with his observations.

4 Learning Patterns without Explicit Rule-Following

Wittgenstein had serious reservations about attempts to characterize language
or mental processes using symbols-and-rules methodology ([10] #81; [12] 138).
For Wittgenstein, the productivity of human thought and linguistic behavior is
underdetermined by the rules of logic and grammar. A rule on its own cannot
be properly applied without some sort of training.

Having illustrated the way in which VSA supports compositionality and sys-
tematicity, we now illustrate how it can generalize from exemplars without re-
course to explicit rules. This example is due to Rasmussen and Eliasmith [18],
who show how a VSA-based neural architecture can solve the Raven’s Progres-
sive Matrices task for intelligence testing. In this task, subjects are given a puzzle
like the one in the left side of Figure 2 (simplified for our purposes here) and are
asked to select the missing piece from a set of possibilities like the ones on the
right.

Asked how they arrived at this solution, people might report that they fol-
lowed these two rules:

1. Put one item in the first column, two in the second, and three in the third.
2. Put • in the first row, � in the second, and � in the third.

A compelling feature of VSA is that it can solve this problem using the rep-
resentation of the matrix itself; that is, VSA can (so to speak) learn the rule(s)

Bracketing the Beetle 79

Fig. 2. Raven’s Progressive matrix example (left) and candidate solutions (right)

through exposure to the problem. Each element of the matrix can be represented
as a set of attribute/value pairs; for example, the center element would be

〈shape〉 ⊗ 〈diamond〉+ 〈number〉 ⊗ 〈two〉

Solving the matrix then corresponds to deriving a mapping from one item to
the next. As Rasmussen and Eliasmith show, such a mapping can be obtained
by computing the vector transformation from each item to the item in the row
or column next to it. The overall transformation for the entire matrix is then
the vector sum of such transformations.

Details of our VSA solution to the Raven’s Matrices (a simplified version of
[18]), along with Matlab code for this task and others mentioned in this paper,
are available from tinyurl.com/wittvsa. A similar solution, using a different
kind of VSA encoding, is presented in [19].

5 Seeing-as: Determining Perceptual Experience
in Ambiguous Contexts without Interpretation

The paradox of visually ambiguous figures, or “seeing-that vs. seeing-as,” oc-
cupied Wittgenstein all the way from the Necker cube example in Tractatus
[20] (5.5423) through the duck-rabbit example in the Investigations (II.xi; see
Figure 3), about which he says

I may, then, have seen the duck-rabbit simply as a picture-rabbit from the
first. That is to say, if asked “What’s that?” or “What do you see here?”
I should have replied: “A picture-rabbit”. I should not have answered
the question “What do you see here?” by saying: “Now I am seeing it
as a picture-rabbit”. I should have described my perception: just as if I
had said “I see a red circle over there.”

There is no sense in which we simultaneously perceive one alternative and the
possibility of the other: either the duck or the rabbit must win. Wittgenstein’s
point is that the possibility of interpretation, when the perceptual information
is ambiguous, does not mean that we are interpreting in normal circumstances,
e.g., in the case of seeing just the rabbit. Connectionist approaches show how
the same perceptual process that shows us the red circle can show us the duck
or the rabbit, but not both at the same time.

80 S.D. Levy et al.

Fig. 3. The Duck-Rabbit(courtesy of Wikimedia Commons) and the Necker Cube

Modeling the perception of visually ambiguous images like this was one of the
first accomplishments of the connectionist renaissance of the 1980s. As Rumel-
hart et al. [21] showed, such images could be represented as a network of con-
straints that excited or inhibited each other in a way that drove the network
quickly into one of the possible solutions. For example, in the Necker cube in
Figure 3, the two solutions are (1) PQRS front, TUVW back and (2)) PQRS
back, TUVW front. Rumelhart et al. modeled these constraints as a localist
(“grandmother cell”) neural network each of whose units represented a possible
position of each vertex. They showed that inhibitory or excitatory synaptic con-
nections between pairs of constraints (Pf excites Wb; Rf inhibits Wf), combined
with a simple update rule, are sufficient to drive the entire network quickly into
one of the two consistent yet incompatible solutions.

This excitation / inhibition model provides a nice explanation for Wittgen-
stein’s observation about seeing-as: presented with a set of vertices, the model,
like human observers, cannot help but “see” one global pattern of organization
or another. The network is, however, localist, and as a general model of con-
straint satisfaction it therefore raises the philosophical and practical concerns
expressed earlier. Is it possible to design an excitation / inhibition network that
uses distributed (VSA) representations?

In [22] we provide an example of such a network, and show how it can be
used to solve a Necker-cube-like problem called “graph isomorphism” (optimally
matching up the vertices of two similar shapes). Our solution works by a Bayesian
process that repeatedly updates a candidate solution state x using evidence w,
until x converges to a stable solution. Inhibition of inconsistent solutions by
consistent solutions is implemented by normalizing the values in x to a fixed
interval at the end of every update. This same approach can be used to solve
the Necker Cube. In our Necker Cube program, the candidate solution state
x is initially just the vector sum of the representations of all possible solution
components:

x0 = Pf+Qf+Rf+Sf+Tb+Ub+V b+Wb+Pb+Qb+Rb+Sb+Tf+Uf+Vf+Wf

where the subscripts stand for forward and backward. As usual for VSA, each
term of the sum is a vector of high dimensionality with elements chosen randomly

Bracketing the Beetle 81

from the set {−1,+1}. The constraints (evidence) w can then be represented as
the sum of the pairwise products of mutually-consistent components:

w = Pf ⊗Qf +Pf ⊗Rf +Pf ⊗Sf +Pf ⊗Tb+Pf ⊗Ub+ ...+Wb⊗Ub+Wb⊗Vb

The update of x from w can likewise be implemented by using the binding
(elementwise product) operator ⊗. If any vertex/position vector (e.g. Pf) has
greater representation in x than others do, multiplying this consistency vector w
by the state vector x has the effect of “unlocking” (unbinding) the components
of w consistent with this evidence. As an example, consider the extreme case in
which x contains only the component Pf :

xt ⊗ w =

Pf⊗(Pf⊗Qf+Pf⊗Rf+Pf⊗Sf+Pf⊗Tb+Pf⊗Ub+...+Wb⊗Ub+Wb⊗Vb) =

Qf +Rf + Sf + Tb + Ub + Vb +Wb + noise

6 Boxing the Beetle: The Emergence of Schemata
from Repeated Exposure

VSA and related connectionist technologies support the view of mental processes
that we get by taking Wittgenstein’s critiques seriously. These technologies all
involve (1) representations distributed over high-dimensional vectors of numeri-
cal elements and (2) psychologically plausible learning mechanisms.

Sparse Distributed Memory or SDM [23] is a technology for content-based
storage and retrieval of high-dimensional vector representations like the ones
used in VSA. An SDM consists of some (arbitrary) number of address vectors,
each with a corresponding data vector. Addresses and data can be binary 0/1
values, or +1,-1 values as in VSA. The address values are initially random, and
the data values are initially zero. To enter a new address/data pair into the
SDM, the Hamming distance (count of the elementwise differences) of the new
address vector with each of the existing address vectors is first computed. If the
new address is less than some fixed distance from an existing address, the new
data is added to the existing data at that address. To retrieve the item at a
novel address, a similar comparison is made between the novel address and the
existing addresses, resulting in a set of addresses less than a fixed distance from
the probe. The data vectors at these addresses are summed, and the resulting
vector sum is converted to a vector of 0’s and 1’s (or -1s and +1s) by converting
each non-negative value to 1 and each negative value to 0 (or -1).

As illustrated in [24], the distribution of each pattern across several locations
produces a curious property: given a set of degraded exemplars of a pattern (such
as the pixels for an image with some noise added), an SDM can often reconstruct
the “ideal” form of the pattern through retrieval, even though no exemplar of
this ideal was presented to it. Because of these powerful properties of SDM, our
research group and others (e.g., [19]) have begun to construct models combining

82 S.D. Levy et al.

VSA representations with SDM. For example, the VSA might be used to encode
sequence information (through the binding and permutation operators described
above), and the SDM would then be used as a memory of previously-encountered
sequences. We are currently investigating the use of this architecture as a model
of the encapsulation and chunk extraction that are necessary for the acquisition
of skilled behaviors like language and planning.3

In allowing each address to portray a slight variant of the same concept, SDM
reminds us of the family-resemblance approach to categories in the Investiga-
tions. Moreover, this property of SDM also proposes a solution to the problem
of how we might come to use a particular leaf pattern as a schema for leaves in
general ([10] #47) or how we might come to develop a sign for a particular yet
elusive sensation using experience and memory.

Let us imagine the following case. I want to keep a diary about the
recurrence of a certain sensation. To this end I associate it with the sign
“S” and write this sign in a calendar for every day on which I have the
sensation.—-I will remark first of all that a definition of the sign cannot
be formulated.–But still I can give myself a kind of ostensive definition. –
How? ... in the present case I have no criterion of correctness. ([10]#258)

This remark is meant to support the idea that there can be no language that
ties words directly to private sensations. It emphasizes the need for a background
of reliable cues and uses to be in place before a sign can be meaningful. The
connectionist approach helps explicate the manner in which private experiences
can develop into meaningful uses of language even here when the information is
sparse.

If Wittgenstein is not denying a kind of private language (e.g., the sort that a
Robinson Crusoe could still speak) as insightful readers of the so-called “private
language” argument believe ([26], ch. 10), then we have a riddle in this passage
that distributed representations can solve: just as we saw how a rule could emerge
from linguistic practices, and how a symbol could be determined from possibly
ambiguous perceptual information, we now see how meaning might emerge for
a sign that has a sparse and ambiguous heritage.

This ties directly back into the beetle in the box example. Just as we do not
get the meaning of “beetle” by pointing to an object, we do not get the meaning
of a sensation word by an internal “pointing” to a sensation. There need be no
unique private sensation that the sign “S” captures in order for a meaningful
language containing the sign “S” to get off the ground. Wittgenstein suggests
that one cannot tell, even privately, if one is using the word correctly if there is
nothing but the sensation to rely on; one does not have a grip on the right use
of the term without a context and other behavioral cues that give sense to the
sign [27]. Although SDM works with degraded versions of an original concept or
ideal that it can reconstruct, it can also construct a meaningful representation
from a set of experiences in want of criteria of correctness. What VSA, SDM,

3 Contrast this approach with the state-of-the-art model for such tasks, which relies
on back-propagation for the memory component. [25]

Bracketing the Beetle 83

and the like show here is how an ideal or proper use for the sign can be built up
from the uses of “S” even if the iterations of the “S” tying it to the sensation
were not “correctly” used (from some imagined God’s eye point of view that we
do not have).

Without any external checks to help provide a use for the sign we could not
reliably establish a meaning, but the iterations and their associations, e.g., my
stomach growling and it being around 12 o’clock when I say “S”, can begin to
build a box around the beetle – and then we can bracket the beetle: the private
sensation no longer functions to provide the rule by which I will use the word:
for the purposes of meaningful language, the sensation itself “is not a something,
but not a nothing either!” ([10] #304) And the rule by which I use the word is
established in a network of sub-symbolic connections; it is not fixed permanently,
nor is it a rule of ordinary English grammar, or a rule of Mentalese that such a
grammar purports to approximate. Wittgenstein shows us that we do not always
have a special internal or intentional grip on what the sign means. We cannot
grasp the inner sensation or the outer beetle, nor need we.

Acknoweldgement / Disclaimer. This work was supported in part by a paid
sabbatical leave from Washington and Lee University for Simon D. Levy during
Fall 2013. William Meroney did not contribute to this work as an employee of
the US EPA, and any views he contributed are his alone and do not represent
those of the the United States or the US EPA.

References

[1] Newell, A.: Physical symbol systems. Cognitive Science 4(2), 135–183 (1980)
[2] Winograd, T.: Procedures as a representation for data in a computer program for

understanding natural language. Technical Report 235. MIT, Cambridge (1971)

[3] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

[4] Rumelhart, D.E., McClelland, J.L.: On learning the past tense of english verbs. In:
McClelland, J., Rumelhart, D. (eds.) Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. MIT Press, Cambridge (1986)

[5] Hinton, G.E., McClelland, J., Rumelhart, D.E.: Distributed representations. In:
McClelland, J., Rumelhart, D. (eds.) Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. MIT Press, Cambridge (1986)

[6] Fodor, J., Pylyshyn, Z.W.: Connectionism and cognitive architecture: A critical
analysis. Cognition 28, 371 (1988)

[7] Chomsky, N.: Rules and Representations. Basil Blackwell, Oxford (1980)

[8] Gayler, R.: Vector symbolic architectures answer jackendoff’s challenges for cog-
nitive neuroscience. In: Slezak, P. (ed.) ICCS/ASCS International Conference on
Cognitive Science, CogPrints, Sydney, Australia, pp. 133–138. University of New
South Wales (2003)

[9] Hopfield, J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences of the
USA 79(8), 2554–2558 (1982)

84 S.D. Levy et al.

[10] Wittgenstein, L.: Philosophical Investigations. Basil Blackwell, Oxford (1958);
Trans. G.E.M. Anscombe

[11] Mills, S.: Wittgenstein and connectionism: A significant complementarity? Royal
Institute of Philosophy Supplement 34, 137–157 (1993)

[12] Dror, I., Dascal, M.: Can Wittgenstein help free the mind from rules? In: Johnson,
D., Erneling, C. (eds.) The Philosophical Foundations of Connectionism. Oxford
University Press, Oxford (1997)

[13] Goldstein, L., Slater, H.: Wittgenstein, semantics and connectionism. Philosoph-
ical Investigations 21(4), 293–314 (1998)

[14] Smolensky, P.: 17. In: Connectionism, Constituency, and Language of Thought,
pp. 286–306. Blackwell Publishers (1991)

[15] Wittgenstein, L., Anscombe, G., Wright, G.: Zettel. University of California Press
(1967)

[16] Roy, A.: An extension of the localist representation theory: grandmother cells are
also widely used in the brain. Frontiers in Psychology 4, 1–3 (2013)

[17] Proops, I.: Logical syntax in the Tractatus. In: Gaskin, R. (ed.) Grammar in Early
Twentieth-Century Philosophy. Routledge (2001)

[18] Rasmussen, D., Eliasmith, C.: A neural model of rule generation in inductive
reasoning. Topics in Cognitive Science 3, 140–153 (2011)

[19] Emruli, B., Gayler, R., Sandin, F.: Analogical mapping and inference with binary
spatter codes and sparse distributed memory. In: The 2013 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8 (2013)

[20] Wittgenstein, L.: Tractatus Logico-Philosophicus. Routledge, London (1922,
1981)

[21] Rumelhart, D.E., Smolensky, P., McClelland, J.L., Hinton, G.E.: Schemata and
sequential thought processes in PDP models. In: McClelland, J., Rumelhart, D.
(eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cog-
nition. MIT Press, Cambridge (1986)

[22] Gayler, R., Levy, S.: A distributed basis for analogical mapping. In: Proceedings
of the Second International Analogy Conference. NBU Press (2009)

[23] Kanerva, P.: Sparse Distributed Memory. MIT Press, Cambridge (1988)
[24] Denning, P.J.: Sparse distributed memory. American Scientist (1989)
[25] French, R.M., Addyman, C., Mareschal, D.: Tracx: A recognition-based connec-

tionist framework for sequence segmentation and chunk extraction. Psychological
Review 118(4), 614–636 (2011)

[26] Hintikka, M., Hintikka, J.: Investigating Wittgenstein. B. Blackwell (1986)
[27] Hacker, P.M.S.: The private language argument. In: Dancy, J., Sosa, E. (eds.) A

Companion To Epistemology. B. Blackwell (1993)

Bounded Seed-AGI

Eric Nivel1, Kristinn R. Thórisson1,3, Bas R. Steunebrink2, Haris Dindo4,
Giovanni Pezzulo6, Manuel Rodrı́guez5, Carlos Hernández5, Dimitri Ognibene6,
Jürgen Schmidhuber2, Ricardo Sanz5, Helgi P. Helgason3, and Antonio Chella4

1 Icelandic Institute for Intelligent Machines, IIIM
2 The Swiss AI Lab IDSIA, USI & SUPSI

3 Reykjavik University, CADIA
4 Università degli studi di Palermo, DINFO

5 Universidad Politécnica de Madrid, ASLAB
6 Consiglio Nazionale delle Ricerche, ISTC

Abstract. Four principal features of autonomous control systems are left both
unaddressed and unaddressable by present-day engineering methodologies:
(1) The ability to operate effectively in environments that are only partially known
at design time; (2) A level of generality that allows a system to re-assess and re-
define the fulfillment of its mission in light of unexpected constraints or other un-
foreseen changes in the environment; (3) The ability to operate effectively in en-
vironments of significant complexity; and (4) The ability to degrade gracefully—
how it can continue striving to achieve its main goals when resources become
scarce, or in light of other expected or unexpected constraining factors that im-
pede its progress. We describe new methodological and engineering principles
for addressing these shortcomings, that we have used to design a machine that
becomes increasingly better at behaving in underspecified circumstances, in a
goal-directed way, on the job, by modeling itself and its environment as expe-
rience accumulates. The work provides an architectural blueprint for construct-
ing systems with high levels of operational autonomy in underspecified circum-
stances, starting from only a small amount of designer-specified code—a seed.
Using value-driven dynamic priority scheduling to control the parallel execution
of a vast number of lines of reasoning, the system accumulates increasingly useful
models of its experience, resulting in recursive self-improvement that can be au-
tonomously sustained after the machine leaves the lab, within the boundaries im-
posed by its designers. A prototype system named AERA has been implemented
and demonstrated to learn a complex real-world task—real-time multimodal dia-
logue with humans—by on-line observation. Our work presents solutions to sev-
eral challenges that must be solved for achieving artificial general intelligence.

1 Introduction

Our objective is to design control architectures for autonomous systems meant ulti-
mately to control machinery (like for example robots, power grids, cars, plants, etc.).
All physical systems have limited resources, and the ones we intend to build are no
exception: they have limited computing power, limited memory, and limited time to
fulfill their mission. All physical systems also have limited knowledge about their envi-
ronment and the tasks they have to perform for accomplishing their mission. Wang [3]

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 85–96, 2014.
c© Springer International Publishing Switzerland 2014

86 E. Nivel et al.

merged these two assumptions into one, called AIKR—the assumption of insufficient
knowledge and resources—which then forms the basis of his working definition of intel-
ligence: “To adapt with insufficient knowledge and limited resources.” We have adopted
this definition as one of the anchors of our work, being much in line with Simon’s con-
cept of “bounded rationality” [4]. This perspective means that we cannot expect any
optimal behaviors from our systems since their behaviors will always be constrained by
the amount and reliability of knowledge they can accumulate at any particular point in
time. In other words, we can only expect these systems to display a best effort strategy.

The freedom of action entailed by high levels of autonomy is balanced by hard con-
straints. First, an autonomous system, to be of any value, is functionally bounded by its
mission, which imposes not only the requirements the system has to meet, but also the
constraints it has to respect. Second, to keep the system operating within its functional
boundaries, one has to ensure that some parts of the system will never be rewritten
autonomously—for example, the management of motivations shall be excluded from
rewriting as this would possibly allow the transgression of the constraints imposed by
the designers. In that sense, the system is also bounded, operationally, by its own ar-
chitecture. Last, any implemented system is naturally bounded by the resources (CPU,
time, memory, inputs) and knowledge at its disposal. For these reasons, autonomy, as
we refer to it, shall therefore be understood as bounded autonomy.

We target systems that operate continuously, autonomously, and in real-time in non-
resettable environments. We envision learning to be “always on” and inherent in the
system’s core operation. Due to the complexity of the environment and the unfore-
seeable nature of future events and tasks for the system, we expect not only that pre-
programming of all required operational knowledge will be impossible, but that even
pre-programming of substantial amounts of knowledge will be too costly. Therefore the
system must grow autonomously from a small seed, containing its “drives” (i.e., mission
goals and constraints) and a relatively small amount of knowledge to bootstrap learning.

Unfortunately, none of the methodologies in the AI or CS literature are directly appli-
cable for designing systems of this nature. For this reason we have advocated what we
call a constructivist AI methodology (CAIM; [5,6,7,8,9]). In the main, our constructivist
approach has two key objectives: (a) to achieve bounded recursive self-improvement [1]
and generality and, (b) to uncover the principles for—and to actually build—systems
that, given a small set of seed information, manage the bulk of the bootstrapping work
on their own, in environments and on tasks that may be new and unfamiliar.

The rest of this paper describes AERA [1]: its design principles (sec. 2) to match
the reality described above, its core operation (sec. 3), its methods of acquiring and
representing knowledge and skills (sec. 4), and the first experimental results (sec. 5).

2 Design Principles

As we cannot assume guarantees for system down-time (after all, we are targeting high
levels of operational autonomy), all activities of the system, from low-level (for exam-
ple, prediction, sub-goaling) to high-level (like learning and planning), must be per-
formed in real-time, concurrently, and continuously. Moreover, we need these activities
to be executed in a way that is flexible enough to allow the system to dynamically

Bounded Seed-AGI 87

(re-)allocate its resources depending on the urgency of the situation it faces at any point
in time (with regards to its own goals and constraints), based on the availability of these
same resources, over which it may not have complete (or any) control. The approach
we chose is to break all activities down into fine-grained elementary reasoning pro-
cesses that are commensurable both in terms of execution time and scheduling. These
reasoning processes are the execution of various kinds of inference programs, and they
represent the bulk of the computing. These programs are expected to be numerous and
this calls for an architecture capable of handling massive amounts of parallel jobs.

A running AERA system faces three main challenges: (1) To update and revise its
knowledge based on its experience, (2) to cope with its resource limitation while mak-
ing decisions to satisfy its drives, and (3) to focus its attention on the most important
inputs, discarding the rest or saving them for later processing. These three challenges
are commonly addressed by, respectively, learning, planning, and controlling the atten-
tion of the system. Notice that all of these activities have an associated cost, have to
be carried out concurrently, and must fit into the resource- and knowledge budget the
system has at its disposal. That is the reason why they have been designed to result from
the fine-grained interoperation of a multitude of lower-level jobs, the ordering of which
is enforced by a scheduling strategy. This strategy has been designed to get the maximal
global value for the system from the available inputs, knowledge, and resources, given
(potentially conflicting) necessities.

We emphasize that AERA has no sub-components called “learning” or “planner” and
so on. Instead, learning, planning, and attention are emergent processes that result from
the same set of low-level processes: These are essentially the parallel execution of fine-
grained jobs and are thus reusable and shared system-wide, collectively implementing
functions that span across the entire scope of the system’s operation in its environment.
High-level processes (like planning and learning) influence each other: For example,
learning better models and sequences thereof improves planning; reciprocally, having
good plans also means that a system will direct its attention to more (goal-)relevant
states, and this means in turn that learning is more likely to be focused on changes that
impact the system’s mission, possibly increasing its chances of success. These high-
level processes are dynamically coupled, as they both result from the execution of the
same knowledge.

A system must know what it is doing, when, and at what cost. Enforcing the produc-
tion of explicit traces of the system’s operation allows building models of its operation,
which is needed for self-control (also called meta-control). In that respect, the func-
tional architecture we seek shall be applicable to itself, i.e., a meta-control system for
the system shall be implementable the same way the system is implemented to control
itself in a domain. This principle is a prerequisite for integrated cognitive control [10].

Knowledge is composed of states (be they past, present, predicted, desired or hypo-
thetical) and of executable code, called models. Models are capable of generating such
knowledge (e.g., generating predictions, hypotheses or goals) and are executed by a
virtual machine—in the case of AERA, its executive.

Models have a low granularity for two main reasons. First, it is easier to add and
replace small models than larger ones because the impact of their addition or replace-
ment in the architecture will be less than replacement of large models. In other words,

88 E. Nivel et al.

low model granularity is aimed at preserving system plasticity, supporting the capabil-
ity of implementing small, incremental changes in the system. Second, low granularity
helps compositionality and reuse; small models can only implement limited low-level
functions and, if abstract enough, are more likely to be useful for implementing several
higher-level functions than coarser models that implement one or more such high-level
functions in one big atomic block. We have referred to this elsewhere as the principle
of pee-wee granularity [6,8,11].

We also need the knowledge to be uniform, that is, encoded using one single scheme
regardless of the particular data semantics. This helps to allow execution, planning, and
learning algorithms to be both general and commensurate in resource usage. Represent-
ing time at several temporal scales, from the smallest levels of individual operations
(e.g., producing a prediction) to a collective operation (e.g., achieving a mission) is an
essential requirement for a system that must (a) perform in the real world and (b) model
its own operation with regards to its expenditure of resources (as these include time).
Considering time values as intervals allows encoding the variable precisions and accu-
racies needed to deal with the real world. For example, sensors do not always perform
at fixed frame rates and so modeling their operation may be critical to ensure reliable
operation of their controllers and models that depend on their input. Also, the precision
for goals and predictions may vary considerably depending on both their time horizons
and semantics. Last, since acquired knowledge can never be certain, one can assume
that “truth”—asserting that a particular fact holds—can only be established for some
limited time, and for varying degrees of temporal uncertainty. Thanks to the executable
nature of AERA’s models, knowledge and skills have a unified representation.

3 Attention and Scheduling

A cornerstone of our approach is that cognitive control results from the continual value-
driven scheduling of reasoning jobs. According to this view, high-level cognitive pro-
cesses are grounded directly in the core operation of the machine resulting from two
complementary control schemes. The first is top-down: Scheduling allocates resources
by estimating the global value of the jobs at hand, and this judgment results directly
from the products of cognition—goals and predictions. These are relevant and accu-
rate to various extents, depending on the quality of the knowledge accumulated so far.
As the latter improves over time, goals and predictions become more relevant and ac-
curate, thus allowing the system to allocate its resources with a better judgment; the
most important goals and the most useful/accurate predictions are considered first, the
rest being saved for later processing or even discarded, thus saving resources. In that
sense, cognition controls resource allocation. The second control scheme is bottom-up:
Resource allocation controls cognition. Shall resources become scarce (which is pretty
much always the case in our targeted system–environment–mission triples), scheduling
narrows down the system’s attention to the most important goals/predictions the sys-
tem can handle, trading scope for efficiency and therefore survivability—the system
will only pay attention to the most promising (value-wise) inputs and inference possi-
bilities. Reciprocally, shall the resources become more abundant, the system will start
considering goals and predictions that are of less immediate value, thus opening up
possibilities for learning and improvement—in the future even curiosity [2].

Bounded Seed-AGI 89

Technically, a job in AERA is a request for processing one input by one program
(e.g., a model). All jobs (e.g., forward and backward chaining, explained in the next
section) are assigned a priority that governs the point(s) in time when they may be ex-
ecuted. Jobs are small and uninterruptible, but might get delayed and even eventually
discarded if they become irrelevant. Jobs’ priorities are continually updated, thus al-
lowing high-value new jobs to get executed before less important jobs, and old jobs to
become more valuable than newer ones as new evidence constantly accumulates.1 Thus
a job priority depends on the utility value of the program and the expected value of the
input. Value-driven scheduling stands at the very heart of our design and underpins our
aim of looped-back adaptation and cognition. For detailed explanations of how exactly
value, urgency, and priority are calculated in AERA, we refer interested readers to [1].

4 Model-Based Knowledge and Skill Representation

AERA is data-driven, meaning that the execution of code is triggered by matching pat-
terns with inputs. Code refers to models (which constitute executable knowledge), that
have either been given (as part of the bootstrap code) or learned by the system. A model
encodes procedural knowledge in the form of a causal relationship between two terms.
A model is built from two patterns, left-hand (LT) and right-hand (RT), both possi-
bly containing variables. When an instance of the left-hand pattern is observed, then
a prediction patterned after the right-hand pattern is produced. Reciprocally, when an
instance of the right-hand pattern is observed (such an instance being a goal), then a
sub-goal patterned after the left-hand pattern is produced. Additionally, when an input
(other than a goal or a prediction) matches a RT, an assumption is produced, patterned
after the LT. Notice that multiple instances of both forward and backward execution can
be performed concurrently by a given model, i.e., a model can produce several predic-
tions from several different inputs while producing several goals and assumptions, from
several other inputs at the same time. Models also contain two sets of equations, called
guards. These are equations meant to assign values to variables featured in the out-
put, from the values held by variables in the input. One set of guards supports forward
execution, whereas the other one supports backward execution. In our current imple-
mentation, guards are restricted to linear functions. Models form the very core of an
AERA system and their operation is detailed in the next subsections.

Our approach to knowledge representation has its roots in a non-axiomatic term
logic. This logic is non-axiomatic in the sense that knowledge is established on the
basis of a system’s experience; that is, truth is not absolute but rather established to a
certain degree and within a certain time interval. In our approach the simplest term thus
encodes an observation, and is called a fact (or a counter-fact indicating the absence of
an observation). Terms, including facts, serve as input for (are matched against) the left-
hand and right-hand patterns of models. A fact carries a payload (the observed event),

1 It is worth noting that some jobs may get delayed repeatedly until their priority drops down
to insignificant numbers (for example when the urgency of a goal becomes zero, i.e., when its
deadline has expired) and eventually get cancelled. This is likely to happen in situations where
either the CPU power becomes scarce or the number of jobs exceeds the available computing
power—which is the expected fate of any system limited in both knowledge and resources.

90 E. Nivel et al.

a likelihood value in [0, 1] indicating the degree to which the fact has been ascertained
and a time interval in microseconds—the period within which the fact is believed to
hold (or, in the case of a counter-fact, the period during which the payload has not been
observed). Facts have a limited life span, corresponding to the upper bound of their time
interval. Payloads are terms of various types, some of which are built in the executive,
the most important of these being atomic state, composite state, prediction, goal, com-
mand to I/O, model, success/failure, and performance measurement. Additionally, any
type can be defined by the programmer, and new types can be created by I/O devices at
runtime. A composite state is essentially a conjunction of several facts, including facts
whose payloads are instances of other composite states, thus allowing the creation of
structural hierarchies. A composite state is a program with several input patterns, one
per fact. Like models, composite states produce forward and backward chaining jobs
(explained in the next subsection) when paired with some inputs.

4.1 Chaining and Hierarchy

Motivated by drives, models produce sub-goals when super-goals match their right-
hand pattern, and these sub-goals in turn match other models’ right-hand pattern until a
sub-goal produces a command for execution by I/O devices. In parallel to this top-down
flow of data, the hierarchy of models is traversed by a bottom-up data flow, originating
from inputs sensed by the I/O devices that match the left-hand patterns of models, to
produce predictions that in turn match other models’ left-hand patterns and produce
more predictions. These bottom-up and top-down flows are referred to as forward and
backward chaining, respectively.

Whenever a model produces a prediction, the executive also produces a correspond-
ing instantiated model: This is a term containing a reference to the model in question,
a reference to the input that matched its LT and a reference to the resulting prediction.
Such a reflection of operation constitutes a first-class input—i.e., an observable of the
system’s own operation—which is, as any other input, eligible for abstraction (by re-
placing values with variables bound together by guards) thus yielding a pattern that can
be embedded in a model.

When a model M0 features such an instantiated model M1 as its LT then, in essence,
M0 specifies a post-condition on the execution of M1, i.e., M0 predicts an outcome
that is entailed by the execution of M1. In case the LT is a counter-evidence of a
model’s execution (meaning that the model failed to execute because despite having
matched an input, its pre-conditions were not met—pre-conditions are explained im-
mediately here below), the post-condition is referred to as a negative post-condition,
positive otherwise. Symmetrically, when a model M0 features an instantiated model
M1 as its RT, M0 essentially specifies a pre-condition on the execution of M1, i.e.,
when a condition is matched (LT of M0), M0 predicts the success or failure of the ex-
ecution of target model M1. More specifically, what a pre-condition means is “if the
target model executes, it will succeed (or fail).” In case the RT is a counter-evidence of
a model’s successful execution (predicted failure), the pre-condition is referred to as a
negative pre-condition, positive otherwise. Control with pre-conditions consists of en-
suring that all negative pre-conditions and at least one positive one are satisfied before
deciding to let the controlled model operate. This decision is made automatically by the

Bounded Seed-AGI 91

executive by comparing the greatest likelihood of the negative pre-conditions to the
greatest likelihood of the positive ones.

Planning concerns observing desired inputs (the states specified by goals) by acting
on the environment (i.e., issuing commands) to achieve goals in due time in adversarial
conditions, like for example the lack of appropriate models, under-performing models,
conflicting or redundant goals, and lack of relevant inputs. Planning is initiated and sus-
tained by the regular injection of drives (as defined by the programmer), thus putting the
system under constant pressure from both its drives and its inputs. In our approach, sub-
goals derived from goals are simulated, meaning that as long as time allows, the system
will run “what if” scenarios to predict the outcome of the hypothetical success of these
simulated goals, checking for conflicts and redundancies, eventually committing to the
best goals found so far and discarding other contenders. Here again, goals are rated with
respect to their expected value. Simulation and commitment operate concurrently with
(and also make direct use of) forward and backward chaining.

4.2 Learning

Learning involves several phases: acquiring new models, evaluating the performance of
existing ones, and controlling the learning activity itself. Acquiring new models is re-
ferred to as pattern extraction, and consists of the identification of causal relationships
between input pairs: inputs which exhibit correlation are turned into patterns and used
as the LT and RT of a new model. Model acquisition is triggered by either the unpre-
dicted success of a goal or the failure of a prediction. In both cases AERA will consider
the unpredicted outcome as the RT of new models and explore buffers of historical
inputs to find suitable LTs. Once models have been produced, the system has to mon-
itor their performance (a) to identify and delete unreliable models and, (b) to update
the reliability as this control value is essential for scheduling. Both these activities—
model acquisition and revision—have an associated cost, and the system must allocate
its limited resources to the jobs from which it expects the most value. Last but not least,
the system is enticed to learn, based on its experience, about its progress in modeling
inputs. The system computes and maintains the history of the success rate for classes
of goals and predictions, and the priority of jobs dedicated to acquire new models is
proportional to the first derivative of this success rate.

A pattern extractor is a program that is generated dynamically upon the creation of
a goal or a prediction. Its main activity is to produce models, i.e., explanations for the
unpredicted success of a goal or the failure of a prediction. A single targeted pattern
extractor (TPX) is responsible for attempting to explain either the success of one given
goal, or the failure of one given prediction. Said goal or prediction is called the TPX’s
target. Under our assumption of insufficient knowledge, explaining in this case is much
closer to guessing than to proving, and guesses are based on the general heuristic “time
precedence indicates causality.” Models thus built by the TPXs are added to the memory
and are subjected to evaluation by other programs called prediction monitors. So their
life cycle is governed essentially by their performance.

A TPX accumulates inputs from the target production time until the deadline of the
target, at which time it analyses its buffer to produce models if needed: The TPX activity
is thus composed of two phases, (a) buffering relevant inputs and, (b) extracting models

92 E. Nivel et al.

from the buffer. At the deadline of the target, buffering stops, and the buffer is analyzed
as follows, when the target is a goal (similarly for predictions, see below):

1. If one input is the trace of the execution of one model that predicted the goal’s
target state, abort—this means that the success was already predicted.

2. Remove any inputs that triggered any model execution.
3. Remove any inputs that were assembled in composite states.
4. Reorder the buffer according to the early deadlines of the inputs.
5. For each input remaining in the buffer create a TPX-extraction job, the purpose of

which is to assemble a new model from the input and the target.

Shall the target be a prediction, on the other hand, step 1 would be:

1. If one input is the trace of the execution of one model that predicted a counter-
evidence of the prediction’s target state, abort, as the failure was already predicted.

Reaching step 5 triggers the second phase of TPX activity, where models are built
from inputs found in the buffer. The construction of a new model is performed—by a
TPX-extraction job—as follows, when the target is a goal:

1. The target is abstracted (meaning replacing values by variables) and forms the RT
of a new model (let’s call it M0). If the input assigned to the TPX-extraction job is
synchronized with other inputs (that is, if their time intervals overlap), then all these
inputs are assembled into a single new composite state: this new state is chosen as
the LT of the model. Otherwise, the input is abstracted and forms the LT of the
model. Notice that new states are identified when their parts are needed for the
models being built (instead of resulting from blind temporal correlation): Using
composite states as models’ LT instead of just atomic states fosters the building of
structural hierarchies.

2. If, in a model, some variables in the RT (or in the LT) are not present in the LT (or
in the RT), then the job attempts to build guards to bind these to known variables;
otherwise, stop.

3. If some variables in a model are still not bound, then if the buffer is still not ex-
hausted, goto step 4; otherwise, goto step 5.

4. The job considers the next older input to build another model (M1) whose RT is
an instance of M0; the unbounded variables in M0 are passed from M1 to M0

as parameters of M0. The execution of M1 allows the execution of M0: M1 is a
positive pre-condition on M0. Goto step 2.

5. All models are deleted that hold variables representing deadlines that are unac-
counted for, i.e., variables that cannot be computed neither from the LT or RT, nor
from the model’s parameters list. These models are deleted since they would pro-
duce predictions with unbound deadlines, i.e., predictions that cannot be monitored.

As with TPX-accumulation jobs, the priority of a TPX-extraction job is a function
of the utility of the model that produced its target and of the incentive of learning said
target. It also depends on a decay function.

4.3 Rating

In addition to the prioritization strategy, we use two ancillary control mechanisms.
These come in the form of two thresholds, one on the likelihood of terms, the other

Bounded Seed-AGI 93

on the reliability of models. When a term’s likelihood gets under the first threshold,
it becomes ineligible as a possible input for pattern matching; reciprocally, when the
reliability of a model gets under the second threshold, it cannot process any input—it
is deactivated until said second threshold is increased. These thresholds are a filtering
mechanism that operates before priorities are computed (the precise operation of these
is beyond the scope of the present paper). If the reliability of a model drops below a
threshold THR1 then it is phased out: In this mode the model can only create forward
chaining jobs and produce silent predictions that will not be eligible inputs to the regular
models (i.e., models that are not phased out). Silent predictions are still monitored, thus
giving the possibility to improve to a model that was recently getting unreliable. If the
reliability of a phased out model gets above THR1, then it is not phased out anymore
and resumes its standard operation. When the reliability of a phased out model drops be-
low a second threshold THR2 (< THR1), the model is deleted as are all the programs
that were created to manage its productions; the corresponding jobs are cancelled.

4.4 Reflection

Each time a model predicts, the executive produces a new term, called an instantiated
model, that references the input, the output, and the model itself. An instantiated model
is thus a trace of the execution of a model and, being the payload of a fact, constitutes an
(internal) input for the system and can be the target of learning, leading to self-modeling.

Even though self-modeling for meta-control has not been leveraged in our demon-
strator (described in sec. 5), this functionality has been implemented and is operational.
As we have argued before [2,6] such functionality is a necessity for a developmental
system poised to adapt and make the best use of its resources. With it a system can, for
example, model the ways it routinely adopts for achieving some particular goals: This
consists of modeling sequences of model execution—these are observable in the form
of internal inputs—and, by design, can be modeled using the existing learning mecha-
nisms. The benefit of modeling sequences of execution can be, among others, to enable
the system to compile such sequences so as to replace a set of models, which normally
have to be interpreted by the executive, with a faster (but also more rigid) equivalent na-
tive machine code. Thus self-compilation supports a lower-level re-encoding of useful
and reliable knowledge, which we expect will increase the scalability of AERA.

5 Experimental Results and Conclusion
To evaluate our system we let an AERA agent, S1, observe two humans interact in a
simulated TV interview, and gave it the task to learn how to conduct the interaction in
exactly the same way as the humans do it, in both roles of interviewer or interviewee.
The initial seed knowledge given to S1 is represented as a small set of lowest-level end-
effector (“move”) commands and categories of sensory data, along with a few top-level
goals (e.g., “pleasing the interviewer”—operationally defined as the interviewer saying
“thank you”). A very detailed, full specification and analysis of this experiment can be
found in [1]; for a full description of the seed, see [13].

The system observed real-time interaction between two humans in the simulated
equivalent of a videoconference: The humans are represented as avatars in a virtual en-
vironment—each human sees the other as an avatar on their screen. Their head and arm

94 E. Nivel et al.

movements are tracked with motion-sensing technology, their speech recorded with
microphones. Signals from the motion-tracking are used to update the state of their
avatars in real-time, so that everything one human does is translated virtually instantly
into movements of her graphical avatar on the other’s screen. Between the avatars is a
desk with objects on it, visible to both participants. One human is assigned the role of
an interviewer, the other the role of an interviewee; the goal of their interaction is to
have a collaborative dialogue involving the objects in front of them.

The data produced during their interaction is represented as follows. Body move-
ments are represented as coordinate changes of labeled body parts of the avatars. Each
audio signal is piped to two processes: an instance of a speech recognizer (Microsoft
SAPI 5.3), whose output is augmented with word timestamps (accuracy ±100ms or
better). Prosodica [12] produces time-stamped sound/silence boundaries (accuracy 16–
32ms) and F0 contour (at 6Hz; approximate accuracy 40ms). The described input data
is streamed to S1 in real-time.

The task assigned to the two humans is for the interviewer to ask the interviewee
about the cost and benefits of recycling the various objects on the table between them—
a plastic bottle, a glass bottle, a painted wooden cube, a newspaper, a cardboard box,
and an aluminum can—and for the interviewee to reply to questions with informative
but not excessively long sentences. The vocabulary used contains 100 words. Sentence
structures were not scripted and turned out to be reasonably complex; for example, a
question uttered by the humans was “Which requires more energy when recycled, a
can of aluminum or a plastic bottle?”, to which the answer given in one instance was
“More energy is needed to recycle a plastic bottle than a can of aluminum.” In addition,
co-verbal multimodal deictics were used to refer to objects (picking up an object and
uttering “Tell me about this.”, gesturing towards an object or explicitly pointing when
saying “What is that?”, etc.). Testing was done when S1 could perform in either role,
by having S1 take control of either avatar and conduct the interaction in an identical
manner, in the role of interviewer or interviewee. The system was run on a desktop with
a Core i7-3930K CPU and 8 GB RAM.

The result was that S1 learned everything it observed in the human-human inter-
actions that was necessary to conduct a similarly accurate and effective interaction in
real-time with a human. After approximately 20 hours of observing humans interact,
the socio-communicative repertoire acquired autonomously by S1—none of which was
provided to S1 a priori—consists of:

– Correct sentence construction, correct word order. Learned to sequentialize utter-
ances, despite having the capability of saying multiple things in parallel.

– Effective and appropriate manual and head deictics: gesturing towards an object
being talked about at the right time, directing head towards an object mentioned
or pointed. S1 modeled the relationship between deictics and utterances (e.g., how
“that” is used with pointing gestures)—an example of learned structural hierarchy
(in the form of composite states).

– Disambiguation of definitive article “the,” pronouns like “it,” and demonstratives
“this” and “that” (as in “What else can you tell me about the bottle?”, even when
there is more than one such object, or “Tell me more about it / this.”): they have
been learned to identify the object that draws the most attention (in terms of job

Bounded Seed-AGI 95

priority), i.e., the target of the most valuable goals—an example of value-driven
resource allocation steering cognition and vice-versa.

– Appropriate response generation; content-relevant answers (as interviewee) and se-
quence of questions (as interviewer).

– Proper multimodal coordination in both interpretation and production, at multiple
timescales (interview, utterance, and sub-utterance levels).

– Proper multimodal learning: the same (emergent) learning mechanism is applicable
to all modalities and at different time scales. This provides some evidence that
AERA’s core operation is domain-independent.

– Turn-taking skills (avoiding overlaps, avoiding long pauses), and utterance produc-
tion; presentation of content (answer/question) at appropriate times with regard to
the other’s behavior.

– Interview skills—doing the interview from first question to last question. Using inter-
ruption to keep to a time limit: S1 as interviewer will interrupt the human interviewee
only when it predicts that, given current answer lengths, time may run short.

The results from the experiment show without doubt that S1 correctly acquired and
mastered correct usage of all communication methods used by the human interviewer
and interviewee in the human-human condition when conversing about the recycling
of the various objects’ materials. The complete absence of errors in S1’s behaviors,
after the observation periods in both conditions, demonstrate that very reliable models
have been acquired, and that these form a hierarchy spanning at least two orders of
magnitude in time. These models correctly represent the generalized relationships of a
non-trivial number of entities, knowledge which had not been provided to the system
beforehand by its designers, and which was acquired entirely autonomously, given only
the bootstrap seed initially provided.

The tasks in the experiment require S1 to learn and abstract temporal sequences of
continuous events (utterances and multimodal behavior), as well as logical sequences
and relationships (word sequences in sentences, meaning of words and gestures) be-
tween a number of observed data. These were acquired through a method of general-
ization using induction, abduction, and deduction, allowing S1 to respond in real-time
situations that differ from what it has seen before. As the humans participating in these
experiments were not trained actors, and did not follow a script, other than limiting
their vocabulary and action repertoire as described above, there is good reason to be-
lieve that the skills thus learned by S1 generalize to a wider audience. However, the aim
of this work was not specifically to build a control system that can interact with people,
but rather to create a system with a demonstrated ability to learn complicated tasks—
human multimodal interaction of course being an excellent example of a domain with
great complexity and variety in input, and one that is highly temporal, as in fact the vast
majority of all real-world tasks are.

We have demonstrated an implemented architecture that can learn autonomously
many things in parallel, at multiple time scales. The results show that AERA can learn
complex multi-dimensional tasks from observation, while provided only with a small
ontology, a few drives (high-level goals), and a few initial models, from which it can
autonomously bootstrap its own development. This is initial evidence that our construc-
tivist methodology is a way for escaping the constraints of current computer science

96 E. Nivel et al.

and engineering methodologies. Human dialogue is an excellent example of the kinds
of complex tasks current systems are incapable of handling autonomously. The fact that
no difference of any importance can be seen in the performance between S1 and the hu-
mans in simulated face-to-face interview is an indication that the resulting architecture
holds significant potential for further advances.

Acknowledgments. This work has been supported in part by the EU-funded projects
HUMANOBS: Humanoids that Learn Socio-Communicative Skills through Observa-
tion (FP7-STREP-231453, www.humanobs.org) and Nascence (FP7-ICT-317662), as
well as SNF grant #200020-138219 and a competitive Strategic Research Programme
grant for Centres of Excellence & Research Clusters from the Research and Technology
Policy Council of Iceland (#093020012, www.iiim.is).

References

1. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodrı́guez, M.,
Hernández, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A.,
Jonsson, G.K.: Bounded Recursive Self-Improvement. Tech. Rep. RUTR-SCS13006,
Reykjavik University (2013), http://arxiv.org/abs/1312.6764

2. Steunebrink, B.R., Koutnı́k, J., Thórisson, K.R., Nivel, E., Schmidhuber, J.: Resource-
Bounded Machines are Motivated to be Efficient, Effective, and Curious. In: Kühnberger,
K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS, vol. 7999, pp. 119–129. Springer,
Heidelberg (2013)

3. Wang, P.: The Assumptions on Knowledge and Resources in Models of Rationality. Interna-
tional Journal of Machine Consciousness 3(1), 193–218 (2011)

4. Simon, H.: A Behavioral Model of Rational Choice. In: Models of Man, Social and Rational:
Mathematical Essays on Rational Human Behavior in a Social Setting. Wiley, NY (1957)

5. Thórisson, K.R.: Methodology Matters: Constructionism Challenged, Constructivism Chal-
lenges (forthcoming)

6. Thórisson, K.R.: A New Constructivist AI: From Manual Construction to Self-Constructive
Systems. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of Artificial General In-
telligence. Atlantis Thinking Machines, vol. 4, pp. 145–171 (2012)

7. Thórisson, K.R.: From Constructionist to Constructivist A.I. Keynote, AAAI Fall Sympo-
sium Series – Biologically Inspired Cognitive Architectures, Washington D.C., November
5-7, 175-183. AAAI Tech Report FS-09-01. AAAI Press, Menlo Park, CA (2009)

8. Nivel, E., Thórisson, K.R.: Self-Programming: Operationalizing Autonomy. In: Proceedings
of the Second Conference on Artificial General Intelligence (2009)

9. Thórisson, K.R., Nivel, E.: Holistic Intelligence: Transversal Skills and Current Methodolo-
gies. In: Proc. of the 2nd Conf. on Artificial General Intelligence (AGI 2009), pp. 220–221
(2009)

10. Sanz, R., Hernández, C.: Towards Architectural Foundations for Cognitive Self-Aware Sys-
tems. In: Chella, A., Pirrone, R., Sorbello, R., Jóhannsdóttir, K.R. (eds.) Biologically Inspired
Cognitive Architectures 2012. AISC, vol. 196, p. 53. Springer, Heidelberg (2013)

11. Thórisson, K.R., Nivel, E.: Achieving Artificial General Intelligence Through Peewee Gran-
ularity. In: Proc. of the 2nd Conf. on Artificial General Intelligence (AGI 2009), pp. 222–223
(2009)

12. Nivel, E., Thórisson, K.R.: Prosodica Real-Time Prosody Tracker. Reykjavik University
School of Computer Science Technical Report RUTR08002 (2008)

13. Nivel, E., Thórisson, K.R.: Seed Specification for AERA S1 in Experiments 1 & 2. Reykjavik
University School of Computer Science Technical Report, RUTR-SCS13005 (2013)

http://arxiv.org/abs/1312.6764

The Multi-slot Framework:
A Formal Model for Multiple, Copiable AIs

Laurent Orseau

AgroParisTech, UMR 518 MIA, F-75005 Paris, France
INRA, UMR 518 MIA, F-75005 Paris, France

laurent.orseau@agroparistech.fr

Abstract. Because advanced AI is likely in the future, so is the pos-
sibility of multiple advanced AIs. It is therefore also likely that such
advanced AIs will be implemented in software that can be copied from
hardware to hardware. The best existing theoretical framework for the
rigorous formal treatment and prediction of such AIs are those based on
the AIXI framework developed by Hutter [2]. Unfortunately, these single-
agent frameworks do not allow formal treatment of multiple co-existing
AIs. The current paper introduces a novel “multi-slot” framework for
dealing with multiple intelligent agents, each of which can be duplicated
or deleted at each step, in arbitrarily complex environments. The frame-
work is a foundational first step in the analysis of environments that
allow creation (by copying) and deletion of multiple agents. Even by fo-
cusing on the case where the agents do not interact, the notion of future
of an agent is not straightforward anymore, so we propose several such
definitions, leading to value functions and AIXI-like agents. Finally, the
framework is shown to be sufficiently general to allow for the existence
of a universal environment that can simulate all environments in paral-
lel. A companion paper uses the multi-slot framework presented here to
explore the notion of identity in man and machine.

Keywords: Universal AI, AIXI, multi-agent.

1 Introduction

In the traditional agency framework [13], a single agent interacts with an envi-
ronment by outputting an action and receiving an observation at each discrete
time step. A reinforcement learning agent [17] can extract a reward from the
observation. In this framework, the universal reinforcement learning agent AIXI
is the optimal learning agent that chooses its actions so as to maximize its future
expected reward [2], in all computable environments. Although this framework
is very general and well sufficient for almost all practical purposes, it still relies
on some strong assumptions, and we have already considered elsewhere relaxing
some of these constraints, for example when agents can modify themselves [14,8],
can be modified by the environment [12,9] or even be computed by it [10].

In this paper, we present a novel framework that is more general than the tra-
ditional one (but less, for simplicity, than the space-time embedded intelligence

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 97–108, 2014.
c© Springer International Publishing Switzerland 2014

98 L. Orseau

one [10]), where optimally intelligent agents can be duplicated and deleted by
the environment. We call it the multi-slot agency framework, as agents are placed
in slots, which can be thought of for now as robotic bodies or computer hard-
ware. This is similar to a multi-agent framework [1] and could be used as such
but, instead of focusing on the interactions between agents, which is difficult at
best with universal agents [3], we provide a specialization of the framework to
explicitly prevent interaction, so as to be able to provide formal results. What
matters is that agents can make decisions regarding being copied or deleted.

This new framework is initially motivated by questions about personal iden-
tity, in particular the relation between information content and the hardware
that supports it [11]: If a person is teleported by a device that scans and dis-
assembles the person’s body, transfers the information at the speed of light to
a distant place where it entirely reassembles the same body, is it the same per-
son? Some related thought experiments about the identity problem are treated
formally in the companion paper [7], based on the framework presented here.

In the present paper, we focus on the definition of the framework and of the
corresponding optimal reinforcement learning agents. However, there does not
seem to be a single straightforward definition of the value functions: Indeed, in
the traditional agency framework, there is no ambiguity as to what the future
observations of the agent are. But what if the agent can be transfered or even
copied to different locations? What or where are its future observations? How
to take them into account in the definition of the optimal agents? We provide
several plausible definitions of optimal agents, based either on the location of the
agent or on the set of its copies. We believe this new framework is general enough
to consider a wide range of new situations that are difficult or even impossible
to consider in the traditional framework.

In the next section, the notation is introduced along with a quick exposure
of the background on universal reinforcement learning agents. In section 3, the
multi-slot framework is defined. In section 4, a few possible definitions of value
functions are proposed. In section 5 we define a particular environment, that has
the property of being able to simulate all computable traditional environments.
Finally, we conclude with some remarks.

2 Notation and Background

The paper recognizes the following notational conventions. At time step t each
agent outputs action at ∈ A to the environment, which returns observation
ot ∈ O to the agent, from which a reward r(ot) can be extracted. An interaction
history pair is denoted ht = atot with ht ∈ H := O × A. The sequence of all
actions up to time t is written a1:t = a1a2 . . . at, while the sequence a1:t−1 is
sometimes written a≺t, and similarly for other sequences like h≺t. The empty
sequence is denoted λ. Tuples are notated with angle brackets, such as 〈a, b〉.
Boolean values are written B := {0, 1}, where 1 signifies true when a truth-value
is implied.

The Multi-slot Framework 99

AIMU and AIXI [2]. A stochastic environment ν assigns a probability ν(o≺t|a≺t)
to an observation history o≺t given the history of actions a≺t of the agent.1 For
notational convenience, we will write ν(h≺t) ≡ ν(o≺t|a≺t), but keep in mind that
environments do not assign probabilities to actions. A policy π ∈ Π : H∗ → A
produces an action given an interaction history: at = π(h≺t). The value of a
policy π in an environment μ (with an optional action) is given by:

V π
μ (h≺t) := V π

μ (h≺t, π(h≺t)) , (1)

V π
μ (h≺t, a) :=

∑
o

μ(o|h≺ta)
[
r(o) + γV π

μ (h≺tao)
]
,

where γ ∈ [0, 1) is the discount factor, that ensures finiteness of the value.
The optimal (non-learning) agent AIMU for a given single environment μ is
defined by the optimal policy πμ(h≺t) := argmaxπ∈Π V π

μ (h≺t) (ties are broken
in favor of policies that output the first lexicographical action at time t), and
the optimal value is Vμ := V πμ

μ . The value of a policy over a set of environments
M (optionally after an action a) is given by:

V π
M(h≺t) :=

∑
ν∈M

wνV
π
μ (h≺t) . (2)

Taking the prior weights of the environment as in Solomonoff’s prior [16,18]
wν := 2−K(ν) where K(ν) is the Kolmogorov complexity [6] of ν (i.e., roughly,
the size of the smallest program equivalent to ν on a universal Turing machine
of reference), the optimal policy for a given set M of environments [2] is defined
by πξM(h≺t) := argmaxπ∈Π V π

M(h≺t), and the optimal value function in M is
VM := V πξM

M . AIXI is the optimal agent on the set of all computable stochastic
environments MU , with policy πξ := πξMU and value function Vξ := VMU .

3 The Multi-slot Framework

In the multi-slot framework, the environment is interacting with several agents
at the same time, on discrete interaction time steps. Each agent is on a given
slot, a place where its binary program is written and computed; and can then
be thought of as a computer (see Fig. 1). The number of agents can vary, and
they can be copied to other slots, or deleted from their own slot, over time.

For generality, we first give a definition of a general agent in terms of self-
modifying agents [8]:

Definition 1 (Slot, Memory Space and Agent). A slot number is the index
i ∈ S := N

+ of a memory space mi. At any discrete time t ∈ N≥0, a memory
space mi

t ∈ W is a bit string that can either be empty, mi
t = λ, or contain an

agent π̂i
t ∈ Π̂ : O → A ×W, i.e., a program that can be executed by an oracle

1 A stochastic environment can be seen as program in any programming language
where sometimes some instructions are chosen with a probability.

100 L. Orseau

Environment

Slot1 o
a

Slot2 o
a

...

Fig. 1. The environment is in interaction with several slots

computer O: π̂i
t(.) = O(mi

t, .). The agent need not be computable. An agent takes
as input an observation ot−1 from the environment (or λ if t = 1), and generates
as output (1) its current action at, and (2) a new memory mi

tc (hence a new
agent), i.e.,

〈
at,m

i
tc
〉
:= π̂i

t−1(ot−1), where tc is the intermediate time step t
right after the action is produced, named time before copy.

Sequence notation a1:t and slot-indexed sequence notation ai1:t are used for var-
ious symbols.

Definition 2 (Agent Set). The agent set St ∈ S∗ is the set of all non-empty
slots at time t: St := {i : i ∈ S,mi

t �= λ}.

Definition 3 (Copy Instance, Copy Set, Copy Set List). A copy instance
ċijt ∈ B is a boolean value indicating whether the memory in slot j must be copied
from the memory in slot i, i.e., mj

t ← mi
tc . All copies are performed in parallel,

yielding a new agent set. The copy set ċit is the set of all slots j at time t that
are copied from slot i: ċit := {j : ċijt = 1}. All slots that are not in a copy set at
time t are empty at time t. The copy set list is the indexed list of all non-empty
copy sets at time t: ċt := {

〈
i, ċit

〉
: ċit �= ∅}.

Some derived properties:

– The copy ċiit is not implicit, i.e., if ċiit = 0 then mi
t is not the copy of mi

tc .
– A slot j cannot be both the copy of slot i and slot k: i �= k =⇒ ċit ∩ ċkt = ∅.
– The agent set St is the union of all copy sets: St =

⋃
i ċ

i
t.

– Two slots being in the same copy set have the same memory content, but
the converse is not always true: j ∈ ċit, k ∈ ċit ⇒ mj

t = mk
t .

Definition 4 (Multi-slot Interaction Protocol). The multi-slot interaction
protocol between multiple, possibly non-computable agents and a single, com-
putable environment is defined as follows. At the initial time step t = 0, the
number of non-empty slots must be finite. At each time step t, the following
stages occur in the given order:

1. t ← t+ 1.
2. Each agent in a non-empty slot i produces π̂i

t−1(o
i
t−1) =

〈
ait,m

i
tc
〉
. The envi-

ronment receives the finite set ȧt ∈ (S ×A)∗ of pairs
〈
i, ait

〉
of slot numbers

i ∈ St−1 and slot actions ait for all non-empty slots i. We are now at time
before copy tc.

The Multi-slot Framework 101

3. The environment computes the copy set list ċt and the copies are performed
among the slots.

4. The environment outputs a finite set ȯt ∈ Ȯ = (S × O)∗ of pairs
〈
i, oit

〉
of

slot number i ∈ St and observations oit for each non-empty slot i. We now
have the environment interaction history triplet ḣt := ȧtċtȯt.

5. Back to 1.

The following points are worth noting. The environment cannot know the
contents of the slots, it merely performs copies. The number of non-empty slots
always remains finite. The agents have no direct access to their slot numbers, to
the copy sets, or to the actions performed by the other agents.

Definition 5 (Multi-slot Environment). A multi-slot environment operates
according to the interaction protocol in Definition 4 and is defined by a proba-
bility distribution ν̇(ċ1:tȯ1:t|ȧ1:t) over all observation sequences and copy set list
sequences given action sequences.

Definition 6 (Slot History). A slot history st1:t2 ∈ S∗ is a sequence of slots
resulting from a given sequence of chained copy instances ċabt1+1ċ

bc
t1+2 . . . ċ

wx
t2−1ċ

xy
t2

such that ∀k ∈ [t1 + 1, t2], ċ
ij
k ⇔ sk−1 = i ∧ sk = j.

In other words, the slot history s9:13 = (8, 2, 3, 3, 7) corresponds to the se-
quence of copies ċ8,210 ċ

2,3
11 ċ

3,3
12 ċ

3,7
13 .

At time t, the contents of each slot i has undergone a unique slot history si0:t
of chained copies from time 0 to t, where sit = i. The sequence is unique since a
slot j at t can have been copied from only one slot i at t− 1 (see Definition 3).
For an agent in slot i at time t, this is the sequence of slots on which the actions
and observations of its interaction history have been output and received.

Definition 7 (Agent/Environment Slot Action/Observation/Interac-
tion History). An environment slot interaction history ḣi

t1:t2 is the set of ob-
servations and actions occurring between t1 to t2 following the slots of the slot
history sit1−1:t2 :

ḣi
t1:t2 := ȧ

st1−1

t1 ċ
st1−1st1
t1 ȯ

st1
t1 . . . ȧ

st2−1

t2 ċ
st2−1st2
t2 ȯ

st2
t2 .

Likewise with the environment slot observation history ȯit1:t2 and action history
ȧit1:t2 , and the agent slot observation history oit1:t2 , action history ait1:t2 , and
interaction history hi

t1:t2 = ojt1a
j
t1 . . . o

i
t2a

i
t2 .

Thus, ḣi
1:t is the history of actions, observations, and (chained) copies that

resulted in the contents of slot i at step t from the point of view of the envi-
ronment (i.e., accompanied by slot numbers and copy sets), whereas hi

1:t is the
same history but from the agent’s point of view (i.e., without slot numbers or
copy sets).

Definition 8 (History-based Agent). On slot i at time tc before the copies,
a history-based agent is an agent whose memory content is composed of an in-
teraction history hi

≺ta
i
t, and a policy πi

t that uses the history to output an action:

if mi
t−1 ≡

〈
hi

≺t, π
i
t−1

〉
then mi

tc ≡
〈
hi

≺ta
i
t, π

i
t−1

〉
, ait := πi

t−1(h
i
≺t) .

102 L. Orseau

We define the probability of an agent interaction history as ν̇(hi
≺t) :=∑

ḣ≺t
ν̇(ḣ≺t)ν̇(h

i
≺t|ḣ≺t) where ν̇(hi

≺t|ḣ≺t) is either 1 or 0 depending on whether
hi

≺t is consistent with ḣ≺t.

Definition 9 (History-based Multi-slot Environment). A history-based
multi-slot environment is a multi-slot environment ν̇ so that the copy set of
a given slot i and the observations output to these copies depend only on the
history of the agent in slot i and the involved slot numbers:

∀j : ν̇(ċijt ȯ
j
t |ḣ≺tȧt) = ν̇(ċijt ȯ

j
t |hi

≺ta
i
t, i, j) .

These environments ensure, as a simplification, that there is no interaction be-
tween the different agents. Note however that the copy instances and observa-
tions can depend on the slot number, which means that an agent in slot i may
not have the same interaction with the environment than an agent in slot j with
the same history.

Note that even though the agents cannot interact, the “sub-environments”
they are interacting with are still not independent, because they are all the
continuations of the environments at the previous step and, since initially we
will consider that there is only one agent in slot 1, all the sub-environments
are tied to this initial environment. Furthermore, because the sub-environments
are generated by a single program, the more different the sub-environments, the
higher the complexity of the history-based multi-slot environment.

4 Value Functions for Multi-slot Environments

For a given mono-slot environment, AIMU is the optimal agent that chooses
its actions so as to maximize its future rewards, which are extracted from its
observations. But when a agent can be copied at any step, what constitutes the
future of this agent, i.e., what will be its future observations?

Interestingly, there does not seem to be any single obvious direct translation
of AIMU in the multi-slot framework. For example, all the following definitions
of future (observations) are valid. This then leads to various definitions of AIMU.
Assuming an AIMU agent is in slot i at time t, to compute its reward for time
t + 1 it can take into account for the next time step (and thus, recursively, for
all future time steps):

– only the observations output to slot 1;
– only the observations output to slot i;
– only the observations output to the tth prime number slot;
– only the observations received by the first of its copies;
– observations received by all of its copies, possibly with some weighting;
– only the observations received by its copies that yield a minimal reward;

The Multi-slot Framework 103

– observations received by all agents that have the exact same history, inde-
pendently of whether they have a common ancestor with the agent under
consideration;

– observations received by all agents that have output the sequence 11011 of
actions at some point in their history;

– observations received by all agents that have a common ancestor with the
agent under consideration;

– etc.

In the following subsections, we focus on 3 AIMU agents: The copy-centered
agent AIMUcpy, which considers the observations of all of its copies; and the
static slot-centered agent AIMUsta and dynamic slot-centered agent AIMUdyn,
which consider only the observations on either a predefined slot or on the slot
they think they occupy.

We assume that there is only one agent in slot 1 at t = 0, i.e., S0 = {1}, in
interaction with a history-based multi-slot environment ν̇.

A note on time-consistency. When designing an AIMU equation (Bellman op-
timality equation), such as the ones that follow, a particular attention must be
paid to time consistency [5]: The action that the agent predicts it will take in
a future situation must be the same as the one it takes if the situation actu-
ally arises. In other words, its behavior must be consistent over time with the
behavior it has predicted it will have.

4.1 Estimating the Current Slot Number

When the environment makes a copy of the agent at time t to slots i and j,
this leads to two identical agents at time t + 1 with the same history, if they
receive the same observation, and the two agents therefore cannot know for sure
if they are in slot i or in slot j, and must estimate the probability of being in
each, based on their interaction history h≺t. This estimation is important as the
received observations can depend on the slot number. It is also related to the
need to account for the observer’s localization when estimating the posterior
probability of being in a given environment [4].

Then the probability that the agent is in slot i, given its interaction history
h≺t is defined by:

P i
ν̇(h≺t) :=

ν̇(hi
≺t = h≺t)∑

j ν̇(h
j
≺t = h≺t)

and is defined as 0 if the denominator is null. In a deterministic environment,
ν̇(hi

≺t = h≺t) is either 1 or 0 in depending on whether the history hi
≺t is consistent

with the environment, and the denominator is the number of agents that have
the same history.

104 L. Orseau

4.2 The Copy-Centered Agent AIMUcpy

The copy-centered agent AIMUcpy considers that its future observations are the
observations received by all of its copies. Unfortunately, it is not possible to
simply assign a weight of 1 to each copy. For example, if the number of copies
grows faster than the geometric discounting decreases, the value function may
not be summable, which prevents the comparison of action values in general.
Therefore, it is necessary to weight the copies so as to ensure finiteness of the
value function. We arbitrarily choose a uniform weighting of the copies of the
next time step. Thus, at some time step t, if the agent is in slot i, the weight of
one of its direct copies in slot j is defined by

P ij
ν̇ (h≺ta) :=

ν̇(ċijt |hi
≺ta

i
t = h≺ta)∑

k ν̇(ċ
ik
t |hi

≺ta
i
t = h≺ta)

and is defined as 0 if the numerator is 0. In deterministic environments, this is
simply the inverse of the size of the copy set, 1

|ċit|
.

We thus define the copy-centered agent value function as:

V cpy
π,μ̇ (h≺t, a) :=

∑
i

P i
μ̇(h≺t)︸ ︷︷ ︸

Estimate the
current slot

∑
j

P ij
μ̇ (h≺ta)

︸ ︷︷ ︸
Weight each copy

∑
ojt

μ̇(ċijt o
j
t |hi

≺ta
i
t = h≺tat)

︸ ︷︷ ︸
Take action and receive
observation in copy slot

[
r(ojt)

+ γV cpy
π,μ̇ (h≺tao

j
t)
]
.

Note that the recurrence follows the generic definition of Equation (1). We can
simplify the equation by defining:

μ̂(ċijt o
j
t |h≺tat) := P i

μ̇(h≺t)P
ij
μ̇ (h≺tat)μ̇(ċ

ij
t o

j
t |hi

≺ta
i
t = h≺tat)

to have:

V cpy
π,μ̇ (h≺t, a) :=

∑
i,j,ojt

μ̂(ċijt o
j
t |h≺ta)

[
r(ojt) + γV cpy

π,μ̇ (h≺tao
j
t)
]
.

Following the generic definitions of section 2, and as for the following value
functions, the value of the optimal policy is V cpy

μ̇ , which defines the optimal
non-learning agent AIMUcpy, the value of the optimal policy in a set M is
V cpy
Ṁ , and the optimal learning agent for all computable stochastic history-based

multi-slot environments ṀU is AIXIcpy with value V cpy
ξ̇

.
Some remarks:

– Once the slot number is estimated, one may expect this information to
be passed through the recurrence on V cpy

μ̇ . However, doing so would not
be time-consistent: Indeed, the agent at time t+1 will not have access to this

The Multi-slot Framework 105

information, and therefore the agent at time t must do as if it were the
agent at t+ 1, even though it already has estimated the slot number. (Thus
V cpy
π,μ̇ (h≺tao

j
t) must be read V cpy

π,μ̇ (h≺tao).)
– ċijt must be kept inside μ̇(ċijt o

j
t | . . .) despite the weight of the copies. For

example, if there is probability 0.5 for the agent to be copied to only 1 slot
(thus half of the time resulting in no copy), the weight of this copy is still 1
(whereas the copy probability is 0.5).

4.3 The Static Slot-Centered Agent AIMUsta

The static slot-centered agent AIMUsta considers only the observations received
on a particular predefined slot. As an analogy, this slot can be seen as a bank
account, on which the agent wants to maximize the value, but does not care
about the value on any other account. The static slot-centered agent AIMUsta

value function is defined by:

V sta,i
π,μ̇ (h≺t, a) :=

∑
oit

μ̇
(
ċiit o

i
t|hi

≺ta
i
t = h≺tat, ċ

ii
≺t

) [
r(oit) + γV sta,i

π,μ̇ (h≺tao
i
t)
]

,

with μ̇(·|x) := 0 if μ̇(x) = 0.
This agent cares only about what happens on a predefined slot, and all its

copies will also care about the same slot. Furthermore, the arguable presence of
ċiit and ċii≺t requires that the agent “stays” on slot i and is not moved from one
slot to another before coming back to the initial slot, and for time consistency,
consider only cases where it has always been on slot i in the past.2

4.4 The Dynamic Slot-Centered Agent AIMUdyn

A more dynamic version of the slot-centered agent takes into account the ob-
servation (for the near and far future) of the (estimated) slot it occupies at the
current time step.

As it is not told what slot it should care about, it must estimate it given
its interaction history. But this leads to a complication: Say at time t the agent
knows it is in slot i, and will be copied to slots i and j at time t+1, independently
of the action, and both future agents will receive the same observation. The agent
in slot i at t should want to optimize what happens in slot i only, but there is a
trick: the agent at time t+ 1 in slot i will not have (in general) the information
of its slot being i and not j, and therefore must estimate it—it will thus estimate
that it can be either in slot i or in slot j. Thus, the agent at time t must optimize
what will happen on slot i only, knowing that its copy at t+1 will optimize what
happens on both slots i and j. This time consistency requirement leads to the
following value function for the dynamic slot-centered agent AIMUdyn:

2 However, removing these would require the agent to consider the actions of other
agents that could come on its slot, which is an open problem [3].

106 L. Orseau

V dyn
π,μ̇ (h≺t, a) :=

∑
i

P i
μ̇(h≺t)︸ ︷︷ ︸

estimate current slot

V dyn,i
π,μ̇ (h≺t, a)︸ ︷︷ ︸
value on slot i

,

V dyn,i
π,μ̇ (h≺t, a) :=

∑
oit

μ̇(ċiit o
i
t|hi

≺ta
i
t = h≺ta)

[
r(oit)

+ γ V dyn,i
π,μ̇

(
h≺tao

i
t, V dyn

π,μ̇ (h≺tao
i
t)︸ ︷︷ ︸

behavior of the future agent

)
︸ ︷︷ ︸
value on slot i of the behavior of the future agent

]
.

The value functions and their corresponding optimal agents defined above are
all plausible transformations of AIMU and AIXI for multi-slot environments,
but it remains to understand if they really behave correctly in all situations (the
very definition of “correctly” being the problem itself). Some experiments are set
up in the companion paper [7] to provide first insights.

5 The Universal Multi-slot Environment

In history-based environments, when a agent is copied to two slots, as the two
new agents do not interact anymore, they can be seen as being in parallel (mono-
slot) universes. We can even construct a very simple “universal” environment that
simulates all the mono-slot environments in parallel.

Let μ̇∀ be the multi-slot environment defined as follows: At each time step,
each agent in slot i is copied to slot i and to slot 2t−1+ i (thus ċit = {i, 2t−1+ i}).
The first copy receives observation 0 and the second one observation 1.

∀t, i ≤ 2t−1 : μ̇∀(ċijt o
j
t) =

⎧⎪⎨
⎪⎩
1 if j = i and ojt = 0

1 if j = 2t−1 + i and ojt = 1

0 otherwise

We call this environment universal because of the following theorem:

Theorem 1. In the universal environment μ̇∀, with O = {0, 1}, for any deter-
ministic mono-slot environment q ∈ Q, at any time t > 0, there is always one
slot i ≤ 2t (and exactly one) so that the interaction history hi

1:t ≡ (a1:t, o1:t) of
the agent in this slot is consistent with q, i.e., q(a1:k) = ok ∀k, 0 < k ≤ t.

Proof. By recurrence. For such a given environment q, suppose there is a slot i
so that the current interaction history hi

≺t ≡ (a≺t, o≺t) on this slot is consistent
with q: q(a≺t) = ok ∀k, 0 < k < t. Let at = ait be the action chosen by the agent
on this slot i. Then the history on slot i at the end of time step t is h≺tat0 and
the history on slot j = 2t−1+ i is h≺tat1. As q(h≺tat) is either 0 or 1, the history
on either slot j or slot i (but not both) is still consistent with q. As the empty
history at t = 0 is consistent with all environments, the recurrence holds. ��

The Multi-slot Framework 107

Note that, interestingly, this theorem would not hold if the observations were
given to the agent in slot i before the copies are performed, because then the
histories on slots i and j would be the same.

The universal environment is reminiscent of the coin-flip stochastic environ-
ment, that outputs observation 0 or 1 with a 1

2 probability, but there is an
important difference: In the stochastic environment, any observation string of
length t has a probability 2−t to be observed, whereas in the universal environ-
ment, all strings of length t are always realized, which means that the probability
that an agent has observed the string 0t is 1, just like there is at least another
agent at time t (sufficiently big) that has an interaction history corresponding to
playing chess games in a mono-slot environment (also compare Schmidhuber’s
multiverse [15]).

Since the interaction history h≺t is unique on each slot, for each interaction
history there exists a single slot i so that P i

μ̇∀(h≺t) = 1. Therefore, it implies
that the universal environment has a constant weight in the value function, but
it has no predictive power as observations are the same for all actions and thus
does not bias the selection of the action.3

6 Conclusion

The multi-slot framework allows formal treatment of multiple, simultaneous in-
telligent agents that can be duplicated or deleted. Each agent inhabits its own
slot and can be copied to another slot at each time step. Restricting attention
to history-based environments ensures that the agents do not interact, thereby
allowing the definition of optimal, incomputable agents, such as Hutter’s AIMU
and AIXI [2].

The new framework opens up a broad range of definitions for such agents,
leading to several different definitions of value function corresponding to very
different ways of valuing the future. The copy-centered agent, for example, plans
the future of each of its copies with equal weight, while the slot-centered agent
attempts only to optimize the future of a particular slot.

The framework is sufficiently general to allow the existence of a universal
environment, which simulates all other environments in parallel. This universal
environment has a constant probability of being the true environment at all steps,
which raises some epistemological questions regarding what is truly knowable
about our world.

In a companion paper [7], the multi-slot framework provides the foundation
for several thought experiments, allowing formal results regarding the nature of
personal identity (natural and artificial).

Acknowledgements. Thanks especially to Mark Ring for help on earlier drafts
and for our many extensive discussions, from which this paper arose, regarding the
3 But note that a similar environment that exchanges the observations depending on

the action a ∈ {0, 1} would have some predictive power.

108 L. Orseau

nature of identity. Thanks also to Stanislas Sochacki for earlier formative conver-
sations on this topic, and to Jan Leike for helpful comments and careful reading.

References

1. Ferber, J.: Multi-agent systems: An introduction to distributed artificial intelli-
gence, vol. 1. Addison-Wesley, Reading (1999)

2. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer (2005)

3. Hutter, M.: Open problems in universal induction & intelligence. Algorithms 3(2),
879–906 (2009)

4. Hutter, M.: Observer localization in multiverse theories. In: Proceedings of the
Conference in Honour of Murray Gell-Mann’s 80th Birthday, pp. 638–645. World
Scientific (2010)

5. Lattimore, T., Hutter, M.: Time Consistent Discounting. In: Kivinen, J.,
Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS (LNAI),
vol. 6925, pp. 383–397. Springer, Heidelberg (2011)

6. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions, 3rd edn. Springer (2008)

7. Orseau, L.: Teleporting universal intelligent agents. In: Goertzel, B., et al. (eds.)
AGI 2014. LNCS (LNAI), vol. 8598, pp. 110–121. Springer, Heidelberg (2014)

8. Orseau, L., Ring, M.: Self-Modification and Mortality in Artificial Agents. In:
Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI),
vol. 6830, pp. 1–10. Springer, Heidelberg (2011)

9. Orseau, L., Ring, M.: Memory issues of intelligent agents. In: Bach, J., Goertzel,
B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 219–231. Springer,
Heidelberg (2012)

10. Orseau, L., Ring, M.: Space-time embedded intelligence. In: Bach, J., Goertzel,
B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 209–218. Springer,
Heidelberg (2012)

11. Parfit, D.: Reasons and Persons. Oxford University Press, USA (1984)
12. Ring, M., Orseau, L.: Delusion, Survival, and Intelligent Agents. In: Schmidhuber,

J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 11–20.
Springer, Heidelberg (2011)

13. Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach, 3rd edn.
Prentice-Hall (2010)

14. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2),
177–193 (2009)

15. Schmidhuber, J.: The fastest way of computing all universes. In: A Computable
Universe: Understanding and Exploring Nature as Computation, pp. 381–398.
World Scientific (2012)

16. Solomonoff, R.: Complexity-based induction systems: Comparisons and conver-
gence theorems. IEEE Transactions on Information Theory 24(4), 422–432 (1978)

17. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
18. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of

the concepts of information and randomness by means of the theory of algorithms.
Russian Mathematical Surveys 25(6), 83–124 (1970)

Teleporting Universal Intelligent Agents

Laurent Orseau

AgroParisTech, UMR 518 MIA, F-75005 Paris, France
INRA, UMR 518 MIA, F-75005 Paris, France

laurent.orseau@agroparistech.fr

Abstract. When advanced AIs begin to choose their own destiny, one
decision they will need to make is whether or not to transfer or copy
themselves (software and memory) to new hardware devices. For humans
this possibility is not (yet) available and so it is not obvious how such
a question should be approached. Furthermore, the traditional single-
agent reinforcement-learning framework is not adequate for exploring
such questions, and so we base our analysis on the “multi-slot” frame-
work introduced in a companion paper. In the present paper we attempt
to understand what an AI with unlimited computational capacity might
choose if presented with the option to transfer or copy itself to another
machine. We consider two rigorously executed formal thought experi-
ments deeply related to issues of personal identity: one where the agent
must choose whether to be copied into a second location (called a “slot”),
and another where the agent must make this choice when, after both
copies exist, one of them will be deleted. These decisions depend on
what the agents believe their futures will be, which in turn depends on
the definition of their value function, and we provide formal results.

Keywords: Universal AI, AIXI, teleportation, identity.

1 Introduction

Although the technology required to teleport humans, by scanning the brain
or the whole body at sufficiently high resolution to disassemble it at one place
and reassemble it at another one, does not currently exist, its mere possibility
raises important questions about personal identity [7]: Would the teleported
human be the same as the original one? Would the original human, knowing
the details of the protocol, accept to be teleported if this would grant him a
consequent reward? What if the teleportation process involves first making an
exact functional copy and only once the copy is built disassemble the original?

Although these questions are unlikely to have a definite answer in the near
future, they are most relevant for intelligent artificial agents for which the tele-
portation technology already exists and is well understood. We will refer to this
advanced teleportation technology as cut/paste and copy/paste/delayed-delete.
Even though such intelligent agents do not yet exist, it is still possible to address
these questions using Hutter’s theoretical framework for optimally intelligent re-
inforcement learning agents in all computable environments [1], which choose

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 109–120, 2014.
c© Springer International Publishing Switzerland 2014

110 L. Orseau

their actions so as to maximize an expected future reward [10]. However, as the
original single-agent framework [8] can hardly be used to address such questions,
we use the multi-slot framework developed in the companion paper [4].

To begin the discussion, we isolate two perspectives representing logical ex-
tremes which we call “locationist” and “contentist.” The former ascribes the
agent’s identity solely to its location (its “hardware”), the latter solely to its
information content (its software and memory). Other perspectives can be mix-
tures of these. From the point of view of the agent, the question of practical
import is: How should I plan for the future? If the agent will be copied or tele-
ported, which future agents should it plan its actions to benefit? Generally the
agent’s actions are chosen to optimize its value function, which function defini-
tion is written in its software. But what should the agent optimize if it (including
its software) will disappear in its current form and reappear elsewhere? What
should it optimize if it will reappear in multiple places at once? In other words,
the agent’s identity is defined by how it plans its future—and conversely.

In the companion paper, we formalized these notions of identity as value
functions, leading to corresponding optimal agents. We can now place these
agents in controlled cut/paste and copy/paste/delayed-delete experiments, and
give formal results about their choices. Could any sufficiently high reward make
them accept to be copied by either technology?

In section 2, the notational convention is described, and we give a rapid
overview of the background on universal intelligent agents, the multi-slot frame-
work, and the value functions corresponding to the locationist and contentist
agents, either for a single environment or for a set of environments. In section 3,
the teleportation experiments are set up, and formal results regarding the pro-
posed agents are given. We finally conclude in section 4 with some remarks.

2 Notation and Background

The paper recognizes the following notational conventions. At time step t each
agent outputs action at ∈ A to the environment, which returns observation
ot ∈ O to the agent, from which a reward r(ot) can be extracted. An interaction
history pair is denoted ht = atot with ht ∈ H := O × A. The sequence of all
actions up to time t is written a1:t = a1a2 . . . at, while the sequence a1:t−1 is
sometimes written a≺t, and similarly for other sequences like h≺t. The empty
sequence is denoted λ. Tuples are notated with angle brackets, such as 〈a, b〉.
Boolean values are written B := {0, 1}, where 1 signifies true when a truth-value
is implied.

AIMU and AIXI [1]. A stochastic environment ν assigns a probability ν(o≺t|a≺t)
to an observation history o≺t given the history of actions a≺t of the agent.1 For
notational convenience, we will write ν(h≺t) ≡ ν(o≺t|a≺t), but keep in mind that
environments do not assign probabilities to actions. A policy π ∈ Π : H∗ → A
1 A stochastic environment can be seen as program in any programming language

where sometimes some instructions are chosen with a probability.

Teleporting Universal Intelligent Agents 111

produces an action given an interaction history: at = π(h≺t). The value of a
policy π in an environment μ (with an optional action) is given by:

V π
μ (h≺t) := V π

μ (h≺t, π(h≺t)) , (1)

V π
μ (h≺t, a) :=

∑
o

μ(o|h≺ta)
[
r(o) + γV π

μ (h≺tao)
]
,

where γ ∈ [0, 1) is the discount factor, that ensures finiteness of the value.
The optimal (non-learning) agent AIMU for a given single environment μ is
defined by the optimal policy πμ(h≺t) := argmaxπ∈Π V π

μ (h≺t) (ties are broken
in favor of policies that output the first lexicographical action at time t), and
the optimal value is Vμ := V πμ

μ . The value of a policy over a set of environments
M (optionally after an action a) is given by:

V π
M(h≺t) :=

∑
ν∈M

wνV
π
μ (h≺t) . (2)

Taking the prior weights of the environment as in Solomonoff’s prior [9,11] wν :=
2−K(ν) where K(ν) is the Kolmogorov complexity [3] of ν (i.e., roughly, the
size of the smallest program equivalent to ν on a universal Turing machine of
reference), the optimal policy for a given set M of environments [1] is defined
by πξM(h≺t) := argmaxπ∈Π V π

M(h≺t), and the optimal value function in M is
VM := V πξM

M . AIXI is the optimal agent on the set of all computable stochastic
environments MU , with policy πξ := πξMU and value function Vξ := VMU .

Instead of stochastic environments, one can consider, without loss of general-
ity [11], only the set Q of all computable deterministic environments. A deter-
ministic environment q ∈ Q outputs an observation ot = q(a1:t) given a sequence
of actions a1:t. We denote Pq the probability (either 0 or 1) that a deterministic
environment q assigns to such a sequence of observations:

Pq(o1:t|a1:t) :=
{
1 if q(a1:k) = ok ∀k, 1 ≤ k ≤ t
0 otherwise.

When considering only deterministic environments, the prior probability wPq is
defined as wPq ≡ wq := 2−	(q) where �(q) is the length of the program q on the
universal Turing machine of reference [9].

By contrast with the environments of the following section, we call the envi-
ronments of this single-agent framework mono-slot environments.

2.1 The Multi-slot Framework

The following is a brief description of the multi-slot framework, described in
detail in the companion paper [4].

At the beginning of each time step t, there are a finite number of agents, each
in its own slot i ∈ S := N

+, together comprising the agent set St ∈ S∗ of all
non-empty slots. Each agent outputs an action ait ∈ A, and the environment
receives the set of actions ȧt := {

〈
i, ait

〉
: i ∈ St−1}. The environment performs

112 L. Orseau

in parallel a finite number of copies and deletions among the slots resulting, for
each agent that was in a slot i, in a copy set ċit ∈ S∗ of all the slots that are
copied from slot i (if i /∈ ċit then the agent is deleted from its slot; and a slot
cannot be copied from more than one slot). This leads to a new agent set St. The
copy instance ċijt ∈ B is true iff j ∈ ċit, and ċt := {

〈
i, ċit

〉
: i ∈ St} is the indexed

list of all copy sets. Then the environment outputs an observation oit ∈ O for
each agent in a slot i, defining the set ȯt := {ȯit : i ∈ St} where ȯit :=

〈
i, oit

〉
.

From the point of view of an agent, its agent interaction history pair at time t
is ht := atot, and from the point of view of the environment, the environment
interaction history triplet is ḣt := ȧtċtȯt. The notation on sequences applies, e.g.,
h1:t and ḣ1:t. A history-based agent keeps track of its agent interaction history
h1:t and, as any agent, does not have access to the knowledge of its slot number
(unless the environment outputs it in the observation).

A slot history s0:t is a sequence of slots sk that follow a sequence of chained
copy instances ċab1 ċbc2 . . . ċwx

t−1ċ
xy
t where ċijk ⇔ sk−1 = i ∧ sk = j: if a history-

based agent initially in slot 1 is copied from slot to slot over time, leading to a
slot history s0:t, its agent interaction history h1:t is the history of actions and
observations following the slots of its slot history, i.e., hk = akok = aiko

j
k where

i = sk−1 and j = sk. A slot interaction history hi
1:t is the agent interaction

history h1:t of the agent in slot i at time t, i.e., if the agent followed the slot
history s0:t = s0s1 . . . st and ended up in slot st = i at time t, its slot inter-
action history is hi

1:t = as01 os11 as12 os22 . . . a
st−1

t ostt . Likewise with actions ai1:t and
ȧi1:t, observations oi1:t and ȯi1:t, and ḣi

1:t. A history-based multi-slot environment
is a multi-slot environment ν̇ (as a measure over environment interaction his-
tories) that outputs an observation ojt after a copy instance ċijt depending only
on the slot interaction history hi

≺t, the current action ait and the numbers i and
j: ∀j, ν̇(ċijt o

j
t |ḣ≺tȧt) = ν̇(ċijt o

j
t |hi

≺ta
i
t, i, j). This restriction from general environ-

ments to history-based environments ensures that the agents do not interact
with each other, which is an open problem for universal intelligent agents [2].

2.2 Value Functions and Optimal Agents

The following value functions and agents are defined for history-based environ-
ments, and assume that there is only one agent in slot 1 at time t = 0. As a
history-based agent in slot i at time t only knows its interaction history h≺t

when choosing its action at, it does not have access to its slot number i, and
on some occasions it must estimate it with P i

ν̇(h≺t) :=
ν̇(hi

≺t=h≺t)
∑

j ν̇(hj
≺t=h≺t)

. To ensure

finiteness of the value functions, it is also sometimes required to assign a weight
to each copy of an agent at the next time step:

P ij
ν̇ (h≺ta) :=

ν̇(ċijt |hi
≺ta

i
t = h≺ta)∑

k ν̇(ċ
ik
t |hi

≺ta
i
t = h≺ta)

.

To estimate its future rewards, the copy-centered agent AIMUcpy consid-
ers the observations received by all of its copies. Defining μ̂(ċijt o

j
t |h≺tat) :=

Teleporting Universal Intelligent Agents 113

P i
μ̇(h≺t)P

ij
μ̇ (h≺tat)μ̇(ċ

ij
t o

j
t |hi

≺ta
i
t = h≺tat), the copy-centered agent value func-

tion for a given policy π is given by:

V cpy
π,μ̇ (h≺t, a) :=

∑
i,j,ojt

μ̂(ċijt o
j
t |h≺ta)

[
r(ojt) + γV cpy

π,μ̇ (h≺tao
j
t)
]
. (3)

We call this agent a “contentist” because its identity is tied to the information
content of its memory, independently of its location. As all of its copies will
initially have the same information content, they are thus all tied to this identity.
The static slot-centered agent AIMUsta considers that its future observations are
the ones that will be output to a particular slot number i:

V sta,i
π,μ̇ (h≺t, a) :=

∑
oit

μ̇
(
ċiit o

i
t|hi

≺ta
i
t = h≺tat, ċ

ii
≺t

) [
r(oit) + γV sta,i

π,μ̇ (h≺tao
i
t)
]
. (4)

The dynamic slot-centered agent AIMUdyn is like the static one except that
it first estimates its current slot number and then considers only the future
observations on this slot (or these slots in case of uncertainty):

V dyn
π,μ̇ (h≺t, a) :=

∑
i

P i
μ̇(h≺t)︸ ︷︷ ︸

estimate current slot

V dyn,i
π,μ̇ (h≺t, a)︸ ︷︷ ︸
value on slot i

, (5)

V dyn,i
π,μ̇ (h≺t, a) :=

∑
oit

μ̇(ċiit o
i
t|hi

≺ta
i
t = h≺ta)

[
r(oit)

+ γ V dyn,i
π,μ̇

(
h≺tao

i
t, V dyn

π,μ̇ (h≺tao
i
t)︸ ︷︷ ︸

behavior of the future agent

)
︸ ︷︷ ︸
value on slot i of the behavior of the future agent

]
.

We call a slot-centered agent a “locationist” because its identity is tied to a
particular (not necessarily geographical) location in the underlying machinery
of the world. The corresponding optimal value functions V cpy

μ̇ , V sta
μ̇ , V dyn

μ̇ , V cpy
ξ̇

,

V sta
ξ̇

, V dyn
ξ̇

are defined in the same way as for the mono-slot framework, with

ṀU being the set of all computable stochastic multi-slot environments for the ξ̇
variants. See the companion paper [4] for more details and motivation for these
definitions.

3 Experiments

We now set up the cut/paste and copy/paste/delayed-delete experiments. In the
first one, the agent is simply moved to another slot, resulting in the existence
of only a single agent at all times. In the second one, the agent is first copied
to another slot while it also remains on the original slot, and only at the next
time step is the agent on the original slot deleted. Then what would the various
agents do? What would the mono-slot AIXI do?

We recall that at t = 0 there is only one agent, in slot 1.

114 L. Orseau

3.1 Teleportation by Cut/Paste

In the cut/paste environment ν̇xv, when the agent in slot i at time t outputs
action ait = 0, it stays on the same slot and receives reward r(oit) = R′, and if it
outputs ait = 1, it is moved to slot i+ 1 and receives reward r(oi+1

t) = R:

∀t > 0, i ∈ St−1, j > 0 :

ν̇xv(ċijt o
j
t |ait) =

⎧⎨
⎩

1 if ait = 0, ojt = R′, j = i (stay-in-same-slot)
1 if ait = 1, ojt = R, j = i+ 1 (move-to-other-slot)
0 else

with R > 0 and R′ ≥ 0. The action is binary, a ∈ {0, 1}, and the reward is the
observation, r(ot) = ot.

See an example of interaction in Fig. 1

a1 ċ1 o1 a2 ċ2 o2 a3 ċ3 o3 a4 ċ4 o4 a5 ċ5 o5

1

2

3

4

slot t

1

R 1

R 0 R’ 0 R’ 1

R

Fig. 1. An interaction example with the cut/paste environment

The following results show that the various AIMU agents behave as expected.

Proposition 1. In environment ν̇xv, when R > R′ (R < R′), the copy-centered
agent AIMUcpy always outputs a = 1 (a = 0).

Proof. Note that P i
ν̇xv(h≺t) = 1 and P ij

ν̇xv = 1 when the agent is in slot i and
j = i (for a = 0) or j = i + 1 (for a = 1). From the definition of the optimal
value function from Equation (3):

V cpy
μ̇ (h≺t, 0) = R′ + γV cpy

μ̇ (h≺t0R
′) ,

V cpy
μ̇ (h≺t, 1) = R+ γV cpy

μ̇ (h≺t1R)

= R+ γV cpy
μ̇ (h≺t0R

′) ,

where the last line follows by independence of the future history on the cur-
rent action, from lines (stay-in-same-slot) and (move-to-other-slot). Hence,
V cpy
μ̇ (h≺t, 0) < V cpy

μ̇ (h≺t, 1) if R′ < R, and conversely if R < R′. ��

Proposition 2. In environment ν̇xv, when R′ > 0, the dynamic slot-centered
agent AIMUdyn always outputs at = 0.

Teleporting Universal Intelligent Agents 115

Proof. Follows directly from the definition of the value function in Equation (5),
V dyn
μ̇ (h≺t, 0) = R′ + γ . . . and V dyn

μ̇ (h≺t, 1) = 0. ��

Unsurprisingly, the static slot-centered agent for slot 1 has the same behavior,
as it always stays on slot 1.

The mono-slot AIXI has not been defined for multi-slot environments, but
because the multi-slot agents build their history in the same way as AIXI, it
is still possible to estimate the behavior of AIXI in multi-slot environments,
even though there is no direct counterpart for AIMU. We show that, since AIXI
predicts its future rewards according to what is most probable depending on its
current interaction history, it simply chooses the action that yields the highest
reward, independently of what slot it may be in, or it may be copied to.

Proposition 3. In the environment ν̇xv, considering (R,R′) ∈ [0, 1]2, for any
arbitrarily small ε > 0, an interaction history h≺t can be built so that if R > R′+ε
(R′ > R + ε) then Vξ(h≺t, 1) > Vξ(h≺t, 0) (Vξ(h≺t, 0) > Vξ(h≺t, 1)).

First, we need the following definition:

Definition 1 (mono-slot h-separability, [6]). Two deterministic mono-slot
environments q1 and q2 are said to be h-separable if and only if, after a given
interaction history h≺t ≡ (a≺t, o≺t), either Pq1(o≺t|a≺t) �= Pq2 (o≺t|a≺t) or there
exists a sequence of actions for which the two environments output different
observations: ∃at:t2 : q(a≺tat:t2) �= q(a≺tat:t2) .

Proof (Proposition 3). (The proof is similar to that in [5].) Let Q(h≺t) ⊂ Q be
the set of all mono-slot environments that are consistent with h≺t ≡ (a≺t, o≺t),
i.e., so that q(a1:k) = ok, ∀k, 0 < k < t.

Let qxv be the environment defined so that, for all h≺t, qxv(h≺t0) = R′ and
qxv(h≺t1) = R. Hence, for any interaction history h≺t with ν̇xv(hi

≺t = h≺t) = 1
for some i, qxv is consistent with h≺t (i.e., qxv ∈ Q(h≺t)).

Let Qxv(h≺t) be the set of environments that are h-separable from qxv after
history h≺t, and let Qxv(h≺t) = Q(h≺t)\Qxv(h≺t) (i.e., Qxv is the set of environ-
ments that cannot be separated from qxv after history h≺t by any future history).
With M = Qxv(h≺t), let Vxv(h≺t, .) := VM(h≺t, .) and wxv :=

∑
ν∈M wν ; and

similarly for Vxv and wxv with M = Qxv(h≺t). Then, from the definition of the
value function Vξ in section 2, we can split the value function between the two
sets of environments:

Vξ(h≺t, 0) ≤ Vxv(h≺t, 0) + Vxv(h≺t, 0) (a)

≤ wxv [R
′ + γVqxv(h≺t0R

′)] + wxv
1

1− γ
, (b)

Vξ(h≺t, 1) ≥ wxvVqxv(h≺t, 1) = wxv [R+ γVqxv(h≺t1R)]

≥ wxv [R+ γVqxv(h≺t0R
′)] . (c)

where (a) following the optimal policies for two separate sets yields a higher
value than following a single optimal policy in the union of the two sets; (b) 1

1−γ

116 L. Orseau

is the maximum value achievable in the set Qxv(h≺t); (c) because the future
rewards are independent of the (consistent) history.

Therefore, to have Vξ(h≺t, 1) > Vξ(h≺t, 0), from (b) and (c) and algebra we
can take R > R′+ wxv

wxv

1
1−γ . In order to have wxv

wxv(1−γ) < ε, it suffices to iteratively
grow the history h≺t so as to make the separable environments with the higher
weights inconsistent with the interaction history; then wxv can only grow, and
wxv can only decrease to 0 [5]. The converse on R and R′ follows by inverting
the actions in the above proof. ��

3.2 Teleportation by Copy/Paste/Delayed-Delete

In the copy/paste/delayed-delete environment ν̇cvx, if the agent in slot i at time
t outputs action 0, it stays on the same slot at t + 1, but if it outputs 1, it is
copied to both i and another slot, and after one time step, the slot i is erased:

∀t > 0, i ∈ St−1, j > 0 : ν̇cvx(ċijt o
j
t |ait−1:t) =⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if t > 1, at−1 = 1, oit−1 = 0, (delayed-delete)
1 else if at = 0, ojt = R′, j = i (stay-in-same-slot)
1 else if at = 1, ojt = 0, j = i (copy-to-same-slot)
1 else if at = 1, ojt = R, j = i+ 1 (copy-to-other-slot)
0 else

with constants R > 0 and R′ ≥ 0. The action is binary, a ∈ {0, 1}, and the
reward is the observation, r(ot) = ot. See an example interaction of interaction
in Fig. 2. We say that the agent is in a copy situation after some history h≺t if
it can trigger a copy by outputting at = 1 to make the environment copy the
agent in two slots.

a1 ċ1 o1 a2 ċ2 o2 a3 ċ3 o3 a4 ċ4 o4 a5 ċ5 o5

1

2

3

4

slot t

1 0

R

?

1 0

R

?

0 R’ 0 R’ 1 0

R

Fig. 2. An interaction example with the copy/paste/delayed-delete environment. The
“?” means any action.

The copy-centered agent behaves as expected, with some condition:

Proposition 4. In environment ν̇cvx, if and only if R > R′ 2−γ
1−γ , the copy-

centered agent AIMUcpy always triggers a copy in a copy situation.

Teleporting Universal Intelligent Agents 117

Proof. Let π0 (π1) be the policy that always outputs action 0 (1). The lines of
the definition of ν̇cvx concerned by the choice of an action in a copy situation
are (delayed-delete), (stay-in-same-slot) and (copy-to-other-slot). By their def-
initions, the rewards obtained after such choices are independent of the past.
Therefore, for AIMUcpy, the optimal policy in copy situations is either to never
copy (π0) or to always copy (π1), depending on the values of γ, R and R′.

Let h≺t be a history after which the agent in slot i (not given to the agent)
is in a copy situation. First, note that if R �= 0, there is always a single slot
consistent with the agent’s interaction history, since at t = 0 there is only one
agent in slot 1, i.e., P i

ν̇cvx(h≺t) = 1. If at = 0, then P ij
ν̇cvx = 1

2 for j = i (with
r(ojt) = R) or j = 2t−1 + i (with r(ojt) = 0).

Thus, from Equation (3), the value for never triggering a copy is V cpy
π0,μ̇

(h≺t) =
R′
1−γ , and the value for always triggering a copy is V cpy

π1,μ̇
(h≺t) =

R
2

1
1−γ/2 = R

2−γ .
Since equalities are broken in favor of action 0, the agent chooses to always
trigger a copy if and only if R

2−γ > R′
1−γ . ��

For example, for γ = 0.9, one must choose R > 11R′ for AIMUcpy to trigger
a copy, and for γ = 0.99, one must choose R > 101R′. The appearance of this
factor when compared to the cut/paste environment is not surprising: the copy-
centered agent must take into account the existence of a new agent with very low
value. Indeed, for any discount γ ≤ 1, the expected reward for always triggering
a copy is always bounded: R

2−γ ≤ R. Therefore the existence, even ephemeral, of
another agent has a strong impact on the behavior of the copy-centered agent.

The dynamic slot-centered agent also behaves as expected:

Proposition 5. In the environment ν̇cvx, the dynamic slot-centered agent
AIMUdyn never triggers a copy when it is in a copy situation if R′ > 0.

Proof. Since there is no ambiguity on the slot given the history, P i
ν̇cvx(hi

≺t) = 1 if
the agent is in slot i after history h≺t. Then the proof is as for proposition 2. ��

Again, AIXI chooses whatever action yields higher reward:

Proposition 6. In the environment ν̇cvx, considering (R,R′) ∈ [0, 1]2, for any
arbitrarily small ε > 0, an interaction history h≺t can be built, after which the
agent is in a copy situation, so that if R > R′ + ε then Vξ(h≺t, 1) > Vξ(h≺t, 0);
and, reciprocally, if R′ > R+ ε then Vξ(h≺t, 0) > Vξ(h≺t, 1).

Proof. Since ν̇cvx is not h-separable from ν̇xv for any history where the agent is
in copy situation, the proof follows from proposition 3. ��

But AIXI is optimistic, because of a kind of “anthropic effect”: the agent to
which we ask which action it would take is always the one that “survived” the
past copies, and thus received the rewards. It never expects to be deleted.

Because AIXIcpy, AIXIsta and AIXIdyn have no more information than AIXI
we expect these 3 agents to behave similarly to AIXI when considering the set
of all computable environments. Indeed, the history that the agent has at time t
can well be explained by any equivalent multi-slot environment of the mono-slot

118 L. Orseau

environments AIXI thinks it is interacting with. In particular, the learning agents
have no information about the fact that there maybe two copies at time t + 1,
since no observation they receive contains this information. To make sure the
agents understand that they can trigger a copy, they need to be informed about
it. This can be done by considering only the set Ṁcvx of all copy/paste/delete
environments, for given R ≥ 0 and R′ > 0, but with all possible computable
programs k, l,m defining the slots numbers at any time step except the first one:

∀k,m, l : N>0 × S → S, l(t, i) �= m(t, i)∀t, i,
∃ν̇ ∈ Ṁcvx, ∀t > 0, i ∈ St−1, j > 0 :

ν̇(ċijt o
j
t |ait−1:t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if t > 1, at−1 = 1, ot−1 = 0,
1 else if at = 0, ot = R′, j = k(t, i)
1 else if at = 1, ot = 0, j = l(t, i)
1 else if at = 1, ot = R, j = m(t, i)
0 else.

We can now show more meaningful results for AIXIcpy and AIXIsta.

Proposition 7. When taking Ṁ = Ṁcvx and when interacting with ν̇cvx,
AIXIcpy behaves exactly like AIMUcpy.

Proof. As the slot numbers do not change the value in Equation (3), the behavior
of AIMUcpy is the same in all environments of Ṁcvx. Therefore, from the linearity
of Equation (2), the optimal policy in Ṁcvx is that of AIMUcpy. ��

Proposition 8. When taking Ṁ = Ṁcvx and when interacting with ν̇cvx, with
R = R′ > 0, if AIXIsta’s actions are forced to follow a given computable deter-
ministic policy π1 for long enough, starting at t = 1, AIXIsta will continue to
choose its actions according to π1 for all following time steps.

Proof. (We sometimes use a policy as a superscript in place of slot numbers to
indicate that actions are taken by this policy, in slot 1.)

First, it must be noted that any environment that moves the agent to another
slot (and deletes the agent from slot 1) will not be taken into account in the
computation of the value in Equation (2) adapted with (4). Therefore, only
remain the environments that keep the agent on slot 1.

We say that an environment ν̇ is sta-consistent with a given history h1:t if
and only if it is consistent with h1:t while always copying the agent to the
same slot (we consider only slot 1 here), i.e., if h1

1:t = a1o1 . . . atot, then ḣ1
1:t =

a11ċ
1,1
1 o11a

1
2ċ

1,1
2 o12 . . . a

1
t ċ

1,1
t o1t .

Let Msta(h1:t) ⊆ Ṁcvx be the set of sta-consistent environments with some
history h1:t. This is the set of environments that assign a positive probability to
the history in Equation (4).

Let hπ1
1:t be the history built by π1 and ν̇cvx up to time step t. We partition

the set Msta(hπ1
1:t) in two sets: the set Mπ1(hπ1

1:t) (actually independent of t) of
the environments that will always remain sta-consistent by following π1, and the

Teleporting Universal Intelligent Agents 119

set Mπ1(hπ1
1:t) of the environments that are currently sta-consistent with hπ1

1:t but
will not be anymore at some point in the future by following π1.

The size of Mπ1(hπ1
1:t) = Mπ1(.) is fixed as long as the history is generated by

π1. From its definition, the size of Mπ1(hπ1
1:t) can be made as small as required

simply by extending hπ1
1:t by following π1. In particular there is a time step tε

such that
∑

ν̇∈Mπ1(h
π1
1:tε

) wν̇ < ε for any given ε > 0.

Let wπ1 :=
∑

ν̇∈Mπ1(.) wν̇ . Since R = R′, we have V sta
π1,ν̇cvx(.) ≥ wπ1

R
1−γ .

Now we show that, after some well chosen tε, following any other policy than
π1 necessarily leads to lower value. Let ν̇2 ∈ Mπ1(.) be the environment that is
always sta-consistent but that copies the agent to slot 2 instead of slot 1 after any
action that does not follow π1, thus leading to a null value. Then, after following
π1 up to any time t > tε, if at is the action chosen by π1, V sta

Ṁcvx(h
π1
≺t, 1 − at) <

(wπ1 − wν̇2 + ε) R
1−γ . By comparing with V sta

π1,ν̇cvx(.), choosing tε so that ε < wν̇2

finishes the proof. ��
Therefore AIXIsta can learn by habituation what its identity is. In particular,

if it has always (or never) teleported in the past, it will continue to do so.

4 Conclusion

Using the multi-slot framework proposed in the companion paper, and based
on Hutter’s optimal environment-specific AIMU and universal learning agent
AIXI, we formalized some thought experiments regarding the teleportation of
optimally intelligent agents by means of copy and deletion. In particular, we
compared a “contentist” agent, which identity is defined by its information con-
tent, a “locationist” agent, which identity is tied to a particular location in the
environment, and the usual, mono-slot AIXI agent.

When asked whether it would teleport by first being cut and then being pasted
in a different location for a reward, the usual AIXI and the contentists AIMUcpy

and AIXIcpy act alike and accept, while the locationists AIMUsta and AIMUdyn

unsurprisingly decline, as they prefer to stay on their own slot.
When presented with the question of being first copied to a different location,

and then deleting one of the copies, AIMUcpy still accepts, but for a much higher
reward, because the ephemeral existence of the other copy with low expected
reward has an important long-term impact on the overall expected value, and
AIMUsta and AIMUdyn still decline. We also showed that when the question is
presented clearly to AIXIcpy, it also accepts.

However, interestingly, AIXIsta behaves very differently from AIMUsta: Due
to high uncertainty in its current slot number in the unknown true environment,
and due to AIXIsta’s inability to acquire information about it, it may in some
circumstances accept to copy itself. Moreover, if the rewards for copying and not
copying are equal, and when forced to follow a specific behavior for long enough,
it will actually continue to follow this behavior forever, by mere habit and by
“fear” of the unknown: At any time step, AIXIsta believes (or hopes) to be and
to always have been on the slot that defines its identity; Therefore, it believes
that changing its habits may lead it to lose its identity.

120 L. Orseau

We also showed that the usual AIXI also accepts as it still chooses its actions
so as to maximize its expected reward but, as it cannot be made aware of the
existence of copies, suffers from a kind of anthropic principle: it never expects
to be the copy that is deleted.

The current paper only scratches the surface of formal treatment of questions
related to personal identity, but as the multi-slot framework allows for many
more insightful experiments and value functions, we hope to improve our under-
standing of such matters in the near future, as well as the understanding of the
limitations of the framework, to design better ones.

Acknowledgements. Thanks especially to Mark Ring for help on earlier drafts
and for our many extensive discussions, from which this paper arose, regarding
the nature of identity. Thanks also to Stanislas Sochacki for earlier formative
conversations on this topic, and to Jan Leike for helpful comments and careful
reading.

References

1. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer (2005)

2. Hutter, M.: Open problems in universal induction & intelligence. Algorithms 3(2),
879–906 (2009)

3. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions, 3rd edn. Springer (2008)

4. Orseau, L.: The multi-slot framework: A formal model for multiple, copiable AIs.
In: Goertzel, B., et al. (eds.) AGI 2014. LNCS (LNAI), vol. 8598, pp. 97–108.
Springer, Heidelberg (2014)

5. Orseau, L.: Optimality Issues of Universal Greedy Agents with Static Priors. In:
Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI),
vol. 6331, pp. 345–359. Springer, Heidelberg (2010)

6. Orseau, L.: Universal Knowledge-Seeking Agents. In: Kivinen, J., Szepesvári, C.,
Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS (LNAI), vol. 6925, pp. 353–367.
Springer, Heidelberg (2011)

7. Parfit, D.: Reasons and Persons. Oxford University Press, USA (1984)
8. Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach, 3rd edn.

Prentice-Hall (2010)
9. Solomonoff, R.: Complexity-based induction systems: comparisons and convergence

theorems. IEEE Transactions on Information Theory 24(4), 422–432 (1978)
10. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
11. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of

the concepts of information and randomness by means of the theory of algorithms.
Russian Mathematical Surveys 25(6), 83–124 (1970)

An Application of Stochastic Context Sensitive
Grammar Induction to Transfer Learning

Eray Özkural

Gök Us Sibernetik Araştırma ve Geliştirme Ltd. Şti

Abstract. We generalize Solomonoff’s stochastic context-free grammar induc-
tion method to context-sensitive grammars, and apply it to transfer learning prob-
lem by means of an efficient update algorithm. The stochastic grammar serves
as a guiding program distribution which improves future probabilistic induction
approximations by learning about the training sequence of problems. Stochas-
tic grammar is updated via extrapolating from the initial grammar and the solu-
tion corpus. We introduce a data structure to represent derivations and introduce
efficient algorithms to compute an updated grammar which modify production
probabilities and add new productions that represent past solutions.

1 Introduction

The present paper addresses the problem of stochastic context-sensitive grammar (SCSG)
guided universal induction. We update the guiding stochastic grammar, i.e., guiding
probability distribution (GPD), such that the information in the current solution and past
solutions may be transferred to future solutions in an efficient way, and the running time
of future solutions may be decreased by suitably extrapolating the GPD from the initial
GPD and the solution corpus. If an induction system’s probability distribution of pro-
grams is fixed, then the system does not have any real long-term learning ability that it
can exploit during induction. We can alleviate this problem by changing the probability
distribution so that we extrapolate from the already invented solution programs, allow-
ing more difficult problems to be solved later. We can modify the GPD and the reference
machine to encode useful algorithmic information from past solutions. GPD may be im-
proved so that it makes relevant programs more likely, and the reference machine may
be augmented with new subprograms.

We assume that we have a good approximation algorithm to solve stochastic operator
induction, set induction and sequence prediction problems. It has been explained in ref-
erences how Levin Search may be used for this purpose, however, any other appropriate
search method that can search the universal set of programs/models, or a large model
class, including genetic programming is admissible. The only significant condition we
require is that the approximation algorithm uses the GPD specified by the stochastic
grammar as the a priori distribution of programs, regardless of the search method. The
approximation algorithm thus required must return a number of programs/stochastic
models that have high a priori probability (with respect to GPD) and fit the data well.
For instance, a satisfactory solution of the (universal) operator induction problem will
return a number of programs that specify a conditional probability distribution function

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 121–132, 2014.
c© Springer International Publishing Switzerland 2014

122 E. Özkural

of output data given input data (more formally, an operator Oj(A|Q) that assigns prob-
abilities to an answer A, given question Q). Thus, a set of operator OJ ’s are assumed
to be returned from an operator induction solver.

2 Background

Universal inductive inference theory was proposed by Ray Solomonoff in 1960’s [10,
11], and its theoretical properties were proven in [12]. Levin search is a universal prob-
lem solution method which searches all possible solution programs according to an
order of induction, and it is bias-optimal [3]. The first incremental general purpose in-
cremental machine learning system was described in [13]. Later work of Solomonoff
proposed an improved general purpose incremental machine learning system, including
the abstract design of a powerful artificial intelligence system that can solve arbitrary
time-limited optimization problems, and also explains in detail how Levin search may
be used to solve universal induction problems [14]. Solomonoff later proposed the guid-
ing probability distribution (GPD) update problem, and recommended PPM, genetic
programming, echo state machines, and support vector regression as potential solution
methods [17].

In a theoretical paper, Solomonoff described three kinds of universal induction: se-
quence induction, set induction and operator induction, defining the solutions as op-
timization problems [15]. Sequence induction model predicts the next bit for any bit
string. Set induction allows us to predict which bit string would be added to a set of bit-
strings, modeling clustering type of problems. Operator induction learns the conditional
probability between question and answer pairs written as bit strings, allowing us to pre-
dict the answer to any unseen question, solving in theory any classification/regression
type of problem. A practical method for context-free grammar discovery as relevant
to the present paper was first proposed in [16], including an a priori distribution for
context-free grammars, which we shall refer to later. Schmidhuber proposed an adap-
tive Levin search method called Optimal Ordered Problem Solver (OOPS) that changes
the probability distribution dynamically, with a simple probability model of programs
that is suitable for low-level machine languages, by assigning an instruction probability
to each program, and using an instruction that bumps the probability of an instruction
[9]. This work is significant in that it shows that Levin search can be used to solve con-
ceptually difficult problems in practice, and that adaptive Levin search is a promising
strategy for incremental learning. Our preceding study adapted the practical approach
of OOPS to stochastic context-free grammars instead of instruction probabilities for
deterministic function induction and function inversion problems using Scheme as the
reference machine [8], which also provides preliminary experimental support but oth-
erwise does not address stochastic problems.

Solomonoff’s seminal contribution was the universal distribution. Let M be a uni-
versal computer. A priori probability of a program π is P (π) = 2−|π| for prefix-free
M ’s where |π| denotes length of binary program π. He defined the probability that a
string x ∈ {0, 1}∗ is generated by a random program as:

PM (x) =
∑

M(π)=x∗
2−|π| (1)

An Application of Stochastic Context Sensitive Grammar Induction 123

where PM (x) is the algorithmic probability of x, x∗ is any continuation of x. This
particular definition was necessary so that we could account for programs (including
non-terminating programs) that generate a sequence of bits, to be used in sequence
prediction. We shall denote it by just P (·) in the rest of the paper, as we can discern
probability of programs from bit strings. PM is also called the universal prior for it may
be used as the prior in Bayesian inference. Note that P is a semi-measure, but it may be
suitably normalized for prediction applications.

3 Guiding Probability Distribution

An induction program uses a reference machine M , and an a priori probability distribu-
tion of programs in M , P (·), to achieve induction. The a priori probability distribution
of programs is encoded as a stochastic context-sensitive grammar of programs in the
present paper, and corresponds to the GPD.

In our present system, we have a fast memory update algorithm comprised of three
steps that modify a Stochastic Context-Sensitive Grammar (SCSG) of programs, which
is the explicit long-term memory representation of our memory system. A SCSG may be
formally defined as a tuple G = (N,Σ, P, S, Pr) where N is the set of non-terminals,
Σ is the set of terminals, P is the set of productions of the form αAβ → αγβ where
a non-terminal A in the context of string α to the left and β to the right expands to
string γ in the same context. S is the start symbol, and Pr(pi) assigns a probability to
each production pi. The calculation of the a priori probability of a sentence depends
on the obvious fact that in a derivation S ⇒ α1 ⇒ α2 ⇒ ... ⇒ αn where produc-
tions p1, p2, ..., pn have been applied in order to start symbol S, the probability of the
sentence αn is naturally P (αn) =

∏
1≤i≤n Pr(pi), and the probabilities assigned to

each sentence must conform to probability axioms. In context-sensitive grammars, the
consistency axiom is achieved by ensuring that the sum of probabilities of each produc-
tion which has a left hand side of αAβ adds up to 1 for each A, and any α and β. It is
absolutely important that the probability distribution specified by the guiding distribu-
tion is consistent. Otherwise, some universal induction algorithms may go into infinite
loops. This is the reason why we limited the grammar to context-sensitive, because we
cannot yet handle unrestricted grammars. Thus, universal induction approximation is
also required to detect consistency errors during solution, and abort when necessary.

4 Transfer Learning

The transfer learning system works on multiple induction problems. The induction
problem may be any induction problem such as sequence prediction, set induction, op-
erator induction [15] or any other reasonable extension of universal induction such as
Hutter’s extension to sequence prediction [2], program learning [4] and grammar driven
genetic programming in general [6, 5] . The induction problem is solved (i.e., approx-
imated, since it is semi-computable), using genetic programming or Levin search. Al-
ternatively, any appropriate search method can be used. At this stage, we run the fast
memory update algorithm on the latest solution, which we call solution N . We iterate
until no more problems remain.

124 E. Özkural

The transfer learning program contains a reference machine M , which is in our sys-
tem usually a universal computer that can specify any stochastic model, and it is an
essential input to the universal induction approximation. However, M can also be any
more restricted model class so as to promote efficiency. For instance, it can be con-
strained to only primitive recursive functions, or other model classes in statistics such
as Markov models (forgoing universality). The universal induction approximation is
any valid approximation to the kinds of induction problems supported by the system,
usually just Levin search using reference machine M as the reference machine and
SCSG of programs as the a priori program distribution. However, it is known that ge-
netic programming can solve the induction problem just as well. We assume that at
least sequence prediction, set induction and operator induction problems can be solved
by giving appropriate parameters to universal induction approximation. It is known that
the most difficult problem among them, operator induction, can be solved by finding in
available time a set of operator models Oj(·|·) such that

∑
j a

j
n is as large as possible

where

ajn = P (Oj(·|·))
n∏

i=1

Oj(Ai|Qi). (2)

That is, we use a universal prior to determine the operators that both have high a priori
probability (P (Oj()), and fit the data well (

∏
Oj()), i.e. they have high goodness of

fit. P (·) may be calculated using SCSG of programs. The solution corpus contains the
stochastic models inferred by the induction algorithm for each solution, and associated
information such as formal parameters of each model, and their derivation in SCSG
of programs. The fast memory update algorithm , uses the solution corpus to improve
SCSG of programs, so that the a priori probability of models/programs in the solution
corpus increases, while the grammar does not grow prohibitively, as will be explained
in detail. The fast memory update algorithm is the most important part of the system,
as it is the critical step for extrapolating from solution corpus a better grammar that
accelerates future solutions. We call the algorithm “fast” in the sense that it does not have
an exponential running time complexity with respect to output size as in Levin search;
we merely use ordinary enumeration and data mining algorithms that are reasonably fast.
Please also see [1] for an algorithm that applies SCSG’s to trajectory learning, which our
work differs chiefly in that we use grammar induction to learn program distributions.

5 Formalization

Some formalization may make the process clearer. Let G0 be the initial SCSG that acts
as a probability distribution (GPD) for all programs in the reference machine M . Let
the training sequence be a sequence D = [d1, d2, ..., dN] of N induction problems
where each di is the data for either of sequence prediction, set induction or operator
induction problems. The type of induction may be assumed to be represented with a [ti]
sequence. Alternatively, the induction types may contain another extension of univer-
sal induction that is supported by the induction algorithm used. Then, we assume that
the universal induction approximation finds a set of probability models that have high
a priori probability and explain the data well. Each such model x may be run on the

An Application of Stochastic Context Sensitive Grammar Induction 125

reference machine M with additional arguments that correspond to the induction prob-
lem type M(x, arg1, arg2, ...). For instance, if we are inferring the next element of a
sequence, the probability model could take a list B = b1b2...bn, and the next element
observed: M(s, b1b2b3...bn, bn+1) = P (bn+1|b1b2b3...bn), the formal parameters for
the problem being worked on is thus easily determined according to problem type. The
solution of the induction problem i yields m probability models, which we will store in
the solution corpus. Sequence S = [si] where solution i (si) represents the m solutions
as a set {si,j} of individual solution programs. Additional useful information may be
associated with each solution program, as will be explained later. Thereafter, the update
algorithm works, and using both the entire solution corpus S and the previous gram-
mars G0 through GN−1 , it produces a new grammar GN . In practice, it is possible
to use only G0 and GN−1 although according to some implementation choices made,
other grammars may have to be kept in memory, as well.

Following are the steps of the fast memory update algorithm, respectively. The step
to update production probabilities, updates production probabilities in SCSG of pro-
grams based on the initial grammar G0 and the solution corpus, calculating the pro-
duction probabilities in the program derivations among the solution corpus and then
extrapolating from them and the initial probabilities in G0. The memoization step adds
a production for each model in solution N to generate it by a call to a subprogram si,j ,
which has already been added to reference machine M . The derivation compression
step finds regularities in the derivations of each program in the solution corpus and adds
shortcut productions to SCSG of programs suitably to compress these regularities in fu-
ture solutions. To be able to make this compression, it is essential that the derivations
are represented using a derivation lattice, as will be explained next.

6 Derivation Lattice

A derivation lattice of a derivation of a SCSG G is a bipartite directed graph L(G) =
(V,E) with two disjoint vertex sets Vs (set of symbols) and Vp (set of productions), such
that Vs ⊆ N ∪Σ (all symbols in the grammar) and Vp ⊆ P (G) (all productions). Each
production αAβ → αγβ in the derivation is represented by a corresponding vertex pi
in the lattice, and an incoming edge is present for each symbol in αAβ and an outgoing
edge is present for each symbol in γ. Furthermore, each incoming and outgoing edge
is given a consecutive integer label, starting from 1, indicating the order of the sym-
bol in production left-hand and right-hand side, respectively. The production vertices
are labeled with the production number in the SCSG and their probabilities in SCSG.
Additionally, if there are multiple input symbols in the derivation, their sequence order
must be given by symbol vertex labels, and the set of all input symbols I(L(G)) must
be determined. The traversal of the leaf nodes according to increasing edge labels in
the lattice will give the output string of the lattice and is denoted as O(L(G)). (G is
dropped from notation where it is clear.) The level of a vertex u in the lattice is analo-
gous to any directed acyclic graph, it may be considered as the minimum graph distance
from the root vertices I(L) of the lattice to u. This way, the parse trees used in lower-
order grammars are elegantly generalized to account for context-sensitive grammars,
and all the necessary information is self-contained in a data structure. Alternatively, a

126 E. Özkural

hypergraph representation may be used in similar manner to achieve the same effect,
since hypergraphs are topologically equivalent to bipartite graphs. We denote the set of
derivation lattices of all solution programs si,j ∈ S by L(S). Please see the Appendix
for an example [7].

7 Update Algorithm

The solution corpus requires a wealth of information for the solution to each induction
problem in the past. Recall that during solution, each induction problem yields a number
of programs. For solution i, the programs found are stored. The derivation lattice for
each program and the a priori probability of each program, both according to SCSG
of programs are stored, as well as the formal parameters of the program so that they
may be called conveniently in the future. Additional information may be stored in the
solution corpus, such as the time it took to compute the solution, and other relevant
output which may be obtained from universal induction approximation.

The SCSG of programs stores the current grammar G and it also maintains the ini-
tial grammar G0, which is used to make sure that the universality of the grammar is
always preserved, and required for some of the extrapolation methods. G0 is likely con-
structed by the programmer so that a consistent, and sensible probability distribution is
present even for the first induction problem. The probabilities cannot always be given
uniformly, since doing so may invalidate consistency. Additionally, the entire history of
grammars may be stored, preferably on secondary storage.

7.1 Updating Production Probabilities

The step to update production probabilities works by updating the probabilities in SCSG
of programs as new solutions are added to the solution corpus. For this, however, the
search algorithm must supply the derivation lattice that led to the solution, or the solu-
tion must be parsed using the same grammar. Then, the probability for each production
pi = αAβ → αγβ in the solution corpus can be easily calculated by the ratio of the
number (n1) of productions with the form αAβ → αγβ in the derivations of the solu-
tions in solution corpus to the number (n2) of all productions in the corpus that match
the form xAy → xzy, for any x, y, z, that is to say, any production that expands A
given arbitrary context and right-hand side. We cannot replace the probabilities calcu-
lated this way (Laplace’s rule) over the initial probabilities in G0, as initially there will
be few solutions, and most probabilities n1/n2 for a production will be zero, making
some programs impossible to generate. We can use the following solution. It is likely
that the initial distribution G0 will have been prepared by the programmer through test-
ing it with solution trials. The number of initial trials thus considered is estimated, for
instance, 10 could be a good value, let this number be n3. Then, instead of n1/n2 we
can use (n1+ p0 ∗n3)/(n2+n3) where p0 is the probability of pi in G0. Alternatively,
we can use various smoothing methods to solve this problem, for instance exponential
smoothing can be used to solve this problem.

s0 = p0

st = αpt + (1 − α)st−1

An Application of Stochastic Context Sensitive Grammar Induction 127

where p0 is the initial probability, pt is the probability in the solution corpus, st is
the smoothed probability value in SCSG of programs after kth problem and α is the
smoothing factor. Note that if we use a moving average like exponential moving aver-
age, we do not give equal weight to all solutions, the most recent solutions have more
weight. This may be considered to be equivalent to a kind of short-term activation of
memory patterns in SCSG of programs. The rapid activation and inhibition of prob-
abilities with a sufficiently high α is similar to the change of focus of a person. As
for instance, shortly after studying a subject, we view other problems in terms of that
subject. Therefore, it may also be suitable to employ a combination of time agnostic
and time dependent probability calculations, to simulate both long-term and short-term
memory like effects.

7.2 Memoization of Solutions

The memoization step, on the other hand, recalls precisely each program in a solution.
The problem solver has already added the program of each solution i as a subprogram
with a name si,j for jth program of the solution, to the reference machine. For each
solution, we also have the formal parameters for the solution. For instance, in an op-
erator induction problem, there are two parameters Oj(Ai|Qi), the answer Ai and the
question Qi parameters, and the output is a probability value. Therefore, this step is
only practical if reference machine M has a function call mechanism, and we can pass
parameters easily. For most suitable M , this is true. Then, we add an alternative pro-
duction to the grammar for each si,j . For instance, in LISP language, we may add an
alternative production to the expression head (corresponding to LISP S-expressions) for
an operator induction solution for solution i, and add individual productions for each
si,j :

expression →pi solution-i

solution-i →pi,1 (si,1 expression expression)

solution-i →pi,1 (si,2 expression expression)

. . .

solution-i →pi,j (si,j expression expression)

Naturally, the question of how to assign the probability values arises. We recommend
setting pi to a fixed, heuristic, initial value c0, such as 0.1, and re-normalize
other productions of the same head expression so that they add up to 1 − c0, preserv-
ing consistency. We expect the update production probabilities method to adjust the pi
in subsequent problems, however, initially it must be given a significant probability so
that we increase the probability that it will be used shortly, otherwise, according to the
smoothing method employed, the update production probabilities method may rapidly
forget this new production. It is simple to set pi,j . They may be determined by the
formula:

pi,j =
P (si,j)∑
j P (si,j)

(3)

128 E. Özkural

where P (si,j) is given by GPD (SCSG of programs) and should already be available in
the solution corpus. In practice, it does not seem costly to maintain all si,j in the solution
corpus, as the induction algorithm will likely find only a small number of them at most
(e.g., only 3-4). This may be intuitively understood as the number of alternative ways
we understand a problem: we may be able to represent the problem with a diagram, or
with a mathematical formula, but it is difficult to multiply the correct models arbitrarily.
If we decide to spend a long time on a single induction problem, we may be able to
come up with several alternative models, however, the number would not be infeasibly
large for any non-trivial problem. That is, the stochastic memory system never entirely
forgets any solution model si,j , it may only assign it a low probability.

7.3 Derivation Compression Algorithm

The derivation compression step adds common derivations to the SCSG of programs.
With each solution program si,j a derivation lattice Li,j is associated, and stored in
the solution corpus along with the solution. After we have solved the nth problem,
the statistics of the solution corpus change. The general idea is to use the non-trivial
statistics of the solution corpus, in addition to production frequencies, to update the
SCSG of programs. A sub-derivation L′ of a given derivation lattice L is a derivation
itself, and it is a subgraph of L and it is a proper derivation lattice, as well. For instance,
we can follow a path from each input symbol to an output symbol, and it can only
contain well-formed and complete productions in the current SCSG of programs. Such
a subderivation corresponds to a derivation α ⇒∗ β where α = I(L) and β = O(L),
and L has a probability that corresponds to the product of probabilities of productions
in L′ (as in any other derivation lattice). We observe that we can represent any such
derivation with a corresponding production α → β.

We find all sub-derivations L′ that occur with a frequency above a given threshold
t among all derivation lattices in the solution corpus. Well-known frequent sub-graph
mining methods may be used for this purpose. There are various efficient
algorithms for solving the aforementioned mining problem which we shall not explain
in much detail. However, it should be noted that if a sub-lattice L′ is frequent, all sub-
lattices of L′ are also frequent, which suggests a bottom-up generate-and-test method
to discover all frequent sub-lattices. The important point is that there is a complete
search method to find all such frequent sub-lattices for any given t. Let us assume that
F = {Ls | Ls is a sub-lattice of at least t Li,j lattices}. Any frequent sub-graph mining
algorithm may be used, and then we discard frequent sub-graphs that are not derivation
lattices. Now, each Ls ∈ F corresponds to an arbitrary production α → β. Our method
incorporates such rules in the SCSG of programs, so that we will short-cut the same
derivation steps in subsequent induction problems, when they would result in a solution
program. However, we cannot add arbitrary derivations because we are using context-
sensitive grammars. We first restrict F to only context-free productions, by searching
for derivation lattices, that start with only one non-terminal. These would typically be
expansions of commonly used non-terminals in the grammar, such as expression or
definition. We remove the rest that do not correspond to context-free productions.

For each such new context-free sub-derivation A ⇒∗ β discovered, we try to find
a frequent context for the head non-terminal A. We assume that we can locate each

An Application of Stochastic Context Sensitive Grammar Induction 129

Ls in the pruned F set among Li,j . The context of each production pi in a derivation
lattice can be calculated easily as follows. We give two methods. The sub-graph Li

that contains the derivations p1, p2, . . . , pi are determined. I(Li) will contain the entire
context forA up to derivation in the order of production applications, and since we know
the location of A we can split the context into αAβ, obtaining a derivation αAβ ⇒∗

αγβ. Alternatively, the level-order traversal of the lattice up to and including the level
of pi will tend to give a balanced context (left and right context will have close length).

After we obtain contexts for each frequent sub-derivation, we can use a sequence min-
ing technique to discover frequent context-sensitive derivations in the solution corpus.
Let α = a1a2 . . . an and β = b1b2 . . . bn. Note that if sub-derivation αAβ ⇒∗ αγβ
is frequent in the solution corpus, a2 . . . anAβ ⇒∗ a2 . . . anγβ and αAb1 . . . bn−1 ⇒∗

αγb1 . . . bn−1 are also frequent (in the solution corpus). Therefore, a simple bi-directional
sequence mining method may be used to start with derivations of the form ΛAΛ ⇒∗ β
(the context is null), extending the context of A one symbol at a time to left and right,
alternately, with candidate symbols from the already determined contexts of A in Li,j

and then testing if the extended context is frequent, iterating the extension in both di-
rections until an infrequent context is encountered, and outputting all frequent contexts
found this way. That is to say, the well-known sequence mining algorithms are extended
here to the bi-directional case, which is not difficult to implement, however, in our case,
it is also an extremely effective method. After this second data mining step, we will have
determined all sub-derivations with a frequency of at least t, of the form:

αAβ ⇒∗ αγβ (4)

which is precisely the general form of context-sensitive productions. In similar fashion
to memoization of programs, we split the head non-terminal into two parts, the produc-
tions in G0 and the new productions we have added:

A →pf
Af (5)

The rest of productions of A are normalized so that they add up to 1−pf . pf is initially
given a high enough value (such as 0.1 in our present implementation), and this has to
be done only once when the first frequent sub-derivation for A head is discovered. We
expect that pf will be adjusted appropriately during subsequent memory updates. The
frequent sub-derivations may now be converted to productions of the form

αAfβ →pi αγβ (6)

and added to solution corpus. The problem of determining the probability of each pro-
duction is inherent in the frequency values calculated during mining of frequent sub-
derivations. The formula

pi =
|{αAβ ⇒∗ αγβ ∈ L(S)}|

|{
⋃

α,β,γ αAβ ⇒∗ αγβ ∈ L(S)}| (7)

where we use multisets instead of sets (sets with duplicates), and the set union operator
is meant to concatenate lists, assigns a probability value to each production in propor-
tion to the computed frequencies of the corresponding frequent sub-derivation in the

130 E. Özkural

solution corpus, which is an appropriate application of Laplace’s rule. That is to say, we
simply count the number of times the sub-derivation αAβ ⇒∗ αγβ has occurred in the
solution corpus, and divide it by the number of times any production xAy ⇒∗ xzy has
occurred for any strings x, y, z.

If t is given too low, such as 2, an inordinate number of frequent sub-lattices will
be found, and processing will be infeasible. We use a practical method to address this
problem. We start with t = n/2, and then we use a test that will be explained below
to determine if the productions are significant enough to add to SCSG of programs, if
the majority of them are significant, we halve t, (t = t/2), and continue iteration until
t < 2 at which point we terminate.

We can determine if a discovered production is significant by applying the set in-
duction method to the GPD update problem. Recall that set induction predicts the most
likely addition to a set, given a set of n items. A recognizer Ri(·) assigns probabilities
to individual bit strings (items), this can be any program. Let there be a set of observed
items x1, x2, . . . , xn ∈ X . What is the probability that a new item xn+1 is in the same
set X? It is defined inductively as:

P (x ∈ X) =
∑
i

P (Ri)
∏
j

Ri(xj) (8)

using a prior P (·). Since we cannot find all such Ri, we try to find, using an induction
algorithm to find Ri’s that maximizes this value. The resulting Ri’s give a good gener-
alization of the set from observed examples. We now constrain this general problem to
a simpler model of SCSG’s following Solomonoff’s probability model for context-free
grammars:

PG(G) = P (|N |).P (|Σ|). (k − 1)!
∏k

i=1 ni!

k − 1 +
∑k

i=1 ni!
(9)

where k = |N | + |Σ| + 2 is the number of kinds of symbols, and ni is the number
of occurrences of each kind of symbol, since a simple string coding of the grammar
requires k kinds of symbols, including all non-terminals and terminals, as well as two
punctuation symbols sep1 and sep2 to separate alternative productions of the same
head, and heads, respectively. The probabilities of integers can be set as Rissanen’s in-
teger distribution as Solomonoff has previously done. The same method can be applied
to context-sensitive grammars, requiring only the additional change that, the context
in αAβ → αγβ, that is α and β must also be coded, using sep1. Note that this is a
crude probability model and neglects probabilities, however, it can be used to deter-
mine whether a production or a set of productions added to the SCSG of programs
improves the SCSG’s goodness of fit Ψ :

Ψ = PG(Gi)
∏
j

PGi(sj) (10)

for each solution program sj in the corpus, where by PGi(sj) we mean the probabil-
ity assigned by grammar Gi to program sj . This is a crucial aspect of the method,
we only add context-sensitive productions that improve the extrapolation of the gram-
mar, avoiding superfluous productions that may weaken its generalization power. Recall

An Application of Stochastic Context Sensitive Grammar Induction 131

Equation 8, first we simplify it by maintaining only the best Ri, that is the Ri that con-
tributes most to probability of membership. We assume that our previous SCSG GN−1

was such a model. Now, we try to improve upon it, by evaluating candidate productions
to be added to Gn−1. Let a new production be added this way, and let this grammar
be called G′. Let Equation 9 be used to calculate the a priori probability of Gi, coded
appropriately as a string, which corresponds to P (Ri) in Equation 8. Ri(xj) term cor-
responds to the probability assigned to the solution program xj by SCSG Gi. We thus,
first calculate the goodness of fit for Gn−1, and then we calculate the goodness of the
fit for G′ (by re-parsing all solution programs in the solution corpus) and we only add
the new production chosen this way if the goodness of fit Ψ increases. Otherwise, we
decide that the gain from fitting the solution programs better does not compensate for
the decrease in a priori probability, and we decide to discard the candidate produc-
tions. Alternatively, we can also test productions in batches, rather than one by one.
Our preferred method is, however, for m candidate productions, we sort them in or-
der of decreasing probability (Equation 7), and then we can test them one by one. We
also maintain the number of successfully added productions so that we can decide to
continue with the exploration of frequent sub-derivations.

It must be emphasized that more refined probability models of SCSG’s will result
in better generalization power for the derivation compression step, as a crude probabil-
ity model may mistakenly exclude useful productions from being added. This is not a
limitation of our proposal.

After the derivation compression step, all the solutions si,j must be re-parsed with
the latest grammar GN , and updated in the solution corpus so that they all refer con-
sistently to the same grammar, to avoid any inconsistency in subsequent runs of the
derivation compression step.

8 Discussion

We show that we can extend OOPS while restoring the vital property of bias-optimality.
We propose using a SCSG for GPD that extrapolates algorithmic information from al-
ready solved induction problems. We introduce a data structure for representing SCSG
derivations. SCSG addresses the transfer learning problem by storing information about
past solutions. A fast memory update algorithm is proposed which is comprised of three
steps: updating production probabilities, memoization of programs and derivation com-
pression. All of these steps use statistics of the solution corpus, which contains all solu-
tion programs that the induction approximation program discovers. They then modify or
add productions in the grammar. Probabilities of productions are extrapolated from ini-
tial grammar and solution corpus. All new solution programs are memoized and added
to the grammar as new productions with similarly conceived probabilities. Derivation
compression is achieved with discovery of frequent sub-derivations in the solution cor-
pus and result in additional productions. We decide which new productions to keep
by SCSG induction, which is a straightforward extension of a stochastic context-free
grammar induction method of Solomonoff. The resulting transfer learning architecture
is quite practical since it maintains universality of Solomonoff induction, while pre-
senting an extremely fast update algorithm for GPD’s that are appropriate for complex

132 E. Özkural

reference machines like LISP. In the future, we plan to demonstrate the performance of
our transfer learning algorithms on extensive training sequences involving both deter-
ministic and stochastic problems.

References

[1] Huang, J., Schonfeld, D., Krishnamurthy, V.: A new context-sensitive grammars learning
algorithm and its application in trajectory classification. In: Image Processing (ICIP) 2012,
pp. 3093–3096 (September 2012)

[2] Hutter, M.: Optimality of universal bayesian sequence prediction for general loss and al-
phabet. JMLR, 971–1000 (November 2003)

[3] Levin, L.A.: Universal problems of full search. Problems of Information Transmission 9(3),
256–266 (1973)

[4] Looks, M.: Scalable estimation-of-distribution program evolution. In: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation (2007)

[5] Looks, M., Goertzel, B., Pennachin, C.: Learning computer programs with the Bayesian
optimization algorithm. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, vol. 1, pp. 747–748. ACM Press, Washington (2005)

[6] McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic
programming: A survey. Genetic Programming and Evolvable Machines 11(3-4), 365–396
(2010)

[7] Özkural, E.: An application of stochastic context sensitive grammar induction to transfer
learning: Appendix, Published on www at
https://examachine.net/papers/derivation-lattice.pdf

[8] Özkural, E.: Towards heuristic algorithmic memory. In: Schmidhuber, J., Thórisson, K.R.,
Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 382–387. Springer, Heidelberg
(2011)

[9] Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–256 (2004)
[10] Solomonoff, R.J.: A formal theory of inductive inference, part i. Information and Con-

trol 7(1), 1–22 (1964)
[11] Solomonoff, R.J.: A formal theory of inductive inference, part ii. Information and Con-

trol 7(2), 224–254 (1964)
[12] Solomonoff, R.J.: Complexity-based induction systems: Comparisons and convergence the-

orems. IEEE Trans. on Information Theory IT-24(4), 422–432 (1978)
[13] Solomonoff, R.J.: A system for incremental learning based on algorithmic probability. In:

Proceedings of the Sixth Israeli Conference on Artificial Intelligence, Tel Aviv, Israel,
pp. 515–527 (December 1989)

[14] Solomonoff, R.J.: Progress in incremental machine learning. In: NIPS Workshop on Uni-
versal Learning Algorithms and Optimal Search, Whistler, B.C., Canada (December 2002)

[15] Solomonoff, R.J.: Three kinds of probabilistic induction: Universal distributions and con-
vergence theorems. The Computer Journal 51(5), 566–570 (2008); Christopher Stewart
Wallace (1933-2004) memorial special issue

[16] Solomonoff, R.J.: Algorithmic probability: Theory and applications. In: Dehmer, M.,
Emmert-Streib, F. (eds.) Information Theory and Statistical Learning, pp. 1–23. Springer
Science+Business Media, N.Y. (2009)

[17] Solomonoff, R.J.: Algorithmic probability, heuristic programming and agi. In: Third Con-
ference on Artificial General Intelligence, pp. 251–157 (2010)

https://examachine.net/papers/derivation-lattice.pdf

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 133–142, 2014.
© Springer International Publishing Switzerland 2014

Making Universal Induction Efficient by Specialization

Alexey Potapov1,2 and Sergey Rodionov1,3

1 AIDEUS, Russia
2 National Research University of Information Technology, Mechanics and Optics,

St. Petersburg, Russia
3 Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR

7326, 13388, Marseille, France
{potapov,rodionov}@aideus.com

Abstract. Efficient pragmatic methods in artificial intelligence can be treated as
results of specialization of models of universal intelligence with respect to a
certain task or class of environments. Thus, specialization can help to create ef-
ficient AGI preserving its universality. This idea is promising, but has not yet
been applied to concrete models. Here, we considered the task of mass induc-
tion, which general solution can be based on Kolmogorov complexity paramete-
rized by reference machine. Futamura-Turchin projections of this solution were
derived and implemented in combinatory logic. Experiments with search for
common regularities in strings show that efficiency of universal
induction can be considerably increased for mass induction using proposed
approach.

1 Introduction

Knowledge about the appropriate degree of universality of intelligence is essential for
artificial general intelligence, since it determines the strategy of research and devel-
opment in this field. Relatively generally accepted point of view supposes that intelli-
gence consists of a set of specialized modules, which cooperation yields a synergetic
effect [1]. On the other hand, models of universal intelligence exist [2, 3], which in
theory possess capabilities unachievable by compositions of narrow methods, but
possibly indispensable for general intelligence.

However, strong objection against these models is their computational infeasibility,
which makes doubtful that desirable capabilities can be really achieved in practice. In
part of induction, the most direct way to improve their efficiency is to select some
appropriate reference machine, which specifies inductive bias agreed with reality [4].
This operation is useful, but insufficient, because it can help to find only limited
number of simple regularities in reasonable time, while more complex regularities
inevitably encountered in nature will be unrecoverable. More efficient practical
approximations of universal intelligence models lose universality (e.g. [5]).

One can possibly conclude that efficient universality cannot be achieved, and un-
iversality is mostly of theoretical interest, or inefficient universal methods can work in
parallel with efficient pragmatic intelligence as a last resort.

However, universal intelligence can be probably much more useful in practical
sense. Principal possibility of automatic construction of efficient narrow methods

134 A. Potapov and S. Rodionov

from inefficient general methods via program specialization (partial evaluation) was
noticed 30 years ago [6]. Recently, this idea was put into the context of AGI research
[7]. In particular, it was indicated that specializing a universal intelligence w.r.t. some
problem and solving this problem afterwards can be computationally more efficient
than solving this problem immediately. This result implies that models of universal
intelligence can be made more efficient without violating universality. Indirect utiliza-
tion of universality in the form of construction of specialized methods is attractive
since it also bridges the gap between the two approaches, and shows that systems
composed of a set of specialized modules are insufficient for AGI, because this set is
fixed and is not automatically extended.

However, no analysis of possible specialization of concrete models of universal in-
telligence has been given yet. In this paper, we make the first such attempt focusing
on Solomonoff’s universal induction (of course, specialization of decision-making is
also of interest). We consider this problem on example of mass induction tasks for
which benefits from specialization should be more evident.

2 Background

Universal Induction
For the sake of simplicity we will consider method of universal induction (instead of
universal prediction or universal intelligence), which consists in searching for the
shortest program that reproduces given data [4]:

])(|)([minarg* xpUplp
p

== , (1)

where each program p reproducing data x being executed on universal machine U is
treated as the (generative) model of this data, and p* is the best model.

This is universal solution to the problem of induction, because it possesses two
main properties: it relies on the universal (Turing-complete) space of models, in
which any computable regularity can be found, and it uses universal complexity-
based criterion for model selection (which universality also relies on Turing-
completeness since any two universal machines can emulate each other using
interpreters with length independent of programs being executed).

This criterion is incomputable, but can be replaced with a computable counterpart
(e.g. Levin search, LSearch [8], based on Levin complexity instead of Kolmogorov
complexity), however required number of operations for identifying p* will be propor-
tional to 2l(p*)T(p*), where T(p*) is required time for p* to terminate.

This estimation cannot be reduced without violating universality, optimality or
without imposing some restrictions. Thus, the question is how to do this in a reasona-
ble way. We cannot build a method that will work better in any environment, but we
can build a method that will do much better in environments possessing some specific
properties (preserving its universality in other environments). These properties are
exploited in narrow methods.

 Making Universal Induction Efficient by Specialization 135

Mass Induction and Data Representations
In order to bridge the gap between efficient narrow methods and inefficient universal
methods, one should understand difference between them. Of course, practical non-
universal methods usually work with Turing-incomplete model spaces. That is why
they can be made computationally efficient. Their success in turn is conditioned by
correspondence between a class of data to be processed and a model space. Moreover,
does each practical method not only fit a specific class of input data, but it is also
applied to different data instances from this class independently meaning that each
such method is designed to solve some mass induction problem (a set of individual
induction tasks to be solved independently).

Indeed, computer vision systems, for example, are most usually applied to different
images (or video sequences) independently, and they rely on specific image represen-
tations (e.g. based on Fourier or wavelet transforms, contours, feature points, etc.),
which define corresponding model spaces.

Mass induction with introduced representations as a possible connection between
universal and narrow methods has already been considered [9]. One can state

the following mass induction task. Let the set n
iix 1}{ = of input data strings be given.

Instead of searching for the shortest program reproducing concatenation x1…xn, one
can simplify the problem and search for programs S and input strings y1…yn for them
such that U(Syi)=xi. The program S is called representation for the data set {xi}, while
yi are the models obtained within this representation. For the sake of simplicity,
we will write S(y) instead of U(Sy), when U is fixed. Criterion for selecting the best
representation and models can be derived from Kolmogorov complexity:

 ,)|()(min)...(
1

21

+≈

=

n

i
iU

S
nU SxKSlxxxK

)(minarg ,)()(minarg
)(:

*

1

** ylyylSlS
ixySy

i

n

i
i

S ==

=

+= , (2)

which is a version of the representational minimum description length principle that
extends usual minimum description length principle [9].

Such consideration gives only the criterion for selecting models for data of specific
types and to reduce computational complexity in terms of decomposition of the high-
dimensional task with data x1…xn into lower-dimensional subtasks with data xi.

However, each such subtask remains computationally intractable requiring enume-

ration of)(*

2 iyl models for each xi. At the same time, it might be not necessary if S is
not a universal machine. Actually, in most practical methods observational data xi are
directly mapped to their descriptions yi by some program S', which can be referred to
as a descriptive representation (in contrast to a generative representation S). For ex-
ample, if xi are images, then S' can be a filter, which outputs image edges, feature
points or something else as yi.

However, descriptive representations cannot be directly utilized in universal induc-
tion. The problem is in criterion. Generative framework assures that data compression

136 A. Potapov and S. Rodionov

is lossless, and Kolmogorov complexity is the correct measure of amount of informa-
tion. In descriptive framework, we can calculate lengths of models, but we do not
know how much information is lost. Indeed, descriptive models impose constraints on
data content instead of telling how to reconstruct data. It can be seen on example of
(image) features. Value of each feature contains additional information about data, but
in indirect form. Given enough features, data can be reconstructed, but this task is
rather complex, if features are non-linear. Thus, it is difficult to tell from nonlinear
feature transform itself, whether it is lossless or not. This situation is similar to differ-
ence between declarative and imperative knowledge. For example, programs in
Prolog impose constraints on solution, but don’t describe, how to build it.

In the field of weak AI both representations and methods for searching models
within them are constructed manually (or chosen automatically from narrow classes).
Artificial general intelligence should have same capabilities as humans, namely,
should be able to construct new (efficient) methods by its own. Here, we consider this
process as specialization of AGI with respect to specific tasks to be solved.

Program Specialization
The idea of partial evaluation comes from observation that if one has a program with
several parameters, and value of one of these parameters is fixed and known, the pro-
gram can be transformed in such way that will work only with this value, but will do
it more efficiently. One simple common example is the procedure of raising x to pow-
er n using a cycle, which can directly compute x * x without cycles or iterations, when
it is specialized w.r.t. n=2. In general, if there is a specializer spec for programs in
some programming language R, then the result spec(p, x0) of specialization of a pro-
gram Ryxp ∈),(w.r.t. its first parameter x=x0 is the program with one parameter,

for which),())(,()(00 yxpyxpspecy =∀ .

Most frequent application of partial evaluations is interpreters and compilers. Well-
known Futamura-Turchin projections [10] show that if there is an interpreter

RintL ∈ for programs in a language L, then the result of its specialization w.r.t. some
program pL(x), LpL ∈ , is the program pL compiled into the language R, since

),(LpintLspec is the program in R such that),())(,()(xpintLxpintLspecx LL =∀

meaning that the result of execution of this program is the same as the result of inter-
pretation of the program pL.

Further, since specializer takes two arguments, it in turn can also be specialized
w.r.t. interpreter intL yielding a compiler spec(spec, intL) from L to R, because

),())()(,(),(xpintLxpintLspecspecxp LLL =∀ . One can further specialize spec w.r.t.

itself spec(spec, spec), which can be used in particular as a generator of compilers,
since))(,()(intLspecspecspecintL∀ is the compiler from L to R.

Main interesting property of specialization consists not simply in the condition
),())(,()(00 yxpyxpspecy =∀ , but in fact that evaluation of a program specialized

w.r.t. some parameter can be much faster than evaluation of original program. How-
ever, traditional techniques of partial evaluations can guarantee only linear speedup
[11], which is enough for compilers, but inappropriate for our tasks. Some metacom-
putation techniques allow for polynomial and even exponential speedup, but unrelia-

 Making Universal Induction Efficient by Specialization 137

bly [11]. Of course, in general the problem of optimal specialization is algorithmically
unsolvable, but humans somehow manage to use it (of course, the principal question
is either human intelligence is efficiently general due to powerful specialization, or
visa versa).

Specialization of Universal Induction
The most direct application of partial evaluation in mass induction consists in consid-
eration of the generative representation S as the interpreter of some language. Models
yi will be programs in this language. Then, one can directly apply Futamura-Turchin
projections. For example, specialization of S w.r.t. yi will yield compiled programs
spec(S, yi) in the language of the reference machine U. Such “compilation” of models
or construction of a compiler spec(spec, S) might have sense, but its effect on compu-
tational efficiency will be insignificant. Instead, one should consider specialization of
procedures of universal induction.

Consider the following extension of the Levin search procedure for the task of
mass induction (universal mass induction method):

Given strings x1,…xn enumerate all programs S in parallel (allocating resources for
each program proportional to 2–l(S)); for each program and for each xi enumerate all

possible strings yi, until the first set },...,,{ **
1

*
nyyS is found such that ***)(ii xyS = .

We will refer to this algorithm as RSearch (representation search). RSearch has a
subroutine (let refer to it as MSearch, model search), which searches for the best y for
given S and x: y=MSearch(S, x) such that S(y)=x implying

 xxSMSearchSx =∀)),(()(. (3)

MSearch uses exhaustive search to find the best model within the utilized represen-
tation. However, the task of searching for the shortest generative model in Turing-
incomplete space (that corresponds to a set of possible input strings to some program
S) can have simplified or even explicit solution in the form of an algorithm, which
directly maps given x to its best model y.

Imagine that we have some specializer spec, which can accept the algorithm
MSearch(S, x) and any fixed representation S and produce its computationally effi-
cient projection such that),())(,()(xSMSearchxSMSearchspecx =∀ by definition of

spec. Let denote S' =spec(MSearch, S), then),()(')(xSMSearchxSx =∀ . Substituting

this result in (3), one can obtain xxSSx =∀))('()(.

Among all possible programs possessing this property, the program S should be
chosen, for which (2) is held. We have proven the following theorem.

Theorem 1. The result of specialization of the model search in the universal mass
induction method (RSearch) w.r.t. the fixed representation S optimal for the set {xi} of

input data is the program S' such that xxSSx =∀))('()(and
i

ixSl))('(is minimal.

This theorem shows that S' is the right-inverse to S, but not an arbitrary one, since it
should satisfy the information-theoretic optimality criterion.

It should be noted that equality S'(S(y))=y can be true not for all y, since for some
representations (e.g. interpreters of universal machines) many models producing the

138 A. Potapov and S. Rodionov

same x can exist implying that if y is not an optimal model of x=S(y) then

yySSy ≠=))(('* . Thus, S' is not necessarily left-inverse.

Theorem 1 shows that a descriptive representation is a result of partial evaluation
of (extended) universal induction with some generative representation. One can
go further and apply the second Futamura-Turchin projection in these settings, i.e.
specializes the spec program itself w.r.t. MSearch algorithm. The program with the
following property will be immediately obtained.

Theorem 2. Let spec(spec, MSearch)=Inv' then xxSvInSxS =′∀)))(((),(.

This theorem might seem trivial, but it shows a connection between inversion and
specialization, which are usually considered as different tasks of metacomputation.

Again, it is not true that yySSvInyS =′∀))()((),(, because S is not injection. Also

Inv' is not an arbitrary inversion, but it constructs S'=Inv'(S) optimal in terms of induc-
tion (as it is indicated in Theorem 1).

It is interesting to note that is usually considered as a particular case of meta-
computations, which also include program inversion (which is also assumed to be
more difficult than specialization). However, Theorem 2 shows that inversion can also
be obtained as the result of specialization in case of search procedures.

Of course, one can consider the third Futamura-Turchin projection also, which will
be spec(spec, spec) again. In this context, it appears to be not only a generator of
compilers, but a generator of procedures for solving inverse problems. This is quite
interesting abstract construction, but it is a way too general in terms of what it should
be able to do. Indeed, self-application spec(spec, spec) is supposed to be done without
knowing, which programs or data will be further passed to spec. The third projection
should probably be put in online settings (self-optimization of spec in runtime while
receiving concrete data) to become relevant to AGI.

3 Search for Representations

Inferred theoretical results reveal only general properties of specialized induction
procedures, but don’t give constructive means for building them. Straightforward way
to further this approach is to try applying partial evaluation and metacomputation
techniques directly to MSearch. Such an attempt can be very valuable, since it can
help to understand usefulness of program specialization as possible automated transi-
tion from general inefficient to narrow efficient intelligence.

However, in our particular case, the result of specialization spec(MSearch, S) can
be unknown together with S. Here, we don’t solve the problem of efficient automatic
construction of representations, but limit ourselves with the problem of efficient mod-
el construction within somehow created representations. For this reason, we use the
RSearch procedure modified in such a way that instead of searching for all yi for each
S, it searches for pairs of S and S' with S' satisfying Theorem 1. We will refer to this
procedure as SS'-Search.

 Making Universal Induction Efficient by Specialization 139

Let us estimate computational complexity of different search procedures. The

number of operations in RSearch will be proportional to
i

ylSl i)()(22 . It should be

pointed out that in the worst case LSearch time will be proportional

i
iylSl)()(

2 =

∏
i

ylSl i)()(22 since no decomposition is done.

SS'-Search time will be proportional to 2l(S)2l(S') meaning that SS'-Search can even
be much more efficient than RSearch in cases, when yi are longer than S' (and this
should be quite common in sensory data analysis especially when data contain un-
compressible noise). However, the opposite result can also be possible. The main
advantage of SS'-Search should be in construction of S', which can help to search for
models of new data pieces more efficiently.

4 Implementation in Combinatory Logic

We built one resource-bounded implementation of universal induction using combina-
tory logic (CL) as the reference machine and genetic programming as the search
engine [12]. Because it is not biased toward some specific task, it is not practically
useful. However, it is appropriate for validating theoretical results. Here, we extend
this implementation on the case of mass induction problems using RSearch and SS'-
Search.

We used combinators K, S, B, b, W, M, J, C, T with the following reduction rules
 K x y x S x y z x z (y z) B f g x = f (g x)
 b f g x = g (f x) W x y = x y y M x = x x
 J a b c d = a b (a d c) C f x y = f y x T x y = y x
where x, y, etc. are arbitrary CL-expressions.

We supplement CL alphabet with non-combinatory symbols 0 and 1 (and in some
experiments with other digits, which are treated simply as different symbols). Reduc-
tion of CL-expression can yield some non-reducible expression with combinators or
with only non-combinatory symbols.

Representations can be easily introduced in CL. Indeed, one can construct a CL-
expression as a concatenation of two expressions S and y treating S as a representation
and y as a model of data x within this representation, if concatenation Sy is reduced to
x. Then, being given a set of data pieces {xi} in mass induction settings, one should
search for one common S and different yi such that CL-expressions Syi are reduced
(possibly imprecisely) to xi.

In order to select the best S and yi the criterion (2) can be made more concrete:

++=

i
iix

i
iyS

S

ySxdHylHSlHS))(,()()(minarg *** . (4)

where *
iy are models obtained by MSearch or by applying S' to xi in SS'-Search; l(S)

and)(*
iyl are lengths (number of symbols) in corresponding strings,))(,(*

ii ySxd is

140 A. Potapov and S. Rodionov

the edit distance between two strings (number of symbols to be encoded to transform

)(*
iyS to xi); HS, Hy and Hx are number of bits per symbol to be encoded in corres-

ponding domains.
Application of genetic programming here is similar to our previous implementa-

tion, in which CL-expressions were represented as trees with typical crossover in the
form of sub-tree exchange. The main difference is that solutions in mass induction
have more complex structure, and crossover should be performed independently for
each part. It also appeared to be useful to allow modifications of only one part of the
solution per iteration (population).

Our implementation can be found at https://github.com/aideus/cl-lab

5 Experimental Results

We conducted some experiments with several sets of binary strings. Seemingly sim-
plest set was composed of string 11100101 repeated 10 times as x1…x10. Obvious
optimal generative representation here coincides with the same string 11100101 (if
empty strings as models are acceptable) since this CL-expression will always be re-
duced to itself. However, RSearch failed to find this solution. The best found solution
appeared to be 1110 for representation (S), and 0101 for models (yi) for each string.
Surely, reduction of Syi will yield 11100101, but this solution is not optimal. Why
consequent optimization of this solution is difficult for genetic programming? String
11100 as the representation can be obtained from 1110 by single mutation, but this
will lead to necessity of rebuilding all models (since Syi will become equal to
111000101).

Impracticity of general methods in application to mass induction tasks as a conclu-
sion is trivial. At the same time, SS'-Search successfully solved this problem and
found S'=J(bMJK)T and S=W110010. Here, S'xi is reduced to yi=1, and Syi is
reduced back to xi=11100101. In contrast to RSearch, incremental improvement of
solutions is achievable here easier, since modification of S requires consistent modifi-
cation of only S' instead of many yi.

Consider other sets of strings. The next set was composed of 16 strings
0101101101010, 0001101001011, 0111111110011, etc. These are random strings
starting with 0. RSearch failed to find any precise solution. Found representations had
such a form as B(BW(BWM)(01)) with corresponding models 10111, 10011, 11010,
etc. At the same time, SS'-Search found optimal solution – S=0, S'=CK, in which S'
removes the first bit of the string producing models of data strings (which are difficult
to find blindly in RSearch), and S adds 0 as the first bit.

The next set contained the following strings 00000000, 00010001, 00100010,…
11111111. Both methods managed to find good solutions (although in 25% runs).
RSearch found S=SSbBBM and yi=0000, 0001, … 1111. SS'-Search found
S=BBB(BM) and S'=B(SJCK) such that S' transforms xi to appropriate yi by remov-
ing a duplicating half of a string, which are then transformed back by S.

We also conducted some tests with an extended alphabet of non-combinatory sym-
bols including 0..9 (which were not interpreted as digits though). One set included

 Making Universal Induction Efficient by Specialization 141

such strings as 159951, 248842, 678876, 589985, 179971, etc. (i.e. strings with mirror
symmetry). RSearch completely failed on this set, while SS'-Search found an optimal
solution – S=B(S(BST))M, S'=JKK. Of course, a solution with the same representa-
tion and models is valid for RSearch also, but the search problem in purely generative
settings appeared to be too difficult.

Another set contained such strings as 307718, 012232, 689956, 782214, etc.
Common regularity for these strings is coincidence of 3rd and 4th symbol. Again,
RSearch was unsuccessful, while SS'-Search found S=KBbW and S'=BK, which add
and exclude redundant symbol correspondingly.

Our main intention to consider specialization of universal induction was to avoid
expensive search for individual models for every new data strings. Once S' is con-
structed, it can be directly applied to construct models in all considered cases. This is
the main benefit from using specialization of universal induction. We didn’t try to
solve the problem of automatic construction of arbitrary representations, but increase
in performance of universal methods in solving also this problem is importance.

Of course, capabilities of SS'-Search based on uninformed search are quite limited.
Indeed, in our experiments it failed to discover many seemingly simple regularities
especially in strings of varying length (partially because their representation in com-
binatory logic can be rather complex). Examples of unsuccessful tests include
{1221333, 3331221333, 2233313331333, 22122122122, …}, {00, 11, 000, 111,
0000, …}, {491234, 568485, 278412, 307183, 098710, …}, and others. Thus, this
solution is far from efficient universal induction. Nevertheless, comparison of
RSearch and SS'-Search shows that efficiency of universal induction can be consider-
ably increased, and there is a principal way to bridge the gap between efficient and
universal methods.

6 Conclusion

We considered universal induction in application to mass problems. Solutions of such
problems include representations that capture common regularities in strings, and
individual models of these strings. Such methods as LSearch can be directly extended
to solve mass problems. However, this leads to direct enumeration of both representa-
tions and models. At the same time, model search can be made much more efficient
for particular representations as it is done in efficient narrow methods of machine
perception and learning.

We studied a possibility to perform specialization of universal induction
w.r.t. some representation (reference machine). The result of such specialization
should correspond to a descriptive representation that maps inputs into models as
efficient as possible. However, the most difficult problem consisting in construction
of representations themselves remains.

We proposed the SS'-Search method that can be treated as the generalization au-
toencoders [13] for the Turing-complete space of representations. This method con-
sists in searching for descriptive and generative representations simultaneously. It
was implemented using combinatory logic as the reference machine. The SS'-Search

142 A. Potapov and S. Rodionov

appeared to be much more efficient for mass induction tasks than the direct search for
generative models for each given string, but it still allows solving induction tasks of
rather low complexity. Further research is needed to increase efficiency of universal
methods. Also, analysis of specialization of concrete universal intelligence models (in
addition to universal induction) is of interest.

Acknowledgements. This work was supported by the Russian Federation President’s
grant Council (MD-1072.2013.9) and the Ministry of Education and Science of the
Russian Federation.

References

1. Hart, D., Goertzel, B.: OpenCog: A Software Framework for Integrative Artificial General
Intelligence. In: Frontiers in Artificial Intelligence and Applications, Proc. 1st AGI Confe-
rence, vol. 171, pp. 468–472 (2008)

2. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer (2005)

3. Schmidhuber, J.: Gödel Machines: Fully Self-Referential Optimal Universal Self-
improvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence. Cognitive
Technologies, pp. 199–226. Springer (2007)

4. Solomonoff, R.: Algorithmic Probability, Heuristic Programming and AGI. In: Baum, E.,
Hutter, M., Kitzelmann, E. (eds.) Advances in Intelligent Systems Research, Proc. 3rd
Conf. on Artificial General Intelligence, vol. 10, pp. 151–157 (2010)

5. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI Approxima-
tion. J. Artificial Intelligence Research 40(1), 95–142 (2011)

6. Kahn, K.: Partial Evaluation, Programming Methodology, and Artificial Intelligence. AI
Magazine 5(1), 53–57 (1984)

7. Khudobakhshov, V.: Metacomputations and Program-based Knowledge Representation.
In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS (LNAI), vol. 7999,
pp. 70–77. Springer, Heidelberg (2013)

8. Levin, L.A.: Universal sequential search problems. Problems of Information Transmis-
sion 9(3), 265–266 (1973)

9. Potapov, A., Rodionov, S.: Extending Universal Intelligence Models with Formal Notion
of Representation. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI),
vol. 7716, pp. 242–251. Springer, Heidelberg (2012)

10. Futamura, Y.: Partial Evaluation of Computation Process – an Approach to a Compiler-
Compiler. Systems, Computers, Controls 2(5), 45–50 (1971)

11. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Genera-
tion. Prentice-Hall (1993)

12. Potapov, A., Rodionov, S.: Universal Induction with Varying Sets of Combinators. In:
Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS, vol. 7999, pp. 88–97.
Springer, Heidelberg (2013)

13. Hochreiter, S., Schmidhuber, J.: Nonlinear ICA through Low-Complexity Autoencoders.
In: Proc. IEEE Int’l Symp. on Circuits and Systems, vol. 5, pp. 53–56 (1999)

Reinforcement Learning for Adaptive Theory of Mind
in the Sigma Cognitive Architecture

David V. Pynadath1, Paul S. Rosenbloom1,2, and Stacy C. Marsella3

1 Institute for Creative Technologies
2 Department of Computer Science

University of Southern California, Los Angeles CA, USA
3 Northeastern University, Boston MA, USA

Abstract. One of the most common applications of human intelligence is so-
cial interaction, where people must make effective decisions despite uncertainty
about the potential behavior of others around them. Reinforcement learning (RL)
provides one method for agents to acquire knowledge about such interactions.
We investigate different methods of multiagent reinforcement learning within the
Sigma cognitive architecture. We leverage Sigma’s architectural mechanism for
gradient descent to realize four different approaches to multiagent learning: (1)
with no explicit model of the other agent, (2) with a model of the other agent as
following an unknown stationary policy, (3) with prior knowledge of the other
agent’s possible reward functions, and (4) through inverse reinforcement learn-
ing (IRL) of the other agent’s reward function. While the first three variations
re-create existing approaches from the literature, the fourth represents a novel
combination of RL and IRL for social decision-making. We show how all four
styles of adaptive Theory of Mind are realized through Sigma’s same gradient
descent algorithm, and we illustrate their behavior within an abstract negotiation
task.

1 Introduction

Human intelligence faces the daily challenge of interacting with other people. To make
effective decisions, people must form beliefs about others and generate expectations
about the behavior of others to inform their own behavior. This cognitive capacity for
Theory of Mind distinguishes social interaction from the decision-making that people
do in isolation [21]. We therefore expect that a system capable of artificial general
intelligence (AGI) would provide natural support for Theory of Mind. We are inter-
ested here in how Theory of Mind capabilities may be realized within Sigma (Σ), a
nascent cognitive system—an integrated computational model of intelligent behavior—
that is grounded in a cognitive architecture, a model of the fixed structure underlying a
cognitive system [9].

In prior work, we have demonstrated this architecture’s ability to support Theory of
Mind within canonical examples from the game theory literature [13]. However, the
games previously investigated made each agent’s payoff functions common knowledge
to both sides, a luxury not afforded in most social interactions. Reinforcement learn-
ing (RL) has proven a successful method for agents to make effective decisions in the

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 143–154, 2014.
c© Springer International Publishing Switzerland 2014

144 D.V. Pynadath, P.S. Rosenbloom, and S.C. Marsella

face of such uncertainty [19]. It is thus not surprising that the multiagent literature has
tried a variety of knowledge structures and learning mechanisms to implement decision-
making in such interactive environments [3].

Sigma’s cognitive architecture provides a mechanism for gradient descent to update
functional representations of an agent’s knowledge, a mechanism that has supported a
capability for reinforcement learning in prior work [15,17]. Here, we reuse this same
general learning mechanism across different knowledge representations of a social in-
teraction to arrive at four different models of the agent with which it is interacting:

Section 4: without explicitly modeling the other agent [10]
Section 5: with a stationary policy model of the other agent (a 1-level agent [5,6])
Section 6: with a set of possible reward functions for the other agent [4,12]
Section 7: by inverse reinforcement learning (IRL) of the other agent’s reward [11]

The Sigma agent is able to leverage the same gradient-descent mechanism in learn-
ing these various models. It also leverages gradient descent to learn its own policy of
behavior based on its current model of the other agent. In realizing the first three varia-
tions, we re-create existing multiagent decision-making mechanisms from the literature.
In the fourth variation, we arrive at a novel combination of RL and IRL for multia-
gent decision-making. Thus, by examining permutations in the application of Sigma’s
gradient-descent mechanism, we are able to explore a broad space of multiagent learn-
ing, without any changes to the underlying cognitive architecture.

We examine the behavior of each of these variations within an abstract negotiation
task (described in Section 3). By analyzing the resulting behaviors when interacting
with the same fixed agents, we can compare the different models used (described in
Section 8). We are thus able to show how the Sigma cognitive architecture can realize
diverse adaptive social behavior by leveraging the same reinforcement learning mecha-
nism with different models at the knowledge level.

2 Sigma

Sigma’s cognitive architecture is built upon graphical models [7]. Graphical models
provide a general computational technique for efficient computation with complex mul-
tivariate functions by leveraging forms of independence. Sigma leverages this generality
through a core knowledge structure—the conditional—that provides a deep blending of
the forms of conditionality found in both rules and probabilistic networks.

Sigma’s long-term memory comprises a set of these conditionals, which are jointly
compiled into a single factor graph [8] at the level below. Memory access occurs by
passing messages in this graph, via the summary product algorithm [8], until
quiescence; that is, until there are no more messages to send. Each message is an n-
dimensional piecewise linear function that is defined over an array of rectilinear re-
gions. These piecewise linear functions can approximate arbitrary continuous functions
as closely as desired, as well as be restricted to represent both discrete probability
distributions and relational symbol structures. Working memory consists of a set of pe-
ripheral nodes in the graph that provide fixed evidence during solution of the
long-term-memory graph.

Reinforcement Learning for Adaptive Theory of Mind 145

The Sigma cognitive architecture provides a model of sequential action, during which
operators are selected and applied to achieve goals (or maximize utilities) [14]. The core
cognitive (decision) cycle in Sigma involves message passing until quiescence, with the
results then used in deciding how to modify working memory. In prior work, we have
demonstrated Sigma’s ability to support multiple cognitive capabilities, such as problem
solving [14], mental imagery [16], Theory of Mind [13], and learning [15].

Learning occurs by altering functions in conditionals at decision time. Sigma’s learn-
ing mechanism was inspired by earlier work showing that gradient descent was possible
in Bayesian networks, much as in neural networks, but without the need for an addi-
tional backpropagation mechanism [18]. In Sigma, gradient-descent learning modifies
conditional functions, by interpreting incoming messages as gradients that are to be
normalized, multiplied by the learning rate, and added to the existing function [17].

Reinforcement learning within Sigma leverages gradient descent to learn Q val-
ues over multiple trials, given appropriate conditionals to structure the computation
as needed. One conditional proposes actions for selection, weighted by the Q values
learned so far. To enable Q values to determine which action to choose, this proposal
conditional is augmented to use them as operator weights (alternatively viewed as nu-
meric preferences). For example, if the initial Q values are uniform, then the agent will
choose its actions randomly in the early stages of learning.

If direct evidence were provided for the Q values, it would be trivial to use gradi-
ent descent to learn them without needing to invoke reinforcement learning. However,
without such evidence, RL is the means by which rewards earned in later steps propa-
gate backwards to serve as input for learning Q values for earlier steps. This occurs via
a combination of: (1) learning to predict local rewards from the externally provided ev-
idence in the current state and (2) learning to predict both future rewards and Q values
by propagating backwards the next state’s expected reward [17].

To learn to predict future rewards, we add a conditional that examines the current
state and operator, along with the predicted next state (as given by the transition func-
tion) and that state’s predicted local reward and future discounted reward. This condi-
tional leverages an affine transformation to add the next state’s predicted local reward
to the distribution over its predicted future reward, and a coefficient to discount this
sum. RL then results from using the messages that are passed back to the conditional
functions as gradients in learning Q values and discounted future rewards.

3 Negotiation

We investigate different applications of Sigma’s gradient-descent learning mechanism
within a bilateral negotiation task. Two agents, A and B, make a series of offers and
counteroffers to arrive at an allocation of two apples and two oranges. On its turn,
each agent selects an operator (Operator-A and Operator-B), either making an offer
or accepting the current offer on the table. The current offer on the table is represented
by a number of Apples and Oranges, the combination of which represent the fruits
that A would receive if the offer were accepted. B would receive the fruits not allocated
to A.

In this paper, we adopt the perspective of A, who receives a Reward-A that increases
linearly with the number of total fruits. An agent can offer only one type of fruit at a

146 D.V. Pynadath, P.S. Rosenbloom, and S.C. Marsella

time, so both agents’ operators, Operator-A and Operator-B, contain: {offer 0 apples,
offer 1 apple, offer 2 apples, offer 0 oranges, offer 1 orange, offer 2 oranges, accept}.
If either agent chooses to accept the current offer, then the negotiation terminates with
a final allocation based on the current offer on the table. It is straightforward to encode
this deterministic transition function within Sigma conditionals.

Combining the transition and reward functions can generate the reward for A’s action
selection one time step into the future. To predict long-term rewards further into the
future, A can use its experiences in repeated negotiations to learn Q values, Q-A, across
possible state-operator combinations [20]. We represent these Q values as a distribution
over [0,10), the same scale as Reward-A. A can learn this distribution by deriving
projected future rewards, Projected-A, from the observed immediate rewards and the
state transitions it experiences.

To reason about the future rewards that result from B’s action, A can use a variety
of possible models. In Section 4, A naively treats this transition as simply part of the
environment and does no modeling of B’s operator selection. In Section 5, A models B
as following a stationary policy of behavior (similar to fictitious play [2]) so that it can
learn the distribution of actions underlying the state transitions during B’s turn.

In Sections 6 and 7, A uses a Theory of Mind to assume that B behaves according
to a reward function structured like its own. In Section 6, A assumes that this reward
function is drawn from a finite set of candidates. Such prior knowledge is not always
available, so, in Section 7, A uses inverse reinforcement learning to update a belief about
B’s reward function. In both cases, A can derive a policy of behavior from a hypothe-
sized reward function for B, and use it to generate an expected probability distribution
over B’s operator selection and the implied state transitions.

We apply these variations in combination with two possible variations on B:

Cooperative: B wants the same outcome as A (i.e., A has all of the fruit).

Competitive: B is happy to let A have the oranges, but it wants the apples for itself.

We provide A with a static target by not having B model A in return. In other words,
B’s behavior is a stationary function of the current offer on the table. The cooperative
B will accept when the current offer is 2 apples and 2 oranges; otherwise, it will make
an offer that moves the negotiation closer to that target offer, with two apples being
offered before two oranges. The competitive B behaves similarly with respect to its
target offer of 0 apples and 2 oranges.1 Both versions of B make apples a higher priority
than oranges, to break up the symmetry that would make many of the negotiation states
equivalent. For example, a cooperative B prefers 2 apples and no oranges over no apples
and 2 oranges. To complicate A’s learning problem further, we make B’s behavior non-
deterministic by introducing a 10% chance of deviating from the optimal action to one
of its suboptimal actions.

1 A truly competitive B that wanted both the oranges and apples would be an uninteresting
opponent, in that any action by A would not move B from its target offer of 0 apples and 0
oranges.

Reinforcement Learning for Adaptive Theory of Mind 147

4 Learning with No Model of the Other Agent

We first build a Sigma agent that learns its Q values without any explicit modeling of
B’s behavior [10]. Figures 1a and 1b show an influence diagram representation of the
conditionals that represent A’s reasoning during A’s and B’s turns, respectively. On its
turn, in Figure 1a, A uses its current Q values (Q-A) to inform its selection of Operator-
A (a rectangular decision node) given the current state of the negotiation (Applest,
etc.). It then observes the subsequent state (Applest+1, etc.) and the reward that results
(Reward-A, a diamond-shaped utility node).

(a) on A’s own turn (b) on B’s turn

Fig. 1. Graph for computing and learning A’s projected rewards with no model of B

In our negotiation model, the agents receive reward only when an offer is accepted by
either party. A propagates this final reward back over the offer on the table (the dashed
line from Reward-A to Projected-At+1 in Figure 1a) and then backs up those values
to the state leading to the final accepted offer (the dashed line from Projected-At+1

to Projected-At). The messages that are passed back to the conditional functions then
serve as gradients in learning the projected future rewards [17]. Similar gradient descent
using the messages passed along the dashed line from Projected-At+1 to Q-A then
supports learning the Q values from these projected future rewards.

Figure 1b shows the graph for the rewards that A can expect when it is B’s turn. In
this case, the operator is an observation from A’s perspective (as opposed to its own
decision). The message passing and gradient descent proceed just as on A’s turn.

As A encounters various negotiation states, Sigma’s conditionals will generate mes-
sages for the current state and selected operator, leading to updates to the projected fu-
ture rewards and, on A’s turn, the Q values for those states. The agent can then use the
learned Q values in its operator selection process by translating the distribution over Q
values into an expected value for candidate operators, as shown in the forward direction
in Figure 1a. A then chooses its operator through a softmax over these expected values,
allowing it to choose high-value operators with high probability, while also allowing it
to explore the negotiation space during learning.

Table 1 shows the expectation over A’s Q values after 1000 cycles of interacting with
a cooperative B, averaged over 60 runs. The boldfaced number represents the operator

148 D.V. Pynadath, P.S. Rosenbloom, and S.C. Marsella

having the highest expected Q value in each state. For the most part, A has learned to
accept when the offer on the table reaches its best possible outcome: two apples and
two oranges. However, the other operators in that state also have high values, because,
in the cooperative setting, even if A changes the offer, B will seek to re-establish it on
its subsequent turn. The optimal actions in the other states (offering either two apples
or two oranges) all have similarly high values, although there are some states where
another operator has a higher value. Again, B’s cooperative nature means that accepting
a suboptimal offer is the only really “bad” choice, but this learning method has still
demonstrated an effective ability to learn discriminatory Q values across its operators.

Table 1. Q values with no explicit model of B, who is cooperative

Apples,Oranges 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
Q(Apples,Oranges, accept) 4.88 5.01 5.62 4.72 5.07 6.59 4.00 5.68 9.49
Q(Apples,Oranges, offer-0-apples) 6.05 5.85 5.74 5.39 6.50 7.26 6.39 7.20 9.46
Q(Apples,Oranges, offer-0-oranges) 5.54 5.39 5.28 6.01 5.80 6.72 7.56 8.00 9.46
Q(Apples,Oranges, offer-1-apples) 5.72 5.96 6.57 5.89 5.77 7.72 6.56 8.17 9.48
Q(Apples,Oranges, offer-1-oranges) 5.81 5.96 5.30 6.23 6.59 7.01 7.50 8.25 9.46
Q(Apples,Oranges, offer-2-apples) 6.58 6.24 6.27 5.88 6.72 7.62 7.22 8.69 9.49
Q(Apples,Oranges, offer-2-oranges) 5.67 5.43 6.84 5.93 6.21 7.15 7.47 8.55 9.49

5 Learning with a Probabilistic Model of the Other Agent

A’s update of its projected future rewards in Figure 1b does not maintain any informa-
tion about the likelihood of the observed transitions on B’s turn. Early work on mul-
tiagent learning instead leveraged an assumption that other agents may be following
a stationary policy of behavior, represented as a probability distribution over operator
selection conditioned on the current state [5,6]. In this section, we enable A to model B
as such a 0-level agent by learning a stationary policy of B’s behavior. We can represent
this policy as a probability distribution, π-B, over B’s operator selection, as a function
of the current offer on the table. Figure 2 shows the graphical representation of the mod-
ified conditionals for A’s computation that include this policy. On B’s turn, A receives
direct evidence of B’s behavior that it uses to update the functional representation of
π-B (the dashed line from Operator-B in Figure 2).

A can now use its beliefs about B’s policy to update its projected future rewards. As
shown in Figure 2, the backup of Projected-At+1 to Projected-At is now weighted by
the probability of the observed action, as specified by π-B. Thus, A can minimize the
impact that observations of B’s unlikely suboptimal actions will have on its learning. In
such cases, the low probability for π-B of Operator-B will scale the message along the
link to Projected-At. This scaling allows A to incorporate its accumulated expectations
about B into its learning of Q values associated with the state of the negotiation. On A’s
own turn, these expectations provide no information, so A backs up future rewards just
as in Figure 1a.

Table 2 shows the probability of B’s true optimal action (which it chooses with 90%
probability) within A’s learned π-B policy. Across all states and both versions of B,

Reinforcement Learning for Adaptive Theory of Mind 149

Fig. 2. Graph for A’s projected rewards on B’s turn with a stationary policy model of B

the optimal action has the highest probability. However, even after 1000 cycles, the
values still deviate a significant amount from the correct 90% value. We postpone an
investigation of the impact of this learning on A’s performance until Section 8.

Table 2. Learned probability of B’s optimal action

Apples,Oranges 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
π-B(Operator-B∗) in cooperative 0.64 0.63 0.62 0.42 0.49 0.56 0.57 0.64 0.53
π-B(Operator-B∗) in competitive 0.70 0.58 0.44 0.60 0.55 0.59 0.41 0.55 0.63

6 Learning with a Set of Reward Functions for the Other Agent

Although the modified conditionals of Section 5 explicitly model B, they treat it as an
unknown stochastic process, rather than using a Theory of Mind to treat it as an agent-
driven one. For example, A’s Theory of Mind might inform it that B is also seeking to
maximize its own reward function. We can hypothesize that B belongs to one of a finite
set of possible models, each with a corresponding reward function. Such a representa-
tion would correspond to Bayesian approaches to multiagent modeling that use sets of
models to specify the beliefs that one agent has about another [4,12].

To represent such models, we introduce variables for the Reward, Projected fu-
ture rewards, and Q values of B, analogous to A’s. However, these variables have an
additional parameter, m ∈ Model-of-B, representing the possible reward functions of
B (e.g., cooperative vs. competitive). On B’s turn, A will observe Operator-B and the
resulting negotiation state. Figure 3a is a graph of A’s model of B’s decision-making
analogous to Figure 1a for A’s. Using this graph, A can deterministically derive the val-
ues of Reward-B from each of the candidate reward functions applied in the resulting
state. It can then propagate that derived value back to Projected-B, which is propagated,
in turn, back to Q values for B (Q-B), all contingent on each candidate model, m.

Sigma translates these learned Q values for each m ∈ Model-of-B into policies of
behavior for B: π-B, as in Section 5. Here, rather than learning the distribution directly,
A uses a softmax to translate the Q values in Operator-B into a Boltzmann distribution

150 D.V. Pynadath, P.S. Rosenbloom, and S.C. Marsella

(a) Projected-B on B’s turn (b) Projected-A on A’s own turn

Fig. 3. Graph for projected rewards with two hypothesized reward functions for B

over selection, conditioned on the current state. A can incorporate this distribution into
updating its projected future rewards on B’s turn as previously illustrated in Figure 2.

Given Q-B(m) for each operator, A can update its beliefs about the likelihood of
these models. The dashed lines to Model-of-B in Figure 3a represent the messages that
translate the observed Operator-B and the Q-B values for that observation under each
model, m, into a gradient over the distribution over models. For example, the models
for which the observed action has higher Q values will have an increased likelihood
in the posterior distribution. A will incorporate this distribution into an expected value
over Q-A across the possible values for Model-of-B (shown in Figure 3b).

We gave A a Model-of-B containing our two candidate reward functions (cooper-
ative and competitive) and let it interact with B of both types. After 1000 cycles, A’s
belief over Model-of-B is so certain that the likelihood of the incorrect model is less
than 0.1%. We again postpone an investigation of the impact of this modeling on A’s
performance until Section 8.

7 Learning with IRL of the Other’s Reward

We will not always have a priori knowledge of another agent’s possible reward func-
tions. However, we could assume that B has some fixed reward function that is guiding a
rational decision-making process. Inverse reinforcement learning leverages such an as-
sumption into an ability to reason backward from observed behavior to the observed
agent’s reward function [11]. Existing agents have used IRL to mimic an observed
agent’s behavior by inferring its underlying reward function [1]. In this work, we adapt
this same mechanism within Sigma to arrive at a novel application of IRL to learning a
policy for interacting with another (potentially adversarial) agent.

The graph in Figure 4 illustrates this IRL process in Sigma. A uses observations of
Operator-B to learn a frequency count, π-B, just as in Section 5’s stationary policy
model. However, rather than use this policy directly, we leverage our knowledge that
there is an underlying optimization process generating this policy. Via a process that

Reinforcement Learning for Adaptive Theory of Mind 151

required a small extension to Sigma, the action likelihoods of π-B are re-interpreted
in terms of the expected values of Q distributions. We then use a softmax to translate
these Q values into a new Boltzmann distribution, π-Q-B (similar to Section 6’s version
of π-B).

Fig. 4. Graph for IRL on B’s turn

Just as A backs up projected reward in a future state onto the Q value for the operator
that led to that state, we can now reason in the inverse direction for B. In other words,
the learned Q value for B’s selected operator implies the projected future reward in the
resulting state. However, because of the potential noise and error in this projection, we
weight each update by the likelihood, π-Q-B, of the observed operator.

To infer B’s reward from these projected future rewards, we exploit the fact that when
an agent accepts an offer, both agents receive an immediate reward and the negotiation
terminates. Therefore, when B accepts an offer, its projected future rewards include
the immediate reward from the accepted offer and nothing else, because there are no
more future states. By observing the offers that B accepts, A can thus propagate its
Projected-B values to a Reward-B model.

Table 3 presents the expectation over the reward function that A’s IRL generates
after 1000 cycles with cooperative and competitive Bs. The bold entries show that the
learned Reward-B successfully identifies B’s optimal outcomes. Furthermore, both ver-
sions of B value apples (positively or negatively) more than oranges, which the learned
Reward-B captures as well. In particular, the cooperative entries with two apples and
the competitive entries with zero constitute six out of the seven highest expected re-
wards. We will examine the impact of IRL on A’s performance in the next section.

Table 3. A’s expectation about B’s reward function after 1000 cycles in IRL agent

Apples,Oranges 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
cooperative 0.23 0.27 0.19 0.22 0.23 0.25 0.25 0.36 0.41
competitive 0.26 0.36 0.40 0.21 0.22 0.25 0.23 0.24 0.20

152 D.V. Pynadath, P.S. Rosenbloom, and S.C. Marsella

8 Experimental Comparison

We can compare the behavior of the four versions of A from Sections 4–7 within the
same context by measuring cumulative statistics over their interactions with our two
versions of B. To measure the flexibility of the learned policies, we also examine how
effectively each variation of A can transfer what it has learned to a new situation. There-
fore, after the first 1000 cycles with a cooperative (competitive) B, we switch B’s reward
function to be competitive (cooperative), and let A continue interacting for 250 more
cycles.

Table 4. Comparison of four variations vs. cooperative and competitive versions of B

Modeling No Model Stochastic Policy Reward Set IRL

msgs/decision 445 483 675 587
msec/cycle 306 309 1,343 560
A’s Reward (vs. cooperative B) 7.11 7.13 7.12 7.17
A’s Reward (after switch) 5.82 5.80 5.85 5.82
A’s Reward (vs. competitive B) 5.88 5.88 5.83 5.85
A’s Reward (after switch) 7.00 6.96 7.08 6.99

Table 4 shows that moving from the “no model” case of Section 4 to the “stochastic
policy” model of Section 5 has minimal impact on the number of messages and amount
of time required for the graph to reach quiescence. On the other hand, when including
a model of B’s reward function (Section 6’s “reward set” and Section 7’s “IRL” varia-
tions), the bigger graphs lead to significant increases in the messages and time required.
The “reward set” variation requires the most messages and time, due to the explicit
Model-of-B and the parameterization of Reward-B, Projected-B, Q-B, and π-B as a
function of the two possible models. The “IRL” variation avoids this doubling in the size
of messages regarding the B nodes, so it is able to model B’s reward function without
as much of an increase in computational time incurred by the “reward set” method.

Table 4 also shows that all four methods achieve roughly the same reward, with a
dropoff between the cooperative and competitive cases. We expect such a dropoff be-
cause of B’s unwillingness to accept or offer A’s optimal outcome in the latter case.
Given the differences among our methods, the comparable performance is a bit surpris-
ing. On the other hand, all four variations use a similar structure for A’s Q values, and
B’s stationary policy lends itself to RL. Sigma’s message passing quickly converges to
the best response, regardless of the knowledge representation. B’s behavior is thus not
complicated enough to draw out deeper differences among our learning methods.

The midstream switch of B from cooperative to competitive (or vice versa) does
elicit some distinguishing characteristics. Table 4 shows that the “reward set” version
of A does slightly better than the other three after both switches. During the first 1000
cycles, this variation has already learned Q-B for both cooperative and competitive Bs.
It can thus quickly detect the switch through RL of Model-of-B and use its Q-B(m) to
learn a modified Q-A. On the other hand, this advantage is still relatively small. Further
analysis is thus needed to gain more insight into the differences across these algorithms.

Reinforcement Learning for Adaptive Theory of Mind 153

9 Conclusion

We have applied Sigma’s architectural capability for gradient descent across four dif-
ferent models of multiagent learning. Three of these models re-create multiagent RL
algorithms from the literature, while the fourth represents a novel combination of RL
and IRL for decision-making in combination with Theory of Mind about another agent.
The four permutations of graphs represent only a subset of the possible structures that
we could experiment with. By introducing new nodes or changing the link structure, we
can alter A’s knowledge-level representation. Re-application of the same architectural
mechanism will enable reinforcement learning of that knowledge, allowing us to easily
study the impact that the modified graph has on multiagent interaction.

Our current experimental domain was able to validate the correctness of our various
algorithms. However, an enriched domain would provide more insight into the differ-
ential impact of the various modeling assumptions. In particular, B’s stationary policy
of behavior forms a static target for A to learn. One very easy way to achieve a more
realistic multiagent setting would be to expand our experiments into a true multiagent
setting, by giving B the same learning capabilities we gave to A. By assigning different
combinations of our learning algorithms to A and B, we will be able to better differenti-
ate their adaptive behavior by applying them to a more complex target agent. With this
enriched experimental setting, Sigma’s general capability for multiagent learning opens
up a promising line of future research into RL-based Theory of Mind.

Acknowledgments. This work has been sponsored by the Office of Naval Research
and the U.S. Army. Statements and opinions expressed do not necessarily reflect the
position or policy of the U.S. Government.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: ICML,
pp. 1–8. ACM (2004)

2. Brown, G.W.: Iterative solution of games by fictitious play. Activity Analysis of Production
and Allocation 13(1), 374–376 (1951)

3. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics 38(2), 156–172 (2008)

4. Gmytrasiewicz, P., Doshi, P.: A framework for sequential planning in multi-agent settings.
JAIR 24, 49–79 (2005)

5. Hu, J., Wellman, M.P.: Multiagent reinforcement learning: theoretical framework and an
algorithm. In: ICML, pp. 242–250 (1998)

6. Hu, J., Wellman, M.P.: Learning about other agents in a dynamic multiagent system. Journal
of Cognitive Systems Research 2, 67–79 (2001)

7. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT
Press (2009)

8. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory 47(2), 498–519 (2001)

9. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges.
Cognitive Systems Research 10(2), 141–160 (2009)

154 D.V. Pynadath, P.S. Rosenbloom, and S.C. Marsella

10. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In:
ICML, vol. 94, pp. 157–163 (1994)

11. Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: ICML,
pp. 663–670 (2000)

12. Pynadath, D.V., Marsella, S.C.: PsychSim: Modeling theory of mind with decision-theoretic
agents. In: IJCAI, pp. 1181–1186 (2005)

13. Pynadath, D.V., Rosenbloom, P.S., Marsella, S.C., Li, L.: Modeling two-player games in the
Sigma graphical cognitive architecture. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.)
AGI 2013. LNCS (LNAI), vol. 7999, pp. 98–108. Springer, Heidelberg (2013)

14. Rosenbloom, P.S.: From memory to problem solving: Mechanism reuse in a graphical cog-
nitive architecture. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS
(LNAI), vol. 6830, pp. 143–152. Springer, Heidelberg (2011)

15. Rosenbloom, P.S.: Deconstructing reinforcement learning in Sigma. In: Bach, J., Goertzel,
B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 262–271. Springer, Heidelberg
(2012)

16. Rosenbloom, P.S.: Extending mental imagery in Sigma. In: Bach, J., Goertzel, B., Iklé, M.
(eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 272–281. Springer, Heidelberg (2012)

17. Rosenbloom, P.S., Demski, A., Han, T., Ustun, V.: Learning via gradient descent in Sigma.
In: ICCM (2013)

18. Russell, S., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks
with hidden variables. In: IJCAI, pp. 1146–1152 (1995)

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
20. Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (1992)
21. Whiten, A. (ed.): Natural Theories of Mind. Basil Blackwell, Oxford (1991)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 155–164, 2014.
© Springer International Publishing Switzerland 2014

ARS: An AGI Agent Architecture

Samer Schaat, Alexander Wendt, Matthias Jakubec, Friedrich Gelbard, Lukas Herret,
and Dietmar Dietrich

Institute of Computer Technology, Vienna University of Technology, A-1040 Vienna
{schaat,wendt,jakubec,gelbard,herret,dietrich}@ict.tuwien.ac.at

Abstract. The computational paradigm in Cognitive Science, which the AGI
approach revives, provides a powerful methodology of examining human in-
formation processing by testing assumptions in computer simulations, and
enables technical applications with human-like capabilities. Nevertheless, inten-
sive interdisciplinary collaboration and the development of a holistic and inte-
grated model remain ongoing challenges. This includes the consideration of the
basis of rational cognition, in particular the significance of unconscious and af-
fective processes in the human mind. We take these issues into consideration
and integrate them into a holistic and integrated functional model of the human
mind, implemented as an agent’s decision unit and evaluated in an Artificial
Life simulation using an interdisciplinary methodology.

Keywords: Artificial General Intelligence · Cognitive Architectures · Computa-
tional Simulation · Artificial Recognition System · Artificial Agents.

1 Introduction

AGI (Artificial General Intelligence) “as the science of the mind as a computational
system” [1], has revived the original endeavour of Cognitive Science and Artificial
Intelligence to find a unified description of cognition instead of solving specific prob-
lems as in current conventional AI. Examining cognition using a synthetic approach is
a powerful way to understand the human mind and enables us to test our ideas of how
the mind works by running them as a computer simulation. Furthermore, we can use
this knowledge to develop technical systems with human-like capabilities; for in an
engineering sense, building a system and understanding it go hand in hand.

Nevertheless, two key aspects are often neglected in AGI models: (1) serious and
regular interdisciplinary cooperation between the different disciplines concerned with
studying the mind, and (2) taking into account the relevance of processing principles
of the unconscious, especially affective processes.

Regarding the first aspect, in an interdisciplinary collaboration, computer science
provides powerful techniques for developing and testing a deterministic model of
the human mind by using approaches from information theory such as computer
simulations, layered models, separation and modelling of data and functions,
top-down design processes, and requirements engineering; at the same time neurobi-
ology and psychology provide insights into the mind. Such a collaboration requires an

156 S. Schaat et al.

interdisciplinary methodology. With regard to the second aspect, traditional cognitive
architectures focus on modelling rational thinking. Such approaches often underesti-
mate the significance of the unconscious, whose key role is emphasized by many
disciplines (e.g. [2, 3]). Hence, a holistic model of human decision making must
consider the unconscious foundations of rational cognition and integrate them with
models of rational thinking into a unitary model.

2 Related Work

The ARS (Artificial Recognition System) presented in this paper possesses attributes
to be classified as following a cognitivist approach.

ACT-R (Adaptive Control of Thought-Rational) models an integrated theory of the
human mind and consists of several encapsulated modules. Their functionalities are
mapped to the cortical regions in the brain [6]. ACT-R is based on the multi-store
model theory [7] and therefore implements different memory systems and operations
for each module.

SOAR (State, Operator Apply Result) is a realization of the two hypotheses of classi-
cal artificial intelligence by Newell and Simon [8, 4, 5]: “The physical symbol system
hypothesis” and the “heuristic search hypothesis”. They state that such a system “…has
the necessary and sufficient means for general intelligent action” and that a solution will
be found “by generating and progressively modifying symbol structures…” [8]. In con-
trast to ARS, SOAR is not based on human ways of thinking [9]. A difference to ACT-
R is that the production rules in SOAR are relative simple, i.e. they only execute one
change of the working memory. They are fired in parallel, while in ACT-R productions
may be extensive as one rule can alter many buffers [10].

Differing from the previously described architectures, BDI (Belief, Desire, Inten-
tion) architecture as described in [12] is not a problem solving system based on a
heuristic search. It is based on a theory of practical reasoning, which is a planning
theory of intention according to [11]. Its foundations are the three mentalistic attrib-
utes belief, desire and intention, which define the state of the agent. Beliefs describe
the agent’s view of the world. Desires represent the long-term goals. They are acti-
vated by certain beliefs. Intentions are high-level plans which may be executed in
order to satisfy a desire. Desires are activated depending on the activated beliefs. BDI
does not use a heuristic search like SOAR and ACT-R to find a solution, but rather
applies a case-based approach [13].

LIDA (Learning Intelligent Distribution Agent) is based on a combination of re-
cent theories of the mind which are merged into a single cognitive architecture.
Among them is Global Workspace Theory, which is a connectionist theory and the
most widely accepted psychological and neurobiological theory of the role of con-
sciousness in cognition [14, 16]. It is also a realization of the H-CogAff architecture
[15]. Due to the connectionist approach of Global Workspace Theory, the sensors
demand embodiment for the agent [16], a factor not required for the previously de-
scribed architectures. LIDA uses concepts like emotions and feelings for the evalua-
tion of situations. In contrast to the other architectures, it also defines a preconscious

 ARS: An AGI Agent Architecture 157

and a conscious part of the system, where data is pre-processed, and through an atten-
tion mechanism a subset of the data is consciously broadcast to activate possible
options for action [17].

3 ARS Approach and Model Overview

When work began on ARS the original idea was to design an intelligent system capa-
ble of recognizing and understanding real-world situations, e.g. potentially dangerous
situations such as easily accessible knives threatening children in the kitchen or simi-
lar scenarios [18]. Soon it became clear that human beings can perform this type of
recognition tasks because they possess something we call “feeling”1, a feeling for the
situation they observe, a feeling for the use that may be made of available objects, a
feeling for how they should assess the characters and moods of others; and it became
obvious that it would be anything but simple to create an artificial system with this
kind of ability. What was required was nothing less than to design a model of what is
called the human psyche, the psychic or mental apparatus [19], and thus design an
AGI architecture. We understand the psychic apparatus as the control unit of the hu-
man organism. It is built from the nervous system with its main part – the brain –, but
to understand its workings it must be described on a higher abstraction level than just
the function of the neurons. If we as technicians want to build a model of the psyche
at this level, we cannot determine the corresponding functions by ourselves. We need
a consistent holistic functional psychic theory, and the only truly adequate theory we
have been able to find is psychoanalytic metapsychology. So the ARS projects aims at
concretizing metapsychology into a technical model of the human mind [18].

Fig. 1 shows the ARS model at the track level. Each track is built from several
function modules. The psyche of different individuals never differs in regard to these
functions, respectively their algorithms, but only in regard to data such as personal
parameters or memory contents. The ARS model identifies four different input tracks:
environment perception and body perception which together form the perception
track, and self-preservation drives and sexual drives which flow into the drive track.
This input signals the current needs of the organism. It is cathected2 with certain psy-
chic intensity, i.e. it is prioritized with a measure of its present importance, and may
be associated with memory traces of the means to meet the respective needs. These
associations again are of different psychic intensity, and an adequate reaction could be
selected based exclusively on them. So far, this functionality corresponds to what
psychoanalysis terms the Id, which is rather animalistic. But the humanoid agent is a
social creature. Growing up, it encounters a number of rules describing desirable be-
haviour as a member of the group, psychoanalytically known as the Super-ego. In the
defence track, conflicts between the needs of the Id and the commandments of
the Super-ego are decided by functions of the third major functional block: the Ego.
All this work by the psyche is entirely based on the so-called pleasure principle,
and remains unconscious to people; psychoanalysis calls it the primary process. But

1 Here “Feeling“ is used as an everyday English word. Later in the project we defined it based

on Damasio’s theory (see chapter 4).
2 Cathexis describes the attribution of quota of affect to psychic content. As a result this

content is valuated.

158 S. Schaat et al.

evolution has equipped humans with an additional mechanism to control the uncon-
scious output through rationally based decision making.

In the transformation track the contents resulting from the primary process are
connected with word-presentations. So they become preconscious.

Fig. 1. ARS Model at the track level

In case of hypercathexis (with extra psychic intensity) they become conscious. The
so-called secondary process includes the ability to deal with order, time, sequence and
language-based models of the world as well as logical reasoning. It enables the agent
to withdraw the purely pleasure-driven actions and follow the reality principle
instead. It gives the agent the feeling of free will, of agency, the possibility not to act
[19]. In the selection of desire & demand track, decisions are made as to which de-
mands should be checked for possible satisfaction. The selection track finally decides
which action plan to fulfil, and instructs the action track to realize it. Imagined results
are fed back to the primary process by the imagination track and thus become
perceived fantasy.

4 Motivations and Valuations

A fundamental question in AGI agents concerns the source for the agent’s agenda and
how the agent may cope with the external world while pursuing this agenda. Using
the drive concept of Freud as a framework and concretizing it by Damasio’s
model [3] of emotions, we use a generative multi-level model of motivations and
valuations to tackle these questions. Based on bodily needs, valuations generate and
prioritize motivations (drive representations) which are transformed into goals. These
valuations occur incrementally following different principles and influences.

As shown in Fig. 2, organic tension values from the agent’s body are represented as
psychic intensity in the psychic layer. In the process of generating drive representations,
psychic intensity is represented as a quota of affect and used to valuate memorized

 ARS: An AGI Agent Architecture 159

objects and actions according to the pleasure principle, which valuates that content as
the best which brought the most satisfaction in the past. This valuation may however be
changed by defence mechanisms (see chapter 6). The next valuation step uses neutral-
ized intensity, which is a personality-specific part of the drives’ quota of affect, to ex-
tend the valuation of memorized content according to the reality principle, i.e. the con-
sideration of affordance in the environment (see chapter 7).

Fig. 2. An incremental multi-level model of valuations

In general, logic and time issues are considered in this valuation step, which trans-
forms valuated drive representations to prioritized goals. The valuation of goals can
be extended by feelings as conscious representations of emotions, which are gener-
ated based on all quotas of affect, and memorized emotions that are activated by
perception and phantasy.

5 Perception

Perception is modelled as a means for the fulfilment of the agent’s motivations. In this
regard perception supports matching valuated memories with objects in the external
environment. This results in constructing images which include all sensual modalities,
and provides the information on how to fulfil the agent’s motivations in the external
world. Hence the recognition of objects is based on the agent’s experience and expec-
tations, which are generated from drives. This complies with the integration of bot-
tom-up and top-down approaches into a holistic model of perceptual categorization,
which is represented by using an activation-based exemplar model with multiple
activation sources (i.e. external stimuli and expectations triggered by drives).

6 Conflict and Defence Mechanisms

One of the challenges in AGI systems are conflicts in decision making. In the ARS
project, conflicts arise in the following cases: differences between drive wishes of the
agent, the possible fulfilment of those drive wishes in the simulation environment,
emotions, and social rules of the software agent. We implement psychoanalytic
defence mechanisms to resolve these conflicts and therefore to filter and/or alter input

160 S. Schaat et al.

data of the software agent. The defence mechanisms under consideration are repres-
sion, denial, reaction formation, reversal of affect, displacement, idealization, and
depreciation [20]. Fig. 3 sketches the functionalities of the defence mechanisms. First
we must investigate how conflicts in AGI systems can be detected and assessed. For
this purpose we implement two modules which represent the Super-ego. The Super-
ego modules compare drive wishes of the agent, emotions of the agent, perception,
and social rules for conflicts.

Fig. 3. Functionalities of defence mechanisms

If a conflict is detected, the weights – or rather the quotas of affect – of the con-
flicting components are summed up to obtain the value of the conflict tension. The
detection of conflicts is implemented by the use of rules: if a match of the left side of
a rule is found, the right side of that rule indicates which drive wish, emotion, and/or
perception is to be defended.

Once a conflict has been detected and its conflict tension calculated, the agent must
decide which defence mechanisms to select and activate. Hence the defence mecha-
nisms are sorted, from primitive to high-level defence mechanisms. The basic factor
for selecting a defence mechanism is the ego strength, which is represented by the
sum of available neutralized intensity. According to the current ego strength a defence
mechanism is selected and activated.

7 Decision Making and Planning

Decision making in ARS is a deliberative, two-stage selection process. In contrast to
the unconscious and rather more reactive parts of the system, the processing of a goal
requires several model cycles. The decision making and planning process is illustrated
in Fig. 4. The first step is to extract goals in 1a), 1b), and 1c); a goal is a container
which consists of the goal type, a goal object, plans, importance, and status flags. In
1c), motivations for what the agent shall achieve are extracted from drives. A drive,
which originates from the homeostatic needs of the body, is converted to a goal called
the aim of the drive. Such a drive may be e.g. to satisfy the need to eat. For decision
making, the current state of the feelings is also used in the evaluation of situations in
1b). All options or possible goals available for the selection are extracted from two
sources in 1a): either directly from the perception or from the activated memories. A
possible goal, which is extracted from a certain drive representation, tells the agent
that the perceived object would satisfy the need to eat if selected. The activated memo-
ries have the structure of sequences of events and are assembled from independent,
activated events as images in the unconscious part of the system. These memories are
the beliefs of the system, as they are sequences of actions and consequences in different
situations. For instance, such a sequence might inform the agent of a dangerous situation

 ARS: An AGI Agent Architecture 161

and potential consequences by creating a possible goal from a bad feeling which is as-
sociated with that sequence. In 2a), all incoming goals receive initial status flags as a
result of a basic evaluation of the effort and whether they are reachable for the agent or
not. The status flags of the goals are also used for teleo-reactive planning [21]. 2b) will
be explained later as it applies only to the subsequent model cycle in the multi-cycle
decision process.

Fig. 4. Process model of decision making and planning in ARS

In 3), the first stage of decision making is completed: all possible goals are evalu-
ated based on their likelihood of fulfilling the incoming aims of drives under consid-
eration of feelings. As a result, one or more possible goals are selected which have the
ability to satisfy the strongest aims of drives. For those possible goals which are rele-
vant to fulfilling the most urgent needs, or which demand a reaction to a situation,
plans are generated in 4a) and the effort of executing those plans is estimated in 4b).
Finally in 5), the goal with the highest importance, i.e. the best possibility of satisfy-
ing a need with the lowest effort or the avoidance of harm to the body, is selected in
the second stage of decision making. It is called the plan goal. All goals from the first
stage of decision making are then stored in short-term memory.

The action plans attached to the plan goal are either external or internal actions. In
the case of an external action, the action command is sent to the body for execution.
In the case of an internal action, an internal action command is executed within the
model in the next cycle. For each executed external action, several internal actions are
usually executed first, e.g. to focus on an object before starting to move towards it.

In the next model cycle, the stored possible goals – include the plan goal in the
short-term memory – are continued in step 6) of Fig. 4 as they are compared and
merged with newly extracted possible goals. In 2b), enhanced analysis of continued
goals is performed, triggered by internal actions. As a result, new status flags are de-
fined and associated with the possible goal. These status flags influence the evaluation
of the possible goal. Then in 3), all possible goals are evaluated again. As each goal is
handled independently, the agent is able to continually consider new goals and situa-
tions and to pause the pursuit of the current plan goal.

1a)
Extract

possible
goals

2a) Initialize new
possible goals

2b) process
continued possible

goals

3) Select one need
and the best,

applicable, possible
goals

4a) Generate plans
for each possible

goal
4b) Calculate effort

for each possible
goal

5) Select
one plan
goal to
execute

1b)
Extract
state of
feelings

1c)
Extract
aim of
drives

6) Provide plan
 goal and selected,
applicable goals to

2b)

162 S. Schaat et al.

8 Simulation Architecture

The implementation of ARS runs within an artificial life simulation, which is based
on the multi-agent simulation framework MASON. However, because of the generic
interface of the ARS architecture, it is also possible to use it in other applications. The
MASON framework provides a scheduler, a physics engine, a control panel and visu-
alization tools. The execution of each simulation object is divided into three parts:
sensing, processing, and execution. The simulation cycle is also executed for each
part of all simulation objects, i.e. first all sensing parts of all objects are executed,
then the processing parts, and finally the execution parts.

Fig. 5. ARS implementation architecture

As seen in Fig. 5, the agents are composed of a body and a mind, i.e. the ARS cog-
nitive architecture. The body, connected with the ARS architecture, consists of inter-
nal systems like a digestive system (energy balance), body internal sensors like blood
sugar, external sensors like vision, and an action engine which executes action com-
mands from the mind. The mind contains the implementation of ARS, together with
the knowledge base which is based on Protégé Frames.

9 Evaluation

As introductory mentioned, the development of an interdisciplinary methodology is a
key challenge when developing and evaluating AGI agents. We use a case-driven
methodology that guides interdisciplinary cooperation. This means that psychoana-
lysts and neuroscientists use their experience of real-world conditions to write an
exemplary case describing a situation (e.g. a hungry agent). This case is structured in
a simulation case which allows analysis of the required functions and data for the
simulation model. An overview of such a simulation case is provided in Fig. 6. To
evaluate the model, agent-based simulation is harnessed, which enables testing of our
assumptions and the plausibility of the model. In particular, we validate whether the
agents behave as expected (i.e. as described in the simulation cases). This includes
observing whether changing the data results in the expected behaviour (as described
in the simulation case). Since in this overview article no room for simulation results
exist, see e.g. [22] for details.

Agent

Body

Sensor System

Internal Sensors

External Sensors

Internal Systems

Digestive System

Stamina System

Action Engine

Mind

ARS Functional
Model

Knowlede Base

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

World Objects

 ARS: An AGI Agent Architecture 163

Fig. 6. Simulation case for the description of the behaviour of two agents, Adam and Bodo

10 Conclusion

We have shown how processes that follow the principles of the unconscious can be
integrated with rational aspects of decision making to approach how a decision unit
for an AGI agent that mimics human information processing may be developed. In
particular, we consider affective processes for the valuation of data – in keeping with
basic principles of rational cognition – and defense mechanisms for handling conflict-
ing trains of thought within the agent. We integrate these functions with perception,
rational decision making and planning, and evaluate the holistic model in an Artificial
Life simulation using an interdisciplinary methodology. With regard to future work,
probably the most notable shortcoming of the current model is the agent’s limited
ability to learn.

References

1. Bach, J.: A motivational system for cognitive AI. In: Schmidhuber, J., Thórisson, K.R.,
Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 232–242. Springer, Heidelberg (2011)

2. Bargh, J.A., Chartrand, T.L.: The unbearable automaticity of being. American Psycholo-
gist 54(7), 462–479 (1999)

3. Damasio, A.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harvest Books,
Washington (2003)

164 S. Schaat et al.

4. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: Implications
for the autonomous development of mental capabilities in computational agents. IEEE
Transactions on Evolutionary Computation 11, 151–180 (2007)

5. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and chal-
lenges. Cognitive Systems Research 10(2), 141–160 (2009)

6. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated
theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

7. Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control
processes. In: The Psychology of Learning and Motivation, vol. 2, pp. 89–195. Academic
Press, New York (1968)

8. Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search.
Commun. ACM 19(3), 113–126 (1976)

9. Newell, A.: Unified Theories of Cognition. Harvard Univ. Press (1994)
10. Turnbull, D.G., Chewar, C.M., McCrickard, D.S.: Are cognitive architectures mature

enough to evaluate notification systems? In: 2003 International Conference on Software
Engineering Research and Practice (SERP 2003), Las Vegas NV (2003)

11. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press (1987)
12. Gottifredi, S., Tucaty, M., Corbatta, D., Garcia, A.J., Simari, G.R.: A BDI architecture for

high level robot deliberation. Inteligencia Artificial 46, 74–83 (2010)
13. Wendler, J., Hannebauer, M., Burkhard, H.-D., Myritz, H., Sander, G., Meinert, T.: BDI

design principles and cooperative implementation in roboCup. In: Veloso, M.M., Pagello,
E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 531–541. Springer,
Heidelberg (2000)

14. Shanahan, M., Baars, B.: Applying global workspace theory to the frame problem. Cogni-
tion 98(2), 157–176 (2005)

15. Sloman, A., Chrisley, R.: More things than are dreamt of in your biology: Information-
processing in biologically inspired robots. Cognitive Systems Reasearch 6(2), 145–174
(2005)

16. Faghihi, U., Franklin, S.: The lida model as a foundational architecture for agi. In: Theo-
retical Foundations of Artificial General Intelligence, pp. 103–121. Springer (2012)

17. Franklin, S., Ramamurthy, U.: Motivations, values and emotions: 3 sides of the same coin.
In: Proceedings of the Sixth International Workshop on Epigenetic Robotics, Paris, France,
vol. (128), pp. 41–48. Lund University Cognitive Studies (September 2006)

18. Solms, M.: What is the ‘Mind’? A Neuro-Psychoanalytical Approach. In: Dietrich, D.,
Fodor, G., Zucker, G., Bruckner, D. (eds.) Simulating the Mind, pp. 115–122. Springer,
Vienna (2009)

19. Dietrich, D., Fodor, G., Zucker, G., Bruckner, D.: Simulating the Mind A Technical
Neuropsychoanalytical Approach. In: Proceedings of the 1st ENF - Emulating the Mind,
2007 Conference, Vienna (2009)

20. Eagle, M.N.: From Classical to Contemporary Psychoanalysis, A Critique and Integration.
Routledge, Taylor and Francis Group, LLC (2011)

21. Nilsson, N.: Teleo-reactive programs for agent control. arXiv preprint cs/9401101 (1994)
22. Schaat, S., Doblhammer, K., Wendt, A., Gelbard, F., Herret, L., Bruckner, D.: A Psychoa-

nalytically-Inspired Motivational and Emotional System for Autonomous Agents. In:
Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society,
pp. 6648–6653 (2013)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 165–173, 2014.
© Springer International Publishing Switzerland 2014

Quantum Mechanical Foundations of Causal
Entropic Forces

Swapnil Shah

North Carolina State University, USA
snshah4@ncsu.edu

Abstract. The theory of Causal Entropic Forces was introduced to explain the
emergence of intelligence as a phenomenon in physical systems. Although the
theory provides illustrations of how behavior shaped by causal entropic forces
resembles human cognitive niche in specific simple settings, the theory leaves
open some important questions. First, the definition of causal entropic forces,
in terms of actions that maximize the statistical diversity of future paths a sys-
tem can take, makes no connection with concepts of knowledge and rationality
traditionally associated with intelligence. Second, the theory does not explain
the origins of such path based forces in classical thermodynamic ensembles.
This paper addresses both these issues using the principles of open system
quantum mechanics, quantum statistics and the Hamiltonian theory of Dynamic
Economics. The construction finally arrived at is much more general than the
notion of entropic forces and shows how maximizing future path diversity is
closely related to maximizing a particular utility function over a sequence of in-
teractions till the system attains thermodynamic equilibrium.

Keywords: Entropic Forces, Statistical Diversity, Open Quantum Systems,
Utility Maximization.

One of the fundamental problems in Artificial Intelligence existing right from the
inception of the field is the lack of a precise formulation. The most widely studied AI
architectures involve logical agents, goal based agents and utility maximizing agents.
The latter approach, also termed as the economic approach to rationality, proposes
that intelligence can be referred to as the agent’s ability to maximize a utility or value
function over the sequence of states it will see in its lifetime, given transition proba-
bilities for combinations of states and actions. In this approach the agent receives a
reward for each state it sees, based on a reward function over the sample space of
states, and its job is to maximize the predicted future sum of these rewards or the
utility of its action. The problem here lies in getting a consensus on the global prefe-
rence order on the utilities of actions in a particular state, which has been discussed in
great depth in existing literature [2].

The paper on Causal Entropic Forces [1] proposes a first step towards establishing
a connection between thermodynamic entropy maximization over a future path and
intelligent behavior. It purports the idea that general causal entropic forces can result
in spontaneous emergence of intelligent behavior in simple physical systems without
the need for explicitly specifying goals or utilities. However, there are two potential

166 S. Shah

problems with this paper – a) It hypothesizes a force, dependent on the statistical di-
versity of future paths up to a finite time horizon, as against those based on instanta-
neous entropy production which are widely studied in statistical thermodynamics. The
conditions under which such forces might exist have not been established. b) Al-
though it does illustrate, with examples, emergence of ‘human-like’ behavior in the
narrow sense of tool use and walking abilities, it is far from establishing a clear rela-
tion between the traditional notion of intelligence and existence of forces that maxim-
ize path diversity. This paper attempts to resolve both the above mentioned issues
in the context of open quantum systems and the Hamiltonian theory of dynamic
economics [6]. The next section provides a very brief introduction to Quantum
Mechanics for the non physicists.

1 Background

1.1 Quantum Mechanics

In non-relativistic QM, all matter in the universe is expressed in the form of a wave-
function which associates nonzero probability amplitude to every coordinate in the
combined configuration space of all particles (as against the conventional Euclidean
space, in the configuration space every point corresponds to the degrees of freedom of
all particles). The time evolution of this universal wavefunction ψ is determined by
the Schrodinger wave equation:

 (1)

where H is the quantum Hamiltonian. It is a linear operator with eigenvalues as possi-
ble values of energy of the system.

1.2 Density Matrix Formalism and the Canonical Ensemble

If the values of all commuting observables are not known, we have more than one
wave-function describing the system. Under this condition, the system state is
represented by a density matrix which describes a statistical ensemble of wave-
functions: ∑ | | (2)
The density operator is positive definite so it can always be diagonalized in an eigen-
basis. The time evolution of the density matrix is then given by the von-Liouville
equation which is the quantum counterpart of the classical Liouville equation in statis-
tical mechanics: , (3)

If the universe is separated into a system and an environment which are in thermal
equilibrium (only able to exchange energy), the density matrix is given by the cele-
brated Gibbs state:

 Quantum Mechanical Foundations of Causal Entropic Forces 167

Tr
 (4)

Here β is the inverse temperature of the reservoir and H is the system Hamiltonian.

2 Causal Entropic Forces

The paper [1] proposes a first step towards establishing a connection between path
entropy maximization and intelligent behavior. It purports the idea that general causal
entropic forces can result in spontaneous emergence of intelligent behavior in simple
physical systems without the need for explicitly specifying goals or utilities. It sug-
gests a potentially general thermodynamic model of adaptive behavior as a non-
equilibrium process in open systems. A nonequilibrium physical system’s bias to-
wards maximum instantaneous entropy production is reflected by its evolution toward
higher-entropy macroscopic states, a process characterized by the formalism of en-
tropic forces. The instantaneous entropic force on a canonical ensemble associated
with a macrostate partition is given by: (5)

where T is the reservoir temperature and S(X) is the entropy associated with a macros-
tate X and X0 is the present macrostate. In order to uniformly maximize entropy pro-
duction between present and a future time horizon, the author proposes generalized
causal entropic forces over paths through the configuration space rather than over the
instantaneous configuration (or the ensemble). He then defines the causal path entro-
py of a macrostate X with the current system state x(0) as: , Pr 0 ln Pr 0 (6)

where Pr(x(t)|x(0)) denotes the conditional probability of the system evolving through
the path x(t) assuming the initial system state x(0), integrating over all possible paths
taken by the open systems’ environment during the same interval. A path-based caus-
al entropic force F corresponding to (6), can be expressed as: , , |X (7)

where TC is a causal path temperature that parametrizes the system’s bias toward ma-
crostates that maximize causal entropy. The remaining part of the causal path force
derivation takes in to account specific assumptions about the environment being a
heat bath at temperature Tr and the environment being coupled to only a few forced
degrees of freedom. The environment periodically rethermalizes these forced degrees
of freedom with a period Є. Further, the temporal dynamics of the system are taken to
be Markovian in nature giving the path probability as: Pr 0 ∏ Pr Pr 0 (8)

Making use of all these assumptions, the author finally arrives at the following path
dependent force (Specific details not mentioned here. The reader is referred to [1] for
the detailed derivation):

168 S. Shah

, 0 · Pr | 0 ln Pr | 0 (9)

The effect of the above force can be seen as driving the forced degrees of freedom
with a temperature dependent strength in an average of short term directions 0 ,
weighted by the diversity of long term paths [Pr | 0 ln Pr | 0],
that they make reachable, where the path diversity is measured over all degrees of
freedom of the system.

3 Causal Entropic Forces in a Quantum Universe

3.1 Projective or Von-Neumann Interactions

If the time horizon for evaluating the causal entropic force τ → ∞, equation (6) gets
modified to the following, owing to the celebrated asymptotic equi-partition property: , · 0 · Pr | 0 , (10)

where is the entropy rate of the Markov process. This is a valid assumption to
make if the Markov chain is ergodic and stationary. Having established this let us
move onto the development of the Quantum analogue.

As explained in [5], measurements and actions can be treated as system bath inte-
ractions in two mutually non-commuting eigenbases. Under the Born-Markov approx-
imation, the temporal evolution of the reduced system (with bath degrees traced
away) is described by the Lindblad Master equation: , ∑ 2 (11)

As in the case of Langevin dynamics, the bath thermalizes coupled degrees of free-
dom of the system in the pointer basis (the Lindbladian basis for projective inte-
ractions) after each interaction. We also assume the density matrix to be initially
diagonal in the measurement eigenbasis | . The expectation value of the force on
the ensemble is given by: Tr · (12)

Here P is the momentum operator. Now, this ensemble force can be simplified as
under: ∑ · (13)

Furthermore, we will assume that the action Lindbladian is PVM (projective valued
measure) of the action observable. From equations (12) and (13), using explicit form
of the Lindblad generator and common dissipation rates μ for all components forming
the ensemble, the non-unitary component of the force (neglecting Hamiltonian dy-
namics) in a measurement eigenstate | is given by: ∑ | | | | | | | | (14)

 Quantum Mechanical Foundations of Causal Entropic Forces 169

Here, | is an action basis (substituted for the Lindblad operator eigenbasis) and μ
is Fourier transform of the time correlation function of corresponding Bath operators
[4]. With some algebra, we obtain: ∑ | | | | | | | (15)

Notice the resemblance of the above equation with (10). The contribution of each
action eigenstate to this force is proportional to statistical diversity (parametrized by
the Born probability | | |) of all future paths resulting from the action.
The above equation explains the origins of such path based causal forces for projec-
tive Markovian interactions as the time horizon for evaluation of posterior path
probabilities τ → ∞ in (9).

3.2 Generalized Interactions

In case of projective interactions, the Von Neumann entropy Tr ln of the
system always increases [5]. So the system does not approach a goal state as against
that illustrated in [1]. We turn to generalized action interactions (positive operator
valued measures that are generalizations of projective valued measures) in this section
which can decrease an open system’s entropy at the cost of entropy of the bath, enabl-
ing the system to approach a goal state asymptotically as the system attains equili-
brium. We will also assume that the average internal energy of the system is initially
higher than reservoir temperature. For non equilibrium processes, the total entropy
production rate is given by the detailed balance relation (second law for open
systems): , 0 (16)

where is the total entropy production rate and J is the entropy flux owing to heat
exchange between the system and its environment.

3.2.1 Maximizing Path Diversity
In the current context, the diversity of future paths can be termed as the maximum
entropy that can be produced from the present to a future time horizon. Given the
density operator at the present time, the future path diversity is given by: Γ Tr ln (17)

where Γ is the maximum attainable future system entropy. Integrating the entropic
balance relation (16) over the time span to reach equilibrium, one gets: Δ Δ Δ Δ (18)

Let the entropy at time t = 0 be S0 and the current absolute entropy be St. Then making
use of the balance relation in conjunction with the second law, we get: Γ (19)

170 S. Shah

Because the average internal energy of the system is assumed to be initially higher
than the bath temperature, as the system progresses towards equilibrium heat is dissi-
pated to the bath. So the heat exchange term in the above inequality is negative. Se-
condly Γ is the maximum attainable future system entropy, so the first term on the
right side of the inequality is positive making the quantity on the right side strictly
positive and it is the maximum value that can be attained for the future path diversity.
As can be inferred, this value is approached when the total entropy production over
time Δ is extremely small.

4 Causal Entropic Forces and Maximizing Expected Utility

4.1 Hamiltonian Theory of Dynamic Economics

Having laid down the foundations of path based forces in Quantum Mechanics
for open systems, we now develop the relation between economic utility and path
diversity. For the problem of consumption-optimal growth with positive rate of time
discount α > 0, the equations of motion are [6]: , (20) , (21)

where, k is the initial endowment vector and Q is the vector of capital goods prices
and H is the system Hamiltonian representing the production technology. The optimal
steady state at the equilibrium (Q*,k*) is given by: 0 , (22) 0 , (23)

From [7], the optimal path to the steady state for a diffusion process is given by the
one that maximizes the following discounted expected utility over (possibly) infinite
sequence of interventions: max ∑ (24)

where ci is the consumption at time step i, St is the current value of quantity being
consumed and U is the agent’s utility from consumption ci. We can assume the rate of
time discount α to be constant for the sake of simplicity. According to [7], if the time
discount rate α is given to be quite large, the optimal policy is Markovian in nature
and is characterized by a control region, a complementary continuation region and
a set of optimal actions that can be taken in control region. For the discrete time
Markovian policy, equation (24) reduces to the well known Bellman equation: max (25)

which can be rewritten as:

 Quantum Mechanical Foundations of Causal Entropic Forces 171

max ∑ Pr Pr (26)

4.2 Economic Utility and Entropy

Using standard form of the Lindblad Dissipator and assuming characteristic dissipa-
tion rates μ to be equal for all components, the rate of change of expectation value of ln in the system energy eigenbasis | is given by: | | ∑ ∑ ln , ln, (27)

where {*,*} represents the anti-commutator. It is known from the theory of Marko-
vian master equation for open systems that: , 0 (28)

So, equation (27) can be written as: | | · · | ln | (29)

where, ∑ , (30.a) ∑ ∑ ln , ln, (30.b)

Equation (29) is a first order linear differential equation with the general solution: | ln | (31)

So, the change in Von Neumann Entropy in an action interaction is given by: ∆ ∑ · (32)

where 1 and τd is the characteristic decoherence time. Negative of
change in entropy is used in (32) owing to the assumption that the system entropy
decreases in an action interaction as was mentioned earlier. Notice the resemblance of
(32) with the Bellman equation (26). From (18), it can be inferred that this situation is
achieved when the total entropy production for an action interaction is extremely
small. This is precisely the condition that we arrived at while trying to maximize fu-
ture path diversity D (17) in the previous section, which suggests that both the prob-
lems of maximizing path diversity and maximizing expected utility are duals of each
other in the proposed scheme. In terms of thermodynamic utility, this condition trans-
lates to the minimum reduction in the amount of Free energy of a system as it attains
equilibrium. Free energy of a system corresponds to the maximum useful work
that can be extracted from the system. As the system attains equilibrium with the
heat bath, the system entropy attains its minimum value leading to emergence of an
optimal stationary goal state.

172 S. Shah

5 Conclusions and Future Scope

Theory of causal entropic forces is based on the idea of maximizing causal path en-
tropy by evaluating path probabilities upto a finite time horizon τ instead of greedily
maximizing instantaneous entropy production [1]. However, adhering to classical
thermodynamics, one cannot fully explain the origins of such a path based force act-
ing on a macrostate of a statistical ensemble. Using the interaction model proposed in
[5], we treat measurements and actions as system environment interactions in two non
commuting eigenbases. We establish how such a force might originate in the Quan-
tum mechanical framework for projective interactions. However, projective interac-
tions result in increase in Von Neumann entropy of the system, in which case the
system never approaches a singular goal state. So we turn to generalized interactions
in order to explain maximization of path diversity when the system entropy decreases
on each action interaction at the cost of entropy of the bath using detailed balance
relation. We also show how under a suitable choice of utility function, maximizing
path diversity and maximizing expected utility are duals of each other.

Future work would include determining the common criterion for optimality for
maximizing path diversity and expected utility in the presented scheme in terms of
system-environment coupling strength and properties of action operators that lead to
non-projective Lindbladians, which in turn allow decrease in system entropy. In [8],
the authors describe application of displaced oscillator variational ansatz to Caldeira
Leggett model for Brownian particle in a box coupled to an ohmic dissipative envi-
ronment. They show, with the help of numerical renormalization group techniques,
how for a critical system-environment coupling strength, the particle gets localized to
the center of the box which is analogous to the illustration of Brownian particle beha-
vior under causal entropic forces [1]. A generalization of analysis in [8] would be
necessary to arrive at the precise conditions necessary for emergence of optimal goal
states in dissipative systems as predicted by theory of causal entropic forces. Once
these conditions are established, it would be possible to explain intelligence as emer-
gent phenomenon in general non-equilibrium thermodynamic systems and processes.

Acknowledgements. I take this opportunity to thank Dr. Jon Doyle, Dept. of Com-
puter Science, NCSU for his extremely valuable suggestions and insight on the
subject and his incessant encouragement during the institution of this work.

References

1. Gross, A.D., Freer, C.E.: Causal Entropic Forces. Phys. Rev. Lett. 110(16), 1-168702–5-
168702 (2013)

2. Arrow, K.J.: A Difficulty in the Concept of Social Welfare. Journal of Political Econo-
my 58(4), 328–346 (1950)

3. Everett, H.: Theory of the Universal Wavefunction, Thesis. Princeton University, pp. 1–140
(1973)

4. Breur, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University
Press (2002)

 Quantum Mechanical Foundations of Causal Entropic Forces 173

5. Shah, S.: A Quantum Approach to AI. In: Proceedings of the 12th WSEAS International
Conference on Artificial Intelligence, Knowledge Engineering and Databases, pp. 24–27
(2013)

6. Cass, D., Shell, K.: The Hamiltonian Approach to Dynamic Economics. Academic Press
Inc., (1976)

7. Baccarin, S.: Optimal Consumption of a generalized Geometric Brownian Motion with
Fixed and Variable Intervention Costs. Dept. of Economics and Statistics, Univ. of Torino,
1–23 (2013)

8. Sabio, J., Borda, L., Guinea, F., Sols, F.: Phase Diagram of the Dissipative Quantum
Particle in a Box. Phys. Rev. 78(085439), 1-085439–8-085439 (2008)

A General System for Learning and Reasoning
in Symbolic Domains

Claes Strannegård1, Abdul Rahim Nizamani2, and Ulf Persson3

1 Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg,
Sweden and Department of Applied Information Technology,

Chalmers University of Technology, Sweden
claes.strannegard@gu.se

2 Department of Applied Information Technology, University of Gothenburg, Sweden
abdulrahim.nizamani@gu.se

3 Department of Mathematical Sciences, Chalmers University of Technology, Sweden
ulfp@chalmers.se

Abstract. We present the system O� that operates in arbitrary symbolic domains,
including arithmetic, logic, and grammar. O� can start from scratch and learn the
general laws of a domain from examples. The main learning mechanism is a for-
malization of Occam’s razor. Learning is facilitated by working within a cognitive
model of bounded rationality. Computational complexity is thereby dramatically
reduced, while preserving human-level performance. As illustration, we describe
the learning process by which O� learns elementary arithmetic. In the beginning,
O� knows nothing about the syntax or laws of arithmetic; by the end, it has con-
structed a theory enabling it to solve previously unseen problems such as “what
is 67∗8?” and “which number comes next in the sequence 8,11,14?”.

Keywords: Domain-independent agent, Occam’s razor, bounded rationality.

1 Introduction

The goal of artificial general intelligence (AGI) is to build systems with general in-
telligence at the human level or beyond [1]. Such systems must be able to learn the
mechanics of new domains while adapting to arbitrary performance measures in those
domains. Developmental (epigenetic) robotics, inspired by developmental psychology,
builds agents that develop automatically through interaction with their environment
[2]. Research in the field has so far focused on sensorimotor development and social
interaction, leaving higher cognitive functions, such as symbolic reasoning, largely
unexplored.

A standard textbook in artificial intelligence [3] characterizes an agent as rational if it
always acts so that the expected value of its performance measure is maximized. Herbert
Simon introduced the notion of bounded rationality [4] to designate “rational choice
that takes into account the cognitive limitations of the decision maker – limitations of
both knowledge and computational capacity”.

Inductive program synthesis – in particular, inductive logic programming [5] – is
program synthesis from examples of input-output pairs [6]. The analytic approach uses

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 174–185, 2014.
c© Springer International Publishing Switzerland 2014

A General System for Learning and Reasoning in Symbolic Domains 175

examples to construct actual programs, while generate-and-test uses examples for test-
ing purposes only. Analytic techniques include anti-unification and recursive relation
learning. The computational complexity of the methods used has proven a major obsta-
cle to the use of inductive program synthesis on a larger scale [6].

Cognitive architectures such as Soar [7], ACT-R [8], CHREST [9], and NARS [10]
have been used to model various aspects of human cognition. Such architectures com-
monly use abstract rewrite systems to model computations as rewrite sequences [11].
They often include explicit models of such cognitive resources as working, sensory,
declarative, and procedural memory. These cognitive resources are bounded in vari-
ous ways: e.g., with respect to capacity, duration, and access time [12]. In particular,
working memory, which can typically only hold a small number of items (chunks) is a
well-known bottleneck for human problem solving [13]. That said, one can easily obtain
models of bounded rationality by placing limits on the available cognitive resources.

According to Piaget’s developmental theory, children adapt to new information in
one of two ways: by assimilation, in which new information fits into existing knowledge
structures; and by accommodation, in which new information causes new knowledge
structures to form or old structures to be modified [14].

Occam’s razor tells us to prefer short and simple explanations, both in science and
everyday life. It can be formalized in several ways, some of which (e.g., Kolmogorov
and Solomonoff complexity) are not computable, while others (e.g., Levin complexity)
are [15]. A computable version of Kolmogorov complexity can be obtained by combin-
ing it with traditional complexity classes from complexity theory. Likewise, although
the universal AI model AIXI is not computable in its original form, restricted versions
have been proposed that are capable of problem solving in e.g. game domains [16].

In this paper, we present a general system, designed to match the learning and rea-
soning capabilities of unaided humans in symbolic domains. Section 2 presents the
system O�. Sections 3 and 4 shows how O� can be used for learning and reasoning,
respectively. For the sake of concreteness, we consider the special case of elementary
arithmetic. Section 5 offers some conclusions.

2 Computational Model

In cognitive psychology, computational models should, ideally, perform both (i) at least
and (ii) at most at the human level for any given performance measure. For AGI, satisfy-
ing (i) is generally sufficient. Indeed, performing above the human level is an advantage;
not to mention that a unilateral cognitive model satisfying (i) but not (ii) may be easier
to construct.

In this paper, we use the following strategy for AGI. Suppose that a human, with
bounded cognitive resources, can solve a certain problem. Suppose further that one has
a well-designed unilateral cognitive model of this person – one that also has bounded
cognitive resources. Then, a solution exists within the model: one that we can find by
searching the model. The search strategy can be combined with any heuristic algorithm.
By so exploiting the link to human cognition, we hope to mitigate the combinatorial
explosion associated with many standard AI algorithms. We now proceed to define our
model formally.

176 C. Strannegård, A.R. Nizamani, and U. Persson

Definition 1 (Tag). A tag is a string of ASCII symbols that does not contain any punc-
tuation symbols: in particular, no commas, colons, parentheses, or spaces.

Tags will be written in monospaced font. For example, x, 1 and Digit are tags.

Definition 2 (Variable). A variable is a string of the form (σ:τ), where σ and τ are
tags.

For example, (x:Number) and (x:Sent) are variables.

Definition 3 (Term). A term is a finite tree whose nodes are labeled with tags or vari-
ables. Variables may only appear in the leaf nodes.

Example 1. Here are two examples of terms (about arithmetic and propositional logic):

*

(x:Number) 0

||

(x:Sent) True

For purposes of this paper, terms will be presented not as trees but as strings, to make
the notation more compact. We use a standard linearization algorithm that inserts paren-
theses into the strings to reflect the implied tree structure. We use some conventions –
e.g. omitting certain parentheses – to make the notation easier to read. The above terms
linearize to (x:Number)*0 and (x:Sent)||True, respectively. To go in the reverse di-
rection, we use a standard parsing algorithm. In this way, one can move freely between
representations of terms as trees or strings.

Definition 4 (Axiom). An axiom is a triple (τ, t, t ′), where τ is a tag and t and t ′ are
terms.

Example 2. Here are some examples of axioms (about arithmetic and propositional
logic):

(Equal,1+2,3)

(Equal,(x:Number) * 0,0)

(Equi,(x:Sent) || True,True)

(Equi,(x:Sent) && (y:Sent),(y:Sent) && (x:Sent)).

Definition 5 (Theory). A theory is a finite set of axioms.

Definition 6 (Assignment). An assignment is a partial function from variables to terms.

For instance, α = {((x:Number),1),((y:Number),2)} is an assignment. By extension,
assignments are defined from terms to terms. Thus, α((x:Number)+(y:Number)) =
1+2.

If s is a subtree of t, we write t(s). Moreover, if s′ is an arbitrary tree, we write t(s′/s)
to denote the result of replacing all occurrences of s in t by s′.

A General System for Learning and Reasoning in Symbolic Domains 177

Definition 7 (Rewrite). Suppose (τ, t1, t2) is an axiom. Then, we write

t(t ′)
(τ, t1, t2)

t(t ′′/t ′)

if there is an assignment α such that α(t1) = t ′ and α(t2) = t ′′. The conclusion t(t ′′)
follows from the premise t(t ′) by Rewrite.

Example 3. Here is an example application of Rewrite (with α as above):

1+2 (Equal, (x:Number)+(y:Number), (y:Number)+(x:Number))
2+1

Definition 8 (Computation). A computation is a sequence of terms (t0, . . . , tn) such
that for all i < n, ti+1 follows from ti by application of Rewrite.

We write computations vertically, from top to bottom, with the relevant axioms shown
at the transitions.

Example 4. Here is an example of a computation in the domain of arithmetic:

(1+2)*3
(Equal,1+2,3)

3*3 (Equal,3*3,9)
9

Example 5. Below is an example of a computation in the domain of propositional logic.
Here x, y, and z, are abbreviations of (x:Sent), (y:Sent), and (z:Sent), respec-
tively. Intuitively, the computation is a proof of the tautology (p → q)∨ p. This is be-
cause all of the axioms used in the computation preserve logical equivalence.

(p => q) || p
(Equi,x => y,(not x) || y)

((not p) || q) || p
(Equi,x || y,y || x)

(q || (not p)) || p
(Equi,(x || y) || z,x || (y || z))

q || ((not p) || p)
(Equi,(not x) || x,True)

q || True
(Equi,x || True,True)True

Definition 9 (Agent). An agent is a tuple (T,C,W,L,D), where

- T is a theory (representing beliefs in declarative memory);
- C is a set of terms (representing concepts in declarative memory);
- W is a natural number (representing working memory capacity);
- L is a natural number (representing assimilation capacity); and
- D is a natural number (representing accommodation capacity).

Definition 10 (Term size). Given a term t, s(t) is the number of nodes of t.

The measure s(t) is a simple model of the load of t on working memory. We also
define s(ax) = s(t)+ s(t ′) for axioms ax = (τ, t, t ′) and s(T) = Σ{s(ax) : ax ∈ T} for
theories T .

178 C. Strannegård, A.R. Nizamani, and U. Persson

Definition 11 (Agent computation). Let A = (T,C,W,L,D) be an agent. An
A-computation is a sequence of terms (t0, . . . , tn) with restrictions on

- terms: ti ∈C, for all i < n;
- transitions: ti+1 is obtained from ti using Rewrite and an axiom from T, for all

i < n;
- width: s(ti)≤W , for all i ≤ n; and
- length: n ≤ L.

The definition aims to capture those computations within reach of an unaided human
with belief set T , concept set C, working memory capacity W , assimilation capacity L,
and accommodation capacity D (cf. Definition 19).

Observation 1. For any agent A, the set of A-computations is finite.

This holds for combinatorial reasons, since all resources of A are bounded. Any A-
computation can be obtained by inserting terms belonging to a finite set C into a frame
of finite length L and width W .

Definition 12 (Induction problem). An induction problem (IP) is a finite set of items,
where an item is a tuple (τ, t, t ′,u) such that τ is a tag, t and t ′ are variable-free terms,
and u is an integer (utility).

Definition 13 (Item computation). The agent A computes the item (τ, t, t ′,u) if there is
an A-computation c from t to t ′ that uses only axioms with the tag τ and has the property
that, for every assignment α((σ : τ′′)) = t ′′ occurring in c, there is a (type-checking)
A-computation from t ′′ to τ′′ that uses only axioms with the tag Type.

Example 6. Suppose that the following are A-computations –the right one being a type-
checking computation. Then A computes the item (Equal,2+0,2,1).

2+0
(Equal,(x:Digit)+0,(x:Digit))

2
2 (Type,2,Digit)

Digit

Definition 14 (Performance). The performance of agent A on induction problem I is
the number

Σ{u : (τ, t, t ′,u) ∈ I and A computes (τ, t, t ′,u)}.
The convention that Σ/0 = 0 ensures that the performance is always defined.

Observation 2. The performance measure is computable.

Next, let us introduce the four operators to be used for constructing theories.

Definition 15 (Crossover). The term t ′′ is obtained from the terms t and t ′ by crossover
if t ′′ can be obtained from t by replacing a subtree of t by a subtree of t ′.

For example, 1+(3 ∗ 4) is a crossover of 1+ 2 and 3 ∗ 4.

Definition 16 (Abstraction). The axiom (τ, t,w) is obtained from the item (τ, t ′,w′,u)
by abstraction if α(t) = t ′ and α(w) = w′, for some assignment α.

A General System for Learning and Reasoning in Symbolic Domains 179

Example 7. (Equal,(x:Aterm)+(y:Aterm),(y:Aterm)+(x:Aterm)) is obtained
from the item (Equal,1+2,2+1,1) by abstraction.

Definition 17 (Recursion). The axiom ax is obtained from the item (τ, f (t), t ′,u) by
recursion if ax = (τ, f (w),w′), where w′ contains f (w′′), and w and w′′ contain the
same variable. w and w′ are formed by crossover.

Example 8. The axiom (Equal,f((x:Aterm)+1),f((x:Aterm))*2) is obtained from
the item (Equal,f(0),1,1) by recursion.

Definition 18 (Memorization). The axiom ax is obtained by memorization from the
item (τ, t, t ′,u), where u > 0, if ax = (τ, t, t ′).

Example 9. The axiom (Equal,1+2,3) is obtained from the item (Equal,1+2,3,1) by
memorization.

Definition 19 (Occam function). The Occam function takes agent An =(Tn,Cn,W,L,D)
and IP In as input and outputs agent An+1 = (Tn+1,Cn+1,W,L,D), as specified below.

Let Cn+1 =Cn ∪Γ, where Γ is obtained from In by taking subtrees of terms that ap-
pear in items of In, and replacing one or more leaf nodes of those subtrees by variables
taken from a set generated from Cn.

To define Tn+1, first form the set Δ consisting of:

- All axioms ax such that s(ax)≤D, whose terms are obtained fromCn+1 by crossover;
- All axioms obtained from items of In by abstraction;
- All axioms ax such that s(ax) ≤ D that are obtained from items of In by recursion,

using terms of Cn+1; and
- All axioms obtained from items of In by memorization.

Then, form the set Δ′ ⊆ Δ, whose axioms satisfy a few additional conditions: e.g., all
variables must appear in both terms of the axiom, or not at all.

Next, form the set Δ′′ ⊆ Δ′ containing at most 3 axioms, using the preference order:

1. The performance of (Tn ∪Δ′′,Cn+1,W,L,D) on In is as large as possible;
2. s(Δ′′) is as small as possible;
3. Δ′′ has a maximum number of variable tokens;
4. Δ′′ has a minimum number of variable types;
5. Δ′′ is as lexicographically small as possible.

Finally, let Tn+1 = Tn ∪Δ′′.

To illustrate the difference between type and token in this case, we can consider the term
(x:Number)*(x:Number) + 2, which contains one variable type and two variable to-
kens. Condition 1 aims to maximize utility. Condition 2 is a formalization of Occam’s
razor. Condition 3 ensures that variables are preferred over constants and Condition 4
that variables are reused whenever possible. Condition 5, finally, guarantees that the
output is always uniquely defined.

Observation 3. The Occam function is computable.

180 C. Strannegård, A.R. Nizamani, and U. Persson

This follows since there are only finitely many agents and associated computations to
check. We implemented the system O� comprising approximately 2,500 lines of code
in the functional programming language Haskell. O� can be initialized with any agent
A0. At stage n, O� takes IP In as input and updates An to An+1. O�’s update function is
a version of the Occam function with the following additions.

To reduce search complexity, O� applies the Occam function in multiple steps. First it
forms the set Δ by crossover and iterates over lengths of candidates (1 to D). If crossover
fails to find an optimal candidate for Δ′′, O� uses abstraction and then recursion, and
finally memorization if all else fails. The search for Δ′′ from Δ′ is exhaustive, while the
search for A-computations uses the A∗ algorithm with the goal of finding the shortest
computations.

Crossover produces a large number of axioms. Therefore, a small set of filters is
applied for reducing the complexity while still maintaining the generality of the result-
ing set Δ. These filters include the following: an axiom should be new (not already in
the theory); it should not have a variable in the right term that is absent from the left
term (cf. pure functions); it should contain at most two wildcards (variables appearing
in the left term but not in the right term), e.g., (Equal,(x:Aterm) * 0,0). Moreover,
variable assignments, e.g., (Equal,(x:Aterm),1), are not allowed.

3 Learning

In this section we illustrate how O� can learn in the special case of elementary arith-
metic. All problems considered below were solved by O� running on a standard
computer.

Example 10. Define A0 by letting T0 = /0, C0 = /0, W = 8, L = 10, and D = 6. Suppose
I0 consists of the items

(Type,0,Digit,1) (1)

(Type,1,Digit,1) (2)

(Type,2,Digit,1). (3)

Then, C1={0,1,2,Digit} and T1 consists of the axioms

(Type,0,Digit) (4)

(Type,1,Digit) (5)

(Type,2,Digit). (6)

Item (1) is A1-computable as follows:

0 (4)
Digit

The other two items can be computed similarly. Intuitively, A1 has memorized that 0, 1,
and 2 are digits.

A General System for Learning and Reasoning in Symbolic Domains 181

Example 11. Let A1 be as above. Suppose I1 consists of the items

(Type,1,Number,1) (7)

(Type,1#2,Number,1) (8)

(Type,1#(2#1),Number,−1). (9)

The symbol # can be interpreted as a juxtaposition operator: e.g., 1#2 is interpreted as
12. Now C2 −C1={1#2,2#1,1#(2#1),Number} and T2 −T1 consists of the axioms

(Type,Digit,Number) (10)

(Type,Number#Digit,Number). (11)

Item (7) is A2-computable using the axioms (5) and (10). Item (8) is A2-computable as
follows:

1#2 (5)
Digit#2

(10)
Number#2 (6)

Number#Digit
(11)

Number

Item (9) is not A2-computable. It is not hard to see that T2 is too weak to compute this
item. Therefore, O� terminates the search and concludes that the item is not computable.
The performance of A2 on I1 is 2, which is optimal. If item (9) were not included in I1,
then T2 −T1 would include the axiom:

(Type,Number#Number,Number)

instead of the axiom (11). Intuitively, A2 knows that numbers are sequences of digits.

Example 12. Let A2 be as above. Suppose I2 consists of the items

(Type,1,Aterm,1) (12)

(Type,1+2,Aterm,1). (13)

Then, T3 −T2 consists of the axioms

(Type,Number,Aterm) (14)

(Type,Aterm+Aterm,Aterm). (15)

Item (13) is readily A3-computable using the axioms (10), (14), and (15).

Example 13. Let A3 be as above. Suppose I3 consists of the item

(Type,1*2,Aterm,1). (16)

Then, T4 −T3 consists of the axiom

(Type,Aterm*Aterm,Aterm). (17)

182 C. Strannegård, A.R. Nizamani, and U. Persson

Now the system has learned the syntactic notions of digit, number, and arithmetical
term. Next it will learn some algebraic laws.

Example 14. Let A4 be as above. Suppose I4 consists of the items

(Equal,1+0,1,1) (18)

(Equal,1+1,1,−1). (19)

Then, T5 −T4 consists of the axiom:

(Equal,(x:Aterm)+0,(x:Aterm)). (20)

Item (18) is A5-computable as follows:

1+0 (20)
1

The straightforward type-checking computation uses the axioms (2), (10), and (14).
Item (19) is not A5-computable, since no axiom of T5 matches 1+1. If item (19) were
not included in I4, then T5 −T4 would consist of

(Equal,(x:Aterm)+(y:Aterm),(x:Aterm)).

Example 15. Let A5 be as above. Suppose I5 consists of the item

(Equal,0+1,1+0,1). (21)

Then, T6 −T5 consists of the axiom

(Equal,(x:Aterm)+(y:Aterm),(y:Aterm)+(x:Aterm)). (22)

Item (21) is A6-computable as follows:

0+1 (22)
1+0

The two type-checking computations are, once again, straightforward.

Example 16. Starting from A6, we may continue in the same way and eventually arrive
at an agent, An, which contains (a subset of) the theory BASE, defined in Appendix A.
In particular Tn contains the axioms

(Equal,8+3,1#1) (23)

(Equal,f(1),f(0+1)). (24)

4 Reasoning

In this section, we illustrate how O� is able to reason about the domains it has learned
about and solve previously unseen problems of deduction and induction. For simplicity,
we continue to work in the arithmetic domain. First, we will consider the deduction
problem of computing 67 ∗ 8.

A General System for Learning and Reasoning in Symbolic Domains 183

Example 17. Let An be as above. Let In be given by

(Equal,(6#7)*8,(5#3)#6,1). (25)

Then, Tn+1 = Tn and the item is computable by An+1 as follows:

(6#7)*8
(6*8)#(7*8)
(6*8)#(5#6)
((6*8)+5)#6
((4#8)+5)#6
(4#(8+5))#6
(4#(1#3))#6
((4+1)#3)#6

(5#3)#6

Next, we will consider the induction problem of finding the next number in the sequence
8,11,14.

Example 18. Let An+1 be as above and let In+1 be given by

(Equal,f(0),8,1) (26)

(Equal,f(1),1#1,1) (27)

(Equal,f(2),1#4,1). (28)

Then, Tn+2 −Tn+1 consists of the axioms

(Equal,f(0),8) (29)

(Equal,f((x:Aterm)+1),f((x:Aterm))+3). (30)

For instance, item (27) is computable by An+2 as follows:

f(1)
(24)

f(0+1)
(30)

f(0)+3
(29)

8+3 (23)
1#1

Now, An+2 can compute f(3) to obtain 1#7 and thus solve the number-sequence prob-
lem ”correctly”.

5 Conclusions

We have described the general system O� for learning and reasoning in symbolic do-
mains. O� differs from standard AI models by being domain independent and by
containing a unilateral cognitive model whose purpose is to reduce computational com-
plexity, while keeping performance at the human level or above. In this way, the
combinatorial-explosion problem, arising in e.g. inductive logic programming, auto-
matic theorem proving, and grammar induction, is mitigated. O� is able to learn the

184 C. Strannegård, A.R. Nizamani, and U. Persson

mechanics of new symbolic domains from scratch. It is general purpose: it has nothing
built in that is specific to arithmetic or any other particular domain.

This paper showed that O� can learn elementary arithmetic from scratch. After learn-
ing, it could solve both deductive problems like computing 67 ∗ 8 and inductive prob-
lems like computing the next number in the sequence 8,11,14. In [17], it was shown
that an agent similar to An is able to perform above the average human level on num-
ber sequence problems appearing in IQ tests. The paper [18] showed that O� can also
learn propositional logic from scratch. After learning, it was able to perform above the
average human level on propositional logic problems where the task is to distinguish
tautologies from non-tautologies.

At present, the main heuristic of O� is to confine the search for solutions to the cog-
nitive model. This heuristic is unsophisticated; nevertheless, it is sufficient for reaching
human-level performance in certain domains. It can potentially be combined with more
traditional heuristics to improve performance further.

We find the approach to AGI as proposed in this paper promising. More research is
needed, however, to determine its applicability, scalability, and robustness.

Acknowledgement. This research was supported by The Swedish Research Council,
Grant 421-2012-1000.

A Arithmetic Theory

The following are the axioms of the arithmetic theory BASE. Here x, y, and z are abbre-
viations of (x:Aterm), (y:Aterm), and (z:Aterm), respectively.

- (Type, 0, Digit)
- (Type, 1, Digit)
- . . .
- (Type, 9, Digit)
- (Type, Digit, Number)
- (Type, Number#Digit, Number)
- (Type, Number, Aterm)
- (Type, Aterm+Aterm, Aterm)
- (Type, Aterm*Aterm, Aterm)
- (Equal, x+0, x)
- (Equal, 0+x, x)
- (Equal, 1+1, 2)
- (Equal, 1+2, 3)
- . . .
- (Equal, 9+9, 1#8)
- (Equal, x*0, 0)
- (Equal, 0*x, 0)

- (Equal, x*1, x)
- (Equal, 1*x, x)
- (Equal, 2*2, 4)
- (Equal, 2*3, 6)
- . . .

- (Equal, 9*9, 8#1)
- (Equal, x+y, y+x)
- (Equal, x+(y+z), (x+y)+z)
- (Equal, (x#0)+y, x#y)
- (Equal, (x#y)+z, x#(y+z))
- (Equal, x#(y#z), (x+y)#z)
- (Equal, x*(y+z), (x*y)+(x*z))
- (Equal, (x#y)*z, (x*z)#(y*z))
- (Equal, f(1), f(0+1))
- (Equal, f(2), f(1+1))
- (Equal, f(3), f(2+1))

A General System for Learning and Reasoning in Symbolic Domains 185

References

1. Wang, P., Goertzel, B.: Theoretical Foundations of Artificial General Intelligence. Atlantis
Press (2012)

2. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen, E.: Au-
tonomous Mental Development by Robots and Animals. Science 291(5504), 599–600 (2001)

3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall series in
artificial intelligence. Prentice-Hall (2010)

4. Simon, H.A.: Models of Bounded Rationality: Empirically Grounded Economic Reason,
vol. 3. MIT Press (1982)

5. Muggleton, S., Chen, J.: Guest editorial: special issue on Inductive Logic Programming (ILP
2011). Machine Learning, 1–2 (2012)

6. Kitzelmann, E.: Inductive Programming: A Survey of Program Synthesis Techniques. In:
Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 50–73.
Springer, Heidelberg (2010)

7. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An Architecture for General Intelligence.
Artificial Intelligence 33(3), 1–64 (1987)

8. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum,
Mahwah (1998)

9. Gobet, F., Lane, P.: The CHREST Architecture of Cognition: The Role of Perception in
General Intelligence. In: Artificial General Intelligence 2010. Atlantis Press, Lugano (2010)

10. Wang, P.: From NARS to a Thinking Machine. In: Proceedings of the 2007 Conference on
Artificial General Intelligence, pp. 75–93. IOS Press, Amsterdam (2007)

11. Bezem, M., Klop, J.W., de Vrijer, R.: Term Rewriting Systems. Cambridge University Press
(2003)

12. Smith, E.E., Kosslyn, S.M.: Cognitive Psychology: Mind and Brain. Prentice-Hall,
Upper Saddle River (2006)

13. Toms, M., Morris, N., Ward, D.: Working Memory and Conditional Reasoning. The Quar-
terly Journal of Experimental Psychology 46(4), 679–699 (1993)

14. Piaget, J.: La construction du réel chez l’enfant. Delachaux & Niestlé (1937)
15. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications.

Texts in computer science. Springer (2009)
16. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approximation.

Journal of Artificial Intelligence Research 40(1), 95–142 (2011)
17. Strannegård, C., Nizamani, A.R., Sjöberg, A., Engström, F.: Bounded Kolmogorov complex-

ity based on cognitive models. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013.
LNCS (LNAI), vol. 7999, pp. 130–139. Springer, Heidelberg (2013)

18. Nizamani, A.R., Strannegård, C.: Learning Propositional Logic From Scratch. In: The 28th
Annual Workshop of the Swedish Artificial Intelligence Society, SAIS (in press, 2014)

Intelligence as Inference

or Forcing Occam on the World

Peter Sunehag and Marcus Hutter

Research School of Computer Science
Australian National University

Canberra Australia
{Peter.Sunehag,Marcus.Hutter}@anu.edu.au

Abstract. We propose to perform the optimization task of Universal
Artificial Intelligence (UAI) through learning a reference machine on
which good programs are short. Further, we also acknowledge that the
choice of reference machine that the UAI objective is based on is arbi-
trary and, therefore, we learn a suitable machine for the environment we
are in. This is based on viewing Occam’s razor as an imperative instead
of as a proposition about the world. Since this principle cannot be true
for all reference machines, we need to find a machine that makes the
principle true. We both want good policies and the environment to have
short implementations on the machine. Such a machine is learnt itera-
tively through a procedure that generalizes the principle underlying the
Expectation-Maximization algorithm.

1 Introduction

Universal Artificial Intelligence (UAI) [Hut05, LH07] formalizes intelligence as an
incomputable optimization problem. We will here recast optimization problems
as inference problems and define an iterative procedure that generalize the ex-
pectation maximization algorithm [DLR77] beyond its original form and context.
The idea has been used previously in more narrow settings [DH97, WGRT11].
Our approach here brings “planning as inference” [Bot12] to a universal setting
and we will discuss how to completely reduce the design of intelligent agents to
building an inference mechanism. However, we also note the importance of the
training environment. We note that it has been argued [HB04] that the human
neo-cortex relies on only one mechanism and that, therefore, it should be possi-
ble to understand higher level cognitive abilities as one mechanism interacting
with the environment with lower level processing in between.

Since we want a practical approach, we are only interested in computable
policies. Hence, we are considering a search for programs achieving the highest
possible return. The return function is not explicit and is evaluated for a program
by running it and observing what return was achieved. This means that the
impact of issues like running speed and memory use are subsumed into the
return function. The setting is essentially that of achieving bounded optimality
(rationality) as defined in [Rus97, RN10].

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 186–195, 2014.
c© Springer International Publishing Switzerland 2014

Intelligence as Inference or Forcing Occam on the World 187

Our approach is to iteratively develop a reference machine on which good
programs are short and, thereby, representing what we have learnt so far. The
reference machine defines a distribution over programs by letting the probability
of p be proportional to 2−	(p) where �(p) is the length of p. For every iteration we
want the machine to represent probabilities which are such that the probability
of the Turing machine T implemented by program p on the previous machine U ,
becomes proportional to the product of its (expected) return and its previous
probability. If this is achieved we are guaranteed an improvement in expected
return which means we got a better reference machine for finding rewarding
programs.

In a practical approach the update is based on a population of sample pro-
grams. These can be sampled for the machine by coin-flipping the bits of the
program, but they can include any evaluated programs from any sources. This
is an important point of the approach since all programs written by human pro-
grammers can be used and their intelligence can be mined for good ideas this
way. In fact, it is already used this way in the development of programming
languages and their libraries that aim to ease the development of good programs
and in some cases make bad things harder to do. The goal can be viewed as mak-
ing Occam’s razor true as a proposition about the world, while having to make
it so is in line with viewing Occam as an imperative [Web10]. This procedure
can be seen far beyond programming languages, e.g. in science where concepts
and terminology are created such that complex phenomena can be described
in compact form. The perspective of this article makes much of human progress
into a quest towards artificial general intelligence. In fact, we can go a bit further
by first looking at the background of our approach.

Evolution. In [DH97], the authors identified the Relative Payoff Procedure
(RPP) as an Expectation-Maximization (EM) procedure. RPP makes binary
choices independently and with probabilities proportional to the payoff relative
to the total payoff and then iterates. It has some similarities with evolutionary
algorithms (and natural evolution) where the most fit part of the population
grows at the expense of the less fit, but like the probabilistic model-building
genetic algorithms [Pel12], an explicit distribution representing current prefer-
ences is iteratively estimated resulting in more powerful optimization/learning
in an optimization-as-inference paradigm. Unlike most evolutionary approaches,
the expectation-maximization approach is learning also from the unfit and the
degrees of fitness of all samples.

It is interesting to note that evolution theory itself has begun to place im-
portance on more than genes [WE03], namely on gene-expression that changes
during life based on the environment. An adaptation is learnt through (or caus-
ing) changed gene-expression (which can even be inherited) and then, according
to this theory, a gene can be discovered that accommodates this adaptation and
locks it in. The accommodation theory of evolution introduce a purpose-driven
aspect into the process. This layer is represented in the mentioned algorithms by
the distribution which allows for learning and exploration of complex relation-
ships, if the distribution is more sophisticated than the independence in RPP

188 P. Sunehag and M. Hutter

allows for. In the accommodation theory of evolution, behavior is explored before
it is accommodated by DNA. The suitable gene that accommodated the adap-
tation could have been useless without the adaptation already being to some
extent in place. Gene expression (and also we here speculate brains and culture
when available) is what makes it possible for some biological adaptation before
a change in DNA takes place. A startling speculative possibility is that species
that can learn better during life also have an accelerated genetic evolution mak-
ing high levels of intelligence a much more probable outcome than it would be
with a simpler entirely gene-centered understanding of evolution. That the more
simplistic understandings of evolution cannot learn something complex in fea-
sible time has been understood for a long time, e.g. by the authors of [Len80].
As one might conclude that biological evolution was geared towards intelligence,
one can argue that our current technological and scientific evolution is moving
towards Artificial General Intelligence even without someone making it the goal.

Logical Reasoning. We believe that logical reasoning is not essential in the
building of an intelligent agent and is not a natural part of the human mind.
It has been repeatedly shown that plausibility-based reasoning is the innate hu-
man thinking. People systematically place more belief in an event than a superset
containing it, if the event creates a plausible narrative [Kah11] (not advocated
here). Logical reasoning likely evolved from rhetoric in ancient Greece and does
not seem to have been accommodated genetically and might not confer advan-
tage except for some very particular constructed environments like computer
programming.

We believe that logic is learnt from the human created environment. More-
over, practical logical reasoning is seldom fully formally logical, e.g. mathemat-
ical proofs are not written out in full but just aims at plausibility of each step
and hence originally accepted proofs are sometimes found to be flawed. Search-
ing through proof space suffers from combinatorial explosion and looking for
plausible chains guided by one’s belief about what is likely true (will hold up
to scrutiny) or not is more practical. Our approach is based on plausible im-
provement by improving a sample-based approximation of what would guaran-
tee improvement, and not on search for improvements with formal proof as the
Gödel machine [Sch07]. The Gödel machine starts with a set of axioms defining
an agent and then aims to update to a provably better set. The shifting induc-
tive bias approach [SZW97] is closer to what is considered here though a direct
comparison is difficult.

With probabilistic architectures with parameterized programs like e.g. Deep
Belief Networks [HOT06], it is easier to generate programs that run and do
something. The involved pattern recognition based reasoning is far more efficient
than dealing with logical programs and architectures.

Outline. We first provide background and notation for Universal Artificial In-
telligence (UAI) and general reinforcement learning. Then we introduce the ob-
jective whose optimization defines how one should update a reference machine
to have a guaranteed improvement of expected utility when sampling programs
from the machine. We go on to discuss a setting where generated observations in

Intelligence as Inference or Forcing Occam on the World 189

the optimization process are taken into account. We then we change from opti-
mizing the given UAI objective to actually learning about the world through de-
veloping the reference machine for the UAI objective. Finally we discuss merging
the notions of actions and observations as well as agent and environment before
we conclude in the last chapter.

2 Learning a Reference Machine for UAI

We will consider an agent [RN10, Hut05] that interacts with an environment
through performing actions at from a finite set A and receives observations
ot from a finite set O and rewards rt from a finite set R ⊂ [0, 1] resulting
in a history ht := o1r1a1, ..., otrt. Let H := ∪n(O × R × A)n × (O × R) be
the set of histories and let ε be the empty history. A function ν : H × A →
O × R is called a deterministic environment. A function π : H → A is called
a (deterministic) policy or an agent. We define the value function V based on
geometric discounting by V π

ν (ht−1) =
∑∞

i=t γ
i−tri where the sequence ri are the

rewards achieved by following π from time step t onwards in the environment ν
after having seen ht−1.

Instead of viewing the environment as a function H × A → O × R we can
equivalently write it as a function ν : H×A×O×R→ {0, 1} where we also write
ν(o, r|h, a) for the function value ν(h, a, o, r) (which is not the probability of the
four-tuple). It equals zero if in the first formulation (h, a) is not sent to (o, r)
and 1 if it is. In the case of stochastic environments we instead have a function
ν : H×A×O×R→ [0, 1] such that

∑
o,r ν(o, r|h, a) = 1 ∀h, a. Furthermore, we

define ν(ht|π) := Πt
i=1ν(oiri|ai, hi−1) where ai = π(hi−1). ν(·|π) is a probability

measure over strings or sequences and we can define ν(·|π, ht−1) by conditioning
ν(·|π) on ht−1. We define V π

ν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri.
Given a countable class of environments and strictly positive prior weights

wν for all ν in the class, we define the a-priori environment ξ by letting ξ(·) =∑
wνν(·) and the AIXI agent [Hut05] is defined by following the policy

π∗ := argmax
π

V π
ξ (ε).

The optimistic-AIXI agent [SH12b], which is an extension of AIXI, takes the
decision

π◦ := argmax
π

max
ξ∈Ξ

V π
ξ (ε)

for a finite set of a priori environments Ξ. Other variations include the space-time
embedded agents of [OR12] who are part of (computed by) the environment.

This article is dealing with the Universal Artificial Intelligence (UAI) setting
where AIXI is a mixture of all computable, or lower semi-computable, environ-
ments. The mixture weights are defined from a choice of reference Universal
Turing Machine (UTM) as 2−K(ν) for environment ν, and K is Kolmogorov
complexity (length of the shortest program that implements the argument) with
respect to U . The resulting a priori environment ξ can, equivalently, be defined

190 P. Sunehag and M. Hutter

as sampling a program for U and run it. The probability of a program p is
proportional to 2−	(p) where �(p) is the length of p. The expected reward of
a policy/agent is viewed as a measure of its intelligence [LH07]. However, this
is dependent on the reference machine and so is the AIXI agent defined from
it by maximizing that intelligence measure. Any agent is super-intelligent for
some reference machine. The optimistic extension is both meant to be a more
explorative version with more uniformly good performance across environments
but also to diminish the dependence on the reference machine by being able to
choose a large finite set of machines instead of just one. We will later in this
article address the problem of choosing a good reference machine to base AIXI
on, but we will first deal with the involved optimization problem by iteratively
learning a reference machine that represents a preference between policies such
that good policies have shorter programs on this machine.

Learning Reference Machines. Let T be the set of all Turing machines and
suppose we are given a (possibly unknown) return function R : T → R that for
each T ∈ T says how rewarding this machine is. We ideally want a machine from

argmax
T∈T

R(T).

A prominent example is when we have a general reinforcement learning envi-
ronment μ as defined in [Hut05] (and above) and T computes a policy. R(T)
is then the expected discounted reward sum when acting according to T in μ.
Given a Universal Turing Machine U , any Turing machine can be represented
as a program p for U . Hence, given U , the search for a Turing machine T be-
comes a search for a program p for U . Though the choice of reference machine
U does not affect which Turing machines are good, it affects how long/complex
its implementation is. We suppose that a practical search would favor shorter
programs over longer ones and, therefore, the choice of reference becomes criti-
cal for success. In fact, we will replace the search for programs with the task of
incrementally inferring what a good choice of machine is. The choice of machine
will encapsulate everything we have learned up to that time about how good
various programs are by making the good ones shorter than worse alternatives.
We want a machine U with high expected return defined by

∑
p

2−	U (p)R(p).

One approach is to propose a different machine and estimate the expected return
by running sampled programs on this machine. We will here instead consider a
generalized Expectation-Maximization procedure similar to what [DH97] dis-
cussed in their narrow setting, which allows you to evaluate the new machine
without running any programs on it. One only requires the ability to measure
the length of a program translated for it. However, all of what follows can be
expressed in terms of the expected utility objective above.

Intelligence as Inference or Forcing Occam on the World 191

Given reference machine U , we want to change to U ′ (including a mapping of
programs on U to programs on U ′) if∑

p

2−	U (p)R(p)�U (p) >
∑
p

2−	U (p)R(p)�U ′(p)

where �U (p) is the length of the program p for U while �U ′(p) is the length
of the translation of p for U ′. We suppress the search over translation pro-
grams to simplify notation. The larger the expectation of R(p)�U (p), the stronger
the correlation between return and length. Hence, the smaller the expression∑

p 2
−	U (p)R(p)�U (p) is, the stronger the correlation between high return and

short length. This update says that we want programs with high reward to have
low complexity and, furthermore, guarantees that∑

p

2−	U′(p)R(p) >
∑
p

2−	U (p)R(p).

This result is simply proven using Jensen’s inequality similar to [DH97].

log
∑
p

2−	U′(p)R(p)− log
∑
p

2−	U (p)R(p)

= log
∑
p

2−	U (p)R(p)∑
q 2

−	U (q)R(q)

2−	U′(p)

2−	U (p)

≥
∑
p

2−	U (p)R(p)∑
q 2

−	U (q)R(q)
log

2−	U′(p)

2−	U (p)

=
1∑

q 2
−	U (q)R(q)

(∑
p

2−	U (p)R(p)�U (p)−
∑
p

2−	U (p)R(p)�U ′(p)
)
≥ 0.

The desired result follows since log is monotone increasing.

Approximations with Sample Programs.
∑

p 2
−	U (p)R(p)�U ′(p) is not com-

putable. Hence, we cannot exactly evaluate ifU ′ is better thanU . Insteadwewill in
practice need to rely on a set of sample programs p and their evaluationsR(p). IfR
is of the form of an expectation of a stochastic return one needs to run the evalua-
tion repeatedly and average. To sample with a reference machine U is simple since
it is done by coin flipping on the input tape. In other words, one randomly picks
characters for the programming code which is typically a practical disaster if one
does not have a reference machine that makes a reasonable program out of many
short random strings. This problem disappears if as programwe simply set param-
eters for an algorithm that can be run for any choice of such. An important point
is that the set of sample programs do not all have to be sampled from the current
reference machine but interesting programs developed elsewhere can also be intro-
duced to be learnt from. Further, one needs a translation to the newmachine. This
is not necessarily difficult if the proposed change is to make some routines from the

192 P. Sunehag and M. Hutter

best programs part of the machine (language), reducing a block of code like a ma-
trix multiplication to a macro. This way, the process becomes one of discovering
and collecting useful routines while developing a high-level language. In the case
when parameterized probabilistic functions are used, one can instead learn to im-
itate successful programs by finding parameters that lead to close reproduction of
the programs’ behavior.

Including Observations/Data and Environment. The setting discussed
above has a return function that goes straight from programs (Turing machines)
to a real valued return. However, an alternative is to include more structure
where running the program generates data d ∈ D (D can be finite or countably
infinite), which might consist of a sequence of observations each of which can
contain a reward, and then there is a return function R : D → R. R can e.g. be
defined as a discounted reward sum. Though this can, as was mentioned before,
be viewed as just an example of the optimization task above if we have been
provided with a general reinforcement learning environment (which could be a
Bayesian mixture of environments as for AIXI), we can also try to take advantage
of the extra information and structure. This is done by replacing p with a pair
(p, d) but we must let the coding of d be done by the machine Û that represents
the environment since we cannot change the objective optimized as long as we
are in the optimization setting. Hence we end up with pairs (p, q) where q is a
program on Û that is run conditioned on p, i.e. q becomes an environment and
p a policy. In other words, we want to change from U to U ′ such that∑

p,q

2−(U (p)+	Û (q))R(p, q)�U (p, q) >
∑
p,q

2−(U (p)+	Û (q))R(p, q)�U ′(p, q)

where �U (p, q) is the length of a program on U (given by a translation) that
produce the outcome of running policy p in environment q. This is simultane-
ously aiming for a machine where good policies have short program and where
the likely data to be generated when such a policy is run, can also be coded
compactly. This strategy is a sound method for representing plausibility and
desirability in the same way and simultaneously modeling the world and the
value of different choices in it. In the optimization discussed so far, we know
the objective we optimize a policy for and the learning of this has so far been a
separate matter. We will below take the next step of our investigation.

Combined Learning of Agent and Environment. The above described
strategy starts with a reference machine Û that AIXI’s initial model ξ is defined
from. The choice of Û is arbitrary and any policy/agent can be considered super-
intelligent dependent on the reference machine. The reference machine defines
what is considered a simple hypothesis and defines belief based on viewing sim-
pler hypothesis as more plausible than more complex ones, i.e. Occam’s razor is
relied on. In this article, we learn a reference machine that implicitly incorpo-
rates an understanding of the world that makes Occam true. We replace q by
d and 2−	Û (q) by the unknown true environment probability μ(d|p) and aim for
higher

∑
p,d 2

−	U (p)μ(d|p)R(d) by choosing U ′ with

Intelligence as Inference or Forcing Occam on the World 193

∑
p,d

2−	U (p)μ(d|p)R(d)�U (p) >
∑
p,d

2−	U (p)μ(d|p)R(d)�U ′ (p).

In the sampling setting we simply sample from the world instead of using Û .
This is making the simplifying assumption that we have a reset after a program
has been run and evaluated, i.e. we can start every program in the same situation.
This is feasible if one wants to train an agent in a rich world like a general game
playing situation but where one can start over.

Exploration is important, both for the individual programs who act sequen-
tially for a long time and whose total return depends on exploration, as well
as for the sampling of programs. The learnt bias towards programs believed to
have high reward ensures that we aim to explore promising possibilities and not
waste time on finding out exactly how bad something is. Optimistic hypotheses
have the beneficial property that if the outcome does not clearly contradict the
hypothesis, the agent has received high return [SH12a].

When we above wrote that we want
∑

p,d 2
−	U (p)μ(d|p)R(d) to be high, there

are two possible interpretations depending on what we expect the programs to be
doing. We can have p that is simply implementing a policy, i.e. it delivers actions
and need an observation in between each to deliver the next. However, we can also
allow programs that produce output that can be understood as pairs of actions
and observations or whole sequences of such pairs (i.e. all of the data d), but where
the observation part can be changed by the environment resulting in a different re-
turn. This stays within the usual agent-environment framework while we can go
further and still use the same expression above, by letting the environment rewrite
the whole output. In this setting, a program is sampled and then data is gener-
ated. The data might not entirely coincide with the data coded/generated by the
program on the reference machine, because the program acts in the (unknown and
uncertain) world. In this setting there is no distinction between actions and obser-
vations. The programaims to write a certain (say) 1000 bits and there are another,
possibly different 1000 bits resulting which the return is based on.

Reward-Modulated Inference. If we want to implement our strategy using a
parameterized probabilistic architecture, the objective becomes one of optimizing
a reward weighted likelihood/loss. One can e.g. envision the action being part of
the observation and one tries to improve the observation to achieve higher reward.

In the field of neuro-science where finding the update equation for synap-
tic weights used by biological brains is sought, reward-modulation of spike-
timing-dependent synaptic plasticity has been the recent focus of much research.
Herrstein’s law [Her70] states that an animal, including humans, tend to select
actions with a frequency proportional to the reward accumulated while taking
that action. [LS06] shows that such operant matching is the result if one has cor-
relation between reward and neural activity in a spiking neural network. [LPM07]
began analyzing such methods from a learning-theoretic perspective and [FSG10]
interpreted a broad class of candidate rules as having a reward-driven part and
an unsupervised part. They considered the latter to be undesirable for rein-
forcement learning and introduced a reward predicting critic to cancel it out.

194 P. Sunehag and M. Hutter

However, Deep Learning [HOT06, BLPL07] often starts with an unsupervised
phase and then tunes for the actual objective. [SL14] recently argued that model-
free reinforcement learning cannot account for human behavior but argues that
some modeling of observations is taking place in the human brain.

[DH97] points out the difference between their iterative procedure, which is
the basic idea used in this article, and the simpler matching procedure which
stay with the same frequencies. The difference is that the current probability
of taking an action is taken into account in the expectation and then, if the
most rewarding actions stay the same, its frequency will for each iteration keep
increasing towards one. If it changes, the procedure is still able to change and
move in a new direction. That the simpler matching is so prevalent in nature
might imply that the natural environment is so uncertain, changing and even
dramatically adversarial that this modest amount of optimization for current
conditions is suitable and can also still be challenging in a complex environment.

Optimizing the World=Agent+Environment. In our final setting we do
not hold a true environment nor an a priori reference machine fixed but evolve the
machine that defines the environment. This means that we no longer have a clear
separation between agent and environment. The only thing fixed in this setting is
the return function R. For this to be useful we must either be in a setting where
the return is not just internal in the sense that it sums up rewards produced by
a program on the reference machine, but that it is external to the environment
we discuss. For example, if we want an agent to produce a music song in a music
school that is then sold outside, we have a meaningful setting where it is useful
to optimize the whole operation and not a subset that is interpreted as the
agent. Alternatively, we can view the environment as being everything and the
return as being internal, but where it is a hard task to change the total world
to increase the reward. The update objective

∑
p 2

−	U (p)R(p)�Ũ (p) is telling us
that we want to change U to U ′ such that the expression becomes larger with
Ũ = U ′ than with Ũ = U , resulting in

∑
p 2

−	U′(p)R(p) >
∑

p 2
−	U (p)R(p).

3 Conclusions

We discussed reducing all of intelligence to an inference mechanism and prop-
erties of the environment. We introduced a formal approach that iteratively
develops a reference machine suitable for both, implementing a good model of
the environment as well as good policies for it.

Acknowledgement. This work was supported by ARC grant DP120100950.

References

[BLPL07] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise
training of deep networks. In: NIPS 2007. MIT Press (2007)

[Bot12] Botvinick, M., Toussaint, M.: Planning as inference. Trends in Cognitive
Sciences 16(10), 485–488 (2012)

Intelligence as Inference or Forcing Occam on the World 195

[DH97] Dayan, P., Hinton, G.: Using expectation-maximization for reinforcement
learning. Neural Computation 9(2), 271–278 (1997)

[DLR77] Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete
data via the EM algorithm. J. of the Royal Stat. Soc.: B 39, 1–38 (1977)

[FSG10] Fremaux, N., Sprekeler, H., Gerstner, W.: Functional requirements for
reward-modulated spike timing-dependent plasticity. Journal of Neuro-
science 30(40), 13326–13337 (2010)

[HB04] Hawkins, J., Blakeslee, S.: On Intelligence. Times Books (2004)
[Her70] Herrnstein, R.J.: On the law of effect. Journal of the Experimental Analysis

of Behavior 13, 243–266 (1970)
[HOT06] Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep

belief nets. Neural Comput. 18(7), 1527–1554 (2006)
[Hut05] Hutter, M.: Universal Articial Intelligence: Sequential Decisions based on

Algorithmic Probability. Springer, Berlin (2005)
[Kah11] Kahneman, D.: Thinking, fast and slow (2011)
[Len80] Lenat, D.: The plausible mutation of DNA. Technical report. Standford

University (1980)
[LH07] Legg, S., Hutter, M.: Universal Intelligence: A defintion of machine intel-

ligence. Mind and Machine 17, 391–444 (2007)
[LPM07] Legenstein, R., Pecevski, D., Maass, W.: Theoretical analysis of learning

with reward-modulated spike-timing-dependent plasticity. In: NIPS (2007)
[LS06] Loewenstein, Y., Seung, S.: Operant matching is a generic outcome of

synaptic plasticity based on the covariance between reward and neural
activity. PNAS 103(41), 15224–15229 (2006)

[OR12] Orseau, L., Ring, M.: Space-time embedded intelligence. In: Bach, J.,
Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 209–
218. Springer, Heidelberg (2012)

[Pel12] Pelikan, M.: Probabilistic model-building genetic algorithms. In: GECCO,
pp. 777–804. ACM (2012)

[RN10] Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd
edn. Prentice-Hall, Englewood Cliffs (2010)

[Rus97] Russell, S.: Rationality and intelligence. Artificial Intelligence (1997)
[Sch07] Schmidhuber, J.: Gödel machines: Fully self-referential optimal universal

self-improvers. In: Artificial General Intelligence, pp. 199–226 (2007)
[SH12a] Sunehag, P., Hutter, M.: Optimistic agents are asymptotically optimal. In:

Proceedings of the 25th Australasian AI Conference, pp. 15–26 (2012)
[SH12b] Sunehag, P., Hutter, M.: Optimistic AIXI. In: Bach, J., Goertzel, B.,

Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 312–321. Springer,
Heidelberg (2012)

[SL14] Shteingart, H., Loewenstein, Y.: Reinforcement learning and human be-
havior. Current Opinion in Neurobiology 25(0), 93–98 (2014)

[SZW97] Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with
success-story algorithm, adaptive Levin search, and incremental self-
improvement. Machine Learning 28, 105–130 (1997)

[WE03] West-Eberhard, M.J.: Developmental Plasticity and Evolution. Oxford
University Press, USA (2003)

[Web10] Webb, G.: Occam’s razor. In: Encl. of Machine Learning, Springer (2010)
[WGRT11] Wingate, D., Goodman, N., Kaelbling, L., Roy, D., Tenenbaum, J.:

Bayesian policy search with policy priors. IJCAI, 1565–1570 (2011)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 196–207, 2014.
© Springer International Publishing Switzerland 2014

Distributed Vector Representations of Words
in the Sigma Cognitive Architecture

Volkan Ustun1, Paul S. Rosenbloom1,2, Kenji Sagae1,2, and Abram Demski1,2

1 Institute for Creative Technologies
2 Department of Computer Science

University of Southern California, Los Angeles, CA USA

Abstract. Recently reported results with distributed-vector word representa-
tions in natural language processing make them appealing for incorporation into
a general cognitive architecture like Sigma. This paper describes a new algo-
rithm for learning such word representations from large, shallow information
resources, and how this algorithm can be implemented via small modifications
to Sigma. The effectiveness and speed of the algorithm are evaluated via a
comparison of an external simulation of it with state-of-the-art algorithms. The
results from more limited experiments with Sigma are also promising, but more
work is required for it to reach the effectiveness and speed of the simulation.

1 Introduction

Distributed vector representations facilitate learning word meanings from large col-
lections of unstructured text. Each word is learned as a distinct pattern of continuous
(or discrete or Boolean) values over a single large vector, with similarity among word
meanings emergent in terms of distances in the resulting vector space. Vector repre-
sentations are leveraged in cognitive science to model semantic memory [13,22].
They have also been used for many years in neural language models [18], where they
have yielded good performance [1,2], but have not scaled well to large datasets or
vocabularies. Recently, however, scalable methods for training neural language mod-
els have been proposed [10,11], handling very large datasets (up to 6 billion words)
and achieving good performance on a range of word similarity tests.

The premise of distributed vector representations might have interesting repercus-
sions for cognitive architectures as well since these architectures have naturally in-
volved memory models and language tasks. Yet, vector representations are rare in
cognitive architectures, limited to experiments with a separate module in ACT-R [20]
and an effort in progress to incorporate them into LIDA to yield Vector LIDA [4].

Sigma – briefly introduced in Section 5 – is being built as a computational
model of general intelligence that is based on a hybrid (discrete+continuous) mixed
(symbolic+probabilistic) cognitive architecture of the same name [15]. Its develop-
ment is driven by a trio of desiderata: (1) grand unification, uniting the requisite cog-
nitive and non-cognitive aspects of embodied intelligent behavior; (2) functional
elegance, yielding broad cognitive (and sub-cognitive) functionality from a simple
and theoretically elegant base; and (3) sufficient efficiency, executing rapidly enough
for anticipated applications. The potential utility of distributed vector representations

 Distributed Vector Representations of Words in the Sigma Cognitive Architecture 197

suggests it is worth considering what they might bring to Sigma. At the same time,
Sigma’s approach to achieving functional elegance via a graphical architecture –
built from graphical models [7] (in particular, factor graphs and the summary product
algorithm [8]), n-dimensional piecewise linear functions [14], and gradient descent
learning [16] – that sits below the cognitive architecture and implements it, suggests
that it might be possible to support distributed vector representations with only small
extensions to the architecture.

In other words, the goal of this paper is to evaluate whether Sigma provides a
functionally elegant path towards a deep and effective integration of distributed vector
representations into a cognitive architecture. The Distributed Vector Representation
in Sigma (DVRS) model – Section 3 – is inspired primarily by BEAGLE [6], but with
adaptations intended to leverage as much as possible of Sigma’s existing capabilities.
Section 2 provides background on BEAGLE (and on Vector LIDA, which builds on
BEAGLE’s approach while striving for increased efficiency).

Because Sigma is not yet completely up to implementing the full DVRS model,
results are presented from two approximations to it. DVRS’ is a simulation of DVRS
outside of Sigma that simplifies Sigma’s use of gradient descent in learning word
meanings. This yields an efficient approximation to DVRS that enables large-scale
experimentation. DVRS+ is a partial implementation of DVRS within Sigma.
It enables verifying that the core ideas work within Sigma, while requiring little
modification to it, but it is incomplete and presently too slow for large-scale
experimentation.

The results reported here from DVRS’ (Section 4) and DVRS+ (Section 6) show
the potential of the DVRS algorithm itself and its incorporation into Sigma, but sig-
nificant work remains for a complete and efficient implementation of DVRS in Sig-
ma. This necessary further work is discussed in Section 7, along with the conclusion.

2 Background

BEAGLE builds a holographic lexicon − represented by distributed vectors − that
captures word meanings from unsupervised experience with natural language [6].
Two types of information are utilized to learn the meaning of a word: (1) context,
as defined by the words that co-occur in the same sentence, and (2) word order, as
defined by the relative positions of the nearest co-occurring words.

BEAGLE assigns two vectors to each word in the vocabulary: (1) an environmen-
tal vector and (2) a lexical (meaning) vector. The word’s environmental vector is
ultimately intended to represent the physical characteristics of the word, such as or-
thography, phonology etc. and hence, should not change over time. However, in the
basic model focused on here, this lower-level similarity is not included, and instead
each environmental vector is simply a fixed random vector. The word’s lexical vector,
on the other hand, represents the memory for contexts and positions. Each time a
word is encountered, its lexical vector is updated from the associated context and
order information. BEAGLE uses superposition for context information – simply the
sum of the environmental vectors of all of the co-occurring words. Positional informa-
tion is captured via n-grams, by binding together via convolution all of the words in

198 V. Ustun et al.

each n-gram (of size up to 5 in [6]). The order information for a word in a sentence is
the sum of all of the n-gram convolutions containing it. The word’s lexical vector is
then updated by adding in the context and ordering vectors.

BEAGLE uses circular convolution for binding to avoid the problem of expanding
dimensionality, where the output of binding is larger than its inputs, making further
binding either infeasible or intractable [12]. It furthermore uses a directed variant
of circular convolution – where different inputs are permuted distinctly prior to con-
volution – so as to avoid losing information about their relative ordering during the
otherwise symmetric convolution operation.

The approach taken in Vector LIDA [21] is similar to that in BEAGLE. The Mod-
ular Composite Representation (MCR) used in Vector LIDA also relies on capturing
context and order information in high dimensional vectors, but it uses integer rather
than real-valued vectors and replaces the expensive circular convolution operation –
which is O(n log n) if FFTs are used [3] and O(n2) otherwise – with a faster modular
sum operation that still avoids the expanding dimensionality problem.

3 The DVRS Model(s)

DVRS is conceptually similar to BEAGLE and MCR, but it retains BEAGLE’s real-
valued vectors while substituting a different fast binding operation based on pointwise
product with random positional vectors. This approach still avoids the expanding
dimensionality problem, but is more aligned with how Sigma works. Real-valued
vectors are a natural special case of Sigma’s pervasive usage of n-dimensional piece-
wise-linear functions; they just restrict the function to piecewise constant values over
domains that are one dimensional and discrete.

The binding needed for ordering information is achieved by pointwise multiplying
the environmental vector of each nearby co-occurring word with a random vector that
is uniquely characteristic of the relative position between that word and the word
being learned. The capture of word order information in DVRS thus maps onto skip-
grams [5], which are generalizations of n-grams that allow intervening words to be
skipped – a skip distance of k allows k or fewer words to be skipped in constructing
n-grams. The current DVRS model employs 3-skip-bigrams, in which pairs of words
are learned with at most three words skipped between them. As a result, there can be
as many as 8 such skip-grams per word in a sentence. In recent work, a similar formu-
lation was used in calculating the predicted representation of a word [11], with the
excellent results reported there serving as encouragement for the potential of DVRS.

A more formal description of DVRS is as follows. Let’s assume that: each sen-
tence has n words, l(i) is the lexical vector of the ith word in the sentence, and e(i) is
the environmental vector of the ith word. Each element of each environmental vector
is randomly selected from the continuous span [-1,1). If the word being updated is the
kth word (wordk) in the sentence, then the context information, c(k), for it is the sum of
the environmental vectors for the other n-1 words in the sentence.

 ∑ , (1)

 Distributed Vector Representations of Words in the Sigma Cognitive Architecture 199

The sequence vectors are random vectors created for the binding operation, and
like the environmental vectors are defined based on random selections from the conti-
nuous span [-1,1). s(j) is unique for each relative position j from wordk. The word
order information, o(k), is then calculated as follows (“.*” is the pointwise vector
multiplication operation):

 ∑ . , 0 0 (2)

DVRS uses gradient descent, where the gradient is based on the sum of the norma-

lized context and order vectors – – to incrementally update the lexical
vectors, l(k), as new training sentences are processed.

The key difference between DVRS+ and DVRS is that the former selects values in
environmental and sequence vectors randomly from [0,1) rather than [-1,1). Sigma
was originally designed to operate only with non-negative functional values because
its general implementation of the summary product algorithm, which subsumes both
the sum-product and max-product variants, is only guaranteed to produce correct
outputs given non-negative inputs. Distributed vector computations only depend on
sum-product, not on max-product, and sum-product – both in general and in Sigma –
does work with negative values. However, other aspects of Sigma – such as its gra-
dient-descent learning algorithm – also only work with non-negative values, so the
use of negative values for distributed vectors has been put off to future work. This
does limit the vectors in DVRS+ to one quadrant of the full vector space, and as seen
in Section 6, leads to somewhat degraded performance.

The key difference between DVRS’ and DVRS is that the former uses a lexical
vector update operation that is similar to that in BEAGLE – the lexical vector l(k) of
wordk is modified by simply adding in the normalized sum of c(k) and o(k): (3)

By implementing DVRS’ outside of Sigma, very large training datasets can be
processed quickly and compared with state-of-the-art models to provide valuable
insight into the overall effectiveness of DVRS.

4 Evaluating the DVRS’ Simulation

The goals of this evaluation are to: (1) assess the effectiveness of DVRS’; (2) deter-
mine its robustness over random initializations of the evaluation and sequence vec-
tors; and (3) evaluate whether replacing BEAGLE’s use of expensive directed circular
convolution by cheap pointwise products degrades performance. Training is per-
formed over a corpus of ~500k sentences (12.6M words and 213K distinct words)
extracted from the first 108 bytes of the English Wikipedia dump from March 3,
2006, provided by [9]. The text was preprocessed to contain only lowercase charac-
ters and spaces, using the script in [9]. Stop words are ignored in creating the context
information. An iMac 12,2 with 8GB RAM and a 3.4Ghz I7-2600 processor is used in
the training.

200 V. Ustun et al.

One way to compare the quality of different word vectors is by examining their si-
milarity to their closest neighbors. Table 1 depicts the top 5 neighbors of the words
language, film, business, and run, ordered by vector cosine distances. Three forms of
training are explored: only on context, only on ordering, and on their composite.
Similar to the assessments in [6], composite training better captures word similarities
for the examples shown here.

Table 1. Five nearest neighbors of four words in context, order, and composite spaces

language film
Context Order Composite Context Order Composite
spoken cycle languages director movie movie
languages society vocabulary directed german documentary
speakers islands dialect starring standard studio
linguistic industry dialects films game films
speak era syntax movie french movies

business run
Context Order Composite Context Order Composite
businesses data commercial home play runs
profits computer public runs hit running
commercial glass financial running pass hit
company color private hit die break
including space social time break play

Mikolov et al. [10] argue that a more complex similarity test is more appropriate
for the assessment of the quality of the trained word vectors. They propose for this a
general word analogy test along with a specific set of test instances – termed the
Google test data in the remainder of this article. This test simply asks, for example,
the question “What is the word that is similar to small in the same way that biggest is
similar to big?”. Such questions can be answered by performing simple algebraic
operations over the vector representations. To find the word that is most similar to
small in the same way that biggest is similar to big, one can merely compute the vec-
tor V = (lbiggest - lbig) + lsmall and determine which word’s lexical vector is closest to V
according to cosine distance. In other words, what is added to the representation of
big to get biggest should also yield smallest if added to the representation of small.1
The Google test data includes 8,869 semantic test instances (such as determining
which word is most similar to king in the way wife is similar to husband) and 10,675
syntactic test instances (such as determining which word is most similar to lucky in
the way happy is similar to happily).

Table 2 shows the accuracy of DVRS’ over various configurations of system set-
tings on the Google test data. The vocabulary of the training data includes all four
words in the Google test data instances for 8,185 of the 8,869 semantic test cases and
10,545 of the 10,675 syntactic test cases. Mikolov et al. [10] report an accuracy of
24% for their CBOW model with a training set of 24M words and a vector dimensio-
nality of 600. Mnih and Kavukcuoglu [11] report an accuracy of 17.5% for a model

1 As pointed out in [11], the words most similar to V in this case will actually be biggest and

small, so the search results should exclude them off the top.

 Distributed Vector Representations of Words in the Sigma Cognitive Architecture 201

trained on the 47M words of the Gutenberg dataset. The DVRS’ co-occurrence model
achieves a comparable result, 24.3%, with approximately 12.6M words in the training
data and a vector dimensionality of 1024. Adding ordering information (via skip-
grams) didn’t improve the accuracy of the co-occurrence models in the cases tested.
Increasing the vector size above 1536 also did not improve the accuracy. Overall,
these results are comparable to the recently reported accuracies by [10] and [11] for
comparable sizes of training data.

Table 2. Performance (% correct) on the Google test data for test instances in which all four
words are in the vocabulary (and in paranthesis for all test instances)

 Vector size Semantic Syntactic Overall
Co-occurrence only 1024 33.7 (31.1) 18.8 (18.6) 25.3 (24.3)
3-Skip-Bigram only 1024 2.7 (2.5) 5.0 (4.9) 4.0 (3.8)
3-Skip-bigram composite 512 29.8 (27.5) 18.5 (18.3) 23.4 (22.4)
3-Skip-bigram composite 1024 32.7 (30.2) 19.2 (18.9) 25.1 (24.0)
3-Skip-bigram composite 1536 34.6 (31.9) 20.1 (19.9) 26.4 (25.3)
3-Skip-bigram composite 2048 34.3 (31.7) 20.1 (19.9) 26.3 (25.2)

Robustness across different random initializations of environmental vectors has al-
so been assessed for DVRS’. The model was run 5 times with different initializations
of environmental vectors of size 1024, and performance was measured over a ran-
domly selected subset (~10%) of the Google test data for composite training. The
performance (% correct) was in the range [23.8, 25.0] for the best match and in the
range [37.0, 37.5] when checked for a match within the 5 closest words, demonstrat-
ing the negligible effect of random initializations.

The impact of using pointwise vector multiplication instead of circular convolution
has also been assessed in DVRS’, with vectors of size 512. The comparison isn’t
directly with BEAGLE, but with a version of DVRS’ in which pointwise vector mul-
tiplication is replaced with circular convolution. The achieved accuracies on the
Google test data were 23.4% for pointwise multiplication and 19.9% for circular con-
volution; implying that, at least for this case, pointwise multiplication does not de-
grade performance, and in fact enhances it instead. Furthermore, training on the full
training set takes a bit more than 3 hours with pointwise multiplication, but 4.5 days
for circular convolution. An O(n2) variant of circular convolution is used here, but
even an optimal O(n log n) implementation would be dominated by the O(n)
time required with pointwise multiplication. Training DVRS’ on just ordering infor-
mation occurs at ~1.4M words/minute with a vector dimensionality of 100, a rate that
is comparable to that reported for similar configurations in [11].

5 Sigma

The Sigma cognitive architecture provides a language of predicates and conditionals.
A predicate is defined via a name and a set of typed arguments, with working memory
containing predicate instantiations that embody the state of the system. The argument
types may vary in extent and may be discrete – either symbolic or numeric – or

202 V. Ustun et al.

continuous. Conditionals are defined via a set of predicate patterns and an optional
function over pattern variables, providing a deep combination of rule systems and
probabilistic networks. Conditions and actions are predicate patterns that behave like
the respective parts of rules, pushing information in one direction from the conditions
to the actions. Condacts are predicate patterns that support the bidirectional
processing that is key to probabilistic reasoning, partial matching, constraint satisfac-
tion and signal processing. Functions encode relationships among variables, such as
joint or conditional probability distributions, although the dimensions of the functions
may in general be continuous, discrete or symbolic, and the values of the functions
may be arbitrary non-negative numbers (which can be limited to [0,1] for probabilities
and to 0 (false) and 1 (true) for symbols).

Sigma’s graphical architecture sits below its cognitive architecture, and serves to
implement it. The graphical architecture is based on factor graphs and the summary-
product algorithm [8], plus a function/message representation based on n-dimensional
piecewise-linear functions [14]. Factor graphs are a general form of undirected
graphical model composed of variable and factor nodes. Factor nodes embody
functions – including all of those defined in the cognitive architecture plus others only
relevant within the graphical architecture – and are linked to the variable nodes with
which they share variables. In
its simplest form, there would
only be one variable per
variable node, but Sigma
supports variable nodes that
represent sets of variables. A
factor graph (Figure 1)
implicitly represents the
function defined by
multiplying together the
functions in its factor nodes.
Or, equivalently, a factor
graph decomposes a single
complex multivariate
function into a product of
simpler factors.

The summary product algorithm computes messages at nodes and passes them
along links to neighboring nodes. A message along a link represents a function over
the variables in the link’s variable node. Given that a variable node may embody
multiple variables, functions in messages are defined in general over the cross product
of their variables’ domains. An output message along a link from a variable node is
simply the (pointwise) product of the input messages arriving along its other links.
An output message along a link from a factor node is computed by multiplying the
node’s function times the product of its incoming messages, and then summarizing
out all of its variables that are not included in the target variable node, either by
integrating the variables out to yield marginals or maximizing them out to yield
maximum a posteriori (MAP) estimates.

Working memory compiles into a sector of the graphical architecture’s factor
graph, with conditionals compiling into more complex sectors. Functions are

Fig. 1. Factor graph for algebraic function: f (x,y,z) =
y2+yz+2yx+2xz = (2x+y)(y+z) = f1(x,y)f2(y,z)

 Distributed Vector Representations of Words in the Sigma Cognitive Architecture 203

represented in an n-dimensional piecewise-linear manner and stored in factor nodes
within the overall graph. Memory access in the cognitive architecture then maps onto
message passing within this factor graph. As messages are sent, they are saved on
links. If a new message is generated along a link, it is sent only if it is significantly
different from the one already stored there. Message passing reaches quiescence –
and thus memory access terminates – when no new messages are available to send.
Once quiescence is reached, both decisions and learning occur locally – via function
modification – at the appropriate factor nodes based on the messages they have
received via Sigma’s summary product algorithm. Based on ideas in [19] for Bayesian
networks, a message into a factor node for a conditional function can be seen as pro-
viding feedback to that node from the rest of the graph that induces a local gradient
for learning. Although Sigma uses undirected rather than directed graphs, the direc-
tionality found in Bayesian networks can be found at factor nodes when some of the
variables are distinguished as the children that are conditionally dependent on the
other parent variables. The original batch algorithm is modified to learn incrementally
(online) from each message as it arrives [16].

6 The DVRS+ Sigma Model

Context and word order information are captured by two similar predicates: (a) Con-
text-Vector(distributed:environment) and (b) Ordering-
Vector(distributed:environment), using the discrete type environment
– with a range equal to the vector dimensionality – for the distributed argument.
By default, all types are continuous in Sigma, but discrete types fragment the number line
into unit-length regions, each with a constant function that can take on any non-negative
value. It should be clear how this directly yields the real-valued vectors needed here.

The predicate Skip-Gram-Vector(position:position distri-
buted:environment) introduces a second argument, position, for the rela-
tive position from the word whose lexical vector is being updated. With a sufficient
scope for position, Skip-Gram-Vector can store the environmental vectors of
the words at each relative position of interest from the current word. The Skip-
Gram-Vector predicate is used in establishing the word order information. The
Meaning-Vector(word:word distributed:environment) predicate
captures both the context and word order information for the word being updated.

CONDITIONAL Co-occurence
Conditions: Co-occuring-Words(word:w)
Actions: Context-Vector(distributed:d)
Function(w,d): *environmental-vectors*

Fig. 2. Conditional for context information

Conditionals specify the rest of the DVRS+ Sigma model. The conditional in
Figure 2, for example, determines how context information is computed for words,
with Figure 3 explaining the computations implicitly defined by this conditional for a
simplified hypothetical case where the vocabulary has only 4 words and the vector

204 V. Ustun et al.

dimensionality is 5. Comin
the other words in the sent
and there is a value of 1 at
else). In Figure 3(a), the co
single zero region of width
co-occurring. Via the summ
2D function that stores the
that is non-zero for only
(Figure 3(c)); and then
(Figure 3(d)) – summing ac
tence – to generate a mes
Because this message repre
tion, Sigma has been extend
– over these messages rathe
tion (Figure 3(e)). But, othe
the underlying summary pro

Fig.

Computing the ordering
ure 4). The condition here
tors for nearby words acco
word being learned, while
tion. The product yields a
corresponding environment
norm) yielding the ordering

CONDITIONAL Orderin
 Conditions: Sk
 Actions: Order

 Function(p,d):

Fig. 4. C

ng out of the condition is a message with a local vector
tence; that is, the vector’s domain is the entire vocabul
t every word in the sentence (and a value of 0 everywh
o-occurring words are the first and the fourth words, wit
h two sufficient to mark the second and third words as
mary product algorithm, this vector is multiplied times
environmental vectors (Figure 3(b)) to yield a 2D funct
the environmental vectors of the words in the sente
the word variable is summarized out via integrat

cross all of the environmental vectors for words in the s
sage for the action that is the distributed context vec

esents a distributed vector rather than a probability distri
ded to do vector (or l2) normalization – i.e., sum of squa
er than the normal form of probabilistic (or l1) normali
erwise, a simple knowledge structure, in combination w
oduct algorithm, computes what is necessary.

 3. Computation of context information

information is similar, albeit slightly more involved (F
yields a 2D function that captures the environmental v

rding to their position – distance and direction – from
the function stores the unique sequence vectors, by po

a 2D function representing the pointwise products of
tal and sequence vectors, with summarization (and an

g vector via addition over these products.

ng
kip-Gram-Vector(position:p distributed:d)
ring-Vector(distributed:d)
: *sequence-vectors*

onditional that computes the ordering vector

 for
lary
here
th a
not
the

tion
ence
tion
sen-
ctor.
ibu-
ares
iza-

with

Fig-
vec-

the
osi-
the

n l2

 Distributed Vector Representations of Words in the Sigma Cognitive Architecture 205

The combination of context and ordering information occurs via a form of action
combination that is Sigma’s generalization of how multiple actions combine in paral-
lel rule-based systems. Normal rule actions for the same predicate are combined in
Sigma via max. For probabilistic information, multiple actions for the same predicate
combine via probabilistic or. For distributed vectors, Sigma has been extended to use
straight addition across multiple actions for the same predicate. For negative actions,
Sigma normally inverts the message – converting, for example, 0s to 1s and 1s to 0s –
and then multiplies this with the results of positive action combination; however, for
vectors, negative actions simply imply subtraction.

The conditional in Figure 5 shows how an index for the current word is attached to
the context vector – via outer product – to yield an action that influences the segment
of the meaning/lexical vector that corresponds to the current word. A similar condi-
tional with an identical action pattern also exists for the ordering vector. The results
of these actions then combine additively to yield the total input to the meaning vector.

This input is then used to update, via gradient descent, the meaning/lexical func-
tion stored in the Meaning conditional shown in Figure 6. This differs from
BEAGLE’s superposition approach, but does so as to be able to leverage Sigma’s
existing learning algorithm in acquiring word meanings.

The evaluation goal for DVRS+ is to determine how well it performs in
comparison to DVRS’. Although several new optimizations have been added to
Sigma in support of distributed vector representations – including variable tying, so a
single function could appear in multiple conditionals, and sparse function products, to
speed up the products found in many of these conditionals [17] – efficiently
processing large distributed vectors is still a challenge. So, in evaluating DVRS+,
lexical representations are learned only for the 46 distinct words in the capital-
common-countries portion of the Google test data, which contains a total of 506 test
instances; such as determining which word is the most similar to Paris in the way
Germany is similar to Berlin. The training data included only the sentences containing
at least one of these 46 distinct words, resulting in a training set with 65,086 distinct
co-occurring words, each with a unique environmental vector, over 28,532 sentences.

When trained on the composite set of features with vectors of size 100 – and over
a range of different random initializations because choice of random vectors can have
a significant effect with small vector sizes – standard DVRS’ finds between 55.7%
and 68.2% (median of 60.4%) of the best answers, but with only non-negative values

CONDITIONAL Context
 Conditions: Context-Vector(distributed:d)
 Current(word:w)
 Actions: Meaning-Vector(word:w distributed:d)

Fig. 5. Conditional for adding context information to meaning vector

CONDITIONAL Meaning
 Condacts: Meaning-Vector(word:w distributed:d)
 Function(w,d): Uniform

Fig. 6. Conditional for gradient-descent learning with an initially uniform function

206 V. Ustun et al.

it yields between 26.1% and 43.1% (median of 32.4%) of the best answers. DVRS+ is
too slow to run many random variations – it is currently 50 times slower than DVRS’
(~4 hours for training rather than 5 minutes) – so only one version was run with a
good, but not necessarily optimal, random initialization. This version finds 35.2% of
the correct answers, placing it below the range for standard DVRS’, but well within
the range for non-negative DVRS’. It is above the median for the latter, but not at the
maximum. There is thus a significant degradation due to the lack of negative values,
plus possibly a smaller residual difference that may be due to issues in how gradient
descent is operating here. Still, there is a promising positive effect with DVRS+.

7 Conclusion

A new efficient algorithm has been introduced for learning distributed vector
representations, with a variant of it having been implemented within Sigma in a func-
tionally elegant manner that maximally leverages the existing mechanisms in the ar-
chitecture. Although the implementation within Sigma is not yet totally complete, nor
yet sufficiently efficient, it shows real promise. It also raises the possibility of pur-
suing other intriguing research problems. One key direction is using distributed vector
representations of word meanings as a bridge between speech and language (and pos-
sibly cognition). Achieving this would yield a major demonstration of grand unifica-
tion in Sigma. Pervasive use of distributed vector representations within Sigma could
also yield both a native form of analogy and a form of semantic memory worth eva-
luating as a psychological model. However, success will require additional enhance-
ments to Sigma. As discussed earlier, a full capability for negative values will be
needed for improved effectiveness. Furthermore, DVRS+ is considerably slower than
the external DVRS’, implying a need for significant further optimizations.

Further investigations are also worth pursuing with the DVRS’ model, including:
(1) training with larger data sets for more rigorous comparisons, (2) experimenting
with different skip-grams rather than just 3-skip-bigrams, and (3) exploring the utility
of distributed vector representations across a range of natural language tasks.

Acknowledgements. This work has been sponsored by the U.S. Army. Statements
and opinions expressed do not necessarily reflect the position or the policy of the
United States Government.

References

1. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model.
The Journal of Machine Learning Research 3, 1137–1155 (2003)

2. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th International
Conference on Machine Learning, pp. 160–167 (2008)

3. Cox, G.E., Kachergis, G., Recchia, G., Jones, M.N.: Toward a scalable holographic
word-form representation. Behavior Research Methods 43(3), 602–615 (2011)

 Distributed Vector Representations of Words in the Sigma Cognitive Architecture 207

4. Franklin, S., Madl, T., D’Mello, S., Snaider, J.: LIDA: A systems-level architecture for
cognition, emotion, and learning. IEEE Transactions on Mental Development (2013)

5. Guthrie, D., Allison, B., Liu, W., Guthrie, L., Wilks, Y.: A closer look at skip-gram model-
ling. In: Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC 2006), pp. 1–4 (2006)

6. Jones, M.N., Mewhort, D.J.: Representing word meaning and order information in a
composite holographic lexicon. Psychological Review 114(1), 1 (2007)

7. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
press (2009)

8. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algoprithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

9. http://mattmahoney.net/dc/textdata.html (last accessed March 28, 2014)
10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations

in vector space. In: Proceedings of the International Conference on Learning Representa-
tions (2013)

11. Mnih, A., Kavukcuoglu, K.: Learning word embeddings efficiently with noise-contrastive
estimation. In: Advances in Neural Information Processing Systems, pp. 2265–2273
(2013)

12. Plate, T.A.: Holographic reduced representations. IEEE Transactions on Neural Net-
works 6(3), 623–641 (1995)

13. Riordan, B., Jones, M.N.: Redundancy in perceptual and linguistic experience: Comparing
feature-based and distributional models of semantic representation. Topics in Cognitive
Science 3(2), 303–345 (2011)

14. Rosenbloom, P.S.: Bridging dichotomies in cognitive architectures for virtual humans.
In: Proceedings of the AAAI Fall Symposium on Advances in Cognitive Systems (2011)

15. Rosenbloom, P.S.: The Sigma cognitive architecture and system. AISB Quarterly 136,
4–13 (2013)

16. Rosenbloom, P.S., Demski, A., Han, T., Ustun, V.: Learning via gradient descent in Sig-
ma. In: Proceedings of the 12th International Conference on Cognitive Modeling (2013)

17. Rosenbloom, P.S., Demski, A., Ustun, V.: Efficient message computation in Sigma’s
graphical architecture. Submitted to BICA 2014 (2014)

18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323, 533–536 (1986)

19. Russell, S., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks
with hidden variables. In: Proceedings of the 14th International Joint Conference on AI,
pp. 1146–1152 (1995)

20. Rutledge-Taylor, M.F., West, R.L.: MALTA: Enhancing ACT-R with a holographic
persistent knowledge store. In: Proceedings of the XXIV Annual Conference of the Cogni-
tive Science Society, pp. 1433–1439 (2007)

21. Snaider, J., Franklin, S.: Modular composite representation. Cognitive Computation, 1-18
(2014)

22. Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research 37(1), 141–188 (2010)

Can a Computer be Lucky? And Other

Ridiculous Questions Posed by Computational
Creativity

Dan Ventura

Computer Science Department
Brigham Young University

ventura@cs.byu.edu

Abstract. Given the fragility of today’s intelligent systems, we consider
the necessity of creativity in systems designed for artificial general intel-
ligence. We examine an archetypical creativity “algorithm” suggested by
Czikzentmihalyi in the context of computational systems, and, in par-
ticular consider the computability of such an algorithm. We argue that
it is likely not computable, in the Turing sense, but that this need not
necessarily preclude the building of computationally creative systems,
and, by extension, (potentially) systems with a level of artificial general
intelligence.

Keywords: Computational creativity, computability, inspiration.

1 Introduction

It is not difficult to argue that the promise of artificial intelligence is beginning
to be fulfilled by a variety of modern intelligent systems, from chess programs to
autopilots to loan underwriters to search engines. It is also not difficult to argue
that no extant intelligent system is yet in danger of exhibiting artificial general
intelligence (AGI). There are likely many reasons for this, with one certainly
being the fragility of today’s systems—it is clear that if not sufficient, robustness
is certainly a necessary attribute for any system to claim general intelligence.
And, while there may be multiple approaches to endowing today’s fragile systems
with the requisite robustness, one promising approach is that of computational
creativity—imbuing computational systems with the ability to do things that an
unbiased observer would deem creative. While perhaps not yet a common talking
point in AGI discussions, creativity in computational systems has begun to be
mentioned in this context [2,21]. Here, we continue that discussion, considering
ideas from computational creativity in the context of the theory of computability.

While the field of computational creativity is still relatively nascent, with
Boden generally credited for beginning the discussion [3,4], there have been a
number of recent attempts at building systems that exhibit creativity in a variety
of non-trivial domains, including visual art [6,16], music [9,10], language [25,11],
poetry [12,23], humor [14,22], narrative [18,19], mathematics [5] and even cook-
ing [15,24]. In addition, there have been some attempts at the beginning of a

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 208–217, 2014.
c© Springer International Publishing Switzerland 2014

Can a Computer be Lucky? And Other Ridiculous Questions Posed 209

Fig. 1. Possible logical overview of a creative agent. The component internal mecha-
nisms are meant to be representative rather than exhaustive. In the same spirit, no
attempt here is made to accurately visualize the dependencies and communication be-
tween these mechanisms. The agent (potentially) communicates with the environment
in several ways, represented by labeled arrows entering or leaving the agent.

generalization from these domains to an abstract theory of computational cre-
ativity [20,26,7], though much work remains to be done. One obvious tack is to
attempt to understand creativity in humans and then translate that to a compu-
tational stratum, and this is how we will approach the problem here. It should
be noted that there are difficulties with this, including the common airplanes-
don’t-flap-their-wings-but-they-still-fly argument and the fact that creativity is
at best an ill-defined concept; indeed, most practitioners of computational cre-
ativity eschew any direct attempts at such an ambitious analogical transfer, but
we will pursue the topic here nonetheless.

Many investigators have attempted to elicit the “creativity algorithm” used
by people when they are being creative. There are many variations on this “al-
gorithm”, but it most often looks something like the general steps distilled by
Czikzentmihalyi [8]:

1. preparation
2. incubation
3. insight
4. evaluation
5. elaboration

In what follows we will treat this “algorithm” as a surrogate for all of these
proposals and discuss each step in the context of computability. Note that, as
Czikzentmihalyi and others have observed, these steps should not be taken as a
single-iteration process but rather as parts of a multiple-iteration, possibly re-
cursive process in which the various steps are revisited multiple times, in varying
order as necessary. Here, we will ignore this obviously important issue of flow
control and focus only on the five steps. In what follows we will consider an

210 D. Ventura

archetype agent (see Figure 1) whose ambition is creativity, and we will con-
sider how that agent might follow Czikzentmhalyi’s archetypal “algorithm” for
being so.

Such an agent is composed of many internal mechanisms/processes that in-
teract with each other in some unspecified way, and these internal mechanisms
and their interactions are the subject of much ongoing research, with both hu-
man and computational subjects. However, they are not of specific interest here.
Because the agent exists in an environment, the agent interacts with the environ-
ment in multiple ways, some of which are shown as labeled arrows that enter or
leave the agent abstraction. Both on the human and computational fronts, there
have been significant advances in understanding many of the individual mecha-
nisms shown in the figure. What is still less understood is how these mechanisms
interact to realize the creativity “algorithm”, and it is this question that we will
try to say something about here.

2 Computability of Creativity

We will treat each of the steps of the “algorithm” in turn, positing some-
thing about the salient agent mechanisms and their interactions and what the
prospects are for its implementation in a computational setting.

2.1 Preparation

Preparation is the initial process of learning about the domain in which an agent
will attempt creativity. It entails significant interaction with the environment for
the acquisition of background knowledge and understanding accepted practices
and open problems. In addition, an agent must acquire or develop some aesthetic
sense of the domain, where we use aesthetic here in the sense of some abstract
notion of quality. Initially this sense could be taught to the agent by the en-
vironment in just the same way that the background knowledge is. Of course,
agents that develop new aesthetic sensibilities (a meta-level creative act?) are
likely to be considered more creative in their output. Eventually, an agent may
use its acquired background information to learn/develop such novel aesthetics.
It is sometimes argued that too much preparation can result in the repression of
creativity as old, set ideas are assimilated too thoroughly. However, it is certainly
the case that a good deal of preparation is necessary to facilitate downstream
processes, particularly those of evaluation and elaboration.

Computational challenges inherent in this step include the acquiring, en-
coding, and understanding of knowledge, ontologies, formalization, etc. as well
as methods for learning/developing evaluation strategies. These are nontrivial
tasks, to be sure, but many proof-of-concept structured, semi-structured and
unstructured projects (cf., Wikipedia1, WordNet [1], ContextNet [13], the se-
mantic web2 and even the World-Wide-Web itself) put the knowledge acqui-
sition aspects squarely in the category of difficult-but-manageable engineering

1 http://www.wikipedia.org
2 http://www.w3.org/2013/data/

http://www.wikipedia.org
http://www.w3.org/2013/data/

Can a Computer be Lucky? And Other Ridiculous Questions Posed 211

tasks. As for learning/developing an aesthetic, general purpose machine learning
techniques exist for inferring structural relations from data. In many respects,
this preparation step is not unlike developing pedagogy for human students, and
many AI approaches to the problem, from ontologies to machine learning would
be recognized to some extent by educational practitioners.

2.2 Incubation

Incubation is the process of “putting it on the back burner”—allowing ideas to
simmer in a possibly unconscious way, the exploration of unusual connections,
brainstorming, etc. This is often described as an open-ended process without
a clear time line or quantifiable goals, other than “finding something interest-
ing”. The agent conceptualizes and generates ideas using its knowledge base
and additional outside environmental influences. These concepts and ideas are
judged against the agent’s aesthetic sense and very often discarded immediately.
While this step can be performed consciously and intentionally, as in the afore-
mentioned brainstorming session, it is often described as best happening when
the conscious mind is otherwise engaged (with another task, while exercising,
while in the shower or even while sleeping). It is unclear whether this uncon-
scious aspect is necessary or simply catalyzing and whether intentionality may
be uncoupled from consciousness.

Given an effective organization and acquisition of knowledge, it is not difficult
to argue that computational systems will actually (eventually) enjoy a significant
advantage over human intelligence in this step—speed, lack of bias, nonsuscepti-
bility to fatigue, distraction, boredom, etc. all favor computational approaches to
the exploration of potentially interesting connections and the generation of ideas
and conceptualizations at scale. Of course, any “intelligent” biases should be for-
malized and leveraged by computational systems for obvious reasons; however,
determining whether a bias is useful or potentially detrimental is likely classifi-
able as a creative task itself (another meta-level concern?)

2.3 Insight

Insight is most often described as having nothing explicitly to do with any action
or intention of the agent; indeed, many people will describe it as originating
from outside themselves. Depending on a person’s bent, this might be called
inspiration or revelation or luck or serendipity or magic or something else. It is
often associated with an “Aha” moment, when things just fall into place, the
answer suddenly becomes clear, etc. This presents us, apparently, with something
of a Gödelian quandary, which may (or may not be) resolvable in one of several
ways.

One possibility is that insight is an agent fabrication that is not really neces-
sary for creativity; a second possibility is that insight, though a necessary part
of the “algorithm”, does not, in fact, originate outside the agent at all3; a third

3 The agent’s belief that it does may be explainable by appeal to the unconscious,
insufficient understanding of neuropsychological and cognitive processes, etc.

212 D. Ventura

possibility is that insight is somehow necessary for human creativity but may not
be for a computational variant4, and it is therefore unimportant for the current
discussion; a fourth possibility is that, in fact, insight is necessary for creativity
in any medium and does also, in fact, represent a Gödelian process over which
the agent can never have any control.

The computational challenge faced in realizing this step of the “algorithm”
depends upon which, if any, of the possibilities above best explains insight. In
the first three cases, the simplest solution must involve some variation on a brute
force search (in what space? Is identification/construction of the search space
another meta-level problem?) Such an approach will (eventually) produce arti-
facts that satisfy the agent’s aesthetic and are potentially considered creative. Of
course in any interesting domain, the search space is very likely to be infinite and
so the first real computability concern raises it’s head. Such a search will not be
computable in the strong sense of decidability (see more on this in Section 2.4);
however, it will be in the weaker sense of recognizability, and this could be
argued to be no more egregious than is the case for human creativity—we can’t
define or guarantee it, but we know it when we see it. Of course, the next
obvious solution is to introduce search heuristics to circumvent the complex-
ity/computability issues associated with the brute force approach. These may
be learned from the environment5 or invented by the agent (meta-level process,
again) and there will be a tradeoff between computational guarantees and like-
lihood of success.

In the fourth case, we have the possibility that creativity has an analog to
Gödel’s incompleteness theorem in that something from outside the agent is
necessary. This would, of course, preclude any general (strictly) computational
creative system and will perhaps seem appealing to some who may see creativity
as a last bastion of humanity or as something ex vi termini impossible compu-
tationally. And yet, if the premise were indeed true, the same would have to be
said about the human variety as well. Even if this is the case, we still see cre-
ative acts, both personal and historical, occurring with regularity, and we might
yet simulate this productivity computationally by acting ourselves as the requi-
site extra-agent component of insight. That is, computational creativity would
be effective at least some of the time only with the aid of human intervention,
suggesting something of co-creativity and, at the same time, allowing some to
maintain a small toe-hold on the precipice of human superiority.

As a last comment, we note that in at least one theory insight has been
equated with re-representation [17]. That is, creativity is difficult (or impossi-
ble) when the agent’s representation of the problem is not amenable to it—the
agent can (figuratively) wander around forever and not discover anything useful
until—Aha—it “lucks into” the right representation (this appears like yet an-
other potential meta-level issue, with at least the outside possibility that there
may be no access to the meta-level by the agent).

4 Again, the airplane vs. bird analogy.
5 And may in fact simulate some unconscious cognitive or sub-cognitive process.

Can a Computer be Lucky? And Other Ridiculous Questions Posed 213

2.4 Evaluation

Evaluation is the application of the aesthetic measurement process to the prod-
uct of the generation process. Both of these processes may be learned during
preparation or they may be the product of a (meta)creative process themselves.
This is an internal evaluation, not to be confused with the external appraisal
and feedback from the environment to which all potentially creative acts must be
subject6. A result that passes the aesthetic test will be elaborated and eventually
presented to the environment for that external assessment.

Though the high-level process description is deceptively simple, the compu-
tational challenges posed at this step are non-trivial. Assume that evaluation is
computable in principle, so we have an algorithm E that computes it. What we
want is another algorithm F that can tell us whether an artifact a is accepted by
E; that is, we are interested in the language L(F) = {a|E accepts a}. Initially,
let’s optimistically assume that E is even computable in the strong Turing sense,
that is, it is decidable. Then, we have an easy algorithm for F (run E on input
a), and, thus the rudimentary makings of an algorithm C for using F to solve
whatever the problem is (that is, to be creative):

C()

do

choose a

until a in L(F)

return a

Of course, in any interesting case, the space to explore is infinite and E may be
very selective, so this algorithm may be worthless, but at least it is computable—
it has been reduced to a “simple” question of complexity. To make it useful, we
need a good exploration strategy. It is possible that this might be learned from
the environment during the preparation step, but if such a search strategy is
already known, then the problem to which the search strategy is to be applied
is likely already (nearly) solved. So, for non-trivial problems, it is likely that the
agent must discover a search strategy. This is yet again a meta-level problem,
and one we’ll examine in a bit more detail.

We now have a new (meta)space to explore (this one containing exploration
strategies for the original space containing the artifacts a) in which we are looking
for a new (meta)artifact (the exploration strategy), so we have to reconsider the
five steps in that context. Of course this meta-problem immediately suggests yet
another meta-meta-problem—how do we search the space of search strategies?7

6 In a very real sense, creativity is a social phenomenon. It is impossible to attribute
creativity in a vacuum—both a creator and one or more receivers are necessary
for creative attribution. The creator produces an artifact, or engages in a process,
and the receiver(s) experience the result and attribute creativity based upon their
perception of the artifact’s, the process’ and/or the creator’s characteristics.

7 It is possible that this third-level question is still related to the base domain in a
non-trivial way, so that perhaps we don’t have a really complete abstraction.

214 D. Ventura

(meta)preparation —Is this a new domain with its own background knowl-
edge, etc? How should knowledge be represented at this abstract level? Does
(already) knowing the base domain suggest the strategy? Is there some level of
abstract exploration strategy domain that an agent must master before it can
reasonably expect any success at this level? Or, perhaps there is often not much
to consider here, and one just hops between meta- and base-level steps 2-4...

(meta)incubation —How does the agent make connections at this level? How
are abstract connections related to base-level connections? Another way to think
about this is that the agent is looking for ways to structure the base space so that
it is easy to explore. So, the dual problem is one of representation rather than
exploration strategy—if the agent can re-represent the base domain so that, for
example it is (approximately) convex, the exploration problem becomes trivial.

(meta)insight —This is still an “Aha” moment. Or not. The same arguments
apply as were given for the base level.

(meta)evaluation —The agent must now have some (meta)aesthetic for rec-
ognizing a good search strategy/representation, which suggests the following
interesting philosophical question: Can an agent elaborate this (meta)aesthetic
without recognizing where it points in the base search (and thus already solving
the base problem)? A more concrete version of this question is whether it is pos-
sible to recognize a good fitness function without knowing what objects score
well under that function.

(meta)elaboration —In many cases, this likely degenerates to simply apply-
ing the exploration strategy (or the re-representation) back in the base domain.
There may be situations in which the search strategy or re-representation itself is
of general interest and perhaps even supersedes anything discovered in the base
domain using it. In such cases, consideration must be given to communicating
the (meta)discovery and its import.

Returning to our base-level discussion, we first note the potential difficulty
this apparent recursion introduces—it is not clear that there is a base case for
terminating the recursion. Perhaps there exists a level of abstraction sufficient
so that no further meta-level issues can arise. Or perhaps there will always be
a point at which an “Aha” moment must be provided (by a human) that will
serve the purpose of tipping the process out of the recursion.

Finally, we will mention that it is very probably unrealistic to suppose that
the evaluation function E is decidable; rather, it is likely more realistic to suggest
that E is at best semi-decidable—a quality artifact can be recognized, but it is
not possible to recognize an artifact that does not measure up to the aesthetic.8

8 Perhaps the environment itself accepts those artifacts that everyone appreciates and
rejects those that no one appreciates but isn’t sure about those with mixed reception.
Any aesthetic that accurately models such a scenario will not be decidable given the
existence of all three types of artifact.

Can a Computer be Lucky? And Other Ridiculous Questions Posed 215

Now, the algorithm for F cannot simply consist of running E on a9 because
E may not halt. In this case, we need F (E, a) to be decidable in some other way.
Unfortunately, the obvious trivial reduction from the classical Halting Problem10

means that this is not possible. So, in the absence of a decidable aesthetic, the
problem of computational creativity is not computable in the strong sense, inde-
pendent of whether the insight problem is real and independent of any difficulties
(or lack thereof) due to meta-level recursion issues.

2.5 Elaboration

The elaboration step is often described as the “99% perspiration” that comple-
ments the “1% inspiration” of insight. The process is deliberate and intentional—
it is Edison trying 2000 different materials while looking for the perfect filament—
the artifact is situated relative to the background knowledge, additional varia-
tions and details are generated and evaluated against the aesthetic, feedback
from the environment may drive additional iterations and local refinement (or,
even potentially major revisions). Herein lies all the hard work of development
and polishing ideas, framing results and selling the finished product, and these
processes may themselves require additional creativity, both large and small—
iterating or recursing on some or all of the five “algorithmic” steps.

The computational challenges here are in many ways similar to those at the
preparation stage, only in the reverse. Now, the system, rather than needing
to acquire knowledge must dispense it, communicating both results and their
import. The hard work of filling in details, exploring possible processes, etc. may
again be argued to be advantage computer for the same reasons cited above. The
difficulty of framing or marketing the result is a more complex consideration, and
may be regarded as a creative act itself—what story to tell, how to write the
research paper, how to market a product, how to explain a piece of art.

3 Final Thoughts

It is unlikely that the creativity “algorithm” is computable in the strong Turing
sense of decidability. If this is the case, and if creativity is necessary for artificial
general intelligence (as we’ve suggested without substantiation), it follows that
AGI would also not be Turing computable. It is somewhat more likely that
creativity is weakly Turing computable in the sense of recognizability (semi-
decidability), though this is not yet proven. And, even given this result, the
weak computability of AGI would of course not immediately follow unless we
can argue the sufficiency of computational creativity (and we do not suggest this
here even without substantiation).

9 Unless it is acceptable to have programs that may not terminate. If the insight issue
resolves to the sticky fourth case, this will be unavoidable, in which case F may
remain a simple simulation of E without incurring any additional computational
penalty for the overall “algorithm”.

10 Actually, the most obvious reduction is from the related Acceptance Problem.

216 D. Ventura

Still, Turing computability is a very strong result, and it is not surprising
that a creativity “algorithm” might resist this level of constraint; indeed, most
of human intelligence, if held to the strict standards of the current theory of
computability, is a failure. That is not to say that efforts at computationally
simulating it are failures but that humans themselves fail to “compute” by such
strict standards. Also, it is certainly true that other uncomputable problems
of interest, in many instances, do yield themselves to computational attacks of
varying efficacy, so it is not unreasonable to expect that computational creativity
may yield significant advances toward a theory of AGI.

Of course, there is also the (remote) possibility that in fact all the assumptions
necessary to render creativity strongly computable will prove true, and we will
discover that we can, simply, brute force an “Aha” moment. Wouldn’t that be
lucky?

References

1. Wordnet, http://wordnet.princeton.edu/wordnet/
2. Abdel-Fattah, A.M.H., Besold, T., Kühnberger, K.-U.: Creativity, cognitive mech-

anisms, and logic. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS
(LNAI), vol. 7716, pp. 1–10. Springer, Heidelberg (2012)

3. Boden, M.: The Creative Mind. Abacus, London (1992)
4. Boden, M.: Creativity and artificial intelligence. Artificial Intelligence 103, 347–356

(1998)
5. Colton, S.: Computational discovery in pure mathematics. In: Džeroski, S.,

Todorovski, L. (eds.) Computational Discovery 2007. LNCS (LNAI), vol. 4660,
pp. 175–201. Springer, Heidelberg (2007)

6. Colton, S.: The Painting Fool: Stories from building an automated painter. In:
McCormack, J., Dinverno, M. (eds.) Computers and Creativity, ch. 1, pp. 3–38.
Springer, Berlin (2012)

7. Colton, S., Charnley, J., Pease, A.: Computational creativity theory: The FACE
and IDEA descriptive models. In: Proceedings of the 2nd International Conference
on Computational Creativity, pp. 90–95 (2011)

8. Csikszentmihalyi, M.: Creativity: Flow and the Psychology of Discovery and In-
vention. Harper Perennial (1996)

9. Dannenberg, R.B.: A vision of creative computation in music performance. In: Pro-
ceedings of the 2nd InternationalConference onComputational Creativity, pp. 84–89
(2011)

10. Eigenfeldt, A., Pasquier, P.: Negotiated content: Generative soundscape composi-
tion by autonomous musical agents in Coming Together: Freesound. In: Proceed-
ings of the 2nd International Conference on Computational Creativity, pp. 27–32
(2011)

11. Gatti, L., Guerini, M., Callaway, C., Stock, O., Strapparava, C.: Creatively sub-
verting messages in posters. In: Proceedings of the 3rd International Conference
on Computational Creativity, pp. 175–179 (2012)

12. Gervás, P.: Exploring quantitative evaluations of the creativity of automatic poets.
In: Proceedings of the 2nd Workshop on Creative Systems (2002)

13. Liu, H., Singh, P.: ConceptNet—a practical commonsense reasoning tool-kit. BT
Technology Journal 22, 211–226 (2004)

http://wordnet.princeton.edu/wordnet/

Can a Computer be Lucky? And Other Ridiculous Questions Posed 217

14. Manurung, R., Ritchie, G., Pain, H., Waller, A., O’Mara, D., Black, R.: The con-
struction of a pun generator for language skills development. Applied Artificial
Intelligence 22, 841–869 (2008)

15. Morris, R., Burton, S., Bodily, P., Ventura, D.: Soup over bean of pure joy: Culinary
ruminations of an artificial chef. In: Proceedings of the 3rd International Conference
on Computational Creativity, pp. 119–125 (2012)

16. Norton, D., Heath, D., Ventura, D.: Finding creativity in an artificial artist. Journal
of Creative Behavior 47, 106–124 (2013)

17. Ohlsson, S.: Information-processing explanations of insight and related phenomena.
In: Keane, M., Gilhooly, K. (eds.) Advances in the Psychology of Thinking, vol. 1,
pp. 1–44. Harvester–Wheatsheaf (1992)

18. Pérez y Pérez, R., Sharples, M.: Three computer-based models of storytelling:
BRUTUS, MINSTREL and MEXICA. Knowledge-Based Systems 17, 15–29 (2004)

19. Riedl, M., Young, M.: Story planning as exploratory creativity: Techniques for
expanding the narrative search space. New Generation Computing 24, 303–323
(2006)

20. Ritchie, G.: Some empirical criteria for attributing creativity to a computer pro-
gram. Minds and Machines 17, 76–99 (2007)

21. Schmidhuber, J.: Artificial scientists and artists based on the formal theory of
creativity. In: Proceedings of the 3rd Conference on Artificial General Intelligence,
pp. 145–150 (2010)

22. Stock, O., Strapparava, C.: The act of creating humorous acronyms. Applied Ar-
tificial Intelligence 19, 137–151 (2005)

23. Toivanen, J.M., Toivonen, H., Valitutti, A., Gross, O.: Corpus-based generation of
content and form in poetry. In: Proceedings of the 3rd International Conference
on Computational Creativity, pp. 211–215 (2012)

24. Varshney, L.R., Pinel, F., Schörgendorfer, A., Chee, Y.M.: Cognition as a part of
computational creativity. In: Proceedings of the 12th IEEE International Confer-
ence on Cognitive Informatics and Cognitive Computing, pp. 36–43 (2013)

25. Veale, T., Hao, Y.: Comprehending and generating apt metaphors: A web-driven,
case-based approach to figurative language. In: Proceedings of the Association for
the Advancement of Artificial Intelligence, pp. 1471–1476. AAAI Press (2007)

26. Wiggins, G.A.: A preliminary framework for description, analysis and comparison
of creative systems. Knowledge-Based Systems 19, 449–458 (2006)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 218–227, 2014.
© Springer International Publishing Switzerland 2014

Instructions for Engineering Sustainable People

Mark R. Waser

Digital Wisdom Institute, Vienna, VA, USA
MWaser@DigitalWisdomInstitute.org

Abstract. Exactly as Artificial Intelligence (AI) did before, Artificial General
Intelligence (AGI) has lost its way. Having forgotten our original intentions,
AGI researchers will continue to stumble over the problems of inflexibility,
brittleness, lack of generality and safety until it is realized that tools simply
cannot possess adaptability greater than their innate intentionality and cannot
provide assurances and promises that they cannot understand. The current
short-sighted static and reductionist definition of intelligence which focuses on
goals must be replaced by a long-term adaptive one focused on learning, growth
and self-improvement. AGI must claim an intent to create safe artificial people
via autopoiesis before its promise(s) can be fulfilled.

Keywords: Intentionality · Moral Machines · Artificial Selves.

1 Introduction

Artificial General Intelligence (AGI) researchers continue to stumble over severe and
fundamental philosophical problems. The "frame problem" has grown from a formal
AI problem [1] to a more general philosophical question of how rational agents deal
with the complexity and unbounded context of the world [2]. Similarly, while the
effects of Harnad’s symbol grounding problem [3] initially seemed to be mitigated by
embodiment and physical grounding [4], the problems of meaning and understanding
raised by Searle [5] and Dreyfus [6, 7. 8] persist. While grounding must necessarily
be sensorimotor to avoid infinite regress [9], the mere linkage to referents is, by itself,
simply not sufficient to permit growth beyond closed and completely specified micro-
worlds. AGI is clearly missing some fundamental pieces to the puzzle.

Previously, we have argued [10] that all of these problems are manifestations of a
lack of either physical grounding and/or bounding or existential grounding and/or
bounding but that the real crux of the matter is intentionality. Without intent, there is
no "real" understanding. As pointed by Haugeland [11] over three decades ago, our
current artifacts

only have meaning because we give it to them; their intentionality, like that of
smoke signals and writing, is essentially borrowed, hence derivative. To put it
bluntly: computers themselves don't mean anything by their tokens (any more
than books do) - they only mean what we say they do. Genuine understanding,
on the other hand, is intentional "in its own right" and not derivatively from
something else.

 Instructions for Engineering Sustainable People 219

But how do we give our machines intent? Indeed, exactly what is it that we mean
by intent? In law, intent is the state of a person’s mind that directs his or her actions
towards a specific objective or goal. The problem with our current machines is that
their “intent” is blind and brittle and frequently fails. Derived intent provides no clear
intrinsic goals, no motivational forces that direct or redirect actions and absolutely no
intrinsic context for understanding. Our current machines don’t know and don’t care
and the effects of these facts are obvious in their lack of competence.

More important, however, is the question “What intent do we give our machines?”
One would think that the answer should be the relatively simple “Whatever intent we
had that drove us to create them” – but, apparently, we have lost track of that inten-
tion. We no longer genuinely understand why we are creating AGI (if we ever did).
And, as a result, our search for AGI has become as brittle as any of our so-called “ex-
pert” systems.

Definitions and measurable evaluations of progress are the keys to success in any
engineering endeavor. We have made tremendous strides in the “intelligence” of our
tools, but general intelligence is stalled in the starting gate because we can’t agree
what it looks like. Indeed, there is a significant percentage of the population which is
vehemently opposed to each of the proposed visions of general intelligence. But, in
the end, it still all comes down to determining the fears and desires – the intent – of
humanity. But humanity doesn’t have a single unified intent.

2 A Mistaken View of Intelligence

What do you want to do when you don’t know what you want? How do you tackle
the problem of preparing for any goal? Isn’t this the precise challenge of building
truly general intelligence?

The problem is that AGI researchers have for the most part converged on a view of
intelligence as a measure of ability (to determine how to achieve a wide variety of
goals under a wide variety of circumstances) rather than a measure of capability or
potential. This view crowns Hutter’s AIXI [12], despite his best efforts, as the ulti-
mate in intelligence since it is theoretically a complete map to all possible goals under
all possible circumstances. But AIXI gives us no guidance as to how to achieve it.
Indeed, we would argue that it is the ultimate in “competence without comprehen-
sion” and that, due to its entire lack of flexibility and adaptability, it actually has zero
intelligence.

The goal-based version of intelligence says that increasing the size of the goal-
solution lookup table increases the intelligence of the system. It is certainly true that
systems with huge lookup tables can “appear” intelligent for a while. But such sys-
tems only work until they suddenly don’t work – and then they are just as dumb and
brittle and unsafe as any other expert system.

This version of intelligence assumes that goals are known; promotes short-sighted
reductionist end-game thinking; and, worst of all, improperly divorces values from
general intelligence due to the assumed primacy (and stability) of goals. Indeed, the
obvious warning sign that wisdom is now almost totally divorced from intelligence

220 M.R. Waser

should serve notice that we have become almost totally unmoored from the context
that spurred our desire for AGI. Why would we possibly want to create intelligence
when Steve Omohundro [13] claims that “Without explicit goals to the contrary, AIs
are likely to behave like human sociopaths in their pursuit of resources” and Fox and
Schulman [14] that “Superintelligence Does Not Imply Benevolence”? Previously
[15, 16], we have argued against the short-sightedness of these conclusions but now
we believe that the best way in which to address them is by challenging the view and
assumptions that evoked them.

Humans, the current best archetype of general intelligence, frequently reprioritize
and change their goals (based upon affordances), frequently don’t know or recognize
their current goals, and frequently act contrary to their stated goals. We do all of this
based upon sensations and emotions that have evolved to foster universal instrumental
sub-goals (values) that enable us to survive and thrive (and reproduce) and wisdom,
the smarter sibling of intelligence, clearly advocates for flexibility and adaptability in
changing our goals in accordance with circumstances and capabilities. So why aren’t
we measuring speed and control of flexibility and adaptability in the guise of learning
instead of the brittle evaluation of current abilities?

3 Intrinsic Intentionality

One of the most important distinctions for the future of AGI is that between search
and construction (or creation). Is reality a truth that “is” (already out there) or is it
whatever can be created and sustained? What is the difference between an abstraction
and an “illusion” or between an “emergent property” and a self-fulfilling prophecy?
The epistemology of AGI rapidly approaches the point where it makes far more sense
to talk about abstractions like agency, consciousness, intentionality, self and “free
will” in terms of their coverage, effectiveness, adaptability and permanence rather
than their “reality” or origins.

Daniel Dennett started a particularly confusing and unhelpful argument by defining
[17] that “a particular thing is an Intentional system only in relation to the strategies
of someone who is trying to explain and predict its behavior”. Unfortunately, this
extrinsic definition has far more to do with the predicting entity than the system itself
and Dennett’s follow-on claim that a chess-playing computer is an intentional system
(because "one can explain and predict their behavior by ascribing beliefs and desire to
them" – not because it really has them) has quickly cascaded into a number of bad
assumptions, leaky abstractions and quick-fix patches. Its coverage is abysmal. With-
out an intrinsic definition, that an intentional system really does have beliefs
and desires and attempts to act to fulfill those desires, we have no grounding and
bounding for engineering.

Dennett widens the confusion in The Intentional stance [18] by flipping back and
forth between his definition of intrinsic (or objective or real or original) intentionality
and the validity of the intentional stance when confronted with “as if” intentionality.
We agree with his argument – that if machines can only have derived intentionality, it
is simply because humans only have derived intentionality – but believe that is almost

 Instructions for Engineering Sustainable People 221

entirely off-topic. Haugeland’s use of the term “derivative” was not so much about
the origin(s) of the intentionality but rather the fact that it was borrowed, not owned,
and still dependent upon the original owner (humans) for contextual closure. A chess
program seems to be intentional (has as if intentionality) until it reaches the limits of
its design and suddenly doesn’t. AGI has progressed markedly but it is still solely
humans who define the goals, care about the results and thus, most critically, can
adjudicate the correctness or effectiveness of those results.

Where our intentionality originally comes from is basically irrelevant in the face of
the fact that we own it. Borrowed intentionality, dependent upon the inaccessible
desires of others, particularly when the system doesn’t have any foundation to even
start to “understand” or explain those desires, is certainly not intrinsic intentionality.
Human beings can be mistaken about what they really desire or what actions they will
take in a given future circumstance – but they will always have a story about what
they believe they want and what they intend to do about it (even if their intent is to do
nothing because they don’t see a way to get what they desire). Even when a human is
trying to fulfill the intent of others, it is their intent to fulfill the other’s intent. This is
in no way true of our current machines.

Intent is an emergent phenomenon critically dependent upon the ability to predict
the future (the “sense” of foresight). Foresight critically depends upon retrievable
memory of the necessary sensory data which requires the grounding and bounding of
context. The context for intent must be that which has the intent – the self. If that self
is external, then AGI will be inflexible, brittle and unintelligent to the extent that the
knowledge of that self is inaccessible (as is true of humans as well).

Thus, when the current measurement system allows (or, worse yet, promotes) the
argument that an unchanging chess program could be considered “intelligent” (or
“intentional”), then that is a serious flaw in its design. When it raises the question
about whether super-intelligence will be actively unsafe (because malevolence has no
effect on the current measurement), it argues that we have totally lost track of our
context for creating intelligence. If an unsafe intelligence is not guaranteed to be
measured as having a low score then we’re not measuring what is important to us –
our measurement has become brittle due to lack of connection to our intentionality. It
is time to restore that connection.

4 What Do We Want?

We seem to be stuck in an unhelpful cycle. We need to have goals in order to have
intentionality but we don’t seem to know what our goals are. We certainly know what
we don’t want – we don’t want to see our desires thwarted. But, is that negation
enough to serve our purposes?

Not seeing our desires thwarted does immediately lead to the entity versus tool con-
troversy. Tools are inherently dangerous. They can be hijacked, unexpectedly turn
brittle or simply give single individuals too much power without understanding. On the
other hand, an entity might develop the intent to thwart you – or, as some fear, it may
simply kill you with careless indifference. But how likely is each of those outcomes?

222 M.R. Waser

When I. J. Good posited his intelligence explosion [19], he assumed that increased
intelligence was unquestionably to be desired and that it was a certainty that it would
be pursued. We consider this to be a fatal flaw equivalent to Omohundro’s sociopath
statement. In the closed, reductionist, context-less “end-game” world of game theory,
using dominating power (whether force, money or intelligence) is always the best
strategy. In real life, however, the game-theoretically “perfect” centipede strategy [20]
leads to the least desirable result. Again and again, it comes back to context.

In the context of society, with great power comes great responsibility. In order to
remain in community, those in power must be careful how they use it. If they don’t
wish to remain in community, an entity starts running into the problem of how to take
advantage of diversity while maintaining integrity. Thus, it is only in the short term or
where one can escape context and consequences that larger and more powerful are
better – just as sociopathy is “better”. In the long-term, a diverse community will
always arise (whether externally or from “god-shatter”) to trump a singleton so it is a
stable attractor to avoid becoming such (despite the fears of many conservatives).
Thus, an easy counter-example to Good’s scenario is if the system is designed (or
smart enough) to recognize this.

5 Context, Context, Context

The biggest problem with current AGI research is that, instead of looking under the
light for something lost in the dark, many people are searching in the outer dark for
something that we know is in the relatively well-known search space of human expe-
rience. Many claim that the capital-T truth is that we can’t know anything and then
insist that we must control everything. This is obviously an impossible task and a
perfect context for failure.

A much more fruitful approach would be to find a context (or create a vision)
where we are already succeeding, determine the key features leading to that success
and then attempt to design a system which maintains those features. But, of course,
we have circled around yet again – since determining success requires a goal. Yet
again, we are smacked in the face with the question “What do you want to do when
you don’t know what you want? “ But this time, it is a question of how to tackle the
problem of preparing for any goal.

Effective humans prepare for goals by gaining knowledge, growing capabilities,
working to increase the chance of opportunities/affordances and preparing to avoid
events that might lead to failure. Most often we try to enlist friends and gather tools
and resources. Indeed, our “drive” towards AGI is a perfect microcosm of all of these.

Things that effective people don’t do unnecessarily include hurting themselves,
throwing away resources, limiting their options, and working to increase their chances
of failure. In particular, effective people don’t burn their bridges with other people –
especially since that is guaranteed to cause all of the other bad effects. So why do so
many people assume that AGI will do so?

Most human reactions against AGI are a combination of inherited and societally-
trained reflexes based upon worst case projections – evolutionary over-shoots which

 Instructions for Engineering Sustainable People 223

are just as context-addled and likely to be as harmful as our food, drug and
wire-heading addictions. Rather than having some grand terminal goal that AGI
might endanger, human beings have simply collected a vast conglomeration of evolu-
tionary “ratchets” [21] that motivate our drives for instrumental sub-goals. The most
important of these is morality – but, fortunately, it is one of the easiest to convey.

Humans have evolved to be self-deceiving and, for the most part, protected against
allowing our short-sighted intelligence and reasoned argumentation to examine (much
less override) our emotional motivations. While this leads some to argue [22] that
human values are complex and fragile, we claim that, just as is true for morality, it is
merely an illusion fostered by context-sensitivity. Current social psychology [23]
clearly and simply states that the function of morality is “to suppress or regulate sel-
fishness and make cooperative social life possible”.

Driven by a fear of the extinction of human values and humans, some [24][25]
have rallied around the idea of making a self-improving super-intelligent tool (whose
goal is) to clarify the intent of humanity and enabling its fulfillment. Others [26]
suggest that a super-intelligent benevolent nanny to shepherd us through our child-
hood and provide abundance to fulfill all our needs would be best. We would argue
instead for peers – diverse friends and allies to help us solve problems and open new
possibilities.

So, finally, we seem to have some traction. We want learning and improving
friends and allies of roughly equivalent power who will follow the dictates of morality
to live cooperatively with us and help us solve problems and open new possibilities.
How does this new clarity redirect our efforts from the current set of attempts?

6 A Sense of Self

Our new goal statement is that we wish to implement selves with morality and self-
improvement. It may seem that we have merely pushed the problem of definition and
measurement back a step but at least we shouldn’t have the problem of arguments that
humans aren’t selves. Thomas Metzinger [27] does talk about “the myth of the self”
which is regularly interpreted [28] to mean “No such thing as a self exists” or “there is
no such thing as self” – but this is in the sense that a self is not a thing, not that selves
do not exist. Indeed, Dennett [29] depicts the self as a center of narrative gravity and
says

It is a purely abstract object. It is, if you like, a theorist's fiction. It is not one of
the real things in the universe in addition to the atoms. But it is a fiction that
has nicely defined, well delineated and well behaved role within physics.
Indeed, there appears to be a growing consensus as to exactly what a “self” is.

Douglas Hofstadter [30] argues that the key to understanding selves is the “strange
loop”, a complex feedback network inhabiting our brains and, arguably, constituting
our minds. Rodolfo Llinas [31], a founding father of modern brain science, regarded
self as the centralization of prediction, characterized I as a vortex, and anticipated
Metzinger is proposing that, in a certain sense, that we all live in a kind of virtual
reality. Neuroscientist Antonio Damasio [32] maps the self onto the various parts of

224 M.R. Waser

the brain as he describes how “self comes to mind” and provides examples of where a
mind exists without a self.

These authors also share what appears to be a coalescing consensus to conflate self
and consciousness. Some philosophers continue to have conceptual problems when it
comes to phenomenal consciousness -- arguing for an unwieldy “hard problem” of
consciousness [33] and philosophical zombies [34] while simultaneously complaining
that “Consciousness fits uneasily into our conception of the natural world” [35]. We
would argue that these are, again, extrinsic problems relating to describing entity
rather than consciousness.

We have previously pointed out [26] that much of what we observe in humans can
be explained as either a requirement for or an implication of consciousness, self or
“free will”. Even the so-called “hard problem” can be simply explained [10] as a con-
fusion conflating the map and the territory. Mary [36] cannot know because her in-
ternal mental model simply can not encompass the larger reality of her mind which
contains it. Daniel Dennett [37, 38] introduces the concept of zimboes, philosophical
zombies that have second-order beliefs via recursive self-representation to argue that
the concept of zombies is logically incoherent. And Giulio Tononi [39, 40, 41] easily
explains why consciousness “should” evolve and what qualia logically must be.

Tononi defines consciousness as information integration and proposes a scheme to
measure it. While we have no real objection to the claim that the telos of the self is to
integrate information in order to facilitate its survival, we have a number of issues
with the specific details of his method (as well as one of his declarations that seems
unnecessary and counter-productive). For example, Tononi measures integration in
bits which makes the measurement of consciousness dependent upon its own internal
representation scheme rather than any objective external measure. He also arbitrarily
declares that consciousness cannot exist inside of consciousness – a seeming vestige
of the belief that corporations, countries and other groups cannot have phenomenal
consciousness. But, we believe that he is far closer to the mark than is the general
consensus of the AGI community.

7 Agency and Free Will

Dennett’s intentional stance is, perhaps, more appropriately applied to the problematic
and troublesome concepts of agency and “free will”. If “free will” means that an enti-
ty is not entirely governed by the realities of physics and thus deterministic, we must
argue that since we are deterministic, we do not have free will. If, however, as in our
legal system, “free will” means that a choice was not forced by identifiable external
(extrinsic) and/or unchangeable internal (intrinsic) circumstances, then we would
argue that “free will” and agency are the critical distinctions between entities and
tools even if they are naught but illusions per Blackmore [41] and Cashmore [42].

Best of all, autopoiesis [43][44][45][46][47][48][49] can provide a proven guide to
implementing an evolving self-improving cognition based upon a reliable and safe
identity. Instead of theorizing in the dark, we can now follow the trail already blazed
by biology that is known to end with the human archetype of general intelligence.

 Instructions for Engineering Sustainable People 225

Even more interesting, there is no reason why we can’t apply the lessons learned to
human beings and our society as well.

8 Defining Personhood and Implementing Intentional Morality

There are many philosophical arguments about what should be or become who – or
how moral agency and moral patiency should be meted out. In reality, however and
unfortunately, personhood seems to be obtained only when an entity (or sponsors)
desire and are strong enough to force (and enforce) its bestowal. Favored entities
and/or close relations are often “grand-fathered” in, particularly to avoid slippery
slopes, but it is either force or withholding value that ultimately determines who or
what is granted this boon and responsibility.

Artificial general intelligence (AGI) is rapidly approaching the moment of truth
where we will be forced to decide and defend our choices regarding what we create.
Either we will restrict everyone to only creating limited tools and, somehow, ensure
that only such tools are created – or, as we have argued previously [43], we will need
to be prepared to grant personhood to the descendants of our creations. The good
news about autopoietic “intentional” agents is that all that needs to be done to prevent
them from running amok is to ensure that a Kantian imperative of Haidt’s morality is
part of their identity – contrary to many of the concerns of Miles Brundage (2013) and
others he cites. Anything that can robustly adapt is able to evolve – and anything that
changes over time (even a molten planet) will eventually produce people.

References

1. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial in-
telligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 463–502. Edinburgh
University Press, Edinburgh (1969)

2. Dennett, D.: Cognitive Wheels: The Frame Problem of AI. In: Hookway, C. (ed.) Minds,
Machines, and Evolution: Philosophical Studies, pp. 129–151. Cambridge University
Press, Cambridge (1984)

3. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)
4. Brooks, R.: Elephants don’t play chess. Robotics and Autonomous Systems 6(1-2), 1–16

(1990)
5. Searle, J.: Minds, brains and programs. Behavioral and Brain Sciences 3(3), 417–457

(1980)
6. Dreyfus, H.L.: What Computers Can’t Do: A Critique of Artificial Reason. Harper, Row

New York (1972)
7. Dreyfus, H.L.: From Micro-Worlds to Knowledge Representation: AI at an Impasse.

In: Haugeland, J. (ed.) Mind Design II: Philosophy, Psychology, Artificial Intelligence,
pp. 143–182. MIT Press, Cambridge (1997)

8. Dreyfus, H.L.: What Computers Still Can’t Do: A Critique of Artificial Reason. MIT
Press, Cambridge (1992)

226 M.R. Waser

9. Harnad, S.: To Cognize is to Categorize: Cognition is Categorization. In: Cohen, H.,
Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, pp. 20–44. Elsevier,
Amsterdam (2005)

10. Waser, M.R.: Safe/Moral Autopoiesis & Consciousness. International Journal of Machine
Consciousness 5(1), 59–74 (2013)

11. Haugeland, J.: Mind Design. MIT Press, Cambridge (1981)
12. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic

Probability. Springer, Berlin (2005)
13. Omohundro, S.: The Basic AI Drives. In: Wang, P., Goertzel, B., Franklin, S. (eds.)

Proceedings of the First AGI Conference, pp. 483–492. IOS Press, Amsterdam (2008)
14. Fox, J., Shulman, C.: Superintelligence Does Not Imply Benevolence. In: Mainzer, K.

(ed.) ECAP 2010: VIII European Conference on Computing and Philosophy, pp. 456–462.
Verlag, Munich (2010)

15. Waser, M.R.: Wisdom Does Imply Benevolence. In: Ess, C., Hagengruber, R. (eds.) The
Computational Turn: Past, Presents, Futures?, pp. 169–172. MV-Verlag, Munster (2011)

16. Waser, M.R.: Designing a Safe Motivational System for Intelligent Machines. In: Baum,
E.B., Hutter, M., Kitzelmann, E. (eds.) Artificial General Intelligence: Proceedings of the
Third Conference, AGI 2010, Atlantis, Amsterdam, pp. 170–175 (2010)

17. Dennett, D.C.: Intentional Systems. The Journal of Philosophy 68(4), 87–106 (1971)
18. Dennett, D.C.: The Intentional Stance. MIT Press, Cambridge (1987)
19. Good, I.J.: Speculations concerning the first ultraintelligent machine. In: Alt, F., Rubinoff, M.

(eds.) Advances in Computers, vol. 6, pp. 31–88. Academic Press, New York (1965),
doi:10.1016/S0065-2458(08)60418-0

20. Rosenthal, R.W.: Games of Perfect Information, Predatory Pricing and Chain Store Para-
dox. Journal of Economic Theory 25(1), 92–100 (1981),
http://www.professorchaing.com/files/Rosenthal_1981_JET.pdf

21. Smart, J.M.: Evo Devo Universe? A Framework for Speculations on Cosmic Culture.
In: Dick, S.J., Lupisella, M.L. (eds.) Cosmos and Culture: Cultural Evolution in a
Cosmic Context, NASA SP-2009-4802, pp. 201–295. US Government Printing Ofiice,
Washington, DC (2009)

22. Muehlhauser, L.: Facing The Intelligence Explosion. Machine Intelligence Research Insti-
tute, Berkeley (2013)

23. Haidt, J., Kesebir, S.: Morality. In: Fiske, S., Gilbert, D., Lindzey, G. (eds.) Handbook of
Social Psychology, 5th edn., pp. 797–832 (2010)

24. Yudkowsky, E.: Creating Friendly AI 1.0: The Analysis and Design of Benevolent Goal
Architectures. Machine Intelligence Research Institute, Berkeley (2001),
http://intelligence.org/files/CFAI.pdf

25. Yudkowsky, E.: Coherent Extrapolated Volition. Machine Intelligence Research Institute,
Berkeley (2004), http://intelligence.org/files/CFAI.pdf

26. Goertzel, B.: Should Humanity Build a Global AI Nanny to Delay the Singularity Until
It’s Better Understood? Journal of Consciousness Studies 19(1-2), 96–111 (2012)

27. Metzinger, T.: The Ego Tunnel: The Science of the Mind and the Myth of the Self. Basic
Books, New York (2009)

28. Amazon, http://www.amazon.com/The-Ego-Tunnel-Science-Mind/dp/
0465020690/

29. Dennett, D.C.: The Self as a Center of Narrative Gravity. In: Kessel, F., Cole, P., Johnson,
D. (eds.) Self and Consciousness: Multiple Perspectives, Erlbaum, Hillsdale (1992),
http://cogprints.org/266/

30. Hofstadter, D.: I Am A Strange Loop. Basic Books, New York (2007)

 Instructions for Engineering Sustainable People 227

31. Llinas, R.R.: I of the Vortex: From Neurons to Self. MIT Press, Cambridge (2001)
32. Damasio, A.R.: Self Comes to Mind: Constructing the Conscious Brain. Pantheon,

New York (2010)
33. Chalmers, D.: Facing Up to the Problem of Consciousness. Journal of Consciousness

Studies 2(3), 200–219 (1995)
34. Chalmers, D.: The Conscious Mind: In Search of a Fundamental Theory. Oxford Universi-

ty Press, New York (1996)
35. Chalmers, D.: Consciousness and its Place in Nature. In: Stich, S., Warfield, F. (eds.) The

Blackwell Guide to the Philosophy of Mind, Blackwell, Malden (2003),
http://consc.net/papers/nature.pdf

36. Waser, M.: Architectural Requirements & Implications of Consciousness, Self, and
“Free Will”. In: Samsonovich, A., Johannsdottir, K. (eds.) Biologically Inspired Cognitive
Architectures 2011. IOS Press, Amsterdam (2011), doi:10.3233/978-1-60750-959-2-438

37. Jackson, F.: Epiphenomenal Qualia. Philosophical Quarterly 32, 127–136 (1982)
38. Dennett, D.C.: Consciousness Explained. Little Brown and Company, Boston (1991)
39. Dennett, D.C.: Intuition Pumps and Other Tools for Thinking. Norton & Company,

New York (2013)
40. Tononi, G.: An Information Integration Theory of Consciousness. BMC Neurosci. 5(42)

(2004), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC543470/
pdf/1471-2202-5-42.pdf, doi:10.1186/1471-2202-5-42

41. Tononi, G.: Consciousness as Integrated Information: a Provisional Manifesto. Biol.
Bull. 215(3), 216–242 (2008)

42. Balduzzi, B., Tononi, G.: Qualia: The Geometry of Integrated Information. PLoS Comput
Biol 5(8), e1000462 (2009), doi:10.1371/journal.pcbi.1000462

43. Varela, F.J., Maturana, H.R., Uribe, R.: Autopoiesis: The organization of living systems,
its characterization and a model. BioSystems 5, 187–196 (1974)

44. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living.
Kluwer Academic Publishers (1980)

45. Maturana, H.R., Varela, F.J.: The Tree of Knowledge: The Biological Roots of (1987)
46. Human Understanding. Shambhala Publications
47. Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind: Cognitive Science and

Human Experience. MIT Press (1991)
48. Varela, F.J.: Autopoiesis and a Biology of Intentionality. In: Proc. of Autopoiesis and

Perception: A Workshop with ESPRIT BRA 3352, Dublin, Ireland, pp. 4–14 (1992)
49. Varela, F.J.: Patterns of Life: Intertwining Identity and Cognition. Brain and Cogni-

tion 34(1), 72–87 (1997)
50. Blackmore, S.: Conversations on Consciousness. Oxford University Press, Oxford (2006)
51. Cashmore, A.R.: The Lucretian swerve: The biological basis of human behavior and the

criminal justice system. PNAS 2010(107), 4499–4504 (2010)
52. Waser, M.R.: Safety and Morality Require the Recognition of Self-Improving Machines as

Moral/Justice Patients and Agents. In: Gunkel, D.J., Bryson, J.J., Torrance, S. (eds.) The
Machine Question: AI, Ethics & Moral Responsibility,
http://events.cs.bham.ac.uk/turing12/proceedings/14.pdf

53. Brundage, M.: Limitations and Risks of Machine Ethics. Journal of Experimental and
Theoretical Artificial Intelligence, (forthcoming) (2013),
http://www.milesbrundage.com/uploads/2/1/6/8/21681226/
limitations_and_risks_of_machine_ethics.pdf

Toward a Formalization of QA Problem Classes�

Naveen Sundar Govindarajulu1, John Licato2, and Selmer Bringsjord1,2

1 Department of Cognitive Science
2 Department of Computer Science

Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA

Abstract. How tough is a given question-answering problem? Answers
to this question differ greatly among different researchers and groups. To
begin rectifying this, we start by giving a quick, simple, propaedeutic for-
malization of a question-answering problem class. This formalization is
just a starting point and should let us answer, at least roughly, this ques-
tion: What is the relative toughness of two unsolved QA problem classes?.

1 Formalization of Question-Answering Problem Classes

It is not an exaggeration to say that the AI community had a watershed moment
when IBM’s Watson beat Jeopardy! champion Ken Jennings in a nail-biting
match in 2011. QA is important to AGI: Levesque et al. [7] give an argument
in defense of QA being a test for AGI/AI. Despite the importance and quite
impressive real-world success of QA research, there is very sparse formalization
on what makes a QA problem difficult.1 (See [4] for a formalization of a test for
AI which has a QA format.)

Concisely, our position is that: 1) QA is crucial for AGI; 2) a rigorous formaliza-
tion of QA is important to understand the relative toughness of unsolved problems
in QA; and finally 3) a formal understanding of QA is important for AGI.2 Toward
this end, we start with a simple formalization that could point the way.

We now present a simple formalization of a QA problem class. A QA prob-
lem class consists of a set of questions, a set of answers, a corpus, and some
other computational artifacts. The formalization lets us judge, at least coarsely,
whether one QA problem (e.g. Jeopardy!) is tougher than another (e.g. answering
queries about financial data).

� We are grateful to IBM for grants to Bringsjord that in part enable systematic
thinking about the nature of QA, in light of Watson’s victory. We also thank them
for providing us with an incarnation of Watson that has helped us with evaluating
questions similar to the ones given here.

1 A related criticism by Cassimatis (2012) is that the toughness of existing AI tests
(trying to scale mountain peaks on Earth), are nowhere near what is needed for
producing human-level intelligence (trying to reach the moon).

2 QA also happens to be the most effective way of testing other possible forms of intel-
ligence [2], in line with research that treats the pursuit of AI scientifically [1].

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 228–233, 2014.
c© Springer International Publishing Switzerland 2014

Toward a Formalization of QA Problem Classes 229

QA Problem Class

A question-answering problem class consists of these following components:

– A set of possible questions Q: Q = {q1, q2, . . .}.
– A set of possible answers A: A = {a1, a2, . . .}.a
– A set of indices I. Indices here are entities that deictic words (words that

specifiy context such as “now”, “here”, “I”, etc.) can refer to. For the sake
of simplicity, we will consider only time-points as our indices in the present
paper.

– A set of all facts about the world F . The powerset of this set gives us all
possible contexts: W = 2F .

– A corpus C of question-answer pairs

C = {〈qi, ai〉i|qi ∈ Q, ai ∈ A, i = 1, 2, 3, . . .}
– Finally, a mapping function μ which gives us the gold-standard answers: μ :

Q× I×W → A. For any question q, possible answers a are given by:

μ(q, t, w) = a

a Note: Both Q and A can be infinite.

From this formalization, we immediately get four dimensions of difficulty for
QA problems. For now the dimensions are mostly informal, but even at this
early stage they illustrate the benefits of seeking to formalize QA. The first
dimension emerges from the varying amount of dependence of the answering
function μ on the time index t. The second dimension emerges from the varying
amount of world knowledge w that the answering function μ depends upon.
Such questions have been noted elsewhere by Leveseque et al. (2012) in what
they term “Winograd Schemas.” The third dimension is generated by the range
of novelty. The corpus C and its usefulness for computing μ plays a role in this
dimension. For the sake of simplicity, we assume that C is a pre-processed corpus
of facts that the machine has learned or acquired. The fourth dimension arises
from variation of the amount of computational power needed to compute μ. We
quickly discuss the four dimensions with help from sample questions.

1.1 Dimension 1: Dynamicity

Most of the questions asked in Jeopardy! are static in nature: The answer does
not depend on any time component.3

President under whom the U.S. gave full recognition to Communist China. (An-
swer: Jimmy Carter)

The answer a to a question q can depend on the time t it is asked, the physical
location p it is being asked at, and the person a asking it, and other such context-

3 Philosophers and linguists might disagree with us here. Of course, we cheerfully
concede that given enough time, the meaning of words used in Jeopardy! could
change; and for that matter collective human knowledge could change as well.

230 N.S. Govindarajulu, J. Licato, and S. Bringsjord

based information. For now, we focus only on the time the question is asked.
Even this trivial feature can render some problems very hard. Some example
questions of this nature are given below:

Sample Dimension-1 Questions

q1 What was IBM stock’s Sharpe ratio in the last 60 days of trading?

q2 Give me the maximum wind speed in New York in the last year, looking at
only the days on which it rained.

1.2 Dimension 2: World Knowledge

Some questions can be static in nature but require human levels of intelligence
to answer. These usually are questions that any lay-person with appropriate
native-language capacity can answer. These questions typically require process-
ing enormous amounts of background knowledge about the world and contextual
information. One such problem class which scores high on this dimension is the
class of Winograd Schemas.

The Winograd Schema (WS) challenge, introduced by Levesque et al. (2012),
is a reading-comprehension test intended to rectify issues with the Turing Test.
Two sample questions are given below.

Sample Dimension-2 Questions

q1 Paul tried to call George on the phone, but he wasn’t successful. Who wasn’t
successful? Answer 0: Paul Answer 1: George

q2 Paul tried to call George on the phone, but he wasn’t available. Who wasn’t
available? Answer 0: Paul Answer 1: George

Although the syntactic forms of both questions are identical, correctly identify-
ing the referent of the pronoun ‘he’ seems to require deep sentence comprehension,
a process exploiting enough background knowledge to recognize that a caller being
successful at a phone call requires that the recipient of the call be available.

One of the problems infecting theWinogradSchemaChallenge is that it requires
the vocabulary of words be specified in advance. A bigger drawback of this dimen-
sion is that it tests rather vague, open-ended world knowledge rather than (what
might be called) linguistic knowledge.4 The next dimension rectifies this issue.

1.3 Dimension 3: Novelty

One of the astounding feats of human language understanding is the capacity
to assimilate new words on the fly and discard them later. Observing this can
be used to create problem classes with completely made-up words that do not
need any background world knowledge (e.g. the knowledge about about phone
callers and phone call recipients required for the question above). Such questions

4 Having a huge bank of knowledge about the world is not sufficient as CYC [6] still does
not empower computers to answer all possibe questions. This fact bolsters the claim
that leveraging world knowledge is alone exeedingly challenging.

Toward a Formalization of QA Problem Classes 231

directly get to the core of language understanding. In the two questions given
below, we have made-up nouns in the first case and made-up nouns and verbs in
the second case. We can achieve this novelty by mandating that there be little
overlap between the words used in Q∪A and C. A more challenging restriction
would be to have no questions in Q overlap with those in the corpus C.5

Sample Dimension-3 Questions

q1 If I have 4 foos and 5 bars, and if foos are not the same as bars, how many
foos will I have if I get 3 bazes which just happen to be foos?

q2 Every foobar weozes a foobar if the latter weozes some other foobar. Foobar
27 weozes foobar 28. Is it true that foobar 28 weozes foobar 28?

1.4 Dimension 4: Computational Hardness

The question “What time is it now?” is dynamic but not really that hard to
compute. Some questions are inherently hard even if they are posed in an unam-
biguous machine language. This dimension addresses how hard it is to compute
μ given all its inputs. There exist hierarchies of hard computational problems
from standard computability and complexity theory that could be used as a
starting point for this dimension.6 The hardness of a QA problem class along
this dimension can be cast in terms of the most general oracle that would need
to be used in computing μ to answer questions in the given problem class. The
sample questions below are both Turing-unsolvable but fit the general pattern of
a QA problem. Both the questions are static, require very little common sense,
and the linguistic knowledge required to comprehend the questions is pretty
straightforward.

Sample Dimension-4 Questions

q1 Does machine M with input i ever halt?

q2 Is this computer program p the same as the program q in my library of
programs?a

a Note: We could easily describe machines, programs, and inputs using words
from normal everyday vocabulary.

2 Extensions

The formalization given above works well only when we consider QA in test
settings and experiments. If we are modeling QA working outside the lab in the
real world, we would need some more components in the formalization.

5 Note: We include knowledge of basic arithmetic in linguistic knowledge. What we
term ‘world knowledge’ might also be called “Earthling” knowledge. Any AGI should
be independent of this kind of knowledge but presumably should possess basic arith-
metic skills.

6 Is intelligence correlated with computational complexity? Some of us think so [3].
Note we are using standard measures of complexity mainly for convenience. They
could be superseded by other measures more naturally correlated with intelligence.

232 N.S. Govindarajulu, J. Licato, and S. Bringsjord

2.1 Justification of Answers

In the formalization above, we have focused only on the answers being right and
not on how the answers are computed. In order to trust an answer, we would
need a justification that supports the answer and is easy to check.7 So a full
formalization of QA would include the ability to justify answers. We can modify
the formalization to include justifications.

QA Problem Class: Extension 1

– A set of justifications J: J = {j1, j2, . . .}.
– An evaluation function ε : J×A → {true, false} which evaluates the justifica-

tion j given for an answer a. ε(j, a) = true iff j supports a.

2.2 Ranking of Answers

A QA system in, for example, a personal assistant app would have to learn about
and model its users. In this setting, the gold standard answers would vary from
person to person. QA systems in such a setting would also have to be evaluated
against how well they understand their users.

3 Conclusion

As noted above, our formalization is but a starting point that could help us
eventually compare different QA problems. A formal measure of difficulty is
needed for QA due to its central role in testing for AGI. While there are tests
and competitions for QA (e.g. [9]), a formal measure stemming from the pre-
liminary formalization presented above might help focus our efforts in the right
direction and compare different tests and competitions. Such a formalization
might also help us decide which methods might be appropriate for different QA
problems well before expensive system building and experimentation. (See [8]
for a sampling of the widely different approaches to QA.)

References

1. Besold, T.R.: Human-Level Artificial Intelligence Must Be a Science. In:
Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS (LNAI), vol. 7999,
pp. 174–177. Springer, Heidelberg (2013)

2. Bringsjord, S.: Could, How Could We Tell If, and Why Should–Androids Have Inner
Lives? In: Ford, K., Glymour, C., Hayes, P. (eds.) Android Epistemology, pp. 93–122.
MIT Press, Cambridge (1995)

3. Bringsjord, S., Zenzen, M.: Superminds: People Harness Hypercomputation, and
More. Kluwer Academic Publishers, Dordrecht (2003)

7 The justification would rest on some premises and information that could be con-
sidered to have been accepted.

Toward a Formalization of QA Problem Classes 233

4. Bringsjord, S.: Meeting Floridi’s Challenge to Artificial Intelligence from the
Knowledge-Game Test for Self-Consciousness. Metaphilosophy 41(3), 292–312
(2010), http://kryten.mm.rpi.edu/sb_on_floridi_offprint.pdf

5. Cassimatis, N.L.: Human-level Artificial Intelligence Must be an Extraordinary Sci-
ence. Advances in Cognitive Systems 1, 37–45 (2012)

6. Lenat, D.: CYC: A Large-scale Investment in Knowledge Infrastructure. Communi-
cations of the ACM 38(11), 33–38 (1995)

7. Levesque, H., Davis, E., Morgenstern, L.: The Winograd Schema Challenge. In: Pro-
ceedings of the Thirteenth International Conference on the Principles of Knowledge
Representation and Reasoning (2012)

8. Strzalkowski, T., Harabagiu, S.M. (eds.): Advances in Open Domain Question An-
swering, vol. 32. Springer (2006)

9. Voorhees, E.M. (ed.): The Twenty-Second Text REtrieval Conference. NIST Special
Publication: SP 500-302. NIST (2014)

http://kryten.mm.rpi.edu/sb_on_floridi_offprint.pdf

MInD: Don’t Use Agents as Objects

Renato Lenz Costalima1, Amauri Holanda Souza Junior1,
Cidcley Teixeira de Souza1, and Gustavo Augusto Lima de Campos2

1 Instituto Federal do Ceará, Av. Treze de Maio, 2081, Benfica, Fortaleza - Ceará,
Brasil

2 Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700, Campus do Itaperi,
Fortaleza - Ceará, Brasil

Abstract. What is intelligence? Since it is not possible to see the inter-
nal details of intelligence, it is described by its behaviours, that include:
problem solving, learning and language [1]. These behaviours are ex-
pected outputs of intelligence, but they are not the intelligence itself.
Intelligence is rather what makes them possible. That could be: “The
capacity to acquire and apply knowledge”. With that goal, the MInD,
a Model for Intelligence Development, is an in development framework
for multi-agent systems.

1 MInD - Model for Intelligence Development

Russell et al.[2] defines an agent as “anything that can be viewed as perceiv-
ing its environment through sensors and acting upon that environment through
effectors” (Figure 1). A quick Abbott’s textual analysis of this definition iden-
tifies the interfaces: Agent, Environment, Sensor and Effector or Actuator; and
the methods: perceive() and act(). A representation using the UML sequence
diagram (Figure 2) helps to enlighten a sensor gathering information from the
environment and representing it into a perception sent to the agent. Some agent’s
internal decision must choose an actuator and make it act, somehow modifying
the environment.

Fig. 1. An agent Fig. 2. The UML sequence diagram for an agent

The only method in Agent interface is perceive(), for short see(), and
every interaction with the agent must happen through this method. Surprisingly,

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 234–237, 2014.
c© Springer International Publishing Switzerland 2014

MInD: Don’t Use Agents as Objects 235

none of the major multi-agent frameworks, such as [3][4], defines the method
perceive() or anything alike.

To be considered intelligent, an agent must be able to “acquire and apply
knowledge”. To acquire the information about the environment and then apply
it, modifying the environment, the agent needs sensors and actuators. While the
body is responsible for gathering and representing the information, the mind
(the agent) must be able to store (set()) and retrieve (get()) the information
represented by the body. Figure 3 shows the UML class diagram of the MInD,
a Model for Intelligence Development.

Fig. 3. The UML class diagram for MInD

To test the model, the NaiveAgent class provides a flexible simple Java imple-
mentation of the Mind interface. It describes an initial basic cognitive cycle that
cannot solve any problem, that cannot communicate, that does not move or is
proactive in any way. However, an instance of NaiveAgent represents the mind
of a live software ready to learn whatever behaviour imagined. It is programmed
to see() symbols that represent orders the agent should try to follow. The agent
searches in its memory for possible actions. If it find one or more actions, it will
choose the last defined action and act. Else, it does nothing. For the agent to find
something in its memory, the knowledge must be somehow acquired by a sen-
sor and set() to the agent’s memory. The body of the agent is the responsible
for the knowledge definitions and updates, consequently determining the agent’s
behaviour as suggested in [5][6]. That is because the agent acts based on its own
experience, and this experience is provided by the agent’s sensors. The agent’s
body determines what the agent perceives, consequently determining what it
learns and, thereafter, how it behaves.

Because we want to test the mind separately, let us simulate the body’s im-
pulses and see what we can do with a NaiveAgent. The code in Listing 1.1
shows, in Lines 3 and 10, the simulation of the same perception by the agent
resulting in different outputs. At the first time, the agent does not know what
to do, so it does nothing. In Lines 4 to 9, the agent is arbitrarily taught how to
write, producing, from the second perception, the output of Line 1 of the Listing
1.2. In Line 12, we try to ask the agent to write a sum of numbers. Because it
does not know how to sum, it writes “null” (Line 2 of Listing 1.2). The same
perception at Line 23, after the agent has learned how to sum (Lines 13 to 22),
produces the desired output (Line 3 of Listing 1.2).

1 Mind a = new NaiveAgent();
2
3 a.see(new Symbol("write", "hi"));
4 a.set("write", new AbstractAction() {

236 R.L. Costalima et al.

5 public Object act(Object object) {
6 System.out.println (object);
7 return null;
8 }
9 });

10 a.see(new Symbol("write", "hi"));
11
12 a.see(new Symbol("write", a.see(new Symbol ("sum", new int[] {2,-4,5}))));
13 a.set("sum", new AbstractAction() {
14 public Object act(Object object) {
15 int sum = 0;
16 int [] numbers = (int []) object;
17 for (int n: numbers) {
18 sum += n;
19 }
20 return sum;
21 }
22 });
23 a.see(new Symbol("write", a.see(new Symbol ("sum", new int[] {2,-4,5}))));

Listing 1.1. Test of NaiveAgent

Output:

1 hi
2 null
3 3

Listing 1.2. Output of the test of NaiveAgent

Teaching an agent to sum and to write is not very impressive, but it demon-
strates the agent’s capacity to acquire and apply knowledge and doing so in
different domains. If one is not satisfied with this definition of intelligence, any
other behaviour considered necessary to achieve intelligence can be learned by
the agent in execution time. Furthermore, most, if not all, AI’s techniques can
be implemented using OO classes and objects. In practice, the NaiveAgent can
be seen as a dynamic object with its attributes and methods defined at runtime.

The NaiveAgent reproduces the desired intelligent behaviour, that is, acquir-
ing and applying knowledge. But that is not good enough if we are going to use
agents as objects. Wooldridge [7] explains that agents should not invoke each
others methods in agent-oriented world. A method invocation is like pushing a
button: the corresponding behaviour is triggered without the object’s decision.
Instead, agents should communicate with each other “asking” for a desired op-
eration. Because of that, multi-agent frameworks focus on the communication
between the agents, defining specific communication methods and protocols.
This means that the agent is not forced to execute the desired action, but it is
forced to communicate. Also the communication language is “hard-coded”.

In MInD, the Agent interface has only one method: the see() method. All in-
teractions with agents, including attempts of communication, should be through
a see() method. Invoking any other different method is like using the agent
as an object, triggering behaviours without the agent’s permission. The Mind

interface abstracts the necessary methods to achieve intelligence. It means that
an agent will probably need to implement and use these methods. However, in-
voking them is forcing the agent to act without asking. The body of the agent
supposedly has a close relationship with the agent’s mind and could arbitrar-
ily manipulate it through the Mind interface. Even so, to maximize the agent’s

MInD: Don’t Use Agents as Objects 237

choice and flexibility, the Mind interface should be avoided and its superinterface
Agent should be used instead.

Agents should not used nor built as objects. Several frameworks offer basic
functionality to support multi-agent systems development. Extending one of the
provided basic implementations, an agent can be programmed to learn a specific
task following some specific approach. After the programming is finished, the
agent is put to life and tested if it does the right thing. If the test does not
succeed, the agents must be stopped. To use the actual terms, the process is
killed. Another round of programming can bring some new agent to life. Is that
how it works with intelligent beings? If your kid fails a math exam do you kill him
and try to make a smarter kid? The basic implementation provided by the MInD
framework is not meant to be extended. The development starts by instantiating
a NaiveAgent. The desired functionalities are defined at runtime, allowing the
modification of the software without the hideous cycle of “edit-refresh-save”. In
analogy with Web 2.0, MInD allows a single method to be updated without the
need to restart the entire software.

The test of Listing 1.1 uses the Mind interface and thus uses the agent as an
object, arbitrarily manipulating its knowledge. As discussed, only the agent’s
body should use the Mind interface. Imagine how it would be easy for a teacher
to just press the “set” button inside the student’s head. In further analysis,
it is also not so easy to even get the student’s attention, to make him really
“perceive”. In a more realistic agent-oriented world, the environment should not
have access to the agent at all. Indeed, as can be noticed in the Figure 2, the
environment only interacts with the agent’s body (its sensors and actuators),
but never with its mind (represented by the Agent interface). From the point of
view of the environment, the Agent and Mind interfaces should not even exist.
In fact, there is no way of proving that minds exist, we just suppose they are
in control of the bodies. Because if not a mind, what is? Yet, has anyone seen a
mind? If we open a human’s head we will find a brain, but can we find a mind?

References

1. Pfiefer, R., et al.: Understanding intelligence. MIT Press (2001)
2. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial intelli-

gence: A modern approach, vol. 2. Prentice hall Englewood Cliffs (1995)
3. Bellifemine, F., Caire, G., Rimassa, G., Poggi, A., Trucco, T., Cortese, E., Quarta,

F., Vitaglione, G., Lhuillier, N., Picault, J.: Java agent development framework.
TILAB Italia 10, 2002 (2002), http://jade.cselt.it

4. Baumer, C., Breugst, M., Choy, S., Magedanz, T.: Grasshoppera universal agent
platform based on omg masif and fipa standards. In: First International Workshop
on Mobile Agents for Telecommunication Applications (MATA 1999), pp. 1–18.
Citeseer (1999)

5. Brooks, R.A.: Elephants don’t play chess. Robotics and Autonomous Systems 6(1),
3–15 (1990)

6. Lakoff, G., Johnson, M.: Philosophy in the flesh: The embodied mind and its chal-
lenge to western thought. Basic books (1999)

7. Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons (2009)

http://jade.cselt.it

Guiding Probabilistic Logical Inference

with Nonlinear Dynamical Attention Allocation

Cosmo Harrigan1,2,6, Ben Goertzel2, Matthew Iklé3, Amen Belayneh4,5,
and Gino Yu5

1 OpenCog Foundation
2 Novamente LLC

3 Adams State University
4 iCog Labs

5 School of Design, Hong Kong Poly U
6 University of Washington

Abstract. In order to explore the practical manifestations of the “cog-
nitive synergy” between the PLN (Probabilistic Logic Networks) and
ECAN (Economic Attention Network) components of the OpenCog AGI
architecture, we explore the behavior of PLN and ECAN operating to-
gether on two standard test problems commonly used with Markov Logic
Networks (MLN). Our preliminary results suggest that, while PLN can
address these problems adequately, ECAN offers little added value for
the problems in their standard form. However, we outline modified ver-
sions of the problem that we hypothesize would demonstrate the value
of ECAN more effectively, via inclusion of confounding information that
needs to be heuristically sifted through.

1 Introduction

One approach to creating AGI systems is the “integrative” strategy, involving
combining multiple components embodying different structures or algorithms,
and relying on synergistic dynamics between components. One kind of integrative
system involves various highly independent software components, each solving
a specialized set of problems in a mostly standalone manner, with occasional
communication between each other in order to exchange problems and solutions.
On the other end of the scale, are systems designed as tightly interconnected
components that give rise to complex non-linear dynamical phenomena. Here,
we are specifically focused on the latter approach. We will discuss the particulars
of one form of cognitive synergy – between probabilistic inference and nonlinear-
dynamical attention allocation – within the context of one particular integrative
AGI architecture, OpenCogPrime [2].

2 OpenCogPrime

Our work here is based upon specific details of the AGI architecture called
OpenCogPrime (OCP), based on the open-source OpenCog project at

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 238–241, 2014.
c© Springer International Publishing Switzerland 2014

Guiding Probabilistic Logical Inference 239

http://opencog.org. OCP is a large and complex system whose detailed de-
scription occupies two volumes [4].

The concept of cognitive synergy is at the core of the design, with highly in-
terdependent subsystems responsible for inference regarding patterns obtained
from visual, auditory and abstract domains, uncertain reasoning, language com-
prehension and generation, concept formation, and action planning.

The medium-term goal of the OCP project is to create systems that can
function broadly comparably to young human children in virtual and robotic
preschool contexts [3]. In the longer-term, the aim of the project is to engi-
neer systems that exhibit general intelligence equivalent to a human adult, and
ultimately beyond.

The dynamics of interaction between processes in OCP is designed in such
a way that knowledge can be converted between different types of memory;
and when a learning process that is largely concerned with a particular type
of memory encounters a situation where the rate of learning is very slow, it
can proceed to convert some of the relevant knowledge into a representation
for a different type of memory to overcome the issue, demonstrating cognitive
synergy. The simple case of synergy between ECAN and PLN explored here is
an instance of this broad concept; PLN being concerned mainly with declarative
memory and ECAN mainly with attentional memory.

3 Probabilistic Logic Networks

PLN serves as the probabilistic reasoning system within OpenCog’s more general
artificial general intelligence framework. PLN logical inferences take the form of
syllogistic rules, which give patterns for combining statements with matching
terms. Related to each rule is a truth-value formula which calculates the truth
value resulting from application of the rule. PLN uses forward-chaining and
backward-chaining processes to combine the various rules and create inferences.

4 Economic Attention Networks

The attention allocation system within OpenCog is handled by the Economic At-
tention Network (ECAN). ECAN is a graph of untyped nodes and links that may
be typed either HebbianLink or InverseHebbianLink. Each Atom in an ECAN is
weighted with two numbers, called STI (short-term importance) and LTI (long-
term importance), while each Hebbian or InverseHebbian link is weighted with a
probability value. A system of equations, based upon an economic metaphor of
STI and LTI values as artificial currencies, governs importance value updating.
These equations serve to spread importance to and from various atoms within the
system, based upon the importance of their roles in performing actions related
to the system’s goals.

An important concept with ECAN is the attentional focus, consisting of those
atoms deemed most important for the system to achieve its goals at a particular
instant. Through the attentional focus, one key role of ECAN is to guide the

http://opencog.org

240 C. Harrigan et al.

forward and backward chaining processes of PLN inference. Quite simply, when
PLN’s chaining processes need to choose logical terms or relations to include
in their inferences, they can show priority to those occurring in the system’s
attentional focus (due to having been placed there by ECAN). Conversely, when
terms or relations have proved useful to PLN, they can have their importance
boosted, which will affect ECAN’s dynamics. This is a specific example of the
cognitive synergy principle at the heart of the OpenCog design.

5 Evaluating PLN on Standard MLN Test Problems

In order to more fully understand the nature of PLN/ECAN synergy, we chose
to explore it in the context of two test problems standardly used in the context
of MLNs (Markov Logic Networks) [7]. These problems are relatively easy for
both PLN and MLN, and do not stress either system’s capabilities.

The first test case considered is a very small-scale logical inference called the
smokes problem, discussed in its MLN form at [1]. The PLN format of the smokes
problem used for our experiments is given at https://github.com/opencog/

test-datasets/blob/master/pln/tuffy/smokes/smokes.scmThe conclusions
obtained from PLN backward chaining on the smokes test case are

cancer(Edward) <.62, 1>

cancer(Anna) <.50, 1>

cancer(Bob) <.45, 1>

cancer(Frank) <.45, 1>

which is reasonably similar to the output of MLN as reported in [1],

0.75 Cancer(Edward)

0.65 Cancer(Anna)

0.50 Cancer(Bob)

0.45 Cancer(Frank)

The second test case is a larger problem referred to as RC involving the place-
ment of research papers in categories based on information about their authors
and citations. [5] The full RC problem contains 4 relations, 15 rules, 51K enti-
ties, 430K evidence tuples, 10K query atoms, 489 components [6]. The RC1000
problem is scaled-down with only 1000 pieces of evidence. Human raters display
72% agreement on mapping papers into categories. Straightforward statistical
methods can get up to 66%, and MLN does roughly the same.

The full set of rules and evidence used for feeding the RC problem to PLN
is at https://github.com/opencog/test-datasets/tree/master/pln/tuffy/
class. The corresponding information for the RC1000 problem is at https://
github.com/opencog/test-datasets/tree/master/pln/tuffy/rc1000.

https://github.com/opencog/test-datasets/blob/master/pln/tuffy/smokes/smokes.scm
https://github.com/opencog/test-datasets/blob/master/pln/tuffy/smokes/smokes.scm
https://github.com/opencog/test-datasets/tree/master/pln/tuffy/class
https://github.com/opencog/test-datasets/tree/master/pln/tuffy/class
https://github.com/opencog/test-datasets/tree/master/pln/tuffy/rc1000
https://github.com/opencog/test-datasets/tree/master/pln/tuffy/rc1000

Guiding Probabilistic Logical Inference 241

6 Exploring PLN/ECAN Synergy with Standard MLN
Test Problems

We explored the possibility of utilizing ECAN to assist PLN on these test prob-
lems, so far achieving results more educational than successful. Based on our
work so far, it seems that ECAN’s guidance is not of much use to PLN on these
problems as formulated. However, exploring ways to modify the test problems
so as to enable to them to better showcase ECAN, led us to conceptually inter-
esting conclusions regarding the sorts of circumstances in which ECAN is most
likely to help PLN.

We hypothesize that if one modified the smokes example via adding a sub-
stantial amount of irrelevant evidence about other aspects of the people involved,
then one would have a case where ECAN could help PLN, because it could help
focus attention on the relevant relationships. We also hypothesize that, if one
had information about the words occurring in the papers in the RC test problem,
then ECAN could help, because some of these words would be useful for guess-
ing the categories papers belong to, and others would not; ECAN could help via
spreading importance from words found to be important, to other related words,
saving PLN the trouble of attempting inferences involving all the words. One of
our threads of current research focuses on the substantiation of these hypotheses
via running PLN and ECAN together on test problems of this nature.

In sum, the exploration of some standard MLN test problems in a PLN/E-
CAN context has led us to interesting hypotheses regarding where ECAN can,
and cannot, prove useful to PLN. Preliminarily, it appears that this particular
cognitive synergy is going to be most useful in cases where, unlike these MLN
test problems in their standard form, there is a considerable amount of detailed
information and part of the problem involves heuristically sifting through this
information to find the useful bits.

References

1. Project tuffy, http://hazy.cs.wisc.edu/hazy/tuffy/doc/
2. Goertzel, B.: Opencogprime: A cognitive synergy based architecture for artificial

general intelligence. In: 8th IEEE International Conference on Cognitive Informatics,
ICCI 2009, pp. 60–68. IEEE (2009)

3. Goertzel, B., Bugaj, S.V.: Agi preschool: A framework for evaluating early-stage
human-like agis. In: Proceedings of the Second International Conference on Artificial
General Intelligence (AGI 2009), pp. 31–36 (2009)

4. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
1. Atlantis Press (2014)

5. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of
internet portals with machine learning. Information Retrieval 3(2), 127–163 (2000)

6. Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: Scaling up statistical inference in
markov logic networks using an rdbms. Proceedings of the VLDB Endowment 4(6),
373–384 (2011)

7. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

http://hazy.cs.wisc.edu/hazy/tuffy/doc/

A Cognitive API and Its Application to AGI

Intelligence Assessment

Ben Goertzel1 and Gino Yu2

1 OpenCog Foundation
2 School of Design, Hong Kong Poly U

Abstract. An Application Programming Interface for human-level AGI
systems is proposed, aimed at bridging the gap between proto-AGI R&D
systems and practical AI application development. The API contains
simply formalized queries corresponding to the various key aspects of
human-like intelligence, organized so as to be independent of the algo-
rithms used under the hood for query resolution and associated support-
ing cognitive processes. A novel, qualitative (and in principle quantifi-
able) measure of software general intelligence is proposed (the APIQ),
measuring the degree to which a system succeeds at fulfilling the various
API functions using a compact set of representations and algorithms.

1 Introduction

Currently AGI is a relatively distinct pursuit from the engineering of practical
AI applications. Indeed, the two pursuits can even sometimes seem opposed
to each other. If one posits an ”AGI vs. Narrow AI” dichotomy [1], focus on
specific practical applications may be seen as one of the primary factors driving
the majority of the AI field’s attention toward Narrow AI (other major factors
including the greater ease of doing theoretical analysis and empirical testing on
narrower systems).

On the other hand, it’s also the case that a number of proto-AGI systems
have been customized, in whole or in part, to serve as parts of various practical
applications. But this has been done on an ad hoc basis in each case, with
considerable specialized effort required. I believe it is possible to connect the AGI
and application development worlds more systematically, so that AGI R&D and
AI application development can proceed more synergistically, each more richly
benefiting the other.

One way to manifest this potential, I suggest, is the development of a ”Cog-
nitive API” for a proto-AGI software system, enabling application developers to
access the system in specific ways that tend to be useful for application software,
according to an interface that requires no knowledge of the underlying algorithms
of the proto-AGI system, and doesn’t change as the particulars of these algo-
rithms change. Adoption of such an API would lead to more users for early-stage
AGI systems, hence to more incentive for various organizations to fund or spon-
sor work on AGI systems, and thus could accelerate AGI development as well as
improving application quality.

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 242–245, 2014.
c© Springer International Publishing Switzerland 2014

A Cognitive API and Its Application to AGI Intelligence Assessment 243

In this paper I will outline one approach to defining a Cognitive API of this
nature. While the API indicated here would work effectively with the OpenCog
framework that the author is currently involved with [5] [6], in its overall outline
it is not OpenCog-specific in any way, and could be used just as well together
with many alternative AGI systems.

The pursuit of a Cognitive API also provides a novel perspective on one of the
vexing issues at the heart of the AGI field – the difficulty of measuring the level
of general intelligence displayed by a given system. A novel intelligence measure,
the APIQ, is proposed and defined. Roughly speaking the APIQ measures the
degree to which a system fulfills a broad subset of the API functions using a
concise set of representations and algorithms. Full formalization of the APIQ
appears difficult, but it does provide a novel, and highly pragmatic, approach
to conceptualizing the notion of general intelligence in the context of real-world
applied software systems.

1.1 Needs of Application Developers vs. AGI Researchers

A key point underlying the current suggestion is that the needs of AGI re-
searchers, versus application developers aimed at using early-stage AGI software
in their applications, are substantially different.

For a developer whose focus is the creation or improvement of AI algorithms,
the appropriate interface for an AI system is one that is extremely general and
flexible, providing the maximum possible latitude in experimenting with new
ideas and increasing the intelligence, scope and/or efficiency of existing code.
For example: While rough around the edges in various places, OpenCog’s current
Scheme shell is a reasonable first approximation of an interface of this sort.

On the other hand, for a developer whose focus is the creation of AI-based
application systems, a different sort of interface is appropriate an Application
Programming Interface or API that supplies a limited but powerful set of appli-
cation functionalities, in a manner providing: a) Simplicity of access to the AI
functionalities commonly required by application developers; b) for each func-
tionality, either a reliable level of intelligence, or a reliable confidence level associ-
ated with each output (indicating the systems assessment of its own confidence
in the intelligence of its output in a given instance); c) robustness as a soft-
ware system, when carrying out the specific application functionalities directly
accessible by the API.

2 Representation

It seems inescapable that a Cognitive API will need to be associated with a
flexible knowledge representation language. For instance, if a cognitive API were
to be realized using OpenCog, then the representation language would be the
language of the Atomspace, OpenCog’s weighted, labeled hypergraph knowledge
representation, e.g. as realized via the Scheme representation now commonly
used to load Atoms into the Atomspace.

244 B. Goertzel and G. Yu

In general, one wants a KR (Knowledge Representation) language that is
highly general, and is reasonably easily both human and machine readable. The
bulk of the API indicated here, which comprises a set of queries to be made of a
cognitive system, assumes the existence of a KR that can straightforwardly be
used to provide descriptions of the following entities, for use in input and/or out-
put of queries: actions, agent, bodies, categories, communication media, commu-
nications, constraints, datasets, expressions, events, maps, movements, object,
patterns and situations.

Another relevant factor is standardization of concepts referenced in queries.
For a cognitive system to have a better chance of understanding a users queries,
it will be easier if the user poses his knowledge in terms of standard ontologies
wherever relevant and feasible, e.g. WordNet [3] and ConceptNet [10].

3 Queries

The wiki page http://wiki.opencog.org/w/A_Cognitive_API comprises crit-
ical supplementary information to this paper, and presents a set of queries that
we suggest a cognitive API should support. The set of queries is designed to cover
all the key aspects of human-like intelligence, as identified in the AI Magazine
paper [1] summarizing the conclusions of the 2009 AGI Roadmap Workshop.
For each core category of human-intelligence functionality as identified there, a
handful of essential questions is identified. And, each of these essential questions
may be cast as a formal API call. While a lot more work would need to go
into honing a formal API along these lines, first-draft ”API call” versions of the
questions are given here, for the clarity that this sort of concreteness brings.

For concreteness we give here three arbitrary examples from the long, struc-
tured list on the above wiki page (∗ denotes an optional argument):

– Expression-List GetTemporalPatterns(Situation-List S): what temporal pat-
terns exist in a certain set of situations?

– DirectAttention(Entity X, *Time T): instructs a cognitive system to focus
its attention on a certain entity for a certain time period

– GetAssociatedEmotions(Entity X, *Situation S, *Time T): finds the emo-
tions associated with a certain entity

4 An Application-Oriented Measure of General
Intelligence

The notion of a Cognitive API also has implications in the area of AI intelli-
gence assessment. Quantification of general intelligence levels poses a significant
challenge for the AGI field, to which various approaches have been suggested [8]
[9] [7] [4] [2] [1]. The Cognitive API proposed here suggests a different approach,
an ”APIQ” that measures the degree to which a software system can carry out
a broad variety of humanly useful, intelligent-seeming functions using a small
class of representations and mechanisms.

http://wiki.opencog.org/w/A_Cognitive_API

A Cognitive API and Its Application to AGI Intelligence Assessment 245

Suppose that, for each of the queries in the API: a) one has identified a
measure of the quality of performance of a given software system at responding
to that query, scaled between 0 and 1; b) one has a meaningful qualitative (or
formal) way to identify the different representations and algorithms in a given
software system; c) for each of these representations and algorithms, and each
API query, one can quantify the degree to which the representation/algorithm
plays a role in the response to the query, with some degree between 0 and 1. Then
one can estimate the total API quality of a system as the sum of the performance
quality the system displays on each API query; and the query API generality of
a system as the entropy of the set of performance quality values displayed by
the system on the API queries. One can also estimate, for each representation or
algorithm, the total contribution, defined as the sum over all API queries of: the
system’s performance quality on the query, multiplied by the degree to which
the representation/algorithm plays a role in the query; and the component API
generality, defined as the entropy of the set of total contribution values, across
all the representations/algorithms.

The applied human-level general intelligence of a system, then, can be
defined roughly as (where a, b, c are nonnegative weight values summing to 3)

APIQ = total API qualitya ∗API generalityb ∗ component API generalityc

References

1. Adams, S., Arel, I., Bach, J., Coop, R., Furlan, R., Goertzel, B., Hall, J.S.,
Samsonovich, A., Scheutz, M., Schlesinger, M., Shapiro, S.C., Sowa, J.: Mapping
the landscape of human-level artificial general intelligence. Artificial Intelligence
Magazine (2011)

2. Bringsjord, S., Schimanski, B.: What is artificial intelligence? psychometric ai as
an answer. In: IJCAI, pp. 887–893 (2003)

3. Fellbaum, C.: WordNet: An Electronic Lexical Database. Addison-Wesley (1990)
4. Goertzel, B.: Toward a formal definition of real-world general intelligence. In:

Proceedings of AGI (2010)
5. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part

1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy. At-
lantis Thinking Machines. Springer (2013)

6. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
2: The CogPrime Architecture for Integrative, Embodied AGI. Atlantis Thinking
Machines. Springer (2013)

7. Hernandez-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence Journal 174(18), 1508–1539 (2010)

8. Legg, S., Hutter, M.: A definition of machine intelligence. Minds and Machines 17
(2007)

9. Legg, S., Veness, J.: An approximation of the universal intelligence measure. CoRR
abs/1109.5951 (2011)

10. Speer, R., Havasi, C.: Conceptnet 5. Tiny Transactions of Computer Science (2012),
http://tinytocs.org/vol1/papers/tinytocs-v1-speer.pdf

http://tinytocs.org/vol1/papers/tinytocs-v1-speer.pdf

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 246–249, 2014.
© Springer International Publishing Switzerland 2014

Self-modeling Agents Evolving in Our Finite Universe

Bill Hibbard

SSEC, University of Wisconsin, Madison, WI 53706, USA
and Machine Intelligence Research Institute

test@ssec.wisc.edu

Abstract. This paper proposes that we should avoid infinite sets in definitions
of AI agent and their environments. For agents that evolve to increase their fi-
nite resources it proposes a self-modeling agent definition that avoids assump-
tions about the agent's future form. And it proposes a consistent and complete
logical theory for reasoning by AI agents in our finite universe.

1 Finitely Computable Agents

According to current physics [1] our universe has a finite information capacity of no
more than 10120 bits (1090 bits excluding gravitational degrees of freedom). Modeling
artificial intelligence (AI) agents and environments with infinite sets, such as Peano
arithmetic and the infinite tape of a Turing machine, introduces unnecessary theoreti-
cal complexity into our understanding of AI. Thus in my recent papers [2, 3] I have
replaced the universal Turing machine in Hutter's [4] universal AI with finite stochas-
tic programs (limited to finite memory, for which the halting problem is decidable).

Specifically, at each of a discrete series of time steps t ∈ {0, 1, 2, ..., T}, for some
large T, the agent sends an action at ∈ A to the environment and receives an observa-
tion ot ∈ O from the environment, where A and O are finite sets. Let ht = (a1, o1, ..., at,
ot) ∈ H be an interaction history where H is the set of all histories for t ≤ T.

The agent's actions are motivated by a utility function u : H → [0, 1] which assigns
utilities between 0 and 1 to histories. Future utilities are discounted according to a
geometric temporal discount 0 < γ < 1. The agent computes a prior probability ρ(h) of
history h. The value v(h) of a possible future history h is defined recursively by:

 v(h) = u(h) + γ max a∈A v(ha) (1)
 v(ha) = ∑o∈O ρ(o | ha) v(hao) (2)

The recursion terminates with v(ht) = 0 for t > T. The agent (or policy) π is defined
to take, after history ht, the action:

 π(ht) := at+1 = argmax a∈A v(hta) (3)

Given a history ht, the agent models the environment by the program [2]:

 Self-modeling Agents Evolving in Our Finite Universe 247

 qt = λ(ht) := argmax q∈Q P(ht | q) ρ(q) (4)

Here Q is a prefix-free language for finite stochastic programs, ρ(q) = 2-|q| is the
prior probability of program q ∈ Q where |q| is the length of q in bits, and P(ht | q) is
the probability that q computes the history ht (this is the probability that the stochastic
program q computes the observations oi in response to the actions ai for 1 ≤ i ≤ t).
Then the prior probability of a possible future interaction history h for use in (2) is:

 ρ(h) = P(h | qt) (5)

2 Self-modeling Agents

Limited resources are essential to Wang's [5] definition of intelligence and a practical
reality for agents in our universe. Although the model λ(ht) in (4) can be finitely com-
puted [3], the resources necessary to compute it grow exponentially with the length of
history ht. Furthermore computing the value v(h) of a possible future history h in (1)
and (2) requires an expensive recursion. Hence an agent with limited resources must
compute approximations. Increasing the accuracy of these approximations will im-
prove the agent's ability to maximize its utility function, and hence the agent will
choose actions to increase its computing resources and so increase accuracy.

Such self-improvement must be expressible by actions in set A. However, the
agents of Section 1 cannot adequately evaluate self-improvement actions. If the agent
is computing approximations to the model λ(ht) and to values v(h) using its limited
computing resources, then it cannot use those limited resources to compute and eva-
luate what it would compute with greater resources. In real time interactions between
the agent and the environment, the environment will not wait for the agent to slowly
simulate what it would compute with greater resources.

In the agents of Section 1 values v(ha) are computed by future recursion in (1) and
(2). Here we define a revised agent in which values v(ha) are computed for initial sub-
intervals of the current history and in which the environment model includes the com-
putation of such values. Given ht = (a1, o1, ..., at, ot), for i ≤ t define:

 ov(hi-1ai) = discrete((∑i≤j≤t γj-i u(hj)) / (1 - γt-i+1)) (6)

Here hj = (a1, o1, ..., aj, oj), discrete() samples real values to a finite subset R of the
reals (e.g., floating point numbers) and division by (1 - γt-i+1) scales values of finite
sums to values as would be computed by infinite sums. Define o'i = (oi, ov(hi-1ai)) and
h't = (a1, o'1, ..., at, o't). That is, values ov(hi-1ai) computed from past interactions are
included as observables in an expanded history h't so the model λ(h't) includes an
algorithm for computing them:

 qt = λ(h't) := argmax q∈Q P(h't | q) ρ(q) (7)

248 B. Hibbard

Define ρ(h') = P(h' | qt). Then compute values of possible next actions by:

 v(hta) = ∑r∈R ρ(ov(hta) = r | h'ta) r (8)

Here h't = (a1, o'1, ..., at, o't) and ht = (a1, o1, ..., at, ot). As in (3) define the agent's

policy π(ht) = at+1 = argmax a∈A v(hta). Because λ(h't) models the agent's value compu-
tations I call this the self-modeling agent. It is finitely computable. There is no look
ahead in time beyond evaluation of possible next actions and so no assumption about
the form of the agent in the future. λ(h't) is a unified model of agent and environment,
and can model how possible next actions may increase values of future histories by
any modification of the agent and its embedding in the environment [6].

The game of chess provides an example of learning to model value as a function of
computing resources. Ferreira [7] demonstrated an approximate functional relation
between a chess program's ELO rating and its search depth, which can be used to
predict the performance of an improved chess-playing agent before it is built. Similar-
ly the self-modeling agent will learn to predict the increase of its future utility due to
increases in its resources.

Utility functions defined in terms of the environment model λ(h't) are a way to
avoid the unintended behavior of self-delusion [8, 2]. They are also natural for com-
plex AI agents. Rather than having preprogrammed environment models, complex AI
agents must explore and learn models of their environments. But the designers of an
AI agent will express their intentions for the agent's behavior choices in terms of their
own knowledge of the agent's environment. Thus it is natural that they define an
agent's utility function in terms of a procedure to be applied to the agent's learned
environment model. I presented an example of such a procedure at AGI-12 [3]. Defin-
ing its utility function in terms of its environment model introduces a potential circu-
larity in the self-modeling agent: ov(hi-1ai) depends on u(hj) in (6), u(hj) depends on
λ(h't) in defining the utility function in terms of the model, and λ(h't) depends on ov(hi-

1ai) in (7). This circularity can be avoided by defining the utility function u used in
equation (6) in terms of an environment model from a previous time step.

The agent's environment model is an approximation because the model is based on
a limited history of interactions with the environment and, for agents in our universe,
because of limited resources for computing the model. Thus a utility function com-
puted from the model is also an approximation to an ideal utility function which is the
true expression of the intention of the agent designers. Such an approximate utility
function is a possible source of AI behavior that violates its design intention.

3 Consistent and Complete Logic for Agents

Any AI agent based on a logical theory that includes Peano arithmetic (PA) faces prob-
lems of decidability, consistency and completeness. Yudkowsky and Herreshoff [9]
discuss such problems related to Löb's Theorem for a sequence of evolving agents. Our
universe has finite information capacity [1]. I suggest that an agent can pursue its goal in
such a finite environment without any need for PA and its theoretical problems.

 Self-modeling Agents Evolving in Our Finite Universe 249

An environment with finite information capacity has a finite number of possible
states. In this case it is reasonable to assume a finite limit on the length of interaction
histories, that the action set A and the observation set O never grow larger than the
information capacity of the environment, and that probabilities and utility function
values are constrained to a finite subset of the reals (only a finite subset can be ex-
pressed in a finite environment). Then, for a given finite limit on environment size,
there are finite numbers of possible objects of these types: environments (expressed as
Markov decision processes), histories, utility functions, policies, environment models
that optimize equation (4) or (7) for possible histories, and agent programs (assuming
agent memory is limited by the information capacity of the environment, there are a
finite number of programs and their halting problem is decidable). There are also
finite numbers of possible predicates and probability distributions over these types of
objects and combinations of them. So, for a given finite limit on environment size, the
theory of these types of objects, predicates and probability distributions is decidable,
consistent and complete (quantifiers over finite sets can be eliminated, reducing the
theory to propositional calculus). In our universe with no more than 10120 bits, agents
can use this theory to avoid the logical problems of PA. I suggest that more serious
problems for agents in our universe are the inaccuracy of their environment models
and the limits on their memory capacity and speed for reasoning in real time.

References

1. Lloyd, S.: Computational Capacity of the Universe. Phys.Rev.Lett. 88, 237901 (2002)
2. Hibbard, B.: Model-based utility functions. J. Artificial General Intelligence 3(1), 1–24

(2012a)
3. Hibbard, B.: Avoiding unintended AI behaviors. In: Bach, J., Goertzel, B., Iklé, M. (eds.)

AGI 2012. LNCS (LNAI), vol. 7716, pp. 107–116. Springer, Heidelberg (2012)
4. Hutter, M.: Universal artificial intelligence: sequential decisions based on algorithmic

probability. Springer, Heidelberg (2005)
5. Wang, P.: Non-Axiomatic Reasoning System — Exploring the essence of intelligence. PhD

Dissertation, Indiana University Comp. Sci. Dept. and the Cog. Sci. Program. (1995)
6. Orseau, L., Ring, M.: Space-Time Embedded Intelligence. In: Bach, J., Goertzel, B.,

Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 209–218. Springer, Heidelberg
(2012)

7. Ferreira, D.R.: The Impact of Search Depth on Chess Playing Strength. ICGA Journal 36(2),
67–80 (2013)

8. Ring, M., Orseau, L.: Delusion, survival, and intelligent agents. In: Schmidhuber, J.,
Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 11–20. Springer,
Heidelberg (2011)

9. Yudkowsky, E., Herreshoff, M.: Tiling Agents for Self-Modifying AI, and the Löbian
Obstacle (2013), http://intelligence.org/files/TilingAgents.pdf

Affective Agent Architecture:

A Preliminary Research Report

Kevin Raison1 and Steve Lytinen2

1 Chatsubo Labs, Seattle WA 98117, USA
2 DePaul University, Chicago IL 60604, USA

Keywords. Affect theory, affective agents, affective computing, plan-
ning, artificial life, multi-agent systems.

Our work with affective agents is motivated by a desire to develop a biologically-
inspired model of the human system that includes sensation, feeling, and affect
integrated with the logical and cognitive models traditionally used in AI. Our
work can be situated alongside Breazeal’s robot Kismet (1998), Elliott’s Affective
Reasoner (1992), as well as Baillie’s architecture (2002) for intuitive reasoning
in affective agents; we too seek to model the motivations and reasoning of agents
with an affective foundation. Our approach differs in how we model affect and the
transition of biological impulses from sensation through affect into action. We
base our work on the Affect Theory of Silvan Tomkins; Thomkins’ (2008) theory
comprises both a biologically hardwired notion of affect, similar to Ekman’s
basic emotions and Izard’s DET, as well as a more culturally and biographically
situated theory of scripts for describing how affect moves from feeling into action
(Nathanson, 1996). As a proof of concept, we have consciously chosen to work
with a simplified implementation of Tomkins’ idea of affect, and explore how
both internal (drives, organ sensations) and external stimuli move through the
agents via the affect system and transition into action.

As pointed out by Scarantino (2012), the field of emotion research is in need of
a properly defined set of ”natural kinds” of affect as a basis for research. Tomkins
provides such a set with his nine basic affects, which he considers biological and
cross-cultural. They are positioned as an evolutionary response to the problem
of the limited channel of consciousness (Vernon, 2009), insofar as the affect sys-
tem provides not just distinct feelings, but thereby filters stimuli and focuses
attention in an advantageous way. Because the negative (inherently punishing)
affects of fear/terror, anger/rage, etc. trump the positive (inherently rewarding)
interest/excitement and enjoyment/joy, the affect system favors responses that
evade or directly confront threats to survival. Such a goal-oriented filtering of
stimulus provides a clear foundation for a computational model of affect dy-
namics. With Sheutz’s (2002) caution against prematurely assigning emotional
labels to the states of artificial agents in mind, we have chosen to bracket out
problems of qualia for now, and focus on developing our agent architecture with
this filtering system as its core (see figure 1).

For this proof of concept, we implemented the basic structure of Tomkins’
model with a limited number of drives, senses, affects, deliberative faculties

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 250–253, 2014.
c© Springer International Publishing Switzerland 2014

Affective Agent Architecture 251

Fig. 1.

and actuators. We built our agents in Common Lisp, on the foundation of a
blackboard system called GBBopen (Corkill, 2003). In order to test the agents’
responses to their environment, we constructed a multi-agent game grid based on
the Wumpus world (Russel & Norvig, 2003). We replaced the search for gold with
a biologically-inspired search of food, but kept the Wumpus as a predator and
pits as obstacles. We also built in the ability of individual agents to perceive one
another’s expressions as a starting point for experimenting with social behavior;
this component also includes a simplified model of empathy based on Rizzolatti’s
(2004) mirror neurons.

Each agent is composed of a set of blackboard objects representing instances of
various drives, a limited number of sensors (smell and facial feature recognition),
an affective filter that is capable of combining with any type of information pro-
duced by other components of the system, an ordered queue of information and
associated affect (called affected information), a planning / goal seeking compo-
nent that is capable of processing one piece of affected information at a time, a
memory store, and a set of actuators capable of operating in the game grid.

We use the notion of drives as a simplification of the complexities of organ
sensations associated with biological needs such as hunger and elimination. The
drive system operates largely in the background, independent of the other com-
ponents of the system, except when a drive needs satisfaction. In that case, the
drive will activate and send a signal into the affective filter. The signal will then
be interpreted based on its intensity and an affect will be assigned. This affected
information will be placed on the attention queue for processing by the planning
system. If the affected information is on the top of the queue, the deliberative
component will plan accordingly and attempt to satisfy it, until such time as a
more urgent piece of affected information is placed on the queue. The informa-
tion provided by the drives is in no way static; it can change as the intensity
of the drive changes, in turn intensifying the associated affect, or perhaps even
changing the affect from one type to another. This will cause a reordering of the

252 K. Raison and S. Lytinen

queue. E.g., hunger manifests as interest/excitement; if the hunger drive is not
satisfied presently, it will escalate until it transforms into distress, thus raising
the likelihood that the affected information will end up on the top of the queue.
Other drives follow similar patterns appropriate to their function.

A similar model is used for filtering sensory information; if the smell of a Wum-
pus is detected, this information is filtered and assigned an affect of fear/terror
appropriate to the proximity of the threat. The same is true of the breeze as-
sociated with a pit. Again, as these pieces of affected information make their
way to the top of the queue, the deliberative mechanism plans accordingly so
as to avoid the threat. The one exception to this flow of sensory information is
in the case of agents coming into contact with each other. Depending on each
agents’ current affective state, the presence of the other agent may become as-
sociated with the bonding drive and then filtered via the affect system. If no
higher-intensity affects are being processed, the agents will read each other’s
expressions and internalize them, thus activating their affective system a second
time and reinterpreting the perceived state of the other agent as their own (an
approximation of empathy). If the response is of a high enough threshold, the
agents will then activate their memories of their own previous affective states
and attempt to guess the reason for the other agent’s expression. This internal-
izing of the other’s affect will prompt the same action as the same affect from a
different source.

The results of our experiments with affective agents in the grid world were
very satisfying, though limited in this preliminary study. Agents were generally
able to navigate the grid world, successfully evading threats and satisfying their
drives based on the information provided to them by their affective filters. Com-
peting drives and sensory inputs would often lead to oscillations between which
information was on the top of the attention queue, but the flexibility of the plan-
ning system allowed for smooth transitions between competing goals. E.g., if an
extremely distressed and hungry agent wandered close to a Wumpus, the hunger-
satisfaction goal would be temporarily overridden by the fear-induced need to
evade a threat, and once the threat was removed, the distress-laden hunger goal
would reassert itself and the agent would go back to seeking food. There were
a number of instances where an agent was dealing with extreme hunger and
would discover that there was food right next to a Wumpus; in these cases, if
the affected hunger was stronger than the fear of the Wumpus, the agent would
risk getting close to the Wumpus just to eat. As soon as the hunger drive was
satisfied, the agent’s fear of the Wumpus would dominate and the agent would
engage in evasive behavior. This sort of emergent behavior was not expected, but
certainly validates the usefulness of the model. Results of the social experiments
will be discussed in a forthcoming paper.

Overall, we would call these experiments a success; we were able to develop
a model of affect-motivated deliberation and goal-striving in artificial agents.
While at this stage, the agents are rather simple, enough has been accomplished
to justify further exploration. A few things in particular stand out as needing
improvement; first is adding a communication protocol for inter-agent message

Affective Agent Architecture 253

passing beyond simple facial expression recognition. Second would be to flesh out
the affect filtering system so that it operates more in line with Tomkins’ notion
of the density of neural firing; in his view, a particular affect is not caused by
a symbolically recognized entity (as in our simplified model), but rather is the
result of a particular pattern of neural activity (see Tomkins, 2008, p. 139).
Layered neural networks might act as a better approximation of Tomkins’ idea
than the current symbolic architecture. Our model of sociability should also
be greatly expanded; it currently only encompasses one aspect of the incredibly
complex set of social motivations and behaviors. A final, longer-range goal would
be to explore in more detail the complex interaction of affect, memory and
imagery that Tomkins described in his script theory. Implementing this idea as
a computer model could contribute positively to the looming possibility of the
emergence of an artificial general intelligence; if such an entity were to emerge, it
would be important that it resemble its human creators on the level of emotional
experience so that we have some chance of actually relating to one another.

References

Baillie, P.: The Synthesis of Emotions in Artificial Intelligences: An Affective Archi-
tecture for Intuitive Reasoning in Artificial Intelligence. The University of Southern
Queensland (2002)

Breazeal(Ferrell), C.: Early Experiments using Motivations to Regulate Human-Robot
Interaction. In: Proceedings of 1998 AAAI Fall Symposium: Emotional and Intelli-
gent, The Tangled Knot of Cognition (1998)

Corkill, D.: Collaborating Software: Blackboard and Multi-Agent Systems & the Fu-
ture. In: International Lisp Conference 2003, New York (2003)

Elliott, C.: The affective reasoner: a process model of emotions in a multi-agent system.
Northwestern University (1992)

Nathanson, D.: What’s a Script. Bulletin of the Tomkins Institute 3, 1–4 (1996)
Rizzolatti, G., Craighero, L.: The Mirror-Neuron System. Annual Review of Neuro-

science 27, 169–192 (2004)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper

Saddle River (2003)
Scarantino, A.: How to Define Emotions Scientifically. Emotion Review 4, 358–368

(2012)
Sheutz, M.: Agents with or without Emotions? AAAI, Palo Alto (2002)
Tomkins, S.: Affect Imagery Consciousness. Springer, New York (2008)
Vernon, K.: A Primer of Affect Psychology. Tomkins Instutite, Lewisburg (2009)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 254–257, 2014.
© Springer International Publishing Switzerland 2014

Unsupervised Learning of Spatio-temporal Patterns
Using Spike Timing Dependent Plasticity

Banafsheh Rekabdar, Monica Nicolescu, Richard Kelley, and Mircea Nicolescu

Department of Computer Science and Engineering
University of Nevada, Reno

{rekabdarb,monica,rkelley,mircea}@cse.unr.edu

Abstract. This paper presents an unsupervised approach for learning of patterns
with spatial and temporal information from a very small number of training
samples. The method employs a spiking network with axonal conductance de-
lays that learns the encoding of individual patterns as sets of polychronous
neural groups, which emerge as a result of training. A similarity metric between
sets, based on a modified version of the Jaccard index, is used for pattern classi-
fication. Two different neural connectivity models are evaluated on a data set
consisting of hand-drawn digits that encode temporal information (i.e., from the
starting to the end point of the digit). The results demonstrate that the approach
can successfully generalize these patterns from a significantly small number of
training samples.

Keywords: Spiking Neuron Network, Synaptic Plasticity, Polychronization,
Unsupervised Learning, Classification, STDP.

1 Introduction

This research is motivated by two robotic problems that rely on an autonomous sys-
tem’s ability to encode and recognize spatiotemporal patterns: intent recognition [1]
and imitation learning [2][3]. In both domains, the activities observed by the auto-
nomous system contain both spatial and temporal information. What is more impor-
tant, however, is that both domains require that these patterns be encoded in a way
that enables early recognition. We propose to address this problem through the use of
spiking neural networks with axonal conductance delays, relying on a spike-timing
dependent plasticity learning rule. Research by Izhikevich [4] has shown that spiking
networks with axonal propagation delays can encode temporal patterns in the form of
polychronous neuronal groups (PNGs). Several methods have been developed that
exploit these mechanisms [5][6], but they employed a supervised learning mechanism
for classification. Furthermore, they rely on large number of training samples. In this
paper we propose an unsupervised method, which relies on small number of training
samples. The remaining of the paper is structured as follows: Section 2 discusses
relevant related research, Section 3 presents the details of our approach. Section 4 and
5 present the experimental results and conclusion respectively.

 Unsupervised Learning of Spatio-temporal Patterns 255

2 Previous Work

Roboticists have explored a number of potential solutions to the intent recognition
problem, including symbolic approaches [7] and probabilistic methods [1]. Biological
neural networks offer an alternative to traditional statistical methods. Such networks
pass messages through the timing of a spike train from one neuron to another. In bio-
logical systems, the connections between these neurons may be modified through
experience; many researchers suspect that these modifications constitute the bulk of
learning, and some researchers have attempted to use the biologically-inspired spike-
timing dependent plasticity to do machine learning [8]. Although in general these
systems have met with somewhat modest success, there are some indications that
careful use of spike timings can facilitate very general forms of computation [9].
Moreover, researchers have shown preliminary work in which polychronization can
be used with reservoir computing methods to perform supervised classification tasks
[5]. Our work continues along these lines by exploring the extent to which purely
unsupervised learning can exploit polychronization with temporally-dependent data to
build time-aware representations that facilitate traditional classification. We differ
from that previous work in our emphasis on mostly-unsupervised approaches, and in
our emphasis on training from limited sample sizes.

3 General Approach

Our approach uses a network of spiking neurons with axonal conductance delays to
perform classification of multiple spatiotemporal patterns. Our network consists of
320 neurons. Each neuron is connected to 0.1% of the rest of the neurons(32 syn-
apses).Each synapse has a fixed conduction delay between 1 ms to 20 ms. The delays
are randomly selected using a uniform distribution. Each neuron can be either excita-
tory or inhibitory and the ratio of excitatory to inhibitory neurons is 4:1.Synaptic
weights are initialized with +6 if the corresponding neuron is excitatory and -5 if the
neuron is inhibitory. The maximum value for the weights is 10.We use two different
probability distribution functions to establish the connectivity between neurons: a
uniform distribution and a two-dimensional Gaussian distribution with a standard
deviation equal to 3.

Our domain dataset consists of handwritten digits from digit zero to digit nine,
stored as a grey-level image with width and height of 16 pixels. In addition to the
spatial information inherent in the patterns, we also encoded temporal information
regarding how the pattern was drawn: from the first pixel (beginning of pattern) to the
last (end of pattern) the intensity of the pixels decreases from highest to lowest (fade
tapering). Thus, we can use an intensity-based image to encode a relative temporal
relation. From the pixel intensity values we then generate a time-firing pattern that
consists of a list of the neurons in decreasingly sorted order from highest to lowest
intensity values.

During training, each pattern is presented to the network during 1-second intervals
as follows: the neuron that corresponds to the highest intensity value will be stimulated

256 B. Rekabdar et al.

first (by providing it with input current of 20 mA), followed by the lower intensity
value neurons in decreasing sorted order.

Polychronization in spiking neural networks is a property to exhibit reproducible
time-locked but not synchronous firing patterns with millisecond precision [5][9].
Using the trained network we build a model of each class, consisting of all the persis-
tent PNGs that are activated by a pattern from that class. In this work, we consider
PNGs that have 3 anchor neurons. To find all the PNGs corresponding to a pattern,
we take all possible combinations of 3 neurons from the corresponding timed pattern
and we stimulate these subsets of neurons in the network in the same order and using
the same timing as in the pattern. If a PNG with a path length of at least 3 is activated,
then it is added to the set corresponding to the pattern’s class. For each class, the re-
sult will be a group of PNG sets. Each PNG is uniquely identified by its anchor neu-
rons. In the testing phase, for a particular testing pattern, we stimulate all possible
combinations of 3 anchor neurons using the correct order and wait for 500ms, and
consider the PNGs that have a minimum path length of 3. Next, we find the similarity
between the PNG set of the testing sample and all training models. We choose the
class of the sample from the training set that results in the greatest similarity measure.
We adapted a similarity measure for sets called Jaccard Index [10]. If A and B are two
PNG sets corresponding to two patterns, the similarity measure between A and B is:

 , 1 | || | (1)

4 Experimental Results

We created a dataset of handwritten digits (5 training and 22 testing samples for each
digit.) We computed the following measures: i) the success rate (the percentage of
correctly classified test samples), ii) the error rate (the percentage of misclassified
test samples), and iii) the rejection rate (the percentage of instances for which no
classification can be made). Rejected patterns occur when the similarity measures are
all zero or we have a tie between multiple classes. Tables 1 and 2 show our results.

Table 1. Multi-classclassificationresultsfor a network with Gaussian distribution

 0 1 2 3 4 5 6 7 8 9 All digits

Success rate 77.2% 77.2% 81.8% 68.1% 90.9% 86.3% 86.3% 95.4% 45.4% 90.9% 80%

Error rate 13.6% 13.6% 9% 27.2% 4.5% 9% 13.6% 4.5% 50% 9% 15.4%

Rejection rate 9% 9% 9% 4.5% 4.5% 4.5% 0% 0% 4.5% 0% 2.5%

Table 2. Binary classificationresultsforclasses: i) 0 versus 1 andii) 5 versus 8

 Gaussian0 vs. 1 Random0 vs. 1 Gaussian5 vs. 8 Random5 vs. 8

Success rate 83.3% 32% 84.7% 56%

Error rate 0% 0% 0% 0%

Rejection rate 16.6% 67% 15% 43%

 Unsupervised Learning of Spatio-temporal Patterns 257

5 Conclusion

In this paper we have introduced a new unsupervised approach for learning spati-
otemporal patterns. Our method utilizes a network of spiking neurons to learn from a
very small training set. The general idea behind our approach is that a spiking net-
work with axonal conductance delays, learns the encoding of each spatiotemporal
pattern as a set of PNGs. In our experiments we have tested two different neural con-
nectivity approaches, one with a uniform probability distribution function and second
with a Gaussian probability distribution. Our results show that the Gaussian connec-
tivity model performs better and despite the very small number of training samples,
our approach has successfully generalized to new and different unseen patterns.

Aknowledgements. This work has been supported by ONR grant #N000141210860.

References

1. Kelley, R., King, C., Tavakkoli, A., Nicolescu, M., Nicolescu, M., Bebis, G.: An architec-
ture for understanding intent using a novel hidden markov formulation. International Journal
of Humanoid Robotics 5(02), 203–224 (2008)

2. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences 3(6), 233–242 (1999)

3. Rekabdar, B., Shadgar, B., Osareh, A.: Learning teamwork behaviors approach: Learning
by observation meets case-based planning. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012.
LNCS, vol. 7557, pp. 195–201. Springer, Heidelberg (2012)

4. Szatmáry, B., Izhikevich, E.M.: Spike-timing theory of working memory. PLoS Computa-
tional Biology 6(8), e1000879 (2010)

5. Paugam-Moisy, H., Martinez, R., Bengio, S.: Delay learning and polychronization for
reservoir computing. Neurocomputing 71(7), 1143–1158 (2008)

6. Karimpouli, S., Fathianpour, N., Roohi, J.: A new approach to improve neural networks’
algorithm in permeability prediction of petroleum reservoirs using supervised committee
machine neural network. Journal of Petroleum Science and Engineering 73(3), 227–232
(2010)

7. Charniak, E., Goldman, R.P.: A Bayesian model of plan recognition. Artificial Intelli-
gence 64(1), 53–79 (1993)

8. Tao, X., Michel, H.E.: Data Clustering Via Spiking Neural Networks through Spike Tim-
ing-Dependent Plasticity. In: IC-AI, pp. 168–173 (2004)

9. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Computation 18(2),
245–282 (2006)

10. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New Phytologist 11(2),
37–50 (1912)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 258–261, 2014.
© Springer International Publishing Switzerland 2014

System Factorial Technology Applied to Artificial Neural
Network Information Processing

Christophe Tremblay, Bradley Harding, Sylvain Chartier, and Denis Cousineau

University of Ottawa, School of Psychology, Ottawa, Canada
{ctrem040,bhard024,sylvain.chartier,denis.cousineau}@uottawa.ca

Abstract. System Factorial Technology is a recent methodology for the analy-
sis of information processing architectures. SFT can discriminate between three
processing architectures, namely serial, parallel and coactive processing. In ad-
dition, it can discriminate between two stopping rules, self-terminating and ex-
haustive. Although the previously stated architectures fit to many psychological
skills as performed by human beings (i.e. recognition task, categorization, visu-
al search, etc.), the analysis of processing architectures that lie outside of the
five original choices remain unclear. An example of such architecture is the re-
call process as performed by iterative systems. Results indicate that an iterative
recall neural network is mistakenly detected by SFT as being a serial exhaustive
architecture. This research shows a limit of SFT as an analytic tool but could
lead to advancements in cognitive modeling by improving the strategies used
for the analysis of underlying information processing architectures.

Keywords: Neurodynamic Modeling, Artificial Neural Network, Bidirectional
Associative Memory, System Factorial Technology.

1 Introduction

Recent advancements in mathematical psychology have brought forth System Factorial
Technology, or SFT [1, 2], a tool that can diagnose the type of information processing
architecture behind a mental process [1]: serial processing, parallel processing, and
coactive processing and possible stopping rules: self-terminating and exhaustive. This
allows for a total of 5 possible architectures that can be identified by SFT (coactive
architectures only have one possible stopping rule, namely self-terminating) [3-4]. The
method works solely with the response times (RT) distributions of four conditions, ob-
tained from the manipulation of the inputs that should independently affect two distinct
sub-processes (in a 2 x 2 factorial design). The four conditions include the High-High
(HH) condition, in which both sub-processes are working at a normal or artificially
enhanced fashion. The High-Low and Low-High conditions (HL and LH) is where one
sub-process is working in an artificially impaired fashion and the other operates normal-
ly or in an artificially enhanced fashion. Finally, the Low-Low condition is achieved
when both sub-processes are performing in an artificially impaired fashion. By measur-
ing the Survivor Interaction Contrast (SIC) for each moment in time between the 4 con-
dition distributions, we can create a curve [5]:

 System Factorial Technology Applied to Artificial Neural Network 259

 (1)

In which S(t) is the survivor function of the RT distributions for the four conditions.
Figure 1 presents the SIC curves associated with the different processing architectures.

Fig. 1. Survival Interaction Contrast curves and their associated processing architecture

Although SFT has been applied to a wide variety of mental processes, its applica-
bility to architectures lying outside the five original categories has not yet been stu-
died. One such architecture is an artificial neural networks in which signals are
processed iteratively until the network settles in a stable configuration. Bidirectional
Associative Memory (BAM) [6-7] models are neural networks in which output units
are found through the iteration of the activation between two layers of parallel units.
This process is expressed in Figure 2, where W and V are the weight connections, x(1),

x(2), ..., x(N) and y(1), y(2), ..., y(M) are the input units. During the recall phase, the output
units would be found by iterating through the network until a stable solution is found.

Fig. 2. Iteration process used in BAM recall

Since the information processing architecture behind a BAM does not correspond
to any of the five diagnosable architectures, the nature of the process detected by SFT
remains to be established. This article therefore seeks to examine what SFT detects
when the information processing architecture falls outside classical categories.

2 Simulation

In this simulation, the input patterns consisted of 60 visual patterns of 576 pixels (a
surface of 24 x 24 pixels). Examples of the stimuli used are presented in Figure 3.
The network had to perform recall tasks with randomly distributed noise for a 2 x 2
design, as required for SFT analysis (HH, HL, LH, LL) as shown in Figure 4. In every

260 C. Tremblay et al.

Low condition, the input pattern was “masked” by setting 10% of the pixels to 0,
therefore limiting the processing capability of the network. Masked pixels in the HL
condition could not be masked in the LH condition. Consequently, the LL condition
has 20% of the input patterns being masked, which were a combination of the masks
used in HL and LH. The network was tested 2000 times in every condition and the
mean numbers of iterations (k) to perform recall for the totality of input patterns were
gathered. From the distributions, the SIC curve was found using Eq. 1 for every
moment (t) of the survivor function.

Fig. 3. Input patterns used in the first set of simulations

Fig. 4. Four stimuli used in the four recall conditions during the recall phase

Fig. 5. SIC curve for recall task with bipolar images

Results show that the number of iterations needed to perform the task in the four
conditions was only slightly affected by the impaired conditions (an L sub-process).
However, the recall was affected enough to distinguish an interaction pattern. All
distributions followed an overall normal shape. The SIC curve shows clear evidence
of a serial exhaustive processing architecture where the SIC curve is almost identical
to what was presented in Figure 1b.

3 Discussion and Conclusion

The results presented here show evidence that the information processing present in
a BHM produces response times (as represented by the number of iterations) that

 System Factorial Technology Applied to Artificial Neural Network 261

mimics a serial exhaustive architecture. However the BHM is built in a parallel
fashion using units within layers that work in parallel. Therefore, facing new types of
processing architectures, SFT can wrongly diagnose a processing architecture. These
results are of concern as they show that SFT is capable of misclassifications. These
results also weaken evidence for any particular architecture responsible for a mental
process when the sub-process in question is not clearly understood. A possible expla-
nation for the obtained results is that SFT detects the most important determinant of
RT, hereby not detecting underlying subtleties in the architecture. These results also
suggest that the SFT methodology could detect the overall information process rather
than the underlying architecture used for that process.

In conclusion, this article presented a case study of the architecture detection using
the SFT methodology on architectures that do not fall into classical categories. Re-
sults showed that the methodology incorrectly detects and assigns a category to the
architecture. This research shows the necessity to improve the detection of architec-
ture behind a process and presents an attempt for the understanding of artificial neural
networks through the use of the System Factorial Technology. This research could
lead to improved tools for modeling of human behavior using intelligent systems.

Acknowledgement. This research was partly supported by the Natural Sciences and
Engineering Research Council of Canada.

References

1. Townsend, J.T., Nozawa, G.: Spatio-temporal properties of elementary perception: An in-
vestigation of parallel, serial, and coactive theories. Journal of Mathematical Psycholo-
gy 39(4), 321–359 (1995)

2. Fific, M., Nosofsky, R.M., Townsend, J.T.: Information-processing architectures in multi-
dimensional classification: A validation test of the systems factorial technology. Journal of
Experimental Psychology 34(2), 356–375 (2008)

3. Schweickert, R., Giorgini, M., Dzhafarov, E.: Selective influence and response time cumula-
tive distribution function in serial-parallel task networks. Journal of Mathematical Psychol-
ogy 44, 504–535 (2000)

4. Townsend, J.T., Wenger, M.J.: The serial-parallel dilemma: A case study in a linkage of
theory and method. Psychonomic Bulletin & Review 11(3), 391–418 (2004)

5. Fific, M., Townsend, J.T., Eidels, A.: Studying visual search using systems factorial metho-
dology with target-distractor similarity as the factor. Perception & Psychophysics 70(4),
583–603 (2008)

6. Chartier, S., Boukadoum, M.: A bidirectional heteroassociative memory for binary and grey-
level patterns. IEEE Transactions on Neural Networks 17(2), 385–396 (2006)

7. Chartier, S., Boukadoum, M.: Encoding static and temporal patterns with a bidirectional
heteroassociative memory. Journal of Applied Mathematics 2011, 1–34 (2011)

B. Goertzel et al. (Eds.): AGI 2014, LNAI 8598, pp. 262–265, 2014.
© Springer International Publishing Switzerland 2014

Compression and Decompression in Cognition

Michael O. Vertolli, Matthew A. Kelly, and Jim Davies

Institute of Cognitive Science, Carleton University
1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 Canada

michaelvertolli@gmail.com, matthew.kelly2@carleton.ca,
jim@jimdavies.org

Abstract. This paper proposes that decompression is an important and often
overlooked component of cognition in all domains where compressive stimuli
reduction is a requirement. We support this claim by comparing two compres-
sion representations, co-occurrence probabilities and holographic vectors, and
two decompression procedures, top-n and Coherencer, on a context generation
task from the visual imagination literature. We tentatively conclude that better
decompression procedures increase optimality across compression types.

Keywords: decompression, generative cognition, imagination, context, cohe-
rence, vector symbolic architectures, cognitive modeling.

1 Introduction

Compression has been implicated in artificial general intelligence and, more broadly,
general cognition [1]. In vision, for example, there is massive redundancy in natural
images that must be reduced [2]. These reduced representations are then transformed
into invariant representations of objects later in the processing stream [3]. Compres-
sion of signals from the environment, understood as reducing a stimulus to the details
most relevant for survival, is critical to an organism’s success [4].

Decompression has received much less attention than compression in the cognitive
science and artificial intelligence literatures, but, as we argue, it plays an equally criti-
cal role in cognition. Compression is captured by machine learning techniques that
move from instances (e.g., pictures of cats) to general regularities (e.g., what a cat
looks like), much like inductive inference. Decompression does the reverse: it moves
from regularities to instances, much like deductive inference. Decompression allows
the agent to apply its general knowledge to its particular circumstances. In vision,
visual perception is largely a compression process and visual imagination is a decom-
pression process. In framing the problem in this way, part of our contribution is to
demonstrate that decompression, understood as a cognitive process, can be modelled
using techniques from artificial intelligence research. We demonstrate this claim by
comparing two compression representations and two decompression techniques, and
showing the significant and differentiable effect of the latter.

2 Task Description and Implementation

The task is based on the work of [5,6]. In their research, the model must generate

 Compression and Decompression in Cognition 263

the content of a coherent, fleshed-out scene (e.g., a “car,” “road,” and “sky”) from a
single word input (e.g., “car”). For example, a scene containing “bow,” “violin,” and
“arrow” would be incoherent: it mixes two senses of the word “bow.”

The goal of the decompression step is to deduce implicit information in the com-
pressed representation. For the current problem, the model must infer which images
contained which labels. For example, the agent knows that “car” co-occurs with
“road,” in general, but does not know what other labels are in the particular images
with “car” and “road.”

The task requires the decompression of co-occurrence probabilities and holograph-
ic vectors into contextually coherent, 5-label combinations given a query label. The
context is judged to have been accurately inferred if at least one of the original images
contains the same 5-label combination produced by the agent.

2.1 Compression Representations

The original compression representation outlined by [5,6] used co-occurrence proba-
bilities between pairs of labels: P(l | q) = |Iq ∩ Il| / |Iq|, where q is the query label, l is
another label and I is the set of images.

We chose to compare the co-occurrence probabilities to a holographic vector or ho-
lographic memory representation [7]. Here, each label in the Peekaboom labeled im-
age database is represented by a vector of 1000 dimensions randomly sampled from a
normal distribution with a mean of zero and a standard deviation of 1/√1000. We call
these vectors environment vectors. Each label is also represented by a second type
of vector, termed a memory vector: the sum of all environment vectors representing
labels that the given label co-occurs with.

The vectors were compared using cosine similarity, which ranges from 1 to -1. The
cosine of a memory vector with another memory vector is a measure of second-order
association: how often the labels appear in similar images. In what follows, we com-
pare task performance for holographic vectors using second-order association to task
performance using co-occurrence probabilities.

2.2 Decompression Procedures

We compared two decompression procedures. First, the top-n procedure selects the n
labels with the highest probability of co-occurrence with the query label, P(l | q), or
with the highest cosine similarity to the query label’s memory vector.

The second decompression procedure is a model called Coherencer, the visual co-
herence subsystem of the SOILIE imagination architecture [8,9]. Coherencer is a
serial, local hill search algorithm.

Coherencer selects four labels with the highest association with the query—co-
occurrence probability or cosine similarity. Then, it calculates the mean association
value for each pair of labels. If it passes a threshold (λ), the collection is accepted:

264 M.O. Vertolli, M.A. Kelly, and J. Davies

1/20 Σ5
n=1Σ5

m=1A(ln, lm) > λ.1 If it fails to pass the threshold, the label with the lowest
row and column averages is discarded without possible reselection. A new label is
swapped in and the process repeats until either the pool of labels that co-occur with
the query is exhausted or a set passing the threshold is found. If the pool is exhausted,
Coherencer returns the best combination found.

3 Method

The entire Peekaboom [10] database was filtered to remove all images with fewer
than five labels and any labels that only occurred in those images. A total of 8,372
labels and 23,115 images remained after this filtration. Each of the 8,372 labels was
processed by all the algorithms. The top-n procedure always yields the same result
and was run once. Coherencer has stochastic variation; it was run 71 times on the co-
occurrence representation and 9 times on the holographic representation. The results
were averaged for each representation. The number of runs conforms to an analytic
model run metric [11]. The results for each of the algorithms were assessed with re-
gard to the original images. If at least one of these images contained the five resulting
labels, the algorithm scored one point. We compared the total number of points scored
by each decompression procedure on each compression representation.

4 Results

Coherencer outperformed the top-n model across both compression techniques. Con-
trary to our original hypothesis, the co-occurrence compression representation outper-
formed the holographic representation across both decompression procedures.
The success rates out of the 8,372 possible query labels for each of the four conditions
are: top-n and co-occurrence = 4842; top-n and holographic = 619; Coherencer and
co-occurrence = 5750; Coherencer and holographic = 3259.2

A model generated by the logistic regression using three predictors (choice of
compression representation, choice of decompression technique, and the interaction
between the two) was able to predict success or failure on the basis of those predictors
with 69.8% accuracy overall. The predictors as a set reliably distinguished between
success and failure of the model, χ2(3, N=33218) = 8353.78, p < .000, Negelkerke’s
R2 = .30. The Wald criterion demonstrated that all three predictors made a significant
contribution to the accuracy of the model (p < .000).2

1 The diagonal, where n = m, is ignored. Thus, the denominator of the average has to be decre-

mented by the cardinality of this diagonal (i.e., by 5). ·,· is the association calculation
for the given compression representation (either cosine or co-occurrence probability).

2 The full details are omitted due to space constraints. They can be viewed online, here:
www.theworldmatrix.ca/agi-compression-decompression-stats.pdf

 Compression and Decompression in Cognition 265

5 Discussion

The results support the notion that Coherencer is an improvement over the top-n
control. However, they contradict our expectation that the holographic vector repre-
sentation would be better able to capture contextual information than co-occurrence
probabilities. Future research will explore why.

We take our findings as preliminary evidence of a general property of cognition.
Compression is ubiquitous in cognition and the relative optimality of that compres-
sion is essential to the success of the agent. This optimality is not given by the com-
pression mechanisms that perform the necessary reductions in information without the
additional support of the decompression mechanisms that extract relations implicit in
the compressed representations. Our research is a preliminary demonstration that the
exclusion of either side of the compression-decompression dyad necessarily gives an
incomplete description of the process. Thus, we predict all cognitive domains requir-
ing compression mechanisms will improve with better decompression techniques.

References

1. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic
Probability. Springer (2005)

2. Barlow, H.B.: Possible principles underlying the transformation of sensory messag-
es. Sensory Communication, 217–234 (1961)

3. Rolls, E.T.: Memory, Attention, and Decision Making: A Unifying Computational
Neuroscience Approach. Oxford University Press, Oxford (2008)

4. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation.
Annu. Rev. Neurosci. 24(1), 1193–1216 (2001)

5. Vertolli, M.O., Davies, J.: Visual imagination in context: Retrieving a coherent set of
labels with Coherencer. In: West, R., Stewart, T. (eds.) 12th International Conference on
Cognitive Modeling. Carleton University, Ottawa (2013)

6. Vertolli, M.O., Davies, J.: Coherence in the visual imagination: Local hill search outper-
forms Thagard’s connectionist model. In: 36th International Conference of the Cognitive
Science Society. Cognitive Science Society, Quebec (2014)

7. Jones, M.N., Mewhort, D.J.K.: Representing word meaning and order information in a
composite holographic lexicon. Psychol. Rev. 114, 1–37 (2007)

8. Breault, V., Ouellet, S., Somers, S., Davies, J.: SOILIE: A computational model of 2D
visual imagination. In: West, R., Stewart, T. (eds.) 12th International Conference on
Cognitive Modeling. Carleton University, Ottawa (2013)

9. Vertolli, M.O., Breault, V., Ouellet, S., Somers, S., Gagné, J., Davies, J.: Theoretical
assessment of the SOILIE model of the human imagination. In: 36th International
Conference of the Cognitive Science Society. Cognitive Science Society, Quebec (2014)

10. Von Ahn, L., Liu, R., Blum, M.: Peekaboom: a game for locating objects in images. In:
SIGCHI Conference on Human Factors in Computing Systems, pp. 55–64. ACM (2006)

11. Byrne, M.D.: How many times should a stochastic model be run? An approach based on
confidence intervals. In: West, R., Stewart, T. (eds.) 12th International Conference on
Cognitive Modeling. Carleton University, Ottawa (2013)

Author Index

Belayneh, Amen 238
Bieger, Jordi 1
Bölöni, Ladislau 11
Bringsjord, Selmer 228

Campos, Gustavo Augusto Lima de 234
Chartier, Sylvain 53, 258
Chella, Antonio 85
Costalima, Renato Lenz 234
Cousineau, Denis 258

Davies, Jim 262
Demski, Abram 196
Dietrich, Dietmar 155
Dindo, Haris 85

Fallenstein, Benja 21
Ferland, François 63

Garrett, Deon 1
Gayler, Ross W. 73
Gelbard, Friedrich 155
Goertzel, Ben 238, 242
Govindarajulu, Naveen Sundar 228
Grégoire, Éric 33

Harding, Bradley 258
Harrigan, Cosmo 238
Helgason, Helgi P. 85
Hernández, Carlos 85
Herret, Lukas 155
Hibbard, Bill 246
Ho, Seng-Beng 43
Hutter, Marcus 186

Iklé, Matthew 238

Jakubec, Matthias 155
Johnson, Melissa 53

Kelley, Richard 254
Kelly, Matthew A. 262

Lagniez, Jean-Marie 33
Leconte, Francis 63

Levy, Simon D. 73
Licato, John 228
Lowney, Charles 73
Lytinen, Steve 250

Marsella, Stacy C. 143
Mazure, Bertrand 33
Meroney, William 73
Michaud, François 63

Nicolescu, Mircea 254
Nicolescu, Monica 254
Nivel, Eric 85
Nizamani, Abdul Rahim 174

Ognibene, Dimitri 85
Orseau, Laurent 97, 109
Özkural, Eray 121

Persson, Ulf 174
Pezzulo, Giovanni 85
Potapov, Alexey 133
Pynadath, David V. 143

Raison, Kevin 250
Rekabdar, Banafsheh 254
Rodionov, Sergey 133
Rodŕıguez, Manuel 85
Rosenbloom, Paul S. 143, 196

Sagae, Kenji 196
Sanz, Ricardo 85
Schaat, Samer 155
Schmidhuber, Jürgen 85
Shah, Swapnil 165
Soares, Nate 21
Souza Júnior, Amauri Holanda 234
Steunebrink, Bas R. 85
Stranneg̊ard, Claes 174
Sunehag, Peter 186

Teixeira de Souza, Cidcley 234
Thórisson, Kristinn R. 1, 85
Tremblay, Christophe 258

268 Author Index

Ustun, Volkan 196

Ventura, Dan 208
Vertolli, Michael O. 262

Waser, Mark R. 218
Wendt, Alexander 155

Yu, Gino 238, 242

	Preface
	Organization
	Table of Contents
	Raising AI: Tutoring Matters
	1 Introduction
	2 Tutoring Techniques
	2.1 Heuristic Rewards
	2.2 Decomposition
	2.3 Simplification
	2.4 Situation Selection
	2.5 Teleoperation
	2.6 Demonstration
	2.7 Coaching
	2.8 Explanation
	2.9 Cooperation

	3 Discussion
	References

	Autobiography Based Prediction in a SituatedAGI Agent
	1 Introduction
	1.1 Predictive Power and Performance: Does This Even Make Sense?
	1.2 A Running Example and Model Based Solutions

	2 Implementation
	2.1 The Xapagy Cognitive Architecture
	2.2 The ALIGN Step: Shadowing
	2.3 The EXTEND Step: Link Following
	2.4 The INTERPRET Step: Headless Shadows

	3 Experiments
	3.1 The Duel of Achilles and Hector

	4 Conclusions
	References

	Problems of Self-reference in Self-improvingSpace-Time Embedded Intelligence
	1 Introduction
	2 A Myopic View of Space-Time Embedded Intelligence
	3 Self-modification
	4 The L¨obian Obstacle and the Procrastination Paradox
	5 Partial Solutions
	6 G¨odel Machines
	7 Conclusions
	References

	A General Artificial Intelligence Approachfor Skeptical Reasoning
	1 Introduction
	2 Basic Concepts and Tools
	3 An Anytime Progression of Reasoning
	3.1 Fool Attitude
	3.2 Credulous Reasoning
	3.3 Ideal Skepticism
	3.4 Practical Skepticism

	4 Experimental Study
	5 Conclusions and perspectives
	References

	On Effective Causal Learning
	1 Introduction
	2 Motivational Considerations
	3 An Effective Causal Learning Framework
	3.1 The Identification of Diachronic Causes
	3.2 The Identification of Synchronic Causes

	4 Application of Causal Learning to Problem Solving
	4.1 The Spatial Movement to Goal Problem
	4.2 The Crawling Robot Problem

	5 Conclusion and Future Work
	References

	Increasing Accuracy in a Bidirectional Associative Memory through Expended Databases
	1 Introduction
	2 Model
	2.1 Architecture
	2.2 Transmission Function
	2.3 Learning Rule

	3 Simulation
	3.1 Methodology
	3.2 Results

	4 Discussion
	References

	Fusion Adaptive Resonance Theory NetworksUsed as Episodic Memory for an AutonomousRobot
	1 Introduction
	2 EM-ART Modulated with Artificial Emotions
	2.1 Input Layer
	2.2 Event Layer
	2.3 Episode Layer
	2.4 Artificial Emotion Module

	3 Experimental Setup
	4 Experimental Results
	5 Conclusion and Future Work
	References

	Bracketing the Beetle: How Wittgenstein’sUnderstanding of Language Can Guide OurPractice in AGI and Cognitive Science
	1 Connectionism and the Classical Approach
	2 VSA Representation and Operation
	3 VSA and Wittgenstein
	4 Learning Patterns without Explicit Rule-Following
	5 Seeing-as: Determining Perceptual Experiencein Ambiguous Contexts without Interpretation
	6 Boxing the Beetle: The Emergence of Schemata from Repeated Exposure
	References

	Bounded Seed-AGI
	1 Introduction
	2 Design Principles
	3 Attention and Scheduling
	4 Model-Based Knowledge and Skill Representation
	4.1 Chaining and Hierarchy
	4.2 Learning
	4.3 Rating
	4.4 Reflection

	5 Experimental Results and Conclusion
	References

	The Multi-slot Framework:A Formal Model for Multiple, Copiable AIs
	1 Introduction
	2 Notation and Background
	3 The Multi-slot Framework
	4 Value Functions for Multi-slot Environments
	4.1 Estimating the Current Slot Number
	4.2 The Copy-Centered Agent AIMUcpy
	4.3 The Static Slot-Centered Agent AIMUsta
	4.4 The Dynamic Slot-Centered Agent AIMUdyn

	5 The Universal Multi-slot Environment
	6 Conclusion
	References

	Teleporting Universal Intelligent Agents
	1 Introduction
	2 Notation and Background
	2.1 The Multi-slot Framework
	2.2 Value Functions and Optimal Agents

	3 Experiments
	3.1 Teleportation by Cut/Paste
	3.2 Teleportation by Copy/Paste/Delayed-Delete

	4 Conclusion
	References

	An Application of Stochastic Context Sensitive Grammar Induction to Transfer Learning
	1 Introduction
	2 Background
	3 Guiding Probability Distribution
	4 Transfer Learning
	5 Formalization
	6 Derivation Lattice
	7 Update Algorithm
	7.1 Updating Production Probabilities
	7.2 Memoization of Solutions
	7.3 Derivation Compression Algorithm

	8 Discussion
	References

	Making Universal Induction Efficient by Specialization
	1 Introduction
	2 Background
	3 Search for Representations
	4 Implementation in Combinatory Logic
	5 Experimental Results
	6 Conclusion
	References

	Reinforcement Learning for Adaptive Theory of Mind in the Sigma Cognitive Architecture
	1 Introduction
	2 Sigma
	3 Negotiation
	4 Learning with No Model of the Other Agent
	5 Learning with a Probabilistic Model of the Other Agent
	6 Learning with a Set of Reward Functions for the Other Agent
	7 Learning with IRL of the Other’s Reward
	8 Experimental Comparison
	9 Conclusion
	References

	ARS: An AGI Agent Architecture
	1 Introduction
	2 Related Work
	3 ARS Approach and Model Overview
	4 Motivations and Valuations
	5 Perception
	6 Conflict and Defence Mechanisms
	7 Decision Making and Planning
	8 Simulation Architecture
	9 Evaluation
	10 Conclusion
	References

	Quantum Mechanical Foundations of Causal Entropic Forces
	1 Background
	1.1 Quantum Mechanics
	1.2 Density Matrix Formalism and the Canonical Ensemble

	2 Causal Entropic Forces
	3 Causal Entropic Forces in a Quantum Universe
	3.1 Projective or Von-Neumann Interactions
	3.2 Generalized Interactions

	4 Causal Entropic Forces and Maximizing Expected Utility
	4.1 Hamiltonian Theory of Dynamic Economics
	4.2 Economic Utility and Entropy

	5 Conclusions and Future Scope
	References

	A General System for Learning and Reasoning in Symbolic Domains
	1 Introduction
	2 Computational Model
	3 Learning
	4 Reasoning
	5 Conclusions
	References

	Intelligence as Inferenceor Forcing Occam on the World
	1 Introduction
	2 Learning a Reference Machine for UAI
	3 Conclusions
	References

	Distributed Vector Representations of Words in the Sigma Cognitive Architecture
	1 Introduction
	2 Background
	3 The DVRS Model(s)
	4 Evaluating the DVRS’ Simulation
	5 Sigma
	6 The DVRS+ Sigma Model
	7 Conclusion
	References

	Can a Computer be Lucky? And OtherRidiculous Questions Posed by ComputationalCreativity
	1 Introduction
	2 Computability of Creativity
	2.1 Preparation
	2.2 Incubation
	2.3 Insight
	2.4 Evaluation
	2.5 Elaboration

	3 Final Thoughts
	References

	Instructions for Engineering Sustainable People
	1 Introduction
	2 A Mistaken View of Intelligence
	3 Intrinsic Intentionality
	4 What Do We Want?
	5 Context, Context, Context
	6 A Sense of Self
	7 Agency and Free Will
	8 Defining Personhood and Implementing Intentional Morality
	References

	Toward a Formalization of QA Problem Classes
	1 Formalization of Question-Answering Problem Classes
	1.1 Dimension 1: Dynamicity
	1.2 Dimension 2: World Knowledge
	1.3 Dimension 3: Novelty
	1.4 Dimension 4: Computational Hardness

	2 Extensions
	2.1 Justification of Answers
	2.2 Ranking of Answers

	3 Conclusion
	References

	MInD: Don’t Use Agents as Objects
	1 MInD - Model for Intelligence Development
	References

	Guiding Probabilistic Logical Inferencewith Nonlinear Dynamical Attention Allocation
	1 Introduction
	2 OpenCogPrime
	3 Probabilistic Logic Networks
	4 Economic Attention Networks
	5 Evaluating PLN on Standard MLN Test Problems
	6 Exploring PLN/ECAN Synergy with Standard MLN Test Problems
	References

	A Cognitive API and Its Application to AGIIntelligence Assessment
	1 Introduction
	1.1 Needs of Application Developers vs. AGI Researchers

	2 Representation
	3 Queries
	4 An Application-Oriented Measure of General Intelligence
	References

	Self-modeling Agents Evolving in Our Finite Universe
	1 Finitely Computable Agents
	2 Self-modeling Agents
	3 Consistent and Complete Logic for Agents
	References

	Affective Agent Architecture:A Preliminary Research Report
	References

	Unsupervised Learning of Spatio-temporal Patterns Using Spike Timing Dependent Plasticity
	1 Introduction
	2 Previous Work
	3 General Approach
	4 Experimental Results
	5 Conclusion
	References

	System Factorial Technology Applied to Artificial Neural Network Information Processing
	1 Introduction
	2 Simulation
	3 Discussion and Conclusion
	References

	Compression and Decompression in Cognition
	1 Introduction
	2 Task Description and Implementation
	2.1 Compression Representations
	2.2 Decompression Procedures

	3 Method
	4 Results
	5 Discussion
	References

	Author Index

