
NoSQL Database: A Scalable, Availability, High

Performance Storage for Big Data

Yu Huang and Tiejian Luo

University of Chinese Academy of Sciences, Beijing, China
huangyu111@mails.ucas.ac.cn,

tjluo@ucas.ac.cn

Abstract. This paper is focused on NoSQL databases which designed
to handle the problem of storing large amounts of data. NoSQL database
sacrifice some consistency to achieve horizontal scalability and high-
performance. We aim at giving a systematic overview of NoSQL, in-
troducing concepts, techniques and categories. For each category we give
several typical NoSQL databases and discuss them in detail. Finally we
analysis the challenges of NoSQL databases and give some predictions.

Keywords: NoSQL database, CAP theorem, BASE theorem, category,
horizontal data distribution, weak consistency.

1 Introduction

Internet service has changed in fundamental ways over the last 25 years, from the
first on-line web services which only offered static pages of news and messages
to todays various, big data web and applications. According to a research from
IBM, everyday we create 2.5 quintillion bytes of data, more than 2 billion users
are active in social media sites [17]. YouTube.com receives over 3 billion hits
daily, and the e-commerce platform in Amaze deals millions of transactions a
day. The Internet presents an unprecedented scale and demand with headache to
the designers: how to design an Internet service which must be responsive, robust,
always available, low-latency and high-performance of supporting thousands of
millions of users demand.

With the booming user number and demands of social content web sites, a
modern Web service must be available for potentially larger user populations,
supporting millions of concurrent users without downtime, adjusting easily to
application capacity by changing the number of application servers. In addition,
a good building framework of web service must reduce the cost of system and
promote the resource usage. To meet the new challenges, web services should
have four properties which the designer must consider: concurrency, sustain ser-
vice, low latency and scalability [14].

Concurrency of load is fundamental to the web services, a good architecture of
Internet services could deal with unexpected abruptness promptly. Continuous
service is also very important. Users will feel uncomfortable if they find the
sites are often in downtime. Access latency usually is limited by the bandwidth,

Q. Zu et al. (Eds.): ICPCA/SWS 2013, LNCS 8351, pp. 172–183, 2014.
c© Springer International Publishing Switzerland 2014



A Scalable, Availability, High Performance Storage for Big Data 173

but an optical design could improve the throughput to minimize the latency.
To support more users for a web service, system needs more commodity web
servers, and we expect the system is scalable and the system cost linearly with
increases in users.

Unfortunately, facing with new challenges, the traditional database technol-
ogy, Relational Database Management System (RDBMS) cannot keep up to the
demands, a new contender has risen to challenge the supremacy of relational
database. NoSQL (mostly interpreted as non-relational database ) is a broad
class of database management systems which do not follow the relational data
model, which generally do not use SQL for data manipulation. This class of
database seeks to make breakthroughs in the rigidity of relational model, using
various models (include key/value stores, document-stores, graph databases),
which can store data without first requiring one to define a database schema. In
contrast, relational database requests information being defined in relationship
before data can be stored. According to Rick Cattell in [6], NoSQL databases
generally have six key features:

– the ability to horizontally scale ”simple operation” throughput over many
servers,

– the ability to replicate and to partition data over many servers,
– the ability to call interface or protocol simply and loosely,
– a weaker concurrency model than RDBSM,
– use distributed indexes and RAM for data storage efficiently,
– the ability to dynamically add new attributes to data records.

Obviously, NoSQL databases are far more better than relational databases when
working with huge quantity data, and they are also well match for the needs of
modern web services.

This paper analyzes the benefits and detriments of taking NoSQL databases
instead of relational databases. We also compare the characters and performance
of several current available NoSQL databases in detail. Finally, we summarize ob-
servations about NoSQL databases and give some predictions about the tendency
of it and traditional RDBMS. The rest of paper is structured as follows: Section
2 we introduce basic concepts and characteristics of NoSQL and RDBMS, and a
taxonomy for NoSQL database . Section 3 we presents a taxonomy for NoSQL
techniques and discuss it in detail. Section 4 mentions related platforms that use
NoSQL techniques, compares several main trend NoSQL database implementa-
tions and analyzes the limitation of these systems. In section 5 we summarize
observations about NoSQL databases and give some predictions of the NoSQL
and RDBSM.

2 Basic Concepts and Categories

2.1 Basic Concepts

Carlo Strozzi [15]first used the term NoSQL in 1998 as a name for his open source
relational databasewithout SQL interface, and in 2009Eric Evans [8]reintroduced



174 Y. Huang and T. Luo

this term with an event discussing open source distributed databases. Traditional
database technology is a transactional processing characterized by ACID prop-
erties, those are atomicity (A), consistency (C), isolation (I) and durability (D).
In practice, relational databases always have been fully and rigidly ACID compli-
ant. By giving up parts of ACID, one would achieve much higher performance and
scalability.

There is computer science theorem–Eric Brewer’s CAP theorem [5] which
including consistency (C), availability (A) and partitioning tolerance (P), that
quantifies the inevitable trade-off. Consistency means all nodes see the same
data in the same time; Availability means every operation terminates in an in-
tended response; Partition tolerance means the system continues to operation
even parts of it inaccessible. And according to the CAP theorem, a distributed
system cannot satisfy all three of these properties simultaneously, but only two
out of them. NoSQL databases generally give up consistency and use BASE,
that is Basic Availability, Soft-state and Eventual consistency, as an alterna-
tive to ACID [12]. We could summarize the BASE properties in the following
way: an application works on basically all the time (Basically Available), does
not have to be consistent all the time (Soft-state) but will be in some state
eventually(Eventual consistency).

2.2 Data Store Categories

There are many NoSQL databases, and some organizations such as Google and
Amazon also invented NoSQL database technologies for their own necessities.
Until now, NoSQL databases can be categorized according to their data store
model into the following classes:

– Column stores: records are stored extensible that can be partitioned ver-
tically and horizontally across nodes, such as Googles Bigtable, Amazon
SimpleDB, Hadoop HBase.

– Distributed hash table key-value stores: in key-value systems, records are
stored as values, which can be structured or completely unstructured, and a
key uniquely identifies a value, such as Amazon Dynamo, Dynomite, Volde-
mort.

– Document-oriented stores: records in these systems look like semi-structured
documents equipped by indexes, and systems use a query mechanism to find
records, such as CouchDB, MongoDB and OrientDB.

– Graph database: these systems use graph structures with nodes, edges and
properties to represent and store data, they are index-free since every ele-
ment contains a direct pointer to its adjacent element. Neo4j, OrientDB and
InfiniteGraph are some typical graph databases.

Popescu summarizes serval categories and gives a comparison of different
NoSQL databases as table 1.



A Scalable, Availability, High Performance Storage for Big Data 175

Table 1. Classifications C Categorization and Comparison [11]

Performance Scalability Flexibility Complexity Functionality

Key-Value Stores high high high none variable (none)

Column stores high high moderate low minimal

Document stores high variable (high) high low variable (low)

Graph databases variable variable high high graph theory

Relational databases variable variable low moderate relational algebra

2.3 General Characteristic

Different NoSQL database systems may have various techniques in detail, while
they shared some common characteristic in general.

– No need schema: we can add data into a NoSQL database without defining a
rigid schema. Moreover, the format of the data in NoSQL databases can be
changed at anytime, and we need not to worry about any harm to databases.
This brings tremendous flexibility to systems, and the web services can easily
manage their users data [2].

– Distributed fault-tolerant architecture: data in NoSQL systems is stored
in distributed servers, and the systems automatically spreads data across
servers without requiring to change applications. Servers can be added to
NoSQL system for scaling out, and error servers can be tolerated [2].

– Integrated caching: caching in relational databases usually must be deployed
in separate infrastructures, it is inconvenient for developer to manage them
and slow down the I/O speeds. Advanced NoSQL database technologies in-
tegrate the caching into system memory to reduce latency and increase sus-
tained data throughout [2].

Next sections, we will cover four NoSQL categories of data stores, and compare
these systems with each other in detail.

3 Column Stores

As discussed above, the basic data model of column store is that records could be
partitioned vertically and horizontally, that is, data model is splitting both rows
and columns over multiple nodes. Column stores databases allow information
to be stored in multiple locations on disk, while data in row-stores usually is
stored in a line row on disk. Even more, the same attributes of data are allowed
to be stored together in column-stores, such as all of customers name could
be stored together, all of Emails together, etc. For example, a database table
contains information about customers (UserID, name, DateOfBirth, Email), in
row-stores data are stored as table 2, compare to figure 3 which demonstrate
data in column-stores.



176 Y. Huang and T. Luo

Table 2. The data stored in row-stores

UserID Name DateOfBirth Email

1 Jim 1992-04-23 Jim@msn.com

2 Tom 1986-05-17 Tom@msn.com

Fig. 1. The data stored in column-store

3.1 HBase

HBase is an open source, non-relational database model developed as part of
Aapche Software Foundations Hadoop project. It runs on the top of the Hadoop
Distributed File System(HDFS), and written in Java. It provides a fault-tolerant
way for storing large data like Bigtable by using Hadoop MapReduce framework.
HBase is a high performance, column-oriented, scalable distributed storage sys-
tem, and HBase tables can be used as both input and output for MapReduce
running in Hadoop. There are three keys in HBase table: row, time-stamp and
column. The row key is the primary key, data in the table sorted by the row
key. The timestamp presents the time of each operation, it shows the version of
data in table. The column is used to storage the attributes of data, and supports
for dynamic expansion. We can create a table without defining the number of
column firstly. A typical example of HBase table as table 3.

4 Key-Value Stores

The key-value storage of databases may be the simplest data model in these
models, it allow developers to store information without considering the schema
any more. Information in key-value stores are not structured or semi-structured,
they are treated as associated array of entries, which consists of a unique key and
associated actual data. The unique key is to identify the entry, and the actual
data is the value, they compose the key-value pair. The most advantage of key-
value store is that it supports hundreds of thousands of concurrent queries, and



A Scalable, Availability, High Performance Storage for Big Data 177

Table 3. A table in HBase

Row key Row key Column
Value URL

2012-10-3,11:00 10001 url=www.ccc.com
1 2012-9-28,17:00 10000 url=www.bbb.com

2012-9-25,14:00 9999 url=www.aaa.com

2012-9-20,17:00 9998 url=www.222.com
2 2012-8-5,14:00 9997 url=www.111.com

the retrievals are very fast [10]. Traditional relational databases only support for
hundreds of concurrent queries at one time. However, the biggest limitation of
key-value store is that it only permits to index data using the unique key, and
complex conditional retrieval is not accessible [13].

Every version of data change is associated one vector clock, when data version
conflicts happen, Dynamo reconcile the conflict according to the vector clock,
earlier vector clock will be abandoned. In Dynamo, there are a set of configurable
value to achieve desired performance, availability and durability. This set of
parameters include N, R and W. N is present the number of replicas per partition
determines the durability of each object. R is the minimum number of nodes that
must participate in a successful read operation. W is the minimum number of
nodes in a successful write operation.

4.1 Cassandra

Cassandra is a highly scalable, eventually consistent, structured key-value store.
Cassandra combines the distributed systems technologies from Dynamo and the
data model form Google’s BigTable. The combination makes Cassandra available
for providing a column-based data model richer than typical key-value systems.
To some extent, Cassandra is a hybrid between a key-value and a column-orient
database. Cassandra offers robust support for clusters, with asynchronous mas-
terless replication allowing low latency operations for all clients. Cassandra could
support multiple client API in various languages like Python, Ruby, PHP, but
it lacks a transactional support. Cassandra was initially developed at Facebook,
later it was released as open source project and became an Apache Incubator
project.

4.2 Voldemort

Voldemort is a distributed data store used in LinkedIn, a famous social web site.
It is a key-value storage system based on consistent hashing like Dynamo. Volde-
mort cluster can contain multiple nodes, and a physical node can run multiple
virtual nodes like Dynamo. Voldemort also uses vector clocks for guaranteeing
consistency. Voldemort supports various storage formats such as BerkeleyDB,
Java Edition and MySQL. The main difference between Voldemort and Dynamo



178 Y. Huang and T. Luo

is that Voldemort is a pluggable architecture. Every module in Voldemort shares
the same code interface, and each module has different function. Developers can
easily change and group these modules according to application needs.

5 Document-Oriented Store

Document-oriented databases could store and manage semi-structured data and
information without tables. In these databases, schemas are not necessary and
attributes are allowed to add or remove according to the needs of tuples. That
means different tuples could contain different number of attributes without wast-
ing space by creating empty fields for all tuples. Even if used in a structured way,
there are no constraints or schemas limiting the database to conform to a preset
structure [10]. Document is the central concept of document-oriented database.
All of document-oriented databases assume that data are encapsulated in some
standard formats or encodings as XML, YAML, JSON and BSON. No rigid
schema makes it easy to create dynamic and flexible data, while the cost is the
reduction in performance and safety. In document-oriented database documents
are addressed by a unique key, usually is a simple string as a URL or path. Users
can use the key to retrieve data from database.

5.1 SimpleDB

Amazon SimpleDB is a highly available and flexible non-relational database which
is unbound by the rigid schema of relational database. SimpleDB could provide
high availability and flexibility, manage distributed replicas of user data [14]. It
allows developers to add new attributes that only apply to certain records rather
than rebuilding table or indices. Even more, it allows a cell in a column to contain
more than one value, because values are in individual cells. For example, the table
4 demonstrates a simple record in SimpleDB. If we want to add a new attribute
Email to the table 4, we could directly create a new column in the table rather
than rebuilding our schema or indices, even some value is empty as table 5.

Table 4. Before adding a new attribute into simpleDB

UserID Name DateOfBirth State

1 Jim 1992-04-23 NY

2 Tom 1986-05-17 MA

Table 5. Add a new attribute into simpleDB

UserID Name DateOfBirth State Email

1 Jim 1992-04-23 NY Jim@msn.com

2 Tom 1986-05-17 MA



A Scalable, Availability, High Performance Storage for Big Data 179

However, the SimpleDB must be accessed through the Amazon Web service
platform, there are many limits to its usage and store size. Items are limited
to 256 attributes, and every attribute are limited to 1024 bytes. The size of
each domain item limits to 10GB and a query time limits to no more than 5
seconds [3].

5.2 MongoDB

MongoDB is a high performance, scalable, document-oriented database system.
It stores structured data in blocks of JSON(JavaScript Object Notation) format,
which called the BSON format. This format makes the integration of data easier
and faster in applications. It is also a schema-free database like other NoSQL
database system, which makes it easy to set up and scale out. The query language
in MongoDB is very similar to SQL query language, it support complex query
and ad-hoc query. MongoDB supports master-slave replication, load balancing
and horizontally scaling.

5.3 CouchDB

CouchDB is the most famous open source non-relational database. It uses JSON
to store data and defines document-oriented storage model. It does not store
data and relationships in tables. Data is encapsulated in document format, and
the database in CouchDB is regarded as a collection of independent documents.
There is no unified schema in CouchDB, document maintains its own data and
self-contained schema. CouchDB uses a mechanism of Multi-Version Concur-
rency Control (MVCC) to avoid locking the database file during writing new
data into database. This method improves the input speed obviously, because
conflicts are left to application to resolve. Another main feature of CouchDB is
that it support ACID properties which is different from other document-oriented
NoSQL database.

6 Graph Database

Graph database is designed to represent complex networks such as social net-
work, public transport links. It is a type of database that uses graph structures
to represent data. There are three core concepts in graph databases: nodes,
relationships between nodes and key/value pairs. The nodes present the en-
tities, relationships show the relationship between entities and the key/value
pairs which attached to nodes and relationships show the properties. Compared
with relational database, graph databases are often faster for associative data
sets, and map more directly to the structure of object-orient applications. Graph
databases can scale more naturally to large data sets without requiring expen-
sive operations. We can take Figure 2 to show the graph database used in social
networks:



180 Y. Huang and T. Luo

Fig. 2. The data store in graph database

6.1 Neo4j

Neo4j is a high-performance, non-relational graph database, implemented in
Java. According to Neo4j web site, Neo4j is an embedded, disk-based, fully trans-
actional Java persistence engine that engine that stores data structured in graphs
rather than in tables [1]. Three concepts are core in Neo4j: nodes(vertices), re-
lationship(edges) and property(key/value pairs).

(a) Read latency (b) Update latency

Fig. 3. Performance in write intensive environment



A Scalable, Availability, High Performance Storage for Big Data 181

(a) Read latency (b) Update latency

Fig. 4. Performance in read intensive environment

7 Performance Comparison of Several DB

The information used for comparison are mainly obtained from [7], included in
the figures which are describing a laboratory based benchmark which uses YCSB
(Yahoo! Cloud Serving Benchmark) [7] as a measurement tool. The benchmark
was run on 120 million records of small size (1kB), 6 nodes.

7.1 Performance in Write Intensive Environment

Figure 3a and Figure 3b respectively show the read latency and the update
latency in a write intensive environment [16]. We can see that over approximately
7000 read or update operations per second both MySQL and Sherpa (MySQL’s
variation) are becoming sharp, the latency time ascend very quickly and become
unaffordable for real life application. The low latency time of HBase greatly
attributes to its column-store, and it also uses memory to read and write which
avoids directly read data from disk.

7.2 Performance in Read Intensive Environment

Figure 4a and Figure 4b respectively show the read latency and the update
latency in a read intensive environment [16]. In read intensive environment,
MySQL and its variation Sherpa show better results, keeping the pace with the
NoSQL products. HBase still obtains a very good update performance, which
perhaps attributes to write data into memory instead of disk.

8 Challenges and Predictions

As a new breed of database systems, the advantages of the NoSQL database has
generated a lot of enthusiasm, but there are some challenges that it should be
faced with. Maturity is the first problem. RDBMS have been used for a long time,



182 Y. Huang and T. Luo

for most internet companies, the maturity of the RDBMS is reassuring because
of its stability and security. However, NoSQL database technology is very young,
it needs more test at wide range for attaining enterprises’ trust. Secondly, enter-
prises expect their database systems to get credible technique support timely.
Most of RDBMS vendors could provide a high level of enterprise support, in con-
trast, most NoSQL systems are open source projects, and cannot provide credible
technique support like Oracle, Microsoft or IBM [9]. Finally, there are millions
of developers throughout the world who are familiar with RDBMS concepts and
SQL programming, in contrast, NoSQL is a new technology, the situation is that
few NoSQL developers have the same rich experiments in NoSQL database as it
in RDBMS. If NoSQL database want to replace RDBMS, there is still a long way
to go [9]. Faced with so many opportunities and challenges, what is the future
of NoSQL database ? Here are some predictions of NoSQL database over next
few years:

– In order to gain scalability, availability and other advantages, globally-ACID
transactions will be abandoned by many developers [6]. More and more elec-
tronic businesses will adopt NoSQL technology to meet the booming growth
of users’ demands.

– According to [4], enterprises are forming their own big data teams, and pay
more attention and budget on managing, storing and analyzing big data, we
could predict that in future new data schemas will be introduced in NoSQL,
and more novel NoSQL technology will appear.

– New relational RDBMS will compete with NoSQL database and take a share
of the market, if they could handle scalability, query transaction and high
throughput [6].

9 Conclusions

The aim of this paper was to give a thorough overview and introduction to the
NoSQL database. We have presented various NoSQL databases, which show the
some differences as compared with traditional databases. According to the vari-
ances of data model, NoSQL databases are classified into four categories. We
discuss each kind of NoSQL in detail, and give examples to illustrate their dif-
ferences. We also analyse the challenges of NoSQL would meet and give some
prediction about its future. Although NoSQL database technology shows out-
standing performance in dealing with large data, horizontal scalability and high
throughput, it hardly competes with relational databases that represent huge
investments and mainly reliability and matured technology.

In the future, our research will focus on hybrid database systems which will
combine NoSQL with relational database technology. Other databases, preserv-
ing ACID and fault-tolerant for cloud computing, are also worthy for wide at-
tention.



A Scalable, Availability, High Performance Storage for Big Data 183

References

1. Neo4j., http://neo4j.org
2. Nosql database technology, http://www.couchbase.com
3. Simpledb, http://aws.amazon.com/cn/simpledb/
4. Bantleman, J.: Rainstor makes top big data predictions for 2013,

http://rainstor.com/rainstor-top-big-data-predictions-2013/

5. Brewer, E.: Cap twelve years later: How the ”rules” have changed. Computer 45(2),
23–29 (2012)

6. Cattell, R.: Scalable sql and nosql data stores. ACM SIGMOD Record 39(4), 12–27
(2011)

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

8. Evans, E.: Nosql: Whats in a name? (October 2009), Blog post of October 30, 2009
9. Harrison, G.: 10 things you should know about nosql databases (2010),

http://www.techrepublic.com/blog/10things/10-things-you-should-know-

about-nosql-databases/1772

10. Lith, A., Mattsson, J.: Investigating storage solutions for large data. Department of
Computer Science and Engineering, Chalmers University of Technology, Göteborg,
Sweden (2010)

11. Popescu, A.: Presentation: Nosql at codemash – an interesting nosql categorization,
http://nosql.mypopescu.com/post/396337069/presentation-nosql-codemash-

an-interesting-nosql

12. Pritchett, D.: Base: An acid alternative. Queue 6(3), 48–55 (2008)
13. Seeger, M., S Ultra-Large-Sites.: Key-value stores: a practical overview. Computer

Science and Media (2009)
14. Stanier, C.: Introducing nosql into the database curriculum. In: 10th International

Workshop on the Teaching, Learning and Assessment of Databases, p. 61 (2012)
15. Strozzi, C.: Nosql-a relational database management system (2010),

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page (ac-
cessed)

16. Tudorica, B.G., Bucur, C.: A comparison between several nosql databases
with comments and notes. In: 2011 10th Roedunet International Conference
(RoEduNet), pp. 1–5. IEEE (2011)

17. Zikopoulos, P., Eaton, C., et al.: Understanding big data: Analytics for enterprise
class hadoop and streaming data (2011)

http://neo4j.org
http://www.couchbase.com
http://aws.amazon.com/cn/simpledb/
http://rainstor.com/rainstor-top-big-data-predictions-2013/
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://nosql.mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql
http://nosql.mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page

	NoSQL Database: A Scalable, Availability, High
Performance Storage for Big Data

	1 Introduction
	2 Basic Concepts and Categories
	2.1 Basic Concepts
	2.2 Data Store Categories
	2.3 General Characteristic

	3 Column
Stores
	3.1 HBase

	4 Key-Value Stores
	4.1 Cassandra
	4.2 Voldemort

	5 Document-Oriented Store
	5.1 SimpleDB
	5.2 MongoDB
	5.3 CouchDB

	6 Graph Database
	6.1 Neo4j

	7 Performance Comparison of Several DB
	7.1 Performance in Write Intensive Environment
	7.2 Performance in Read Intensive Environment

	8 Challenges and Predictions
	9 Conclusions
	References




