
M. Emre Celebi Editor

Partitional
Clustering
Algorithms

Partitional Clustering Algorithms

M. Emre Celebi
Editor

Partitional Clustering
Algorithms

123

Editor
M. Emre Celebi
Department of Computer Science
Louisiana State University Shreveport
Shreveport, LA, USA

ISBN 978-3-319-09258-4 ISBN 978-3-319-09259-1 (eBook)
DOI 10.1007/978-3-319-09259-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946973

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Clustering, the unsupervised classification of patterns into groups, is one of the most
important tasks in exploratory data analysis. Primary goals of clustering include
gaining insight into, classifying, and compressing data. Clustering has a long and
rich history that spans a variety of scientific disciplines including anthropology,
biology, medicine, psychology, statistics, mathematics, engineering, and computer
science. As a result, numerous clustering algorithms have been proposed since the
early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found
many applications, especially in engineering and computer science.

The goal of this volume is to summarize the state of the art in partitional
clustering. The intended audience includes researchers and practitioners, who are
increasingly using partitional clustering algorithms to analyze their data.

The volume opens with a chapter on model-based clustering entitled “Recent
Developments in Model-Based Clustering with Applications.” In this chapter,
Melnykov et al. review the latest developments in this field including semi-
supervised clustering, nonparametric mixture modeling, initialization strategies,
merging mixture components, and handling spurious solutions. In “Accelerating
Lloyd’s Algorithm for k-Means Clustering,” Hamerly and Drake present a survey of
triangle inequality-based acceleration techniques for the celebrated k-means cluster-
ing algorithm. Based on extensive experiments, the authors conclude that a suitable
application of the triangle inequality can provide dramatic speedups of up to 40x
over a naive implementation of the standard Lloyd’s algorithm. In another k-means
related chapter entitled “Linear, Deterministic, and Order-Invariant Initialization
Methods for the k-Means Clustering Algorithm,” Celebi and Kingravi investigate
the empirical performance of six linear, deterministic, and order-invariant k-means
initialization methods on a large and diverse collection of data sets from the
UCI Machine Learning Repository. Their results demonstrate that two relatively
unknown hierarchical initialization methods outperform the remaining four methods
with respect to two objective effectiveness criteria. They also show that one of the
most recent initialization methods performs surprisingly poorly. In “Nonsmooth

v

vi Preface

Optimization Based Algorithms in Cluster Analysis,” Bagirov and Mohebi approach
the problem of partitional clustering using nonsmooth and nonconvex optimization.
Based on this formulation, they design an efficient incremental algorithm similar to
k-means that can handle `1 and `1 norms besides the commonly used `2 norm.

In “Fuzzy Clustering Algorithms and Validity Indices for Distributed Data,” Ven-
dramin et al. present a framework to generalize several fuzzy clustering algorithms
to handle distributed data without resorting to approximations. This framework also
allows the exact calculation of a variety of relative validity indices to evaluate the
quality of fuzzy partitions. The authors also describe a procedure based on this
framework for the estimation of the number of clusters in parallel and distributed
settings.

In “Density Based Clustering: Alternatives to DBSCAN,” Braune et al. propose
two algorithms similar to the celebrated DBSCAN algorithm. Unlike DBSCAN,
both algorithms require only one input parameter. One of these algorithms gives
similar results to DBSCAN while being able to assign multiple cluster labels to a
data point, whereas the other one is significantly faster than DBSCAN.

In “Nonnegative Matrix Factorization for Interactive Topic Modeling and Doc-
ument Clustering,” Kuang et al. propose a novel formulation of the nonnegative
matrix factorization (NMF) problem based on the block coordinate descent algo-
rithm. The authors present a clustering algorithm based on this formulation and
prove its convergence. In addition to extending this framework to sparse and weakly
supervised clustering, the authors describe a method to determine the number
of clusters based on random sampling and consensus clustering. Experiments on
various real-world document data sets demonstrate the advantage of the proposed
NMF clustering algorithm in terms of clustering quality, convergence behavior,
sparseness, and consistency.

In “Overview of Overlapping Partitional Clustering Methods,” Ben N’Cir et al.
review the fundamental concepts of partitional overlapping clustering and present
a survey of widely known partitional overlapping clustering algorithms as well
as techniques to evaluate the quality of non-disjoint partitions. Furthermore, the
authors investigate the ability of various clustering algorithms to generate overlap-
ping partitions from multi-labeled real-world data sets.

In “On Semi-Supervised Clustering,” Bongini et al. present a survey of semi-
supervised clustering (SSC). The authors first give a conceptual overview of the field
and then discuss some of the most important algorithms for SSC including COP-
COBWEB, COP-kMeans, HMRF k-means, seeded k-means, constrained k-means,
and active fuzzy constrained clustering. The authors conclude with a discussion of
future directions for this relatively new field.

In “Consensus of Clusterings Based on High-Order Dissimilarities,” Aidos
and Fred describe a novel dynamic clustering algorithm based on a recently
proposed dissimilarity measure called “dissimilarity increments.” Starting from an
initial partition, this algorithm incorporates a merging strategy based on either a
likelihood-ratio test or a test based on the minimum description length principle. The
authors address the initialization dependence of their algorithm using a consensus
function-based combination strategy. Finally, the best partition is selected using a

Preface vii

criterion based on dissimilarity increments. Experimental results demonstrate the
effectiveness of the proposed algorithm on a variety of synthetic as well as real-
world data sets.

In “Hubness-Based Clustering of High-Dimensional Data,” Tomašev et al.
investigate the hubness phenomenon observed in k-nearest neighbor graphs of high-
dimensional data. The authors demonstrate that hubness complicates the cluster
discovery process by reducing the separability of clusters. The authors then review
some recent clustering algorithms that exploit the hubness phenomenon and then
introduce a kernel-based clustering algorithm that does not restrict the shape of the
clusters to hyperspheres.

A chapter entitled “Clustering for Monitoring Distributed Data Streams” by
Barouti et al. completes the volume. The authors consider an application of
clustering to monitoring data streams in a distributed system. Unlike conventional
clustering algorithms that group similar data points into clusters, monitoring
requires that clusters with dissimilar points cancel each other as much as possible.
The authors devise a novel clustering algorithm to tackle this problem and demon-
strate that it yields a reduction in communication load.

We hope that this volume focused on partitional clustering will demonstrate the
significant progress that has occurred in this field in recent years. We also hope
that the developments reported in this volume will motivate further research in this
exciting field.

Shreveport, LA, USA M. Emre Celebi

Contents

1 Recent Developments in Model-Based Clustering
with Applications . 1
Volodymyr Melnykov, Semhar Michael, and Igor Melnykov

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 41
Greg Hamerly and Jonathan Drake

3 Linear, Deterministic, and Order-Invariant Initialization
Methods for the K-Means Clustering Algorithm . 79
M. Emre Celebi and Hassan A. Kingravi

4 Nonsmooth Optimization Based Algorithms in Cluster Analysis 99
Adil M. Bagirov and Ehsan Mohebi

5 Fuzzy Clustering Algorithms and Validity Indices
for Distributed Data . 147
L. Vendramin, M.C. Naldi, and R.J.G.B. Campello

6 Density Based Clustering: Alternatives to DBSCAN 193
Christian Braune, Stephan Besecke, and Rudolf Kruse

7 Nonnegative Matrix Factorization for Interactive Topic
Modeling and Document Clustering . 215
Da Kuang, Jaegul Choo, and Haesun Park

8 Overview of Overlapping Partitional Clustering Methods 245
Chiheb-Eddine Ben N’Cir, Guillaume Cleuziou,
and Nadia Essoussi

9 On Semi-Supervised Clustering . 277
Marco Bongini, Friedhelm Schwenker, and Edmondo Trentin

10 Consensus of Clusterings Based on High-Order Dissimilarities 313
Helena Aidos and Ana Fred

ix

x Contents

11 Hubness-Based Clustering of High-Dimensional Data 353
Nenad Tomašev, Miloš Radovanović, Dunja Mladenić,
and Mirjana Ivanović

12 Clustering for Monitoring Distributed Data Streams 387
Maria Barouti, Daniel Keren, Jacob Kogan,
and Yaakov Malinovsky

Chapter 1
Recent Developments in Model-Based
Clustering with Applications

Volodymyr Melnykov, Semhar Michael, and Igor Melnykov

Abstract Model-based clustering is a popular technique relying on the notion
of finite mixture models that proved to be efficient in modeling heterogeneity in
data. The underlying idea is to model each data group by a particular mixture
component. This relationship between mixed distributions and clusters forms an
attractive interpretation of groups: each cluster is assumed to be a sample from the
corresponding distribution. In practice, however, there are many issues that have
to be accounted for by the researcher. The area of model-based clustering is very
dynamic and rapidly developing, with many questions yet to be answered. In this
paper, we review and discuss the latest developments in model-based clustering
including semi-supervised clustering, non-parametric mixture modeling, choice of
initialization strategies, merging mixture components for clustering, handling spuri-
ous solutions, and assessing variability of obtained partitions. We also demonstrate
the utility of model-based clustering by considering several challenging applications
to real-life problems.

Keywords Model-based clustering • Finite mixture model • Initialization
strategy • Merging mixture components • Semi-supervised clustering • Variable
selection • Spurious solutions

1.1 Introduction

Finite mixture models have been widely used in cluster analysis over the last several
decades, but their first applications date back to more than 120 years ago [131,139].
The main appeal of these models lies in their ability to associate each potential
cluster with its own component of the mixture. As motivational examples that
illustrate the connection between finite mixture models and cluster analysis, we

V. Melnykov (�) • S. Michael
The University of Alabama, Tuscaloosa, AL 35487, USA
e-mail: vmelnykov@ua.edu; skmichael@ua.edu

I. Melnykov
Colorado State University–Pueblo, Pueblo, CO 81001, USA
e-mail: igor.melnykov@colostate-pueblo.edu

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__1

1

mailto:vmelnykov@ua.edu
mailto:skmichael@ua.edu
mailto:igor.melnykov@colostate-pueblo.edu

2 V. Melnykov et al.

Precipitation

D
en

si
ty

10

a b

20 30 40 50 60 70

0.
00

0.
01

0.
02

0.
03

0.
04

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90
Length of eruption (min)

W
ai

tin
g

tim
e

(m
in

)

Fig. 1.1 (a) Histogram of the rainfall precipitation data and (b) scatterplot of the eruption and
waiting times for the Old Faithful geyser

consider two popular datasets, both available from the R library datasets. The first
one is a univariate dataset called precip [112]. It provides information on the amount
of rainfall precipitation given in inches for 70 cities in the United States and Puerto
Rico. The histogram illustrating the data is provided in Fig. 1.1a. The other example
is based on the bivariate dataset called faithful [4]. The dataset contains records
on the duration of eruptions and waiting time between eruptions in minutes for
the Old Faithful geyser from the Yellowstone National Park in the United States.
The scatterplot of the 272 observations available is provided in Fig. 1.1b. From
the both displays, we can conclude that the data are not homogeneous and should
be clustered into several groups. In plot (a), we can observe evidence of the
presence of at least two modes. In plot (b), we can observe two groups of relatively
dense data points. Unfortunately, no standard probability density function allows
straightforward modeling of these datasets. In the meantime, it is considerably
easier to find distributions that can be helpful in describing patterns in each data
group individually. This logic immediately suggests considering a mixture of several
distributions with each of them being responsible for modeling a particular data
group. These simple examples explain our motivation to study finite mixture models
as a powerful tool to tackle many cluster analysis problems.

To simplify further reading of the paper, the most important or frequently used
notation is summarized in Table 1.1. In some rare places, the meaning of the
notation can differ from the declared one in order to keep the notation used in our
paper consistent with that established in the existing literature. In such cases, we
specifically declare the particular interpretation in the corresponding parts of the
paper.

1 Recent Developments in Model-Based Clustering with Applications 3

Table 1.1 List of notation used in the paper

Expression Description

Yi and yi Random variable and observed value associated with the i th data point

Yi and yi Random and observed vectors associated with the i th data point

n Sample size

p Data dimensionality

K Number of mixture components

�k kth mixing proportion

� Vector of mixing proportions

#k Parameter vector of the kth mixture component

fk.�j#k/ kth mixture component distribution

� Overall parameter vector
O� Maximum likelihood estimate of the parameter vector

f .� / Finite mixture distribution

`.� / Log likelihood function

`c.� / Complete-data log likelihood function

Q.� / Conditional expectation of the complete-data log likelihood function

`c;P .� / Complete-data penalized log likelihood function

h�.� / Penalty function

Zi and zi Random variable and observed value of the i th data point’s membership label

Ozi Estimated classification of the i th data point

.b/ Iteration number

�ik Posterior probability of the membership for the i th data point

� Matrix of posterior probabilities

r�ik Gradient vector of the posterior probability function

�k kth mean vector

˙ k kth covariance matrix

ˇ Vector of coefficients associated with explanatory variables

Xi i th matrix of predictor variables

�j j th eigenvalue of covariance matrix

� Diagonal matrix of eigenvalues

� Matrix of eigenvectors

Y.1/ Set of variables included in the model

Y.2/ Set of variables under consideration for inclusion in the model

Y.3/ Set of variables to be studied

I�1. O� / Inverse of the observed information matrix

P Transition probability matrix

Consider a random sample Y1; : : : ;Yn from a p-variate probability distribution

f .yj�/ D
KX

kD1
�kfk.y/; (1.1)

4 V. Melnykov et al.

where mixing proportions � D .�1; : : : ; �K/
0 comply to the restrictions 0 � �k < 1

and
P

k �k D 1 and each �k represents the probability that an observation originates
from the kth component of the mixture fk . Here, K is the number of components
in the mixture. In the majority of applications, the functional form of fk is assumed
to be known. Such an assumption allows rewriting the model (1.1) in a parametric
form

f .yj� / D
KX

kD1
�kfk.yj#k/; (1.2)

with � D .�1; : : : ; �K�1;# 01; : : : ;# 0K/0 denoting the parameter vector of this model
and #k representing the parameter vector of a specific mixture component fk . By far,
the most common kind of mixture investigated in the literature is the multivariate
Gaussian mixture model [23, 51, 102, 106, 110, 121, 169]. Other models considered
by researchers include those with Poisson [86, 160], skew-normal [10, 88, 89],
Kent [141], t -distribution [85, 140, 166], and other types of components. Although
the functional form of fk is usually assumed known, the parameter vector � is
typically unknown and its estimation can pose significant challenges. Some early
works on this topic considered the method of moments estimation [139], but the
maximum likelihood approach is being used almost exclusively nowadays due to
its computational advantages and appealing asymptotic properties of the estimators
[29, 107, 155].

The corresponding log likelihood function for the mixture (1.2) is given by

`.� / D
nX

iD1
log

KX

kD1
�kfk.yi j#k/ (1.3)

and usually is not easily handled by direct optimization due to its complicated form.
The most common way of optimizing (1.3) consists in implementing the expectation-
maximization (EM) algorithm [38,108]. This approach relies on the consideration of
the complete-data log likelihood function `c that utilizes unknown labels z1; : : : ; zn
identifying the origins of all observations. Thus,

`c.� / D
nX

iD1

KX

kD1
I.zi D k/ flog �k C log fk.yi j#k/g ; (1.4)

where I.zi D k/ D 1 only if yi originated from the component k of the
mixture; otherwise, I.zi D k/ D 0. Unlike (1.3), the complete-data log likelihood
function (1.4) has a more tractable form. The EM algorithm iteratively performs two
steps: expectation (E-step) and maximization (M-step). During the E-step, one finds
the conditional expectation of (1.4) given observed data, commonly referred to as
the Q-function

Q.� j� .b�1// D
nX

iD1

KX

kD1
�
.b/

ik flog �k C logfk.yi j#k/g ; (1.5)

1 Recent Developments in Model-Based Clustering with Applications 5

where �.b/ik is the current estimate of the posterior probability that the i th data point
belongs to the kth component. Posterior probabilities at iteration b are obtained
according to the following expression:

�
.b/

ik D
�
.b�1/
k fk.yi j# .b�1/

k /
PK

k0D1 �
.b�1/
k0

fk0.yi j# .b�1/
k0

/
:

During the M-step, (1.5) is maximized with respect to the parameter vector �

either analytically or numerically if a closed form solution does not exist. The
two-step cycle of the EM algorithm is repeated until a specified stopping criterion
is satisfied. Upon convergence, the EM algorithm yields the maximum likelihood
estimate O� and estimated posterior probabilities O�ik . The criteria that can be used
for stopping include the relative change in estimated parameters or relative change
in log likelihood values. These approaches can result in slow convergence of the EM
algorithm. Hence, Böhning et al. [21] proposed using the Aitken acceleration-based
stopping criterion relying on

`1.� .bC1// � `.� .b//C 1

1 � c.� .b//
.`.� .bC1// � `.� .b///;

where c.� .b// D .`.� .bC1//� `.� .b///=.`.� .b//� `.� .b�1///. The EM algorithm
is stopped when j`1.� .bC1// � `1.� .b//j is less than some prespecified tolerance
level. For more details, we refer the reader to [21, 109]. Some additional methods
that have been proposed to overcome slow convergence of the EM algorithm include
creative specification of missing data in the complete-data likelihood function
[91, 92, 125], modification of the algorithm itself such as the Incremental EM
(IEM) algorithm [130], Expectation Conditional Maximization (ECM) algorithm
[126], and the Monte Carlo EM (MCEM) algorithm [167], geometric considerations
improving the trajectory of the algorithm [18], use of extrapolation [149] or more
sophisticated access to data points [128]. In many problems, the number of compo-
nentsK is also unknown and should be estimated along with the parameter vector � .
In this case, an information criterion such as AIC [1] or BIC [152] is usually
employed to select a better model. Alternatively, one can apply bootstrapping of
the likelihood ratio test statistic [47, 106].

It should be noted that the EM algorithm is a climbing procedure, i.e., the
values of the log likelihood function (1.3) form a non-decreasing sequence over
the course of the algorithm’s iterations. This property ensures that the procedure
will converge to a local maximum in the vast majority of cases with exceptions
when the algorithm is trapped in a saddle point or is on its way to infinity
for unbounded likelihood functions. The latter might pose a serious concern in
optimizing the likelihood function, subject to a specific mixture model form. In
particular, this is the case when the mixture model (1.2) has Gaussian components
with unrestricted covariance matrices ˙ k . Then, fk.yj#k/ � �p.yj�k;˙ k/ D
Œ.2�/pj˙ kj�� 12 expf� 1

2
.y � �k/

0˙�1k .y � �k/g, where �p.yj�k;˙ k/ stands for

6 V. Melnykov et al.

the p-variate Gaussian density function with the mean vector �k and covariance
matrix ˙ k . The resulting likelihood function is unbounded due to a potential of
obtaining singular covariance matrices in the process of their estimation. When
a global maximizer of the likelihood function does not exist, it is desirable to
obtain a satisfactory local maximizer as it has been shown that a consistent and
asymptotically efficient local maximizer exists in the interior of the parameter space
[77]. An alternative but less popular approach is to restrict the parameter space with
the intention to obtain a global maximizer within the restricted space [64, 110].

In spite of the difficulties that arise in the implementation of the EM algorithm,
the flexibility of the mixture model with normal components makes it very popular.
In the case of a p-variate Gaussian mixture model with unequal covariance matrices,
the Q-function shown in (1.5) assumes the following form:

Q.� / D �pn
2

log 2��1
2

nX

iD1

KX

kD1

�ikf�2 log �kC log j˙ k jC.xi ��k/
0˙ �1

k .xi��k/g;
(1.6)

where � D �
�1; : : : ; �K�1;�01; � � � ;�0K; vechf˙ 1g0; � � � ; vechf˙Kg0

�0
and vech

operator stacks subcolumns of a symmetric matrix so that the produced vector
includes only unique elements. The maximization of (1.6) with respect to � yields
closed-form expressions for the parameter estimates given by

�
.b/

k D
1

n

nX

iD1

�
.b/

ik ; �
.b/

k D
Pn

iD1 �
.b/

ik yi
Pn

iD1 �
.b/

ik

; ˙
.b/

k D
Pn

iD1 �
.b/

ik .yi � �
.b/

k /.yi � �
.b/

k /
0

Pn
iD1 �

.b/

ik

:

Final posterior probabilities returned by the EM algorithm are used to form
the model-based clustering partition. According to the Bayes decision rule Ozi D
arg maxk O�ik with Ozi being the estimated classification of yi , each observation is
assigned to a component associated with the largest posterior probability. This
defines the connection between mixture modeling and model-based clustering
frameworks. For the most comprehensive analysis of finite mixture models, we refer
the reader to the work by McLachlan and Peel [109].

Often, more than one component is required for modeling a specific data group.
In this case the attractive one-to-one relationship between components and clusters
is ruined. Some remedies in this case include merging mixture components and
nonparametric mode-based inference. Generally, the log likelihood function (1.3)
has multiple modes, making the search for the global maximizer or the best local
maximizer quite difficult. The existence of multiple local maxima elevates the
importance of initialization of the EM algorithm. Starting the algorithm with a
promising set of initial parameter values can lead to its convergence to a better
solution as well as shorter convergence time. Another feature of mixture models
is the potential for leading to so-called spurious solutions. These solutions can
occur due to minor random patterns in data when a certain group of points almost
falls into a lower-dimensional subspace. Such a solution manifests itself in the

1 Recent Developments in Model-Based Clustering with Applications 7

form of a relatively large local maximum that can be reached for some specific
initial parameter values. Spurious solutions rarely have practical significance and are
usually removed from consideration. This paper recaptures these and other recent
trends and developments in the theory and applications of model-based clustering
and related aspects of finite mixture modeling.

1.2 Methodological Developments

1.2.1 Initialization

The likelihood function corresponding to finite mixture models is nearly always
multimodal. Upon convergence, the EM algorithm finds a local maximizer with
no guarantee that the obtained solution is the best one. To enhance the chances of
identifying the global maximizer or the best local one when the global maximizer
does not exist, the practitioner has to employ a proper strategy for choosing the set
of initial parameter values � .0/ or posterior probabilities �.0/. Thus, the results of
mixture modeling and therefore model-based clustering are entirely governed by the
point in the parameter space from which the EM algorithm is started.

Although the choice of a proper initialization strategy is absolutely crucial even
for a perfectly specified model, the current literature provides very little insight
into the problem. We illustrate the importance of the discussed matter on the
popular classification dataset called Crabs [27] fitted with a mixture of multivariate
Gaussian densities with unrestricted covariance matrices. The dataset includes 200
5-variate observations measuring frontal lobe size, rear width, carapace length,
carapace width, and body depth of blue and orange crabs divided into equal male
and female groups. As a result, there are 50 subjects in each of the following
four groups: Blue Male, Blue Female, Orange Male, and Orange Female. As
discussed by Hennig [66], the popular R package MCLUST [51] suggests a two-
component solution based on the BIC value of 3064.47 (` D �1423:62) with
only 28% of observations classified correctly. If the correct number of groups
(K D 4) is assumed to be known, MCLUST finds a solution with BIC of 3179.51
(` D �1369:87) and 45.5% of correctly classified observations. In the paper by
Hennig [66], the author explains that the choice of the model employed, perhaps,
is not entirely valid for the dataset. At the same time, Bouveyron and Brunet
[22] refer to this dataset making an argument that the clustering complexity can
be relaxed by means of the dimensionality reduction. While high dimensionality
and model invalidity can contribute to the difficulty of grouping, Melnykov [117]
remarks that the issue is entirely related to the choice and implementation of an
initialization strategy. The author reports the detected model with BIC value of
2887.15 (` D �1223:67) and 92.5% of correctly classified observations. As a
matter of fact, the same result can be obtained if the EM algorithm is initialized
by model parameters estimated based on known class memberships of data points.
This example highlights the importance of an effective initialization choice in the
mixture modeling framework.

8 V. Melnykov et al.

One of the most traditional approaches to the initialization of the EM algorithm
is to apply another clustering technique first. The obtained classification vector can
then be used to obtain starting parameter estimates. The k-means algorithm [48]
is, perhaps, the most commonly used for the purpose of initialization. Despite the
popularity of this strategy, such an approach can hardly be recommended in general
since the provided starting point in the parameter space reflects the characteristics
of the particular clustering procedure employed rather than those of the considered
model. For example, the k-means algorithm is known to be equivalent to model-
based clustering by means of the CEM algorithm based on a mixture of Gaussian
components with equal spherical covariance matrices and equal mixing proportions,
where CEM represents the EM algorithm with an additional classification (C) step.
As a result, the solution provided by the k-means algorithm can be far away from
the best solution in the parameter space, for instance, in the case of elongated
clusters with unequal representations. In addition, the initialization of k-means is
a standalone problem that requires attention [28, 122]. Similar challenges can be
observed for other clustering procedures used as an initialization strategy for the
EM algorithm.

An algorithm called emEM [20] starts by randomly selectingK points y�1 ; : : : ; y�K
from a dataset without replacement. Then, the remainder of the dataset is split into
K groups according to the shortest Euclidean distance from every observation to
one of theK seeds, i.e., Ozi D arg minkfkyi �y�kkg. For the obtained partition, model
parameters are estimated and the EM algorithm, called short EM, runs for a small
number of iterations or until some rough convergence criterion is met. The entire
process is repeated multiple times to find the best candidate point in terms of the
likelihood value. Starting from this point, the main EM algorithm, also known as
long EM, operates until the final convergence is reached.

It is possible to restrict every short EM run with a single iteration to increase the
number of candidate points; such a modification is called Rnd-EM and was proposed
by Maitra [96]. A simulation study conducted by Melnykov and Melnykov [121]
for K D 10 and K D 20 showed that the emEM algorithm outperformed Rnd-
EM in all considered settings. However, as remarked by Melnykov [115], such a
modification might be beneficial in cases with well-separated clusters but should
not be preferred over emEM in the presence of groups with more considerable
overlaps. When clusters overlap substantially, it is more beneficial to run the EM
algorithm for more iterations. On the contrary, for well-separated clusters, additional
iterations of the EM algorithm do not improve the likelihood value much as the
convergence is usually fast. In the latter case, it is more important to have every
data group represented by exactly one seeded point. As a result, the performance
of the emEM and Rnd-EM algorithms degrades with the increase in the number
of groups. It is important to mention that both emEM and Rnd-EM are stochastic
initialization strategies that often lead to good results due to trying multiple points
in the parameter space. In the meantime, in many situations, it is highly unlikely
or even impossible that these procedures will find a candidate point that leads to
the best solution possible. This limitation can be explained by the use of Euclidean

1 Recent Developments in Model-Based Clustering with Applications 9

distances to form the original partition. Therefore, one might examine numerous
initial points but the benefit of restarting can be marginal if all of them are far away
from the ideal solution in the parameter space by default.

As remarked by Melnykov and Melnykov [121], a particular mixture model form
should be taken into consideration as early as at the initialization stage. The authors
developed a new strategy for Gaussian mixture models, called ˙ -EM, that starts
with a small number of observations that are likely to belong to the same cluster.
Then, the covariance matrix of the underlying mixture component is estimated
iteratively based on a truncated Gaussian distribution. At each iteration, more points
fall into an extending confidence hyperellipsoid, thus allowing to improve the
precision of parameter estimates. When no new points can be added to the cluster,
it is declared detected and the initial parameter estimates of the related mixture
component are calculated. Then, the corresponding points get excluded from the
dataset to avoid redundancy and the entire process starts over in search of another
cluster. The estimates of mixture model parameters obtained this way are often
so close to the best possible solution that the convergence can be reached within
very few iterations. This approach can also handle high numbers of clusters. In
their paper, Melnykov and Melnykov [121] provided an illustrative example with
K D 50 in which they identified the best available solution while all alternative
initialization procedures failed. This attractive procedure, however, has its own
limitations. It shows the best performance in low dimensions since it becomes more
challenging to estimate covariance matrices based on few initial data points in higher
dimensions. Another related issue occurs when clusters overlap considerably and
foreign points that belong to other groups are mistakenly included into the current
cluster. This can cause the undesired elongation of the confidence hyperellipsoid
accompanied by capturing several clusters. The authors manage this situation by
checking every cluster produced for the presence of subclusters by means of BIC.

Some other initialization strategies include the deterministic multi-stage
approach based on finding the best local modes [96] and model-based hierarchical
clustering [49, 50]. As reported by Melnykov [115], the former shows mixed
performance but usually loses the competition to the emEM and ˙ -EM algorithms.
The latter procedure relies on the notion of classification likelihood and its
approximate maximization. The main disadvantage of both approaches is their
deterministic nature, i.e., the set of initial parameter values for a specific dataset
cannot be changed and the EM algorithm cannot be run from other points in the
parameter space. Therefore, if the best solution is not obtained starting from these
values, it will not be found at all.

The development of flexible and practical initialization strategies is an open
problem that requires more attention. Overall, it can be recommended to employ
multiple initialization procedures and choose the solution producing the highest
likelihood value. Besides initialization issues, there are many other factors that affect
the complexity of clustering. A comprehensive simulation study by Michael and
Melnykov [127] showed that the number of clusters along with overlap between
components are more influential factors than the dimensionality and sample size.
In their study, the authors avoided issues related to the choice of the initialization
strategy by starting the EM algorithm from the true parameter values.

10 V. Melnykov et al.

a b

Fig. 1.2 Sample data with two 3-component Gaussian mixture model solutions: (a) legitimate
solution and (b) spurious solution based on a local random pattern captured by the elongated
component

1.2.2 Spurious Solutions

There is a problem closely related to the process of solution selection and the issue
of unbounded likelihood. Quite often, practitioners can observe mixture components
constructed on very few observations lying close to a lower-dimensional parameter
subspace. In the case of bivariate data, for example, these data points will be located
along a straight line. Such nearly degenerated components are known as spurious
and are quite common in mixture modeling. Figure 1.2 illustrates the difference
between a legitimate (display (a)) and spurious (display (b)) solutions detected in a
mixture of three Gaussian distributions. Usually, likelihood values associated with
fake solutions are somewhat higher than those representing other local maxima.
As a result, there is a high chance that a spurious maximizer will be preferred over
competing solutions even though it typically has unclear or no practical meaning.
A general recommendation is to ignore such solutions as ones emphasizing a local
random pattern in data rather than a systematic cluster structure. As mentioned by
McLachlan and Peel [109], spurious components can be easily identified by low
data representation and small generalized variance relative to those of other mixture
components. One issue is that the terms “low” and “small” have to be appropriately
quantified to separate reasonable solutions from fake ones. Another problem related
to spurious solutions is the necessity of rerunning the EM algorithm every time
when a spurious solution is detected.

Some work related to spurious solutions and unbounded likelihood employs
the penalized likelihood function [33, 34]. These papers recommend adding a
penalty term and maximizing the newly formed likelihood over the modified

1 Recent Developments in Model-Based Clustering with Applications 11

parameter space. Such an adjustment helps prevent or at least relax the singularity-
related problem. Mainly, current research stream is devoted to reducing the chances
of selecting a spurious solution.

In the paper by Garcia-Escudero et al. [55], the authors considered mixtures
of multivariate Gaussian distributions and employed the trimmed log likelihood
function [54, 132] defined by

`t .� / D
nX

iD1
ti log

KX

kD1
�k�p.yi j�k;˙ k/; (1.7)

where ti D 0 for trimmed observations and ti D 1 otherwise. The original idea
behind the use of `t .� / was the robust parameter estimation in the presence of
outliers. The authors incorporated an eigenvalue-ratio constraint M=m � c, where
M D maxkD1;:::;K maxjD1;:::;p �j .˙ k/ and m D minkD1;:::;K minjD1;:::;p �j .˙ k/

with �j .˙ k/ denoting the j th eigenvalue of the covariance matrix associated with
the kth Gaussian component, and c is some fixed value. The values of c close
to the unity restrict covariance matrices to be more spherical and similar to each
other. Larger values of c allow higher flexibility in forms of covariance matrices.
By controlling c, the authors show that the risk of observing spurious solutions can
be considerably reduced. The choice of c, however, is the major issue here since
low values of c can be too restrictive while high c-values are unlikely to relieve the
problem with spurious solutions.

Another approach that yields excellent results and is not very restrictive at the
same time was proposed by Seo and Kim [153]. The authors considered the modified
log likelihood function given by `�s.� / D `.� / � Pi2fi1;:::;isg `i , where `i D
logf .yi I� / is the log likelihood contribution of the i th data point and s is the
number of observations whose contributions are excluded. Then, the corresponding
modified maximum likelihood estimator is defined by

O��s D arg max `�s.� /:

The authors investigate two ways of deciding which contributions have to be
eliminated: one is based on the log likelihood magnitude while the other relies on
the score function of a local maximizer at each data point. The latter method, called
by the authors the gradient-based k-deleted MLE, demonstrates somewhat better
performance and should be generally preferred over the former one. The continua-
tion of this work can be found in [78] where the authors prove the consistency of the
gradient-based k-deleted MLE and apply it to investigate the performance of several
likelihood-based model selection criteria.

12 V. Melnykov et al.

a b

Fig. 1.3 Illustrative examples for two situations when merging mixture components for clustering
can be helpful: (a) complex structure of a cluster requiring several components, (b) misspecified
model—data simulated from a mixture of two skew-normal distributions are fitted with a
4-component Gaussian mixture model

1.2.3 Merging Mixture Components for Clustering

The connection between finite mixture modeling and model-based clustering is
established through the Bayes decision rule, i.e., each data point gets assigned to
a mixture component with the highest posterior probability of being the origin of
the considered observation. Assuming that each data group can be well-modeled by
means of a single component distribution, there is a one-to-one relationship between
distributions and clusters. Several papers have been recently devoted to tackling a
challenging situation when this one-to-one correspondence is not adequate. This
can happen due to various reasons such as complex multimodal cluster structure
(Fig. 1.3a), model misspecification (Fig. 1.3b), and presence of spurious components
(Fig. 1.2b). In such cases, more than one distribution may be needed to model
each group of data and the attractive model-based clustering interpretation breaks.
Fortunately, good clustering results can often be obtained by merging mixture
components. A general idea is to measure the level of interaction between mixture
components. Those distributions that overlap considerably are likely (although not
guaranteed) to represent the same data cluster and should be merged into a common
group of mixture components. As a result, each cluster is modeled by a set of
components rather than a single one. The best fitting mixture model has to be
found first and then substantially overlapping components are merged to establish
the correspondence with clusters. All existing procedures focus on one-by-one
agglomerative hierarchical merging.

1 Recent Developments in Model-Based Clustering with Applications 13

Recently, Baudry et al. [13] proposed a criterion based on the change in the
entropy of fuzzy classification associated with merging two groups of mixture
components, Gr and Gv. The criterion is defined by

�GrGv D
nX

iD1
..�iGr C �iGv/ log .�iGr C �iGv/ � �iGr log�iGr � �iGv log�iGv/ ;

(1.8)

where �iGr D
P

k2Gr �ik and �iGv is defined similarly. When �GrGv is close to the
lower bound of 0, attainable only when �iGr �iGv D 0 for all values of i , the entropy
change is not substantial, meaning that groups are well-separated and merging
should not be recommended. Large values of �GrGv are observed when merging
component groups is reasonable. The authors recommended using their criterion
hierarchically after all mixture components are detected by BIC. Unfortunately,
there is no immediate recipe for deciding when the merging process has to be
stopped. The authors considered two possible approaches for detecting the optimal
number of clusters. One is based on the integrated completed likelihood criterion
(ICL) developed by Biernacki et al. [19]. ICL represents a version of BIC penalized
by a fuzzy classification entropy term: ICL D BIC � 2Pn

iD1
PK

kD1 �ik log�ik .
By construction, ICL is more conservative than BIC as instead of finding the
optimal number of components, it aims at detecting the number of clusters. If all
components are well-separated, the entropy term does not contribute to ICL and
both criteria are equivalent. In the paper by Melnykov [118], the author examined
the performance of ICL through simulation studies and concluded that the results
produced by the criterion depend on the sample size. Specifically, ICL tends to find
a higher number of clusters in cases when groups are heavily populated as opposed
to the cases with lower cluster sizes. The other approach proposed by Biernacki et al.
[19] is based on a piecewise linear regression of the entropy change versus the
number of clusters. The authors claim that the inflection point will correspond to
the correct number of clusters. Unfortunately, this empirical rule may be misleading
when there are several inflection points or even inapplicable when the number of
mixture components is low (e.g., K D 2 or 3).

An approximate distribution of the criterion (1.8) was derived by Melnykov [117]
by means of the multivariate Delta method and matrix differential calculus for mul-
tivariate Gaussian mixture models. The author remarked that posterior probabilities
can be seen as functions of model parameters and showed that �GrGv. O� / is asymptot-
ically normally distributed with mean �GrGv.� / and variance that can be estimated
by r�GrGv. O� /0I�1. O� /r�GrGv. O� /, where I�1.� / is the inverse of the observed
information matrix and r�GrGv.� / DPn

iD1 r�GrGv
i .� / is the gradient vector with

r�GrGv
i .� /D

 �
@�

GrGv
i .� /

@�s

�0

sD1;:::;K�1
;

�
@�

GrGv
i .� /

@�s

�0

sD1;:::;K
;

�
@�

GrGv
i .� /

@vechf˙ sg

�0

sD1;:::;K

!0

evaluated at O� . For more details on vech operator and corresponding partial
derivatives, we refer the reader to the original paper by Melnykov [117]. The
author proposed using the derived distribution to assess closeness of the observed
value �GrGv to zero.

14 V. Melnykov et al.

Ray and Lindsay [145] studied the topography of multivariate Gaussian mixtures.
In their discussion, they suggested that the ridgeline elevation plot can be used to
assess the number of modes in pairs of Gaussian components. For anyK-component
mixture of p-dimensional Gaussian distributions, they showed that there is a .K�1/-
dimensional manifold that contains all critical points. ForK D 2, this manifold, also
known as a ridgeline function, is given by

y�.a/ D Œ.1 � a/˙�11 C a˙�12 ��1Œ.1 � a/˙�11 �1 C a˙�12 �2�

for a 2 Œ0; 1�. According to the authors, if there is a single mode, the considered
components should be merged to represent one cluster. The details of this approach
with some drawbacks are discussed by Hennig [66].

Another approach to measuring the degree of overlap between components
was proposed by Hennig [66]. His procedure relies on directly estimated misclas-
sification probabilities (DEMP) that can be computed from the set of posterior
probabilities returned by the EM algorithm. In this sense, the DEMP method is
similar to the criterion (1.8) which also relies on posterior probabilities entirely.
The probability that an observation that belongs to the vth component is incorrectly
classified to the r th component is given by

Pr. QZ D r jZ D v/ D Pr. QZ D r; Z D v/

�v
(1.9)

with Z and QZ being random variables associated with the genuine and assigned
class labels, respectively. The author recommends estimating the joint probability
Pr. QZ D r; Z D v/ by

OPr. QZ D r; Z D v/ D 1

n

nX

iD1
I. OZi D r/ O�iv; (1.10)

where I.�/ represents the indicator function such that I.A / D 1 if A contains the
true statement and I.A / D 0 if A is false. OZi stands for the classification of the i th
data point obtained for the observed data. Combining (1.9)–(1.10) and generalizing
the result from the case with two distributions to the framework with groups of
mixture components Gr and Gv, the following estimator of the misclassification
probability can be derived:

OPr. QZ 2 Gr jZ 2 Gv/ D
Pn

iD1 I. OZi 2 Gr / O�iGv

n
P

k2Gv
O�k : (1.11)

The author suggests estimating all pairwise misclassification probabilities and merg-
ing those groups of components that yield the highest misclassification probability.
Repeating this process hierarchically, a traditional dendrogram can be constructed.
Then, one can decide on the number of clusters according to a pre-specified

1 Recent Developments in Model-Based Clustering with Applications 15

misclassification level: observed pairwise misclassification probabilities higher than
this value indicate that there is a considerable overlap and corresponding groups
have to be combined. On the contrary, lower misclassification probabilities imply
that the degree of interaction between groups of components is not sufficient for
merging. As per discussion in [118], the estimator (1.11) can often work well but
can also yield misleading results when mixture components overlap considerably.
He also remarked that both pairwise misclassification probabilities should be taken
into consideration rather than just the largest one. The sum of these probabilities
is already defined and known as pairwise overlap [97] which can be calculated by
means of the R package MixSim [124] and c package CARP [120] for Gaussian
mixture models.

Another approach for estimating pairwise misclassification probabilities for
component groups Gr and Gv was proposed by Melnykov [118]. The author suggests
employing the Bayes decision rule and Monte Carlo simulations. First, a large
sample Y1; : : : ;YN , where N represents the sample size, is simulated from the
mixture

P
k2Gv

��k fk.yi I� k/. Here, ��k represents the standardized probability
calculated by ��k D �k=

P
k02Gv

�k0 for all k 2 Gv. Then, the misclassification
probability can be estimated by the following expression:

OPr. QZ 2 Gr jZ 2 Gv/ D 1

N

NX

iD1
I

0

@
X

k2Gv

�kfk.yi I� k/ <
X

h2Gr
�hfh.yi I� h/

1

A ;

where I.�/ is again the indicator function. The author shows through simulation
studies that this estimator provides good results in different settings when N is
sufficiently large.

As a final remark on merging mixture components, we can note that such
an approach does not guarantee yielding good partitions in all circumstances.
On the other hand, it is often an effective remedy in the case when a one-to-one
correspondence between mixture components and clusters is not realistic. Perhaps,
even more importantly, merging mixture components for clustering considerably
relieves the problem of model misspecification, which is almost always a concern
in statistical data modeling in general.

1.2.4 Nonparametric Clustering

One popular alternative to merging mixture components is known as nonparametric
clustering. In this setting, it is traditionally assumed that clusters are associated
with density bumps or modes instead of mixture components. This idea is rather
intuitive and automatically resolves the problem discussed in the previous section as
the one-to-one relationship is established between density bumps and data groups.
Observations are assigned to clusters in accordance with the attraction zones of
detected modes. Despite immediate advantages of this method, there are also certain

16 V. Melnykov et al.

challenges such as the need of extensive computing resources for finding modes and
attraction zones and the lack of meaning for some identified groups. While some
mode-based methods assume specific functional forms of mixture components [84],
the others use nonparametric density estimation, usually by means of the kernel
method.

Although mode-based analysis is not new in literature [63, 168], it has been
given more attention recently. The focus of [156] was on estimating the hierarchical
modal structure, also known as a cluster tree of a density, employing the connec-
tion between the minimal spanning tree and nearest neighbor density estimation.
A graph-based method capable of approximating a cluster tree corresponding
to a density estimate was proposed by Stuetzle and Nugent [157]. The authors
used excess mass to measure the size of graph branches in order to address the
problem of spurious modes and branches associated with local random patterns
in data. An EM-like nonparametric algorithm, called the Modal EM, associating
observations with local modes of the density function was proposed by Li et al. [87].
The authors also developed its hierarchical extension based on the Gaussian kernel
density estimation with increasing bandwidths. The authors developed an algorithm
to find the ridgeline separating two density bumps. The functionality of the proposed
approach is realized in the R package Modalclust [144].

An R package devoted to clustering via nonparametric density estimation by
the kernel method is called pdfCluster [5]. It is based on the idea presented in [6].
Clusters are constructed in association with connected components whose estimated
density exceeds the pre-specified threshold value.

Another approach to nonparametric mixture modeling is proposed by Benaglia
et al. [14, 16]. It is based on a modification of the EM algorithm and employs the
kernel-based estimation of mixture component distributions. The authors consider
the model

f .yj�/ D
KX

kD1
�k

pY

jD1
fkj .yj /

assuming the conditional independence of coordinates in Y D .Y1; : : : ; Yp/0. While
this assumption is somewhat restrictive in a general case, it is realistic for the
framework with repeated measurements. The authors develop an EM-like algorithm
with the E-step given by

�
.b/

ik D
�
.b�1/
k

Qp
jD1 f

.b�1/
kj .yij /

PK
k0D1 �

.b�1/
k0

Qp
jD1 f

.b�1/
k0j

.yij /
;

the M-step provided by

�
.b/

k D
Pn

iD1 �
.b/

ik

n
;

1 Recent Developments in Model-Based Clustering with Applications 17

and an additional nonparametric density estimation step:

f
.b/

kj .u/ D
1
h

Pn
iD1 �

.b/

ik K .
u�yij
h
/

Pn
iD1 �

.b/

ik

;

where K .�/ specifies the kernel density function and h is the corresponding
bandwidth. The authors consider the Gaussian kernel with the bandwidth chosen
according to h D 0:9minfs; IQR

1:34
g= 5
p
np, where s and IQR are sample standard

deviation and interquartile range for all np data points, respectively. The functional-
ity of the developed methodology is available through the R package mixtools [15].

1.2.5 Variable Selection for Clustering

One of the most active areas of model-based clustering research is dimensionality
reduction and variable selection in high-dimensional data. Excellent interpretability
of cluster analysis relying on mixture models can be severely affected by the
presence of multiple variables. The main problem is model’s dramatic overparam-
eterization in high dimensions. In the meantime, important clustering information
almost always lies in some parameter subspace, thus making the focus on the entire
space unnecessary at least for the purpose of cluster analysis. Moreover, different
groups of observations may belong to different subspaces and this fact can be taken
into consideration.

One possible way to avoid the issue of overparameterization is to use more
restrictive models. For example, in the mixture of Gaussian distributions, unre-
stricted covariance matrices can be forced to be equal, diagonal, or even spherical.
The papers by Banfield and Raftery [8] and Celeux and Govaert [29] consider 14
different models obtained by incorporating various constraints on the parameters
of the covariance matrix eigenvalue decomposition: ˙ k D �k� k�k�

0
k , where �k

is the volume parameter, � k is the matrix of eigenvectors, and �k is the diagonal
matrix of eigenvalues. The R package mclust [51] is capable of fitting all models
from this family.

An alternative way of fighting high dimensionality is to reduce the number of
variables and focus only on those variables that carry discriminating information
for clusters. It is important to mention that the task of variable selection cannot be
considered aside from the problem of clustering itself. Figure 1.4a shows that the
variable y2 used alone discriminates two clusters, y1 distinguishes three clusters, and
both variables are needed for detecting all four groups. Hence, the set of variables
selected depends on the result the researcher looks for. Traditional dimensionality
reduction approaches such as the principal component analysis cannot be used in
this setting as the variable that shows the lowest variability in data can be the
most important for discriminating clusters. This idea is illustrated in Fig. 1.4b.
The variable y2 has low variation compared to that of y1 but carries important
information about groupings.

18 V. Melnykov et al.

y2

−10 −5 0 5 10

−
10

−
5

0
5

10

y1
−10 −5 0 5 10

−
10

−
5

0
5

10

y1
y2

a b

Fig. 1.4 Illustrative examples: (a) variables y1 and y2 are both important for detecting the
4-cluster structure, (b) variable y2 shows low variation in data compared with y1 but is crucial
for the discrimination of two clusters

In the paper by Pan and Shen [135], the authors focused on the penalized
Q-function constructed as the conditional expectation of the complete-data penal-
ized log likelihood function given by

`c;P .� / D
nX

iD1

KX

kD1
I.zi D k/ flog �k C log fk.yi j#k/g � h�.� /;

where h�.� / is the penalty function with the penalty parameter �. The authors
consider Gaussian mixtures and assume common covariance matrices of the
diagonal form ˙ k D f	21 ; 	22 ; : : : ; 	2pg and mean coordinates
kj D
j C ıkj
for j D 1; 2 : : : ; p and all K components. The penalty function allows shrinking
variables toward the global mean. The variables j for which ıkj D 0 for
all k D 1; 2; : : : ; K are considered irrelevant and can be excluded from the
consideration. Various penalty functions have been proposed in literature. The L1
penalty h�.� / D �

PK
kD1

Pp
jD1 j
kj j was considered by Pan and Shen [135].

Another penalty h�.� / D �
Pp

jD1 maxkfj
1j j; j
2j j; : : : ; j
Kj jg was proposed
by Wang and Zhu [165] who claimed that it is a better choice as it takes into
consideration the fact that
kj s for k D 1; : : : ; K correspond to the same variable j .
Pairwise variable selection with the penalty h�.� / D �

Pp
jD1

P
1�k�k0�K j
kj �

k0j j was studied by Guo et al. [58]. To overcome limitations of the restrictive
assumption that covariance matrices are diagonal, [175] extended the penalized
model-based clustering idea to the case with common unconstrained covariance
matrices. As it was remarked by Xie et al. [170], unconstrained matrices help model
relationships between variables but involve too many parameters. Thus, the authors
considered another approach to variable selection through penalized mixtures of
factor analyzers.

1 Recent Developments in Model-Based Clustering with Applications 19

In the paper by Raftery and Dean [142], the authors took a different approach
dividing all variables into three sets: variables included in the model (Y.1/), variables
currently under consideration (Y.2/), and variables to be studied (Y.3/). The authors
proposed considering two models M1 and M2 specified as follows:

M1 W Pr.Y.1/;Y.2/;Y.3/jZ/ D Pr.Y.3/jY.1/;Y.2//Pr.Y.2/jY.1//Pr.Y.1/jZ/
M2 W Pr.Y.1/;Y.2/;Y.3/jZ/ D Pr.Y.3/jY.1/;Y.2//Pr.Y.1/;Y.2/jZ/

with Z being the vector of class memberships. In the formulation of M1, it is
assumed that the inclusion of the variables Y.2/ does not contribute to the model
improvement as the clustering information is already contained in the set of already
included variables Y.1/. The models can be conveniently compared through the

Bayes factor B12 D Pr.Y.2/jY.1/;M1/Pr.Y.1/jM1/

Pr.Y.1/;Y.2/jM2/
that can be estimated by means of BIC.

The functionality of the proposed methodology is available through the R package
clustvarsel [36]. The papers by Maugis et al. [102, 103] extended the proposed idea
noting that irrelevant and informative variables can be independent of each other
and organizing variables in unsplittable blocks. This modification might improve
the variable selection performance dramatically [30]. Finally, [104] extended the
approach of [103] by adding capabilities for handling missing values.

A variable selection idea related to the Modal EM algorithm discussed in
Sect. 1.2.3 was proposed by Lee and Li [84]. Instead of the kernel density esti-
mation used in the original paper of [87], the authors focused on the mixture of
Gaussian distributions. The Modal EM algorithm is run to detect all local modes.
If several components produce one mode, they are responsible for modeling one
cluster. In the paper by Lee and Li [84], the authors define a ridgeline separability
measure and apply a forward variable selection procedure in order to maximize the
so-called aggregated cluster separability.

The effective treatment of heterogeneous high-dimensional data is extremely
important and attracts much attention of researchers and practitioners. For a more
comprehensive review on the current state of the discipline in handling high-
dimensional data by means of mixture models, we refer the reader to an excellent
review provided by Bouveyron and Brunet [22].

1.2.6 Semi-Supervised Clustering

Semi-supervised machine learning is a popular direction of cluster analysis [11, 12,
70, 176] that assumes that some additional information about classes is available
in the form of constraints or restrictions on class memberships. According to [12],
semi-supervised clustering methods can be divided into two large groups: metric-
based and constraint-based. The former uses the available labeled data to make
adjustments to the metric utilized by the algorithm [9, 79, 171], while the latter rely
on some modifications made to the clustering algorithm to accommodate the set of
existing labels and constraints [11, 37, 163].

20 V. Melnykov et al.

From the perspective of the nature of constraints, there are also different
possibilities depending on an application in question. In particular, it may be the
case that the memberships of certain observations are known [109]. For example, a
set of medical data may consist of observations that describe two kinds of tumors:
cancerous and benign, and have a subset of observations for which the classification
has been performed by a human expert. Obtaining the data labeled in such a way
can be expensive or require substantial resources, therefore, its portion in the overall
amount of data is usually relatively small, but it may still provide considerable
improvements to the classification [12]. Another possible framework in regards
to restrictions affecting the clustering solution is the scenario when certain points
must belong to the same cluster in the proposed classification (positive equivalence
constraint) or, on the contrary, belong to different clusters (negative equivalence
constraint) [154]. This setup presents more challenges than the one where some of
the class labels are known due to the potential complexity of pairwise relations
between points determined by positive and negative constraints.

In the framework of model-based clustering, the necessary constraints can be
introduced into the model by making appropriate modifications to the EM algorithm.
Finite mixture models are often considered in the literature on semi-supervised
clustering, with the Gaussian mixtures receiving the most attention [42, 83, 154].
The applications of this framework are widespread and deal with image recognition
and image segmentation [100, 154], speech and audio processing [42, 70], text
classification [133], and many others.

The researchers emphasize the considerable difference that exists between
positive and negative equivalence constraints [60, 154]. Thus, positive constraints
are transitive, i.e., if points yi and yj must be in the same class and points yj and yk
also have to be in the same class, it follows that yi and yk will be in the same class as
well. Taking all such constraints into account, one can obtain blocks of observations
that have to belong to the same cluster. Observations that are not involved in any
constraints can still be viewed as trivial blocks consisting of singletons. On the
contrary, negative constraints do not share the transitive property. Thus, if yi and
yj have to be in different classes and yj and yk also must belong to different classes,
it does not follow that yi and yk are necessarily placed in different classes. This
difference in the nature of the two kinds of restrictions makes positive equivalence
constraints easier to model. It is argued by Hammer et al. [60] that negative
equivalence constraints, when generated at random, do not provide substantial gain
in the performance of classification procedures compared to those with only positive
constraints in place. However, in practice, the constraints are usually determined by
the context of the application rather than randomly. Although the implementation of
negative constraints is harder computationally, their necessity might be dictated by
a classification task at hand.

A thorough treatment of semi-supervised clustering in the case of Gaussian
mixture models with both positive and negative equivalence constraints involved
is given by Shental et al. [154]. In the case of positive constraints, the authors make
a distinction between two sampling situations that lead to block formation. The
first possibility is for the blocks to be sampled according to the weights of their

1 Recent Developments in Model-Based Clustering with Applications 21

corresponding sources. This scenario occurs when blocks are obtained due to the
nature of sampling, for instance, from sequential data in a Markovian process. The
second possibility arises when data points are sampled from the mixture distribution
and the formation of blocks occurs afterwards. For example, this situation can occur
when positive equivalence constraints are defined during distributed learning. The
modifications of the EM algorithm that would occur in both sampling situations are
shown by Shental et al. [154]. To accommodate negative equivalence constraints,
the authors consider a Markov network and propose using Pearl’s junction tree
algorithm [138] in the computation of posterior probabilities during the E-step of
the EM algorithm.

It should be mentioned that in addition to the models considering positive and
negative equivalence constraints, there are also approaches to describing models
that are not as strict in regards to constraints used. Such models influence the
classification of points via penalties or weights that may encourage or discourage
the inclusion of certain points in the same cluster, but do not determine such an
inclusion unequivocally [83, 94, 136].

1.2.7 Diagnostics and Assessment of Partition Variability

Another area of potentially high importance that researchers paid little attention
to is diagnostics in model-based clustering including the detection of outliers,
scatter, and influential observations. The problem of outliers has been addressed
in several different ways. One popular approach is to introduce an additional
uniform component defined on a hypercube constructed over the data domain [8].
Presumably, scatter data points that are not fitted well by the rest of components,
will be assigned to this uniform distribution, thus collecting noise observations and
automatically cleaning the dataset. Despite good performance in many practical
scenarios, this approach is not robust to breakdowns as shown by Hennig [65].
Also, the asymptotic properties of the obtained estimator are not satisfactory as a
proper maximum likelihood estimator is not defined in this setting. In the paper by
Hennig and Coretto [67], the authors recommend employing an improper uniform
distribution which is not dependent on data and claim that this method is more robust
than the original one.

Another possible approach of handling outliers is based on a mixture of
distributions with heavy tails such as t and skew t distributions [85, 109, 140].
This method does not automatically detect outliers but provides a better fit than
traditional Gaussian mixtures. If the goal of the analysis is to find outliers, it
is possible to consider .1 � ˛/-confidence regions for all estimated components
and declare observations beyond these regions outliers. In Sect. 1.2.2, there were
mentioned methods based on the trimmed log likelihood function. Although they
are primarily devoted to the robust parameter estimation in presence of outliers,
they can also be used for detecting unusual observations.

22 V. Melnykov et al.

While the problem of outliers and scatter in mixture models is considered in
literature, the detection of influential observations is nearly fully omitted. As per
definition given by Jolliffe et al. [74], influential observations in cluster analysis are
data points whose exclusion from the data would lead to different group assignments
of other points. As remarked by Melnykov [115], influential observations can
be different in nature. Some can influence results as important observations that
affect cluster shape and structure. In particular, spurious components discussed in
Sect. 1.2.2 are associated with random patterns in data and often involve influential
observations. Others can affect the produced partition due to their location between
components. Such observations often have high classification uncertainty. Hence,
the problem of assessing uncertainty in the estimated classification vector is closely
related to the subject discussed.

Recently, Melnykov [117] showed that in the case of Gaussian mixture models,
the posterior probability �ik. O� / is asymptotically normally distributed with
mean �ik.� / and variance that can be approximated by r�ik. O� /0 I�1. O� /r�ik
. O� /with the gradient vectorr�ik.� / D

��
@�ik.� /

@�s

�0
sD 1;:::;K�1 ;

�
@�ik.� /

@�s

�0
sD 1;:::;K ;

�
@�ik.� /

@vechf˙ sg
�0
sD1;:::;K

�0
and partial derivatives specified by the following expressions:

@�ik.� /

@�k
D �ik�iK

�K
C �ik.1 � �ik/

�k
;

@�ik.� /

@�s
D �ik�iK

�K
� �ik�is

�s
; s ¤ k;

@�iK.� /

@�s
D � �iK.1 � �iK/

�K
� �iK�is

�s
;

@�ik.� /

@�k
D�ik.1��ik/˙�1k .yi��k/;

@�ik.� /

@�s
D��ik�is˙�1s .yi��s/; s ¤ k;

@�ik.� /

@vechf˙ kg D
1

2
�ik.1 � �ik/G0vec

n
˙�1k ..yi ��k/.yi � �k/

0˙�1k � Ip/
o
;

@�ik.� /

@vechf˙ sg D �
1

2
�ik�isG

0vec
n
˙�1s ..yi ��s/.yi � �s/

0˙�1s � Ip/
o
; s ¤ k:

The vec operator stacks matrix columns on top of each other, vech operator
stacks columns of the lower triangular part of a symmetric matrix, and G is the
unique matrix of ones and zeros such that vec.˙ / D Gvech.˙ /. Since posterior
probabilities can often be close to the boundary of the Œ0; 1�-interval, the author rec-
ommends employing the well-known transformation �ik.� / D arcsin.

p
�ik.� //

and the corresponding backward transformation �ik.� / D sin2.�ik.� //. An
approach to identify observations with uncertain class assignments for several
popular classification datasets was considered by Melnykov [117].

1 Recent Developments in Model-Based Clustering with Applications 23

1.2.8 Miscellaneous Topics

In this section, we briefly mention some other important topics related to mixture
modeling and model-based clustering.

The Bayesian approach to modeling provides a way to incorporate available
prior information about parameters in a coherent way. In this setup, inference is
made based on the posterior distribution of parameters, which can be formulated
according to Bayes’ theorem as

p.� jy1; : : : ; yn/ / p.y1; : : : ; ynj� /p.� /;
where p.y1; : : : ; ynj� / is essentially the likelihood function and p.� / is the
prior distribution of the parameters. The posterior distribution is used then to
provide inference about estimated parameters. Unfortunately, except for the simplest
models, the analytical form of p.� jy1; : : : ; yn/ is unavailable or difficult to find.
As a result, researchers rely on numerical methods such as Markov Chain Monte
Carlo (MCMC) techniques to approximate the posterior distribution and find its
summaries. One of the first papers considering the MCMC approach in the course
of the mixture modeling estimation with a known number of components is [41].
Since then, there were substantial developments in mixture modeling under the
Bayesian framework [45, 53, 95, 129]. It is easy to see that Bayesian estimation
based on finding the mode of a posterior distribution becomes equivalent to the
likelihood-based inference when the prior is uniform. Thus, Bayesian inference
provides a somewhat more general setting, in which additional information about
model parameters can be taken into account. For example, the inclusion of a prior on
the number of components was investigated by Richardson and Green [146]. This
additional information can help relax issues with overfitting the order of mixture
models. Some of the main drawbacks of the Bayesian approach to mixture modeling
include cumbersome calculations and the so-called label switching problem which
complicates posterior simulations and is closely related to the lack of identifiability
of � .

Identifiability is the ability to recover the probability distribution given its
parameters. It is a necessary model characteristic for providing consistent inference.
The family of distributions is called identifiable if f .yj� / D f .yj� �/ holds if and
only if � D � �. In finite mixture models, the problem of identifiability occurs due
to possible label switching and is usually solved by imposing restrictions on mixing
proportions or other model parameters. There is an extensive literature dealing with
the identifiability issue for various mixture models [31, 69, 76, 159, 172]. In general,
the problem of identifiability can be successfully overcome in the mixture modeling
context. Some recent papers dealing with label switching and relabeling algorithms
include [52, 72, 137, 148].

Variational approximations are another topic that arises frequently in the
Bayesian framework. The idea behind it is to find an approximate distribution
such that it is close to the target posterior distribution which has a complicated
form and is difficult to obtain. The Kullback-Leibler divergence is traditionally used

24 V. Melnykov et al.

to measure the closeness of the target and approximating distributions. In general,
variational methods aim at maximizing a lower bound for the log of the marginal
distribution of data p.y1; : : : ; yn/. This bound is specified by the inequality given by

logp.y1; : : : ; yn/ �
Z X

z

q.� ; zjy1; : : : ; yn/ log
p.y1; : : : ; yn; z;� /
q.� ; zjy1; : : : ; yn/ d� ;

where p.y1; : : : ; yn; z;� / is the joint distribution and q.� ; zjy1; : : : ; yn/ is
commonly known as the variational approximation of the posterior. Thus, the right-
hand side of the above inequality is maximized over the choice of q.� ; zjy1; : : : ; yn/.
A variational approximation in the context of Gaussian mixtures was provided
by McGrory and Titterington [105]. Some important papers on similar topics
include [3, 35]. Consistency and other theoretical aspects of estimators obtained by
variational approximations are discussed in [59, 164].

An interesting approach to modeling Gaussian mixtures that is worth mentioning
lies in the use of Gaussian graphical models. Such a model puts an observation Y
from a Gaussian density �p.yI�;˙ / in correspondence with an undirected graph
G D .V;E/, where V is the set of p vertices, matching the dimensionality of Y,
and E is the set of edges designed in such a manner that the edge between vertices i
and j is present only if the matching .i; j /th entry of ˙�1 is non-zero [174]. At the
same time, the absence of an edge between vertices i and j reflects the conditional
independence of the i th and j th coordinates of Y given the rest of the coordinates
of this vector [82]. [93] consider a mixture where each cluster is represented by
an individual Gaussian graphical model. They focus on sparse cluster distributions
and implement a penalized EM algorithm [38] with L1 penalty that stimulates
the sparsity of precision matrices ˙�1k , i.e., leads to a large number of zero off-
diagonal entries in these matrices. This approach helps with problems associated
with the estimation of a large number of parameters that arise in the analysis of
high-dimensional data.

1.3 Modern Applications of Model-Based Clustering

In this section, we present some recent applications of model-based clustering. The
list of considered topics is by no means comprehensive, however, we attempt to
show the diversity of applications.

1.3.1 Clustering Tree Ring Sequences

Dendrochronology is an area of science that studies tree ring data and has numerous
applications in other fields. The width of tree rings, also known as growth rings,
represents the amount of volume gained over a period of time. This growth can be

1 Recent Developments in Model-Based Clustering with Applications 25

affected by climate and environmental conditions. In climatology, tree rings are used
to reconstruct past temperature and climate trends [46]. In archaeology, they are
used to identify the origin of wooden artifacts [24]. In this process, researchers often
rely on subjective assessments based on the resemblance of the tree ring sequence
of an artifact to that of known sequences from different localities. Clustering and
group identification approaches are often useful here; however, previous attempts
of employing traditional clustering approaches in dendrochronology research have
encountered substantial difficulties [62]. In light of this, [123] applied model-based
clustering of Gaussian regression time series to identify groups of trees with similar
annual tree ring behavior over 281 years from 1700 to 1980. The analyzed dataset
included 160 trees from 9 locations in western regions of the United States. The
goal of the study was to learn about climate patterns in this area.

The authors let yi D .yi1; : : : ; yiT /
0 denote a T -variate observed time series

vector from a sample of n observations representing tree ring widths. Xi denotes
a T � b matrix constructed on b explanatory variables. The first column of Xi

consists of ones and is responsible for modeling the intercept, while the second
column represents the current tree age. Then, the regression model is given by yi D
Xiˇ C �i , where ˇ is the vector of coefficients and �i is the error term following
an autoregressive moving average process of orders p and q, respectively. The kth
mixture component has the form �T .yIXˇk;˙ k/, where Xˇk is the mean vector
and ˙ k is the covariance matrix of the T -variate Gaussian density. The process of
parameter estimation via the EM algorithm is thoroughly described by Melnykov
and Michael [123]. To avoid operations with high-dimensional covariance matrices,
the authors expressed the likelihood function via the Kalman filter [75]. The best
model chosen based on BIC included nine components. The authors used hues of the
red, blue, and green colors to represent the solution and to show that their solution
made good geographical sense as the clusters were formed along the north-south
and west-east directions.

Other works related to clustering Gaussian regression time series and considering
other interesting applications can be found in papers of [32] and [114].

1.3.2 Identification of Differentially Expressed Genes

Gene expression is the transformation of information contained in a DNA sequence
into a protein. There are two steps involved in this process: first, the DNA
sequence is transcribed to messenger RNA and, second, the messenger RNA is
translated into a protein. Microarray analysis has made it possible to have an insight
into thousands of gene expressions simultaneously. In microarray analysis of genes,
one of the objectives is to identify genes that are differentially expressed between
two or more mutually exclusive groups. For example, the interest could lie in finding
the genes that have increased or decreased expression between normal and abnormal
cells or control and treatment groups. To distinguish the genes that are differentially
expressed from those that are not, a multiple comparison of means that describe the

26 V. Melnykov et al.

groups can be conducted. The tests commonly used to compare means are t -test (two
groups) and ANOVA (more than two groups). These procedures require the control
of the error rate at a pre-specified level. One approach to tackle this problem is to
use a Bonferroni-type adjustment which controls the familywise error rate (FWER).
However, as the number of comparisons can be extremely large, depending on the
number of genes to be evaluated, this approach can result in the reduced power of
the procedure making it impractical. Another approach is to control the expected
value of the proportion of genes incorrectly identified as differentially expressed,
also known as the false discovery rate (FDR) [17]. The paper by Efron et al. [44]
considers a mixture model approach to determine differentially expressed genes
using the FDR as described below.

Let g1; g2; : : : ; gn be a set of genes from x1; x2; : : : ; xs samples. Let G1 be the
group of genes that are not differentially expressed and G2 the group of genes that
are differentially expressed. Let �1 be the prior probability of gene membership in
G1 and hence 1 � �1 D �2 is the prior probability of its membership in G2. After
conducting a t -test for each gene, let the test statistic for the i th gene gi be denoted
by Yi . Then, the mixture density for gi can be written as

f .yi j�/ D �1f1.yi j#1/C �2f2.yi j#2/; (1.12)

where f1 denotes the density of the test statistics of non-differentially expressed
genes (G1) and f2 stands for the density of differentially expressed genes (G2).
The posterior probabilities, �i1 and �i2, represent the probabilities of the i th gene
coming from G1 and G2, respectively. Hence, �i1 can be interpreted as the FDR for
the i th gene.

The work by McLachlan et al. [111] considers a two-component mixture model
by transforming the p-value pi obtained from the test statistic yi into a z-score.
The z-scores are calculated as zi D ˚�1.1 � pi /, where ˚ is the cdf of the
standard normal distribution. Then, (1.12) is modified by replacing yi with zi and
normal distributions are used as mixture components. The authors proposed the
first component to be a standard normal, corresponding to the null distribution
of z-scores, and second component to be a normal distribution with mean
2
and variance 	22 to be estimated. If the null distribution does not appear to be
standard normal, then it will be replaced by a normal distribution with mean
1 and
variance 	21 . The estimation of parameters is carried out using the EM algorithm. In
their article, [111] applied the proposed model to three real-life datasets and showed
that the two-component mixture model fits the empirical distribution of z-scores very
well. Since this work, there have been several others that considered the general
framework of two-component mixture models with different density functions in
the roles of f1 and f2 and pi instead of yi in (1.12). For example, Robin et al. [147]
used a pre-specified parametric distribution for f1 such as the uniform distribution
and a weighted kernel function to estimate f2. The paper by Markitsis and Lai [99]
proposed a censored beta distribution to account for the p-values that are close to
zero. Another work by Jiao and Zhang [73] used t -distributions instead of Gaussian
densities for both f1 and f2 and implemented the control of FWER rather than FDR.

1 Recent Developments in Model-Based Clustering with Applications 27

1.3.3 Analysis of Customer Navigation Patterns

With the growth of web-usage and web-related commerce, it has become important
to develop techniques capable of extracting and analyzing information from massive
datasets containing information about customers. One direction of research that can
help in identifying customer trends and preferences is the analysis of web-routes
taken by users. A sequence of sites or web-pages visited is traditionally called
clickstream. One challenge related to the analysis of clickstream information is its
categorical nature. Also, this type of data is not static and thus can be best modeled
by approaches reflecting its dynamic characteristics. Among the papers devoted to
clustering clickstreams, there are works by Inbarani and Thangavel [71], Liu [90],
and Ypma and Heskes [173].

Model-based clustering of clickstream data using a mixture of first-order Markov
models was first proposed by Cadez et al. [26]. Let yi D .yi1; : : : ; yiTi /

0 be the
observed clickstream sequence for the i th user with Ti representing the length of
the i th sequence. Given J unique sites (states) in the system, one can introduce a
transition probability matrix given by

P D

���������

p11 p12 : : : p1J
p21 p22 : : : p2J
:::

:::
: : :

:::

pJ1 pJ2 : : : pJJ

���������

;

where pjj 0 D Pr.Yit D j 0jYi.t�1/ D j / for i D 1; : : : ; n. Denoting ˛j D Pr.Yi1 D
j /, the proposed mixture model is given by

f .yi1; xi j�/ D
KX

kD1
�k

JY

jD1
˛
I.yi1Dj /
kj

JY

jD1

JY

j 0D1
p
xijj 0

kjj 0

;

where xi is a J �J matrix with elements xijj 0 representing the number of transitions
from state j to state j 0 by the i th user, and pkjj 0 is the transition probability from j

to j 0 for the kth component. Estimation of the parameter vector � is outlined in [26].
The developed methodology was used to cluster web-users of the msnbc.com site
for a data collected over one day. A training set of 100,023 clickstreams was used
first to build the model which was applied to cluster 98,687 clickstream sequences
producing around 60 clusters.

The paper by Melnykov [119] provided an extension to the model of [26]
developing an algorithm with a capability to group similar web-pages and customers
at the same time. This setting, in which objects are clustered along with data features,
is called biclustering. Another biclustering approach for grouping customers and
products by means of finite mixture models was proposed by Vicari and Alfó [161].
Their model had a hierarchical structure based on customer- and product-specific
segments. The authors claimed that their methodology can be used for any dataset
when one is interested in grouping both observations and their features.

28 V. Melnykov et al.

1.3.4 Data Clustering on Unit-Hypersphere

Multivariate data are called directional if the direction of a vector observation is
relevant as opposed to its magnitude. Some examples of applications in which
directional data occur frequently include the analysis of gene expression profiles
[7, 43], text documents [2, 7], and wind information [101]. Directional data are
usually obtained by a transformation of some original data. For example, text
documents are processed as follows. First, all words in analyzed documents are
listed. Then, the frequency of all words gets recorded for each document. After
cleaning the data from noisy words with too high or too low frequencies, each
document-specific vector is normalized. As a result, all observations lie on a unit
hypersphere. The most popular choice for modeling such data is the von Mises-
Fisher (vMF) distribution. In the context of model-based clustering, finite mixtures
of vMF distributions can be used. A p-variate vMF distribution is defined for a
p-dimensional random unit vector y, subject to the restriction kyk D 1. Therefore,
y 2 Sp�1, where Sp�1 denotes a .p � 1/-dimensional hypersphere. If p D 2, Sp�1
reduces to a unit circle. The kth vMF mixture component is given by

fk.yj#k/ D Cp.k/ exp
˚
k�

T
k y
	
;

where #k D .k;�
0
k/
0 is the parameter vector built on the concentration parameter

k and mean �0k , Cp.k/ D
p=2�1
k f.2�/p=2Ip=2�1.k/g�1 and Ir is the order r

modified Bessel function of first kind.
The work by Banerjee et al. [7] discusses the estimation of model parameters

based on the EM algorithm. The corresponding Q-function has the form

Q.� j� .b�1// D
nX

iD1

KX

kD1
�
.b/

ik

˚
log �k C logCp.k/C k�T

k yi
	�

KX

kD1
�k.�

T
k �k�1/;

where �ks are Lagrange multipliers accounting for the restriction �T
k �k D 1 for

k D 1; : : : ; K. A closed-form expression can be obtained for parameters �k and �k :

�
.b/

k D
Pn

iD1 �
.b/

ik yi

kPn
iD1 �

.b/

ik yik
and �

.b/

k D
Pn

iD1 �
.b/

ik

n
:

Taking the derivative of the Q-function with respect to k and setting it equal to
zero results in

C 0p.k/
Cp.k/

D �k
Pn

iD1 �ikyikPn
iD1 �ik

:

The analytical expression for k is not readily available as it involves find-
ing the derivative of the Bessel function. In their paper, Banerjee et al. [7]
used an approximation for k given by k � .p Nr � Nr3/.1 � Nr2/�1, where

1 Recent Developments in Model-Based Clustering with Applications 29

Nr D kPn
iD1 �ikyik=n. Other works provide alternative ways to approximate k

[40,98,158]. Applications of the developed model-based clustering approach to the
analysis of gene expressions and text documents are considered in [7].

More recently, mixtures of vMF distributions were considered in the Bayesian
framework [56]. A Dirichlet process mixture model of vMF distribution for text
document clustering was proposed by Anh et al. [2]. Another interesting piece of
work was conducted by Dortet-Bernadet and Wicker [43] who used the inverse
stereographic projection of .p � 1/-variate Gaussian mixtures to cluster gene
expression data. The authors remarked that they prefer this model as mixtures of
vMF distributions tend to produce spherical clusters.

1.3.5 Analysis of Mass Spectrometry Data

Mass spectrometry is an analytical technique used to determine the composition of
compounds and chemical structure of molecules. Secondary ion mass spectrometry
(SIMS) is one among many existing mass spectrometry methods. In SIMS, a sample
is bombarded by a primary ion which generates charged particles (secondary ions)
from the sample surface. The secondary ions are then captured, their mass-to-charge
ratios are measured and the corresponding spectrum is constructed. Analyzing
a substance sample in a liquid matrix, SIMS has certain advantages over other
methods. One is that it has higher ion yields and lower fragmentation or noise [39].
Moreover, the liquid matrix can be used to study the stages of chemical reactions as
pointed out by Melnikov et al. [113]. The use of the liquid matrix, however, leads
to producing a mixed mass spectrum that includes peaks originating from both the
liquid matrix and sample. In the meantime, it is easy to observe a mass spectrum
of the liquid alone. Thus, it is essential to separate the secondary ions coming from
the studied substance by making a comparison between the mixed and liquid matrix
spectra. The problem can be seen as a classical task of extracting signal that is
observed in the presence of noise.

In the paper by Melnykov [116], the author proposed a model-based clustering
approach to extract the informative part of the mixed spectrum. Two observed
samples of mass-to-charge ratio measurements representing the liquid matrix x D
.x1; : : : ; xnx /

0 and studied substance y D .y1; : : : ; yny /0 are provided. Here, nx and
ny stand for the total number of particles associated with each sample. Since mass-
to-ratio values can be measured with specific accuracy, one observes multiple par-
ticles at the same locations. This allows for more convenient notational form given
by x D f.x.1/; nx.1/ /; : : : ; .x.rx/; nr.x/ /g and y D f.y.1/; ny.1/ /; : : : ; .y.ry/; nr.y/ /g,
where nx.i/ and ny.j / denote observed frequencies at peak locations x.i/ and y.j /,
respectively, and r.x/ and r.y/ represent the number of distinct peaks in each sample.
The author used the discrete mixture component distribution

fk.xj#k/ D ˚
�
x C 0:5 �
k

	k

�
� ˚

�
x � 0:5 �
k

	k

�
;

30 V. Melnykov et al.

where ˚ is the cdf of the standard normal distribution and #k D .
k; 	k/
0. The

liquid matrix can be modeled by a mixture of K components given by

fx.xj� x/ D
KX

kD1
�kfk.xj#k/

and the mixed spectrum can be modeled by the mixture of K C M components
given by

fy.yj� y/ D c
KX

kD1
�kfk.yj#k/C

KCMX

kDKC1
�kfk.yj#k/:

Here, the first K components represent the liquid and c is a factor assuring that all
mixing proportions sum up to the unity. Then, the correspondingQ-function has the
form

Q.� jx; y/ D
rxX

iD1
nx.i/

KX

kD1
�x.i/kflog �kC logfk.x.i/j
k; 	k/gC

ryX

iD1
ny.i/

KCMX

kDKC1
�y.i/k

� flog �k C logfk.y.i/j
k; 	k/C I.k � K/ log cg � �1

KX

kD1
�k � 1

!

� �2

c C

KCMX

kDKC1
�k � 1

!
;

where � denotes the entire parameter vector and �1 and �2 are Lagrange multipliers
associated with the two restrictions on mixing proportions.

Using this model, Melnykov [116] successfully extracted mass spectra for
different concentrations of organic dyes in a glycerol liquid matrix. The developed
methodology proved to be promising as the obtained peaks were sensible from a
biochemical standpoint.

1.3.6 Network Clustering

A network can be defined as a collection of units (also called actors) interacting with
each other. For example, networks are used to represent social relationships such as
friendship within a group of people. One of the points of interest in the analysis of
network data is grouping actors.

A network model usually has the following construction. Let n be the number
of actors and let yij represent the relationship between the i th and j th actors for
i; j D 1; : : : ; n such that i ¤ j . Then, the dataset Y D �

yij
�
n�n is a matrix of

ties among actors. This setup is usually represented by a graph, where the actors are

1 Recent Developments in Model-Based Clustering with Applications 31

shown as nodes and the edges indicate ties among the actors. In its simplest form,
yij is a binary variable taking values 0 or 1 showing an absence or presence of a tie
between actors yi and yj . Undirected ties are represented by yij D yji for all i and
j and directed ones are accounted for in the case when yij is not necessarily equal
to yji . Depending on whether the tie is directed or not, there will be n.n � 1/ or
n.n � 1/=2 edges, hence the data could be very high-dimensional.

The paper by Handcock et al. [61] proposed a two-stage model that incorporates
the latent position method of [68] and model-based clustering via mixture models.
The latent position of actors represents their social standing in an unobserved low-
dimensional space. During the first stage, a conditional independence modeling
approach is implemented. Let xij contain available covariate information for yij .
Assuming that the presence or absence of a tie yij is independent of other ties given
the latent social position of individuals, the conditional independence model is

PrfYjZ;X;'g D
nY

iD1

nY

jD1
j¤i

Prfyij jzi ; zj ; xij ;'g;

where ' is the parameter vector of the model, X is the set of all xij vectors, and
Z D fz1; z2; : : : ; zng represents the latent social positions of the actors in a low-
dimensional space. Prfyij jzi ; zj ; xij ;'g that shows the probability of a tie between
yi and yj given their latent positions zi and zj as well as explanatory variables xij
is modeled using logistic regression as follows:

log

�
Pr.yij D 1jzi ; zj ; xij ;'/
Pr.yij D 0jzi ; zj ; xij ;'/

�
D x0ijˇ � ˛jzi � zj j;

where ' D .˛;ˇ0/0 and ˛ is the coefficient of the Euclidean distance between the
actors yi and yj in the latent space Z. ˇ denotes the coefficient vector linked to
the covariates specific to yij . At stage two, Z is assumed to originate from a mixture
of K multivariate Gaussian distributions with means �k and spherical covariance
matrices 	2k I given by

f .zi j� / D
KX

kD1
�k�p.zi j�k; 	

2
k I/;

where I stands for an identity matrix.
Two procedures to estimate the parameters of this model are proposed by

Handcock et al. [61]. The first one uses maximum likelihood estimation via the
EM algorithm. The second approach relies on Bayesian inference. Figure 1.5a
provides a network graph created by the R package network [25] that represents the
classical dataset monks [151]. The solution of the latent position clustering model
applied to this dataset using the R package latentnet [80,81] is provided in Fig. 1.5b.
Fast parameter estimation procedures for this model are proposed by Raftery et al.

32 V. Melnykov et al.

a

b

Fig. 1.5 Illustration for the monk data network showing friendship relationships for 18 monks in a
monastery: (a) network graph and (b) groups of individuals identified by latent position clustering
model for K D 3 and p D 2

[143] and Salter-Townshend and Murphy [150]. The latent position clustering
model was extended by Gormley and Murphy [57] to account for the covariates in
identification of clusters in addition to finding probabilities of relationships between
two actors. In more recent work, Vu et al. [162] use the idea of minorization-
maximization algorithm of [134] to implement model-based clustering of large
network data. Their method was able to analyze more than 131,000 nodes and 17
billion edge variables.

References

1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle.
In: Second international symposium on information theory, pp 267–281

2. Anh NK, Tam NT, Van Linh N (2013) Document clustering using Dirichlet process mixture
model of von Mises-Fisher distributions. In: Proceedings of the fourth symposium on
information and communication technology, New York, pp 131–138

3. Attias H (1999) Inferring parameters and structure of latent variable models by variational
Bayes. In: Proceedings of the fifteenth conference on uncertainty in artificial intelligence

4. Azzalini A, Bowman AW (1990) A look at some data on the old faithful geyser. J R Stat Soc
C 39:357–365

5. Azzalini A, Menardi G (2013) Package pdfCluster: cluster analysis via nonparametric density
estimation. http://cran.r-project.org/web/packages/pdfCluster

6. Azzalini A, Torelli N (2007) Clustering via nonparametric density estimation. Stat Comput
17:71–80

7. Banerjee A, Dhillon IS, Ghosh J, Sra S (2005) Clustering on the unit hypersphere using von
Mises-Fisher distributions. J Mach Learn Res 6:1345–1382

http://cran.r-project.org/web/packages/pdfCluster

1 Recent Developments in Model-Based Clustering with Applications 33

8. Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biomet-
rics 49:803–821

9. Bar-Hillel A, Hertz T, Shental N, Weinshall D (2003) Learning distance functions using
equivalence relations. In: Proceedings of the twentieth international conference on machine
learning, pp 11–18

10. Basso R, Lachos V, Cabral C, Ghosh P (2010) Robust mixture modeling based on scale
mixtures of skew-normal distributions. Comput Stat Data Anal 54(12):2926–2941

11. Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: Proceed-
ings of the 19th international conference on machine learning, pp 19–26

12. Basu S, Bilenko M, Mooney RJ (2004) A probabilistic framework for semi-supervised clus-
tering. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge
discovery and data mining, pp 59–68

13. Baudry JP, Raftery A, Celeux G, Lo K, Gottardo R (2010) Combining mixture components
for clustering. J Comput Graph Stat 19(2):332–353

14. Benaglia T, Chauveau D, Hunter DR (2009) An EM-like algorithm for semi- and nonparamet-
ric estimation in multivariate mixtures. J Comput Graph Stat 18(2):505–526

15. Benaglia T, Chauveau D, Hunter DR, S YD (2009) mixtools: an R package for analyzing
mixture models. J Stat Softw 32(6):1–29

16. Benaglia T, Chauveau D, Hunter DR (2011) Bandwidth selection in an EM-like algorithm for
nonparametric multivariate mixtures. In: Hunter D, Richards DSP, Rosenberger J (eds) Non-
parametric statistics and mixture models, A Festschrift in honor of Thomas P Hettmansperger.
World Scientific, Singapore, pp 15–27

17. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc 57:289–300

18. Berlinet AF, Roland C (2012) Acceleration of the em algorithm: P-em versus epsilon
algorithm. Comput Stat Data Anal 56(12):4122–4137

19. Biernacki C, Celeux G, Gold EM (2000) Assessing a mixture model for clustering with the
integrated completed likelihood. IEEE Trans Pattern Anal Mach Intell 22:719–725

20. Biernacki C, Celeux G, Govaert G (2003) Choosing starting values for the EM algorithm for
getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data
Anal 413:561–575

21. Böhning D, Dietz E, Schaub R, Schlattmann P, Lindsay B (1994) The distribution of the
likelihood ratio for mixtures of densities from the one-parameter exponential family. Ann Inst
Stat Math 46(2):373–388

22. Bouveyron C, Brunet C (2014) Model-based clustering of high-dimensional data: a review.
Comput Stat Data Anal 71:52–78

23. Bouveyron C, Girard S, Schmid C (2007) High-dimensional data clustering. Comput Stat
Data Anal 52(1):502–519. http://lear.inrialpes.fr/pubs/2007/BGS07a

24. Bridge M (2012) Locating the origins of wood resources: a review of dendroprovenancing.
J Archaeol Sci 39(8):2828–2834

25. Butts CT, Handcock MS, Hunter DR (2014) Network: classes for relational data. Irvine.
R package version 1.9.0, http://statnet.org/

26. Cadez I, Heckerman D, Meek C, Smyth P, White S (2003) Model-based clustering and
visualization of navigation patterns on a web site. Data Min Knowl Discov 7:399–424

27. Campbell NA, Mahon RJ (1974) A multivariate study of variation in two species of rock crab
of Genus Leptograsus. Aust J Zool 22:417–25

28. Celebi ME, Kingravi H, Vela PA (2013) A comparative study of efficient initialization
methods for the K-means clustering algorithm. Expert Syst Appl 40(1):200–210

29. Celeux G, Govaert (1995) Gaussian parsimonious clustering models. Comput Stat Data Anal
28:781–93

30. Celeux C, Martin-Magniette ML, Maugis C, Raftery A (2011) Letter to the editor. J Am Stat
Assoc 106:383

31. Chandra S (1977) On the mixtures of probability distributions. Scand J Stat 4:105–112

http://lear.inrialpes.fr/pubs/2007/BGS07a
http://statnet.org/

34 V. Melnykov et al.

32. Chen WC, Maitra R (2011) Model-based clustering of regression time series data via
APECM – an AECM algorithm sung to an even faster beat. Stat Anal Data Min 4:567–578

33. Chen J, Tan X, Zhang R (2008) Consistency of penalized MLE for normal mixtures in mean
and variance. Stat Sin 18:443–465

34. Ciuperca G, Ridolfi A, Idier J (2003) Penalized maximum likelihood estimator for normal
mixtures. Scand J Stat 30(1):45–59

35. Corduneanu A, Bishop CM (2001) Variational Bayesian model selection for mixture distribu-
tions. In: Proceedings eighth international conference on artificial intelligence and statistics,
pp 27–34

36. Dean N, Raftery A, Scrucca L (2013) Package clustvarsel: variable selection for model-based
clustering. http://cran.r-project.org/web/packages/clustvarsel

37. Demiriz A, Bennett K, Embrechts MJ (1999) Semi-supervised clustering using genetic
algorithms. In: Artificial neural networks in engineering (ANNIE-99). ASME Press, New
York, pp 809–814

38. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood for incomplete data via the
EM algorithm (with discussion). J R Stat Soc Ser B 39:1–38

39. Dertinger JJ, Walker AV (2013) Ionic liquid matrix-enhanced secondary ion mass spectrome-
try: the role of proton transfer. J Am Soc Mass Spectrom 24:348–355

40. Dhillon IS, Modha DS (2001) Concept decompositions for large sparse text data using
clustering. Mach Learn 42:143–175

41. Diebolt J, Robert C (1994) Estimation of finite mixture distributions by Bayesian sampling.
J R Stat Soc Ser B 56:363–375

42. Digalakis VV, Rtischev D, Neumeyer LG (1995) Speaker adaptation using constrained
estimation of Gaussian mixtures. IEEE Trans Speech Audio Process 3(5):357–366

43. Dortet-Bernadet J, Wicker N (2008) Model-based clustering on the unit sphere with an
illustration using gene expression profiles. Biostatistics 9(1):66–80

44. Efron B, Tibshirani R, d Storey J, Tusher V (2001) Empirical Bayes analysis of a microarray
experiment. J Am Stat Assoc 96:1151–1160

45. Escobar MD, West M (1995) Bayesian density estimation and inference using mixtures. J Am
Stat Assoc 90:577–588

46. Esper J, Cook E, Schweingruber F (2002) Low-frequency signals in long tree-ring chronolo-
gies for reconstructing past temperature variability. Science 295(5563):2250–2253

47. Feng Z, McCulloch C (1996) Using bootstrap likelihood ratio in finite mixture models.
J R Stat Soc B 58:609–617

48. Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of
classifications. Biometrics 21:768–780

49. Fraley C (1998) Algorithms for model-based Gaussian hierarchical clustering. SIAM J Sci
Comput 20:270–281

50. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density
estimation. J Am Stat Assoc 97:611–631

51. Fraley C, Raftery AE (2006) MCLUST version 3 for R: normal mixture modeling and model-
based clustering. Technical Report 504, Department of Statistics, University of Washington,
Seattle

52. Frühwirth-Schnatter S (2001) Markov Chain Monte Carlo estimation of classical and dynamic
switching and mixture models. J Am Stat Assoc 96:194–209

53. Frühwirth-Schnatter S, Pyne S (2010) Bayesian inference for finite mixtures of univariate and
multivariate skew-normal and skew-t distributions. Biostatistics 11:317–336

54. Gallegos MT, Ritter G (2009) Trimmed ML estimation of contaminated mixtures. Sankhya
Ser A 71:164–220

55. Garcia-Escudero L, Gordaliza A, Mayo-Iscar A (2013) A constrained robust proposal for mix-
ture modeling avoiding spurious solutions. Adv Data Anal Classif 1–17. doi:10.1007/s11634-
013-0153-3

56. Gopal S, Yang Y (2014) von Mises-Fisher clustering models. J Mach Learn Res 32:154–162

http://cran.r-project.org/web/packages/clustvarsel

1 Recent Developments in Model-Based Clustering with Applications 35

57. Gormley IC, Murphy TB (2010) A mixture of experts latent position cluster model for social
network data. Stat Methodol 7:385–405

58. Guo J, Levina E, Michailidis G, Zhu J (2010) Pairwise variable selection for high-dimensional
model-based clustering. Biometrics 66:793–804

59. Hall P, Ormerod JT, Wand MP (2011) Theory of Gaussian variational approximation for a
Poisson mixed model. Stat Sin 21:369–389

60. Hammer R, Hertz T, Hochstein S, Weinshall D (2007) Classification with positive and
negative equivalence constraints: theory, computation and human experiments. In: Proceed-
ings of the 2nd international conference on advances in brain, vision and artificial intelligence,
Springer-Verlag Berlin, pp 264–276

61. Handcock MS, Raftery AE, Tantrum JM (2007) Model-based clustering for social networks.
J R Stat Soc Ser A 170:301–354

62. Haneca K, Wazny T, Van Acker J, Beeckman H (2005) Provenancing Baltic timber from art
historical objects: success and limitations. J Archaeol Sci 32(2):261–271

63. Hartigan JA (1981) Consistency of single linkage for high-density clusters. J Am Stat Assoc
76:388–394

64. Hathaway RJ (1985) A constrained formulation of maximum-likelihood estimation for
normal mixture distributions. Stat Probab Lett 4:53–56

65. Hennig C (2004) Breakdown points for maximum likelihood-estimators of location-scale
mixtures. Ann Stat 32:1313–1340

66. Hennig C (2010) Methods for merging Gaussian mixture components. Adv Data Anal Classif
4:3–34

67. Hennig C, Coretto P (2008) The noise component in model-based cluster analysis. In:
Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Data analysis, machine
learning and applications, studies in classification, data analysis, and knowledge organization.
Springer, Berlin, Heidelberg, pp 127–138

68. Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network
analysis. J Am Stat Assoc 97:460:1090–1098

69. Holzmann H, Munk A, Gneiting T (2006) Identifiability of finite mixtures of elliptical
distributions. Scand J Stat 33:753–763

70. Huang JT, Hasegawa-Johnson M (2009) On semi-supervised learning of Gaussian mixture
models for phonetic classification. In: NAACL HLT workshop on semi-supervised learning

71. Inbarani HH, Thangavel K (2009) Mining and analysis of clickstream patterns. In: Abraham
A, Hassanien AE, Leon F de Carvalho A, SnáLsel V (eds) Foundations of computational, intel-
ligence, vol 6. Studies in computational intelligence, vol 206. Springer, Berlin, Heidelberg,
pp 3–27

72. Jasra A, Holmes CC, Stephens DA (2005) Markov chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Stat Sci 20:50–67

73. Jiao S, Zhang S (2008) The t -mixture model approach for detecting differentially expressed
genes in microarrays. Funct Integr Genomics 8:181–186

74. Jolliffe IT, Jones B, Morgan BJT (1995) Identifying influential observations in hierarchical
cluster analysis. J Appl Stat 22(1):61–80

75. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng
82:35–45

76. Kent J (1983) Identifiability of finite mixtures for directional data. Ann Stat 11(3):984–988
77. Kiefer NM (1978) Discrete parameter variation: efficient estimation of a switching regression

model. Econometrica 46:427–434
78. Kim D, Seo B (2014) Assessment of the number of components in Gaussian mixture models

in the presence of multiple local maximizers. J Multivar Anal 125:100–120
79. Klein D, Kamvar SD, Manning C (2002) From instance-level constraints to space-level

constraints: making the most of prior knowledge in data clustering. In: Proceedings of the
nineteenth international conference on machine learning (ICML-2002), pp 307–314

80. Krivitsky PN, Handcock MS (2008) Fitting position latent cluster models for social networks
with latentnet. J Stat Softw 24(5). http://statnetproject.org

http://statnetproject.org

36 V. Melnykov et al.

81. Krivitsky PN, Handcock MS (2009) latentnet: Latent position and cluster models for
statistical networks. R package version 2.2-2. http://statnetproject.org

82. Lauritzen SL (1996) Graphical models. Clarendon Press, Oxford
83. Law MHC, Topchy A, Jain AK (2005) Model-based clustering with probabilistic constraints.

In: 2005 SIAM international conference on data mining, pp 641–645
84. Lee H, Li J (2012) Variable selection for clustering by separability based on ridgelines.

J Comput Graph Stat 21:315–337
85. Lee S, McLachlan G (2013) On mixtures of skew normal and skew t-distributions. Adv Data

Anal Classif 7:241–266
86. Li J, Zha H (2006) Two-way Poisson mixture models for simultaneous document classifica-

tion and word clustering. Comput Stat Data Anal 50(1):163–180
87. Li J, Ray S, Lindsay B (2007) A nonparametric statistical approach to clustering via mode

identification. J Mach Learn Res 8:1687–1723
88. Lin TI (2009) Maximum likelihood estimation for multivariate skew normal mixture models.

J Multivar Anal 100:257–265
89. Lin TI, Lee JC, Yen SY (2007) Finite mixture modelling using the skew normal distribution.

Stat Sin 17:909–927
90. Liu B (2011) Web data mining: exploring hyperlinks, contents, and usage data, 2nd edn.

Springer, New York
91. Liu C, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with

faster monotone convergence. Biometrika 81:633–648
92. Liu C, Rubin DB, Wu YN (1998) Parameter expansion to accelerate em: the PX-EM

algorithm. Biometrika 85:755–770
93. Lotsi A, Wit E (2013) High dimensional sparse Gaussian graphical mixture model.

arXiv:13083381v3
94. Lu Z, Leen TK (2007) Penalized probabilistic clustering. Neural Comput 19:1528–1567
95. MacEachern SN, Muller P (1998) Estimating mixtures of Dirichlet process models.

J Comput Graph Stat 7:223–238
96. Maitra R (2009) Initializing partition-optimization algorithms. IEEE/ACM Trans Comput

Biol Bioinform 6:144–157. http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.70244
97. Maitra R, Melnykov V (2010) Simulating data to study performance of finite mixture

modeling and clustering algorithms. J Comput Graph Stat 19(2):354–376. doi:10.1198/
jcgs.2009.08054

98. Mardia KV, Jupp PE (2000) Directional statistics. Wiley, New York
99. Markitsis A, Lai Y (2010) The t -mixture model approach for detecting differentially

expressed genes in microarrays. Bioinformatics 26:640–646
100. Martinez-Uso A, Pla F, Sotoca J (2010) A semi-supervised Gaussian mixture model for image

segmentation. In: International conference on pattern recognition, pp 2941–2944
101. Masseran N, Razali A, Ibrahim K, Latif M (2013) Fitting a mixture of von Mises-distributions

in order to model data on wind direction in Peninsular Malaysia. Energy Convers Manag
72:94–102

102. Maugis C, Celeux G, Martin-Magniette ML (2009) Variable selection for clustering with
Gaussian mixture models. Biometrics 65(3):701–709

103. Maugis C, Celeux G, Martin-Magniette ML (2009) Variable selection in model-based
clustering: a general variable role modeling. Comput Stat Data Anal 53(11):3872–3882

104. Maugis-Rabusseau C, Martin-Magniette ML, Pelletier S (2012) Selvarclustmv: variable
selection approach in model-based clustering allowing for missing values. J Soc Fr Stat
153(2):21–36

105. McGrory C, Titterington D (2007) Variational approximations in Bayesian model selection
for finite mixture distributions. Comput Stat Data Anal 51(11):5352–5367. doi:10.1016/j.
csda.2006.07.020, http://www.sciencedirect.com/science/article/B6V8V-4KMYRPW-1/2/42
8635340ac2d823187a0c04164508c5. Advances in Mixture Models

106. McLachlan G (1987) On bootstrapping the likelihood ratio test statistic for the number of
components in a normal mixture. Appl Stat 36:318–324

http://statnetproject.org
http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.70244
http://www.sciencedirect.com/science/article/B6V8V-4KMYRPW-1/2/428635340ac2d823187a0c04164508c5
http://www.sciencedirect.com/science/article/B6V8V-4KMYRPW-1/2/428635340ac2d823187a0c04164508c5

1 Recent Developments in Model-Based Clustering with Applications 37

107. McLachlan GJ, Basford KE (1988) Mixture models: inference and applications to clustering.
Marcel Dekker, New York

108. McLachlan G, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley,
New York

109. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York
110. McLachlan G, Peel G, Basford K, Adams P (1999) Fitting of mixtures of normal and

t -components. J Stat Softw 4:2
111. McLachlan G, Been R, Jones LT (2006) A simple implementation of a normal mix-

ture approach to differential gene expression in multiclass microarrays. Bioinformatics
22:1608–1615

112. McNeil DR (1977) Interactive data analysis. Wiley, New York
113. Melnikov V, Litvinov V, Koppe V, Bobkov V (2008) Sims study of the processes in buffer

solutions of bioorganic systems. Bull Russ Acad Sci Phys 72:929–933
114. Melnykov V (2012) Efficient estimation in model-based clustering of Gaussian regression

time series. Stat Anal Data Min 5:95–99
115. Melnykov V (2013) Challenges in model-based clustering. Wiley Interdiscip Rev Comput

Stat 5:135–148
116. Melnykov V (2013) Finite mixture modelling in mass spectrometry analysis. J R Stat Soc Ser

C 62:573–592
117. Melnykov V (2013) On the distribution of posterior probabilities in finite mixture models

with application in clustering. J Multivar Anal 122:175–189
118. Melnykov V (2014) Merging mixture components for clustering through pairwise overlap.

J Comput Graph Stat (tentatively accepted)
119. Melnykov V (2014) Model-based biclustering of clickstream data. Comput Stat Data Anal

(under minor revision)
120. Melnykov V, Maitra R (2011) CARP: software for fishing out good clustering algorithms.

J Mach Learn Res 12:69–73
121. Melnykov V, Melnykov I (2012) Initializing the EM algorithm in Gaussian mixture models

with an unknown number of components. Comput Stat Data Anal 56:1381–1395
122. Melnykov I, Melnykov V (2014) On k-means algorithm with the use of Mahalanobis

distances. Stat Probab Lett 84:88–95
123. Melnykov V, Michael S (2014) Finite mixture modeling of Gaussian regression time series

with application to dendrochronology. J Classif (under review)
124. Melnykov V, Chen WC, Maitra R (2012) MixSim: an R package for simulating data to study

performance of clustering algorithms. J Stat Softw 51:1–25
125. Meng XL, van Dyk D (1997) The EM algorithm - an old folk song sung to a fast new tune

(with discussion). J R Stat Soc Ser B 59:511–567
126. Meng XL, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm:

a general framework. Biometrika 80(2):267–278
127. Michael S, Melnykov V (2014) Studying complexity of model-based clustering. Commun

Stat Simul Comput (accepted)
128. Moore A (1998) Very fast EM-based mixture model clustering using multiresolution kd-trees.

In: In advances in neural information processing systems 11. MIT Press, Cambridge,
pp 543–549

129. Neal R (2000) Markov chain sampling methods for Dirichlet process mixture models.
J Comput Graph Stat 9:249–265

130. Neal RM, Hinton GE (1993) A new view of the EM algorithm that justifies incremental and
other variants. In: Learning in graphical models. Kluwer, Dordrecht, pp 355–368

131. Newcomb S (1886) A generalized theory of the combination of observations so as to obtain
the best result. Am J Math 8:343–366

132. Neykov N, Filzmoser P, Dimova R, Neytchev P (2007) Robust fitting of mixtures using the
trimmed likelihood estimator. Comput Stat Data Anal 17:299–308

133. Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and
unlabeled documents using EM. Mach Learn 39:103–134

38 V. Melnykov et al.

134. Ortega JM, Rheinboldt WC (1970) Iterative solutions of nonlinear equations in several
variables. Academic, Princeton

135. Pan W, Shen X (2007) Penalized model-based clustering with application to variable selection.
J Mach Learn Res 8:1145–1164

136. Pan W, Shen X, Jiang A, Hebbel R (2006) Semisupervised learning via penalized
mixture model with application to microarray sample classification. Bioinformatics
22(19):2388–2395

137. Papastamoulis P, Iliopoulos G (2010) An artificial allocations based solution to the label
switching problem in Bayesian analysis of mixtures of distributions. J Comput Graph Stat
19:313–331

138. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, Los Altos

139. Pearson K (1894) Contribution to the mathematical theory of evolution. Philos Trans R Soc
185:71–110

140. Peel D, McLachlan G (2000) Robust mixture modeling using the t distribution. Stat Comput
10:339–348

141. Peel D, Whiten W, McLachlan G (2001) Fitting mixtures of Kent distributions to aid in joint
set identifications. J Am Stat Assoc 96:56–63

142. Raftery AE, Dean N (2006) Variable selection for model-based clustering. J Am Stat Assoc
101:168–178

143. Raftery AE, Niu X, Hoff PD, Yeung KY (2012) Fast inference for the latent space network
model using a case-control approximate likelihood. J Comput Graph Stat 21(4):901–919

144. Ray S, Cheng Y (2014) Package Modalclust: hierarchical modal clustering. http://cran.r-
project.org/web/packages/Modalclust

145. Ray S, Lindsay B (2005) The topography of multivariate normal mixtures. Ann Stat
33(5):2042–2065

146. Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with an unknown number
of components (with discussion). J R Stat Soc Ser B 59:731–792

147. Robin S, Bar-Hen A, Daudin JJ, Pierre L (2007) A semi-parametric approach for mixture mod-
els: application to local false discovery rate estimation. Comput Stat Data Anal 51:5483–5493

148. Rodriguez CE, Walker SG (2014) Label switching in Bayesian mixture models: deterministic
relabeling strategies. J Comput Graph Stat 23(1):25–45

149. Saídaoui F (2010) Acceleration of the em algorithm via extrapolation methods: review,
comparison and new methods. Comput Stat Data Anal 54(3):750–766

150. Salter-Townshend M, Murphy TB (2013) Variational Bayesian inference for the latent
position cluster model for network data. Comput Stat Data Anal 57:661–671

151. Sampson SF (1969) Crisis in a cloister. Ph.D. thesis, Department of Sociology, Cornell
University, Ithaca

152. Schwarz G (1978) Estimating the dimensions of a model. Ann Stat 6:461–464
153. Seo B, Kim D (2012) Root selection in normal mixture models. Comput Stat Data Anal

56:2454–2470
154. Shental N, Bar-Hillel A, Hertz T, Weinshall D (2003) Computing Gaussian mixture models

with EM using equivalence constraints. In: Advances in NIPS, A Bradford Book, vol 15
155. Steiner P, Hudec M (2007) Classification of large data sets with mixture models via sufficient

em. Comput Stat Data Anal 51:5416–5428
156. Stuetzle W (2003) Estimating the cluster tree of a density by analyzing the minimal spanning

tree of a sample. J Classif 20:25–47
157. Stuetzle W, Nugent R (2010) A generalized single linkage method for estimating the cluster

tree of a density. J Comput Graph Stat 19:397–418
158. Tanabe A, Fukumizu K, Oba S, Takenouchi T, Ishii S (2007) Parameter estimation for von

Mises-Fisher distributions. Comput Stat 22:145–157
159. Teicher H (1963) Identifiability of finite mixtures. Ann Math Stat 34:1265–1269
160. Vardi Y, Shepp LA, Kaufman LA (1985) A statistical model for positron emission tomography.

J Am Stat Assoc 80:8–37

http://cran.r-project.org/web/packages/Modalclust
http://cran.r-project.org/web/packages/Modalclust

1 Recent Developments in Model-Based Clustering with Applications 39

161. Vicari D, Alfó M (2014) Model based clustering of customer choice data. Comput Stat Data
Anal 71:3–13

162. Vu DQ, Hunter DR, Schweinberger M (2013) Model-based clustering of large networks. Ann
Appl Stat 7:1010–1039

163. Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering
with background knowledge. In: Proceedings of the eighteenth international conference on
machine learning (ICML-2001), pp 577–584

164. Wang B, Titterington D (2006) Convergence properties of a general algorithm for calculating
variational Bayesian estimates for a normal mixture model. Bayesian Anal 1(3):625–650

165. Wang S, Zhu J (2008) Variable selection for model-based high-dimensional clustering and its
application to microarray data. Biometrics 64:440–448

166. Wang H, Zhang Q, Luo B, Wei S (2004) Robust mixture modelling using multivariate
t-distribution with missing information. Pattern Recognit Lett 25:701–710

167. Wei GCG, Tanner MA (1990) A Monte Carlo implementation of the EM algorithm and the
Poor Man’s data augmentation algorithms. J Am Stat Assoc 85(411):699–704

168. Wishart D (1969) Mode analysis: a generalization of nearest neighbor which reduces chaining
effect. In: Cole AJ (ed) Numerical taxonomy. Academic, London, pp 282–311

169. Wolfe JH (1967) NORMIX: computational methods for estimating the parameters of
multivariate normal mixture distributions. Technical bulletin USNPRA SRM 6

170. Xie B, Pan W, Shen X (2010) Penalized mixtures of factor analyzers with application to
clustering high-dimensional microarray data. Bioinformatics 26:501–508

171. Xing EP, Ng AY, Jordan MI, Russell S (2003) Distance metric learning with application to
clustering with side-information. In: Thrun S, Becker S, Obermayer K (eds) Advances in
neural information processing systems, vol 15. MIT Press, Cambridge, pp 505–512

172. Yakowitz SJ, Spragins JD (1968) On the identifiability of finite mixtures. Ann Math Stat
39(1):209–214

173. Ypma A, Heskes T (2002) Categorization of web pages and user clustering with mixtures
of hidden Markov models. In: Proceedings of the international workshop on web knowledge
discovery and data mining WEBKDD’02, Edmonton, pp 31–43

174. Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graphical model.
Biometrika 94:19–35

175. Zhou H, Pan W, X S (2009) Penalized model-based clustering with unconstrained covariance
matrices. Electron J Stat 3:1473–1496

176. Zhu X (2005) Semi-supervised learning literature survey. Technical Report 1530, Computer
Sciences, University of Wisconsin-Madison

Chapter 2
Accelerating Lloyd’s Algorithm for k-Means
Clustering

Greg Hamerly and Jonathan Drake

Abstract The k-means clustering algorithm, a staple of data mining and unsuper-
vised learning, is popular because it is simple to implement, fast, easily parallelized,
and offers intuitive results. Lloyd’s algorithm is the standard batch, hill-climbing
approach for minimizing the k-means optimization criterion. It spends a vast
majority of its time computing distances between each of the k cluster centers and
the n data points. It turns out that much of this work is unnecessary, because points
usually stay in the same clusters after the first few iterations. In the last decade
researchers have developed a number of optimizations to speed up Lloyd’s algorithm
for both low- and high-dimensional data.

In this chapter we survey some of these optimizations and present new ones.
In particular we focus on those which avoid distance calculations by the triangle
inequality. By caching known distances and updating them efficiently with the
triangle inequality, these algorithms can provably avoid many unnecessary distance
calculations. All the optimizations examined produce the same results as Lloyd’s
algorithm given the same input and initialization, so are suitable as drop-in
replacements. These new algorithms can run many times faster and compute far
fewer distances than the standard unoptimized implementation. In our experiments,
it is common to see speedups of over 30–50x compared to Lloyd’s algorithm.
We examine the trade-offs for using these methods with respect to the number of
examples n, dimensions d , clusters k, and structure of the data.

Keywords k-Means • Triangle inequality • Caching • Accelerate • Lloyd’s
algorithm • Clustering • Unsupervised learning

G. Hamerly (�)
Baylor University, 105 Baylor Ave., Waco, TX 76798, USA
e-mail: hamerly@cs.baylor.edu

J. Drake
Hewlett-Packard Company, 14231 Tandem Blvd, Austin, TX 78728, USA
e-mail: jonathan.drake@hp.com

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__2

41

mailto:hamerly@cs.baylor.edu
mailto:jonathan.drake@hp.com

42 G. Hamerly and J. Drake

2.1 Introduction

The k-means clustering algorithm is a very popular tool for data analysis and
learning. At its heart is an easily-understood optimization problem: given a set of
data points (in some vector space), try to position k other points (called ‘centers’)
at locations that minimize the (squared) distance between each point and its closest
center. While it is popular and easy to implement, the naive implementation for
solving the problem is inefficient, wasting a lot of processing time on unnecessary
and redundant computations.

This chapter discusses simple geometric methods, based on the triangle inequal-
ity and keeping cached bounds on computed distances, to reduce wasted computa-
tion and build much more efficient algorithms that give exactly the same output.
We point out that all the accelerated algorithms we investigate in this chapter
give exactly the same answer as Lloyd’s standard batch algorithm, given the same
initialization. In our experiments, it is common to see speedups of over 30–50x
compared to Lloyd’s algorithm.

2.1.1 Popularity of the k-Means Algorithm

The k-means algorithm is very widely used. In [40], it is chosen as one of the
top ten data mining algorithms. It is implemented in many commercial and open-
source statistical data analysis software packages, including MATLAB, SAS, Stata,
SPSS, R, and Weka to name a few. A simple search for ‘k means clustering’ on
Google Scholar yields over 2.1 million results, which is greater than the number
of results for ‘neural network’, ‘support vector machine’, ‘nearest neighbor’, or
‘logistic regression’.

Many applications benefit from using k-means. Just a few are:

• clustering the pixels of an image for image color quantization [7, 19],
• post-processing to decide the memberships in spectral clustering [29],
• selecting the codewords for vector quantization, enabling lossy compression of

audio or image data [23],
• image segmentation [14, 19],
• unsupervised feature learning in single-layer neural networks [9],
• identifying self-similar behaviors in dynamic program execution for structured

sampling of the behaviors [36],
• finding a good initialization for a more costly learning method [6], and
• finding good locations for basis functions in a radial basis function network [39].

Such a widely-used algorithm deserves to be well-studied and efficiently imple-
mented.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 43

2.1.2 The Standard k-Means Algorithm does
a Lot of Unnecessary Work

The k-means algorithm is popular due to its clarity, simplicity, and intuitive
optimization function. As a result, it has been implemented, albeit inefficiently,
many times over. We investigated the source code of the k-means implementations
for the software packages ELKI, graphlab, Mahout, MATLAB, MLPACK, Octave,
OpenCV, R, SciPy, Weka, and Yael, and found that none of them use the triangle
inequality bound acceleration techniques that we discuss in this chapter, though
they would benefit from doing so. Of those, the ones which provide scalable
implementations primarily depend on some form of parallel processing, which are
compatible with the acceleration methods presented here.

The standard methods for solving the k-means optimization problem are Lloyd’s
algorithm [24] (a batch algorithm, also known as Lloyd-Forgy [13]), as well as
MacQueen’s algorithm [26]. Each algorithm spends the vast majority of its time
computing distances between the clustered points and the current cluster centers.
However, much of the time, these distance calculations are unnecessary, wasted
computation. In this study we focus on improving Lloyd’s algorithm, which is
widely used.

The basic reason why the standard batch methods for optimizing k-means are
inefficient is because in each iteration they must identify the closest center for each
clustered point. To do this, the methods naively compute all nk distances between
each of the n clustered points and each of the k centers. After each iteration, the
centers move and these distances may all change, requiring recomputation. But
typically the centers don’t move much, especially after the first few iterations. Most
of the time the closest center in the previous iteration remains the closest center.
Thus, keeping track of the closest center for each clustered point is made much
more efficient with some caching. When the closest center doesn’t change, ideally
we shouldn’t need to compute the distance between that point and any cluster center.
And even when the closest center for a point changes, it might be possible to avoid
computing the distance from that point to all centers, instead looking only at a few
centers that are guaranteed to be closer to that point than all other centers.

2.1.3 Previous Work on k-Means Acceleration

There is a healthy line of research on accelerating learning algorithms, which goes
hand in hand with accelerating data retrieval algorithms such as k-nearest neighbor
search. The primary methods of acceleration are: algorithmic improvements, paral-
lelization (including threading, multiprocessing, and distributed computation), and
approximation. In this chapter, we focus on algorithmic improvements which give
exact answers.

44 G. Hamerly and J. Drake

2.1.3.1 Algorithmic Improvements

Pelleg and Moore [31] incorporated the popular k-d tree data in the task of
accelerating the k-means method (note that the k in k-d tree is a naming clash
with the k in k-means). Kanungo et al. [19] developed a similar algorithm. Both
algorithms use the k-d tree to structure the data to be clustered. By restructuring the
search for each point’s closest center, many distance calculations can be avoided.
While these approaches are excellent in low dimension, k-d trees perform poorly in
dimensions much greater than 8.

Moore [28] developed the anchors hierarchy, a new type of spatial data structure
based on metric trees. Applying the triangle inequality, this structure organizes
the data by enclosing it in hierarchically organized anchors with associated radii.
The anchors hierarchy allows the k-means algorithm to avoid many provably
unnecessary distance calculations, even in high dimension. We discuss this structure
more in Sect. 2.3.2.

Elkan [12] started a line of research which pairs the triangle inequality directly
with cached distance bounds to avoid unnecessary point-center distance calculations.
Avoiding complicated hierarchical data structures and preprocessing, his algorithm
simply caches O.nk/ distance bounds to prune distance calculations. It uses
the triangle inequality to efficiently updates the bounds each time centers move.
Hamerly [15] reduced this overhead to O.n/ bounds, which makes it much faster
in practice for low and medium-dimension datasets. Drake [11] bridged the gap
between these two approaches by using an adaptive number of distance bounds,
O.nb/ where b < k and can be learned online.

Other minor algorithmic improvements have also helped accelerate the standard
k-means algorithm. Because k-means repeatedly seeks the minimum distance
between a point and all k centers, using partial distortion search (PDS, also
called partial distance search) [5] and some loop unrolling permits some distance
calculations to be cut short without looking at all dimensions. Mean-distance-
ordered partial search (MPS) [33] draws a connection between the squared distances
and the squared difference of vector sums to help eliminate candidate k-means
centers. Pan et al. [30] eliminates unlikely centers using the first and second
moments of a vector and portions of the vector.

DHSS (dynamic hyperplanes shrinking search) [37] eliminates unlikely can-
didate centers by transforming the input space (e.g. using principal components
analysis) and then using the new canonical dimensions to bound the closest centers
to a point. It is unclear if this method will work well in higher-dimension spaces.

Several researchers, beginning with Kaukoranta et al., identified that some
clusters found by Lloyd’s algorithm are ‘static’ over some iterations. In other
words, no points join or leave the cluster from one iteration to the next. These
static clusters are easily identified, as their centers do not move. Clusters which
do change are called active. This information can be used to reduce the number
of candidate centers for some points [20–22]. It’s worth noting that the triangle
inequality methods which are the focus of this chapter implicitly exploit the same
information and enjoy similar benefits.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 45

2.1.3.2 Parallelization

Several machine learning packages have been constructed with the intent of improv-
ing the scalability and speed of the learning algorithms, making them applicable to
large real-world problems. Packages like graphlab [25], Yael [41], and Mahout [2]
provide scalable implementations of many machine learning algorithms, including
k-means. They use different approaches: Yael focuses on low-level multithreaded
optimized implementations, Mahout provides machine learning on a map-reduce
infrastructure, and graphlab focuses on graph-structured algorithms and multi-core
processing.

2.1.3.3 Alternative Heuristic Methods

Lloyd’s algorithm is a gradient descent heuristic algorithm for minimizing k-means
distortion criterion. While it is popular and is the focus of this chapter, there are
alternative methods which also aim to reduce the k-means distortion using different
heuristics.

Agarwal et al. [1] use subsamples of the whole dataset, called core-sets, and
optimize a solution based on the sample. This algorithm can be much faster in
practice in low-dimensional data, but can be slow and find poor solutions in higher
dimensions.

Hartigan and Wong [17] suggested an algorithm for optimizing the k-means
distortion which considers the clustered points one by one. Each time a point
changes membership, the algorithm updates the affected center locations.

Sculley [35] developed a method that is a hybrid of stochastic gradient descent
(as proposed by Bottou and Bengio [6]) and batch k-means. It operates on small
samples rather than individual examples. The resulting algorithm is less susceptible
to noise caused by individual examples, yet still quite fast.

Each of these alternative algorithms can be quite fast, much faster than Lloyd’s
batch algorithm. The tradeoff is that they tend to produce different results. We view
these as suitable alternatives to Lloyd’s algorithm, but focus on accelerating Lloyd’s
algorithm due to its popularity. Some of these algorithms, especially those which
repeatedly make nearest-center queries for the same points, may be compatible with
the acceleration methods we discuss here.

2.2 Cluster Distortion and Lloyd’s Algorithm

When clustering with k-means, we are trying to minimize the distortion, or sum
of squared errors, between the points and their assigned centers. We can improve
the distortion in two ways: by changing the points’ cluster assignments and moving
the cluster centers. Specifically, given a fixed set of points X , we are attempting to
minimize the distortion function

46 G. Hamerly and J. Drake

Table 2.1 Terms that are used frequently in this chapter

Name and type Description

d 2 N Dimension of points to cluster and cluster centers.

n 2 N Number of points to cluster.

k 2 N Number of cluster centers.

X � R
n�d Set of points to cluster, indexed as x.i/ for 1 � i � n.

C � R
n�d Set of centers, indexed as c.j / for 1 � j � k.

n.j / 2 R The number of points that are currently assigned to cluster j .

N D fi 2 Nj1 � i � ng Indexes of the points in X .

K D fj 2 Nj1 � j � kg Indexes of the points in C .

a W N ! K Index of assigned (closest) center for each point.

u W N ! R Upper bound on the distance between each point and its
assigned center.

` W N �K ! R Lower bound on the distance between each point and each
center.

s W K ! R Half the distance between a center and its current closest other
center.

J.X;C / D
X

i2N
kx.i/ � c.a.i//k2 (2.1)

by choosing the best set of clusters C (Table 2.1).
Lloyd’s batch algorithm for minimizing the distortion has three basic steps,

which are stated here and in slightly more detail in Algorithm 1.

1. Initialize the centers.
2. Until the algorithm converges:

a. Assign each point to its currently closest cluster center.
b. Move each center to the mean of its currently-assigned centers.

Step 1 occurs only once, while steps 2(a) and 2(b) alternate until the algorithm
converges. Convergence is guaranteed due to the fact that steps 2(a) and 2(b) both
reduce J.X;C /, and there is a finite number of ways to partition the n points among
k clusters [6].

Much has been written on initializing the centers for k-means [8]. Researchers
have used the first several examples [6], chosen k points fromX at random [16], and
used the furthest-first method [18]. The most effective current method, theoretically
and in practice, is the k-means++ initialization [3], which randomly selects a good
initialization with high probability, using something akin to furthest-first. In all our
experiments, we use k-means++ for initialization.

The remainder of this paper is primarily concerned with optimizing step 2(a) of
the algorithm (finding the closest center for each point). The naive implementation
of Lloyd’s algorithm spends the majority of its time here, and much of the
computation done here is unnecessary; the information needed for this step can be
derived using some caching and geometry.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 47

Algorithm 1 Lloyd’s k-means algorithm—the standard algorithm for minimizing
J.X;C /. Like other algorithms presented in this chapter, this algorithm’s pseu-
docode is presented simply, without details on efficiency optimizations used in real
implementations

procedure LLOYD(X;C)
while not converged do

for all i 2 N do {Find the closest center to each x.i/.}
a.i/ 1

for all j 2 K do
if kx.i/� c.j /k < kx.i/� c.a.i//k then
a.i/ j

for all j 2 K do {Move the centers}
move c.j / to the mean of fx.i/ja.i/ D j g

Step 2(b) can be optimized easily by caching sufficient statistics for each cluster:
the vector sum of the points assigned to the cluster, and the number of points
assigned to the cluster. Keeping these is inexpensive and avoids a sum over all
points for each iteration. Each time a point changes cluster membership, the relevant
sufficient statistics are updated. After the first few iterations, most points remain
in the same cluster for many iterations. Thus these sufficient statistics updates
become much cheaper than a sum over all points. All the algorithms we implement
for this study use this technique. Thus, it is not explicitly included in algorithmic
pseudocode, for clarity.

2.2.1 Analysis of Lloyd’s Algorithm

The running time of Lloyd’s algorithm for k-means is O.wnkd/ for w iterations,
k centers, and n points in d dimensions. For a fixed dataset and k, the number
of iterations w will vary depending on the initialization. In fact, w may be
superlinear with respect to n, even exponential in the worst case [38]. However,
when considering less extreme cases, Lloyd’s algorithm has polynomial smoothed
complexity [4]. That is, w is polynomial in n and 1=	 (where 	 is the amount of
perturbation allowed on a weakened adversary’s challenge dataset).

When viewed as a gradient descent algorithm, Bottou and Bengio [6] showed
that (from a given initialization) the distortion converges in Lloyd’s batch algorithm
at superlinear speed. This is because the variations of the second derivative of the
cost function are bounded. Thus, the algorithm is minimizing the distortion in a way
that is equivalent to Newton’s method.

In this chapter we look at ways to accelerate Lloyd’s algorithm. Given that
Lloyd’s algorithm is so widely used, the goal is to accelerate the exact algorithm
(without any approximation), so that the resulting accelerated algorithm can be used

48 G. Hamerly and J. Drake

anywhere Lloyd’s algorithm is used. The accelerations we look at primarily work
by avoiding many of the nk interactions between n clustered points and k cluster
centers.

2.2.2 MacQueen’s Algorithm

MacQueen [26] described a method similar to Lloyd’s algorithm, but which updates
the location of each affected cluster center whenever a point changes cluster
membership. While Lloyd’s algorithm moves the centers once per pass over the
entire dataset, MacQueen’s algorithm will move the centers (by smaller amounts)
far more often. Thus, Lloyd’s algorithm could be considered a ‘batch’ algorithm
whereas MacQueen’s is more ‘online’. As Lloyd’s algorithm is more popular in
practice, and easier to accelerate since the centers move less frequently, we focus
primarily on it in this chapter.

2.3 Tree Structured Approaches

Tree structures are effective methods for indexing spatial data in retrieval and
learning algorithms. Two approaches in particular, k-d trees and the anchors
hierarchy, have shown success in accelerating the k-means algorithm. We review
these methods here.

2.3.1 Blacklisting and Filtering Centers with k-d Trees

Pelleg and Moore [31] and Kanungo et al. [19] proposed similar methods for
accelerating k-means by constructing and using a k-d tree.1 A k-d tree is a binary
tree that recursively partitions the space of the data it’s constructed on using
separating hyperplanes (typically axis-aligned). In this discussion, it is applied to the
data to be clustered. After construction, the tree’s structure plus sufficient statistics
kept at each tree node can be used to eliminate point-center calculations. Pelleg
and Moore call this approach ‘blacklisting’ the centers, while Kanungo et al. call it
‘filtering’ the centers.

Pelleg and Moore’s blacklisting algorithm proceeds as shown in Algorithm 2.
Initially it constructs a k-d tree on the data that is to be clustered. For each iteration

1Note that the k in k-d trees and the k in k-means are two different (clashing) variable names.
In k-means, the k refers to the number of centers/clusters sought; in k-d trees k refers to the
dimension of the data the structure is built on.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 49

Algorithm 2 Pelleg and Moore’s Blacklisting k-means algorithm
procedure BLACKLISTING(X;C)

construct k-d tree T on X
while not converged do

Update(T .root, C)
move centers to the mean of their assigned points

procedure UPDATE(h; C)
if h is a leaf then

for each data point x in h do
find the closest center to x and update that center’s counters

else
compute the distance between h and each center in C
remove from C any dominated centers
if only one center c0 remains in C then

update the counters for c0 using the data in h
else

call Update(h.left, C)
call Update(h.right, C)

of k-means, the algorithm performs a traversal of the tree, searching for regions of
the tree that are ‘owned’ by a single center.

The traversal starts with all k centers at the root of the k-d tree. Then it recursively
descends the tree, and at each node attempts to prove that there is one center
that ‘dominates’ (is closer to) one or more of the other centers, with respect to
the hyperrectangle enclosing the k-d tree node. If so, it eliminates the dominated
center(s). If only the dominating center remains, then the recursion stops and all
points below that node in the k-d tree are assigned to that center. If multiple centers
remain, it recursively continues its search on both child nodes. If it reaches a leaf, it
performs a search of the data at the leaf to assign them to the remaining centers.

By using sufficient statistics kept at each internal node of the tree, identifying
a dominating center early in the recursion (close to the root) allows the algorithm
to skip not only many distance calculations but also many vector additions. For k-
means, the sufficient statistics for a node are the number of points at that node or
below, and the vector sum of those points.

While k-d trees can work very well in practice, the following limitations make
their use less desirable, especially in high dimension:

• They are efficient only in low dimension—the running time has an exponential
dependence on the dimension of the data [27]. If the number of points in the
structure are significantly (exponentially) larger than the dimension of the data,
k-d trees tend to be efficient relative to linear lookups, but for even moderate
dimensions in practical applications they become too slow. Empirically they
become too slow (compared to simple linear search) somewhere between 8 and
10 dimensions [28].

• They require extra memory for the tree structure and sufficient statistics. The
extra memory required is on the order of the original dataset.

50 G. Hamerly and J. Drake

• When clustering, we must construct the k-d tree in advance, which means that
we cannot start clustering until this is done.

• A k-d tree is not designed for efficient updates (such as adding new points
or removing old points). If many updates are to be done, the tree should be
reconstructed.

2.3.2 Anchors Hierarchy

Moore proposed the anchors hierarchy as a tree-like geometric structure for spatial
datasets [28]. The tree is built ‘middle-out’ by choosing

p
n initial points known

as anchors, and then merging them (to form the top of the tree) and subdividing
them (to form the leaves). Each anchor maintains a list of the points for which
it is the closest anchor, sorted by their distances from the anchor. Using the
triangle inequality, adding additional anchors can be done efficiently. Moore showed
that the anchors hierarchy is effective at eliminating many distance computations
in k-means. However, Elkan showed it is less effective at eliminating distance
computations than his method for even moderate values of k than his method [12].

While tree-structured acceleration methods of the k-means algorithm are inter-
esting and often useful, they are often slower and less effective in practice than the
methods we turn to now. One reason pointed out by Elkan is that tree-structured
methods must build a static structure before clustering begins, without knowledge
of the number of clusters. Because the number of clusters is not fixed, and their
positions change during clustering, static trees are less able to reduce the number of
k-means distance calculations.

2.4 Triangle Inequality Approaches

The triangle inequality is a simple but very powerful tool from geometry. If a; b; c 2
R
d , then the triangle inequality states that

ka � ck � ka � bk C kb � ck (2.2)

for Euclidean vector norm kak D paT a. Intuitively, this means that the length of
line segment .a; c/ is at most the sum of the lengths of line segments .a; b/ and
.b; c/. In other words, the shortest path between two points a and c is a straight line;
taking a path that goes through an intermediate point b cannot reduce the distance.

The triangle inequality is applicable in the k-means algorithm in multiple ways.
Generally, we desire to use it to prove that some center must be closer to a point than
all other centers. Ideally, we wish to do this with as little computation as possible.
For a point x and two centers c and c0, here are some of the different ways the
triangle inequality can be used in k-means:

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 51

Table 2.2 This table shows different acceleration methods that use distance bounds, sorting, and
the triangle inequality in various k-means algorithms

Accelerations used

Algorithm 1 2 3 4 5 6

Lloyd

Compare-means [32] X

Sort-means [32] X X

Elkan [12] X X X k

Hamerly [15] X X 1

Drake [11] X X b < k

Annular (this chapter) X X 1 X

Heap (this chapter) X X 0

1. Distance from a center to its
closest other center

2. Distance from a center to all other
centers

3. Upper bound on point-center
distances

4. Lower bound on point-center
distances

5. For each center, sort all centers by
distance from it

6. Sort all centers by their vector
norm

The column numbers correspond to the list on the right, which lists contexts where the triangle
inequality can help k-means avoid point-center distance calculations. Please see the algorithm
descriptions for more details. Column 4 lists the number of lower bounds used per point

1. To prove that c0 is closer to x than c, given only distances kc0 � xk and kc0 � ck.
2. To prove that c0 is closer to x than c, given only norms kxk and kck and distance
kx � c0k.

3. To maintain an upper bound on kx � ck when c is moving.
4. To maintain a lower bound on kx � ck when c is moving.

Table 2.2 shows the ways the triangle inequality is used in many of the algorithms
described in this chapter.

2.4.1 Using the Triangle Inequality for Center-Center
and Center-Point Distances

Phillips [32] demonstrated two ways to use the triangle inequality to accelerate k-
means. Both of them use the triangle inequality to prove that centers that are far
from a point’s assigned center are also far from the point, and therefore can be
excluded from distance computations with that point. He called his two algorithms
compare-means and sort-means.

Compare-means uses the triangle inequality to prove that if center c0 is close to
point x, and some other center c is far away from another center c0, then c0 must be
closer than c to x. Given the already-computed distances kx� c0k and kc� c0k, and
applying the triangle inequality we can show:

kc � c0k � kx � ck C kx � c0k By the triangle inequality.

kc � c0k � kx � c0k � kx � ck

52 G. Hamerly and J. Drake

Thus if we also know that 2kx � c0k � kc � c0k (which is trivial to calculate given
the distances are already known), we can show

2kx � c0k � kx � c0k � kx � ck
kx � c0k � kx � ck

which proves that c is not closer than c0 to x, without measuring the distance kx �
ck. Phillips’ compare-means algorithm uses this inequality in the innermost loop
of k-means to prove that some point-center distances need not be computed. The
algorithm computes and caches the center-center distances each time the centers
move (once per iteration).

Sort-means computes a k � k matrix of center-center distances each time the
centers move, and then sorts each row of matrix by distance. This gives each center
a ranking of the other centers by distance. Whenever the algorithm wants to find
the closest center for some point x, it searches the centers in the order of increasing
distance from its currently-assigned center c. Then, if it can ever prove that the
distance kc�c0k to some other center c0 is greater than twice the distance kx�ck, it
can stop searching. Thus sort-means uses the same inequality as compare-means, but
it searches the centers in a different order. Because of the search order it may avoid
examining some far-away centers. Of course, sort-means has the extra overhead of
sorting the center-center distance matrix each time the centers move.

2.4.2 Maintaining Distance Bounds with the Triangle
Inequality

We can use the triangle inequality to cheaply maintain an upper bound on the
distance between points, after one point has moved. Suppose x; c; c0 2 R

d , where x
is a point to cluster, c is a cluster center and c0 is its new position after an iteration
of k-means. If we know kx�ck (from a previous iteration of k-means) and kc�c0k
(calculated when we move the cluster centers), we can provide an upper bound on
kx � c0k without explicitly calculating its exact value:

kx � c0k � kx � ck C kc � c0k: (2.3)

Intuitively, this upper bound assumes that in the worst case, c moved directly away
from x a distance of kc � c0k, along the vector x � c.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 53

x

c

c

Fig. 2.1 Using the triangle inequality to bound the distance between x and c0, the new location
of the center c. Assume the distance kx � ck has been calculated. It is illustrated by the solid
circle centered on x and going through c. After c moves to c0, we measure kc � c0k (illustrated
by the dashed circle centered on c). The upper and lower bounds on kx � c0k are then given by
kx � ck � kc � c0k � kx � c0k � kx � ck C kc � c0k, which are illustrated by the two dashed
circles centered on x. Thus, c0 must be inside the region bounded by these two dashed circles

Another way to apply the triangle inequality is to form a lower bound on the
distance between two points. Again considering x; c, and c0 as a point to cluster and
the old and new positions of a center, we can form the lower bound on kx � c0k:

kx � ck � kx � c0k C kc � c0k (2.4)

kx � ck � kc � c0k � kx � c0k: (2.5)

Similar to the upper bound, this distance bound provides a lower bound that assumes
the worst case—that c moved directly toward x a distance of kc � c0k, along the
vector x � c.

Further, the upper (lower) bound can be updated correctly and efficiently in
subsequent k-means iterations by adding (subtracting) the distance moved by a
center each time it moves. This allows us to maintain both upper and lower distance
bounds between a point and a moving center without explicitly calculating distances
(Fig. 2.1).

54 G. Hamerly and J. Drake

2.4.3 Elkan’s Algorithm: k Lower Bounds, k2 Center-Center
Distances

Elkan [12] introduced an algorithm which uses the triangle inequality multiple
ways to avoid distance calculations in the k-means algorithm (see Algorithm 3
for pseudocode). For each clustered point x.i/, the algorithm employs one upper
bound and k lower bounds. The upper bound is on the distance between x.i/ and
its closest center c.a.i//; that is, u.i/ � kx.i/ � c.a.i//k. Each lower bound
`.i; j / � kx.i/ � c.j /k bounds the distance between x.i/ and center c.j /.
The upper (lower) bounds may be efficiently updated by adding (subtracting) the
distance moved by each center after each k-means iteration.

Each time the centers move, Elkan’s algorithm calculates and caches the distance
between each pair of centers, as well as half the distance between each center c.j /
and its closest other center as s.j /. When it is true, the test u.i/ � s.a.i// allows
Elkan’s algorithm to avoid the innermost loop for x.i/. This is because no other
center could possibly be closer to x.i/ than its currently-assigned center.

When Elkan’s algorithm reaches the innermost loop, it may want to determine
whether c.j / is closer to x.i/ than the currently assigned center. However, if either
u.i/ � `.i; j / or u.i/ � kc.a.i// � c.j /k=2, then this calculation is unnecessary,
because it is not possible for c.j / to be the closest center. The latter test uses the
cached center-center distances.

2.4.4 Hamerly’s Algorithm: 1 Lower Bound

Hamerly [15] altered Elkan’s algorithm by reducing the number of bounds used (see
Algorithm 4). Hamerly’s algorithm uses the same upper bound u.i/ for each point
x.i/—for the distance between that point and its closest center c.a.i//. But instead
of k lower bounds, it uses only one lower bound per point, `.i/. This lower bound
does not bound the distance from x.i/ to any particular cluster center. Instead, it
represents the minimum distance that any center—except for the closest—can be to
that point.

Consider the case where u.i/ � `.i/. If this is true, it is not possible for any center
to be closer to x.i/ than its assigned center. Thus, determining the assignment for
x.i/ does not require knowing any exact distances, and the algorithm can skip the
innermost loop that computes the distances between x.i/ and the k centers.

However, if `.i/ < u.i/ then it might be that the closest center for x.i/
has changed. In this case, Hamerly’s algorithm first tightens the upper bound
by computing the exact distance u.i/ kx.i/ � c.a.i//k. If this reduces u.i/
significantly, then possibly u.i/ � `.i/ and the algorithm can skip the innermost
loop. If not, then it must compute the distances between x.i/ and all k cluster
centers. Keeping track of the closest and second-closest allows the algorithm to

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 55

Algorithm 3 Elkan’s algorithm—using k lower bounds per point and k2 center-
center distances

procedure ELKAN(X;C)
a.i/ 1; u.i/ 1;8i 2 N {Initialize invalid bounds, all in one cluster.}
`.i; j / 0;8i 2 N; j 2 K
while not converged do

5: compute kc.j /� c.j 0/k;8j; j 0 2 K
compute s.j / minj 0

6Dj kc.j /� c.j 0/k=2;8j 2 K
for all i 2 N do

if u.i/ � s.a.i// then continue with next i
r True

10: for all j 2 K do
z max.`.i; j /; kc.a.i//� c.j /k=2/
if j D a.i/ or u.i/ � z then continue with next j
if r then

u.i/ kx.i/� c.a.i//k
15: r False

if u.i/ � z then continue with next j
`.i; j / kx.i/� c.j /k
if `.i; j / < u.i/ then a.i/ j

for all j 2 K do {Move the centers and track their movement}
20: move c.j / to its new location

let ı.j / be the distance moved by c.j /
for all i 2 N do {Update the upper and lower distance bounds}

u.i/ u.i/C ı.a.i//
for all j 2 K do

25: `.i; j / `.i; j /� ı.j /

find the correct assignment, compute a tight `.i/ (for the second-closest center),
and possibly tighten u.i/ (if the assignment happens to change).

Since u.i/ is the same as in Elkan’s algorithm, it is updated the same way
whenever the centers move. As the lower bound `.i/ is different, it is updated
differently. When the centers move, the algorithm also tracks the maximum distance
ı moved by any center. Then by the triangle inequality, the lower bound for each
point can be updated as `.i/ `.i/ � ı. This is correct since `.i/ represents the
closest distance between any (non-assigned) center and x.i/, and no center could
have moved closer toward x.i/ than the distance ı. In fact, a small optimization is
possible. For those points assigned to the furthest-moving center, their lower bounds
may be reduced by the distance moved by the second-furthest-moving center.

Why does Hamerly’s algorithm not track the identity of the second-closest
center? Knowing its identity would allow the algorithm to more efficiently tighten
`.i/ (avoiding the innermost loop over all k centers). The reason is that the second-
closest center’s identity can change as the centers move, and without looking at
all centers it can’t be proved that the second-closest center remains the same over
multiple iterations.

Hamerly’s algorithm has several efficiency tradeoffs compared with Elkan’s
algorithm. With fewer lower bounds, Hamerly’s algorithm uses less memory.

56 G. Hamerly and J. Drake

Algorithm 4 Hamerly’s algorithm—using 1 lower bound per point
procedure HAMERLY(X;C)
a.i/ 1; u.i/ 1; `.i/ 0;8i 2 N {Initialize invalid bounds, all in one cluster.}
while not converged do

compute s.j / minj 0

6Dj kc.j /� c.j 0/k=2;8j 2 K
5: for all i 2 N do

z max.`.i/; s.a.i///
if u.i/ � z then continue with next i
u.i/ kx.i/� c.a.i//k {Tighten the upper bound}
if u.i/ � z then continue with next i

10: Find c.j / and c.j 0/, the two closest centers to x.i/, as well as the distances to each.
if j 6D a.i/ then
a.i/ j

u.i/ kx.i/� c.a.i//k
`.i/ kx.i/� c.j 0/k

15: for all j 2 K do {Move the centers and track their movement}
move c.j / to its new location
let ı.j / be the distance moved by c.j /

ı0 maxj2K ı.j /

for all i 2 N do {Update the upper and lower distance bounds}
20: u.i/ u.i/C ı.a.i//

`.i/ `.i/� ı0

It spends less time checking bounds (in the innermost loop) and updating bounds
(when centers move). Having the single lower bound allows it to avoid entering
the innermost loop more often than Elkan’s algorithm. On the other hand, Elkan’s
algorithm computes fewer distances than Hamerly’s, since Elkan’s has more bounds
to prune the required distance calculations. Also, Hamerly’s algorithm works better
in low dimension than in high dimension. Its single lower bound reduces by the
maximum distance moved by any center, and in high dimension all centers tend to
move a lot due to the curse of dimensionality.

2.4.5 Drake’s Algorithm: 1 < b < k Lower Bounds

Elkan’s and Hamerly’s algorithms keep, respectively, k bounds and one lower bound
per clustered point. Drake and Hamerly [11] bridged the gap between these two
extreme values by using 1 < b < k lower bounds on the b closest centers to each
point. The value of b can be selected in advance or adaptively learned while the
algorithm runs. Drake’s algorithm uses one upper bound per clustered point. Thus,
Drake’s algorithm uses .b C 1/n total distance bounds.

For a given point, the first b�1 lower bounds represent the minimal distance from
the point to its b � 1 closest centers, excluding the currently assigned center. The

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 57

last (bth) lower bound is treated specially, and we will discuss it later. Since k-means
is only concerned with the closest center, we can avoid distance calculations to far-
away centers if we can use the bounds to prove that the closest is one of the b closest
(the current assigned center plus the b � 1 next closest centers).

There are two minor complications that arise from keeping b bounds per point:

• For each of the b lower bound we must keep the identity of the associated
center. In Hamerly’s algorithm, the identity of the lower-bound center is not kept.
Elkan’s algorithm keeps the lower bounds in the same order as center indexes,
implicitly giving the bound-center association. Keeping a center label for each
bound increases the algorithm’s memory footprint.

• In order to make the algorithm efficient, the lower bounds should be kept in sorted
order by distance from the point. Sorting incurs overhead each time the centers
move.

Nevertheless, Drake and Hamerly show that this algorithm works well in practice
and can be faster than both Elkan and Hamerly’s algorithms under certain condi-
tions.

The first b � 1 lower bounds for a point represent the lower bounds to the
associated points that are ranked 2 through b in increasing distance from the point.
The last lower bound (number b, furthest from the center) represents something a
bit different. Instead of being associated with one particular center, it represents the
lower bound on all the furthest k�b centers. This is much like Hamerly’s one lower
bound, but only for the outermost centers.

When searching for the closest center to a given point, we only need to search
the centers whose corresponding lower bounds are less than the upper bound for
that point. Moving from the center with the smallest lower bound outward, we can
hopefully stop searching after just a few comparisons. For each lower-upper bound
comparison that fails, we tighten the lower (and upper) bounds as necessary. If we
reach the last bound and still have not proven that any of the b tracked centers are
the closest, then we must search all remaining k � b centers.

At the end of each k-means iteration, we must adjust the lower bounds. Each is
reduced by the amount its associated center moved. The outermost bound should
be reduced by the maximum amount moved by any of the k � b outermost centers.
However, in practice it is far more efficient, though not as tight, to reduce the last
bound by the largest distance moved by any center, not just the furthest k�b centers.
When doing this, some bound might ‘collapse’ on (i.e. become smaller than) a lower
bound for a supposedly closer center. When this happens, we reduce each bound for
closer centers so they are at most the value that is collapsing.

The number of lower bounds b used by Drake’s algorithm represents a tradeoff.
Increasing b incurs more computational overhead to update the bound values and
sort each point’s closest centers by their bound, but it is also more likely that one
of the bounds will prevent searching over all k centers. Drake’s algorithm uses a
simple way to determine a ‘good’ value for b adaptively. Starting with a large value
for b, it may choose to reduce b each iteration based on which bounds are being

58 G. Hamerly and J. Drake

Algorithm 5 Drake’s algorithm—using b lower bounds per point
procedure DRAKE(X;C; b)
a.i/ 1; u.i/ 1;8i 2 N {Initialize invalid bounds, all in one cluster.}
`.i; j / 0;8i 2 N; j 2 f1; : : : ; bg
while not converged do

5: m b

for all i 2 N do
j arg max1�j 0

�b u.i/ � `.i; j 0/

if j < b then {The bounds pruned the outer centers.}
compute distances and reorder the j centers closest to x.i/

10: else if j D b or `.i; b/ < u.i/ then {Bounds were ineffective.}
compute distances from x.i/ to all centers and sort the b closest

m max.m; j /
b max.k=8;m/ {Reduce b if possible}
for all j 2 K do {Move the centers and track their movement}

15: move c.j / to its new location
let ı.j / be the distance moved by c.j /

ı0 maxj2K ı.j /

for all i 2 N do {Update the upper and lower distance bounds}
u.i/ u.i/C ı.a.i//

20: `.i; b/ `.i; b/� ı0

for j D b � 1 down to 1 do
let c.z/ be the center that is the j th closest to x.i/
`.i; j / min.`.i; j /� ı.z/; `.i; j C 1//

used. If the algorithm is able to stop searching after only b0 < b lower bounds (over
the entire dataset), then it reduces b down to b0. Experimentally, Drake determined
that for k > 8, k=8 is a good floor for b.

2.4.6 Annular Algorithm: Sorting the Centers by Norm

Hamerly’s algorithm employing one lower bound is effective at avoiding many
distance computations in low dimensional spaces. But whenever the lower and upper
bounds for a point cross (i.e. `.i/ < u.i/), the algorithm must compute the distance
between the point and all k centers. This search determines the two closest centers
and tightens the upper and lower bounds. Similarly, when the last lower bound in
Drake’s algorithm fails to prune the search, it must search over all centers (it has
already searched over b centers, and it must continue searching over the remaining
k � b centers represented by the last lower bound).

In this subsection we describe an efficient method that can prune such searches
between a point x and all k centers. By sorting the centers by their vector norms,
we can eliminate from consideration many centers whose norms are too large or too
small to be closest to x. We can do this with only the knowledge of the norm of x,

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 59

the norms of all k centers, and (an upper bound on) the distance between x and a
(hopefully closeby) center.

Consider ordering the k cluster centers by their vector norms, k � k. This order
may change at most once per iteration of k-means, and is inexpensive to compute
and maintain. This ordering affords a novel way to structure the search for a point’s
closest center and potentially avoid examining all centers.

For a point x having norm kxk, we can use the norm-ordering of the centers and
the triangle inequality to prune the search over all centers. Assume that we know
the exact distance kx � c0k between x and a reasonably close center c0 (such as
its currently assigned center). Then consider a center c that is actually closer to x.
Starting with two different statements from the triangle inequality, we have

kck � kx � ck C kxk;
kxk � kx � ck C kck: (2.6)

Then we can combine these to get

kck � kxk � kx � ck;
kxk � kck � kx � ckI (2.7)

ˇ̌ kxk � kck ˇ̌ � kx � ck combining the two results in (2.7). (2.8)

Because c is closer than c0 to x, we can deduce

ˇ̌ kxk � kck ˇ̌ � kx � ck � kx � c0k: (2.9)

Thus, any center c that is closer to x than c0 must satisfy Inequality (2.9). From
a different perspective, consider that c is actually farther from x than c0. Then c
must violate this inequality—i.e.

ˇ̌ kxk � kck ˇ̌ > kx � c0k. In this case, c can be
eliminated from consideration because c0 must be closer to x. Note that while the
above discussion relied on knowing an exact distance between x and some close
center c0, the same derivation can be done with an upper bound on this distance.

We can use this knowledge to prune the search for the closest center. Given (an
upper bound on) a distance kx�c0k between x and some center c0 (e.g. the currently
assigned center), we can eliminate centers c where

ˇ̌ kxk � kck ˇ̌ > kx � c0k:

And since we have ordered the centers by their norm, we only need to compute the
distances between x and those centers c whose norm falls in the range

kx � c0k � kxk � kck � kx � c0k C kxk

60 G. Hamerly and J. Drake

Fig. 2.2 The annular region
(white ring centered at origin)
bounds where the closest
center for x might be. Centers
c.j / are numbered by their
distance from the origin.
Point x has c.4/ as its
previously-closest center, so
the width of the annulus is
2kx � c.4/k (dashed circle
centered at x)

annulus

x

x− c(4)

c(1)

c(2)

c(3) c(4)

c(5)c(6)

These bounds form an annular region centered on the origin in which potentially
closer centers to x may lie. We can use binary search on the centers ordered by
their norms to locate the smallest-norm center that fits this inequality, and then
compute the distance between x and each center within the annulus. Figure 2.2
gives a graphical representation of this search space.

We have implemented this annular search in conjunction with Hamerly’s algo-
rithm, with one additional change. Each time Hamerly’s algorithm searches over all
centers, it needs to discover not just the closest center, but also the second-closest
center (to tighten the lower bound). Thus, when constructing the annulus for x, we
use twice the distance between x and its second-closest center as the annulus width.
But since Hamerly’s algorithm does not explicitly track the second-closest center,
the augmented annular search algorithm attempts to do so. As mentioned above,
though, the second-closest center can change. However, the annular search does not
need to know which is the actual second-closest center—it only needs the index of
a center which is likely to be close to x to form the search annulus, and is farther
from x than the assigned center. Thus when it does find the actual second-closest
center, it caches its identity for constructing the annulus later.

2.4.7 Kernelized k-Means with Distance Bounds

As with many distance-based algorithms, k-means can be ‘kernelized’ by applying
the kernel trick [10, 34]. Starting from the definition of squared Euclidean distance
which can be written using inner products,

kx � yk2 D hx; xi � 2hx; yi C hy; yi;

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 61

we can kernelize the distance by replacing each inner product with a call to a kernel
function K.x; y/ D h�.x/; �.y/i which represents the inner product of x and y
after they have been transformed to a new space, within the range of �. Here �
typically represents a function that yields a higher-dimensional vector. Thus,

k�.x/ � �.y/k2 D h�.x/; �.x/i � 2h�.x/; �.y/i C h�.y/; �.y/i
D K.x; x/ � 2K.x; y/CK.y; y/

and if K is easy to compute (without explicitly using �), then using a kernel is a
relatively efficient way to perform k-means implicitly in the space of �.

We can apply the triangle inequality algorithms to kernelized k-means. How-
ever, we must be careful to avoid inefficiencies that come from kernelizing the
algorithm. In particular, since the centers live implicitly in the high-dimensional
range of �, and we don’t represent high-dimensional feature vectors explicitly, any
time we want to use a center, we instead use the kernel applied to all of the points
that are in its cluster. That is, in kernel k-means we define center c.j / by its member
points:

c.j / D 1

n.j /

X

i ja.i/Dj
�.x.i//

so that when we want to know kx � c.j /k2, we compute

k�.x/ � c.j /k2 D K.x; x/ � 2h�.x/; c.j /i C hc.j /; c.j /i

D K.x; x/ � 2
*
�.x/;

1

n.j /

X

i ja.i/Dj
�.x.i//

+

C
*
1

n.j /

X

i ja.i/Dj
�.x.i//;

1

n.j /

X

i ja.i/Dj
�.x.i//

+

D K.x; x/ � 2

n.j /

X

i ja.i/Dj
K.x; x.i//

C 1

n.j /2

X

i ja.i/Dj

X

i 0ja.i 0/Dj
K.x.i/; x.i 0//

Note that, naively, this single distance computation, which is the core of k-means,
has a runtime of O.n.j /2/ (ignoring the cost of computing the kernel). Under the
reasonable assumption that clusters are roughly equal size, this is O.n2=k2/. Thus
naive point-center distance computations are quite costly in kernelized k-means,
especially when compared with the runtime of the non-kernelized version of
k-means. However, simply caching the inner product hc.j /; c.j /i for each cluster

62 G. Hamerly and J. Drake

center at the beginning of each k-means iteration allows us to bring the cost
down to a much better, though still very costly, O.n.j // (or O.n=k/ under the
assumption that all clusters are equal size). Either way, in kernelized k-means
it is even more appealing to accelerate the algorithm by a method which avoids
distance calculations altogether. We can directly apply any of the triangle inequality
algorithms to kernelized k-means.

When applying an acceleration method such as Elkan’s algorithm to kernelized
k-means, we must additionally compute the center movement at each iteration. This
is no more costly than computing the inner product for each center with itself, which
is already performed each iteration as discussed previously.

2.5 Heap-Ordered k-Means: Inverting the Innermost Loops

Next we turn to a way of restructuring Hamerly’s algorithm. We motivate the next
algorithm in three ways:

1. it’s desirable to reduce the memory use of the accelerated algorithm—in other
words the number of bounds kept per point;

2. since k < n, the memory-efficient way of searching all point-center distances is
to have a nested loop over all n on the outside and all k on the inside, but we may
wish to invert this loop structure so that the outer loop is over k; and

3. thus far, the algorithms that are accelerated by the triangle inequality examine all
n points every iteration, but we would like an algorithm which only investigates
those points whose triangle inequality bounds have been violated.

For all these reasons, we consider an algorithm that orders all the points by their
likelihood of needing cluster reassignment—in other words, those for which `.i/ �
u.i/ is smallest (perhaps even negative).

2.5.1 Reducing the Number of Bounds Kept

This new algorithm, Heap-ordered k-means, replaces each pair of bounds kept for
each point .u.i/; `.i// by Hamerly’s algorithm with a single value representing their
difference, `u.i/ D `.i/ � u.i/. The reasoning is that the bounds avoid distance
calculations whenever

u.i/ � `.i/
0 � `.i/ � u.i/

0 � `u.i/:

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 63

Thus, we can reduce by half the number of distance bounds used by Hamerly’s algo-
rithm simply by replacing the upper and lower bounds by their difference. Whenever
`u.i/ < 0, the distance bound for x.i/ has been violated and we need to tighten its
bound (possibly reassigning the point to another cluster in the process).

Each update to `u.i/ is done as follows. If in Hamerly’s algorithm we would
increment u.i/ by a and decrement `.i/ by b, then `u.i/ is decremented by
b C a. Thus, updates to this single bound are simple.

2.5.2 Cost of Combining Distance Bounds

There is a cost of replacing two bounds with one. In the innermost loop of Hamerly’s
algorithm, the bounds fail whenever u.i/ > `.i/ and it may have to examine all
k point-center distances involving x. However, before that happens it tightens the
upper bound as u.i/ D kx.i/ � c.a.i//k. If tightening u.i/ causes the bounds to
become ordered again .u.i/ � `.i//, then it has avoided k � 1 distance calculations.
However, when the new bound `u.i/ < 0, we cannot tighten it by looking at just
the two centers defining the bound (the first- and second-closest centers), because
we do not know the identity of the second-closest center. So when `u.i/ < 0, we
must examine all k point-center distances for x to determine whether a.i/ is still
its closest center. We might reduce the search over all k by using an annular search
approach (see Sect. 2.4.6).

2.5.3 Inverting the Loops Over n and k

Usually, the innermost loops in Lloyd’s algorithm loop over all n points, and for
each point over all k cluster centers to find its closest. We could invert these two
loops, searching over each cluster and within that each point. But naively doing so
requires maintaining an extra distance for each of the n points indicating its distance
to the closest of the centers examined so far.

Whichever way we structure the nesting of the these two loops, the naive
strategy examines all n points, and typically all nk point-center pairs. It would be
an advantage to examine only those points which could possibly change cluster
membership, avoiding completely those points whose assignments are provably
‘safe’ (via distance bounds). It turns out that we can achieve this goal by using a
single (combined) lower-upper distance bound, a heap for each cluster, and making
the outer loop be over the k clusters.

2.5.4 Heap-Structured Bounds

For each cluster we construct a min-heap of the points assigned to that cluster,
ordered by an estimate of their distance from the cluster center. For now assume

64 G. Hamerly and J. Drake

Algorithm 6 Heap-ordered algorithm—inefficient version
procedure HEAPKMEANS-INEFFICIENT(X;C)

construct k min-heaps: h.j / for each j 2 K
insert .�1; x.i// into h.1/ for each i 2 N {put all in the first cluster, with violated bounds}
while not converged do

5: for all j 2 K do
while h.j / is not empty and .`u.i/; i/ at the top of h.j / has `u.i/ < 0 do

remove .`u.i/; x.i// from h.j /

find c.j 0/ and c.j 00/, the two closest centers for x.i/
compute `u.i/ D kx.i/� c.j 00/k � kx.i/� c.j 0/k {tighten the bound}

10: put .`u.i/; i/ into h.j 0/

move each center to the mean of its assigned points
update `u.i/ for each i 2 N , restructuring each heap as necessary

each heap entry for x.i/ is a pair .lu.i/; i/. (This is not exactly the case, shortly we
will adjust this definition.) But this suffices to show that the point at the top of the
heap is the one whose bound is closest to failing, or has already failed (if `u.i/ < 0).

This basic approach leads to Algorithm 6 for examining only those points whose
bounds have failed. While this is a reasonable algorithm, it is hampered by the fact
that it must visit every point to update each `u.i/, restructuring the heap as it goes.
This violates a primary goal we have for this algorithm: to avoid the O.n/ factor of
considering every point in each iteration of k-means.

We can improve this algorithm by removing the per-iteration update for `u.i/.
This is possible by changing the key for the heap from `u.i/ to be a related, but
static value, and keeping the updates for `u.i/ external to the heap. First we will
need some new notation.

Let `u.i; t/ be the value of `u.i/ at k-means iteration t . Instead of updating `u.i/
at each iteration, we keep track of the cumulative updates for `u.i/, which turn out
to be the same for all points assigned to the same center. Suppose x.i/ is assigned
to center c.j /. Let c.j /t be its location at k-means iteration t . At iteration t , we
compute the current value

`u.i; t/ `u.i; t � 1/ � kc.j /t � c.j /t�1k �m.t/; where (2.10)

m.t/ max
j 02K
kc.j 0/t � c.j 0/t�1k (2.11)

is the distance moved by the furthest-moving center for that iteration. Then for each
center c.j / we maintain the following structure

z.j; t/ D m.t/C
tX

pD1
kc.j /p � c.j /p�1k; (2.12)

where c.j /0 is the center’s initial position. Then z.j; t/ is the distance center c.j /
has traveled since the beginning of the algorithm plus the furthest distance any center

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 65

has traveled, up through iteration t . This can be computed efficiently each iteration,
taking O.kd/ time for all centers.

Assume that at iteration t , point x.i/ becomes newly assigned to center c.j /, and
has second-closest center c.j 0/. Then we can compute the (tight) value of `u.i; t/ D
kx.i/ � c.j 0/tk � kx.i/ � c.j /tk. Into heap h.j / we place the pair

.`u.i; t/C z.j; t/; i/: (2.13)

In other words, we order the heap by `u.i; t/ offset by the current value of
z.j; t/. Consider now the value of `u.i; t 0/ at some later iteration (i.e. t 0 > t):

`u.i; t 0/ D `u.i; t/�kc.j /tC1 � c.j /tk�m.t C 1/� : : :�kc.j /t 0�c.j /t 0�1k�m.t 0/

D `u.i; t/ �
t 0X

pDtC1
kc.j /p � c.j /p�1k Cm.p/

D `u.i; t/C
tX

pD1
kc.j /p�c.j /p�1kCm.p/�

t 0X

pD1
kc.j /p�c.j /p�1kCm.p/

D `u.i; t/C z.j; t/ � z.j; t 0/ (2.14)

In Algorithm 6 at iteration t 0 > t we would check if the top of the heap has
`u.i; t 0/ < 0. Starting with this and using Eq. (2.14) and the new heap structure,
we find the equivalent test

`u.i; t 0/ < 0

`u.i; t/C z.j; t/ � z.j; t 0/ < 0

`u.i; t/C z.j; t/ < z.j; t 0/; (2.15)

which is exactly what we used as the distance key on the heap (i.e. `u.i; t/C z.j; t/)
and have been updating in the intervening iterations (i.e. z.j; t 0/).

Thus, we can keep a heap structure that does not require updating as `u.i/
changes, instead accumulating updates for each center external to the heap structure,
and achieve equivalent tests for `u.i/ < 0. Note that we do not need to keep
the history of z.j; t/ for all iterations; we only ever need the value for the current
iteration. This leads us to the more efficient Algorithm 7.

2.5.5 Analysis of Heap-Structured k-Means

To analyze Algorithm 7, we assume a simple binary-heap implementation that takes
O.log.n// time to insert and remove, and introduce two new terms. The number

66 G. Hamerly and J. Drake

Algorithm 7 Heap-ordered algorithm—using 1 bound per point, and one per cluster
procedure HEAPKMEANS(X;C)

construct min-heap h.j / for each j 2 K
let z.j / 0 for each j 2 K
insert .�1; i/ into h.1/ for each i 2 N {put all in the first cluster, with violated bounds}
while not converged do

for all j 2 K do
while h.j / is not empty and .y; i/ at the top of h.j / has y < z.j / do

remove .y; i/ from h.j /

compute the distance from x.i/ to each center
let c.j 0/ and c.j 00/ be its closest and second-closest centers
insert .kx.i/� c.j 00/k � kx.i/� c.j 0/k C z.j 0/; i/ into h.j 0/

for all j 2 K do
move c.j / to the average of its assigned points
calculate ı.j / as the distance c.j / moved

compute ı0 D maxj2K ı.j /

for all j 2 K do
update z.j / z.j /C ı.j /C ı0

of iterations performed by k-means is w, and the number of bound violations per
iteration is v. In other words, v is the number of points that must be removed from
any heap in one iteration of k-means. Then the running time is

O.nC wv.log.n/C kd//: (2.16)

The most important thing to notice about this analysis is the lack of a wn term, which
does occur in other algorithms based on the triangle inequality. While there is a term
wv, and v depends on n, in general v < n and highly clustered data will have v	 n.

2.6 Parallelization

There are multiple ways to parallelize the k-means algorithm. While the purpose of
our study is to improve the core k-means algorithm, we also want to show that such
improvements are suitable for parallelization. In particular, we consider the simplest
case of parallelizing the algorithm over a shared-memory, multicore machine.

In a shared-memory context with p processors, the most straightforward way
to parallelize the batch k-means algorithm is to partition the n data points to be
clustered into p subsets each of size n=p. The cluster centers are replicated across
(or shared by) all processors.

During each iteration, each processor assigns each point in its partition to the
center nearest that point. After the assignment step, each processor computes for
its partition the (partial) sufficient statistics required to compute the new center
locations. In particular, for each center each processor must compute the vector sum
of the points assigned to that center, as well as the number of points assigned to it.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 67

Using these partial results from all processors at the end of the iteration, the new
cluster centers can be computed and shared with all processors. Thus the algorithm
is embarrassingly parallel within each iteration, but requires synchronization of all
processors between iterations. Note that any k-means optimization algorithm which
is not batch but stochastic in nature will not be able to directly apply this type of
parallelization and maintain identical output.

A few details are worth noting. For heap-based k-means presented in this
chapter, the algorithm can be parallelized this way by constructing k heaps for each
processor (resulting in pk total heaps). For Drake’s algorithm which may reduce the
number of lower bounds used as the algorithm proceeds, each thread can adaptively
reduce the number of bounds that it uses without affecting other threads, allowing
the potential for optimization within smaller regions of the dataset.

We have implemented multithreaded versions of the algorithms we use in
experiments, and perform experiments to see how well they scale with an increasing
number of available processors. Please see Sect. 2.7 for the experimental results.

2.7 Experiments and Discussion

In this section we describe the experimental results the algorithms discussed in this
chapter on several real-world and synthetic datasets. Table 2.3 describes the datasets.
Table 2.4 describes the algorithms tested.

Table 2.3 A list of the datasets used in the experiments

Name Description Number of points n Dimension d

Uniform-2/8/32 Synthetic, uniform distribution 1,000,000 2/8/32

Clustered-2/8/32 Synthetic, 50 separated spheri-
cal Gaussian clusters

1,000,000 2/8/32

BIRCH 10 � 10 grid of Gaussian clus-
ters

100,000 2

MNIST-50 Random projection from
mnist784

60,000 50

Covertype Soil cover measurements 581,012 54

KDD Cup 1998 Response rates for fundraising
campaign

95,412 56

MNIST-784 Raster images of handwritten
digits

60,000 784

68 G. Hamerly and J. Drake

Table 2.4 Algorithms tested. Given the same initialization, all algorithms produce the same result

Algorithm Type of acceleration Unique features

Lloyd None Baseline algorithm for batch
k-means.

Compare-means [32] Triangle inequality avoid innermost loop when closest
other center is far away.

Sort-means [32] Triangle inequality,
sorting centers

Search over centers in increasing
distance from closest center.

Elkan [12] Triangle inequality,
distance bounds

1 upper bound, k lower bounds per
point.

Hamerly [15] Triangle inequality,
distance bounds

1 upper bound, 1 lower bound per
point.

Drake (adaptive version)
[11]

Triangle inequality,
distance bounds,
sorting bounds

1 upper bound, b lower bounds per
point; b is chosen adaptively.

Annular (this chapter) Triangle inequality,
distance bounds,
sorting centers

Like Hamerly, but with
norm-ordered centers.

Heap (this chapter) Triangle inequality,
distance bounds

Uses k heaps of assigned points,
ordered by bounded distance from
center. Upper and lower bounds are
combined into one value.

Kernelized Lloyd None Lloyd’s algorithm with kernels.

Kernelized Elkan (this
chapter)

Triangle inequality,
bounds

Applying Elkan’s algorithm to
kernelized k-means.

2.7.1 Testing Platforms

We ran our tests on two Linux 64-bit Intel platforms. One is a 128-node parallel
machine with 8 processors and 16 GB of RAM per node. We used up to 8
simultaneous threads on this machine. The other is a more recent 12-core computer
with 16 GB of RAM which we used for testing up to 12 simultaneous threads. We
implemented all of the algorithms tested in C++ and Pthreads. For algorithms that
used similar structures, we tried to use common code wherever possible to minimize
differences due to implementation.

2.7.2 Speedup Relative to the Naive Algorithm

Figures 2.3 and 2.4 show the speedup of the accelerated algorithms relative to the
naive algorithm. Speedup is defined as the time for the naive algorithm divided by
the time for the accelerated algorithm. For each dataset, we run it with multiple k
values. Speedups of up to 50x are observed, with the largest accelerations being for

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 69

low-dimensional, naturally-clustered data. This is an important case for user-facing
applications.

The results show a general improvement in speedup for most accelerated
algorithms as the number of clusters increases. This makes sense because as the
number of total possible distance calculations rises with k, so does the number
of ‘far away’ centers that can be pruned using the acceleration techniques in this
chapter. The speedup curves are not monotonic because the number of iterations
varies (depending on k and the initialization), and when k-means performs very few
iterations, all the algorithms take roughly the same amount of time. One reason is
because the accelerations using distance bounds provide the most benefit when the
centers are moving very little.

We observe generally that not all of the accelerated algorithms always outperform
the naive algorithm. For example, Elkan’s algorithm shows very little if any
improvement when the dimension is 2. On the other end of the dimension spectrum,
sort-means and compare-means perform about the same as the naive algorithm when
the data is unstructured (uniform random) and of dimension 8 or 32.

In the highest dimension dataset, MNIST-784, Elkan’s algorithm is the clear
winner. It benefits in this high-dimension space by being the best at avoiding
distance calculations, where distance calculations are very expensive. Drake’s
algorithm is second-best, since it uses fewer bounds than Elkan’s and is unable
to avoid as many distance calculations. Generally, as dimension increases the
algorithm gains more benefit from caching additional (lower) distance bounds.

2.7.3 Parallelism

We implemented and tested multithreaded versions of each algorithm we investigate.
Here we look at how well each is able to use additional computation resources,
in terms of speedup and efficiency. While we try to parallelize all parts of each
algorithm, the different steps of each algorithm require different amounts of thread
synchronization in each iteration, and some parts are not easily parallelized (e.g.
a single sort that occurs each iteration whose input depends on data from all
threads, and whose output must be shared to all threads, as happens in the Annular
algorithm).

Figure 2.5 shows the speedup of each algorithm with respect to the number of
threads. Each algorithm’s speedup is computed relative to using only one thread
with that algorithm. We measure wall-clock time for using one thread and for using
t threads, and divide the former by the latter to obtain the speedup. All versions of an
algorithm (e.g. single-threaded versus multithreaded), given the same initialization,
produce the same sequence of k-means iterations and final clustering.

Figure 2.6 shows the efficiency of each algorithm with respect to the number
of threads. We define efficiency as speedup divided by the number of threads. So
a perfect efficiency would be a line fixed at 1.0, and a program which cannot use
multiple threads would have an efficiency curve of 1=t where t is the number of
threads.

70 G. Hamerly and J. Drake

Sp
ee

du
p

(v
er

su
s

na
iv

e)

Sp
ee

du
p

(v
er

su
s

na
iv

e)

Sp
ee

du
p

(v
er

su
s

na
iv

e)

Sp
ee

du
p

(v
er

su
s

na
iv

e)

Sp
ee

du
p

(v
er

su
s

na
iv

e)

Sp
ee

du
p

(v
er

su
s

na
iv

e)

Fig. 2.3 Speedup relative to the naive algorithm for synthetic datasets (clustered and uniform).
Speedup is defined as time(naive)/time(accelerated)

It is clear that not all algorithms use the additional available computation equally
well. The algorithm that benefits the most from additional threads is the non-
accelerated (naive) Lloyd’s algorithm, which obtains nearly linear speedups. This is
likely for two reasons: it has the least synchronization between threads, and its per-
thread behavior is the most predictable (each thread will do approximately equal
work). Accelerated algorithms require more synchronization since there is more
information kept and shared between threads. For per-thread behavior, it’s possible

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 71

Algorithmic Speedup
BIRCH

Algorithmic Speedup
Covertype

Algorithmic Speedup
MNIST-50

Algorithmic Speedup
1998 KDD Cup

Algorithmic Speedup
MNIST-784

Sp
ee

du
p

(v
er

su
s

na
iv

e)

Sp
ee

du
p

(v
er

su
s

na
iv

e)
Sp

ee
du

p
(v

er
su

s
na

iv
e)

Sp
ee

du
p

(v
er

su
s

na
iv

e)
Sp

ee
du

p
(v

er
su

s
na

iv
e)

Fig. 2.4 Speedup relative to the naive algorithm for other datasets. Speedup is defined as
time(naive)/time(accelerated)

that one thread will have more work to do than another due to, e.g., distance bounds
being more effective for the data assigned to the thread.

2.7.4 Number of Distance Calculations

The number of distance calculations performed by k-means for several datasets
is shown in Figs. 2.7 and 2.8 (for clustered and uniform synthetic datasets).
While the datasets for the two figures are comparable in terms of the number

72 G. Hamerly and J. Drake

Sp
ee

du
p

(v
er

su
s

on
e

th
re

ad
)

Sp
ee

du
p

(v
er

su
s

on
e

th
re

ad
)

number of threadsnumber of threads

Fig. 2.5 Speedup for each algorithm as a function of the number of threads. Speedup for t threads
is defined as time(single-thread)/time(t threads)

ef
fic

ie
nc

y
(s

pe
ed

up
 /

 n
um

be
r o

f t
hr

ea
ds

)

number of threads number of threads

ef
fic

ie
nc

y
(s

pe
ed

up
 /

 n
um

be
r o

f t
hr

ea
ds

)

Fig. 2.6 Parallel efficiency for each algorithm as a function of the number of threads. Efficiency
for t threads is defined the speedup(t threads)/t . Perfect efficiency is 1.0, and higher is better

of points, dimensions, and cluster centers used, they differ in structure (clustered
versus uniform). For clustered data, all accelerated algorithms appear to compute
dramatically fewer distances than the naive algorithm. However, there is a stark
difference in the uniform datasets. Those accelerated algorithms that use some kind
of distance bounds (Elkan, Hamerly, Annular, Drake, and Heap) all do much better
than those algorithms which do not (Compare-means and Sort-means), when the
dimension is 8 or higher. Thus, the distance bounds seem to be a key part of reducing
distance computations in k-means.

As point-center distance calculations are especially expensive in kernelized k-
means algorithms, we tested the effectiveness of Elkan’s algorithm on this algorithm.
Table 2.5 shows the number of distances calculated by both naive kernel k-means
and Elkan’s version on a small dataset. It is clear that Elkan’s algorithm saves a
dramatic number of distance calculations even in kernel spaces.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 73

d = 2 d = 32

k= 2

k= 8

k= 32

k= 128

Fig. 2.7 Number of distance calculations performed for synthetic clustered data in 2 and 32
dimensions, over k D 2, 8, 32, and 128

74 G. Hamerly and J. Drake

d = 2 d = 32

k= 2

k= 8

k= 32

k= 128

Fig. 2.8 Number of distance calculations performed for synthetic uniform data in 2, 8, and 32
dimensions, over k D 2, 8, 32, and 128

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 75

Table 2.5 The number of distances computed by unaccelerated
kernel k-means and Elkan’s kernel k-means

Number of distance calculations

k Iterations Naive kernel k-means Elkan kernel k-means

2 24 96; 467 26; 766

8 39 624; 750 155; 130

32 43 2; 752; 810 708; 491

128 14 3; 584; 506 628; 437

We used a small synthetic dataset: a uniform random distribution,
with 2,000 points and 8 dimensions. We use a Gaussian kernel with
bandwidth � D 10;000. The number of iterations ranged from
14 to 43

Fig. 2.9 The amount of memory used (in megabytes) for the BIRCH, over k D 2, 8, 32, and 128

2.7.5 Memory Use

Figures 2.9 and 2.10 show the amount of memory used by k-means for the small
BIRCH dataset (n D100,000 and d D 2) and a large synthetic uniform dataset
(n D1,000,000 and d D 32). As opposed to the amount of time used, the amount of
memory used is a function of just the number of points, dimension, and number of
clusters. It’s clear that when k is small, the algorithms all use about the same amount

76 G. Hamerly and J. Drake

Fig. 2.10 The amount of memory used (in megabytes) for synthetic uniform data in 32 dimen-
sions, over k D 2, 8, 32, and 128

of memory. When k is large, however, the large number of bounds used by Elkan’s
and Drake’s algorithms, begin to set them apart as using a lot more memory. It is
nice that for a small relative increase in memory footprint, many of these algorithms
afford significant speedups.

2.8 Conclusion

This chapter presents a number of alternatives to Lloyd’s very popular and widely
used batch k-means algorithm. All those presented aim to provide exactly the
same answer as Lloyd’s (given the same initialization), but faster. Some algorithms
are from the literature of the last decade (Compare-means, Sort-means; Elkan’s,
Hamerly’s, and Drake’s algorithms), and some are new (Annular, Heap).

The algorithms studied here rely on the geometric triangle inequality to avoid
unnecessary and costly distance calculations. This proves to be simple to implement
and can provide dramatic speedups of up to 40x in our tests. There are multiple ways
to apply the triangle inequality to speed up k-means. Practically, using the triangle
inequality to inexpensively maintain a set of distance bounds between points and
centers is the idea with the greatest benefit.

2 Accelerating Lloyd’s Algorithm for k-Means Clustering 77

References

1. Agarwal PK, Har-Peled S, Varadarajan KR (2005) Geometric approximation via coresets.
Comb Comput Geom 52:1–30

2. Apache Mahout http://mahout.apache.org/. Version 0.8, Accessed 24 Jan 2014
3. Arthur D, Vassilvitskii S (2007) kmeans++: the advantages of careful seeding. In: ACM-SIAM

symposium on discrete algorithms, pp 1027–1035
4. Arthur D, Manthey B, Röglin H (2011) Smoothed analysis of the k-means method. J ACM

58(5):19
5. Bei C-D, Gray RM (1985) An improvement of the minimum distortion encoding algorithm for

vector quantization. IEEE Trans Commun 33(10):1121–1133
6. Bottou L, Bengio Y (1995) Convergence properties of the k-means algorithms. In: Advances

in neural information processing systems, vol 7. MIT Press, Cambridge, 585–592
7. Celebi ME (2011) Improving the performance of k-means for color quantization. Image Vis

Comput 29(4):260–271
8. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization

methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210
9. Coates A, Ng AY, Lee H (2011) An analysis of single-layer networks in unsupervised feature

learning. In: International conference on artificial intelligence and statistics, pp 215–223
10. Dhillon I, Guan Y, Kulis B (2005) A unified view of kernel k-means, spectral clustering and

graph cuts. Technical Report TR-04-25, University of Texas at Austin
11. Drake J, Hamerly G (2012) Accelerated k-means with adaptive distance bounds. In: 5th NIPS

workshop on optimization for machine learning
12. Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the

twentieth international conference on machine learning (ICML), pp 147–153
13. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of

classifications. In: Biometric society meeting, Riverside
14. Fu K-S, Mui JK (1981) A survey on image segmentation. Pattern Recognit 13(1):3–16
15. Hamerly G (2010) Making k-means even faster. In: SIAM international conference on data

mining
16. Hamerly G, Elkan C (2002) Alternatives to the k-means algorithm that find better clusterings.

In: Proceedings of the eleventh international conference on Information and knowledge
management, pp 600–607. ACM, New York

17. Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J R Stat Soc
Ser C Appl Stat 28(1):100–108

18. Hochbaum DS, Shmoys DB (1985) A best possible heuristic for the k-center problem. Math
Oper Res 10(2):180–184

19. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient
k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach
Intell 24:881–892

20. Kaukoranta T, Franti P, Nevalainen O (2000) A fast exact gla based on code vector activity
detection. IEEE Trans Image Process 9(8):1337–1342

21. Lai JZC, Liaw Y-C (2008) Improvement of the k-means clustering filtering algorithm. Pattern
Recognit 41(12):3677–3681

22. Lai JZC, Liaw Y-C, Liu J (2008) A fast vq codebook generation algorithm using codeword
displacement. Pattern Recognit 41(1):315–319

23. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans
Commun 28(1):84–95

24. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137
25. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM (2010) Graphlab: a new

parallel framework for machine learning. In: Conference on uncertainty in artificial intelligence
(UAI)

http://mahout.apache.org/

78 G. Hamerly and J. Drake

26. MacQueen JB (1967) Some methods for classification and analysis of multivariate
observations. In: 5th Berkeley symposium on mathematical statistics and probability, vol 1.
University of California Press, Berkeley, pp 281–297

27. Moore AW (1991) An introductory tutorial on kd-trees. Technical Report 209, Carnegie Mellon
University

28. Moore AW (2000) The anchors hierarchy: using the triangle inequality to survive high
dimensional data. In: twelfth conference on uncertainty in artificial intelligence. AAAI Press,
Stanford, CA, pp 397–405

29. Ng AY, Jordan MI, Weiss Y et al (2002) On spectral clustering: analysis and an algorithm. Adv
Neural Inf Process Syst 2:849–856

30. Pan J-S, Lu Z-M, Sun S-H (2003) An efficient encoding algorithm for vector quantization
based on subvector technique. IEEE Trans Image Process 12(3):265–270

31. Pelleg D, Moore A (1999) Accelerating exact k-means algorithms with geometric reasoning.
In: ACM SIGKDD fifth international conference on knowledge discovery and data mining,
pp 277–281

32. Phillips SJ (2002) Acceleration of k-means and related clustering algorithms. In: Mount D,
Stein C (eds) Algorithm engineering and experiments. Lecture notes in computer science, vol
2409. Springer, Berlin, Heidelberg, pp 61–62

33. Ra S-W, Kim JK (1993) A fast mean-distance-ordered partial codebook search algorithm for
image vector quantization. IEEE Trans Circuits Syst II 40(9):576–579

34. Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput 10(5):1299–1319

35. Sculley D (2010) Web-scale k-means clustering. In: Proceedings of the 19th international
conference on World Wide Web. ACM, New York, pp 1177–1178

36. Sherwood T, Perelman E, Hamerly G, Calder B (2002) Automatically characterizing large
scale program behavior. SIGOPS Oper Syst Rev 36(5):45–57

37. Tai S-C, Lai CC, Lin Y-C (1996) Two fast nearest neighbor searching algorithms for image
vector quantization. IEEE Trans Commun 44(12):1623–1628

38. Vattani A (2011) k-means requires exponentially many iterations even in the plane. Discrete
Comput Geom 45(4):596–616

39. Wettschereck D, Dietterich T (1991) Improving the performance of radial basis function
networks by learning center locations. In Neural Inf Process Syst 4:1133–1140

40. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng AFM, Liu
B, Yu PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D (2008) Top 10 algorithms in data
mining. Knowl Inf Syst 14(1):1–37

41. Yael https://gforge.inria.fr/projects/yael/. Version v1845, Accessed 24 Jan 2014

https://gforge.inria.fr/projects/yael/

Chapter 3
Linear, Deterministic, and Order-Invariant
Initialization Methods for the K-Means
Clustering Algorithm

M. Emre Celebi and Hassan A. Kingravi

Abstract Over the past five decades, k-means has become the clustering algorithm
of choice in many application domains primarily due to its simplicity, time/space
efficiency, and invariance to the ordering of the data points. Unfortunately, the
algorithm’s sensitivity to the initial selection of the cluster centers remains to be its
most serious drawback. Numerous initialization methods have been proposed to
address this drawback. Many of these methods, however, have time complexity
superlinear in the number of data points, which makes them impractical for large
data sets. On the other hand, linear methods are often random and/or sensitive
to the ordering of the data points. These methods are generally unreliable in that
the quality of their results is unpredictable. Therefore, it is common practice to
perform multiple runs of such methods and take the output of the run that produces
the best results. Such a practice, however, greatly increases the computational
requirements of the otherwise highly efficient k-means algorithm. In this chapter,
we investigate the empirical performance of six linear, deterministic (non-random),
and order-invariant k-means initialization methods on a large and diverse collection
of data sets from the UCI Machine Learning Repository. The results demonstrate
that two relatively unknown hierarchical initialization methods due to Su and Dy
outperform the remaining four methods with respect to two objective effectiveness
criteria. In addition, a recent method due to Erişoğlu et al. performs surprisingly
poorly.

Keywords Data mining • Unsupervised learning • Clustering • K-means •
Cluster center initialization • Maximin

M.E. Celebi (�)
Department of Computer Science, Louisiana State University, Shreveport, LA, USA
e-mail: ecelebi@lsus.edu

H.A. Kingravi
School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, USA
e-mail: kingravi@gatech.edu

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__3

79

mailto:ecelebi@lsus.edu
mailto:kingravi@gatech.edu

80 M.E. Celebi and H.A. Kingravi

3.1 Introduction

Clustering, the unsupervised classification of patterns into groups, is one of the
most important tasks in exploratory data analysis [59]. Primary goals of clustering
include gaining insight into, classifying, and compressing data. Clustering has a
long and rich history in a variety of scientific disciplines including anthropology,
biology, medicine, psychology, statistics, mathematics, engineering, and computer
science. As a result, numerous clustering algorithms have been proposed since the
early 1950s [58].

Clustering algorithms can be broadly classified into two groups: hierarchical and
partitional [59]. Hierarchical algorithms recursively find nested clusters either in a
top-down (divisive) or bottom-up (agglomerative) fashion. In contrast, partitional
algorithms find all the clusters simultaneously as a partition of the data and do not
impose a hierarchical structure. Most hierarchical algorithms have time complexity
quadratic or higher in the number of data points [111] and therefore are not suitable
for large data sets, whereas partitional algorithms often have lower complexity.

Given a data set X D fx1; x2; : : : ; xN g
 R
D , i.e., N points (vectors) each with

D attributes (components), hard partitional algorithms divide X into K exhaustive
and mutually exclusive clusters C D fC1; C2; : : : ; CKg; SK

iD1 Ci D X ; Ci \
Cj D ¿ for 1 � i ¤ j � K. These algorithms usually generate clusters by
optimizing a criterion function [48]. The most intuitive and frequently used criterion
function is the Sum of Squared Error (SSE) given by

SSE D
KX

iD1

X

xj2Ci

��xj � ci
��2
2
; (3.1)

where

ci D 1

jCi j
X

xj2Ci
xj (3.2)

and

��xj
��
2
D

DX

dD1
x2jd

!1=2
(3.3)

denote the centroid of cluster Ci (with cardinality jCi j) and the Euclidean (`2) norm
of vector xj D .xj1; xj2; : : : ; xjD/, respectively.

The number of ways in which a set of N objects can be partitioned into K non-
empty groups is given by Stirling numbers of the second kind

S.N;K/ D 1

KŠ

KX

iD0
.�1/K�i

K

i

!
iN ; (3.4)

3 Deterministic Initialization of the K-Means Algorithm 81

which can be approximated by KN=KŠ It can be seen that a complete enumeration
of all possible clusterings to determine the global minimum of (3.1) is clearly
computationally prohibitive except for very small data sets. In fact, this non-
convex optimization problem is proven to be NP-hard even for K D 2 [4, 30]
or D D 2 [79, 106]. Consequently, various heuristics have been developed to
provide approximate solutions to this problem [102]. Most of the early approaches
[12, 39, 53, 61, 77, 78, 98, 100] were simple procedures based on the alternating
minimization algorithm [28]. In contrast, recent approaches are predominantly
based on various metaheuristics [29, 94] that are capable of avoiding bad local
minima at the expense of significantly increased computational requirements. These
include heuristics based on simulated annealing [70], evolution strategies [10], tabu
search [3], genetic algorithms [85], variable neighborhood search [51], memetic
algorithms [90], scatter search [89], ant colony optimization [50], differential
evolution [91], and particle swarm optimization [91]. Among all these heuristics,
Lloyd’s algorithm [77], often referred to as the (batch) k-means algorithm, is the
simplest and most commonly used one. This algorithm starts with K arbitrary
centers, typically chosen uniformly at random from the data points. Each point is
assigned to the nearest center and then each center is recalculated as the mean of
all points assigned to it. These two steps are repeated until a predefined termination
criterion is met. K-means can be expressed in algorithmic notation as follows:

1. Choose the initial set of centers c1; c2; : : : ; cK arbitrarily.
2. Assign point xj (j 2 f1; 2; : : : ; N g) to the nearest center with respect to `2

distance, that is

xj 2 CO{ ” O{ D arg min
i2f1;2;:::;Kg

��xj � ci
��2
2
:

3. Recalculate center ci (i 2 f1; 2; : : : ; Kg) as the centroid of Ci , that is

ci D 1

jCi j
X

xj2Ci
xj :

4. Repeat steps 2 and 3 until convergence.

K-means is undoubtedly the most widely used partitional clustering algorithm
[15, 17, 41, 48, 58, 59, 86, 110, 111]. Its popularity can be attributed to several
reasons. First, it is conceptually simple and easy to implement. Virtually every
data mining software includes an implementation of it. Second, it is versatile, i.e.,
almost every aspect of the algorithm (initialization, distance function, termination
criterion, etc.) can be modified. This is evidenced by hundreds of publications
over the last fifty years that extend k-means in a variety of ways. Third, it has
a time complexity that is linear in N , D, and K (in general, D 	 N and
K 	 N). For this reason, it can be used to initialize more expensive clustering
algorithms such as expectation maximization [82], fuzzy c-means [16, p. 35],
DBSCAN [31], spectral clustering [27, 108], ant colony clustering[84], and particle

82 M.E. Celebi and H.A. Kingravi

swarm clustering [105]. Furthermore, numerous sequential [34,35,49,63,66,72,92]
and parallel [5, 14, 26, 46, 57, 71, 74, 109] acceleration techniques are available in
the literature. Fourth, it has a storage complexity that is linear in N , D, and K.
In addition, there exist disk-based variants that do not require all points to be stored
in memory [20, 38, 62, 88]. Fifth, it is guaranteed to converge [97] at a quadratic
rate [18]. Finally, it is invariant to data ordering, i.e., random shufflings of the data
points.

On the other hand, k-means has several significant disadvantages. First, it
requires the number of clusters, K, to be specified in advance. The value of this
parameter can be determined automatically by means of various internal/relative
cluster validity measures [6, 9, 107]. Second, it can only detect compact,
hyperspherical clusters that are well separated. This can be alleviated by using
a more general distance function such as the Mahalanobis distance, which permits
the detection of hyperellipsoidal clusters [80, 81]. Third, due its utilization of
the squared Euclidean distance, it is sensitive to noise and outlier points since
even a few such points can significantly influence the means of their respective
clusters. This can be addressed by outlier pruning [112] or by using a more robust
distance function such as the city-block (`1) distance [37, 60, 99]. Fourth, due to
its gradient descent nature, it often converges to a local minimum of the criterion
function [97]. For the same reason, it is highly sensitive to the selection of the initial
centers [25]. Adverse effects of improper initialization include empty clusters,
slower convergence, and a higher chance of getting stuck in bad local minima [23].
Fortunately, except for the first two, these drawbacks can be remedied by using an
adaptive initialization method (IM).

A large number of IMs have been proposed in the literature [23, 25, 32, 54, 93].
Unfortunately, many of these have time complexity superlinear in N [1, 2, 8, 21,
53, 65, 68, 73, 75, 95], which makes them impractical for large data sets (note that
k-means itself has linear time complexity). In contrast, linear IMs are often random
and/or order-sensitive [7, 11, 19, 39, 61, 78, 100, 104], which renders their results
unreliable. In this study, we investigate the empirical performance of six linear,
deterministic (non-random), and order-invariant k-means IMs on a large and diverse
collection of data sets from the UCI Machine Learning Repository.

The rest of the chapter is organized as follows. Section 3.2 presents an overview
of linear, deterministic, and order-invariant k-means IMs. Section 3.3 describes the
experimental setup. Section 3.4 presents and discusses the experimental results.
Finally, Sect. 3.5 gives the conclusions.

3.2 Linear, Deterministic, and Order-Invariant K-Means
Initialization Methods

In this study, we focus on IMs that have time complexity linear inN . This is because
k-means itself has linear complexity, which is perhaps the most important reason
for its popularity. Therefore, an IM for k-means should not diminish this advantage

3 Deterministic Initialization of the K-Means Algorithm 83

of the algorithm. Accordingly, the following six linear, deterministic, and order-
invariant IMs are investigated.

The maximin (MM) method [47] chooses the first center c1 arbitrarily from the
data points and the remaining .K � 1/ centers are chosen successively as follows.
In iteration i (i 2 f2; 3; : : : ; Kg), the i th center ci is chosen to be the point with
the greatest minimum `2 distance to the previously selected .i � 1/ centers, i.e.,
c1; c2; : : : ; ci�1. This method can be expressed in algorithmic notation as follows:

1. Choose the first center c1 arbitrarily from the data points.
2. Choose the next center ci (i 2 f2; 3; : : : ; Kg) as the point x O| that satisfies

O| D arg max
j2f1;2;:::;N g

�
min

k2f1;2;:::;i�1g
��xj � ck

��2
2

�
:

3. Repeat step 2 .K � 1/ times.

Despite the fact that it was originally developed as a 2-approximation to the
K-center clustering problem,1 MM is commonly used as a k-means initializer.2 In this
study, the first center is chosen to be the centroid of X given by

Nx D 1

N

NX

jD1
xj : (3.5)

Note that c1 D Nx gives the optimal SSE when K D 1.
Katsavounidis et al.’s method (KK) [67] is identical to MM with the exception

that the first center is chosen to be the point with the greatest `2 norm,3 that is, the
point x O| that satisfies

O| D arg max
j2f1;2;:::;N g

��xj
��2
2
: (3.6)

The PCA-Part (PP) method [101] uses a divisive hierarchical approach based
on Principal Component Analysis (PCA) [64]. Starting from an initial cluster that
contains the entire data set X , the method successively selects the cluster with the
greatest SSE and divides it into two subclusters using a hyperplane that passes

1 Given a set of N points in a metric space, the goal of K-center clustering is to find K

representative points (centers) such that the maximum distance of a point to a center is minimized
[52, p. 63]. A polynomial-time algorithm is said to be a ı-approximation algorithm for a
minimization problem if for every instance of the problem it delivers a solution whose cost is
at most ı times the cost of the optimal solution (ı is often referred to as the “approximation ratio”
or “approximation factor”) [55, p. xv].
2Interestingly, several authors including Thorndike [103], Casey and Nagy [22], Batchelor and
Wilkins [13], Kennard and Stone [69], and Tou and Gonzalez [104, pp. 92–94] had proposed similar
(or even identical) methods decades earlier. Gonzalez [47], however, was the one to prove the
theoretical properties of the method.
3This choice was motivated by a vector quantization application.

84 M.E. Celebi and H.A. Kingravi

through the cluster centroid and is orthogonal to the principal eigenvector of the
cluster covariance matrix. This iterative cluster selection and splitting procedure is
repeated .K � 1/ times. The final centers are then given by the centroids of the
resulting K subclusters. This method can be expressed in algorithmic notation as
follows:

1. Let Ci be the cluster with the greatest SSE and ci be the centroid of this cluster.
In the first iteration, C1 D X and c1 D Nx.

2. Let p be the projection of ci on the principal eigenvector vi of Ci , i.e., p D ci �vi ,
where ‘�’ denotes the dot product.

3. Divide Ci into two subclusters Ci1 and Ci2 according to the following rule: For
any xj 2 Ci , if xj � vi � p, then assign xj to Ci1 ; otherwise, assign it to Ci2 .

4. Repeat steps 1–3 .K � 1/ times.

The Var-Part (VP) method [101] is an approximation to PP, where, in each
iteration, the covariance matrix of the cluster to be split is assumed to be diagonal.
In this case, the splitting hyperplane is orthogonal to the coordinate axis with the
greatest variance. In other words, the only difference between VP and PP is the
choice of the projection axis.

Figure 3.1 [24] illustrates VP on a toy data set with four natural clusters [96][68,
p. 100]. In iteration 1, the initial cluster that contains the entire data set is split into
two subclusters along the Y axis using a line (i.e., a one-dimensional hyperplane)
passing through the mean point (92:026667). Between the resulting two clusters, the
one above the line has a greater SSE. In iteration 2, this cluster is thus split along
the X axis at the mean point (66:975000). In the final iteration, the cluster with
the greatest SSE, i.e., the bottom cluster, is split along the X axis at the mean point
(41:057143). In Fig. 3.1d, the centroids of the final four clusters are denoted by stars.

The maxisum (MS) method [36] is a recent modification of MM. It can be
expressed in algorithmic notation as follows:

1. Determine the attribute with the greatest absolute coefficient of variation (ratio
of the standard deviation to the mean), that is, the attribute x:d1 that satisfies

d1 D arg max
d2f1;2;:::;Dg

ˇ̌
ˇ̌ sd
md

ˇ̌
ˇ̌ ;

where

md D 1

N

NX

jD1
xjd

and

s2d D
1

N � 1
NX

jD1
.xjd �md/

2

denote the mean and variance of the d th attribute x:d , respectively.

3 Deterministic Initialization of the K-Means Algorithm 85

Fig. 3.1 Illustration of Var-Part on the Ruspini data set. (a) Input data set. (b) Iteration 1.
(c) Iteration 2. (d) Iteration 3

2. Determine the attribute with the least Pearson product-moment correlation with
x:d1 , that is, the attribute x:d2 that satisfies

d2 D arg min
d2f1;2;:::;Dg

NP
jD1

.xjd1 �md1/.xjd �md/

s
NP
jD1

.xjd1 �md1/
2

s
NP
jD1

.xjd �md/2

: (3.7)

Note that since we calculated the mean and standard deviation of each
attribute in step 1, the following expression can be used in place of (3.7) to save
computational time:

d2 D arg min
d2f1;2;:::;Dg

NX

jD1

�
xjd1 �md1

sd1

��
xjd �md

sd

�
: (3.8)

86 M.E. Celebi and H.A. Kingravi

3. Let Y D fy1; y2; : : : ; yN g
 R
2 be the projection of X D fx1; x2; : : : ; xN g
 R

D

onto the two-dimensional subspace determined in steps 1 and 2. In other words,
yj D

�
xjd1 ; xjd2

�
for j 2 f1; 2; : : : ; N g.

4. Choose the first center c1 as the point farthest from the centroid Ny of Y with
respect to `2 distance, that is, the point y O| that satisfies

O| D arg max
j2f1;2;:::;N g

��yj � Ny
��2
2
:

5. Choose the next center ci (i 2 f2; 3; : : : ; Kg) as the point with the greatest
cumulative `2 distance from the previously selected .i � 1/ centers, that is, the
point y O| that satisfies

O| D arg max
j2f1;2;:::;N g

i�1X

kD1

��yj � ck
��
2
:

6. Repeat step 5 .K � 1/ times.

Note that steps 1 and 2 above provide rough approximations to the first two PCs
and that steps 4 and 5 are performed in the two-dimensional subspace spanned by
the attributes determined in steps 1 and 2.

Clearly, MS is a derivative of MM. Differences between the two methods are as
follows:

• MM chooses the first center arbitrarily from the data points, whereas MS chooses
it to be the point farthest from the mean of the projected data set.

• MM chooses the remaining .K � 1/ centers iteratively based on their minimum
distance from the previously selected centers, whereas MS uses a cumulative
distance criterion. Note that while the selection criterion used in MM provides
an approximation guarantee of factor 2 for the K-center clustering problem (see
footnote 1 on page 83), it is unclear whether or not MS offers any approximation
guarantees.

• MM performs the distance calculations in the original D-dimensional space,
whereas MS works in a two-dimensional subspace. A serious drawback of the
projection operation employed in MS is that the method disregards all attributes
but two and therefore is likely to be effective only for data sets in which the
variability is mostly on two dimensions. Unfortunately, the motivation behind
this particular projection scheme is not given by Erişoğlu et al.

Interestingly, MS also bears a striking resemblance to a method proposed by
DeSarbo et al. [33] almost three decades earlier. The latter method differs from
the former in two ways. First, it works in the originalD-dimensional space. Second,
it chooses the first two centers as the pair of points with the greatest `2 distance.
Unfortunately, the determination of the first two centers in this method leads to a
time complexity quadratic in N . Therefore, this method was not included in the

3 Deterministic Initialization of the K-Means Algorithm 87

experiments. More recently, Glasbey et al. [43] mentioned a very similar method
within the context of color palette design.

We also experimented with a modified version of the MS method (MS+), which
is identical to MS with the exception that there is no projection involved. In other
words, MS+ operates in the original D-dimensional space.

For a comprehensive overview of these methods and others, the reader is referred
to a recent article by Celebi et al. [25]. It should be noted that, in this study, we do
not attempt to compare a mix of deterministic and random IMs. Instead, we focus
on deterministic methods for two main reasons. First, these methods are generally
computationally more efficient as they need to be executed only once. In contrast,
random methods are inherently unreliable in that the quality of their results is
unpredictable and thus it is common practice to perform multiple runs of such
methods and take the output of the run4 that produces the best objective function
value. Second, several studies [24, 25, 101] demonstrated that despite the fact that
they are executed only once, some deterministic methods are highly competitive
with well-known and effective random methods such as Bradley and Fayyad’s
method [19] and k-means++ [7].

3.3 Experimental Setup

3.3.1 Data Set Descriptions

The experiments were performed on 24 commonly used data sets from the UCI
Machine Learning Repository [40]. Table 3.1 gives the data set descriptions. For
each data set, the number of clusters (K) was set equal to the number of classes (K 0),
as commonly seen in the related literature [2, 7, 21, 24, 25, 42, 54, 65, 87, 95, 101].

3.3.2 Attribute Normalization

Normalization is a common preprocessing step in clustering that is necessary to
prevent attributes with large variability from dominating the distance calculations
and also to avoid numerical instabilities in the computations. Two commonly used
normalization schemes are linear scaling to unit range (min-max normalization) and
linear scaling to unit variance (z-score normalization). Several studies revealed that
the former scheme is preferable to the latter since the latter is likely to eliminate
valuable between-cluster variation [44, 45, 83]. As a result, we used the min-max
normalization scheme to map the attributes of each data set to the Œ0; 1� interval.

4Each ‘run’ of a random IM involves the execution of the IM itself followed by that of the clustering
algorithm, e.g., k-means.

88 M.E. Celebi and H.A. Kingravi

Table 3.1 Data set descriptions (N : # points, D: # attributes, K0:
classes)

ID Data Set N D K0

01 Breast cancer Wisconsin (original) 683 9 2

02 Breast tissue 106 9 6

03 Ecoli 336 7 8

04 Steel plates faults 1,941 27 7

05 Glass identification 214 9 6

06 Heart disease (Cleveland) 297 13 5

07 Ionosphere 351 34 2

08 Iris (Bezdek) 150 4 3

09 ISOLET 7,797 617 26

10 Landsat satellite (Statlog) 6,435 36 6

11 Letter recognition 20,000 16 26

12 Multiple features (Fourier) 2,000 76 10

13 Libras movement 360 90 15

14 Optical digits 5,620 64 10

15 Page blocks classification 5,473 10 5

16 Pen digits 10,992 16 10

17 Person activity 164,860 3 11

18 Image segmentation 2,310 19 7

19 Shuttle (Statlog) 58,000 9 7

20 Spambase 4,601 57 2

21 Vertebral column 310 6 3

22 Wall-following robot navigation 5,456 24 4

23 Wine 178 13 3

24 Yeast 1,484 8 10

3.3.3 Performance Criteria

The performance of the IMs was quantified using two effectiveness (quality) and
one efficiency (speed) criteria:

• Initial SSE (IS): This is the SSE value calculated after the initialization phase,
before the clustering phase. It gives us a measure of the effectiveness of an IM
by itself.

• Final SSE (FS): This is the SSE value calculated after the clustering phase. It
gives us a measure of the effectiveness of an IM when its output is refined
by k-means. Note that this is the objective function of the k-means algorithm,
i.e., (3.1).

• Number of Iterations (NI): This is the number of iterations that k-means
requires until reaching convergence when initialized by a particular IM. It is
an efficiency measure independent of programming language, implementation

3 Deterministic Initialization of the K-Means Algorithm 89

style, compiler, and CPU architecture. Note that we do not report CPU time
measurements since on most data sets that we tested each of the six IMs
completed within a few milliseconds (gcc v4.4.5, Intel Core i7-3960X 3.30GHz).

The convergence of k-means was controlled by the disjunction of two criteria:
the number of iterations reaches a maximum of 100 or the relative improvement
in SSE between two consecutive iterations drops below a threshold [76], i.e.,
.SSEi�1 � SSEi / =SSEi � �, where SSEi denotes the SSE value at the end of the
i th (i 2 f2; : : : ; 100g) iteration. The convergence threshold was set to � D 10�6.

3.4 Experimental Results and Discussion

Tables 3.2, 3.3, and 3.4 give the performance measurements for each method (the
best values are underlined). Since the number of iterations fall within Œ0; 100�, we
can directly obtain descriptive statistics such as minimum, maximum, mean, and
median for this criterion over the 24 data sets. In contrast, initial/final SSE values
are unnormalized and therefore incomparable across different data sets. In order
to circumvent this problem, for each data set, we calculated the percent SSE of
each method relative to the worst (greatest) SSE. For example, it can be seen from
Table 3.2 that on the Breast Cancer Wisconsin data set the initial SSE of MM is
498, whereas the worst initial SSE on the same data set is 596 and thus the ratio
of the former to the latter is 0:836. This simply means that on this data set MM
obtains 100.1 � 0:836/ � 16% better initial SSE than the worst method, KK.
Table 3.5 gives the summary statistics for the normalized initial/final SSE’s obtained
in this manner and those for the number of iterations. As usual, min (minimum) and
max (maximum) represent the best and worst case performance, respectively. Mean
represents the average case performance, whereas median quantifies the typical
performance of a method without regard to outliers. For example, with respect to
the initial SSE criterion, PP performs, on the average, about 100 � 21:46 � 79%
better than the worst method.

For convenient visualization, Fig. 3.2 shows the box plots that depict the
five-number summaries (minimum, 25th percentile, median, 75th percentile, and
maximum) for the normalized initial/final SSE’s calculated in the aforementioned
manner and the five-number summary for the number of iterations. Here, the
bottom and top end of the whiskers of a box represent the minimum and maximum,
respectively, whereas the bottom and top of the box itself are the 25th percentile
(Q1) and 75th percentile (Q3), respectively. The line that passes through the box
is the 50th percentile (Q2), i.e., the median, while the small square inside the box
denotes the mean.

With respect to effectiveness, the following observations can be made:

• VP and PP performed very similarly with respect to both initial and final SSE.

90 M.E. Celebi and H.A. Kingravi

Table 3.2 Initial SSE comparison of the initialization methods

ID MM KK VP PP MS MS+

01 498 596 247 240 478 596

02 19 18 8 8 50 21

03 48 76 20 19 104 68

04 2; 817 3; 788 1; 203 1; 262 5; 260 4; 627

05 45 117 21 20 83 132

06 409 557 249 250 773 559

07 827 1; 791 632 629 3; 244 3; 390

08 18 23 8 8 42 42

09 221; 163 298; 478 145; 444 124; 958 368; 510 318; 162

10 4; 816 7; 780 2; 050 2; 116 7; 685 11; 079

11 5; 632 7; 583 3; 456 3; 101 12; 810 14; 336

12 4; 485 7; 821 3; 354 3; 266 7; 129 8; 369

13 1; 023 1; 114 628 592 1; 906 1; 454

14 25; 291 36; 691 17; 476 15; 714 43; 169 42; 213

15 635 2; 343 300 230 1; 328 7; 868

16 12; 315 16; 159 5; 947 5; 920 17; 914 16; 104

17 5; 940 7; 196 1; 269 1; 468 42; 475 50; 878

18 1; 085 1; 617 472 416 3; 071 1; 830

19 1; 818 14; 824 316 309 26; 778 28; 223

20 772 13; 155 782 783 5; 101 13; 155

21 37 103 23 20 83 103

22 11; 004 21; 141 8; 517 7; 805 19; 986 20; 122

23 87 185 51 53 153 212

24 115 261 77 63 209 658

• On 23 (out of 24) data sets, VP and PP obtained the two best initial SSE’s.
Therefore, in applications where an approximate clustering of the data set is
desired, these hierarchical methods should be used.

• On 23 data sets, either MS or MS+ obtained the worst initial SSE. In fact, on
one data set (#19, Shuttle), these methods gave respectively 86:7 and 91:3 times
worse initial SSE than the best method, PP.

• On 20 data sets, VP and PP obtained the two best final SSE’s. Since final SSE is
the objective function of k-means, from an optimization point of view, these two
methods are the best IMs.

3 Deterministic Initialization of the K-Means Algorithm 91

Table 3.3 Final SSE comparison of the initialization methods

ID MM KK VP PP MS MS+

01 239 239 239 239 239 239

02 7 7 7 7 11 10

03 19 20 17 18 40 20

04 1; 331 1; 329 1; 167 1; 168 1; 801 1; 376

05 23 23 19 19 31 22

06 249 249 248 243 276 253

07 826 629 629 629 629 629

08 7 7 7 7 7 7

09 135; 818 123; 607 118; 495 118; 386 174; 326 121; 912

10 1; 742 1; 742 1; 742 1; 742 1; 742 1; 742

11 2; 749 2; 783 2; 735 2; 745 4; 520 3; 262

12 3; 316 3; 284 3; 137 3; 214 3; 518 3; 257

13 502 502 502 486 783 530

14 14; 679 14; 649 14; 581 14; 807 21; 855 14; 581

15 230 295 227 215 230 310

16 5; 049 4; 930 4; 930 5; 004 7; 530 5; 017

17 1; 195 1; 195 1; 182 1; 177 1; 226 1; 192

18 433 443 410 405 745 446

19 726 658 235 274 728 496

20 765 765 778 778 778 765

21 23 23 19 19 23 23

22 7; 772 7; 772 7; 774 7; 774 7; 772 7; 772

23 63 49 49 49 49 49

24 61 61 69 59 60 63

• On 16 data sets, MS obtained the worst final SSE. In fact, on one data set (#19,
Shuttle), MS gave 3:1 times worse final SSE than the best method, VP.

• A comparison between Fig. 3.2a, b reveals that there is significantly less variation
among the IMs with respect to final SSE compared to initial SSE. In other words,
the performance of the IMs is more homogeneous with respect to final SSE. This
was expected because, being a local optimization procedure, k-means can take
two disparate initial configurations to similar (or, in some cases, even identical)
local minima. Nevertheless, as Tables 3.2 and 3.3 show, VP and PP consistently
performed well, whereas MS/MS+ generally performed poorly.

With respect to computational efficiency, the following observations can be
made:

• An average (or typical) run of KK lead to the fastest k-means convergence.
• An average (or typical) run of PP lead to the second fastest k-means convergence.
• An average run of MS lead to the slowest k-means convergence.
• A typical run of MM lead to the slowest k-means convergence.

92 M.E. Celebi and H.A. Kingravi

Table 3.4 Number of
iterations comparison of the
initialization methods

ID MM KK VP PP MS MS+

01 8 7 4 4 7 7

02 7 6 6 7 9 4

03 14 12 17 7 4 10

04 25 16 11 42 12 12

05 6 5 6 5 7 6

06 12 10 3 4 11 16

07 3 6 3 3 7 6

08 6 5 4 4 12 19

09 32 36 82 45 34 81

10 53 17 28 27 24 33

11 72 63 100 83 91 65

12 37 32 14 25 31 29

13 13 7 17 11 18 16

14 36 24 16 22 29 17

15 27 18 25 15 30 12

16 19 17 13 17 22 29

17 31 31 100 63 91 53

18 31 9 10 18 16 22

19 22 8 30 16 14 9

20 5 5 9 10 11 5

21 11 10 10 9 8 10

22 24 14 20 8 20 19

23 9 7 5 7 7 8

24 73 43 33 21 71 49

In summary, our experiments showed that VP and PP performed very similarly
with respective to both effectiveness criteria and they outperformed the remaining
four methods by a large margin. The former method has a time complexity of
O.ND/, whereas the latter one has a complexity of O.ND2/ when implemented
using the power method [56]. Therefore, on high dimensional data sets, the former
method might be preferable. On the other hand, on low dimensional data sets, the
latter method might be preferable as it often leads to faster k-means convergence.
The main disadvantage of these two methods is that they are more complicated
to implement due to their hierarchical formulation. As for the remaining four
methods, when compared to MM, KK was significantly worse in terms of initial
SSE, slightly better in terms of final SSE, and significantly better in terms of
number of iterations. Interestingly, despite its similarities with MM, the most
recent method that we examined, i.e., MS, often gave the worst results. It was
also demonstrated that by eliminating the two-dimensional projection step, the
performance of MS can be substantially improved with respect to final SSE. This,
however, comes at the expense of a performance degradation with respect to initial
SSE. Consequently, in either of its forms, the MS method rediscovered recently by

3 Deterministic Initialization of the K-Means Algorithm 93

Table 3.5 Summary statistics for Tables 3.2, 3.3, and 3.4

Criterion Statistic MM KK VP PP MS MS+

IS Min 5:87 14:14 1:12 1:10 16:88 42:00

Q1 29:24 52:74 15:64 14:35 76:19 87:15

Median 41:95 72:04 20:78 19:26 94:71 100:00

Q3 53:57 89:42 33:07 32:69 100:00 100:00

Max 83:56 100:00 41:44 40:27 100:00 100:00

Mean 40:28 69:03 22:55 21:46 83:16 90:53

FS Min 47:50 50:00 32:28 37:64 74:19 50:00

Q1 67:11 66:25 63:87 62:85 100:00 69:03

Median 89:31 83:09 74:69 72:75 100:00 84:34

Q3 99:99 97:90 98:21 93:68 100:00 99:15

Max 100:00 100:00 100:00 100:00 100:00 100:00

Mean 83:21 81:56 76:23 75:77 96:46 82:68

NI Min 3:00 5:00 3:00 3:00 4:00 4:00

Q1 8:50 7:00 6:00 7:00 8:50 8:50

Median 20:50 11:00 13:50 13:00 15:00 16:00

Q3 31:50 21:00 26:50 23:50 29:50 29:00

Max 73:00 63:00 100:00 83:00 91:00 81:00

Mean 24:00 17:00 23:58 19:71 24:42 22:38

Erişoğlu et al. does not appear to outperform the classical MM method or the more
recent hierarchical methods VP and PP. This is not surprising given that MS can
easily choose two nearby points as centers provided that they each have a large
cumulative distance to all other centers [43].

3.5 Conclusions

In this chapter we examined six linear, deterministic, and order-invariant methods
used for the initialization of the k-means clustering algorithm. These included the
popular maximin method and three of its variants and two relatively unknown
divisive hierarchical methods. Experiments on a large and diverse collection of real-
world data sets from the UCI Machine Learning Repository demonstrated that the
hierarchical methods outperform the remaining four methods with respect to two
objective effectiveness criteria. These hierarchical methods can be used to initialize
k-means effectively, particularly in time-critical applications that involve large data
sets. Alternatively, they can be used as approximate clustering algorithms without
additional k-means refinement. Our experiments also revealed that the most recent
variant of the maximin method performs surprisingly poorly.

94 M.E. Celebi and H.A. Kingravi

a b

c

Fig. 3.2 Box plots for the performance criteria. (a) Normalized initial SSE. (b) Normalized final
SSE. (c) Number of iterations

Acknowledgements This work was supported by a grant from the US National Science
Foundation (1117457).

References

1. Al-Daoud M (2005) A new algorithm for cluster initialization. In: Proceedings of the 2nd
world enformatika conference, pp 74–76

2. Al Hasan M, Chaoji V, Salem S, Zaki M (2009) Robust partitional clustering by outlier and
density insensitive seeding. Pattern Recognit Lett 30(11):994–1002

3. Al-Sultan KS (1995) A Tabu search approach for the minimum sum-of-squares clustering
problem. Pattern Recognit 28(9):1443–1451

4. Aloise D, Deshpande A, Hansen P, Popat P (2009) NP-hardness of Euclidean sum-of-squares
clustering. Mach Learn 75(2):245–248

5. An F, Mattausch HJ (2013) K-means clustering algorithm for multimedia applications with
flexible HW/SW co-design. J Syst Archit 59(3):155–164

6. Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona I (2013) An extensive comparative
study of cluster validity indices. Pattern Recognit 46(1):243–256

7. Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceed-
ings of the 18th annual ACM-SIAM symposium on discrete algorithms, pp 1027–1035

8. Astrahan MM (1970) Speech analysis by clustering, or the hyperphoneme method. Technical
Report AIM-124, Stanford University

3 Deterministic Initialization of the K-Means Algorithm 95

9. Baarsch J, Celebi ME (2012) Investigation of internal validity measures for K-means
clustering. In: Proceedings of the 2012 IAENG international conference on data mining and
applications, pp 471–476

10. Babu GP, Murty MN (1994) Clustering with evolution strategies. Pattern Recognit 27(2):
321–329

11. Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Behav Sci
12(2):153–155

12. Banfield CF, Bassill LC (1977) A transfer algorithm for non-hierarchical classification. Appl
Stat 26(2):206–210

13. Batchelor BG, Wilkins BR (1969) Method for location of clusters of patterns to initialise a
learning machine. Electron Lett 5(20):481–483

14. Bekkerman R, Bilenko M, Langford J (eds) (2012) Scaling up machine learning: parallel and
distributed approaches. Cambridge University Press, Cambridge

15. Berkhin P (2006) A survey of clustering data mining techniques. In: Kogan J, Nicholas C,
Teboulle M (eds) Grouping multidimensional data: recent advances in clustering. Springer,
Berlin, pp 25–71

16. Bezdek JC, Keller J, Krisnapuram R, Pal NR (1999) Fuzzy models and algorithms for pattern
recognition and image processing. Kluwer, Dordecht

17. Bock HH (2007) Clustering methods: a history of K-means algorithms. In: Brito P, Cucumel
G, Bertrand P, de Carvalho F (eds) Selected contributions in data analysis and classification.
Springer, Berlin, pp 161–172

18. Bottou L, Bengio Y (1995) Convergence properties of the K-means algorithms. In: Tesauro G,
Touretzky DS, Leen TK (eds) Advances in neural information processing systems, vol 7. MIT
Press, Cambridge, pp 585–592

19. Bradley PS, Fayyad U (1998) Refining initial points for K-means clustering. In: Proceedings
of the 15th international conference on machine learning, pp 91–99

20. Bradley PS, Fayyad U, Reina C (1998) Scaling clustering algorithms to large databases. In:
Proceedings of the 4th international conference on knowledge discovery and data mining,
pp 9–15

21. Cao F, Liang J, Jiang G (2009) An initialization method for the K-means algorithm using
neighborhood model. Comput Math Appl 58(3):474–483

22. Casey RG, Nagy G (1968) An autonomous reading machine. IEEE Trans Comput 17(5):
492–503

23. Celebi ME (2011) Improving the performance of K-means for color quantization. Image Vis
Comput 29(4):260–271

24. Celebi ME, Kingravi HA (2012) Deterministic initialization of the K-means algorithm using
hierarchical clustering. Intern J Pattern Recognit Artif Intell 26(7):1250018

25. Celebi ME, Kingravi HA, Vela PA (2013) A Comparative study of efficient initialization
methods for the K-means clustering algorithm. Expert Syst Appl 40(1):200–210

26. Chen TW, Chien SY (2010) Bandwidth adaptive hardware architecture of K-means clustering
for video analysis. IEEE Trans VLSI Syst 18(6):957–966

27. Chen WY, Song Y, Bai H, Lin CJ, Chang EY (2011) Parallel spectral clustering in distributed
systems. IEEE Trans Pattern Anal Mach Intell 33(3):568–586

28. Csiszar I, Tusnady G (1984) Information geometry and alternating minimization procedures.
Stat Decis Suppl Issue (1):205–237

29. Das S, Abraham A, Konar A (eds) (2009) Metaheuristic clustering. Springer, Berlin
30. Dasgupta S (2008) The hardness of K-means clustering. Technical Report CS2008-0916,

University of California, San Diego
31. Dash M, Liu H, Xu X (2001) ‘1 C 1 > 2’: merging distance and density based clustering.

In: Proceedings of the 7th international conference on database systems for advanced
applications, pp 32–39

32. de Amorim RC, Komisarczuk P (2012) On Initializations for the Minkowski weighted
K-means. In: Proceedings of the 11th international symposium on intelligent data analysis,
pp 45–55

96 M.E. Celebi and H.A. Kingravi

33. DeSarbo WS, Carroll JD, Clark LA, Green PE (1984) Synthesized clustering: a method for
amalgamating alternative clustering bases with differential weighting of variables. Psychome-
trika 49(1):57–78

34. Drake J, Hamerly G (2012) Accelerated K-means with adaptive distance bounds. In:
Proceedings of the 5th NIPS workshop on optimization for machine learning

35. Elkan C (2003) Using the triangle inequality to accelerate K-means. In: Proceedings of the
20th international conference on machine learning, pp 147–153

36. Erişoğlu et al. (2011) Pattern Recognit Lett 32(14):1701–1705
37. Estivill-Castro V, Yang J (2004) Fast and robust general purpose clustering algorithms. Data

Min Knowl Discov 8(2):127–150
38. Farnstrom F, Lewis J, Elkan C (2000) Scalability for clustering algorithms revisited. SIGKDD

Explor 2(1):51–57
39. Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of

classification. Biometrics 21:768
40. Frank A, Asuncion A (2014) UCI machine learning repository. School of Information and

Computer Sciences, University of California, Irvine. http://archive.ics.uci.edu/ml
41. Ghosh J, Liu A (2009) K-Means. In: Wu X, Kumar V (eds) The top ten algorithms in data

mining. Chapman and Hall/CRC, London, pp 21–35
42. Gingles C, Celebi ME (2014) Histogram-based method for effective initialization of the

K-means clustering algorithm. In: Proceedings of the 27th international Florida artificial
intelligence research society conference, pp 333–338

43. Glasbey C, van der Heijden G, Toh VFK, Gray A (2006) Colour displays for categorical
images. Color Res Appl 32(4):304–309

44. Gnanadesikan R, Kettenring JR (1995) Weighting and selection of variables for cluster
analysis. J Classif 12(1):113–136

45. Gnanadesikan R, Kettenring JR, Maloor S (2007) Better alternatives to current methods of
scaling and weighting data for cluster analysis. J Stat Plan Inference 137(11):3483–3496

46. Gokhale M, Frigo J, McCabe, K., Theiler J, Wolinski C, Lavenier D (2003) Experience with
a hybrid processor: K-means clustering. J Supercomput 26(2):131–148

47. Gonzalez T (1985) Clustering to minimize the maximum intercluster distance. Theor Comput
Sci 38(2–3):293–306

48. Hall LO (2012) Objective function-based clustering. WIREs Data Min Knowl Discov
2(4):326–339

49. Hamerly G (2010) Making K-means even faster. In: Proceedings of the 2010 SIAM
international conference on data mining, pp 130–140

50. Handl J, Knowles J, Dorigo M (2005) Ant-based clustering and topographic mapping. Artif
Life 12(1):35–61

51. Hansen P, Mladenovic N (2001) J-means: a new local search heuristic for minimum sum of
squares clustering. Pattern Recognit 34(2):405–413

52. Har-Peled S (2011) Geometric approximation algorithms. American Mathematical Society,
Providence

53. Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat
Soc C 28(1):100–108

54. He J, Lan M, Tan CL, Sung SY, Low HB (2004) Initialization of cluster refinement algorithms:
a review and comparative study. In: Proceedings of the 2004 IEEE international joint
conference on neural networks, pp 297–302

55. Hochbaum DS (ed) (1997) Approximation algorithms for NP-hard problems. PWS Publishing
Company, Boston

56. Hotelling H (1936) Simplified calculation of principal components. Psychometrika 1(1):
27–35

57. Hwang WJ, Hsu CC, Li HY, Weng SK, Yu TY (2010) High speed C-means clustering in
reconfigurable hardware. Microprocess Microsyst 34(6):237–246

58. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):
651–666

http://archive.ics.uci.edu/ml

3 Deterministic Initialization of the K-Means Algorithm 97

59. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv
31(3):264–323

60. Jajuga K (1987) A clustering method based on the L1-norm. Comput Stat Data Anal 5(4):
357–371

61. Jancey RC (1966) Multidimensional group analysis. Aust J Bot 14(1):127–130
62. Jin R, Goswami A, Agrawal G (2006) Fast and exact out-of-core and distributed K-means

clustering. Knowl Inf Syst 10(1):17–40
63. Jin X, Kim S, Han J, Cao L, Yin Z (2011) A general framework for efficient clustering of

large datasets based on activity detection. Stat Anal Data Min 4(1):11–29
64. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, Berlin
65. Kang P, Cho S (2009) K-means clustering seeds initialization based on centrality, sparsity, and

isotropy. In: Proceedings of the 10th international conference on intelligent data engineering
and automated learning, pp 109–117

66. Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2002) An efficient
K-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach
Intell 24(7):881–892

67. Katsavounidis I, Kuo CCJ., Zhang Z (1994) A new initialization technique for generalized
Lloyd iteration. IEEE Signal Process Lett 1(10):144–146

68. Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis.
Wiley-Interscience, London

69. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics
11(1):137–148

70. Klein RW, Dubes RC (1989) Experiments in projection and clustering by simulated annealing.
Pattern Recognit 22(2):213–220

71. Kohlhoff KJ, Pande VS, Altman RB (2013) K-means for parallel architectures using all-prefix-
sum sorting and updating steps. IEEE Trans Parallel Distrib Syst 24(8):1602–1612

72. Lai JZC., Huang TJ, Liaw YC (2009) A fast K-means clustering algorithm using cluster center
displacement. Pattern Recognit 42(11):2551–2556

73. Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies - II.
Clustering systems. Comput J 10(3):271–277

74. Li Y, Zhao K, Chu X, Liu J (2013) Speeding up K-means algorithm by GPUs. J Comput Syst
Sci 79(2):216–229

75. Likas A, Vlassis N, Verbeek J (2003) The global K-means clustering algorithm. Pattern
Recognit 36(2):451–461

76. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans
Commun 28(1):84–95

77. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–136
78. MacQueen J (1967) Some methods for classification and analysis of multivariate observations.

In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability,
pp 281–297

79. Mahajan M, Nimbhorkar P, Varadarajan K (2012) The planar k-means problem is NP-hard.
Theor Comput Sci 442, 13–21

80. Mao J, Jain AK (1996) A self-organizing network for hyperellipsoidal clustering (HEC).
IEEE Trans Neural Netw 7(1):16–29

81. Melnykov I, Melnykov V (2014) On K-means algorithm with the use of Mahalanobis
distances. Stat Probab Lett 84, 88–95

82. Melnykov V (2013) Challenges in model-based clustering. Wiley Interdiscip Rev Comput
Stat 5(2):135–148

83. Milligan G, Cooper MC (1988) A study of standardization of variables in cluster analysis.
J Classif 5(2):181–204

84. Monmarché N, Slimane M, Venturini G (1999) On improving clustering in numerical
databases with artificial ants. In: Proceedings of the 5th European conference on advances
in artificial life, pp 626–635

85. Murthy CA, Chowdhury N (1996) In search of optimal clusters using genetic algorithms.
Pattern Recognit Lett 17(8):825–832

98 M.E. Celebi and H.A. Kingravi

86. Omran MGH, Engelbrecht AP, Salman A (2007) An overview of clustering methods. Intell
Data Anal 11(6):583–605

87. Onoda T, Sakai M, Yamada S (2012) Careful seeding method based on independent
components analysis for K-means clustering. J Emerg Technol Web Intell 4(1):51–59

88. Ordonez C, Omiecinski E (2004) Efficient disk-based K-means clustering for relational
databases. IEEE Trans Knowl Data Eng 16(8):909–921

89. Pacheco JA (2005) A scatter search approach for the minimum sum-of-squares clustering
problem. Comput Oper Res 32(5):1325–1335

90. Pacheco JA, Valencia O (2003) Design of hybrids for the minimum sum-of-squares clustering
problem. Comput Stat Data Anal 43(2):235–248

91. Paterlini S, Krink T (2006) Differential evolution and particle swarm optimization in
partitional clustering. Comput Stat Data Anal 50(5):1220–1247

92. Pelleg D, Moore A (1999) Accelerating exact K-means algorithms with geometric reasoning.
In: Proceedings of the 5th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 277–281

93. Pena JM, Lozano JA, Larranaga P (1999) An empirical comparison of four initialization
methods for the K-means algorithm. Pattern Recognit Lett 20(10):1027–1040

94. Rayward-Smith VJ (2005) Metaheuristics for clustering in KDD. In: Proceedings of the IEEE
congress on evolutionary computation, vol. 3, pp 2380–2387

95. Redmond SJ, Heneghan C (2007) A method for initialising the K-means clustering algorithm
using kd-trees. Pattern Recognit Lett 28(8):965–973

96. Ruspini EH (1970) Numerical methods for fuzzy clustering. Inf Sci 2(3):319–350
97. Selim SZ, Ismail MA (1984) K-means-type algorithms: a generalized convergence theorem

and characterization of local optimality. IEEE Trans Pattern Anal Mach Intell 6(1):81–87
98. Sparks DN (1973) Euclidean cluster analysis. Appl Stat 22(1):126–130
99. Späth H (1976) L1 cluster analysis. Computing 16(4):379–387

100. Späth H (1977) Computational experiences with the exchange method: applied to four
commonly used partitioning cluster analysis criteria. Eur J Oper Res 1(1):23–31

101. Su T, Dy JG (2007) In search of deterministic methods for initializing K-means and Gaussian
mixture clustering. Intell Data Anal 11(4):319–338

102. Tarsitano A (2003) A computational study of several relocation methods for K-means
algorithms. Pattern Recognit 36(12):2955–2966

103. Thorndike RL (1953) Who belongs in the family? Psychometrika 18(4):267–276
104. Tou JT, Gonzales RC (1974) Pattern recognition principles. Addison-Wesley, Reading
105. van der Merwe, D.W., Engelbrecht AP (2003) Data clustering using particle swarm optimiza-

tion. In: Proceedings of the 2003 IEEE congress on evolutionary computation, pp 215–220
106. Vattani A (2011) K-means requires exponentially many iterations even in the plane. Discrete

Comput Geom 45(4):596–616
107. Vendramin L, Campello RJG.B., Hruschka ER (2010) Relative clustering validity criteria: a

comparative overview. Stat Anal Data Min 3(4):209–235
108. von Luxburg, U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
109. Wu R, Zhang B, Hsu M (2009) Clustering billions of data points using GPUs. In: Proceedings

of the 6th ACM conference on computing Frontiers, pp 1–6
110. Xiao Y, Yu J (2012) Partitive clustering (K-means family). WIREs Data Min Knowl Discov

2(3):209–225
111. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):

645–678
112. Zhang JS, Leung YW (2003) Robust clustering by pruning outliers. IEEE Trans Syst Man

Cybern B 33(6):983–999

Chapter 4
Nonsmooth Optimization Based Algorithms
in Cluster Analysis

Adil M. Bagirov and Ehsan Mohebi

Abstract Cluster analysis is an important task in data mining. It deals with the
problem of organization of a collection of objects into clusters based on a similarity
measure. Various distance functions can be used to define the similarity measure.
Cluster analysis problems with the similarity measure defined by the squared
Euclidean distance, which is also known as the minimum sum-of-squares clustering,
has been studied extensively over the last five decades. However, problems with the
L1 and L1 norms have attracted less attention. In this chapter, we consider a non-
smooth nonconvex optimization formulation of the cluster analysis problems. This
formulation allows one to easily apply similarity measures defined using different
distance functions. Moreover, an efficient incremental algorithm can be designed
based on this formulation to solve the clustering problems. We develop incremental
algorithms for solving clustering problems where the similarity measure is defined
using the L1;L2 and L1 norms. We also consider different algorithms for solving
nonsmooth nonconvex optimization problems in cluster analysis. The proposed
algorithms are tested using several real world data sets and compared with other
similar algorithms.

Keywords Cluster analysis • Nonsmooth optimization • Nonconvex optimization
• Partition clustering • Incremental algorithm • k-means algorithm • Similarity
measure

4.1 Introduction

The cluster analysis deals with the problem of organization of a collection of objects
into clusters based on similarity. It is among the most important tasks in data
mining and also known as unsupervised partition of objects. The cluster analysis
has found many applications in different areas such as medicine, bioinformatics,
engineering, business. There are different types of clustering problems. We consider

A.M. Bagirov (�) • E. Mohebi
Faculty of Science, School of Science, Information Technology and Engineering,
Federation University Australia, Victoria, 3353, Australia
e-mail: a.bagirov@federation.edu.au; e.mohebi@federation.edu.au

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__4

99

mailto:a.bagirov@federation.edu.au
mailto:e.mohebi@federation.edu.au

100 A.M. Bagirov and E. Mohebi

the unconstrained hard clustering problem. It can be formulated as an optimization
problem. Optimization models of the hard cluster analysis problems include
combinatorial, mixed integer nonlinear programming and nonconvex nonsmooth
optimization models [9, 12, 18]. The clustering is a global optimization problem,
it has many solutions and only global solutions provide the best cluster structure of
a data set.

The similarity measure in the cluster analysis can be defined using various
distance functions. The use of different similarity measures allows one to find
different cluster structures in a data set. The widely used similarity measure is based
on the squared Euclidean distance. Such a clustering problem is also known as the
minimum sum-of-squares clustering problem. Various optimization techniques have
been applied to solve it. These techniques include branch and bound [26,29], cutting
plane [34], interior point methods [45], the variable neighborhood search algorithm
[35] and metaheuristics like simulated annealing, tabu search, genetic algorithms
[2, 20, 51, 53].

The similarity measure can also be defined using theL1 andL1 norms. However,
cluster analysis problems with such similarity measures have attracted significantly
less attention than those with the use of the squared Euclidean norm. There are
several papers where clustering problems with the similarity measures based on the
L1 and L1 norms were considered. The paper [22] (see, also [40]) seems to be
the first paper where the L1-norm (also known as the Manhattan norm) was used
to define the similarity measure in the cluster analysis problems. In [1], the authors
show that the distance metric based on the L1-norm is consistently more preferable
than the distance metric based on the L2-norm for high dimensional data mining
applications.

In papers [17, 54], the ISODATA clustering algorithm (a generalized version of
the k-means) was developed using the Euclidean distance and this algorithm for the
L1-norm was introduced in [38]. In [38], the authors also outline the comparative
results for clustering using both distances. These results demonstrate that the L1-
norm based algorithm is superior when the correlation coefficient is high and
negative. The L1-norm is used as a convex surrogate constraint for clustering in
[39]. In [30], the authors examine the use of a range of Minkowski norms for the
clustering. The X -means algorithm introduced in [47] can use similarity measures
based on different norms.

An approach for fuzzy clustering using the L1-norm and a maximum entropy
inference method is presented in [32]. In the paper [56], the authors give an
alternative fuzzy c-means algorithm with the L1-norm and fuzzy covariance.
Results show that these algorithms are robust to noise and outliers.

In the method, called Hyperbox clustering with the Ant Colony Optimization
(ACO) [48], hyperboxes, which can be defined using the L1 norm, are placed in
the search space using the ACO and then clustered using the Nearest-Neighbor
method. After running the ACO, until the stopping criteria have been achieved,
overlapping hyperboxes are joined into one cluster and non-overlapping hyperboxes

4 Nonsmooth Optimization Algorithms in Cluster Analysis 101

are assigned to their own clusters. Accuracy values from this clustering algorithm
are significantly better than those from the fuzzy c-means and the ACO, and the
runtime improvement when compared to the latter is substantial.

Since the clustering is a global optimization problem, the application of special
procedures to generate starting cluster centers is crucial to improve the accuracy
of local search algorithms. Such procedures are widely used to improve the perfor-
mance of the k-means algorithm. For example, k-meansCC algorithm introduced
in [3], chooses centers at random from the data points, but weighs the data points
according to their squared distance from the closest center already chosen. In [25],
the authors investigate various initialization methods for the k-means algorithm
and present their comparative analysis. Various initialization algorithms are also
discussed in [19, 21, 24, 52].

Incremental approaches provide an efficient way to generate starting points for
cluster centers. Note that there are two different types of incremental algorithms in
cluster analysis. In the first type of incremental algorithms the input is presented
as a sequence of items and can be examined in only a few passes (typically just
one). At each iteration of such algorithms clusters are updated according to newly
arrived data. These algorithms require limited memory and also limited processing
time per item (see [33] and references therein). In the second type of incremental
algorithms the data is considered as static and clusters are computed incrementally.
Such algorithms compute clusters step by step starting with one cluster for the whole
data set gradually adding one cluster center at each iteration [9, 15, 16, 36, 42].

In this chapter, we examine the second type of incremental clustering algorithms
with the similarity measures based on the L1;L2 and L1 norms. The clustering
problem is formulated as a nonsmooth nonconvex optimization problem. The algo-
rithms considered in this chapter are based on the combination of the incremental
approach, the k-means and nonsmooth optimization algorithms. Using incremental
approach auxiliary clustering problems are defined and solved to generate starting
points for cluster centers. The discrete gradient method of the nonsmooth opti-
mization, smoothing techniques and heuristics based on the k-means are applied
to solve optimization problems. Testing and comparison of algorithms including
other similar algorithms such as the multi-start versions of various k-means (Forgy,
Lloyd, McQueen and Hartigan), k-meansCC, X -means algorithms are presented.
Visualization of results are presented to demonstrate the difference between cluster
structures obtained using different similarity measures.

The rest of the chapter is organized as follows. Optimization formulations of
the clustering problem are given in Sect. 4.2. The auxiliary cluster problem is
introduced in Sect. 4.3. Section 4.4 presents a general scheme for an incremental
clustering algorithm. An algorithm for computation of starting points for cluster
centers is described in Sect. 4.5. The modified incremental clustering algorithm is
given in Sect. 4.6. Three different algorithms for solving optimization problems
are discussed in Sect. 4.7. Section 4.8 presents the implementation of algorithms.
Numerical results with the proposed algorithms using different similarity measures
are reported in Sect. 4.9. The comparison of the proposed algorithm with some other
clustering algorithms are presented in Sect. 4.10. Section 4.11 concludes the chapter.

102 A.M. Bagirov and E. Mohebi

4.2 Optimization Formulations of Clustering Problems

In this section we present three different optimization formulations of the clustering
problem. Assume that a finite setA of points in the n-dimensional space Rn is given,
that is

A D fa1; : : : ; amg; where ai 2 Rn; i D 1; : : : ; m:

The hard unconstrained clustering problem is the distribution of the points of the
set A into a given number k of disjoint subsets Aj ; j D 1; : : : ; k with respect to
predefined criteria such that:

1) Aj ¤ ;; j D 1; : : : ; k;
2) Aj

T
Al D ;; j; l D 1; : : : ; k; j ¤ l ;

3) A D
kS

jD1
Aj I

4) no constraints are imposed on the clusters Aj ; j D 1; : : : ; k.

The sets Aj ; j D 1; : : : ; k are called clusters. Each cluster Aj can be identified by
its center xj 2 Rn; j D 1; : : : ; k. Data points from the same cluster are similar
and data points from different clusters are dissimilar to each other. The similarity
between points can be measured using different distance functions. Let d W Rn �
Rn ! RC be a distance function. Here RC D fx 2 R W x � 0g.

In this chapter, we define the distance function d using the squared Euclidean
norm, L1-norm and L1-norm:

1. The distance function using the squared Euclidean norm:

d.x; y/ D
nX

iD1
.xi � yi /2I

2. The distance function using the L1-norm:

d.x; y/ D
nX

iD1
jxi � yi jI

3. The distance function using the L1-norm:

d.x; y/ D max
iD1;:::;n jxi � yi j:

Note that the distance function d defined using the L1 and L1 norms is nonsmooth.
The use of different distance functions can lead to the finding of different cluster
structures in the data set.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 103

4.2.1 Combinatorial Formulation of the Clustering Problem

Denote the set of k clusters in the set A by NA D .A1; : : : ; Ak/ and a set of all
possible k-partitions of the set A by QA. Then the combinatorial formulation can be
given as:

minimize �k. NA/ D 1

m

kX

jD1

X

a2Aj
d.xj ; a/ (4.1)

subject to

NA D .A1; : : : ; Ak/ 2 QA: (4.2)

Here xj is the center of the clusterAj ; j D 1; : : : ; k which can be found by solving
the following optimization problem:

minimize
1

jAj j
X

a2Aj
d.x; a/ subject to x 2 Rn: (4.3)

Here j � j stands for the cardinality of a set. If the squared Euclidean distance is used
for the similarity measure then the center xj can be found explicitly as follows:

xj D 1

jAj j
X

a2Aj
a; j D 1; : : : ; k: (4.4)

Note that in this formulation decision variables are nonempty subsets of the set
A and therefore optimization algorithms cannot be directly applied to solve the
problem (4.1)–(4.2). The combinatorial formulation can be used to solve clustering
problems only in very small data sets.

4.2.2 Mixed Integer Nonlinear Programming Formulation
of the Clustering Problem

Alternatively, the problem of the finding k clusters in the set A can be reduced to
the following optimization problem:

minimize k.x;w/ D 1

m

mX

iD1

kX

jD1
wij d.x

j ; ai / (4.5)

subject to

x D .x1; : : : ; xk/ 2 Rk�n; (4.6)

104 A.M. Bagirov and E. Mohebi

kX

jD1
wij D 1; i D 1; : : : ; m; (4.7)

wij 2 f0; 1g; i D 1; : : : ; m; j D 1; : : : ; k: (4.8)

Here wij is the association weight of the pattern ai with the cluster j , given by

wij D

1; if ai is allocated to the cluster j I
0; otherwise:

w is an m � k matrix.
The problem (4.5)–(4.8) is called the mixed integer nonlinear programming

formulation of the clustering problem. It contains mn integer variables wij ; i D
1; : : : ; m; j D 1; : : : ; k and kn continuous variables xj 2 Rn; j D 1; : : : ; k.

Cluster centers xj ; j D 1; : : : ; k can be found by solving the problem (4.3).
If the similarity measure is defined using the squared Euclidean norm then xj

is a centroid of the cluster Aj ; j D 1; : : : ; k and it can be found applying the
formula (4.4). In this case the problem (4.5)–(4.8) becomes integer programming
problem as cluster centers xj ; j D 1; : : : ; k are not decision variables.

4.2.3 Nonsmooth Nonconvex Optimization Formulation
of the Clustering Problem

Nonsmooth nonconvex optimization formulation of the clustering problem is as
follows [12, 13, 18]:

minimize fk.x/ subject to x D .x1; : : : ; xk/ 2 Rk�n; (4.9)

where

fk.x
1; : : : ; xk/ D 1

m

mX

iD1
min

jD1;:::;k d.x
j ; ai /: (4.10)

If k D 1 then the function fk is convex and it is nonconvex if k > 1 due
to the minimum operation. If the similarity measure is defined using the squared
Euclidean distance then for k D 1 the function fk is smooth that is it is continuously
differentiable for any x 2 Rn. However, for k � 2 this function is nonsmooth due
to the minimum operation that is its gradient does not exist at all x 2 Rk�n. If the
similarity measure is defined using the L1 or L1 norms then the function fk is
nonsmooth for all k � 1. This is due to the minimum operation and the fact that
both L1 and L1 norm based distance functions are nonsmooth.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 105

4.2.4 Comparison of Different Formulations
of Clustering Problem

In this subsection we compare objective functions in different formulations of the
clustering problems. We call objective functions �k; k and fk cluster functions.
Note that the objective function �k explicitly depends, in particular, on clusters
(or subsets of the set A). Optimization methods cannot be applied to minimize
such functions and the combinatorial formulation cannot be used to solve clustering
problems considered in this chapter. Therefore, we compare only objective functions
 k and fk .

Comparing these two functions (also two different formulations of the clustering
problem) one can note that:

1. The objective function k depends on variables wij ; i D 1; : : : ; m; j D 1; : : : ; k
(coefficients, which are binary integers) and x1; : : : ; xk; xj 2 Rn; j D 1; : : : ; k
(cluster centers, which are continuous variables). However, the function fk
depends only on continuous variables x1; : : : ; xk .

2. The number of variables in Problem (4.5)–(4.8) is .m C n/ � k whereas in
Problem (4.9) this number is only n � k. Notice that the number of variables in
Problem (4.9) does not depend on the numberm of instances. In many real world
data sets the number of instances m is substantially greater than the number of
features n.

3. Since the function fk is represented as a sum of minima functions it is nonsmooth
for k > 1, that is it is not differentiable everywhere. Both functions k and fk
are nonconvex for k > 1.

4. Problem (4.5)–(4.8) is mixed integer nonlinear programming problem and
Problem (4.9) is nonsmooth global optimization problem. However, they are
equivalent in the sense that their global minimizers coincide [18].

Items 1 and 2 can be considered as advantages of the nonsmooth optimization
formulation (4.9) of the clustering problem. Nonsmooth optimization models of
unsupervised and supervised data classification problems are also discussed in
[4, 5, 23].

4.3 The Auxiliary Cluster Problem

The objective function (4.10) in Problem (4.9) is nonconvex and the problem itself
is global optimization problem. However, the most of existing global optimization
techniques cannot be applied to solve this problem because its size becomes large as
the number of clusters increases. These techniques are extremely time consuming
for solving such clustering problems. Solving clustering problems in large data sets
is out of reach of most of global optimization algorithms. Any local optimization

106 A.M. Bagirov and E. Mohebi

algorithm starting from a given point will end up at the closest local minimizer
which can be significantly different from the global minimizer. Global minimizers
provide the best cluster structure of a data set with the smallest number of clusters.

We propose to apply local search methods, including heuristic methods such
as the k-means and deterministic methods of optimization, to solve clustering
problems. Such methods are very fast even in large data sets however their success
in finding global or near global solutions to the clustering problems highly depends
on the choice of starting points. In order to generate such points we introduce the
auxiliary cluster function. Starting points are found by minimizing this function.

Assume that the solution x1; : : : ; xl�1; l > 1 to the .l � 1/-clustering problem
is known. Define by

ril�1 D min
jD1;:::;l�1 d.x

j ; ai /

the distance between the data point ai ; i D 1; : : : ; m and its cluster center. We will
also use the notation ral�1 for the data point a 2 A. Consider the following function:

Nfl.y/ D 1

m

mX

iD1
min

˚
ril�1; d.y; ai /

	
; y 2 Rn: (4.11)

We call this function the l-th auxiliary cluster function. One can see that the function
Nfl is represented as a sum of minima of constants ril�1 and the distance function
d.y; ai /; i D 1; : : : ; m which is convex. Therefore the function Nfl is nonsmooth
and in general, nonconvex. The l-th auxiliary clustering problem is formulated as
follows:

minimize Nfl.y/ subject to y 2 Rn: (4.12)

This is a nonsmooth global optimization problem and it may have many local
minimizers. The success of any local method for solving this problem heavily
depend on the choice of starting points. Therefore it is important to develop an
algorithm to generate good starting points for its solution. One such algorithm will
be designed in Sect. 4.5.

4.4 An Incremental Clustering Algorithm

In this section we describe a general scheme for an incremental clustering algorithm.
Incremental algorithms are becoming popular in data mining and in particular, in
the cluster analysis. There are two types of incremental algorithms. In algorithms
of the first type new data points are dynamically added at each iteration of the
algorithm to the data set and clusters are updated accordingly. In algorithms of the

4 Nonsmooth Optimization Algorithms in Cluster Analysis 107

second type a data set is static and an algorithm computes clusters incrementally.
Such incremental clustering algorithms build clusters dynamically adding one
cluster center at a time. Therefore this type of incremental algorithms can also be
called sequential clustering algorithms. In this chapter we consider only the second
type of incremental clustering algorithms. The general scheme of such algorithms
for finding the k-partition of the set A is as follows.

Algorithm 1 An incremental clustering algorithm.
Input: The data set A and the number k of clusters to be computed.
Output: The l-partition of the set A with l D 1; : : : ; k.

Step 1. (Initialization). Compute the center x1 2 Rn of the set A. Set l WD 1.
Step 2. (Stopping criterion) Set l WD l C 1. If l > k then stop. The k-partition

problem has been solved.
Step 3. (Computation of the next cluster center). Find a starting point Ny 2 Rn for

the l-th cluster center by solving Problem (4.12).
Step 4. (Refinement of all cluster centers). Select .x1; : : : ; xl�1; Ny/ as a new starting

point to solve the l-partition problem (4.9) (or the problem (4.5)–(4.8)) (when
k D l). Let y1; : : : ; yl be a solution to this problem.

Step 5. (Solution to the l-partition problem). Set xj WD yj ; j D 1; : : : ; l as a
solution to the l-partition problem and go to Step 2.

Remark 1. To date incremental algorithms were designed for solving the minimum
sum-of-squares clustering problems [9, 15, 41, 42, 46]. In this chapter, we develop
incremental algorithms also for solving clustering problems where the similarity
measure is defined using L1 and L1 norms.

Remark 2. One can see that Algorithm 1 in addition to the k-partition problem
solves also all intermediate l-partition problems, where l D 1; : : : ; k � 1. Step
3, where one finds a starting point for the l-th cluster center, and Step 4 are the
most important steps of Algorithm 1. In the next section we design an algorithm for
finding starting points for the l-th cluster center.

4.5 Computation of Starting Points for Cluster Centers

Various initial seeding procedures were introduced to improve the efficiency of the
k-means algorithms. Such procedures were considered to design different versions
of the k-means algorithm such as theX -means [47] and k-meansCC [3] algorithms.
In the paper [25], a comparative study of various initialization methods for the
k-means algorithm is presented. In this section, we discuss an initial seeding
procedure based on nonsmooth optimization formulation of the clustering problem.
This procedure is designed for the incremental algorithm described in the previous
section. This means that in order to find initial points for the l-th cluster center,
l > 1, it is assumed that cluster centers for the .l � 1/-partition problem are known.

108 A.M. Bagirov and E. Mohebi

Given the solution x1; : : : ; xl�1; l > 1 to the .l � 1/-clustering problem one can
divide the whole space Rn into two subsets as follows:

S1 D fy 2 Rn W d.y; a/ � ral�1; 8a 2 Ag ;
S2 D fy 2 Rn W 9a 2 A such that d.y; a/ < ral�1g :

All cluster centers x1; : : : ; xl�1 2 S1. It is clear that S1
S
S2 D Rn and

S1
T
S2 D ;. Moreover,

Nfl.y/ D fl�1.x1; : : : ; xl�1/ D 1

m

X

a2A
ral�1; 8y 2 S1; (4.13)

that is the l-th auxiliary cluster function is constant on the set S1 and any point
from this set is a global maximizer of the function Nfl . In general, a local search
method will terminate at any of these points. Hence, points from the set S1 cannot
be considered as starting points to solve the problem (4.12). Therefore, starting
points should be chosen from the set S2.

For any y 2 S2 one can divide the set A into two subsets as follows:

B1.y/ D fa 2 A W d.y; a/ � ral�1g ;
B2.y/ D fa 2 A W d.y; a/ < ral�1g :

It is obvious that the set B2.y/ contains all data points which are closer to the
point y than their cluster centers. Since y 2 S2 the set B2.y/ ¤ ;. Furthermore,
B1.y/

T
B2.y/ D ; and A D B1.y/SB2.y/. Then

Nfl.y/ D 1

m

0

@
X

a2B1.y/
ral�1 C

X

a2B2.y/
d.y; a/

1

A :

The difference vl .y/ between the value fl�1.x1; : : : ; xl�1/ (see (4.13)) and the value
of the l-th auxiliary cluster function at y is:

vl .y/ D 1

m

X

a2B2.y/

�
ral�1 � d.y; a/

�

which can be rewritten as

vl .y/ D 1

m

X

a2A
max f0; ral�1 � d.y; a/g : (4.14)

It is obvious that data points a 2 A, which are not among cluster centers
x1; : : : ; xl�1, belong to the set S2. Because these points attract at least themselves.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 109

Therefore in order to compute starting points for solving the auxiliary clustering
problem (4.12) we use data points a 2 A n S1. We introduce the following number:

v1max D max
a2AnS1

vl .a/: (4.15)

The number v1max is the largest decrease of the auxiliary cluster function Nfk.y/
comparing to the value fl�1.x1; : : : ; xl�1/ for all y 2 AnS1. Among all data points
a 2 A, a point Na 2 AnS1, satisfying the condition vl . Na/ D v1max , provides the largest
decrease of the cluster function fl comparing with the value fl�1.x1; : : : ; xl�1/ if Na
is chosen as the l-th cluster center.

Let �1 2 Œ0; 1� be a given number. Define the following subset of A:

NA1 D
˚
a 2 A n S1 W vl .a/ � �1v1max

	
: (4.16)

The set NA1 contains points a 2 A n S1 which provide sufficient decrease of the
cluster function fl comparing with the value fl�1.x1; : : : ; xl�1/ if these points are
chosen as the l-th cluster center. If �1 D 1 then we choose only points with largest
decrease and if �1 D 0 then NA1 D A n S1.

For each a 2 NA1 we compute the set B2.a/ and its center c.a/. In this stage
we replace points a 2 NA1 by points c.a/, because the center c.a/ is the better
representative of the set B2.a/ than the point a. If the similarity measure is defined
using the squared Euclidean norm then c.a/ is the centroid of the set B2.a/. In all
other cases c.a/ is defined as the solution to the following convex minimization
problem:

minimize
1

jB2.a/j
X

b2B2.a/
d.x; b/ subject to x 2 Rn:

As a result we get the following set:

C1 D fc 2 Rn W 9a 2 NA1 such that c D c.a/g:

Then using (4.14) we compute v2l .c/ D vl .c/ for each c 2 C1. Finally, we compute
the maximum of all numbers v2l .c/; c 2 C1:

v2max D max
c2C1

v2l .c/: (4.17)

Let �2 2 Œ0; 1� be a given number. We define the following subset of C1:

NA2 D
˚
c W c 2 C1 and v2l .c/ � �2v2max

	
: (4.18)

110 A.M. Bagirov and E. Mohebi

The set NA2 contains all points c 2 C1 which provide sufficient decrease of the
cluster function fl comparing with the value fl�1.x1; : : : ; xl�1/ if these points are
chosen as the l-th cluster center. If �2 D 1 then we choose points with the largest
decrease and if �2 D 0 then NA2 D C1.

All points from the set NA2 are considered as starting points for solving the
auxiliary clustering problem (4.12).

Applying a local search algorithm, Problem (4.12) is solved starting from each
point of the set NA2. Such local search algorithms will be discussed in Sect. 4.7. A
local search algorithm generates the same number of solutions as the number of
starting points. The set of these solutions is denoted by NA3. Since the local method
can arrive to the same solution starting from different points we remove from the
set NA3 solutions which are sufficiently close to each other keeping only one of them.
Sufficiently close solutions can be defined using some predefined tolerance. It is
clear that NA3 ¤ ;.

Next we define

Nf min
l D min

y2 NA3
Nfl.y/: (4.19)

Let �3 2 Œ1;1/ be a given number. Compute the following set:

NA4 D
˚
y 2 NA3 W Nfl.y/ � �3 Nf min

l

	
: (4.20)

If �3 D 1 then NA4 contains stationary points of the problem (4.12) with the lowest
value Nf min

l . If �3 is sufficiently large then NA4 D NA3.
Points from the set NA4 are considered as a starting point for the l-th cluster center

in Step 4 of Algorithm 1. Summarizing all steps for computing the set NA4 we can
design the following algorithm for finding starting points to solve the clustering
problem (4.9).

Algorithm 2 Computation of starting points.
Input: The data set A and the solution x1; : : : ; xl�1; l > 1 to the .l � 1/-clustering
problem.
Output: The set of starting points for the l-th cluster center.

Step 0. (Initialization). Select numbers �1; �2 2 Œ0; 1� and �3 2 Œ1;1/.
Step 1. Compute v1max using (4.15) and the set NA1 using (4.16).
Step 2. Compute v2max using (4.17) and the set NA2 using (4.18).
Step 3. Apply a local search algorithm to compute a set NA3 of solutions to the

auxiliary clustering problem (4.12) using points from the set NA2 as starting
points.

Step 4. Compute f min
l using (4.19) and the set NA4 using (4.20). NA4 is the set of

starting points to solve the clustering problem (4.9).

Thus, we use more than one starting points to solve the clustering problem (4.9)
in Step 4 of Algorithm 1. Moreover, these points always guarantee decrease of the

4 Nonsmooth Optimization Algorithms in Cluster Analysis 111

clustering function at each iteration of the incremental algorithm and they are away
from each other in the search space. Such an approach allows us to apply local
search methods to solve the global optimization problem (4.9).

4.6 The Modified Incremental Clustering Algorithm

In this section the incremental clustering Algorithm 1 is modified by applying
Algorithm 2 in Step 3. Then Algorithm 1 for solving the k-partition Problem (4.9)
can be rewritten as follows:

Algorithm 3 A multistart incremental algorithm.
Input: The data set A and the number k of clusters to be computed.
Output: The l-partition of the set A with l D 1; : : : ; k.

Step 1. (Initialization). Compute the center x1 2 Rn of the set A. Set l WD 1.
Step 2. (Stopping criterion) Set l WD l C 1. If l > k then stop. The k-partition

problem has been solved.
Step 3. (Computation of the set of starting points for the next cluster center). Apply

Algorithm 2 to find a set NA4 of starting points for the l-th cluster center.
Step 4. (Refinement of all cluster centers). For each Ny 2 NA4 select .x1; : : : ; xl�1; Ny/

as a starting point to solve the l-partition problem (4.9) (when k D l). Let
.y1. Ny/; : : : ; yl . Ny// be a solution to this problem and fl Ny D fl.y1. Ny/; : : : ; yl . Ny//
be a value of the cluster function at this solution.

Step 5. (Computation of the best solution). Compute

f min
l D min

Ny2 NA4
fl Ny

and the set of best solutions

C D ˚.y1. Ny/; : : : ; yl . Ny// W fl Ny D f min
l

	
:

Step 6. (Solution to the l-partition problem). Take any .y1. Ny/; : : : ; yk. Ny// 2 C , set
xj WD yj . Ny/; j D 1; : : : ; l as a solution to the l-th partition problem and go to
Step 2.

4.7 Solving Optimization Problems

In this section we discuss local search algorithms for solving both the auxiliary
clustering problem (4.12) and the clustering problem (4.9). We will consider three
different algorithms for this purpose: (a) k-means type heuristic algorithm; (b) the
discrete gradient method of nonsmooth optimization and (c) an algorithm based on
smoothing techniques.

112 A.M. Bagirov and E. Mohebi

4.7.1 k-Means Type Heuristic Algorithm

This algorithm was discussed in [9] (see, also [15]). In order to solve the auxiliary
clustering problem (4.12) the algorithm fixes the first .l � 1/ cluster centers and
updates only the l-th center. The algorithm proceeds as follows.

Algorithm 4 Heuristic algorithm for minimizing the auxiliary cluster function.
Input: The data set A and the starting point y 2 NA4.
Output: Local minimizer of Problem (4.12).

Step 1. Compute the set B2.y/ and its center c.
Step 2. Compute the set B2.c/ and its center.
Step 3. Recompute the set B2.c/ and its center until no more data points escape or

return to this set. The last center c is the solution to Problem (4.12).

It is proved in [9] that Algorithm 4 converges to the local minimizer of Problem
(4.12) after finite number of iterations.

We apply the k-means algorithm for solving Problem (4.9). This algorithm
converges to the local solutions of the problem (4.9).

4.7.2 The Discrete Gradient Method

The objective functions in problems (4.9) and (4.12) are nonsmooth nonconvex
and nonsmooth optimization algorithms can be applied to solve them. Various
subdifferential generalizations can be applied to design such algorithms. Among
these generalizations the Clarke subdifferential [27] is most widely used. However,
the Clarke subdifferential calculus cannot be applied to compute subgradients of
the functions fk and Nfk since this calculus exists in the form of “inclusions” not
“equalities”. Therefore, derivative free methods are better choice than subgradient
methods for solving Problems (4.9) and (4.12).

We apply the discrete gradient method to solve these problems. This method is
a derivative-free method and uses discrete gradients which are approximations to
subgradients. Discrete gradients are computed using only values of a function. The
convergence of the discrete gradient method is proved for quite general nonsmooth
and in particular, nonconvex optimization problems under very mild conditions. The
detailed description of this method can be found in [11] (see, also [7, 8]).

Since the objective function Nfk in Problem (4.12) and the objective function
fk in Problem (4.9) are piecewise partially separable (see [14] for the definition
of the piecewise partial separability), we use the version of the discrete gradient
method described in [14]. The use of the special structure of these problems
such as the piecewise partial separability allows one to significantly reduce the
number of function evaluations in the discrete gradient method which is crucial
for any derivative free method. It is worth to note that all starting points to solve

4 Nonsmooth Optimization Algorithms in Cluster Analysis 113

Problem (4.12) are chosen from the set S2 and therefore the discrete gradient method
will never terminate at local maximizers of this problem and will always find its local
minimizers.

4.7.3 An Algorithm Based on Smoothing Techniques

In this subsection we will demonstrate how smoothing techniques can be applied
to approximate the objective functions in Problems (4.9) and (4.12) by smooth
functions. This will allow us to apply powerful smooth optimization algorithms
such as the conjugate gradient and quasi-Newton methods to solve cluster analysis
problems. We will use the hyperbolic smoothing for this purpose. Other smoothing
techniques can be applied in a similar way.

The hyperbolic smoothing functions were originally introduced to approximate
the following nonsmooth function (see, for example, [55]):

'.x/ D maxf0; xg; x 2 R: (4.21)

The hyperbolic function smoothing the function (4.21) is as follows:

��.x/ D x Cpx2 C �2
2

: (4.22)

Here � > 0 is called the precision or smoothing parameter.

Proposition 1. The function ��.x/ has the following properties:

1. ��.�/ is an increasing convex C1 function;
2. '.x/ < ��.x/ � '.x/C �

2
; 8� > 0:

The hyperbolic smoothing functions for maximum functions

 .x/ D max
iD1;:::;p i .x/

were studied in [10]. Here p � 1 and functions i ; i D 1; : : : ; p are continuously
differentiable. Using an additional variable t 2 R we introduce the following
function:

�.x; t/ D t C
pX

iD1
max.0; i .x/ � t /:

114 A.M. Bagirov and E. Mohebi

It is clear that .x/ D �.x; .x//: Then the hyperbolic smoothing function
H.x; �/ for can be written as

H.x; �/ D t C
pX

iD1

 i .x/ � t C
p
. i .x/ � t /2 C �2
2

; t D .x/: (4.23)

See [55] and [10] for details.

4.7.3.1 Hyperbolic Smoothing of the Cluster Function

In this subsection we define hyperbolic smoothing of the clustering function fk
defined by (4.10). It is clear that

min
jD1;:::;k d.x

j ; ai / D � max
jD1;:::;k�d.x

j ; ai /; i D 1; : : : ; m:

Then

fk.x
1; : : : ; xk/ D � 1

m

mX

iD1
max

jD1;:::;k�d.x
j ; ai /:

Consider the function:

�k.x
1; : : : ; xk/ D � 1

m

mX

iD1

0

@ti C
kX

jD1
max.0;�d.xj ; ai / � ti /

1

A :

Here

ti D max
jD1;:::;k�d.x

j ; ai / D �min d.xj ; ai / � 0; i D 1; : : : ; m:

It follows from (4.23) that the hyperbolic smoothing Uk.x
1; : : : ; xk; �/ of the

function fk is as follows:

Uk.x
1; : : : ; xk; �/ D � 1

m

mX

iD1

0

@ti C
kX

jD1

�d.xj ; ai / � ti C
p
.d.xj ; ai /C ti /2 C �2
2

1

A

D 1

m

mX

iD1

0

@�ti C
kX

jD1

ti C d.xj ; ai / �
p
.d.xj ; ai /C ti /2 C �2
2

1

A : (4.24)

4 Nonsmooth Optimization Algorithms in Cluster Analysis 115

4.7.3.2 Hyperbolic Smoothing of the Auxiliary Cluster Function

In this subsection we define the hyperbolic smoothing of the auxiliary cluster func-
tion Nfk defined by (4.11) (here we take l D k). This function can be rewritten as:

Nfk.y/ D 1

m

mX

iD1
r ik�1 C

1

m

mX

iD1
min .0; d.y; ai / � rik�1/:

Then we have

Nfk.y/ D 1

m

mX

iD1
r ik�1 �

1

m

mX

iD1
max .0; r ik�1 � d.y; ai //:

Applying (4.22) we can approximate the auxiliary cluster function Nfk by the
following function:

NUk.y; �/ D 1

m

mX

iD1
r ik�1 �

1

m

mX

iD1

r ik�1 � d.y; ai /C
q
.rik�1 � d.y; ai //2 C �2
2

D 1

m

mX

iD1

r ik�1 C d.y; ai / �
q
.rik�1 � d.y; ai //2 C �2
2

; y 2 Rn: (4.25)

Since the squared Euclidean distance is differentiable there is no need to smooth
it. However, two other distance functions using L1 and L1 norms are nondifferen-
tiable. Therefore we use the hyperbolic smoothing technique to approximate them
with the smooth functions.

4.7.3.3 Hyperbolic Smoothing of L1-Norm

Here we describe the hyperbolic smoothing of the L1-norm. It is obvious that for
x; a 2 Rn

d.x; a/ D kx � ak1 D
nX

qD1
maxfxq � aq; aq � xqg

D
nX

qD1

�
.xq � aq/C 2maxf0; aq � xqg

�
:

116 A.M. Bagirov and E. Mohebi

Fig. 4.1 Smooth approximation of L1-norm

Then applying (4.22) we can approximate kx � ak1 by the following smooth
function:

1.x; a; �/ D
nX

qD1

�
.xq � aq/2 C �2

�1=2
: (4.26)

Figure 4.1 illustrates the shape of the L1-norm (blue) and its hyperbolic smooth
approximation (red).

Thus, replacing the distance function d in (4.24) and (4.25) by its approximation
1 defined by (4.26) we get the following smooth approximations for the cluster and
the auxiliary cluster functions, respectively:

H1
k .x

1; : : : ; xk; �/ D 1

m

mX

iD1

0

@�ti C
kX

jD1

ti C 1.xj ; ai ; �/�
p
.1.xj ; ai ; �/C ti /2 C �2
2

1

A ;

(4.27)

NH1
k .y; �/ D 1

m

mX

iD1

r ik�1 C 1.y; ai ; �/�
q
.rik�1 � 1.y; ai ; �//2 C �2
2

; y 2 Rn:

(4.28)

4 Nonsmooth Optimization Algorithms in Cluster Analysis 117

4.7.3.4 Hyperbolic Smoothing of L1-Norm

Now consider the smoothing of the distance function using L1-norm. In this case

d.x; a/ D kx � ak1 D max
qD1;:::;n jxq � aqj: (4.29)

Then

kx � ak1 D max
qD1;:::;nmaxf�q.x/;��q.x/g: (4.30)

where �q.x/ D xq � aq .
The hyperbolic smoothing ˝q.x; �/ of the function ˇq.x/ D maxf q.x/;

� q.x/g is

˝q.x; �/ D ˇq.x/C �q.x/ � ˇq.x/C
p
.�q.x/ � ˇq.x//2 � �2
2

C��q.x/ � ˇq.x/C
p
.��q.x/ � ˇq.x//2 � �2
2

:

Then the hyperbolic smoothing of the distance function d.x; a/ can be expressed as

2.x; a; �/ D d.x; a/C
nX

qD1

˝q.x; �/ � d.x; a/C
p
.˝q.x; �/ � d.x; a//2 � �2
2

:

(4.31)

Figure 4.2 illustrates the shape of the L1-norm (blue) and its hyperbolic smooth
approximation (red).

Replacing the distance function d in (4.24) and (4.25) by its approximation 2
defined by (4.31) we get the following smooth approximations for the cluster and
the auxiliary cluster functions, respectively:

H2
k .x

1; : : : ; xk; �/ D 1

m

mX

iD1

0

@�ti C
kX

jD1

ti C 2.xj ; ai ; �/�
p
.2.xj ; ai ; �/C ti /2 C �2
2

1

A ;

(4.32)

NH2
k .y; �/ D

1

m

mX

iD1

rik�1 C 2.y; ai ; �/�
q
.rik�1 � 2.y; ai ; �//2 C �2
2

; y 2 Rn: (4.33)

118 A.M. Bagirov and E. Mohebi

Fig. 4.2 Smooth approximation of L
1

-norm

4.7.3.5 Smooth Clustering Problems

Now we can replace nonsmooth optimization problems (4.9) and (4.12) by their
smooth approximations as follows. Smooth auxiliary clustering and clustering
problems with the similarity measure defined by the squared Euclidean distance
are, respectively:

minimize NUk.y; �/ subject to y 2 Rn: (4.34)

minimize Uk.x
1; : : : ; xk; �/ subject to x1; : : : ; xk 2 Rn: (4.35)

Smooth auxiliary clustering and clustering problems with the similarity measure
defined by the L1-norm are, respectively:

minimize NH1
k .y; �/ subject to y 2 Rn: (4.36)

minimize H1
k .x

1; : : : ; xk; �/ subject to x1; : : : ; xk 2 Rn: (4.37)

Finally, smooth auxiliary clustering and clustering problems with the similarity
measure defined by the L1-norm are, respectively:

minimize NH2
k .y; �/ subject to y 2 Rn: (4.38)

minimize H2
k .x

1; : : : ; xk; �/ subject to x1; : : : ; xk 2 Rn: (4.39)

4 Nonsmooth Optimization Algorithms in Cluster Analysis 119

In order to solve these problems we take any sequence f�lg such that �l > 0 and
�l ! 0 as l ! 1. Then applying any smooth optimization algorithms we can get
sequences of solutions which converge to the solutions of problems (4.9) and (4.12).

4.8 Implementation of Incremental Clustering Algorithm

In this section, we discuss the implementation of Algorithm 3. The most important
steps in Algorithm 3 are Steps 3 and 4. Other steps of this algorithm are easy to
implement. In Step 3 we apply Algorithm 2 to find the set of starting points for
the l-th cluster center. Algorithm 2 contains three parameters, namely, �1; �2 and �3.
The choice of these parameters depends on the size of a data set.

One can see from (4.16) that if �1 is close to 0 then the set NA1 will contain most
of data points which may lead to a large number of starting points and make the
algorithm very time-consuming. Therefore in order to avoid having a large number
of starting points the choice of �1 and �2 should depend on the number of points
in a data set. Since the difference between the values of the auxiliary clustering
problem (4.12) and the clustering problem (4.9) is not expected to be large one can
choose the parameter �3 from Œ1; 2�. These parameters are chosen as follows:

1. �1 D 0:3; �2 D 0:5 and �3 D 2 for data sets with the number of data points
m � 200;

2. �1 D 0:6; �2 D 0:8 and �3 D 1:25 for data sets with the number of data points
200 < m � 2500;

3. �1 D 0:8; �2 D 0:99 and �3 D 1:05 for data sets with the number of data points
m > 2500.

In order to determine the neighboring points from the set NA3 we use the following
tolerance:

" D 10�4f min
1

l

where f min
1 is the optimal value of the cluster function fk when k D 1 and l is the

number of clusters. If the distance between two points in NA3 is less than " then we
remove one of them (any) and keep another one.

Since the proposed algorithm is an incremental we do not consider data points
which are very close to previous cluster centers as candidates to be starting points.
In order to do so we apply a scheme already discussed in [15].

We apply the Quasi-Newton method with BFGS update to solve smooth cluster-
ing problems (4.34), (4.35), (4.36), (4.37), (4.38) and (4.39).

In general, Algorithm 3 can find only stationary points of the clustering
problem (4.9). However, the use of the special procedure to generate good starting
points allows us to find either global or near global solutions to this problem which
will be confirmed by the computational results presented in the next section.

120 A.M. Bagirov and E. Mohebi

4.9 Computational Results: Evaluation
of the Incremental Algorithm

We tested the proposed algorithm using a number of real-world data sets. Numerical
experiments were carried out on a PC with Processor Intel(R) Core(TM) i5-3470S
CPU 2.90 GHz and RAM 8 GB. Algorithm 3 was implemented in Lahey Fortran 95.
12 data sets were used in numerical experiments. The brief description of these data
sets is given in Table 4.1. The more detailed description can be found in [6, 49].

We consider three different versions of Algorithm 3. These versions differ from
each other on optimization algorithms used to solve both the auxiliary clustering
and clustering problems.

1. Incremental Nonsmooth k-means algorithm: INKA—in this algorithm both
the auxiliary clustering and clustering problems are solved using the k-means
algorithm.

2. Incremental Nonsmooth Optimization Clustering algorithm: INCA—in this
algorithm both the auxiliary clustering and clustering problems are solved using
the discrete gradient method of nonsmooth optimization.

3. Incremental Smooth Optimization Clustering algorithm: ISCA—in this algo-
rithm both the auxiliary clustering and clustering problems are solved using their
smooth approximations.

We compute up to 10 clusters in small data sets (German towns, Bavaria postal 1,
Bavaria postal 2 and Iris Plant), 20 clusters in medium size data sets (Heart Disease,
Breast Cancer, TSPLIB1060 and Image segmentation) and 25 clusters in large data
sets (TSPLIB3038, Page Blocks, D15112 and Pla85900). Results with different
similarity measures are presented separately. In all tables we use the following
notation:

Table 4.1 The brief description of data sets

Data sets Number of instances Number of attributes

German towns 59 2

Bavaria postal 1 89 3

Bavaria postal 2 89 4

Fisher’s Iris Plant 150 4

Heart Disease 297 13

Breast Cancer 683 9

TSPLIB1060 1060 2

Image Segmentation 2310 19

TSPLIB3038 3038 2

Page Blocks 5473 10

D15112 15112 2

Pla85900 85900 2

4 Nonsmooth Optimization Algorithms in Cluster Analysis 121

• k is the number of clusters;
• fbest is the best known value of the cluster function (4.10) (multiplied bym) with

the corresponding number of clusters;
• E is the error in %;
• N is the number of the distance function evaluations for the computation of the

corresponding number of clusters;
• t is the CPU time.

The error E is computed as

E D . Nf � f k
best /

f k
best

� 100

where Nf is the optimal value of the function fk given by (4.10) obtained by an
algorithm and f k

best is the best known value of fk for given k.

4.9.1 Results for the Similarity Measure Based
on the Squared L2-Norm

Results for small data sets are given in Table 4.2. These results demonstrate that
all three algorithms are efficient for finding global or near global solutions to the
clustering problem in small data sets. Furthermore, optimization based clustering
algorithms: INCA and ISCA are more accurate than the INKA algorithm. On the
other hand, the INKA requires significantly less computational effort (both distance
function evaluations and CPU time) than other two algorithms. Although the INCA
algorithm is slightly more accurate than the ISCA algorithm however the former
requires more computational effort than the latter.

Table 4.2 Results with the similarity measure based on the L2-norm

k fbest INKA INCA ISCA

E N t E N t E N t

German town
�103 �104 �106 �105

2 121.4257 0:00 1:84 0:00 0:00 0:43 0:00 0:00 0:26 0:00

3 77.0086 0:00 4:21 0:02 0:00 0:94 0:00 0:00 0:53 0:02

4 49.6006 0:24 5:72 0:02 0:00 1:18 0:00 0:00 0:97 0:02

5 38.7160 0:00 8:75 0:02 0:00 2:34 0:01 0:00 1:35 0:03

6 30.5354 0:00 11:02 0:02 0:00 3:38 0:01 0:00 1:79 0:03

7 24.4326 0:08 12:51 0:02 0:00 4:13 0:03 0:00 2:23 0:03

8 21.4830 0:00 15:76 0:02 0:00 7:39 0:04 0:00 3:00 0:05

9 18.5504 2:13 18:99 0:02 0:00 10:54 0:06 0:00 3:66 0:06

10 16.3080 1:81 23:37 0:02 0:00 13:44 0:09 0:00 4:36 0:08

(continued)

122 A.M. Bagirov and E. Mohebi

Table 4.2 (continued)

k fbest INKA INCA ISCA

E N t E N t E N t

Bavaria postal 1
�106 �104 �106 �106

2 602547:2132 0:00 1:20 0:00 0:00 0:28 0:00 0:00 0:09 0:00

3 294506:5545 0:00 3:34 0:00 0:00 0:76 0:01 0:00 0:21 0:00

4 104474:6551 0:00 5:57 0:00 0:00 1:27 0:01 0:00 0:51 0:00

5 59761:5150 0:00 8:36 0:00 0:00 2:27 0:01 0:00 0:88 0:02

6 35908:5267 0:00 11:53 0:00 0:00 3:96 0:03 0:00 1:21 0:03

7 21983:1969 0:61 16:45 0:00 0:00 5:24 0:04 0:00 1:62 0:03

8 13385:4046 0:00 20:67 0:02 0:00 6:95 0:06 0:00 2:12 0:03

9 8423:7401 0:00 22:62 0:02 0:00 9:40 0:07 0:00 2:53 0:03

10 6446:4738 0:00 28:21 0:02 0:00 13:26 0:10 0:00 3:36 0:06

Bavaria postal 2
�106 �104 �106 �106

2 48631:2853 0:00 1:38 0:00 0:00 0:45 0:00 7:32 0:04 0:00

3 17398:7515 0:00 3:19 0:00 0:00 1:70 0:03 0:00 0:11 0:02

4 7559:0849 0:00 6:05 0:00 0:00 2:86 0:05 0:00 0:35 0:02

5 5342:8659 0:00 9:65 0:00 0:00 5:16 0:06 0:00 0:61 0:02

6 3187:5747 0:00 13:41 0:00 0:00 6:68 0:08 0:00 0:80 0:02

7 2215:9024 0:00 17:99 0:00 0:00 11:36 0:12 0:00 1:61 0:03

8 1704:5235 0:18 23:28 0:02 0:00 19:30 0:19 0:00 2:35 0:06

9 1401:0666 1:07 27:70 0:02 0:00 32:97 0:37 0:00 3:32 0:09

10 1181:0406 0:00 31:91 0:02 0:00 54:10 0:56 0:00 3:96 0:12

Iris Plant
�100 �104 �106 �106

2 152:3480 0:00 0:45 0:02 0:00 0:45 0:01 0:00 0:22 0:00

3 78:8510 0:00 1:29 0:02 0:00 1:36 0:01 0:00 0:55 0:00

4 57:2280 0:05 2:69 0:02 0:00 3:83 0:04 0:00 2:09 0:03

5 46:4460 0:06 3:89 0:03 0:00 6:93 0:07 0:00 3:96 0:06

6 39:0400 0:07 5:36 0:03 0:00 12:77 0:15 0:00 5:30 0:08

7 34:2980 0:01 7:74 0:05 0:00 19:24 0:21 0:00 6:88 0:11

8 29:9890 0:25 8:92 0:06 0:00 22:88 0:26 0:00 8:76 0:16

9 27:7860 0:28 12:25 0:08 0:00 52:04 0:62 0:90 15:64 0:31

10 25:8340 0:07 16:30 0:09 0:00 84:94 1:12 0:91 21:86 0:47

4 Nonsmooth Optimization Algorithms in Cluster Analysis 123

Table 4.3 Results with the similarity measure based on the L2-norm (cont.)

k fbest INKA INCA ISCA

E N t E N t E N t

Heart disease
�104 �106 �108 �107

2 59:8899 0:00 0:41 0:05 0:00 0:04 0:08 0:00 0:08 0:03

5 32:7543 0:00 3:01 0:27 0:00 0:14 0:34 0:13 0:70 0:23

10 20:0521 0:00 15:26 0:94 0:00 1:86 3:62 0:01 5:87 8:46

15 14:7085 0:00 26:51 1:47 0:00 4:13 7:47 0:03 9:47 24:23

20 11:6834 1:02 37:16 1:94 0:39 7:50 14:63 0:00 12:22 45:80

Breast cancer
�104 �107 �108 �107

2 1:9323 0:00 0:10 0:09 0:00 0:03 0:04 0:00 0:23 0:05

5 1:3705 0:00 0:86 0:58 0:00 0:86 1:27 0:00 1:73 0:61

10 1:0194 0:00 2:00 1:06 0:00 2:55 3:51 0:00 8:01 2:14

15 0:8710 0:00 3:71 1:72 0:00 7:14 9:17 0:00 19:78 9:08

20 0:7677 0:00 5:82 2:48 0:00 15:07 18:29 0:00 37:10 27:36

TSPLIB1060
�106 �107 �108 �108

2 9831:9499 0:00 0:14 0:06 0:00 0:05 0:04 0:00 0:04 0:05

5 3791:0203 0:01 1:00 0:34 0:00 0:25 0:18 0:00 0:16 0:17

10 1754:8752 0:22 4:04 1:14 0:00 1:17 0:76 0:00 0:63 0:70

15 1121:9175 0:00 8:22 2:08 0:00 3:04 1:84 0:02 1:08 1:25

20 792:5267 0:14 13:79 3:19 0:00 7:48 4:46 0:03 2:27 2:70

Image segmentation
�105 �107 �108 �108

2 356:0580 0:00 0:64 0:52 0:00 0:16 0:44 0:00 0:08 0:27

5 171:4291 0:00 3:24 2:30 0:00 1:65 4:37 0:00 0:55 1:84

10 97:9546 0:64 9:22 6:00 0:00 12:41 28:42 1:15 1:93 10:26

15 65:5542 0:47 15:76 9:48 0:00 26:61 58:53 1:88 3:83 32:34

20 51:3621 0:89 25:55 14:41 0:12 45:71 98:84 0:00 6:55 89:31

Table 4.3 contains results for medium size data sets. These results show that
all three algorithms are efficient for finding global or near global solutions to
the clustering problem in medium size data sets. The INCA algorithm is most
accurate and overall the INKA is more accurate than the ISCA algorithm. The INKA
algorithm requires less distance function evaluations and CPU time than other two
algorithms. The INCA algorithm uses more distance function evaluations and CPU
time than the ISCA algorithm in Heart Disease and Breast Cancer data sets, however
the former algorithm requires less computational effort than the latter algorithm in
other two data sets.

124 A.M. Bagirov and E. Mohebi

Table 4.4 Results with the similarity measure based on the L2-norm (cont.)

k fbest INKA INCA ISCA

E N t E N t E N t

TSPLIB3038
�106 �108 �108 �108

2 3168:8047 0:00 0:11 0:56 0:00 0:20 0:20 0:00 0:26 0:25

5 1198:1959 0:00 0:57 2:50 0:00 1:00 0:87 0:00 0:95 0:98

10 560:2569 0:57 1:53 4:92 0:00 2:81 2:23 0:00 2:47 2:64

15 356:0483 0:00 3:09 8:55 0:00 5:42 4:07 0:00 4:71 5:16

20 267:1626 0:20 4:69 11:89 0:00 11:70 7:87 0:11 7:99 8:86

25 214:4985 0:23 8:86 20:95 0:00 26:11 16:33 0:01 12:49 14:01

Page blocks
�106 �109 �109 �109

2 57936:8499 0:00 0:01 1:88 0:00 0:05 0:93 0:00 0:04 0:89

5 13218:3776 0:00 0:07 8:09 0:00 0:22 4:05 0:19 0:17 3:76

10 4532:9960 0:00 0:12 12:08 0:00 0:76 12:27 1:04 0:46 10:44

15 2493:6468 0:00 0:19 16:45 0:06 1:72 25:20 0:31 0:89 21:01

20 1720:3970 0:00 0:25 20:75 0:00 2:98 41:58 0:00 1:45 37:52

25 1210:2370 0:00 0:32 25:28 2:23 4:28 58:29 0:00 2:17 63:31

D15112
�108 �109 �109 �109

2 3684:0305 0:00 0:23 3:23 0:00 0:47 5:52 0:00 0:42 5:15

5 1327:0655 0:00 0:92 10:12 0:00 1:89 20:47 0:00 1:52 18:41

10 644:9025 1:41 2:09 17:38 0:00 4:73 47:64 0:00 3:44 41:50

15 431:3720 0:26 3:28 24:34 0:00 10:99 99:05 0:00 5:74 68:23

20 321:7737 0:01 4:52 31:11 0:00 19:72 165:97 0:00 8:65 101:82

25 253:0012 0:51 5:76 37:53 0:00 41:29 317:07 0:00 11:96 139:53

Pla85900
�1010 �1011 �1011 �1011

2 374908:4065 1:44 0:07 143:70 0:00 0:13 132:21 0:00 0:12 123:96

5 133971:8844 2:78 0:30 609:91 0:00 0:39 471:00 0:00 0:37 452:96

10 68294:1490 0:00 0:67 1358:81 0:00 0:83 1028:34 0:00 0:79 1011:17

15 46029:3761 0:17 1:04 1938:13 0:00 1:29 1608:17 0:00 1:24 1596:67

20 34985:9729 0:03 1:42 2382:82 0:00 1:78 2198:69 0:00 1:71 2210:91

25 28275:5162 0:77 1:80 2788:37 0:00 2:30 2808:12 0:00 2:21 2863:18

Table 4.4 presents results for large data sets. One can see that the accuracy of
all three algorithms are similar for large data sets used in this chapter. The INKA
algorithm requires least number of the distance function evaluations and CPU time
among three algorithms. The INCA requires more computational effort than the
ISCA algorithm in all data sets except Pla85900 data set where results are mixed.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 125

4.9.2 Results for the Similarity Measure Based
on the L1-Norm

In this subsection we present clustering results with the similarity measure defined
by the L1-norm. Here we use only the INCA and ISCA algorithms since the INKA
algorithm is not applicable with the L1-norm.

Results for small data sets are given in Table 4.5. These results clearly demon-
strate that the INCA algorithm is more accurate than the ISCA algorithm in all data
sets, however in Iris Plant data set results are similar. On the other side the INCA
algorithm requires significantly more distance function evaluations and CPU time
than the ISCA algorithm.

Results for medium size data sets presented in Table 4.6 demonstrate that the
INCA algorithm is more accurate than the ISCA algorithm in all data sets. The
ISCA algorithm requires less distance function evaluations than the INCA algorithm
however the former uses more CPU time than the latter algorithm.

Table 4.7 contains results with large data sets. These results show that the
INCA algorithm is more accurate than the ISCA algorithm in TSPLIB3038 and
Pla85900 data sets. In Page Blocks and D15112 data sets both algorithms are
equally successful. Again one can see that the ISCA algorithm requires less distance
function evaluations than the INCA algorithm. However results for CPU time are
mixed. Overall, results presented in this subsection demonstrate that the nonsmooth
optimization based INCA algorithm is more accurate, however it requires more
computational effort than the smoothing technique based ISCA algorithm.

4.9.3 Results for the Similarity Measure Based
on the L1-Norm

In this subsection we present clustering results with the INCA algorithm using
the similarity measure defined by the L1-norm. Results with small data sets are
presented in Table 4.8, with medium size data sets in Table 4.9 and with large data
sets in Table 4.10. These results show that computational effort required by the
INCA algorithm in these data sets is reasonable.

4.9.4 Dependence of Number of Distance Function
Evaluations and CPU Time on Number of Clusters

In Figs. 4.3, 4.4 and 4.5 we present dependence of both the number of distance
calculations and CPU time on the number of clusters for the INCA algorithm using
the similarity measures based on the L1, L2 and L1 norms, respectively. We use
two data sets with the largest number of data points, namely, D15112 and Pla85900.

126 A.M. Bagirov and E. Mohebi

Table 4.5 Results with the
similarity measure based on
the L1-norm

k fbest INCA ISCA

E N t E N t

German town
�103 �106 �106

2 3.0740 0.00 0:82 0.00 0.00 0.31 0.01

3 2.4450 0.00 1:46 0.00 0.00 0.24 0.01

4 1.8870 0.00 2:93 0.01 0.00 0.19 0.01

5 1.6460 0.00 5:40 0.03 0.30 0.17 0.03

6 1.5060 0.00 8:34 0.04 0.60 0.15 0.03

7 1.3780 0.00 12:22 0.07 0.00 0.14 0.08

8 1.2500 0.00 15:15 0.09 1.44 0.13 0.08

9 1.1390 0.00 17:83 0.10 0.09 0.11 0.09

10 1.0440 0.00 21:60 0.14 0.38 0.10 0.11

Bavaria postal 1
�106 �107 �107

2 4.0249 0.00 0:42 0.03 3.21 0.32 0.09

3 2.8284 0.00 0:59 0.04 2.51 0.39 0.11

4 2.1982 0.00 1:41 0.10 0.22 0.52 0.14

5 1.7208 0.00 2:67 0.20 3.54 0.67 0.19

6 1.3003 0.00 3:29 0.24 8.72 1.13 0.31

7 1.0704 0.00 3:55 0.26 3.25 1.48 0.42

8 0.8510 0.00 3:58 0.28 2.21 1.53 0.44

9 0.7220 0.00 5:11 0.39 1.02 2.38 0.75

10 0.6037 0.00 6:02 0.45 0.33 3.40 1.09

Bavaria postal 2
�106 �106 �106

2 1.8600 0.00 2:36 0.03 2.38 0.52 0.03

3 1.2607 0.00 3:06 0.03 1.82 0.63 0.03

4 0.9633 0.00 5:96 0.06 1.29 0.86 0.03

5 0.7872 0.00 16:44 0.14 6.91 1.35 0.05

6 0.6736 0.00 22:76 0.20 3.64 1.79 0.08

7 0.5659 0.00 27:38 0.24 3.34 1.92 0.08

8 0.5097 0.00 36:97 0.32 1.90 2.68 0.11

9 0.4688 0.00 46:44 0.40 3.67 3.20 0.12

10 0.4340 0.00 55:42 0.48 4.63 4.75 0.23

Iris Plant
�102 �107 �107

2 2.1670 0.00 0:08 0.01 0.00 0.41 0.08

3 1.5920 0.00 0:93 0.09 0.00 1.64 0.28

4 1.3650 0.00 1:91 0.20 0.07 1.93 0.33

5 1.2460 0.00 3:65 0.40 0.40 2.69 0.44

6 1.1530 0.00 5:10 0.54 0.10 3.77 0.61

7 1.0620 0.00 6:38 0.70 0.01 4.06 0.65

8 1.0010 0.00 8:91 1.01 0.05 4.41 0.72

9 0.9540 0.00 13:62 1.65 0.00 5.91 0.98

10 0.9070 0.00 20:36 2.66 0.00 6.78 1.14

4 Nonsmooth Optimization Algorithms in Cluster Analysis 127

Table 4.6 Results with the similarity measure based on the
L1-norm (cont.)

k fbest INCA ISCA

E N t E N t

Heart disease
�104 �108 �108

2 2:0435 0:00 1:17 4:68 0:02 0:05 0:25

5 1:5760 0:00 5:97 27:78 0:06 1:22 6:21

10 1:3006 0:00 11:19 45:50 2:11 2:23 14:09

15 1:1158 0:00 17:17 61:65 0:00 9:97 114:00

20 1:0190 0:00 19:44 66:87 0:10 12:92 176:48

Breast cancer
�104 �108 �108

2 0:6401 0:00 0:57 1:04 0:02 0:13 0:50

5 0:5032 0:00 4:45 8:84 0:56 1:27 3:90

10 0:4244 0:00 10:57 21:16 1:96 1:60 5:04

15 0:3858 0:00 25:44 46:28 0:08 5:64 21:25

20 0:3583 0:00 35:96 62:29 0:11 6:28 23:52

TSPLIB1060
�106 �108 �108

2 3:8645 0:00 0:13 0:09 0:74 0:23 0:31

5 2:3096 0:00 1:83 1:02 0:62 0:90 1:08

10 1:5628 0:00 10:46 5:75 0:40 2:75 3:48

15 1:1983 0:00 28:89 16:33 0:73 5:21 6:75

20 1:0157 0:00 70:94 40:76 0:42 16:97 19:48

Image segmentation
�105 �109 �109

2 5:1916 0:00 0:04 1:35 0:01 0:14 12:28

5 3:3996 0:00 0:55 16:62 0:00 0:52 39:64

10 2:5663 0:00 8:39 221:88 0:00 3:72 289:71

15 2:1795 0:00 17:68 440:93 1:40 8:84 801:91

20 1:9411 0:00 40:85 968:79 0:05 21:48 2566:79

These graphs demonstrate that both the number of distance calculations and CPU
time increases almost linearly for Pla85900 data set and for all similarity measures.
This dependence is also quite close to linear one for D15112 data set. Since the
INCA algorithm includes an optimization solver, it is not possible to estimate its
complexity. However, results show that the number of distance calculations depends
at most polynomially on the number of clusters.

128 A.M. Bagirov and E. Mohebi

Table 4.7 Results with the similarity measure based on the
L1-norm (cont.)

k fbest INCA ISCA

E N t E N t

TSPLIB3038
�106 �109 �109

2 3.7308 0:00 0:04 0:28 0:02 0:02 0:23

3 3.0056 0:00 0:10 0:68 0:00 0:03 0:44

5 2.2551 0:00 0:24 1:59 0:06 0:08 0:97

10 1.5502 0:00 1:70 9:95 0:14 0:99 10:33

15 1.2298 0:00 4:71 27:11 0:27 2:14 22:03

20 1.0597 0:00 9:97 56:89 0:64 4:19 42:37

25 0.9441 0:00 14:38 81:97 0:18 7:60 75:88

Page blocks
�106 �109 �109

2 8.4141 0:00 0:08 1:73 0:00 0:10 3:37

5 4.8821 0:00 1:18 21:43 0:00 0:45 14:88

10 3.1704 0:00 9:17 149:35 0:00 1:83 63:09

15 2.5682 0:00 12:60 197:94 0:00 6:77 241:91

20 2.2127 0:00 27:10 391:28 0:00 10:16 366:84

25 1.9737 0:00 49:83 689:86 0:00 16:43 623:74

D15112
�108 �109 �109

2 0.886 0:00 0:40 4:66 0:00 0:27 3:87

5 0.4998 0:00 1:40 16:08 0:00 1:15 16:08

10 0.3617 0:00 3:50 37:17 0:00 2:78 38:13

15 0.293 0:00 6:84 66:64 0:03 4:74 64:38

20 0.2501 0:00 11:86 106:82 0:00 8:62 112:29

25 0.2243 0:00 16:49 143:66 0:00 11:37 147:12

Pla85900
�1010 �1010 �1010

2 2.0656 0:00 1:33 123:67 0:21 0:82 105:75

5 1.2569 0:00 4:38 455:53 1:84 3:12 412:28

10 0.898 0:00 9:59 1006:40 0:95 7:01 930:83

15 0.7333 0:00 14:98 1576:03 1:38 11:00 1451:20

20 0.6374 0:00 20:89 2171:28 0:91 15:10 1991:88

25 0.5693 0:00 26:67 2748:98 1:69 19:50 2557:04

4 Nonsmooth Optimization Algorithms in Cluster Analysis 129

Table 4.8 Results with the similarity measure based on the
L

1

-norm

L
1

-norm N.�106/
k INCA

fbest N t fbest N t

German town Bavaria postal 1
�103 �106

2 2:5573 0:64 0:00 3:9981 1:35 0:01

3 1:8719 1:22 0:00 2:7916 2:02 0:03

4 1:5069 1:78 0:01 2:1713 3:24 0:04

5 1:2476 2:15 0:01 1:7496 9:46 0:09

6 1:1316 5:03 0:03 1:3178 17:30 0:17

7 1:0415 8:81 0:06 1:0997 23:23 0:23

8 0:9595 11:54 0:09 0:9081 31:94 0:31

9 0:8875 14:62 0:10 0:7703 41:43 0:40

10 0:8196 18:32 0:14 0:6486 49:63 0:46

Bavaria postal 2 Iris Plant
�106 �102

2 0:9646 3:73 0:06 1:3651 3:87 0:06

3 0:6765 4:30 0:06 0:9656 4:53 0:06

4 0:5373 6:52 0:09 0:7922 16:52 0:23

5 0:4592 20:63 0:26 0:6750 18:70 0:24

6 0:3877 35:69 0:45 0:6197 47:87 0:65

7 0:3454 58:20 0:73 0:5650 67:40 0:92

8 0:3132 80:16 1:02 0:5187 106:01 1:46

9 0:2870 89:40 1:15 0:4953 177:23 2:51

10 0:2619 101:53 1:32 0:4729 251:74 3:60

4.9.5 Results for Purity in Data Sets with Class Labels

In order to determine which similarity measure provides better approximation of a
data set one can use the notion of the cluster purity in situations where instances are
already labeled. In this case we can compare the clusters with the “true” class labels.
The purity Pi of the cluster i; i D 1; : : : ; k is defined as follows [28]:

Pi D 1

ni
max
jD1;:::;l n

j
i :

In this expression ni is the number of points in the cluster i; i D 1; : : : ; k, nji is the
number of points in the cluster i that belong to the true class j and l is the number
of true classes. The total purity Pt for the whole data set A is computed as:

130 A.M. Bagirov and E. Mohebi

Table 4.9 Results with the similarity measure based on theL
1

-norm
(cont.)

L
1

-norm N.�108/
k INCA

fbest N t fbest N t

Heart disease Breast cancer
�104 �104

2 1:0265 0:99 3:15 0:1927 0:49 1:46

3 0:8763 2:13 6:84 0:1737 0:65 1:95

5 0:7267 3:95 12:63 0:1521 1:74 5:36

7 0:6455 6:41 20:20 0:1402 3:15 9:76

10 0:5631 9:93 30:98 0:1294 8:91 27:08

12 0:5198 12:10 37:56 0:1247 15:20 45:83

15 0:4753 14:81 45:83 0:1186 21:31 64:13

18 0:4400 19:12 58:98 0:1138 29:16 87:46

20 0:4207 22:25 68:42 0:1108 34:43 103:08

TSPLIB1060 Image segmentation
�106 �105

2 2:9215 0:14 0:09 1:5901 5:14 21:68

3 2:3911 0:42 0:29 1:3954 14:03 57:34

5 1:7843 0:93 0:65 1:1563 41:75 164:11

7 1:4847 1:69 1:23 1:0269 70:93 272:14

10 1:1779 3:44 2:52 0:8852 261:00 959:59

12 1:0559 5:63 4:07 0:7998 366:10 1334:30

15 0:9299 11:21 8:19 0:7380 586:25 2110:36

18 0:8409 19:97 14:72 0:6861 831:64 2975:59

20 0:7957 43:37 32:47 0:6586 933:84 3334:88

Pt D 1

m

kX

iD1
max
jD1;:::;l n

j
i :

Among all data sets used in our experiments only four contain class label: Heart
Disease, Breast Cancer, Image Segmentation and Page Blocks. Results obtained
using the INCA algorithm are presented in Table 4.11. In this table k stands for
the number of clusters and Pt for the total purity. The number of clusters where
the purity achieves its maximum is presented in bold. Results show that the use of
the similarity measure based on the L1-norm provides better approximation than
the use of similarity measures based on other two norms. Results for L2 and L1
norms are similar in the sense of both the number of clusters and accuracy. The
exception is the Image Segmentation data sets where the similarity measure based
on the squared L2-norm produced significantly better accuracy.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 131

Table 4.10 Results with the similarity measure based on theL
1

-norm
(cont.)

L
1

-norm N.�109/
k INCA

fbest N t fbest N t

TSPLIB3038 Page blocks
�106 �106

2 2:8326 0:03 0:26 5:1353 0:06 1:56

3 2:1424 0:06 0:56 4:1871 0:13 3:33

5 1:6562 0:13 1:17 2:9973 0:60 14:05

10 1:1544 0:56 4:50 1:6485 1:92 42:44

15 0:9114 1:60 12:41 1:2580 4:82 101:83

20 0:7750 3:51 26:94 1:0943 10:29 212:56

25 0:6924 7:74 58:70 0:9667 13:98 286:55

D15112 Pla85900
�108 �1010

2 0:7018 0:35 5:42 1:5803 11:53 124:16

3 0:5178 0:64 10:12 1:2250 20:74 235:26

5 0:3952 1:27 19:76 0:9184 37:25 442:32

10 0:2663 3:01 45:05 0:6523 78:26 971:83

15 0:2148 5:17 74:30 0:5455 122:83 1507:79

20 0:1859 7:93 109:57 0:4653 172:67 2087:35

25 0:1669 14:18 179:71 0:4155 224:15 2714:76

Fig. 4.3 Results for the similarity measure based on the L1-norm. (a) D15112. (b) Pla85900

132 A.M. Bagirov and E. Mohebi

Fig. 4.4 Results for the similarity measure based on the squared L2-norm. (a) D15112.
(b) Pla85900

Fig. 4.5 Results for the similarity measure based on the L
1

-norm. (a) D15112. (b) Pla85900

4.9.6 Visualization of Results

We use Voronoi diagrams to visualize results obtained by the INCA algorithm for
different similarity measures. In order to draw these diagrams we used the software
available from [50]. Figures 4.6, 4.7, 4.8 present Voronoi diagrams for three data
sets: German town, TSPLIB1060 and TSPLIB3038 data sets. In all data sets these
diagrams are illustrated for five clusters. One can see that cluster structures for
different similarity measures are different in all data sets, however the distributions
of cluster centers for different norms are similar in TSPLIB1060 data set. These
results confirm that the use of different similarity measures allows one to explore
different cluster structures in data sets.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 133

Table 4.11 Cluster purity for
different similarity measures

L1 L2 L
1

k Pt k Pt k Pt

Heart Disease

2 59.2593 2 57.5758 2 57.5758

5 65.6566 5 62.6263 5 61.6162

10 68.0135 10 63.2997 10 65.6566

15 69.3603 14 68.0135 13 68.6869
18 71.3805 15 67.0034 15 68.3502

20 70.7071 20 68.0135 20 67.6768

Breast Cancer

2 94.4363 2 96.0469 2 97.0717
5 96.3397 3 97.0717 3 96.7789

6 97.6574 5 96.3397 5 96.9253

10 96.4861 10 96.9253 10 96.6325

15 97.0717 15 96.9253 15 96.3397

20 96.9253 20 96.9253 20 96.3397

Image Segmentation

2 28.5714 2 28.5714 2 20.8225

5 60.9091 5 43.8095 5 40.0866

10 74.2857 10 61.342 10 46.1472

15 77.4026 15 71.6883 15 50.4329

19 77.7489 19 74.7619 19 51.6883

20 78.0087 20 75.671 20 54.2424
Page Blocks

2 89.768 2 89.8593 2 89.768

5 89.9872 5 89.9141 5 89.8776

10 90.0603 10 90.0968 10 90.0238

15 90.1517 15 90.1517 15 90.0786

20 90.1517 20 90.1882 20 90.1151

23 90.8642 23 90.2065 24 90.1334
25 90.8642 25 90.2065 25 90.1334

4.10 Computational Results: Comparison with Other
Clustering Algorithms

In this section we compare the proposed three algorithms with other clustering
algorithms. Comparison of algorithms with different similarity measures are
presented separately.

134 A.M. Bagirov and E. Mohebi

Fig. 4.6 Visualization of clusters for German towns data set. (a) L1-norm. (b) L2-norm.
(c) L

1

-norm

Fig. 4.7 Visualization of clusters for TSPLIB1060 data set. (a) L1-norm. (b) L2-norm.
(c) L

1

-norm

Fig. 4.8 Visualization of clusters for TSPLIB3038 data set. (a) L1-norm. (b) L2-norm.
(c) L

1

-norm

4 Nonsmooth Optimization Algorithms in Cluster Analysis 135

4.10.1 Comparison of Algorithms Using the Similarity
Measure Based on the Squared L2-Norm

In this subsection we use the following algorithms for comparison with the INCA
algorithm:

1. Lloyd algorithm. This clustering algorithm is the version of the k-means
algorithm. It was introduced in [43].

2. Forgy algorithm. This algorithm is a simple alternative of least-squares algo-
rithm [31].

3. MacQueen algorithm. This clustering algorithm introduced in [44] is similar to
the Forgy’s algorithm. The difference is in the last stage where the MacQueen
algorithm moves the center points to the mean of their Voronoi set.

4. Hartigan algorithm. This algorithm was introduced in [37].
5. K-meansCC algorithm. This algorithm is the version of the k-means algorithm

and was introduced in [3]. It uses a special procedure for initialization of cluster
centers.

6. X-means algorithm. This algorithm is an improvement of the original k-means
algorithm [47]. It uses a special procedure for initialization of cluster centers.

7. Global k-means algorithm (GKM). This is an incremental algorithm [42].
8. Modified Global k-means algorithm (MGKM). This is the modified version of

the global k-means algorithm [9].

All algorithms listed above, except the GKM and MGKM algorithms, use
randomly generated starting points for cluster centers. In order to have a fair
comparison with the INCA algorithm we use large number of starting points in these
algorithms so that the CPU time used by them is almost the same that used by the
INCA algorithm. More specifically, we used 500 starting points in all algorithms and
we chose the best solution and compared it to that of found by the INCA algorithm.
Results are presented in Tables 4.12, 4.13, 4.14. In these tables we include the error
of a solution found by an algorithm.

Results for small data sets are presented in Table 4.12. These results show
that the Hartigan, k-meansCC and INCA algorithms are most accurate among
all algorithms. The error by the GKM and MGKM algorithms are not large in
comparison with other algorithms.

Table 4.13 contains results with medium size data sets. Again we can see that
the Hartigan, k-meansCC and INCA algorithms are among most accurate in these
data sets. The GKM and MGKM algorithms also show good performance in most
data sets.

Results for large data sets presented in Table 4.14 demonstrates that overall the
INCA algorithm is most successful in these data sets. Forgy, Lloyd, McQueen,
Hartigan, X -means and k-meansCC algorithms failed to solve the clustering
problem in Page Blocks data set.

136 A.M. Bagirov and E. Mohebi

Table 4.12 Comparison of algorithms using the similarity measure based on the L2-norm

k Forgy Lloyd McQueen Hartigan X-means K-meansCC GKM MGKM INCA

German town

2 0:00 0:00 0:00 0:00 8:76 0.00 0.00 0.00 0.00

3 0:00 0:00 0:00 0:00 11:63 0.00 1.45 1.45 0.00

4 0:00 0:00 0:00 0:00 15:35 0.00 0.72 0.72 0.00

5 0:00 0:00 0:00 0:00 11:44 0.00 0.00 0.00 0.00

6 0:00 0:00 0:00 0:00 27:26 0.00 0.00 0.27 0.00

7 0:00 0:00 0:00 0:00 31:00 0.00 0.09 0.00 0.00

8 0:00 0:00 0:00 0:00 46:65 0.00 1.33 1.23 0.00

9 0:00 0:00 0:00 0:00 51:81 0.68 2.13 4.41 0.00

10 0:00 0:00 0:28 0:00 80:32 0.00 1.79 1.51 0.00

Bavaria postal 1

2 0:00 0:00 0:00 0:00 242:83 0.00 7.75 0.00 0.00

3 0:00 0:00 0:00 0:00 579:00 0.00 0.00 0.00 0.00

4 0:00 0:00 0:00 0:00 312:15 0.00 0.00 0.00 0.00

5 0:00 0:00 0:00 0:00 763:62 0.00 0.00 0.00 0.00

6 27:65 0:00 0:00 27:65 1223:59 0.00 0.00 0.00 0.00

7 0:61 0:61 1:32 0:00 2010:27 0.00 1.50 1.50 0.00

8 0:00 0:00 0:00 0:00 3296:56 0.00 0.00 0.00 0.00

9 0:00 15:43 0:00 0:00 5312:35 0.00 0.00 0.00 0.00

10 0:00 0:00 0:00 0:00 6811:38 0.00 0.00 0.00 0.00

Bavaria postal 2

2 0:00 0:00 0:00 0:00 0:00 0.00 7.32 7.32 7.32

3 0:00 0:00 0:00 0:00 110:55 0.00 0.00 0.00 0.00

4 0:00 0:00 0:00 0:00 317:87 0.00 0.00 0.00 0.00

5 1:14 1:14 0:00 0:00 482:46 0.00 1.86 1.86 0.00

6 39:04 39:02 26:72 0:00 868:32 0.00 1.21 1.21 0.00

7 0:04 0:04 0:04 0:00 1260:32 0.00 0.55 0.55 0.04

8 4:68 12:57 6:06 0:00 1668:73 0.00 0.73 0.73 0.00

9 11:90 1:34 1:34 0:00 2046:36 0.14 0.14 0.14 0.00

10 3:91 11:64 5:54 0:00 2422:10 0.22 1.00 1.00 0.00

Iris Plant

2 0:00 0:00 0:00 0:00 1:71 0.00 0.00 0.00 0.00

3 0:00 0:00 0:00 0:00 8:92 0.00 0.01 0.01 0.00

4 0:00 0:00 0:00 0:00 37:30 0.00 0.05 0.05 0.05

5 0:00 0:00 0:00 0:00 11:76 0.00 0.54 0.54 0.00

6 0:00 0:00 0:00 0:00 19:81 0.00 1.44 1.44 0.00

7 0:00 0:00 0:00 0:00 30:49 0.00 3.17 3.17 0.00

8 0:00 0:00 0:00 0:00 47:80 0.00 1.71 1.71 0.00

9 0:00 0:00 0:01 0:00 56:56 0.00 2.85 2.85 0.00

10 0:20 0:41 0:00 0:00 60:86 0.06 3.55 3.55 0.00

4 Nonsmooth Optimization Algorithms in Cluster Analysis 137

Table 4.13 Comparison of algorithms using the similarity measure based on the L2-norm (cont.)

k Forgy Lloyd McQueen Hartigan X-means k-meansCC GKM MGKM INCA

Heart disease

2 0:00 0:00 0:00 0:00 75:01 0.00 0.00 0.00 0:00

5 0:00 0:00 0:00 0:00 216:02 0.00 0.58 0.58 0:00

10 0:05 0:06 0:14 0:00 389:14 0.09 2.61 1.33 0:03

15 0:28 0:97 0:61 0:00 531:38 1.17 0.96 1.13 0:16

20 2:90 2:65 0:92 0:00 667:67 1.77 2.18 1.35 0:41

25 3:33 5:44 5:56 0:31 781:51 4.33 3.77 0.75 0:00

30 5:45 4:32 5:66 0:03 845:62 4.68 3.76 1.38 0:00

Breast cancer

2 0:00 0:00 0:00 0:00 0:00 0.00 0.00 0.00 0:00

5 0:00 0:00 0:00 0:00 2:97 0.00 2.28 0.62 0:02

10 0:10 0:03 0:04 0:00 9:96 0.14 0.25 0.20 0:04

15 0:87 0:84 0:65 0:00 11:87 1.07 1.55 1.49 0:73

20 2:88 2:68 2:59 0:00 23:75 1.92 4.08 1.84 0:82

25 2:10 2:28 3:93 0:50 20:23 3.38 5.04 1.19 0:00

30 4:46 3:68 4:07 0:00 20:98 3.23 4.67 1.06 0:46

TSPLIB1060

2 0:00 0:00 0:00 0:00 149:58 0.00 0.00 0.00 0:00

5 0:00 0:00 0:00 0:00 24:48 0.00 0.01 0.01 0:01

10 0:00 0:00 0:00 0:00 46:36 0.00 0.23 0.04 0:03

20 0:05 0:04 0:03 0:00 45:94 0.39 0.39 0.39 0:08

25 0:11 0:26 0:00 0:08 68:25 0.09 1.81 1.81 0:00

30 0:13 0:00 0:48 0:23 73:92 1.47 2.82 2.83 0:75

40 1:57 0:93 1:89 0:00 76:85 2.39 4.00 2.82 0:27

50 3:77 3:75 3:69 0:61 88:96 4.49 2.07 1.50 0:00

Image Segmentation

2 0:00 0:00 0:00 0:00 6:65 0.00 0.00 0.00 0:00

5 0:00 0:00 0:00 0:00 54:85 0.00 0.00 0.00 0:00

10 1:53 1:16 0:00 0:63 106:25 0.00 1.76 1.76 1:75

20 12:08 0:18 8:87 2:38 126:52 0.77 0.00 1.40 27:72

25 11:48 15:35 17:29 4:09 173:86 4.18 0.05 0.00 23:39

30 14:65 12:37 17:01 9:35 202:64 5.75 0.07 0.06 0:00

40 14:96 12:26 17:65 15:37 260:99 6.99 1.08 1.07 0:00

50 19:96 18:87 22:55 18:82 323:81 8.13 2.22 2.21 0:00

138 A.M. Bagirov and E. Mohebi

Table 4.14 Comparison of algorithms using the similarity measure based on the L2-norm (cont.)

k Forgy Lloyd McQueen Hartigan X-means k-meansCC GKM MGKM INCA

TSPLIB3038

2 0:00 0:00 0:00 0:00 30:17 0:00 0.00 0.00 0.00

5 0:00 0:00 0:00 0:00 1:77 0:00 0.00 0.00 0.00

10 0:00 0:00 0:00 0:00 12:43 0:00 2.78 0.58 0.57

20 0:02 0:03 0:02 0:00 10:11 0:14 2.00 0.48 0.14

25 0:05 0:02 0:03 0:00 8:20 0:22 0.75 0.23 0.56

30 0:05 0:03 0:08 0:00 13:22 0:45 1.44 1.04 0.82

40 0:00 0:76 0:66 0:00 20:78 1:26 1.49 1.72 1.01

50 0:34 0:41 0:51 0:33 19:00 1:15 0.68 0.20 0.00

Page blocks

5 38:99 38:99 38:99 38:99 933:67 0:00 0.00 0.00 0.00

10 208:96 46:37 216:19 38:71 2787:71 5:20 1.53 0.73 0.00

20 247:53 248:08 678:67 200:22 2209:30 36:81 0.64 0.00 1.02

30 497:05 482:87 496:96 417:76 4644:91 31:56 2.16 1.40 0.00

50 1118:04 1110:42 1064:06 943:63 7602:65 69:65 0.11 0.07 0.00

70 1883:18 1905:86 1911:44 1708:40 13742:13 97:83 0.45 0.15 0.00

80 1572:73 1794:92 1428:82 1408:72 16659:75 86:06 1.97 0.51 0.00

100 2069:75 2415:00 2074:10 2045:52 20261:88 107:94 1.03 1.14 0.00

D15112

5 0:00 0:00 0:00 0:00 4:91 0:00 0.00 0.00 0.00

10 0:00 0:00 0:00 0:00 1:51 0:00 1.41 1.41 0.62

20 0:00 0:00 0:00 0:00 4:44 0:00 0.25 0.25 0.24

30 0:00 0:01 0:00 0:00 8:55 0:00 0.07 0.10 0.06

50 0:19 0:22 0:31 0:23 5:80 0:00 0.00 0.00 0.08

70 0:51 0:34 0:49 0:28 6:23 0:87 0.96 0.95 0.00

80 0:70 0:97 0:55 0:40 10:85 0:81 0.28 0.27 0.00

100 1:52 1:28 1:34 1:08 10:48 0:82 0.13 0.13 0.00

Pla85900

5 0:00 0:00 0:00 0:00 0:09 0:00 0.00 0.00 0.00

10 0:00 0:00 0:00 0:00 0:53 0:00 0.00 0.00 0.00

20 0:00 0:00 0:00 0:00 1:06 0:00 0.31 0.31 0.54

30 0:00 0:00 0:00 0:00 3:13 0:00 0.13 0.13 0.01

50 0:14 0:14 0:00 0:07 0:99 0:04 0.35 0.35 0.70

70 0:18 0:32 0:10 0:00 2:83 0:25 0.24 0.72 1.23

80 0:29 0:00 0:04 0:11 2:78 0:02 0.93 0.87 1.15

100 0:29 0:33 0:13 0:00 3:48 0:16 0.30 0.70 0.68

4 Nonsmooth Optimization Algorithms in Cluster Analysis 139

Table 4.15 Comparison of algorithms using the similarity measure
based on the L1-norm

k k-means X-means INCA k-means X-means INCA

German Towns Bavaria postal 1

2 4:23 2:68 0:00 18:58 44:21 0:00

3 16:11 4:09 0:00 53:31 34:44 0:00

4 1:64 29:36 0:00 98:27 48:73 0:00

5 6:38 14:27 0:00 146:01 102:81 0:00

6 10:23 11:24 0:00 223:08 149:68 0:00

7 14:15 18:49 0:00 284:29 148:85 0:00

8 10:16 19:12 0:00 384:27 188:39 0:00

9 10:80 26:51 0:00 441:99 338:77 0:00

10 8:14 33:78 0:00 491:15 404:42 0:00

Bavaria postal 1 Iris Plant

2 1:44 13:31 0:00 0:28 2:05 0:00

3 35:65 15:29 0:00 0:06 2:07 0:00

4 57:83 27:51 0:00 0:51 12:42 0:00

5 90:57 14:30 0:00 2:97 5:34 0:00

6 119:23 10:23 0:00 6:76 7:15 0:00

7 151:72 20:40 0:00 8:00 11:85 0:00

8 178:83 32:68 0:00 9:19 17:12 0:00

9 201:37 39:58 0:00 9:12 21:59 0:00

10 128:65 42:21 0:00 12:35 23:72 0:00

4.10.2 Comparison of Algorithms Using the Similarity
Measure Based on the L1-Norm

In this subsection we present the comparison of the INCA algorithm with two
clustering algorithms: the k-means and the X -means algorithms. All algorithms use
the similarity measure defined by the L1-norm. Results are presented in Tables 4.15,
4.16, 4.17. We include the error of each algorithm for given number of clusters at
these tables.

Table 4.15 contains results on small data sets. These results clearly demonstrate
the superiority of the INCA algorithm over other two algorithms in these data sets.
Moreover, its superiority over the k-means and X -means algorithms in Bavaria
Postal 1 data set is significant.

Results for medium size data sets are given in Table 4.16. Again we can see
that the INCA algorithm is much more superior than other two algorithms in these
data sets. In most cases results obtained by the k-means and X -means algorithms
deteriorate as the number of clusters increases.

140 A.M. Bagirov and E. Mohebi

Table 4.16 Comparison of algorithms using the similarity measure
based on the L1-norm (cont.)

k k-means X-means INCA k-means X-means INCA

Heart disease Breast cancer

2 18:31 18:63 0:00 0:05 14:46 0:00

3 26:60 30:37 0:00 5:93 15:35 0:00

5 44:06 49:02 0:00 5:03 18:16 0:00

7 52:37 59:50 0:00 6:28 20:73 0:00

10 69:75 73:73 0:00 8:15 18:87 0:00

12 77:73 84:08 0:00 11:61 19:82 0:00

15 92:18 97:24 0:00 9:18 19:20 0:00

18 101:43 108:08 0:00 8:66 21:68 0:00

20 105:50 112:45 0:00 9:24 23:27 0:00

TSPLIB1060 Image segmentation

2 37:69 0:17 0:00 1:68 8:78 0:00

3 17:61 18:37 0:00 16:66 5:62 0:00

5 7:30 13:17 0:00 0:13 7:59 0:00

7 6:86 9:35 0:00 2:10 17:72 0:00

10 11:56 11:79 0:00 9:42 21:76 0:00

12 12:58 9:13 0:00 12:80 25:18 0:00

15 13:13 14:00 0:00 18:87 30:73 0:00

18 14:14 9:44 0:00 20:21 33:01 0:00

20 9:17 12:54 0:00 25:86 28:25 0:00

Table 4.17 presents results for large data sets. One can see that the INCA
algorithm achieves significantly better solutions than other two algorithms in most
cases, except the case k D 3 for Pla85900 data set. The k-means and X -means
algorithms are quite efficient in TSPLIB3038, D15112 and Pla85900 data sets. All
these data sets have two attributes. This means that the k-means and X -means
algorithms are efficient when the number of attributes is very small (2 or 3).

4.10.3 Comparison of Algorithms Using the Similarity
Measure Based on the L1-Norm

In this subsection we present the comparison of the INCA algorithm with two
clustering algorithms: the k-means and the X -means algorithms. All algorithms
use the similarity measure defined by the L1-norm. Results are presented in
Tables 4.18, 4.19, 4.20. In these tables the error of each algorithm for given number
of clusters is included.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 141

Table 4.17 Comparison of algorithms using the similarity measure
based on the L1-norm (cont.)

k k-means X-means INCA k-means X-means INCA

TSPLIB3038 Page blocks

2 4:91 0:27 0:00 27:42 29:10 0:00

3 2:05 0:62 0:00 33:09 58:19 0:00

5 1:86 4:22 0:00 83:22 111:94 0:00

10 3:24 6:99 0:00 142:63 151:02 0:00

15 2:28 1:95 0:00 164:98 158:37 0:00

20 2:93 3:40 0:00 202:92 141:11 0:00

25 2:07 4:45 0:00 238:26 148:37 0:00

D15112 Pla85900

2 1:16 0:64 0:00 0:51 0:46 0:00

3 8:45 3:52 0:00 0:00 0:13 0:25

5 0:44 1:05 0:00 0:21 0:37 0:00

10 1:31 0:73 0:00 0:15 0:88 0:00

15 1:03 1:91 0:00 0:27 1:28 0:00

20 2:65 3:27 0:00 0:94 0:85 0:00

25 1:61 5:10 0:00 2:01 2:12 0:00

Table 4.18 Comparison of algorithms using the similarity measure
based on the L

1

-norm

k k-means X-means INCA k-means X-means INCA

German Towns Bavaria postal 1

2 0:00 24:00 5:41 21:62 44:43 0:00

3 0:00 4:69 1:57 69:89 111:24 0:00

4 0:47 0:00 3:41 106:20 63:50 0:00

5 7:21 2:72 0:00 137:93 96:54 0:00

6 5:03 10:58 0:00 225:35 158:52 0:00

7 2:11 14:55 0:00 285:78 207:73 0:00

8 15:37 15:67 0:00 356:89 271:70 0:00

9 10:31 17:74 0:00 413:54 327:02 0:00

10 6:09 25:57 0:00 338:41 409:24 0:00

Bavaria postal 1 Iris Plant

2 404:07 498:62 0:00 1:08 0:00 39:10

3 601:05 771:69 0:00 0:00 2:45 25:24

4 733:30 560:73 0:00 0:00 2:64 12:37

5 806:53 648:82 0:00 4:94 0:00 4:17

6 1005:88 778:72 0:00 2:47 11:94 0:00

7 1128:26 879:76 0:00 2:74 5:85 0:00

8 1224:71 977:71 0:00 9:41 13:52 0:00

9 1278:33 1046:10 0:00 11:75 17:35 0:00

10 985:72 1161:13 0:00 14:61 15:78 0:00

142 A.M. Bagirov and E. Mohebi

Table 4.19 Comparison of algorithms using the similarity measure
based on the L

1

-norm (cont.)

k k-means X-means INCA k-means X-means INCA

Heart disease Breast cancer

2 29:51 30:08 0:00 39:34 0:32 0:00

3 50:94 51:55 0:00 12:09 5:70 0:00

5 81:01 80:94 0:00 25:71 4:84 0:00

7 102:73 101:13 0:00 22:18 8:00 0:00

10 129:34 128:72 0:00 26:43 12:78 0:00

12 148:06 145:52 0:00 23:26 11:66 0:00

15 165:77 166:08 0:00 27:23 13:10 0:00

18 184:73 186:18 0:00 28:08 13:18 0:00

20 195:60 197:98 0:00 29:56 12:67 0:00

TSPLIB1060 Image segmentation

2 30:88 45:57 0:00 12:77 11:62 0:00

3 17:93 23:59 0:00 9:52 13:88 0:00

5 16:21 18:04 0:00 24:66 23:08 0:00

7 12:97 11:35 0:00 25:50 20:02 0:00

10 18:52 17:35 0:00 21:36 29:97 0:00

12 15:58 17:15 0:00 34:01 38:56 0:00

15 16:58 13:69 0:00 38:66 34:67 0:00

18 13:34 13:87 0:00 43:64 45:01 0:00

20 19:86 18:54 0:00 49:17 41:86 0:00

Results for small data sets are given in Table 4.18. These results demonstrate the
significant superiority of the INCA algorithm over other two algorithms in all data
sets, except the cases when the number of clusters is small.

Table 4.19 contains results for medium size data sets. One can see that the INCA
algorithm is much more superior than other two algorithms in these data sets. In
most cases results obtained by the k-means and X -means algorithms deteriorate as
the number of clusters increases.

Results for large data sets are reported in Table 4.20. The INCA algorithm
achieves significantly better solutions than other two algorithms in Page Blocks data
set. However in other three data sets the k-means andX -means algorithms are more
successful than the INCA algorithm. These results confirm that both the k-means
and X -means algorithm are efficient when the number of attributes is very small.

4 Nonsmooth Optimization Algorithms in Cluster Analysis 143

Table 4.20 Comparison of algorithms using the similarity measure
based on the L

1

-norm (cont.)

k k-means X-means INCA k-means X-means INCA

TSPLIB3038 Page blocks

2 1:06 4:19 0:00 8:97 7:10 0:00

3 2:74 1:62 0:00 6:21 30:99 0:00

5 0:41 0:00 1:52 47:22 79:15 0:00

10 0:00 2:16 2:82 137:85 205:06 0:00

15 0:00 0:45 2:61 193:57 293:60 0:00

20 3:43 0:00 2:20 235:09 343:56 0:00

25 0:19 0:60 0:00 272:51 329:67 0:00

D15112 Pla85900

2 1:62 0:00 13:17 0:46 0:00 7:80

3 0:40 0:00 2:96 0:07 0:00 6:74

5 7:17 0:00 5:27 0:29 0:00 5:08

10 0:32 0:55 0:00 0:07 0:00 3:52

15 1:63 0:00 0:38 0:00 0:01 5:86

20 0:00 0:76 0:76 0:03 0:00 2:81

25 0:00 1:67 1:43 1:41 0:00 3:17

4.11 Conclusions

In this chapter, we presented different optimization models for the hard clustering
problem. We demonstrated that the use of the nonsmooth nonconvex optimization
formulation has some advantages over other two formulations. This formulation
allows one to easily apply various similarity measures to solve clustering problems.
In particular, one can use similarity measures based on the L1, the squared L2 and
L1 norms. Based on this approach algorithms for solving clustering problems are
designed. The proposed clustering algorithms are based on the incremental approach
and involves a special procedure for finding starting points for cluster centers.
Starting points are found by minimizing the so-called auxiliary cluster function.
Three different algorithms are introduced to minimize both the auxiliary cluster and
cluster functions. These algorithms include the k-means type heuristic algorithm,
the discrete gradient method of the nonsmooth optimization and the algorithm based
on the smoothing of the cluster functions.

The proposed algorithms are tested on 12 real world data sets using different
similarity measures. Results demonstrate that these algorithms are efficient in
finding global or near global solutions to clustering problems with different
similarity measures. The comparison of the algorithm with the use of the discrete
gradient method with a number of other clustering algorithms is also presented.
This comparison demonstrate that the proposed algorithm is more accurate than
other algorithms in many data sets. In some other data sets the performance of the
proposed algorithm, the Hartigan and the k-meansCC algorithms are quite similar.

144 A.M. Bagirov and E. Mohebi

References

1. Aggarwal C, Hinneburg A, Keim D (2001) On the surprising behavior of distance metrics
in high dimensional space. In: ICDT ’01 Proceedings of the 8th international conference on
database theory, pp 420–434

2. Al-Sultan K (1995) A tabu search approach to the clustering problem. Pattern Recogn
28(9):1443–1451

3. Arthur D, Vassilvitskii S (2007) k-meansCC: the advantages of careful seeding. In: Bansal
N, Pruhs K, Stein C (eds) SODA ’07 Proceedings of the eighteenth annual ACM-SIAM
symposium on discrete algorithms. SIAM, Miami, pp 1027–1035

4. Astorino A, Fuduli A (2007) Nonsmooth optimization techniques for semi-supervised classifi-
cation. IEEE Trans Pattern Anal Mach Intell 29:2135–2142

5. Astorino A, Fuduli A, Gorgone E (2008) Non-smoothness in classification problems. Optim
Methods Software 23:675–688

6. Bache K, Lichman M (2013) UCI machine learning repository. URL http://archive.ics.uci.edu/
ml

7. Bagirov AM (1999) Minimization methods for one class of nonsmooth functions and
calculation of semi-equilibrium prices. In: Eberhard A, et al (eds) Progress in optimization:
contribution from Australasia. Kluwer Academic, Norwell, pp 147–175

8. Bagirov AM (2003) Continuous subdifferential approximations and their applications. J Math
Sci 115(5):2567–2609

9. Bagirov AM (2008) Modified global k-means algorithm for minimum sum-of-squares cluster-
ing problems. Pattern Recogn 41(10):3192–3199

10. Bagirov AM, Al Nuaimat A, Sultanova N (2013) Hyperbolic smoothing function method for
minimax problems. Optimization 62(6):759–782

11. Bagirov AM, Karasozen B, Sezer M (2008) Discrete gradient method: Derivative-free method
for nonsmooth optimization. J Optim Theory Appl 137:317–334

12. Bagirov AM, Rubinov AM, Soukhoroukova N, Yearwood J (2003) Unsupervised and super-
vised data classification via nonsmooth and global optimization. Top 11:1–93

13. Bagirov AM, Rubinov AM, Yearwood J (2002) A Global Optimization Approach to Classifi-
cation. Optim Eng 3(2):129–155

14. Bagirov AM, Ugon J (2006) Piecewise partially separable functions and a derivative-free
algorithm for large scale nonsmooth optimization. J Global Optim 35:163–195

15. Bagirov AM, Ugon J, Webb D (2011) Fast modified global k-means algorithm for incremental
cluster construction. Pattern Recogn 44(4):866–876

16. Bagirov AM, Yearwood J (2006) A new nonsmooth optimization algorithm for minimum sum-
of-squares clustering problems. Eur J Oper Res 170(2):578–596

17. Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Behav Sci
12(2):153–155

18. Bock HH (1998) Clustering and neural networks. In: Rizzi A, Vichi M, Bock HH (eds)
Advances in data science and classification. Springer, Berlin and Heidelberg, pp 265–277

19. Bradley P, Fayyad U (1998) Refining initial points for k-means clustering. In: Proc. of the 15th
int. conf. on machine learning, pp 91–99

20. Brown D, Huntley C (1992) A practical application of simulated annealing to clustering.
Pattern Recogn 25(4):401–412

21. Cao F, Liang j, Jiang G (2009) An initialization method for the k-means algorithm using
neighborhood model. Comput Math Appl 58(3):474–483

22. Carmichael J, Sneath P (1969) Taxometric maps. Syst Zool 18:402–415
23. Carrizosa E, Romero Morales D (2013) Supervised classification and mathematical optimiza-

tion. Comput Oper Res 40:150–165
24. Celebi ME, Kingravi H (2012) Deterministic initialization of the k-means algorithm using

hierarchical clustering. Int J Pattern Recogn Artif Intell 26(7):1250,018

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

4 Nonsmooth Optimization Algorithms in Cluster Analysis 145

25. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst Appl 40:200–210

26. Cheng CH (1995) A branch and bound clustering algorithm. IEEE Trans Syst Man Cybern
25(5):895–898

27. Clarke F (1983) Optimization and nonsmooth analysis. Canadian mathematical society series
of monographs and advanced texts. Wiley, New York

28. Dhillon IS, James F, Guan Y (2001) Efficient clustering of very large document collections. In:
Grossman R, Kamath C, Kegelmeyer P, Kumar V, Namburu R (eds) Data mining for scientific
and engineering applications. Kluwer Academic, Norwell, pp 357–382

29. Diehr G (1985) Evaluation of a branch and bound algorithm for clustering. SIAM J Sci Stat
Comput 6(2):268–284

30. Doherty K, Adams R, Davey N (2004) Non-Euclidean norms and data normalisation. In:
Proceedings of ESANN, pp 181–186

31. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics 21:768–769

32. Ghorbani M (2005) Maximum entropy-based fuzzy clustering by using l1-norm space. Turk J
Math 29:431–438

33. Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003) Clustering data streams:
Theory and practice. IEEE Trans Knowl Data Eng 15(3):515–528

34. Hansen P, Jaumard B (1997) Cluster analysis and mathematical programming. Math Programm
79(1-3):191–215

35. Hansen P, Mladenovic N, Perez-Britos D (2001) Variable neighborhood decomposition search.
J Heuristics 7(4):335–350

36. Hansen P, Ngai E, Cheung B, Mladenovic N (2005) Analysis of global k-means an incremental
heuristic for minimum sum-of-squares clustering. J Classification 22(2):287–310

37. Hartigan JA, Wong MA (1979) Algorithm as 136: A k-means clustering algorithm. J Roy Stat
Soc C (Appl Stat) 28(1):100–108

38. Jajuga K (1987) A clustering method based on the L1-norm. Comput Stat Data Anal 5(4):
357–371

39. Jalali A, Srebro N (2012) Clustering using Max-norm Constrained Optimization. CoRR
abs/1202.5

40. Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis.
Wiley series in probability and statistics. Wiley

41. Lai JZC, Huang TJ (2010) Fast global k-means clustering using cluster membership and
inequality. Pattern Recogn 43(5):1954–1963

42. Likas A, Vlassis N, Verbeek JJ (2003) The global k-means clustering algorithm. Pattern
Recogn 36(2):451–461

43. Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inform Theory 28(2):129–137
44. MacQueen JB (1967) Some methods for classification and analysis of multivariate observa-

tions. In: Cam LML, Neyman J (eds) Proc. of the fifth Berkeley symposium on mathematical
statistics and probability, University of California Press, vol 1, pp 281–297

45. du Merle O, Hansen P, Jaumard B, Mladenovic N (1999) An interior point algorithm for
minimum sum-of-squares clustering. SIAM J Sci Comput 21(4):1485–1505

46. Ordin B, Bagirov AM (2014) A heuristic algorithm for solving the minimum sum-of-squares
clustering problems. J Global Optim URL 10.1007/s10898-014-0171-5

47. Pelleg D, Moore A (2000) X-means: Extending k-means with efficient estimation of the
number of clusters. In: Langley P (ed) ICML’00 Proceedings of the seventeenth international
conference on machine learning. Morgan Kaufmann, San Francisco, pp 727–734

48. Ramos G, Hatakeyama Y, Dong F, Hirota K (2009) Hyperbox clustering with Ant Colony
Optimization (HACO) method and its application to medical risk profile recognition. Appl
Soft Comput 9(2):632–640

49. Reinelt G (1991) TSPLIB- a traveling salesman problem library. ORSA J Comput 3(4):
376–384

http://dx.doi.org/10.1007/s10898-014-0171-5

146 A.M. Bagirov and E. Mohebi

50. Sedgewick R, Wayne K (2007) Introduction to programming in Java. Addison-Wesley, URL
http://introcs.cs.princeton.edu/java/36inheritance/Voronoi.java.html

51. Selim SZ, Al-Sultan K (1991) A simulated annealing algorithm for the clustering problem.
Pattern Recogn 24(10):1003–1008

52. Su T, Dy JG (2007) In search of deterministic methods for initializing k-means and gaussian
mixture clustering. Intell Data Anal 11(4):319–338

53. Sun L, Xie Y, Song X, Wang J, Yu R (1994) Cluster analysis by simulated annealing. Comput
Chem 18(2):103–108

54. Venkateswarlu N, Raju P (1992) Fast isodata clustering algorithms. Pattern Recogn 25(3):
335–342

55. Xavier AE, Oliveira AAFD (2005) Optimal covering of plane domains by circles via hyperbolic
smoothing. J Global Optim 31(3):493–504

56. Yang M, Hung W (2006) Alternative fuzzy clustering algorithms with l1-norm and covariance
matrix. Adv Concepts Intell Vis 4179:654–665

http://introcs.cs.princeton.edu/java/36inheritance/Voronoi.java.html

Chapter 5
Fuzzy Clustering Algorithms and Validity
Indices for Distributed Data

L. Vendramin, M.C. Naldi, and R.J.G.B. Campello

Abstract This chapter presents a unified framework to generalize a number of
fuzzy clustering algorithms to handle distributed data in an exact way, i.e., with no
approximation of results with respect to their original centralized versions. The same
framework allows the exact distribution of relative validity indices used to evaluate
the quality of fuzzy clustering solutions. Complexity analyses for each distributed
algorithm and index are reported in terms of space, time, and communication
aspects. A general procedure to estimate the number of clusters in a non-centralized
fashion using the proposed framework is also described. Such a procedure is directly
applicable not only to distributed data, but to parallel data processing scenarios as
well. Experimental results illustrate the speedup obtained when running algorithms
under the proposed framework in multiple cores of a processor, when compared to
their traditional, centralized counterparts running in a single core. Additionally, the
quality of the results and amount of data transmitted are assessed and compared
among different fuzzy clustering algorithms.

Keywords Clustering • Fuzzy partitions • Validity indices • Distributed data •
Parallel computing

5.1 Introduction

Clustering techniques can be broadly divided into three main types [1]: overlapping,
partitional, and hierarchical. The two latter are related to each other in that a
hierarchical clustering is a nested sequence of partitional clusterings, each of which
represents a hard partition of a data set X into a different number of mutually disjoint

L. Vendramin • R.J.G.B. Campello
Institute of Mathematics and Computer Sciences, University of São Paulo (USP), Av. Trabalhador
São-Carlense, 400 Centro, Caixa Postal: 668, CEP: 13560-970, São Carlos, SP, Brazil
e-mail: vendra@icmc.usp.br; campello@icmc.usp.br

M.C. Naldi (�)
Federal University of Viçosa (UFV)s, Rodovia BR 354–km 310, Caixa Postal: 22, CEP:
38.810-000, Rio Paranaíba, MG, Brazil
e-mail: murilocn@ufv.br

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__5

147

mailto:vendra@icmc.usp.br
mailto:campello@icmc.usp.br
mailto:murilocn@ufv.br

148 L. Vendramin et al.

subsets (clusters). A hard (or crisp) partition of N objects X D f x1; : : : ; xN g into
a certain number k of non-null disjoint clusters Ci is such that C1 [: : : [Ck D X,
Ci ¤ ˛, Ci\Cm D ˛8i 6D m. It can be represented by means of a k�N partition
matrix U D Œuij �k�N whose element uij is either 1 if the j th object belongs to the
i th cluster or 0 otherwise. Formally, the space of hard partitions is

Mh D
n
U D Œuij � 2 R

k�N
ˇ̌
ˇ uij 2 f0; 1g 8i; j I

kX

iD1
uij D 1 8j

o
: (5.1)

Overlapping techniques search for soft or fuzzy partitions [2]. A soft partition of
a data set can be described in a way similar to (5.1). The only difference refers to the
condition of mutual disjointness, which is relaxed, i.e. the space of soft partitions of
N objects into k overlapping clusters is

Ms D
n
U D Œuij � 2 R

k�N
ˇ̌
ˇ uij 2 f0; 1g 8i; j I

kX

iD1
uij � 1 8j

o
: (5.2)

A possibilistic fuzzy partition goes even further by relaxing the constraint that
each object either belongs or does not belong to a given cluster in a binary fashion,
i.e. the elements of a possibilistic fuzzy partition matrix can take any value within
the continuous membership interval [0,1]. Formally, the space of possibilistic fuzzy
partitions is [3]:

Mf D
n
U D Œuij � 2 R

k�N
ˇ̌
ˇ uij 2 Œ0; 1� 8i; j I 8j; 9i; uij > 0

o
: (5.3)

The definition in (5.3) is partially used by probabilistic fuzzy partitions, but with
a constraint that allows the elements of the partition matrix to be interpreted as
probabilities [4, 5]:

Mfp D
n
U D Œuij � 2 R

k�N
ˇ̌
ˇ uij 2 Œ0; 1� 8i; j I

kX

iD1
uij D 1 8j

o
: (5.4)

Note that hard partitions can be seen as a special case of fuzzy partitions, in
which each object is assigned a membership value 1 to the cluster the object belongs
to and 0 to the other clusters. Once a fuzzy partition is available, it is easy to derive a
hard partition from it by changing, for each object, its maximum membership value
to 1 and the other values to 0. However, when the structure in the data contains
overlapping categories, fuzzy partitions provide more precise information.

The literature on fuzzy clustering is extensive and several studies have been
carried out with different characteristics and for different purposes during the past
years [2, 6–9]. One of the most used fuzzy clustering algorithms is the Fuzzy
c-Means (FCM) [5, 10]. FCM finds hyper-spherical clusters and partitions lying in

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 149

Mfp as defined in (5.4). Many other fuzzy clustering algorithms have been proposed
to find clusters with different shapes and orientations, e.g., Gustafson-Kessel [11],
Gath and Geva [2, 12], Fuzzy c-Varieties [13], and Fuzzy c-Elliptotypes [2, 6, 14].
Many others have been developed to deal with partitions lying in Mf as defined
in (5.3), e.g., Possibilistic c-Means [3], Possibilistic Gustafson-Kessel [3], Fuzzy-
Possibilistic c-Means [15], and Possibilistic-Fuzzy c-Means [16]. However, these
algorithms have been originally conceived to process centralized databases, i.e., they
assume that all data objects to be clustered can be accessed in a single storage and
processing site.

Despite the large number of existing centralized algorithms, distributed environ-
ments like the internet, intranets and parallel processing systems have changed many
aspects of computing. In this context, physically distributed databases have been
increasingly used for knowledge discovery [17–20], giving rise to an area of study
called Distributed Knowledge Discovery in Databases [21–23]. There is also an
increasing tendency to distribute large databases across multiple processing units
and then use appropriate data mining techniques to process the data [24], which is
so-called Parallel and Distributed Data Mining [22, 25–29].

Although there is a conceptual overlap between the areas of Distributed and
Parallel Data Mining [30, 31], these terms are usually used to refer to algorithms
having different characteristics. “Parallel” often refers to algorithms applied to
strongly coupled systems, whereas “distributed” often refers to algorithms applied
to loosely coupled systems. In other words, parallel algorithms are often used in
multiprocessor architectures in which the data are fully available in a single shared
memory, whereas distributed algorithms usually subsume that the data set is not
available in a shared memory. Typically, parallel data mining aims to increase
the computational performance and distributed data mining is intended to solve
problems in which there is no suitable or feasible way to centralize the data set
[32]. In this chapter, we develop a framework that is applicable to both parallel and
distributed scenarios.

When there are multiple databases distributed across different sites, one might
argue that the data could be centralized before performing any computation.
However, centralizing distributed data may not be appropriate due to several reasons
[26, 29, 33, 34]. Essentially, the large amount of data may incur in high costs to
transfer and store, besides probably increasing the time of the mining process. In
some cases, data centralization is not possible due to computational limitations, such
as working memory capacity or prohibitive processing time. In other cases, there are
confidentiality and security issues.

In the realm of Distributed and Parallel Data Mining, there is an area of study
called Distributed Data Clustering [27, 29, 35], which refers to clustering methods
able to find structures in distributed databases. Many different clustering algorithms
have been proposed to find structures in parallel and distributed environments
[36–43]. Some of them were developed as a generalization of the centralized
version of a specific algorithm [36, 37, 40, 44], whereas others run a (centralized)
algorithm in each data site independently and then use some kind of ensemble to
improve the results in a specific site—using information from the others [45, 46].

150 L. Vendramin et al.

Another approach involves collaborative clustering, where the algorithm runs in
every data site and iteratively shares information across sites trying to find a
global structure [43, 47]. Despite the existence of many algorithms for parallel and
distributed data, only a few of them have been developed for fuzzy clustering as a
generalization of the original (centralized) ones, e.g., see [48–50]. In other words,
just a few fuzzy clustering algorithms have been generalized to deal with parallel
and distributed data in an exact way.

In our study, we are particularly interested in variants of centralized fuzzy
clustering algorithms conceived to handle distributed data in an exact way. Formally,
let XŒi i � D fxŒi i �1; : : : ; xŒi i �Nii g be a data set stored at the i i th data site and
composed of Nii objects, xŒi i �j (j D 1; : : : ; Nii), each of which is described in
an n-dimensional attribute space. In addition, consider a scenario where there exists
a distributed collection of these data sets, XŒ1�; : : : ;XŒP �. The goal of a distributed
clustering algorithm, as an exact generalization of a centralized one, consists of
finding a solution that simultaneously represents an existing structure common to
all data sites. In other words, it searches for a partition matrix U with k clusters
that represents the memberships of each of the N D N1 C N2 C : : :C NP objects
to the k clusters. The final result (U) is supposed to consist exactly of the same
result that would be obtained by the original (centralized) algorithm if such an
algorithm could be run in a single data set containing all objects of all data sites
(X D XŒ1� [XŒ2� [: : : [XŒP �).

Having appropriate algorithms in hand, a fundamental problem concerns the
validation of the clustering results. A common approach to quantitatively evaluate
a data partition is based on the use of relative validity indices [51–53], which make
it possible to compare different partitions in a relative manner [1]. Each candidate
partition obtained by a clustering algorithm can be quantitatively evaluated by a
relative index and compared to other partitions of the same data set [1, 52, 54],
thereby also making it possible to estimate the number of clusters from data. This
includes partitions produced by fuzzy clustering algorithms, which can be evaluated
by means of fuzzy relative validity indices [2, 54]. However, as such indices have
been originally designed to operate when the data are centralized, they cannot
be directly used to evaluate partitions obtained by a distributed data clustering
procedure. To overcome this limitation, we additionally show in this chapter that
the proposed framework for distributed computation of fuzzy clustering algorithms
can also be extended to generalize several existing validity indices so that they can
be exactly computed in distributed and paralleled scenarios.

The remainder of this chapter is organized as follows. Sections 5.2 and 5.3 review
fuzzy clustering algorithms and validity indices originally developed to handle
centralized data. In Sects 5.4 and 5.5 such algorithms and indices are generalized
by designing a unified framework to compute them in an exact way in distributed
scenarios; an original procedure to estimate the number of clusters in distributed
data, which makes use of the proposed framework, is also described in Sect. 5.5.
The theoretical contributions are compiled in Sect. 5.6, and experimental results

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 151

are reported in Sect. 5.7. The conclusions and final remarks are given in Sect. 5.8.
A number of additional, well-established fuzzy clustering algorithms that can also
be generalized within the proposed framework are described in the Appendix.

5.2 Fuzzy Clustering Algorithms

When a partitioning-type fuzzy clustering algorithm is applied to a set of N data
objects X D fx1; : : : ; xN g, of which each is composed of n attributes (features),
xj D Œxj1; : : : ; xjn�

T 2 R
n, the final result is a fuzzy partition matrix of these data

into a certain number k of clusters, such that U D Œuij �k�N , where U is a k � N
fuzzy partition matrix whose element uij represents the membership (belongness
or pertinence) of the j th object to the i th fuzzy cluster. Most of the clustering
algorithms experimentally compared in this chapter minimize the function

J D
NX

jD1

kX

iD1
.uij /

mDij ; (5.5)

constrained with uij 2 Œ0; 1� and

kX

iD1
uij D 1; 1 � j � N; (5.6)

i.e., U D Œuij � 2 Mfp as defined in (5.4), where m 2 .1;1/ is the fuzzification
exponent (usually m D 2), Dij is the distance between the j th object and
the i th cluster, and J is a measure of intra-cluster dissimilarity. The differences
among the algorithms arise in the definition of Dij and the variables considered to
minimize (5.5).

The most popular method to solve (5.5) is a simple Picard iteration through the
first-order conditions for stationary points of (5.5) [6]. Thus, considering thatDij is
constant and uij are variables, a necessary condition is1:

uij D

kX

cD1

�
Dij

Dcj

�1=.m�1/!�1
; 1 � i � k; 1 � j � N: (5.7)

1We do not present the mathematical techniques to find the necessary conditions throughout the
chapter. They are found by using Lagrangian multipliers and setting the gradient equal to zero. For
details see [2, 5] and references in the subsequent sections.

152 L. Vendramin et al.

Therefore, considering that uij is constant, the other necessary conditions depend on
the definition of Dij and, for this reason, they are presented in the following along
with the different algorithms associated with them.

5.2.1 FCM: Fuzzy c-Means

The widely used FCM algorithm [5,10] provides a partition matrix U D Œuij �k�N 2
Mfp by minimizing (5.5) with (1 � i � k; 1 � j � N)

Dij D jjxj � vi jj2A D .xj � vi /TA.xj � vi /; (5.8)

being any squared inner-product distance norm (e.g. squared Euclidean) between
the j th object, xj , and the i th cluster prototype, vi . The norm-inducing matrix A
(a positive-definite n � n matrix) in (5.8) defines the shape of the clusters and must
be defined a priori by the user. However, in most application scenarios, the user does
not know the shape of the clusters present in the data, therefore A is usually set as
the identity matrix In�n and Dij is defined as the squared Euclidean distance.

Holding uij constant, a necessary condition to minimize (5.5) is (1 � i � k)

vi D
PN

jD1.uij /mxj
PN

jD1.uij /m
: (5.9)

The complete procedure to minimize (5.5) with Dij given by (5.8) is a simple
Picard iteration through (5.7) and (5.9), as given by Algorithm 1.

Some important observations based on FCM (Algorithm 1) that also hold for
other algorithms discussed in later sections are:

Algorithm 1 FCM
Require: Data set X D fx1; : : : ; xN g, number of clusters k 2 f2; : : : ; N � 1g, fuzzification

exponent m 2 .1;1/, initial (random) partition matrix U D Œuij � 2 Mfp , maximum number
of iterations tmax and/or termination tolerance � > 0.

1: t D 0.
2: repeat
3: Compute the cluster prototypes by using (5.9).
4: Compute the distance between objects and cluster prototypes by using (5.8).
5: Update the partition matrix by using (5.7) (Save the previous partition matrix as OU to

analyze the convergence).
6: t D t C 1
7: until jj OU� Ujj < � or t D tmax .
8: return U D Œuij �k�N and V D Œvi �k�n.

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 153

1. The initial partition matrix (U) can be replaced by the initial cluster prototypes
(V D Œvi �k�n 2 R

k�n). In this case, step 3 is no longer executed in the first
iteration.

2. The convergence criterion jj OU � Ujj (comparison between previous and current
partition matrix) can use any norm (e.g. max) and can be replaced by other
criteria (e.g., jj OV � Vjj—comparison between previous and current cluster
prototypes).

3. Step 5 requires that Dij > 0 for all i 2 f1; : : : ; kg and j 2 f1; : : : ; N g. For
every j , if Dij D 0 for i 2 I � f1; : : : ; kg, then define uij in such a way that: a)
uij D 0 for i … I ; and b)

P
i2I uij D 1.

5.2.2 GK: Gustafson Kessel

The ordinary FCM uses the squared Euclidean distance and, therefore, induces
hyper-spherical clusters2. To identify hyper-ellipsoidal clusters with different
spreads and orientations, Gustafson and Kessel [11] generalized (5.5) and (5.8)
by using independent covariance matrices for each cluster and considering these
matrices as variables to be optimized. In this case, (5.5) is minimized (with respect
to uij , vi and Ai) with the distances given by (1 � i � k; 1 � j � N)

Dij D jjxj � vi jj2Ai D .xj � vi /TAi .xj � vi /: (5.10)

Now, holding uij and Ai constant while considering vi as variables, the necessary
conditions to minimize (5.5) also lead to (5.9). Considering Ai as variables,
since (5.5) becomes linear with respect to Ai , it could be made as small as desired
by making Ai less positive definite. To avoid this behavior, Ai is constrained in
such a way that det.Ai / D �i . The necessary optimality condition is then given by
(1 � i � k)

Ai D .�i � det.Fi //1=n.Fi /�1; (5.11)

Fi D
PN

jD1.uij /m.xj � vi /.xj � vi /T
PN

jD1.uij /m
: (5.12)

The procedure to minimize (5.5) with the distances defined in (5.10) is given by
Algorithm 2.

2Actually, it can be seen from (5.8) that FCM works with any inner-product distance, which must
be fixed a priori by the user.

154 L. Vendramin et al.

Algorithm 2 GK
Require: Besides all requirements of Algorithm 1, the cluster volumes, �i .
1: t D 0.
2: repeat
3: Compute the cluster prototypes (means) by using (5.9).
4: Compute the covariance matrix for each cluster by using (5.12).
5: Compute the distances by using (5.10) and (5.11).
6: Update the partition matrix by using (5.7) (Save the previous partition matrix as OU to

analyze the convergence).
7: t D t C 1.
8: until jj OU� Ujj < � or t D tmax .
9: return U D Œuij �k�N , V D Œvi �k�n and Fi .

Note that the cluster volumes �i must be fixed a priori by the user. A common
approach consists in defining these parameters as �i D 1 8i , which induces the
algorithm to find clusters with approximately the same volume.

5.2.3 Other Fuzzy Clustering Algorithms

Many other fuzzy clustering algorithms have been proposed in the literature. Like
FCM and GK, a number of these algorithms can also be generalized to deal with
distributed data by means of the unified framework proposed in this chapter, such
as: Gath and Geva (GG) [2,12], Fuzzy c-Varieties (FCV) [13], Fuzzy c-Elliptotypes
(FCE) [14], Possibilistic c-Means (PCM) [3], Possibilistic Gustafson-Kessel (PGK)
[3], Fuzzy-Possibilistic c-Means (FPCM) [15], and Possibilistic-Fuzzy c-Means
(PFCM) [16]. Their computational time and space complexities are compared in
Sect. 5.2.4. For a detailed description of these algorithms, we refer the reader to the
Appendix.

5.2.4 Complexity Analysis: Summary

The time and space complexity analyses of the studied fuzzy clustering algorithms
are summarized in Table 5.1 (see [55] for details). These analyses presume the use
of the efficient implementation of the FCM algorithm as described in [56], which
can also be extended to its variants. They also presume the use of a general norm-
inducing matrix A (rather than just the identity matrix) in FCM and related variants.
Finally, it is assumed that all data inputs and outputs are stored in main memory (no
I/O access to secondary storage devices).

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 155

Table 5.1 Complexities for
the fuzzy clustering
algorithms: t , k, n, and N are
the numbers of iterations,
clusters, attributes, and
objects, respectively.

Algorithm Time Space

FCM O.tkNn2/ O.NnC kN C n2/
GK O.tkn3 C tkn2N / O.NnC kN C kn2/
GG O.tkn3 C tkn2N / O.NnC kN C kn2/
FCV O.tkn3 C tkn2Nr/ O.NnC kN C kn2/
FCE O.tkn3 C tkn2Nr/ O.NnC kN C kn2/
PCM O.tkNn2/ O.NnC kN C n2/
PGK O.tkn3 C tkn2N / O.NnC kN C kn2/
FPCM O.tkNn2/ O.NnC kN C n2/
PFCM O.tkNn2/ O.NnC kN C n2/

5.3 Clustering Validation

Fuzzy clustering algorithms usually require that the number of clusters, k, be
previously defined by the user [2]. This is quite restrictive in practice since k is
generally unknown, especially in real-world data involving overlapping clusters and
many attributes. A widely used approach to overcome this drawback—described in
Sect. 5.3.12—consists in obtaining a set of data partitions with different k and then
selecting that particular partition that provides the best result according to a specific
quality criterion [2,6]. This section reviews several fuzzy clustering validity indices
that can be used for this task. These indices can also be used to compare partitions
with the same k, which is also of interest especially because most fuzzy clustering
algorithms (including those reviewed in Sect. 5.2 and in the Appendix) may produce
different solutions with the same k, depending on their initializations [57, 58].

5.3.1 XB: Xie-Beni

The XB index is defined as [59, 60]:

VXB D
Pk

iD1
PN

jD1.uij /mjjxj � vi jj2
N minl 6Ds jjvl � vsjj2 : (5.13)

The numerator of (5.13) is the total within-cluster distance, which is equivalent to
the objective function J in (5.5) with Dij being the squared Euclidean distance.
The ratio J=N is the normalized compactness of the fuzzy partition. The minimum
squared distance between prototypes in the denominator of (5.13) is a cluster
separability measure. Therefore, good partitions are distinguished by low values
of VXB , i.e., XB is a minimization index.

156 L. Vendramin et al.

5.3.2 FSS: Fuzzy Simplified Silhouette

The FSS index [61] is a fuzzy version of the Simplified Silhouette (for hard
partitions) [62] defined as

VFSS D
PN

jD1.upj � uqj /˛sj
PN

jD1.upj � uqj /˛
; (5.14)

where upj and uqj are the first and second largest elements of the j th column of the
fuzzy partition matrix, respectively, ˛ � 0 is a user-defined weighting coefficient,
and sj is the hard silhouette for object xj , defined as

sj D bpj � apj
maxfapj ; bpj g ; (5.15)

where apj is the distance between object xj and the nearest prototype vp (corre-
sponding to the cluster to which xj has the largest membership value) and bpj is the
distance between object xj and the second nearest cluster prototype. Good partitions
are expected to yield larger values of sj (larger values of bpj and smaller values of
apj), hence a larger value of VFSS in (5.14). Thus, FSS is a maximization index.

5.3.3 K: Kwon

The Kwon (K) index [63] is a modification of XB designed to eliminate its tendency
to monotonically decrease when k approaches N and is given by

VK D
Pk

iD1
PN

jD1.uij /2jjxj � vi jj2 C 1
k

Pk
iD1 jjvi � xjj2

minl 6Ds jjvl � vsjj2 : (5.16)

where

x D 1

N

NX

jD1
xj (5.17)

is the grand mean of the data set. The first term of the numerator in (5.16)
measures the intra-cluster similarity. The second term of the numerator in (5.16)
is a penalty factor intended to counterbalance the decreasing tendency when k
approachesN . The denominator in (5.16) measures the inter-cluster distances. Thus,
K is a minimization index.

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 157

5.3.4 TSS: Tang-Sun-Sun

Similarly to the Kwon index, the TSS minimization index [64] modifies the XB
index to eliminate its tendency to monotonically decrease when k approaches to N
and it is given by

VTSS D
Pk

iD1
PN

jD1.uij /2jjxj � vi jj2 C 1
k.k�1/

Pk
iD1

Pk
lD1
l 6Di
jjvi � vl jj2

minl 6Ds jjvl � vsjj2 C 1=k :

(5.18)

Again, the first term of the numerator in (5.18) measures the intra-cluster
similarity. The second term of the numerator in (5.18) is a penalty factor intended
to counterbalance the decreasing tendency when k approaches N . The denominator
in (5.18) measures the inter-cluster distances.

5.3.5 FS: Fukuyama-Sugeno

The Fukuyama and Sugeno (FS) [60, 65] minimization index is defined as

VFS D
kX

iD1

NX

jD1
.uij /

mjjxj � vi jj2 �
kX

iD1

NX

jD1
.uij /

mjjvi � xjj2; (5.19)

where x is given by (5.17). The first term in (5.19) is the intra-cluster dissimilarity.
The second term in (5.19) (

Pk
iD1

PN
jD1.uij /mjjvi � xjj2) tends to increase as k

increases. On the other hand, this second term tends to decrease as the degree of
overlap (fuzziness of U) between the clusters increases.

5.3.6 FHV: Fuzzy Hypervolume

The FHV minimization index [12] is based on the concepts of hypervolume and
density, and is defined as

VFHV D
kX

iD1
Œdet.Fi /�1=2; (5.20)

158 L. Vendramin et al.

where Fi is given by (5.12)3. Since the eigenvalues of Fi are directly related to the
variances of the i th fuzzy cluster, the determinant in (5.20), given by the product of
all the eigenvalues of Fi , provides a measure of the dispersion (hypervolume) of the
cluster.

5.3.7 APD: Average Partition Density

Based on the same idea of FHV, the APD [12] maximization index is defined as

VAPD D 1

k

kX

iD1

Si

Œdet.Fi /�1=2
; (5.21)

where

Si D
X

xj2Ri

uij ; (5.22)

and Ri is the set of data objects that are within a pre-specified region around the
cluster prototype vi , i.e., the objects such that .xj � vi /TF�1i .xj � vi / < 1.

5.3.8 PD: Partition Density

Based on APD, the PD maximization index [12] is defined as

VPD D
Pk

iD1 Si
VFHV

; (5.23)

where Si is given by (5.22) and VFHV is given by (5.20).

5.3.9 SCG

The SCG maximization index [68] is defined as

VSCG D Sep

GComp
; (5.24)

3Some authors use Fi in (5.12) with m D 1 [61, 66] while others use it with a different value of m
[54, 67].

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 159

where GComp is the global compactness of the partition defined as

GComp D
kX

iD1
trace.Fi /; (5.25)

with Fi given by (5.12), and Sep is the separation of fuzzy clusters, defined as

Sep D trace.SB/: (5.26)

SB is the between-cluster fuzzy scatter matrix given by

SB D
kX

iD1

NX

jD1
.uij /

m.vi � x/.vi � x/T ; (5.27)

where x is given by (5.17).

5.3.10 PBMF

The PBMF maximization index [69] is given by

VPBMF D
�
1

k
� E1
Jm
�Dc

�2
; (5.28)

where E1 DPN
jD1 jjxj � xjj is a constant that depends only on the database and is

used to avoid small values of VPBMF , Dc D maxki;jD1jjvi � vj jj measures the max-

imum distance between two cluster prototypes, and Jm DPk
iD1

PN
jD1.uij /mjjxj �

vi jj measures the intra-cluster similarity.

5.3.11 Complexity Analysis: Summary

The time and space complexity analyses of the studied fuzzy clustering validity
indices are summarized in Table 5.2 (see [55] for details).

5.3.12 OMR: Ordered Multiple Runs

In practice, different approaches for determining the most appropriate k can be used
[2, 6]. A common approach is based on a general procedure in which the data are

160 L. Vendramin et al.

Table 5.2 Time and space complexity for the fuzzy clustering validity indices: k, n, and
N are the numbers of clusters, attributes, and objects, respectively

Time Space Time Space

XB O.kNn/ O.NnC kN/ FHV O.kn3 C kNn2/ O.kn2/

FSS O.kNn/ O.NnC kn/ APD O.kNn3/ O.kn2/

K O.kNn/ O.NnC kN/ PD O.kNn3/ O.kn2/

TSS O.kNn/ O.NnC kN/ SCG O.kn3 C kNn2/ O.NnC kN C n2/
FS O.kNn/ O.NnC kN/ PBMF O.kNn/ O.NnC kN/

Algorithm 3 OMR
Require: The clustering algorithm to be used, A (and all parameters of such algorithm), the

validity index to be used, I , the minimum number of clusters, kmin (usually kmin D 2), the
maximum number of clusters, kmax , and the number of runs of A from random initializations
of partition matrices for each k, M .

1: Initialize the best validity value: Vbest D �Inf for maximization indices or Vbest D CInf
for minimization ones.

2: for k D kmin to kmax do
3: for i=1 to M do
4: Execute the clustering algorithm A with k clusters and obtain the clustering result R.
5: Evaluate the solution obtained in Step 4 using the validity index I and obtain the validity

value V .
6: if V is better than Vbest (“greater” for maximization indices or “lower” for minimization

ones) then
7: Update the best value: Vbest V .
8: Save the current solution as the best one: Rbest R.
9: Save the current number of clusters: kbest k.

10: end if
11: end for
12: end for
13: return Vbest , Rbest , and kbest .

first partitioned into different values of k and, then, a clustering validity index is
used to assess the quality of the obtained partitions. In its simplest form, named
here Ordered Multiple Runs (OMR), the clustering algorithm is run repeatedly for
an increasing k [2, 6]. For each value of k, a number of partitions achieved by the
clustering algorithm is assessed by means of some validity index (Sect. 5.3), for
which the best value is kept for further reference. After doing this for each value of
k in a given range, the best obtained partition (according to the validity index) is
chosen. This procedure is detailed in Algorithm 3.

It is important to note that the validity index (I) in the OMR procedure must
be compatible with the clustering algorithm (A). For example, the (dis)similarity
measure used by an index may eventually need to be changed in order to work with
different algorithms [61]. Another alternative is simply the use of the own objective
function J of the algorithm (with its respective metric) as a validity index to find
the best solution [70, 71], e.g., by plotting a curve of such objective function values
against the number of clusters and then looking for a knee in the chart [52].

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 161

5.4 Distributed Fuzzy Clustering Algorithms

Let XŒi i � D fxŒi i �1; : : : ; xŒi i �Nii g be a data set at the i i th data site, composed of
Nii objects (xŒi i �j , j D 1; : : : ; Nii), each of which is described in an n-dimensional
attribute space. In addition, consider that there exists a distributed collection of these
data sets, XŒ1�; : : : ;XŒP �. In the present context, the goal of a distributed fuzzy
clustering algorithm consists in finding a fuzzy partition matrix U with k clusters
that represents the memberships of each of theN D N1CN2C : : :CNP objects to
the k clusters. The final result (U) is supposed to consist exactly of the same result
that would be obtained by the original (centralized) algorithm if such an algorithm
could be run in a single data set containing all objects of all data sites (X D XŒ1� [
XŒ2� [: : : [XŒP �).

To circumvent the drawbacks imposed by the distributed scenarios, the data sites
should be handled separately. Take, for instance, Fig. 5.1, in which the data are
distributed across two data sites (DS1 and DS2). In Fig. 5.1a, the data are centralized
and the clustering procedure is performed at a central node (computer). In Fig. 5.1b,
the (distributed) clustering procedure is performed over the data distributed across
DS1 and DS2, and the same structure found in Fig. 5.1a is found once again without
the need of data centralization4.

The next section presents the distributed/parallel versions of clustering algo-
rithms and validity indices to work with distributed/parallel scenarios.

5.4.1 DFCM: Distributed Fuzzy c-Means

The algorithm called here Distributed Fuzzy c-Means (DFCM) is based on the
ideas on the parallelization of computations in the FCM algorithm [48–50] and is
a formal generalization of FCM to handle distributed data. Note that Algorithm 1
(FCM in Sect. 5.2.1) basically consists of three steps: (1) computation of the
prototypes, (2) computation of the distances, and (3) computation of the partition
matrix. The prototypes are computed according to (5.9), which needs all data
objects. Rewriting (5.9) to handle objects distributed across P data sites we obtain
(1 � i � k)

vi D
PP

i iD1
PNii

jD1.uŒi i �ij /mxŒi i �j
PP

i iD1
PNii

jD1.uŒi i �ij /m
; (5.29)

whereNii is the number of objects in the i i th data site, xŒi i �j is the j th object of the
i i th data site, and uŒi i �ij is the membership of the j th object of the i i th data site to

4The distributed scenario illustrated in Fig. 5.1b can be intentionally implemented (e.g. in many
processors) in order to obtain a better performance, e.g., in a parallel context.

162 L. Vendramin et al.

Fig. 5.1 Data clustering (a) with and (b) without data centralization. (a) Solution obtained with
data centralization. (b) Same solution as in (a), but obtained without the need for data centralization

the i th fuzzy cluster. vi is the i th fuzzy cluster prototype, referred to here as global
prototype because it is obtained from all objects of all data sites and it is exactly the
same prototype that would be obtained by (5.9) if the objects were centralized.

The computation of the global prototypes in (5.29) requires all objects of all data
sites. Notice, however, that each data site can compute partial (local) prototypes
considering only its objects, as follows (1 � i i � P; 1 � i � k)

vŒi i �i D
PNii

jD1.uŒi i �ij /mxŒi i �j
PNii

jD1.uŒi i �ij /m
: (5.30)

Here, vŒi i �i is called the i th local prototype of the i i th data site because it is
obtained strictly from the objects of the i i th data site. We call the denominator
of (5.30) the “sum of memberships” and denote it as (1 � i � k)

Œi i �i D
NiiX

jD1
.uŒi i �ij /

m: (5.31)

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 163

Now, if all sites send their local prototypes and sums of memberships to a central
data site5, it is possible to compute the global prototypes as

vi D
PP

i iD1 vŒi i �i �
Œi i �iPP
i iD1
Œi i �i

: (5.32)

Once this computation has been performed, the result (vi , i D 1; � � � ; k) is
communicated from the central data site to all other sites so that every data site
has access to the same global prototypes.

The next step of FCM consists in computing the distances between objects and
prototypes. Note that, having access to the global prototypes, every data site can
compute the distances between its objects and each cluster prototype as (1 � i i �
P; 1 � i � k; 1 � j � N:)

DŒi i �ij D jjxŒi i �j � vi jj2A D .xŒi i �j � vi /TA.xŒi i �j � vi /: (5.33)

This computation does not require any extra communication among the data sites.
Once it has been performed, every data site has the distances between the global
prototypes and its objects.

The final step of FCM consists in updating the partition matrix. Note that the
computation of the memberships of a given object xj in (5.7) depends solely on
the distances from this object to the cluster prototypes. In other words, the distances
between the prototypes and other objects (even in the same data site) are not required
to compute the membership values of a particular object xŒi i �j . Thus, the partition
matrix can be updated as

uŒi i �ij D

kX

cD1

�
DŒi i �ij

DŒi i �cj

�1=.m�1/!�1
; (5.34)

without the need of any extra communications among the data sites.
In summary, only the computation of prototypes requires communications among

the data sites. The computation of the distances and the update of the partition matrix
do not require any communication at all. The distributed/parallel version of FCM is
presented in Algorithm 4 (every data site, including the central one, must execute
the same procedure).

5A central data site is considered here to be one of the data sites, which is chosen to be also
responsible for additional processing and redistribution of global information.

164 L. Vendramin et al.

Algorithm 4 DFCM—Execution at the i i th data site
Require: Local data set XŒi i � D fxŒi i �1; : : : ; xŒi i �Nii g, number of clusters k 2 f2; : : : ; N � 1g,

fuzzification exponent m 2 .1;1/, initial (random) local partition matrix UŒi i � D ŒuŒi i �ij � 2
Mfp , number of iterations tmax and/or termination tolerance � > 0.

1: t D 0.
2: repeat
3: Compute the local cluster prototypes (means) and sums of memberships using (5.30)

and (5.31) (Save the previous prototypes as OV to analyze the convergence).
4: if this (i i) is the central data site then
5: (Wait and) Receive the local prototypes (vŒjj �i) and sums of memberships (
Œjj �i) from

the other data sites.
6: Compute the global prototypes using (5.32).
7: Send the global prototypes (vi) to all data sites.
8: else
9: Send the local prototypes (vŒi i �i) and sums of memberships (
Œi i �i) to the central data

site.
10: (Wait and) Receive the global prototypes (vi) from the central data site.
11: end if
12: Compute the distances between objects and prototypes using (5.33).
13: Update the partition matrix using (5.34).
14: t D t C 1.
15: until jj OV� Vjj < � or t D tmax .
16: return UŒi i � D ŒuŒi i �ij �k�Nii and V D Œvi �k�n.

Some important notes about this algorithm are:

1. DFCM communicates prototypes and the sums of memberships. No information
about the original objects is communicated among the sites.

2. When using the same initial conditions and parameters, DFCM produces the
same partition FCM would produce if all objects were centralized.

3. The convergence jj OV � Vjj < � analyzes the (global) cluster prototypes. It is
possible to check the convergence by using the partition matrix as jj OUŒi i � �
UŒi i �jj < �. However, by doing so, an one-bit additional communication step
for each data site is required to check if jj OUŒi i � � UŒi i �jj < � 8i i .

4. Steps 3 to 11 of Algorithm 4 are related to Step 3 of Algorithm 1, Step 12 of
Algorithm 4 is related to Step 4 of Algorithm 1, and Step 13 of Algorithm 4 is
related to Step 5 of Algorithm 1.

5.4.2 Framework for Distributed Data

All algorithms discussed in Sect. 5.2 can be generalized to deal with distributed data
in a way similar to DFCM, i.e., the steps of the original (centralized) algorithm are
executed and, when a particular step requires communications among the data sites,
the local values are computed and sent to the central data site, which computes the
global values and sends them back to all other data sites.

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 165

We propose a unified framework that generalizes the algorithms cited in Sect. 5.2
to deal with distributed data. The framework is based on the execution of every step
of the original (centralized) algorithm and, if a communication step is required, then
it proceeds as follows:

1. Every data site computes the respective local values V Œi i �.
2. Every data site sends the local values to a central data site.
3. The central data site computes the global values as

V D
hPP

i iD1 ˛Œi i � � .V Œi i � ��/ � �Œi i �
i
C�

PP
i iD1 ˛Œi i � � Œi i �

; (5.35)

4. The central data site sends the global values back to the other sites.

Step 3 requires further clarifications. In (5.35), V is the global value to be computed
by the central data site (which is different from the prototypes V returned from the
DFCM) and sent to the other sites, P is the number of data sites, V Œi i � is the local
value computed by the i i th data site, � is a value which can be computed by the
central data site without any communication, �Œi i � and Œi i � are additional values
that must be sent by the i i th data site to the central site, and ˛Œi i � is an optional user-
defined weight that allows assigning a certain relative importance to the i i th data
site. For simplicity, in the following developments we have adopted ˛Œi i � D 1 8i i
(all sites have the same relative importance). Thus, (5.35) can be rewritten as

V D
hPP

i iD1.V Œi i � ��/ � �Œi i �
i
C�

PP
i iD1 Œi i �

: (5.36)

Bearing the above considerations in mind, we can summarize the proposed
framework as follows. When a communication step is required, the respective step
of the original (centralized) algorithm must be replaced by the steps in Algorithm 5.
For example, DFCM (Sect. 5.4.1) consists of three steps. Two of them do not require
any communication, namely: the computation of the distances between objects and
prototypes and the update of the partition matrix. The computation of the prototypes
requires communications among the sites and can be performed using Algorithm 5
by setting:

• V D vi (global prototypes).
• V Œi i � D vŒi i �i (local prototypes).
• �Œi i � D Œi i � DPNii

jD1.uŒi i �ij /m (sum of memberships).
• � D 0.

In this case, Algorithm 5 is equivalent to Steps 3–11 of Algorithm 4.

166 L. Vendramin et al.

Algorithm 5 Distributed routine — Execution at the i i th data site
Require: The local values V Œi i �, �Œi i �, Œi i �, and �.
1: if this is the central data site then
2: (Wait and) Receive the local values V Œjj �, �Œjj �, and Œjj � from the other data sites.
3: Compute the global values by using (5.36).
4: Send the global values V to the other data sites.
5: else
6: Send the local values V Œi i �, �Œi i �, and Œi i � to the central data site.
7: (Wait and) Receive the global values V from the central data site.
8: end if
9: return the global values V .

5.4.3 Other Distributed Fuzzy Clustering Algorithms

The same idea discussed above with respect to DFCM can also be applied to
other fuzzy clustering algorithms. For example, the distributed version of the GK
algorithm (Sect. 5.2.2) needs to compute both the global cluster prototypes, by
using (5.32), and the global covariance matrices in (5.12), which can be rewritten in
the distributed scenario as (1 � i � k)

Fi D
PP

i iD1
PNii

jD1.uŒi i �ij /m.xŒi i �j � vi /.xŒi i �j � vi /T
PP

i iD1
PNii

jD1.uŒi i �ij /m
: (5.37)

The same strategy used to compute the global prototypes can also be used to
compute the global covariance matrices in (5.37). Indeed, notice that setting V D Fi ,
V Œi i � D FŒi i �,� D 0, and Œi i � D �Œi i � DPNii

jD1.uŒi i �ij /m, the global covariance
matrices can be computed using (5.36) by rewriting them as

Fi D
PP

i iD1 FŒi i �i � �Œi i �PP
i iD1 Œi i �

; (5.38)

where (1 � i i � P; 1 � i � k)

FŒi i �i D
PNii

jD1.uŒi i �ij /m.xŒi i �j � vi /.xŒi i �j � vi /T
PNii

jD1.uŒi i �ij /m
; (5.39)

are the local covariance matrices of the i i th data site (covariance matrices computed
with respect to the objects in the i i th data site only).

Once the global prototypes and covariance matrices have already been computed,
the computation of the distances can be rewritten for the distributed scenario as:

DŒi i �ij D jjxŒi i �j � vi jj2Ai D .xŒi i �j � vi /TAi .xŒi i �j � vi / (5.40)

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 167

Algorithm 6 DGK — Execution at the i i th data site
Require: All requirements of Algorithm 4 and cluster volume constants �i .
1: t D 0.
2: repeat
3: Compute the local cluster prototypes (vŒi i �i) by using (5.30) and sums of memberships�PNii

jD1.uŒi i �ij /
m
�

.

4: Execute Algorithm 5 with V Œi i � D vŒi i �i , �Œi i � D Œi i � D PNii
jD1.uŒi i �ij /

m, and � D 0

to obtain the global prototypes V D vi (Save the previous prototypes as OV to analyze the
convergence.).

5: Compute the local covariance matrices by using (5.39).
6: Execute Algorithm 5 with V Œi i � D FŒi i �i , �Œi i �i D Œi i �i DPNii

jD1.uŒi i �ij /
m, and� D 0

to obtain the global covariance matrices V D Fi .
7: Compute the norm inducing matrices (Ai) by using (5.11).
8: Compute the distances between objects and prototypes by using (5.40).
9: Update the partition matrix by using (5.34).

10: t D t C 1.
11: until jj OV� Vjj < � or t D tmax .
12: return UŒi i � D ŒuŒi i �ij �k�Nii , V D Œvi �k�n, and FŒi i �i .

with Ai given by (5.11) and the membership degrees given by (5.34). In brief, the
distributed version of GK (DGK) can be summarized by Algorithm 6.

The other algorithms listed in Sect. 5.2.3 and described in the Appendix can also
be generalized to handle distributed data by following the same idea. Section 5.6
summarizes the configurations of the terms in Equation (5.36) for the computation
of all these algorithms.

5.4.4 Complexity Analysis: Communication

Since the time and space complexity analyses of the distributed algorithms fol-
low the complexity analyses reported in Sect. 5.2.46, here we present only the
communication complexity analysis of each algorithm. Following the distributed
procedure in (5.36), it is necessary to communicate three variables: V Œi i �, �Œi i �, and
 Œi i �. The variables �Œi i � and Œi i � are real numbers and require communication
of a single value each. Thus, the overall communication complexity depends on the
definition of V Œi i � and, accordingly, of its size, as addressed in the sequel.

To compute the global prototypes, it is necessary to communicate O.nC1C1/
values per cluster. Thus, the total communication complexity to compute the global
prototypes isO.k.nC1C1//! O.kn/. To compute the global covariance matrices
it is necessary to communicate O.n2 C 1 C 1/ values per cluster. Thus, the total

6Note that the algorithm essentially runs in multiple data sites, each of which contains only a
fraction of the number of objects.

168 L. Vendramin et al.

Table 5.3 Communication complexities for the distributed algorithms:
P , t , k, and n are the numbers of data sites, iterations, clusters, and
attributes

Elements Complexity

DFCM vi O.P tkn/

DGK vi and Fi O.P t.knC kn2//! O.P tkn2/

DGG vi , Pi , and Fi O.P t.knC kC kn2//! O.P tkn2/

DFCV vi and Fi O.P t.knC kn2//! O.P tkn2/

DFCE vi and Fi O.P t.knC kn2//! O.P tkn2/

DPCM vi O.P tkn/

DPGK vi and Fi O.P t.knC kn2//! O.P tkn2/

DFPCM vi and Dil O.P t.knC k//! O.P tkn/

DPFCM vi O.P tkn/

communication complexity to compute the global covariance matrices is O.k.n2C
1C 1//! O.kn2/.

To compute typicalities in (5.67), it is necessary to communicate only O.k/
values if the typicalities are computed in the more efficient way given by (5.70).
Analogously, it can be shown that only O.k/ values need to be communicated in
order to compute all global prior probabilities in (5.59) [55].

From the complexity analyses just reported, one can obtain the communication
complexity for the distributed versions of all the fuzzy clustering algorithms
described in Sect. 5.2 and in the Appendix. These complexities are summarized
in Table 5.3, which also illustrates the elements that each algorithm requires to be
communicated7. Note that the complexities do not depend on the numbers of objects
in the data sites.

5.5 Distributed Clustering Validation

The indices addressed in Sect. 5.3 require centralized data. However, they depend
essentially on (1) the membership of the objects to the clusters, (2) the distances
between prototypes, and (3) the distances between objects and prototypes. As
discussed in Sect. 5.4, (1) and (3) can be computed locally in each data site and
then communicated to a central data site, whereas (2) can be obtained because each
data site has access to the global prototypes. Again, when necessary, (5.36) can be
used to compute the global values. Thus, the distributed version of each validity

7We do not present the �Œi i � and Œi i � values that each element in Table 5.3 requires to be
communicated because they are real numbers, which do not change the communication complexity.
For details on the computation of such values, see Sect. 5.6.

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 169

index of Sect. 5.3 can be computed, allowing them to work with distributed data as
well.

5.5.1 DXB: Distributed Xie-Beni

The XB index in (5.13) can be rewritten as

VDXB D
PP

i iD1
Pk

iD1
PNii

jD1.uŒi i �ij /mjjxŒi i �j � vi jj2
PP

i iD1 Niiminl 6Dsjjvl � vsjj2
: (5.41)

It can be computed for distributed data with (5.36) by setting V D VDXB , � D 0,
�Œi i � D Œi i � D Nii , and V Œi i � D VXBŒi i �, where VXBŒi i � is the index computed
locally with (5.13) for the i i th data site:

VXBŒi i � D
Pk

iD1
PNii

jD1.uŒi i �ij /mjjxŒi i �j � vi jj2
Niiminl 6Dsjjvl � vsjj2 :

Therefore, the distributed version of the XB index can be calculated as [72]

VDXB D
PP

i iD1 VXBŒi i � �NiiPP
i iD1 Nii

: (5.42)

5.5.2 DFSS: Distributed Fuzzy Simplified Silhouette

The FSS index in (5.14) can be rewritten as

VDFSS D
PP

i iD1
PNii

jD1.uŒi i �pj � uŒi i �qj /˛sŒi i �j
PP

i iD1
PNii

jD1.uŒi i �pj � uŒi i �qj /˛
; (5.43)

where sŒi i �j is the (prototype-based) silhouette of the j th object of the i i th data site,
which can be computed without any communication. Now, let V D VDFSS , � D 0,
�Œi i � D Œi i � DPNii

jD1.uŒi i �pj � uŒi i �qj /˛ , and V Œi i � D VFSS Œi i �, where VFSS Œi i �
is the index computed locally with (5.14) as

VFSS Œi i � D
PNii

jD1.uŒi i �pj � uŒi i �qj /˛sŒi i �j
PNii

jD1.uŒi i �pj � uŒi i �qj /˛
; (5.44)

170 L. Vendramin et al.

Then, the distributed version of the FSS index can be calculated as

VDFSS D
PP

i iD1 VFSS Œi i � � �Œi i �PP
i iD1 Œi i �

D
PP

i iD1 VFSS Œi i � �
PNii

jD1.uŒi i �pj � uŒi i �qj /˛
PP

i iD1
PNii

jD1.uŒi i �pj � uŒi i �qj /˛
:

(5.45)

5.5.3 DK: Distributed Kwon

The K index in (5.16) can be rewritten as

VDK D
PP

i iD1
Pk

iD1
PNii

jD1.uŒi i �ij /mjjxŒi i �j � vi jj2
minl 6Dsjjvl � vsjj2 C

1
k

Pk
iD1 jjvi � xjj2

minl 6Dsjjvl � vsjj2 ;
(5.46)

where x D
PP
i iD1

PNii
jD1 xŒi i �j

PP
i iD1 Nii

is the grand mean, which can be computed for

distributed data with (5.36) by setting V D x, V Œi i � D xŒi i � (the grand mean
computed locally only with the objects of the i i th data site), and �Œi i � D Œi i � D
Nii . Now, let V D VDK and V Œi i � D VKŒi i � being the index computed locally
with (5.16) as

VKŒi i � D
Pk

iD1
PNii

jD1.uŒi i �ij /mjjxŒi i �j � vi jj2
minl 6Dsjjvl � vsjj2 C

1
k

Pk
iD1 jjvi � xjj2

minl 6Dsjjvl � vsjj2 ; (5.47)

� D
1
k

Pk
iD1 jjvi � xjj2

minl 6Dsjjvl � vsjj2 ;

�Œi i � D 1, and Œi i � D 1=P . Then, the distributed version of the K index can be
computed with (5.36), because (5.46) can be rewritten as

VDK D
PX

i iD1

"
VKŒi i � �

1
k

Pk
iD1 jjvi � xjj2

minl 6Dsjjvl � vsjj2
#
C

1
k

Pk
iD1 jjvi � xjj2

minl 6Dsjjvl � vsjj2 : (5.48)

5.5.4 DTSS: Distributed Tang-Sun-Sun

The TSS index in (5.18) can be rewritten as

VDTSS D
PP

i iD1
Pk

iD1
PNii

jD1.uŒi i �ij /mjjxŒi i �j � vi jj2
minl 6Dsjjvl � vsjj2 C 1=k

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 171

C
1

k.k�1/
Pk

iD1
Pk

lD1
l 6Di
jjvi � vl jj2

minl 6Ds jjvl � vsjj2 C 1=k :

It can be computed for distributed data with (5.36) by setting V D VDTSS ,

� D
1

k.k�1/
Pk

iD1
Pk

lD1
l 6Di
jjvi � vl jj2

minl 6Ds jjvl � vsjj2 C 1=k ;

�Œi i � D 1, Œi i � D 1=P , and V Œi i � D VTSS Œi i �, which is the index computed
locally with (5.18):

VTSS Œi i � D
Pk

iD1
PNii

jD1.uŒi i �ij /mjjxŒi i �j � vi jj2
minl 6Dsjjvl � vsjj2 C 1=k C

1
k.k�1/

Pk
iD1

Pk
lD1
l 6Di
jjvi � vl jj2

minl 6Ds jjvl � vsjj2 C 1=k :

(5.49)

Therefore, the distributed version of the TSS index can be calculated as

VDTSS D
PX

i iD1

2

64VT Œi i � �
1

k.k�1/
Pk

iD1
Pk

lD1
l 6Di
jjvi � vl jj2

minl 6Ds jjvl � vsjj2 C 1=k

3

75

C
1

k.k�1/
Pk

iD1
Pk

lD1
l 6Di
jjvi � vl jj2

minl 6Ds jjvl � vsjj2 C 1=k :

5.5.5 DFS: Distributed Fukuyama-Sugeno

The FS index in (5.19) can be rewritten as

VDFS D
PX

i iD1

kX

iD1

NiiX

jD1
.uŒi i �ij /

mjjxŒi i �j � vi jj2 �
PX

i iD1

kX

iD1

NiiX

jD1
.uŒi i �ij /

mjjvi � xjj2;
(5.50)

where x D
PP
i iD1

PNii
jD1 xŒi i �j

PP
i iD1 Nii

can be computed for distributed data with (5.36) by

setting V D x, V Œi i � D xŒi i �, and �Œi i � D Œi i � D Nii . Now, let V D VDFS and
V Œi i � D VFS Œi i � be the index computed locally with (5.19), i.e.,

172 L. Vendramin et al.

VFS Œi i � D
kX

iD1

NiiX

jD1
.uŒi i �ij /

mjjxŒi i �j �vi jj2�
kX

iD1

NiiX

jD1
.uŒi i �ij /

mjjvi�xjj2; (5.51)

� D 0, �Œi i � D 1, and Œi i � D 1=P . Then, the distributed version of FS can be
computed with (5.36) because (5.50) can be rewritten as

VDFS D
PX

i iD1
VFS Œi i �: (5.52)

5.5.6 DFHV: Distributed Fuzzy Hypervolume

The FHV index in (5.20) only needs the (global) covariance matrices. These
matrices and, as a consequence, the distributed version of the index, VDFHV , can
be readily computed by following the steps in (5.37)–(5.39).

5.5.7 DAPD: Distributed Average Partition Density

The distributed version of APD index, VAPD , can be computed from (5.21) inasmuch
as global values for Si and Fi can be obtained from the distributed environment. As
for FHV (Sect. 5.5.6), Fi can be computed for distributed data by following the
steps in Eqs. (5.37)–(5.39). Analogously, Si can be computed with (5.36) by setting
V D Si ,

V Œi i � D SŒi i �i D
X

xj2Ri

uŒi i �ij ;

�Œi i � D 1, and Œi i � D 1=P , in such a way that

Si D
PX

i iD1

X

xŒi i �j2RŒi i �i

uŒi i �ij D
PX

i iD1
SŒi i �i ; (5.53)

where RŒi i �i is the set of data objects at the i i th data site that are within a pre-
specified region around the cluster prototype vi , i.e., the objects such that .xŒi i �j �
vi /TF�1i .xŒi i �j � vi / < 1.

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 173

5.5.8 DPD: Distributed Partition Density

The distributed version of the PD index in (5.23) can be obtained as

VDPD D
Pk

iD1 Si
VDFHV

; (5.54)

where VDFHV is described in Sect. 5.5.6, and Si is given by (5.53).

5.5.9 DSCG: Distributed SCG

The SCG index in (5.24) requires the covariance matrices so that the term GComp

in (5.25) can be computed. As already discussed, the (global) covariance matrices
can be computed for distributed data with (5.37)–(5.39). The SCG index also
requires the scatter matrices SB in (5.27) so that the term Sep in (5.26) can be
computed. The computation of SB in a distributed environment can be obtained
from (5.36) by setting V D SB ,

V Œi i � D SBŒi i � D
kX

iD1

NiiX

jD1
.uŒi i �ij /

m.vi � x/.vi � x/T ; (5.55)

�Œi i � D 1, and Œi i � D 1=P , in such a way that

SB D
PX

i iD1

kX

iD1

NiiX

jD1
.uŒi i �ij /

m.vi � x/.vi � x/T : (5.56)

These equations require the grand mean (x), which can also be obtained from (5.36)
as described in Sect. 5.5.3. Once these terms have been computed, VDSCG can be
obtained from (5.24).

5.5.10 DPBMF: Distributed PBMF

The PBMF index can be rewritten as

VPBMF D
�
1

k
�E1 �Dc

�2
�
�
1

Jm

�2
: (5.57)

174 L. Vendramin et al.

Since E1 is constant, it does not need to be computed for relative comparison

purposes [73]8. The term
�
1
k
�E1 �Dc

�2
can be computed in the central site without

any communication. The term Jm can be computed with (5.36) by setting V D Jm,
V Œi i � D JmŒi i � (the value of the objective function computed in the i i th site,
i.e., JmŒi i � D Pk

iD1
PN

jD1.uŒi i �ij /mjjxŒi i �j � vi jj), � D 0, �Œi i � D 1, and
 Œi i � D 1=P . Then, DPBMF can be readily computed [50].

5.5.11 Complexity Analysis: Communication

Since the time and space complexity analyses of the distributed validity indices
follow the complexity analyses reported in Sect. 5.3.11, we here present the
complexity analysis of each index in terms of communication only. Following the
distributed procedure in (5.36), it is necessary to communicate three variables: V Œi i �,
�Œi i �, and Œi i �. The size of the first one depends on what is being communicated.
The other variables (�Œi i � and Œi i �) are real numbers and require communication of
a single value each. Thus, the communication complexity depends on the definition
of V Œi i �. For the DFHV index, the communication of the fuzzy covariance matrices
is required, taking O.kn2/. For the DAPD and DPD indices, it is necessary to
compute the covariance matrices and Si for each cluster, which takes O.kn2 C k/.
For DSCG, it is necessary to compute the covariance matrices, the grand mean, and
SB , which takes O.kn2 C nC n2/. The DPBMF index requires the computation of
the grand mean, which takes O.n/, and the global cluster prototypes, which takes
O.kn/. The communication complexities of the distributed versions of the indices
reviewed in Sect. 5.3 are summarized in Table 5.4. Note that the complexities do not
depend on the numbers of objects in the data sites.

Table 5.4 Communication complexity for the distributed fuzzy
indices: P , k, and n are the numbers of data sites, clusters, and
attributes, respectively

Complexity Complexity

DXB O.P / DFHV O.Pkn2/

DFSS O.P / DAPD O.P.kn2 C k//! O.Pkn2/

DK O.P / DPD O.P.kn2 C k//! O.Pkn2/

DTSS O.P / DSCG O.P.kn2 C n2//! O.Pkn2/

DFS O.P / DPBMF O.P.nC kn//! O.Pkn/

8If desired, this term can be computed from distributed data by calculating the grand mean x by
using (5.36) with V D x, V Œi i � D xŒi i � (the grand mean computed in i i th site), � D 0, and
�Œi i � D Œi i � D Nii , then computing E1 by using (5.36) with V D E1, V Œi i � D E1Œi i �, � D 0,
�Œi i � D 1, and Œi i � D 1=P .

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 175

Algorithm 7 DOMR
Require: The distributed clustering algorithm to be used, A D (and all parameters of such an

algorithm), the distributed validity index to be used, ID , the minimum number of clusters,
kmin (usually kmin D 2), the maximum number of clusters, kmax , and the number of runs for
each k, M .

1: Initialize Vbest D �Inf and Vbest D CInf for maximization and minimization indices,
respectively.

2: for k D kmin to kmax do
3: for i D 1 to M do
4: Execute the distributed clustering algorithm A D with k clusters and obtain the

clustering result R.
5: Evaluate the solution obtained in Step 4 with the distributed validity index ID and get

the validity value V .
6: if V is better than Vbest (“greater” for maximization indices or “lower” for minimization

ones) then
7: Update the best value: Vbest V .
8: Save the current solution as the best one: Rbest R.
9: Save the current number of clusters: kbest k.

10: end if
11: end for
12: end for
13: return Vbest , Rbest , and kbest .

5.5.12 DOMR: Distributed Ordered Multiple Runs

Once the generalizations of clustering algorithms and indices to handle distributed
data are available, the procedure to estimate the number of clusters (k) described
in Sect. 5.3.12 can also be generalized to work with distributed scenarios. To do
so, the user must run a distributed clustering algorithm (Sect. 5.4) and evaluate the
quality of each partition with a distributed validity index (Sect. 5.5). The procedure
to estimate k in distributed scenarios is summarized in Algorithm 7.

5.6 Summary of Results

The elements used in the algorithms and validity indices to compute (5.36)—with
particular settings for �, �Œi i �, and Œi i �—are shown in Tables 5.5 and 5.6. Note
that, in all cases, V Œi i � and V in (5.36) are the local quantity (computed at the i i th
data site) and the global quantity, respectively. For the sake of simplicity, they are
omitted in the tables.

176 L. Vendramin et al.

Table 5.5 Elements used by the distributed algorithms and validity indices to compute (5.36) with
� D 0

Parameter values

�Œi i � Œi i �

vi (5.9)
PNii

jD1.uŒi i �ij /
m

PNii
jD1.uŒi i �ij /

m

vi (5.68)
PNii

jD1..uŒi i �ij /
m C .pŒi i �ij /� / PNii

jD1..uŒi i �ij /
m C .pŒi i �ij /� /

vi (5.73)
PNii

jD1.a � .uŒi i �ij /m C b � .pŒi i �ij /� /
PNii

jD1.a � .uŒi i �ij /m C b � .pŒi i �ij /� /
Fi (5.12)

PNii
jD1.uŒi i �ij /

m
PNii

jD1.uŒi i �ij /
m

Pi (5.59)
PNii

jD1

Pk
cD1.ucj /

m
PNii

jD1

Pk
cD1.ucj /

m

'i (5.69) 1 1/P

i (5.64)
PN11

jD1.uŒi i �ij /
m

PN11
jD1.uŒi i �ij /

m

J (5.5),(5.62),
(5.65),(5.71)

1 1/P

x (5.17) Nii Nii

Si (5.22) 1 1/P

SB (5.27) 1 1/P

Table 5.6 Elements used by the validity indices to compute (5.36)

Parameter values

� �Œi i � Œi i �

PC 0 Nii Nii

PE 0 Nii Nii

FS 0 1 1=P

XB 0 Nii Nii

K
1
k

Pk
iD1 jjvi � xjj2

minl 6Dsjjvl � vs jj2 1 1=P

TSS

1
k.k�1/

Pk
iD1

Pk
lD1
l 6Di
jjvi � vl jj2

minl 6Ds jjvl � vs jj2 C 1=k 1 1=P

FSS 0
PNii

jD1.upj � uqj /˛
PNii

jD1.upj � uqj /˛

5.7 Experimental Evaluation

In this section we present an empirical evaluation of the proposed framework, which
allowed us to generalize fuzzy clustering algorithms, as well as relative validity
criteria, so that they can handle distributed data in an exact way, i.e., with no
approximations in their results. In order to determine the most appropriate number
of clusters, the DOMR procedure (Sect. 5.5.12) was adopted with the distributed
versions of FCM, GK, GG, PCM, FPCM, and PFCM, described in Sect. 5.2 and
in the Appendix. The DFSS validation index (Sect. 5.5.2) was chosen as I D to
evaluate the quality of the partitions produced by the DOMR procedure. DFSS is
the distributed fuzzy version of the Simplified Silhouette index [62], which scored
the best among 40 indices in a recent comparative study [52, 74]. The experiments

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 177

were performed in a parallel scenario, where the responsibility for processing
predetermined sub-collections of the data is distributed across the different cores
of a single processor, which can then be seen as virtually distributed data sites, even
though in this parallel computing setup the data is stored in a shared memory that is
accessible by all the cores.

The experiments were run in a computer equipped with an AMD 3.6GHz
processor with three processing modules, six cores and 16 GB-RAM using Linux
64 bits, Matlab 2009 and Matlab Parallel Computing Toolbox. Three data sets
were generated for the experiments, using the same data set generator described in
[52, 75]. Each data set contains k D 8 clusters embedded in an n D 8 dimensional
attribute space. The first data set contains N D 213 objects, the second contains
N D 217 objects, and the third containsN D 220 objects. The true distribution of the
objects within clusters follows a (mildly truncated) multivariate normal distribution,
such that the resulting structure can be considered to consist of natural clusters that
exhibit the properties of external isolation and internal cohesion.

DOMR was run 10 times for each clustering algorithm, withM D 10, kmin D 2,
and kmax D 8, using from one to six cores of the computer. In each case, the data
sets were randomly distributed across the cores (evenly). The parameters of the
algorithms were set as m D � D 2, �i D 1, i as defined in (5.64), and a D b D 1.
Two different settings were considered for the number of iterations, namely, t D 10
and t D 100.

The obtained speedups (averaged over 10 DOMR runs) are depicted in
Fig. 5.2, 5.3, and 5.4. It is important to note that the architecture of the processor
used is composed by three processing modules with six cores, i.e., each pair of cores
share resources from the processing module they belong to. Thus, the performance
per node of the processor naturally degrades if four or more cores are used in
parallel, as the cores compete for shared resources. This type of architecture and
hyper-threading are adopted by the vast majority of the current desktop processors
and, for this reason, was chosen for this experiment.

The results in Fig. 5.2 (data set with 213 objects) show that when the clustering
algorithms use more cores in a small data set, particularly for few iterations, the
performance is not good due to their communication overhead in comparison with
the execution in a single core and due to the initial setup required to start the
environment. In fact, the centralized algorithm runs very fast in small data and the
time necessary to setup the parallel/distributed environment may be longer then
the algorithm itself (depending on the number of iterations the algorithm runs).
The setup time tends not to be significant as the database becomes larger and/or the
clustering algorithm runs longer. In this context, Fig. 5.2a shows that the clustering
algorithms, except for DGK and DGG (which compute covariance matrices)9, spent

9Computing the covariance matrices and their inverses are computationally demanding, therefore
such algorithms have a larger ratio between processing time and data communication.

178 L. Vendramin et al.

1 2 3 4 5 6
1

2

3

4

5

6
a b

No. Processors

S
p

ee
d

u
p

Linear Speedup
DFCM
DGK
DGG
DPCM
DFPCM
DPFCM

1 2 3 4 5 6
1

2

3

4

5

6

No. Processors

S
p

ee
d

u
p

Linear Speedup
DFCM
DGK
DGG
DPCM
DFPCM
DPFCM

Fig. 5.2 Speedups obtained in a data set with 213 objects over 10 DOMR runs. (a) Speedup after
10 iterations. (b) Speedup after 100 iterations

1 2 3 4 5 6
1

2

3

4

5

6
a b

No. Processors

S
p

ee
d

u
p

Linear Speedup
DFCM
DGK
DGG
DPCM
DFPCM
DPFCM

1 2 3 4 5 6
1

2

3

4

5

6

No. Processors

S
p

ee
d

u
p

Linear Speedup
DFCM
DGK
DGG
DPCM
DFPCM
DPFCM

Fig. 5.3 Speedups obtained in a data set with 217 objects over 10 DOMR runs. (a) Speedup after
10 iterations. (b) Speedup after 100 iterations

more time to process the data in multiple cores compared to a single one (speedup
lower than 1). However, as the size of the data set increases, the speedup also
increases (see Figs. 5.3 and 5.4) and the use of multiple cores becomes attractive.
Additionally, the higher is the number of iterations of the algorithms, the better the
resulting speedup tends to be (compare Figs. 5.2b, 5.3b, 5.4b against 5.2a, 5.3a, 5.4a,
respectively).

Table 5.7 describes the amount of data transfer (in MBs) among the data sites
after the execution of 10 runs of DOMR with t D 100 iterations of each clustering
algorithm. These quantities are proportional to the number of iterations. Thus, one
tenth of the quantities displayed in Table 5.7 have been observed for t D 10

iterations. Note that the size of the data set does not affect the amount of data
communication because the algorithms transfer summarized information (such as

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 179

1 2 3 4 5 6
1

2

3

4

5

6

No. Processors

S
p

ee
d

u
p

Linear Speedup
DFCM
DGK
DGG
DPCM
DFPCM
DPFCM

1 2 3 4 5 6
1

2

3

4

5

6

No. Processors

S
p

ee
d

u
p

Linear Speedup
DFCM
DGK
DGG
DPCM
DFPCM
DPFCM

a b

Fig. 5.4 Speedups obtained in a data set with 220 objects over 10 DOMR runs. (a) Speedup after
10 iterations. (b) Speedup after 100 iterations

Table 5.7 Amount of data communication (in MBs) among the data sites
using two, three, four, five and six processor cores for t D 100 iterations

Number of cores Two Three Four Five Six

DFCM 156.796 241.171 325.546 409.921 494.296

DGK 969.296 1466.171 1963.046 2459.921 2956.796

DGG 994.296 1509.921 2025.546 2541.171 3056.796

DPCM 156.796 241.171 325.546 409.921 494.296

DFPCM 181.796 284.921 388.046 491.171 594.296

DPFCM 156.796 241.171 325.546 409.921 494.296

prototypes, sums of memberships, etc.). Thus, the same amount has been observed
for data sets with N D 213; N D 217 e N D 220 objects.

The values presented in Table 5.7 indicate that the growth of the amount of data
communication results from the increase of the number of cores and reflects the
communication complexities presented in Sects. 5.4.4 and 5.5.11. The algorithms
DGK and DGG demand the highest data transfer rates due to the distributed
calculation of their covariance matrices.

Our main goal in this work is not to assess the quality of clustering algorithms.
In spite of this and just for illustration purposes, the DOMR best evaluated partition
obtained for each clustering algorithm, Rbest , was compared to the known clusters
or “golden truth” with the well-known Corrected Rand (CR) external index [76].
Note that the known clusters of each data set form a hard partition, thus a hard
partition was derived from Rbest by changing its maximum membership value to
1 and the other values to 0 before using the CD index. The index’s upper bound
is 1 and its lower bound depends on the data set [77]. Zero value means chance
agreement and negative values mean less than chance agreement. The CR values
resulting from 10 runs of DOMR with t D 10 are presented in Table 5.8.

180 L. Vendramin et al.

Table 5.8 CR values of the
DOMR Rbest partition when
compared to the know
clusters of data sets with sizes
N D 213, N D 217 and
N D 220 for 10 iterations of
the clustering algorithms

Data set size N D 213 N D 217 N D 220

DFCM 0.2317 0.2312 0.2106

DGK 0.7622 0.2499 0.2499

DGG 0.8708 1 0.8710

DPCM 0.1800 0.2179 0.0227

DFPCM 1 0.2222 0.2496

DPFCM 0.2497 0.2132 0.2048

The CR values displayed in Table 5.8 indicate that DGG was the only algorithm
capable of finding high quality partitions for all data sets, when using the DOMR
procedure with M D t D 10. However, by changing the number of iterations
of the clustering algorithms to t D 100, the CR value is maximum (unitary) for
all algorithms and data sets, which indicates that the hard partitions derived from
Rbest are identical to the known clusters in every case. This result indicates that
the clustering algorithms are capable of finding the correct number of clusters and
high quality partitions despite running in a distributed fashion by using the proposed
framework.

5.8 Final Remarks

We introduced a framework that generalizes a number of fuzzy clustering algorithms
so that they can handle distributed data in an exact way, i.e. with no approximations
in the results. In addition, we showed that the proposed framework can be adapted
to automatically estimate the number of clusters from data in both distributed and
parallel processing scenarios, by using one of the ten relative fuzzy clustering
validity indices that have also been extended to the non-centralized domain. Specif-
ically, our framework allows computing global values representing a distributed
collection of data as a function of local values that are computed at each data
site, processor or core, and then reduced into a single solution. The complexity
analyses of the resulting algorithms and validation indices were reported in terms
of space, time, and communication requirements. Experimental results showed the
speedup obtained by the algorithms when running in a parallel architecture, when
compared to the traditional, centralized counterparts, for different sized data sets.
These results also indicate that the compared algorithms are capable of finding
high quality partitions when combined with a validity index by a procedure to
estimate the number of clusters in distributed data. Both the clustering algorithms
and the validity indices were distributed using the proposed framework. Since real-
world applications in which the data are naturally or intentionally distributed across
different sites or computers are becoming increasingly common (distributed/parallel
scenarios), we believe that the proposed framework can be very useful in practice.

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 181

In summary, the main contributions of our work are: (a) the development of
distributed versions of several well-known fuzzy clustering algorithms that so far
could only be computed in a centralized way; (b) a unified framework that comprises
all such new distributed algorithms and a few previously existing ones as particular
parameterization cases; (c) the extension of such a framework to the computation
of fuzzy clustering validity indices, which so far could only be computed in a
centralized way; (d) a procedure for the estimation of the number of clusters in
parallel and distributed scenarios that makes use of the distributed algorithms and
validity indices that have been proposed.

It is important to stress that we are not claiming that the algorithms and
indices surveyed in this chapter are all-inclusive. There is a plethora of fuzzy
clustering algorithms and indices out there, many of them developed for specific
application scenarios. Figuring out if the proposed framework can be applied to
other algorithms/indices not explicitly discussed in this chapter and, if not, how
to make a distributed version of the corresponding algorithms/indices possible, are
interesting subjects for further investigations.

Another relevant topic for future research involves different possible com-
puter architectures for distributed/parallel processing. In particular, the architecture
adopted in this chapter assumes that one of the local data sites also works as a
central processing node that is responsible for communicating with the other sites,
thereby aggregating their local statistics and distributing back the global ones. This
architecture is simple and at the same time it allows that the communication of
the information from and to all data sites be made in parallel. Other architectures,
however, may also be possible (e.g., involving networks with arbitrary node-to-node
communication [78]). A theoretical or experimental comparison between different
possible architectures is an interesting subject for future studies.

Acknowledgements The authors acknowledge the Brazilian Research Agencies CNPq, FAPESP,
and FAPEMIG for the financial support.

Appendix: Additional Fuzzy Clustering Algorithms

GG: Gath and Geva

The GG algorithm [2, 12] induces hyper-ellipsoidal clusters in such a way that the
distances are not linear with respect to the covariance matrices [79] and the cluster
volumes do not need to be fixed a priori. In this case, (5.5) is minimized with the
distances given by (1 � i � k; 1 � j � N)

Dij D Œdet.Fi /�1=2

Pi
exp

1

2
.xj � vi /TF�1i .xj � vi /

�
; (5.58)

182 L. Vendramin et al.

Algorithm 8 GG
Require: All requirements of Algorithm 1.
1: t D 0.
2: repeat
3: Compute the cluster prototypes by using (5.9).
4: Compute the covariance matrix and the prior probability by using (5.12) and (5.59).
5: Compute the distances by using (5.58).
6: Update the partition matrix by using (5.7) (Save the previous partition matrix as OU to

analyze the convergence).
7: t D t C 1.
8: until jj OU� Ujj < � or t D tmax .
9: return U D Œuij �k�N , V D Œvi �k�n and Fi .

where Fi denotes the fuzzy covariance matrix for cluster Ci , given by (5.12) [2]
and Pi is the prior probability of selecting cluster Ci , given by Hoppner et al. [2]
(1 � i � k)

Pi D
PN

jD1.uij /m
PN

jD1
Pk

cD1.ucj /m
: (5.59)

Again, minimizing (5.5) with respect to vi leads to (5.9). The complete procedure
to minimize (5.5) with the distances defined in (5.58) is given by Algorithm 8.

FCV: Fuzzy c-Varieties

Unlike previous algorithms, the FCV algorithm [13] measures the distances among
data from r-dimensional linear varieties (lines when r D 1, planes when r D 2

or hyper-planes when 2 < r < n). Thus, it was developed for the recognition of
clusters formed by lines, planes or hyper-planes, which may be useful in image
processing for the identification of border lines in image recognition [2]. The FCV
algorithm minimizes (5.5) with the distances given by (1 � i � k; 1 � j � N)

Dij D jjxj � vi jj2A �
rX

lD1
< xj � vi ; si l >

D .xj � vi /TA.xj � vi / �
rX

lD1
..xj � vi /TA1=2si l /2

(5.60)

where vi is a point through which the variety passes, < �; � > denotes a scalar
product, and .si1; : : : ; sir / is an r-tuple of linearly independent vectors spanning
variety vir and corresponds to the r principal eigenvectors (normalized eigenvectors
corresponding to the r largest eigenvalues) of the i th fuzzy within cluster scatter

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 183

matrix Si D A1=2FiA1=2 (in which Fi is given by (5.12)). Thus, the varieties are
defined according to the stretching of its corresponding cluster. The distances from
each object to each cluster are then influenced by how close the corresponding
variety passes to it. Note that if r D 0 then (5.60) reduces to (5.8) and FCV reduces
to FCM. In addition, minimizing (5.5) by using the distance in (5.60) with respect
to vi leads to (5.9). FCV is summarized by Algorithm 9.

Algorithm 9 FCV
Require: All requirements of Algorithm 1 and the dimensionality r of the varieties (0 < r < n).
1: t D 0.
2: repeat
3: Compute the cluster prototypes (means) by using (5.9).
4: Compute the covariance matrix for each cluster by using (5.12).
5: Extract (from each Si D A1=2FiA1=2) the r principal eigenvectors si l , l D 1; : : : ; r

(normalized eigenvectors corresponding to the r largest eigenvalues).
6: Compute the distances by using (5.60).
7: Update the partition matrix by using (5.7) (Save the previous partition matrix as OU to

analyze the convergence).
8: t D t C 1.
9: until jj OU� Ujj < � or t D tmax .

10: return U D Œuij �k�N , V D Œvi �k�n and Fi .

FCE: Fuzzy c-Elliptotypes

The FCE algorithm finds clusters in lines, planes, or hyper-planes, which have
infinite length and may cluster widely separated collinear clusters together [2,6,14].
To avoid this problem, FCE [14] uses a distance given by a convex combination
of (5.8) and (5.60) as (1 � i � k; 1 � j � N)

Dij D .1 � ˛/jjxj � vi jj2A C ˛.jjxj � vi jj2A �
rX

lD1
< xj � vi ; si l >2A/ (5.61)

D jjxj � vi jj2A � ˛
rX

lD1
< xj � vi ; si l >

D .xj � vi /TA.xj � vi / � ˛
rX

lD1
..xj � vi /TA1=2si l /2;

where 0 � ˛ � 1 defines the stretching of the hyper-ellipsoids in the directions of
si l . When ˛ D 0,Dij reduces to (5.8). On the other hand, if ˛ D 1 thenDij reduces

184 L. Vendramin et al.

to (5.60). Again, minimizing (5.5) using the distances in (5.61) with respect to vi
leads to (5.9). FCE is summarized in Algorithm 10.

Algorithm 10 FCE
Require: Besides all the requirements of Algorithm 1, the dimensionality r of the varieties (0 <

r < n), and the weighting parameter 0 � ˛ � 1.
1: t D 0.
2: repeat
3: Compute the cluster prototypes by using (5.9).
4: Compute the covariance matrix for each cluster by using (5.12).
5: Extract (from each Si D A1=2FiA1=2) the r principal eigenvectors si l , l D 1; : : : ; r

(normalized eigenvectors corresponding to the r largest eigenvalues).
6: Compute the distances by using (5.61).
7: Update the partition matrix by using (5.7) (Save the previous partition matrix as OU to

analyze the convergence).
8: t D t C 1.
9: until jj OU� Ujj < � or t D tmax .

10: return U D Œuij �k�N , V D Œvi �k�n and Fi .

PCM: Possibilistic c-Means

All previous algorithms work with partitions in Mfp—see (5.4). However, the
constraint

Pk
iD1 uij D 1 may lead to unrealistic results. Take as an exam-

ple two clusters C1 and C2 with some degree of overlapping, as displayed in
Fig. 5.5. The membership degree of object x1 is equal to 0.5 for both clusters
(i.e., u11 D u21 D 0:5) because the distances from x1 to the cluster prototypes
v1 and v2 (D11 and D21) are the same (D11 D D21). This is expected since x1 is
in the overlapping area. Note, however, that the membership degree of the outlier
object x2 is also equal to 0.5 for both clusters (u11 D u21 D 0:5). The reason is
that although it is an outlier far from the clusters, it is equidistant from both cluster
prototypes (i.e., D12 D D22). Therefore, the membership calculation in (5.7) leads
to an equal membership degree for both clusters.

In an attempt to avoid this problem, the PCM algorithm [3] deals with partitions
lying in Mf —see (5.3). Because now 0 � uij � 1 (called typicalities) may be
as small as possible (close to 0), the objective function in (5.5) must be modified
in order to prevent the trivial solution uij D 0 for all i; j . Thus, PCM aims at
minimizing the function

J D
kX

iD1

NX

jD1
.uij /

mDij C
kX

iD1
i

NX

jD1
.1 � uij /

m; (5.62)

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 185

Fig. 5.5 Example of
membership of two objects to
two clusters

x1

x2

v1 v2
D21

D22D12

D11

C1 C2

whereDij is given by (5.8), and i > 0 is a weighting parameter defined by the user.
The first term of (5.62) is identical to (5.5). The second term forces the typicalities
uij to be as large as possible, avoiding the trivial solution U D 0 (recall that U 2
Mf).

The most popular method to solve (5.62) is a simple Picard iteration through the
first-order conditions for stationary points of (5.62). Thus, holdingDij constant, one
finds that a necessary condition is10 (1 � i � k; 1 � j � N)

uij D
"
1C

�
Dij

i

�1=.m�1/#�1
: (5.63)

Holding vi constant, one finds that another necessary condition to minimize (5.62)
is given by (5.9). Note that i is an important user-defined parameter. When i
approximates to 0, the solution tends to be trivial (U D 0). If i is large, uij will
be as large as possible. In other words, i determines the relative degree to which
the second term in (5.62) is important in comparison with the first one. If the two
terms are to be weighted roughly equally, then i should be of the order of Dij .
In practice, Krishnapuram and Keller [3] found that the following definition works
well for a given initial partition11

i D
PN

jD1.uij /mDij
PN

jD1.uij /m
: (5.64)

The complete procedure is given by Algorithm 11.

10The columns in U are independent and, therefore, it is possible to decompose the objective
function into k individual components.
11For example, a partition given by a previous run of FCM.

186 L. Vendramin et al.

Algorithm 11 PCM
Require: Data set X D fx1; : : : ; xN g, number of clusters k 2 f2; : : : ; N � 1g, fuzzification

exponent m 2 .1;1/, initial (random) partition matrix U D Œuij � 2 Mf , weighting
parameters i � 0, number of iterations tmax and/or termination tolerance � > 0.

1: t D 0.
2: repeat
3: Compute the cluster prototypes by using (5.9).
4: Compute the distance between objects and prototypes by using (5.8).
5: Update the partition matrix by using (5.63) (Save the previous partition matrix as OU to

analyze the convergence).
6: t D t C 1
7: until jj OU� Ujj < � or t D tmax .
8: return U D Œuij �k�N and V D Œvi �k�n.

Algorithm 12 PGK
Require: Besides all the requirements of Algorithm 11, the cluster volumes, �i .
1: t D 0.
2: repeat
3: Compute the cluster prototypes (means) using (5.9).
4: Compute the covariance matrix for each cluster using (5.12).
5: Compute the distances using (5.10) and (5.11).
6: Update the partition matrix using (5.63) (Save the previous partition matrix as OU to analyze

the convergence).
7: t D t C 1
8: until jj OU� Ujj < � or t D tmax .
9: return U D Œuij �k�N , V D Œvi �k�n, and Fi .

PGK: Possibilistic Gustafson-Kessel

The PGK algorithm [3] is a possibilistic version of the GK algorithm (Sect. 5.2.2).
It minimizes (5.62) with the distances given by (5.10). In this case, holding Dij

constant, the necessary conditions to minimize (5.62) also lead to (5.63). Holding
uij and Ai constant, the necessary conditions lead to (5.9). Finally, holding uij and
vij constant and constraining Ai in such a way that det(Ai) D �i , the necessary
conditions lead to (5.11) and (5.12). PGK is summarized in Algorithm 12.

FPCM: Fuzzy-Possibilistic c-Means

Since the columns of partitions U 2Mf are independent, PCM-like algorithms tend
to obtain concentrical clusters when the global minimum has been achieved [80,81].
To avoid this problem, the FPCM algorithm [15] finds memberships and typicalities
simultaneously between the objects and clusters (i.e., one matrix U 2 Mfp and
another matrix P 2Mf). The objective function to be minimized is then given by

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 187

J D
kX

iD1

NX

jD1
..uij /

m C .pij /� /Dij ; (5.65)

whereDij is given by (5.8),m; � > 0 are fuzzification exponents, U D Œuij � 2Mfp

is the membership matrix, and P D Œpij � 2 Mf is the typicality matrix. In contrast
with memberships (uij), a given typicality pij should not depend on the typicalities
assigned to the other clusters (pcj ; c 6D i). Because P D Œpij � 2 Mf , pij could
be as small as desired in order to minimize (5.65). To avoid it, in [15] the authors
constrained the typicality matrix by12 [15] (1 � i � k)

NX

jD1
pij D 1: (5.66)

The usual method to solve (5.65) is a simple Picard iteration through the first-
order conditions for stationary points of (5.65). Holding Dij and pij constant, the
necessary conditions to minimize (5.65) lead to (5.7). HoldingDij and uij constant,
the necessary conditions lead to (1 � i � k; 1 � j � N)

pij D

NX

lD1

�
Dij

Dil

�1=.��1/!�1
: (5.67)

Finally, holding uij and pij constant, the necessary conditions lead to

vi D
PN

jD1..uij /m C .pij /� /xjPN
jD1..uij /m C .pij /� /

: (5.68)

The complete procedure is given in Algorithm 13.
It is worth noticing that the typicalities in (5.67) can be computed more efficiently

by following a similar idea as in [56]. More precisely, note that

'i D
NX

lD1

�
1

Dil

�1=.��1/
; 1 � i � k; (5.69)

can be computed for each cluster before computing pij in (5.67), which now
reduces to

pij D
�
.Dij /

1=.��1/ � 'i
��1

(5.70)

12Note that, since U 2Mfp , it is constrained by (5.6).

188 L. Vendramin et al.

Algorithm 13 FPCM
Require: Besides all the requirements of Algorithm 1, the fuzzification exponent � 2 .1;1/ and

the initial (random) partition matrix P D Œpij � 2Mf .
1: t D 0.
2: repeat
3: Compute the cluster prototypes by using (5.68).
4: Compute the distances between objects and prototypes by using (5.8).
5: Update the possibilistic partition matrix by using (5.67).
6: Update the probabilistic partition matrix by using (5.7) (Save the previous partition matrix

as OU to analyze the convergence).
7: t D t C 1
8: until jj OU� Ujj < � or t D tmax .
9: return U D Œuij �k�N , P D Œpij �k�N , and V D Œvi �k�n.

and takes only O.kN/ operations to be computed for all objects and clusters.

PFCM: Possibilistic-Fuzzy c-Means

The constraint (5.66) used by FPCM related to the possibilistic matrix, P, may
induce unreal (lower) typicality values whenN is large. To circumvent this problem,
the PFCM algorithm [16] rules out constraint (5.66) and aims at minimizing the
following objective function

J D
kX

iD1

NX

jD1
.a � .uij /m C b � .pij /� /Dij C

kX

iD1
i

NX

jD1
.1 � pij /� ; (5.71)

where U D Œuij � 2 Mfp , P D Œpij � 2 Mf , a > 0 and b > 0 define the
relative importance between memberships and typicalities, m > 1 and � > 1

are fuzzification exponents, and i > 0 8i are user-defined weighting parameters
(see Sect. 5.8). Note that if a D 0, then minimizing (5.71) is equivalent to
minimizing (5.62) (PCM). On the other hand, if b D 0 and i D 0 8i , then (5.71)
reduces to (5.5) (FCM). In fact, if b D 0 then it follows from (5.71) that pij is not
affected by Dij and by objects xj and centers vi . Therefore, minimizing (5.71) is
equivalent to minimizing (5.5) (FCM).

The method to solve (5.71) is a simple Picard iteration through the first-order
conditions for stationary points. Holding Dij and pij constant the necessary
conditions to minimize (5.71) lead to (5.7). Holding Dij and uij constant, the
necessary conditions to minimize (5.71) lead to (1 � i � k; 1 � j � N)

pij D

1C

�
b

i
Dij

�1=.��1/!�1
: (5.72)

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 189

Algorithm 14 PFCM
Require: Besides all the requirements of Algorithm 1, the weighting parameters i � 0,

fuzzification exponent � 2 .1;1/, initial (random) partition matrix P D Œpij � 2 Mf , and
importances between memberships and typicalities a > 0 and b > 0.

1: t D 0.
2: repeat
3: Compute the cluster prototypes by using (5.73).
4: Compute the distance between objects and prototypes by using (5.8).
5: Update the possibilistic partition matrix by using (5.72).
6: Update the probabilistic partition matrix by using (5.7) (Save the previous partition matrix

as OU to analyze the convergence).
7: t D t C 1
8: until jj OU� Ujj < � or t D tmax .
9: return U D Œuij �k�N , P D Œpij �k�N , and V D Œvi �k�n.

Then, holding uij and pij constant, the necessary conditions lead to

vi D
PN

jD1.a � .uij /m C b � .pij /� /xjPN
jD1.a � .uij /m C b � .pij /� /

: (5.73)

The complete procedure is given in Algorithm 14.

References

1. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Englewood Cliffs
2. Hoppner F, Klawonn F, Kruse R, Runker T (1999) Fuzzy cluster analysis: methods for

classification, data analysis and image recognition. Wiley, London
3. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy

Syst 1(2):98–110
4. Ruspini EH (1970) Numerical methods for fuzzy clustering. Inf Sci 2:319–350
5. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press,

New York
6. Babuska R (1998) Fuzzy modeling for control. Kluwer, Norwell
7. Yang MS (1993) A survey of fuzzy clustering. Math Comput Model 18(11):1–16
8. Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition. I.

IEEE Trans Syst Man Cybern B Cybern 29(6):778–785
9. Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition. II.

IEEE Trans Syst Man Cybern B Cybern 29(6):786–801
10. Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-

separated clusters. J Cybern 3:32–57
11. Gustafson DE, Kessel WC (1979) Fuzzy clustering with a fuzzy covariance matrix. In: 1978

IEEE conference on decision and control including the 17th symposium on adaptive processes,
10–12 January 1979, pp 761–766. doi:10.1109/CDC.1978.268028

12. Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering. IEEE Trans Pattern Anal
Mach Intell 11(7):773–780

http://dx.doi.org/10.1109/CDC.1978.268028

190 L. Vendramin et al.

13. Bezdek JC, Coray C, Gunderson R, Watson J (1981) Detection and characterization of cluster
substructure I. Linear structure: fuzzy c-Lines. SIAM J Appl Math 40(2):339

14. Bezdek JC, Coray C, Gunderson R, Watson J (1981) Detection and characterization of
cluster substructure II. Fuzzy c-Varieties and convex combinations thereof. SIAM J Appl Math
40(2):358

15. Pal NR, Pal K, Bezdek JC (1997) A mixed c-means clustering model. In: Proceedings of 6th
international fuzzy systems conference, Barcelona, pp 11–21

16. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering
algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

17. Park B, Kargupta H, Johnson E, Sanseverino E, Hershberger D, Silvestre L (2001)
Distributed, collaborative data analysis from heterogeneous sites using a scalable evolutionary
technique. Appl Intell 16:19–42

18. Tsoumakas G, Angelis L, Vlahavas I (2004) Clustering classifiers for knowledge discovery
from physically distributed databases. Data Knowl Eng 49:223–242

19. Datta S, Bhaduri K, Giannella C, Wolff R, Kargupta H (2006) Distributed data mining in
peer-to-peer networks. IEEE Internet Comput 10:18–26

20. Zhang S, Zhang C, Wu X (2004) Knowledge discovery in multiple databases. Springer, Berlin
21. Park B-H, Kargupta H (2002) Distributed data mining: algorithms, systems, and applications.

In: Data mining handbook, pp 341–358
22. Zaki MJ, Pan Y (2002) Introduction: recent developments in parallel and distributed data

mining. Distrib Parallel Databases 11:123–127. doi:10.1023/A:1013918601668
23. Congiusta A, Talia D, Trunfio P (2007) Distributed data mining services leveraging WSRF.

Future Gener Comput Syst 23(1):34–41
24. Kargupta H, Chan P (eds) (2000) Advances in distributed and parallel knowledge discovery.

MIT Press, Cambridge
25. Johnson E, Kargupta H (2000) Collective, hierarchical clustering from distributed, hetero-

geneous data. In: Zaki M, Ho C-T (eds) Large-scale parallel data mining. Lecture notes in
computer science, vol 1759. Springer, Berlin, Heidelberg, pp 803–803

26. Kargupta H, Huang W, Sivakumar K, Johnson E (2001) Distributed clustering using collective
principal component analysis. Knowl Inf Syst 3:422–448

27. Klusch M, Lodi S, Moro G (2003) Distributed clustering based on sampling local density
estimates. In: Proceedings of the 18th International Joint Conference on artificial Intelligence
(IJCAI’03). Morgan Kaufmann Publishers Inc., San Francisco, 485–490

28. da Silva J, Giannella C, Bhargava R, Kargupta H, Klusch M (2005) Distributed data mining
and agents. Eng Appl Artif Intell 18:791–807

29. S. Merugu, Ghosh J (2005) A privacy-sensitive approach to distributed clustering. Pattern
Recognit Lett 26(4):399–410

30. Freitas A, Lavington SH (1997) Mining very large databases with parallel processing. Kluwer,
Boston

31. Zaki MJ (2000) Parallel and distributed data mining: an introduction. In: Large-scale parallel
data mining, vol 1759. Springer, Berlin, Heidelberg, pp. 1–23

32. Zaki MJ (1999) Parallel and distributed association mining: a survey. IEEE Concurrency
7:14–25

33. Pedrycz W (2005) Knowledge-based clustering from data to information granules. Wiley,
Hoboken

34. da Silva JC, Klusch M (2007) Privacy preserving pattern discovery in distributed time series.
In: IEEE 23rd international conference on data engineering workshop, pp 207–214

35. da Silva JC, Klusch M (2006) Inference in distributed data clustering. Eng Appl Artif Intell
19(4):363– 369

36. Olson C (1995) Parallel algorithms for hierarchical clustering. Parallel Comput 21:1313–1325
37. Dhillon IS, Modha DS (2000) A data-clustering algorithm on distributed memory multiproces-

sors. In: Revised papers from large-scale parallel data mining, workshop on large-scale parallel
KDD systems, SIGKDD, London. Springer, Berlin, pp 245–260

5 Fuzzy Clustering Algorithms and Validity Indices for Distributed Data 191

38. Tian J, Zhu L, Zhang S, Liu L (2005) Improvement and parallelism of k-Means clustering
algorithm. Tsinghua Sci Technol 10:277–281

39. Z Du, Lin F (2005) A novel parallelization approach for hierarchical clustering. Parallel
Comput 31:523–527

40. Garg A, Mangla A, Gupta N, Bhatnagar V (2006) PBIRCH: a scalable parallel clustering
algorithm for incremental data. In: 10th International database engineering and applications
symposium, pp 315–316

41. Hammouda KM, Kamel MS (2009) Hierarchically distributed Peer-to-Peer document cluster-
ing and cluster summarization. IEEE Trans Knowl Data Eng 21:681–698

42. Datta S, Giannella CR, Kargupta H (2009) Approximate distributed K-means clustering over
a peer-to-peer network. IEEE Trans Knowl Data Eng 21:1372–1388

43. Coletta LFS, Vendramin L, Hruschka ER, Campello RJGB, Pedrycz W (2012) Collaborative
fuzzy clustering algorithms: some refinements and design guidelines. IEEE Trans Fuzzy Syst
20(3):444–462

44. Forman G, Zhang B (2000) Distributed data clustering can be efficient and exact. ACM
SIGKDD Explor Newslett 2:34–38

45. Strehl A, Ghosh J (2003) Cluster ensembles — a knowledge reuse framework for combining
multiple partitions. J Mach Learn Res 3:583–617

46. Pedrycz W, Hirota K (2008) A consensus-driven fuzzy clustering. Pattern Recognit Lett
29:1333–1343

47. Pedrycz W, Rai P (2008) Collaborative clustering with the use of fuzzy c-means and its
quantification. Fuzzy Sets Syst. 159(18):2399–2427

48. Kwok T, Smith K, Lozano S, Taniar D (2002) Parallel fuzzy c-means clustering for large data
sets. In: Monien B, Feldmann R (eds) Euro-Par 2002 parallel processing. Lecture notes in
computer science, vol. 2400. Springer, Berlin, pp 365–374. 10.1007/3-540-45706-2_48

49. Rahimi S, Zargham M, Thakre A, Chhillar D (2004) A parallel fuzzy c-mean algorithm
for image segmentation. In: Processing NAFIPS ’04. IEEE annual meeting of the fuzzy
information, vol 1, pp 234–237

50. Modenesi M, Costa M, Evsukoff A, Ebecken N (2007) Parallel fuzzy c-means cluster analysis.
In: Daydé M, Palma JMLM, Coutinho ÁLGA, Pacitti E, Lopes JC (eds) High performance
computing for computational science - VECPAR 2006. Lecture notes in computer science,
Springer Berlin, vol 4395, pp 52–65. doi:10.1007/978-3-540-71351-7_5

51. Milligan GW, Cooper MC (1985) An examination of procedures for determining the number
of clusters in a data set. Psychometrika 50(2):159–179

52. Vendramin L, Campello RJGB, Hruschka ER (2010) Relative clustering validity criteria: a
comparative overview. Stat Anal Data Min 3(4):209–235

53. Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona I (2013) An extensive comparative
study of cluster validity indices. Pattern Recognit 46(1):243–256

54. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell
Inf Syst 17:107–145

55. Vendramin L (2012) Study and development of fuzzy clustering algorithms in centralized and
distributed scenarios (in Portuguese). Master’s Dissertation, University of São Paulo, Brazil.
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092012-163429/en.php

56. Kolen JF, Hutcheson T (2002) Reducing the time complexity of the fuzzy c-means algorithm.
IEEE Trans Fuzzy Syst 10(2):263–267

57. Celebi ME, Kingravi HA (2012) Deterministic initialization of the k-means algorithm using
hierarchical clustering. Intern J Pattern Recognit Artif Intell 26(07):1250018

58. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

59. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal
Mach Intell 13:841–847

60. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy
Syst 3(3):370–379

http://dx.doi.org/10.1007/3-540-45706-2_48
http://dx.doi.org/10.1007/978-3-540-71351-7_5
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10092012-163429/en.php

192 L. Vendramin et al.

61. Campello RJGB, Hruschka ER (2006) A fuzzy extension of the silhouette width criterion for
cluster analysis. Fuzzy Sets Syst 157(21):2858–2875

62. Hruschka ER, Campello RJGB, de Castro, LN (2006) Evolving clusters in gene-expression
data. Inf Sci 176:1898–1927

63. Kwon SH (1998) Cluster validity index for fuzzy clustering. Electron Lett 34(22):2176–2177
64. Tang Y, Sun F, Sun Z (2005) Improved validation index for fuzzy clustering. In: Proceedings

of the 2005 American control conference, vol. 2, pp 1120–1125
65. Fukuyama Y, Sugeno M (1989) A new method of choosing the number of clusters for the fuzzy

c-means method. In: Proceedings of 5th fuzzy systems symposium, pp 247–250
66. Bouguessa M, Wang S, Sun H (2006) An objective approach to cluster validation. Pattern

Recognit Lett 27:1419–1430
67. Wang W, Zhang Y (2007) On fuzzy cluster validity indices. Fuzzy Sets Syst 158(19):

2095–2117
68. Bouguessa M, Wang SR (2004) A new efficient validity index for fuzzy clustering. In:

Proceedings of 2004 international conference on machine learning and cybernetics, vol 3,
pp 26–29

69. Pakhira MK, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters.
Pattern Recognit 37:487–501

70. Yoshinari Y, Pedrycz W, Hirota K (1993) Construction of fuzzy models through clustering
techniques. Fuzzy Sets Syst 54(2):157–165

71. Nikhil R, Pal K, Bezdek JC, Runkler TA (1997) Some issues in system identification using
clustering. In: International conference on neural networks, vol 4, pp 2524–2529

72. Vendramin L, Campello RJGB, Coletta LFS, Hruschka ER (2011) Distributed fuzzy clustering
with automatic detection of the number of clusters. In: International symposium on distributed
computing and artificial intelligence. Advances in intelligent and soft computing, vol 91.
Springer, Berlin, Heidelberg, pp 133–140

73. Pakhira MK, Bandyopadhyay S, Maulik U (2005) A study of some fuzzy cluster validity
indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst 155(2):
191–214

74. Vendramin L, Campello RJGB, Hruschka ER (2009) On the comparison of relative clustering
validity criteria. In: SIAM international conference on data mining, pp 733–744

75. Milligan GW, Cooper MC (1981) A monte carlo study of thirty internal criterion measures for
cluster analysis. Psychometrika 46(2):187–199

76. Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218
77. Milligan GW, Schilling DA (1985) Asymptotic and finite sample characteristics of four

external criterion measures. Multivar Behav Res 20(1):97–109
78. Kowalczyk W, Vlassis N (2005) Newscast EM. Adv Neural Inf Process Syst 17:713–720
79. Bezdek JC, Dunn JC (1975) Optimal fuzzy partitions: a heuristic for estimating the parameters

in a mixture of normal distributions. IEEE Trans Comput C-24(8):835–838
80. Barni M, Cappellini V, Mecocci A (1996) Comments on “A possibilistic approach to

clustering”. IEEE Trans Fuzzy Syst 4(3):393–396
81. Timm H, Borgelt C, Kruse R, Doring C (2004) An extension to possibilistic fuzzy cluster

analysis. Fuzzy Sets Syst 147(1):3–16

Chapter 6
Density Based Clustering: Alternatives
to DBSCAN

Christian Braune, Stephan Besecke, and Rudolf Kruse

Abstract Clustering data has been an important task in data analysis for years
as it is now. The de facto standard algorithm for density-based clustering today
is DBSCAN. The main drawback of this algorithm is the need to tune its two
parameters � and minPts. In this paper we explore the possibilities and limits of
two novel different clustering algorithms. Both require just one DBSCAN-like
parameter. Still they perform well on benchmark data sets. Our first approach
just uses a parameter similar to DBSCAN’s minPts parameter that is used to
incrementally find protoclusters which are eventually merged while discarding those
that are too sparse. Our second approach only uses a local density without any
minimum number of points to be specified. It estimates clusters by seeing them
from spectators watching the data points at different angles. Both algorithms lead
to results comparable to DBSCAN. Our first approach yields similar results to
DBSCAN while being able to assign multiple cluster labels to a points while the
second approach works significantly faster than DBSCAN.

Keywords Density based clustering • Multi-class clustering • Spike train
analysis • Prototype based clustering • Kernel based clustering

6.1 Introduction

Clustering is notably one of the most important tools in exploratory data analysis
[19]. It helps detect structures and relations within a data set of unordered,
unlabeled data and provides data analysts with means to draw conclusion or discover
knowledge in large amounts of data. Clustering techniques can be used in huge
variety of fields spanning from simple point-based data to text [1, 15, 20] or image
analysis [12, 13, 18, 26].

Formally clustering can be seen as a partitioning of a data set into several
non-empty, (not necessarily) disjoint subsets.

C. Braune (�) • S. Besecke • R. Kruse
University Magdeburg, Magdeburg, Germany
e-mail: christian.braune@ovgu.de; stephan.besecke@st.ovgu.de; rudolf.kruse@ovgu.de

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__6

193

mailto:christian.braune@ovgu.de
mailto:stephan.besecke@st.ovgu.de
mailto:rudolf.kruse@ovgu.de

194 C. Braune et al.

Definition 1. A data set is a set of points xi 2 R
d , where d is the dimensionality

of the data set D D fx1; x2; : : : ; xng with n points.

Definition 2. We denote a simple clustering of D as C D fC1; C2; : : : ; Ckg with

k[

iD1
Ci D D and Ci \ Cj D ; $ Ci ¤ Cj :

That is, every point in D belongs to one cluster and all clusters are disjoint.

This is commonly understood as a clustering of a data set. We will see later that
there are circumstances under which we may want to allow overlapping clusters and
have to weaken the cluster definition in the sense that they do not have to be disjoint.
The result of a clustering algorithm may either be the clusters themselves in the
form of sets of points or as a list of labels f�1; : : : ; �ng such that �i D j if and only
if xi 2 Cj . Usually the cluster label (or index) �.x/ will be a positive integer or a
set of labels:

�C .x/ D fi jx 2 Ci ; Ci 2 C g

If the clustering algorithm applied is able to recognize noise (points that do form
any cluster) the cluster label for such points is usually set to �1 or ;.

Classical clustering algorithms such as k-means [21] require the user to specify
the number of clusters they want to find. The clustering algorithm will then report
exactly this number of clusters, whether or not the clustering makes any sense or
not. Some clustering algorithm that are implemented as optimization problems can
be run several times with different parameters to choose the best result according to
the objective function. In the case of k-means this poses two major problems:

1. The choice of the initial cluster centers’ locations may lead to totally different
clusters [2,6,7]. Thus, the algorithm needs to run several times for each value of
k chosen, to ensure that an (nearly) optimal solution for this parameter has been
found.

2. With increasing k the clustering becomes better and better – at least in terms of
the objective function used by k-means.

J.U;C /D D
nX

iD1

jC jX

jD1
uij d

2
�
xi ; cj

�
:

In this function U describes a membership matrix with values uij being either
1 (if xi belongs to cluster cj) or 0 (otherwise). d2.x; y/ describes the distance
(resulting from any metric applicable) between two points x and y. It is easy to
see that the function will reach a global optimum if k D n. Some penalty terms
would be required (such as minimum description length or Bayesian information
criterion) to ensure the clustering does not get too complex. Alternatively fuzzy

6 Density Based Clustering: Alternatives to DBSCAN 195

Fig. 6.1 k-Means clustering of a simple data set consisting of three clusters. Voronoi cells of a
point c are the areas in which no other cluster center is closer to said point

clustering (fuzzy c-means) [8] can be applied. Points that have an equally high
degree of membership in several clusters might indicate that these clusters can
be merged.

Another drawback is k-means’ limitation to convex-shaped clusters. Due to the
nature of the Voronoi cells clusters that are non-convex can only be captured in a
single cluster if the other data points’ locations allow this to happen (see Fig. 6.1).
More often than not the cluster will be split apart and the resulting clustering
becomes meaningless [24].

The last problem of k-means we want to mention here is its vulnerability against
noise. As noise we consider data points that do not fit well into any cluster. k-means
assigns every point to a cluster and moves the cluster prototype to the center of all
points assigned, making it susceptible for outliers. Such points may even distort the
clustering into complete nonsense if the amount of noise is sufficiently high.

From these disadvantages classical cluster algorithms possess, we define some
properties we expect a clustering algorithm should have:

• Ideally a clustering algorithm would be able to choose an appropriate number of
clusters itself without the additional need of user interaction or penalty terms.

• It should also be able to detect clusters of arbitrary shape.
• The algorithms result should at most change slightly in the presence of noise or

outliers.
• The number of parameters that need to be specified by the user should be as small

as possible.

196 C. Braune et al.

As there is no free lunch [25] for clustering, we will hardly see an algorithm
that completely fulfills all of these requirements. Luckily there exist algorithms that
fulfill most of these. These are density-based clustering algorithms. One of the most
prominent representatives of this class of clustering algorithms will be described in
the following section.

Other alternatives for clustering a data set include hierarchical clustering
[5], where each data point forms its own cluster and in each step of the algorithm the
two clusters that are closest to each other (according to a chosen linkage criterion)
are merged until only one cluster remains. The distances at which clusters are
merged can be visualized into a dendrogram and then be analyzed for finding a
suitable threshold. Instead of merging clusters there is also a divisive procedure that
implements a top-down approach [16].

6.2 Related Work

Some of the problems mentioned in the previous section can be traced back to a
limited definition of what a cluster actually is. Clusters are implicitly defined by
the k-means algorithms as sets of data points that where each point within this set
is close to each other point within the set and distant each point not in the same
set. This is a very broad notion of density which can be refined in several ways as
we will see in the following.

6.2.1 DBSCAN

DBSCAN is possibly the most prominent density-based clustering algorithm as of
today. Points are categorized into so-called core points which have many neighbour-
ing points in their direct vicinity, border points which lie in the neighborhood of at
least one core point, and noise points which are neither of the first.

The following part describes the DBSCAN algorithm in more detail, following
the original definitions and structure of [10]. First, we need to formally define when
a point should become a core point of a cluster. For this we need to define the term
�-neighborhood.

Definition 3. The �-neighborhood of a point xi is the set of points, which have a
distance of at most � to that point:

N� .xi / D fx 2 D j d.xi ; x/ � �g:

Then we can define core points with respect to a local density measure, i.e. the
number of points within a point’s �-neighborhood.

6 Density Based Clustering: Alternatives to DBSCAN 197

Definition 4. To the set of core points belong all points whose �-neighborhood
contains at least minPts other points:

P D fx 2 D j kN� .x/ k � minPtsg:

Now, a point that lies within an �-neighborhood of a core point might itself be
no core point because it lies on the border of a cluster and thus does not fulfill the
density criterion posed by the minPts parameter.

Definition 5. A point p is called directly density-reachable from a core point x if
p 2 N� .x/.

Definition 6. A point p is called density-reachable from a core point x if there is
a series of points p1; p2; : : : ; pn with p D pn and x D p1 and for every .pi ; piC1/
holds: piC1 is directly density-reachable from pi .

Definition 7. Two points p and q are called density-connected if there is a point o
such that p and q are both density-reachable from o.

With these notions of density we can finally define the clusters DBSCAN will
find:

Definition 8. A set C � D is called cluster if for every p; q 2 C holds: p and q
are density-connected and there is no superset of C that is also a cluster.

Every point that is not density-connected to any other point (and thus does not
belong to any cluster) is considered to be noise. Figure 6.2 visualizes the different
concepts of connectivity explained before. The set of points C D fp; x1; x2; x3; qg
forms a cluster in this example.

With this notion of what a cluster actually is, we can find almost arbitrarily-
shaped clusters in also high-dimensional data. Even clusters whose convex hulls are

Fig. 6.2 The left plot shows a point x and its �-neighborhood. The star-shaped point lies not in
N� .x/, the diamond-shaped points do. The center plot shows three points x1; x2; x3. x1 and x3 are
directly density-reachable from x2 and thus x3 is density-reachable from x1. The right plot shows
two additional points p and q which are density-connected by x1; x2 and x3

198 C. Braune et al.

Fig. 6.3 A single cluster with two patches of noise in the bottom left and top right corner in the left
plot. In the right plot core points are plotted as bigger circles, density-connected non-core points
smaller

Fig. 6.4 Left plot shows the data set of 300 points, originally all drawn from the same multivariate
Gaussian distribution. The other plots show the clustering with the given parameters. minPts has
been chosen too large. White points belong to the same cluster, black points are considered noise

intersecting (which are not linear separable) can be distinguished with this algorithm.
With the help of suitable data structures the region queries (asking for the points in
a certain neighborhood of a point) can be computed fairly fast [17] leading to an
overall fast computation of the clustering result (Fig. 6.3).

Yet, there are still some drawbacks that should not go unmentioned in this algo-
rithm. First, the choice of minPts greatly influences the outcome of the algorithm.
A value too low will turn the result close to what could have been achieved by
hierarchical clustering. In fact, the resulting clustering is equal to that of hierarchical
clustering with a cutoff threshold of � if we chose minPts D 2. However, if the
value for minPts is chosen too large then only few to none points might fulfill the
core point condition and no clusters will be formed at all. This effect is illustrated
in Fig. 6.4.

6 Density Based Clustering: Alternatives to DBSCAN 199

The second parameter – � – influences the outcome as well [9]. Since it is used
to calculate the neighborhood of a point it is crucial in determining whether a point
should become a core point or not. Smaller values of � require also smaller values
of minPts, if the same density is to be used, but this might lead to overall smaller
clusters as the border points of a cluster (the ones which are density-connected but
not core points) may not be captured by any �-neighborhood. These points would
become noise then.

Lastly, DBSCAN is very bad at differentiating between clusters with different
densities [10] or clusters with locally varying density. Clusters with higher densities
require a smaller � or a smaller minPts, while low density clusters need these values
increased. If now in a data sparse and tight clusters occur at the same time, DBSCAN
runs into a situation where either the sparse clusters would not be recognized at all
or might be merged with the tight cluster, making it impossible to distinguish these.
Figure 6.5 shows this for a sample data set of two clusters generated with different
densities.

As for all clustering algorithms that are based on distance measures DBSCAN
does not cope very well with increasing dimensionality of the data set. The
curse of dimensionality is here only one problem. The minPts-� combination of
parameters scales not very intuitively with increasing number of data set attributes.
While a parameter setting of .minP ts; �/ D .20; 2/ means that we hope to see
approximately 1:59 data points per unit of hypervolume in a two-dimensional data
set, the same setting leads to 0:25 points per hypervolume unit in a data set as simple
as only containing four attributes.

Fig. 6.5 Effects of different choices for � if clusters of different densities are present. Left plot
shows the data set of 150 points, distributed across two clusters of different densities. The other
plots show the clustering with the given parameters. White points belong to the same cluster, black
points are considered noise

200 C. Braune et al.

6.3 Clustering with a Different Notion of Density

In this section we will describe to density-based clustering methods that circumvent
the necessity to both specify a parameter for � and minPts. Both algorithms use a
slightly different notion of density, which thus enables them to cluster data sets with
only one of the parameters required by DBSCAN. Of course this comes at a cost as
we will explain later.

6.3.1 Black Hole Clustering

The first algorithm we want to describe uses only an � as parameter to estimate
clusters in an iterative way. The basic idea behind this algorithm is that if data are
organized in different clusters and if we placed black holes outside of the bounding
box of the data each single data point would be dragged towards the black hole.
Depending on the original distance to the black hole, it would take a different
amount of time for a data point to finally fall into the black hole and disappear.
Clusters of data points should disappear at roughly the same time and could be
identified in such a way.

Of course, if two clusters had the same distance to the black hole they would
also disappear at the same time and could not be distinguished. Thus, we need
to place several black holes around the data and observe each of it individually,
recording the time (or equivalently the distance) from each point to each black hole.
Clusters that could already be separated by one of the previous black holes can be
processed separately. The algorithm identifies points on rings around each black
hole as belonging to the same cluster. By processing the rings separately we are in
a sense triangulating the clusters (in the two-dimensional case).

Figure 6.6 shows the pseudocode for this clustering algorithm. One of its advan-
tages is that it does not require any special implementation of data structures other
than an array or a list and that the overall runtime is considerably fast compared to
other clustering algorithms. To calculate the complexity of this algorithm we take a
look at the pseudocode:

Line 3 To construct the black holes we need to know the bounding box of the data
set which takes O .n/ and construct the location of each black hole in O .k/ kC1
times. For proper triangulation we need k C 1 observers in k-dimensional space
to ensure that we correctly locate a point.

Line 4 Calculating the distance array needs O ..k C 1/k � n/ as distance calculation
use O .k/ and we need to perform this .k C 1/ times for each data point.

Line 10 Sorting the array of points according to one of the distance can be done in
O .n � logn/.

Line 9 to 21 Each point is copied exactly once: O .n/.
Line 8 to 24 This loop is executed .k C 1/ times.

6 Density Based Clustering: Alternatives to DBSCAN 201

Fig. 6.6 Pseudocode for the black hole clustering algorithm

The complexity of the black hole clustering algorithm is then

O

0

@
Line 3‚ …„ ƒ

nC k � .k C 1/C .k C 1/k � n„ ƒ‚ …
Line 4

C
Line 8 to 24‚ …„ ƒ

.k C 1/ � .n � logn„ ƒ‚ …
Line 10

Cn/
1

A

D O
�
nC k2 C k C k2nC knC kn lognC knC n lognC n�

D O
�
2nC k C 2knC n � lognC k2 C k2nC k � n � logn

�

And since we can assume that n is much larger than k:

D O .k � n � logn/ :

Although this algorithm beats DBSCAN’s runtime for large data set and can
estimate the number of clusters present quite well it is limited to finding mainly
convex clusters that are clearly linearly separable. It also has no built-in, explicit
noise detection like DBSCAN has, instead noise will be kept in very small lists of
cluster, each only containing few (most often only one) data points. Section 6.4 will
give a more thorough evaluation of the algorithms capabilities.

202 C. Braune et al.

6.3.2 Protoclustering

Our second algorithm abstains from using a measure for local density and rather
uses only a minPts parameter. It works by iteratively finding subspaces of high
density, forming the points contained within these into a set of so-called protoclus-
ters which are then further analyzed for cluster structure. The idea behind this is
that clusters are regions in space that are denser than their surrounding and can be
identified as such.

In Fig. 6.7 we can see the process of forming the protoclusters for a very small
data set of 9 points. We choose minPts D 3 for obvious reasons. The first step in
forming the protoclusters is identifying dense regions in data space. For this we
consider the whole data set to be a single cluster and calculate its center point. The
point that lies furthest away from this center is the point must susceptible to being
noise and is thus removed from the data set. This, however, changes the mean point,
which has to be recalculated. We then proceed to remove the farthest point again and
repeat the center calculation. With every step the bounding (hyper-)box becomes
smaller and smaller while the number of points within it only decreases by one in
each iteration. If only less than or equal to minPts points are left, the remaining
points are returned as first protocluster.

Fig. 6.7 The first two rows show how points are removed one by one and how the center
point changes to find the first protocluster. The bottom row shows the generation of the second
protocluster and since only minPts points are left they automatically turn into the third protocluster

6 Density Based Clustering: Alternatives to DBSCAN 203

Fig. 6.8 The distance graph resulting from the protoclusters. The edges are labeled with the
Euclidean distances between the protoclusters’ centers The right plot shows which edges can be
removed since their weights are significantly higher than the remaining one

The protocluster generation proceeds with the remaining data points until
eventually all points are grouped into c D d n

minPtse protoclusters (c�1 of size minPts
and 1 of size at most minPts). Each cluster within the data set is now represented by
several protoclusters and their structure can be used as a skeleton for the real clusters.
To find, which protoclusters can be merged, we can look at the pairwise distances
between the protoclusters’ center points. Figure 6.8 shows the distance graph for
the previous example. Obviously the distances to the protocluster in the bottom
left corner of the data set are significantly higher than the distance between the
top right protoclusters. If we remove all the edges from this graph whose distances
(weights) are too large, we see (in Fig. 6.8 on the right) that only the protoclusters
that originate from points that belong to the same cluster stay connected. So, clusters
can be seen as connected components in the reduced distance graph and the final
clustering would look like the one in Fig. 6.9.

The pseudocode of the algorithm so far can be found in Fig. 6.10.
With the implicit iterative adaptation to the local densities we can also find

clusters with varying densities as Fig. 6.11 shows. With a proper threshold chosen
the connected components even become cliques in the reduced distance graph
which might give us another application for this algorithm: overlapping clusters.
If a point may not only belong to one cluster but to several (similar to multi-label
classification, where one is interested in assigning not only one but possibly several
labels to a data point) such overlapping cluster structures could be identified as
cliques in the distance graph structure. In such a graph, vertices could also belong
to several cliques. Such a (admittedly constructed) example of a data set where we
might assign two cluster labels to the central four points can be found in Fig. 6.12
and of course it would be also valid to consider the whole data set to be only a
single cluster.

Since the protoclusters’ size is fixed, we might have skipped some of the
border points of a noisier cluster and such a point would later be part of a less
dense protocluster. The center of such low-density protoclusters is probably a bad
representation for the points contained in the cluster.

204 C. Braune et al.

Fig. 6.9 The resulting clustering after connected components are identified

Fig. 6.10 Pseudocode for the protoclustering algorithm

In Fig. 6.13 you can actually see two protocluster centers which are placed in a
rather odd way. This is, because the points contained in these protoclusters lie on
different sides of the circle. Since the process generating the protoclusters organized
the prototypes in such a way that less than minPts points remained close to each
other, a protocluster was formed that spans a larger hypervolume. Thus, these points

6 Density Based Clustering: Alternatives to DBSCAN 205

Fig. 6.11 A data set with three clusters of different densities, the final clustering and the distance
graph (full and reduced)

never formed a dense region again until the very end of the protocluster generation.
In Fig. 6.14 this is even more extreme as here some points are actually assigned to
the wrong cluster.

To cope with these problems a clean-up step should be performed once after
the protoclusters have been generated. For every point we check whether there is a
protocluster that fits the point better than the one it is currently assigned to. This can
be done simply by choosing the protocluster center that lies nearest to each point.
If P is the set of protoclusters (represented by their center points pi 2P), the new
protocluster for a point x 2 D is:

� .x/ D arg min
p2P d.x; p/

6.4 Evaluation

To evaluate the algorithm we described in the previous section, we use two different
scenarios. Since our black hole clustering approach produces mainly the same
results as the DBSCAN algorithm (given that we have convex, non-overlapping
clusters) and cannot properly identify clusters whose convex hulls are intersecting,
we generated several data sets of different size and with a different number

206 C. Braune et al.

Fig. 6.12 A data set with two overlapping clusters. The final clustering assigns two different
cluster labels to the central four points

Fig. 6.13 A data set with two circles, one cluster is completely surrounded by the other

of clusters. To evaluate the clusterings we use the Adjusted Rand Index [14].
The Rand Index is a measure of agreement between two labelings of points and
measure (independent of permutation of label indices) how well two different
clusterings overlap. Given that we know the original labels of the data points from
the generating process we can use this measure to assess the quality of the clustering.
Values near 1:0 indicate strong agreement between the two sets of labels while
values close to �1:0 indicate the opposite. Values near 0:0 indicate random label
distribution. The Adjusted Rand Index used for our evaluation also corrects for
guessing the correct label just by chance and can be seen as a normalized version of
the original Rand Index.

6 Density Based Clustering: Alternatives to DBSCAN 207

Fig. 6.14 A data set with two half moons, intruding each others convex hulls

For the protoclustering algorithm we resort to an application of the algorithm
where we already tested its validity: spike train analysis (see [3,4,11,23] for a more
in-depth explanation on the task). Neurons emit signals when stimulated by enough
neurotransmitters. According to one of many competing hypotheses in neurobiology
information is processed by several neurons and one piece of information that is
processed by the same set of neurons excites these in a way that they emit signals at
the same time. Signals recorded from a neuron over time are called spike train and
can be analyzed in several ways. One of them is to turn the train into a vector space
representation which then in turn can be clustered. Since the stochastical behaviour
of a spike can roughly be described by a poisson process, we can simulate spike
trains with the desired properties (coincident emitation of signals) and see, if our
clustering algorithm can identify these groups of synchronized spike trains within a
larger base of noise. Since it is unclear whether neurons actually only participate in
one group or can be part of several groups at the same time, we also generated spike
trains which overlap on some neurons (very similar to the data set from Fig. 6.12).

6.4.1 Black Hole Clustering Evaluation

To show the quality of the black hole clustering algorithm, we generated several data
sets of one to four clusters. Each cluster was generated with the same number of
points. The cluster centers’ coordinates were each drawn from uniform distribution
on the interval Œ�10; 10�. Around the centers points were drawn from a bivariate
Gaussian distribution. Cluster indices were stored for each point to evaluate the
resulting clustering against a ground truth. The size of the data set was s 2
f100; 250; 500; 1;000; 2;500; 5;000; 10;000; 25;000; 50;000; 100;000g data points in
two dimensions. The tests themselves were repeated one hundred times for each
size. DBSCAN was initialized with the same parameter for epsilon as our algorithm.

208 C. Braune et al.

Fig. 6.15 Evaluation results for black hole clustering vs. different instances of DBSCAN. Please
note the logarithmic x axis. Error bars indicate one standard deviation

For minPts we chose values from f2; 10; 50g and ran the algorithms on the same
data set. The computer used to perform the tests was a HP Z400 workstation
(8GB RAM, Six cores, each 3:3GHz, hyperthreading enabled but not used) running
with MacOS Lion. No parallelization was used during the tests, each algorithm
could only use one of the cores available. The DBSCAN implementation from
scikit-learn [22] was used. The results for the different test setups can be
seen in Fig. 6.15 and the results for the runtime evaluation in Fig. 6.16. As we can
see from the Fig. 6.15 the more points are contained in the data set, the better the
clustering result. Naturally, if only a little more than 100 points are contained in
the data set and they are distributed across several clusters, we expect DBSCAN
to fail when it requires at least 50 points in any �-neighborhood. Thus, the quality
of the clustering for DBSCAN increases with the number of data points as this
requirement can be met more easily – especially for blob-shaped clusters. The same
but to a lesser degree holds true for the other DBSCAN instances that can meet the
minPts requirement more easily right at the beginning of our tests.

On the other hand, our method surpasses DBSCAN in any of our chosen settings.
Nearly perfect results are achieved even for small datasets, where the only errors
originate from extreme outliers that were drawn from the same distribution but do
not really fit into the ideal cluster shape. Since they are still labeled as belonging
to a certain cluster they generate an error if labeled as noise. Still, the variation of
the results and the results themselves are always better than for any instance of the
DBSCAN algorithm.

6 Density Based Clustering: Alternatives to DBSCAN 209

Fig. 6.16 Runtime evaluation results for black hole clustering vs. different instances of DBSCAN.
The differences between the different setups of the DBSCAN are so little that they cannot be
distinguished up to x D 50;000 in this plot. Error bars indicate one standard deviation (nearly zero
for black hole clustering)

The runtime of all DBSCAN instances is nearly the same and increases approxi-
mately linearly with the number of points in the dataset as Fig. 6.16 shows. On the
other hand nearly no increase in runtime is measurable for our clustering method
(approximately 90 s for DBSCAN vs. less than 5 s for BHC).

6.4.2 Protoclustering

As for the protoclustering algorithm we generated 10;000 data sets with 80% noise
and only 20% data points (spike trains). The main challenge here is to properly
distinguish between the noise and non-noise data points. Of all data available from a
single spike train again at least another 75% are just noise and no usable information
can be gained from those spikes within a train. But still these signals may coincide
by chance with signals from other spike trains. On yet another level information
about coincidences across synchronized spike trains may be lost (due to biological
constraints) and up to 40% of the coincidence information is lost again.

In Fig. 6.17 the accuracy over all the trials can be seen. Since the data was
generated artificially we can again evaluate against a ground truth.

If we assume that spike trains can be part of more than one cluster we can
model the information loss described earlier by different overlapping groups of
spike trains. Hence we do not need to model the information loss as in the previous

210 C. Braune et al.

Fig. 6.17 This plot shows cluster quality for different spike train setups

setup but rather hope to find the points belonging to the overlapping subgroups.
Evaluation becomes a bit more complicated as cluster evaluation measures usually
only apply to single label clusterings. For this evaluation setup we generated two
groups of spike trains that overlap on a subgroup of 5 points. The ground truth label
for the overlapping group is different from the other two labels. Points that were
clustered into two clusters were automatically labeled with this extra labels. The
evaluation could then be performed against this ground truth. The results are shown
in Figs. 6.17 and 6.18. As we might expect from the data generation process, the
results show that clusters can be identified for different copy probabilities as long
as the probability does not drop too much. For c D 0:6 most of the results are still
valid but the quality detoriates a lot, yet the vast majority of all results still indicates
a lot of the labels were actually correct. If we are looking for overlapping clusters
(cf. Fig. 6.18) we see better results than we would be expecting under such a difficult
setting. Comparing the results to the previous ones we have to know, that any setting
of different copy probabilities can be modelled by overlapping clusters of different
sizes and a suitable overlap structure. Because of that we do not need to test anything
beside a copy probability of c D 1:0 and we can see that the multiple assignment of
labels works in our example.

6 Density Based Clustering: Alternatives to DBSCAN 211

Fig. 6.18 This plot shows cluster quality for overlapping clusters of spike trains

6.5 Conclusion

In the previous sections we described how density-based clustering like DBSCAN
overcomes some of the major problems of classical partitional clustering algorithms.
We also described two method which – under certain restrictions – produce similar
or better results than DBSCAN does while using less parameters that need to be
estimated by the data analyst. Our two algorithms – the black hole clustering and
the protoclustering algorithm – both use only one version of the parameters used
by DBSCAN. This comes at the cost of some flexibility or speed but allow either
a quick explorative analysis on hundreds of thousands of points even on desktops
machines or allow multilabel clustering on smaller data sets.

Still, some problems are yet unsolved. Especially for the multilabel clustering
scenario the choice of the threshold to reduce its distance graph is crucial and
not easily determined. Spherical clusters can be found with ease since many
protoclusters will lie in the same cluster and there will be many small distances
within the clusters. The threshold can then be determined by clustering the one-
dimensional data set of weights in the graph and remove the edges with the larger
distances. This leads to good results yet is a rather unsatisfying method. Here some
more sophisticated methods should be explored.

212 C. Braune et al.

References

1. Beil F, Ester M, Xu X (2002) Frequent term-based text clustering. In: Proceedings of the eighth
ACM SIGKDD international conference on knowledge discovery and data mining. ACM,
New York

2. Bradley PS, Fayyad UM (1998) Refining initial points for K-means clustering. In: Proceedings
of the fifteenth international conference on machine learning (ICML), vol 98, pp 91–99

3. Braune C, Borgelt C, Grün S (2012) Assembly detection in continuous neural spike train data.
In: Advances in intelligent data analysis XI. Springer, Berlin, Heidelberg, pp 78–89

4. Braune C, Borgelt C, Kruse R (2013) Behavioral clustering for point processes. In: Advances
in intelligent data analysis XII. Springer, Berlin, Heidelberg, pp 127–137

5. Bridges CC Jr (1966) Hierarchical cluster analysis. Psychol Rep 18(3):851–854
6. Celebi ME, Kingravi H (2012) Deterministic initialization of the K-means algorithm using

hierarchical clustering. Int J Pattern Recognit Artif Intell 26(7):1250018
7. Celebi ME, Kingravi H, Vela PA (2013) A comparative study of efficient initialization methods

for the K-means clustering algorithm. Expert Syst Appl 40(1):200–2010
8. Döring C, Lesot MJ, Kruse R (2006) Data analysis with fuzzy clustering methods. Comput

Stat Data Anal 51(1):192–214
9. Esmaelnejad J, Habibi J, Yeganeh SH (2010) A novel method to find appropriate � for

DBSCAN. In: Intelligent information and database systems. Springer, Berlin, Heidelberg,
pp 93–102

10. Ester M, Kriegel HP, Sander J, Xu X (1966) A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of 2nd international conference on
knowledge discovery and data mining (KDD), vol 96, pp 226–231

11. Gerstein, GL, Perkel DH (1969) Simultaneously recorded trains of action potentials: analysis
and functional interpretation. Science 164(3881):828–830

12. Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC (1992) A comparison
of neural network and fuzzy clustering techniques in segmenting magnetic resonance images
of the brain. IEEE Trans Neural Netw 3(5):672–682

13. Hentschel C, Stober S, Nürnberger A, Detyniecki M (2008) Automatic image annotation using
a visual dictionary based on reliable image segmentation. In: Adaptive multimedia retrieval:
retrieval, user, and semantics. Springer, Berlin, Heidelberg, pp 45–56

14. Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
15. Jing L, Ng MK, Xu J, Huang JZ (2005) Subspace clustering of text documents with feature

weighting k-means algorithm. In: Advances in knowledge discovery and data mining. Springer,
Berlin, Heidelberg, pp 802–812

16. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis.
Wiley, New York

17. Katayama N, Satoh S (1997) The SR-tree: an index structure for high-dimensional nearest
neighbor queries. ACM SIGMOD Record 26(2):440–447

18. Krinidis S, Chatzis V (2010) A robust fuzzy local information C-means clustering algorithm.
IEEE Trans Image Process 19(5):1328–1337

19. Kruse R, Borgelt C, Klawonn F, Moewes C, Steinbrecher M, Held P (2013) Computational
intelligence: a methodological introduction. Springer, Berlin

20. Li Y, Luo C, Chung SM (2008) Text clustering with feature selection by using statistical data.
IEEE Trans Knowl Data Eng 20(5):641–652

21. MacQueen JB (1967) Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability,
vol 1. University of California Press, Berkeley, pp 281–297

22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res
12:2825–2830

6 Density Based Clustering: Alternatives to DBSCAN 213

23. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point
processes: II. Simultaneous spike trains. Biophys J 7(4):419–440

24. Sugar CA, James GM (2003) Finding the number of clusters in a dataset. J Am Stat Assoc
98(463):750–763

25. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1.1:67–82

26. Zhang X, Jiao L, Liu F, Bo L, Gong M (2008) Spectral clustering ensemble applied to SAR
image segmentation. IEEE Trans Geosci Remote Sens 46(7):2126–2136

Chapter 7
Nonnegative Matrix Factorization
for Interactive Topic Modeling
and Document Clustering

Da Kuang, Jaegul Choo, and Haesun Park

Abstract Nonnegative matrix factorization (NMF) approximates a nonnegative
matrix by the product of two low-rank nonnegative matrices. Since it gives
semantically meaningful result that is easily interpretable in clustering applications,
NMF has been widely used as a clustering method especially for document data,
and as a topic modeling method.

We describe several fundamental facts of NMF and introduce its optimization
framework called block coordinate descent. In the context of clustering, our
framework provides a flexible way to extend NMF such as the sparse NMF and
the weakly-supervised NMF. The former provides succinct representations for
better interpretations while the latter flexibly incorporate extra information and user
feedback in NMF, which effectively works as the basis for the visual analytic topic
modeling system that we present.

Using real-world text data sets, we present quantitative experimental results
showing the superiority of our framework from the following aspects: fast conver-
gence, high clustering accuracy, sparse representation, consistent output, and user
interactivity. In addition, we present a visual analytic system called UTOPIAN
(User-driven Topic modeling based on Interactive NMF) and show several usage
scenarios.

Overall, our book chapter cover the broad spectrum of NMF in the context of
clustering and topic modeling, from fundamental algorithmic behaviors to practical
visual analytics systems.

Keywords Nonnegative matrix factorization • Document clustering • Topic mod-
eling • Block coordinate descent • Interactive visual analytics

D. Kuang • J. Choo • H. Park (�)
Georgia Institute of Technology, Atlanta, GA, USA
e-mail: da.kuang@cc.gatech.edu; jaegul.choo@cc.gatech.edu; hpark@cc.gatech.edu

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__7

215

mailto:da.kuang@cc.gatech.edu
mailto:jaegul.choo@cc.gatech.edu
mailto:hpark@cc.gatech.edu

216 D. Kuang et al.

7.1 Introduction to Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a dimension reduction method and factor
analysis method. Many dimension reduction techniques are closely related to the
low-rank approximations of matrices, and NMF is special in that the low-rank factor
matrices are constrained to have only nonnegative elements. The nonnegativity
reflects the inherent representation of data in many application areas, and the
resulting low-rank factors lead to physically natural interpretations [33]. NMF
was first introduced by Paatero and Tapper [43] as positive matrix factorization
and subsequently popularized by Lee and Seung [33]. Over the last two decades,
NMF has received enormous attention and has been successfully applied to a broad
range of important problems in the areas including text mining [44, 52], computer
vision [21, 36], bioinformatics [6, 11, 22], spectral data analysis [45], and blind
source separation [10], and many others.

Suppose a nonnegative matrix A 2 R
m�n is given. When the desired lower

dimension is k, the goal of NMF is to find the two matrices W 2 R
m�k and

H 2 R
k�n having only nonnegative entries such that

A � WH: (7.1)

According to (7.1), each data point, which is represented as the column of A, can be
approximated by an additive combination of the nonnegative basis vectors, which
are represented as the columns of W . As the goal of dimension reduction is to
discover compact representation in the form of (7.1), k is assumed to satisfy that
k < minfm; ng. The matrices W and H are found by solving an optimization
problem defined with the Frobenius norm (a distance measure between two given
matrices), the Kullback-Leibler (KL) divergence (a distance measure between two
probability distributions) [34,38], or other divergences [12,38]. In this book chapter,
we focus on NMF based on the Frobenius norm, which is the most commonly used
formulation:

min
W�0;H�0 f .W;H/ D kA �WHk

2
F : (7.2)

The constraints in (7.2) indicate that all the entries of W and H are nonnegative.
NMF with the formulation (7.2) has been very successful in partitional clustering,

and many variations have been proposed for different settings such as constrained
clustering and graph clustering [7, 22, 30, 37]. NMF especially performs well as
a document clustering and topic modeling method. Due to an ever increasing
amount of document data and the complexity involved with analyzing them in
practice, revealing meaningful insights and thus guiding users in their decision-
making processes has long been an active area of research. Document clustering
is an important task in text mining with the goal of organizing a large text collection
into several semantic clusters and helping users browse documents efficiently. Topic
modeling is related to soft clustering where the documents are represented as a

7 Nonnegative Matrix Factorization 217

weighted combination of topics in terms of their proximity to each topic. In addition
to its soft clustering aspect, topic modeling also deals with the semantic meaning of
each cluster/topic and models it as a weighted combination of keywords. Because
of the nonnegativity constraints in NMF, the result of NMF can be viewed as
document clustering and topic modeling results directly, which will be elaborated
by theoretical and empirical evidences in this book chapter.

The goal of this book chapter is to provide an overview of NMF used as
a clustering and topic modeling method for document data. We present a wide
spectrum of material including the theoretical justification of NMF as a clustering
method (Sect. 7.2), an algorithmic framework and extensions (Sect. 7.3), empirical
performances and practical issues (Sects. 7.4–7.5), as well as a visual analytic
system called UTOPIAN (Sect. 7.6). Our emphasis is placed on NMF in the context
of document clustering and topic modeling; however, the presented methodology
applies to data types beyond text, for example, DNA microarray and RNA sequenc-
ing data in the biological domain.

We recommend the readers be familiar with linear algebra and numerical
optimization theory.

Notations: Notations used in this book chapter are as follows. A lower-case letter,
such as x, denotes a scalar; an upper-case letter, such as X , denotes a matrix; a
bold-face lower-case letter, such as x, denotes a column vector. We typically use
i; j as indices: For example, i 2 f1; � � � ; ng. The elements of a sequence of vectors
or matrices are denoted by superscripts within parentheses, such as X.1/; � � � ; X.n/,
and the entire sequence is denoted by fX.i/g. The entries of a matrix are denoted
by subscripts, such as xij for a matrix X . X � 0 indicates that the elements of X
are nonnegative, i.e., X is a nonnegative matrix. R and RC denote the set of real
numbers and nonnegative real numbers, respectively. k � k2 and k � kF denotes the
L2 norm and the Frobenius norm, respectively. The operator :� denotes entrywise
multiplication of matrices.

7.2 Nonnegative Matrix Factorization for Clustering

Dimension reduction and clustering are closely related. Consider the low-rank
approximation in (7.1), where A 2 R

m�nC ; W 2 R
m�kC ; H 2 R

k�nC , and k <<

min.m; n/ is the pre-specified lower rank. The columns of A represent n data points
in an m-dimensional space. Each column of H is the k-dimensional representation
of a data point. If we can use H to derive an assignment of the n data points into
k groups, clustering can be viewed as a special type of dimension reduction. One
example is the classical K-means clustering:

min
nX

iD1
kai � wgi k22; (7.3)

218 D. Kuang et al.

where a1; � � � ; an are the columns of A, w1; � � � ;wk are the k centroids, and gi D j
when the i -th data point is assigned to the j -th cluster (1 � j � k). Consider
K-means formulated as a dimension reduction problem [26]:

min
H2f0;1gk�n;HT 1kD1n

kA �WHk2F ; (7.4)

where 1k 2 R
k�1 and 1n 2 R

n�1 are the column vectors whose elements are all 1’s.
In the K-means formulation for (7.4), the columns of W are the cluster centroids,
and the single nonzero element in each column of H indicates the clustering
assignment. Another example of dimension reduction is NMF:

min
W�0;H�0 kA �WHk

2
F :

In this formulation, the columns of W provide the basis of a latent k-dimensional
space, and the columns of the second factor H provide the representation of
a1; � � � ; an in the latent space. With only the nonnegativity constraints on H , this
formulation can still be interpreted as clustering results: The columns of W are
interpreted as k cluster representatives, and the i -th column of H contains the soft
clustering membership of the i -th data point for the k clusters. NMF is best known
for the interpretability of the latent space it finds [33]. In the case of document
clustering and topic modeling, the basis vectors in W represent k topics, and the
coefficients in the i -th column of H indicate the topic proportions for ai , the i -th
document. To obtain a hard clustering result, we can simply choose the topic with
the largest weight, i.e., the largest element in each column of H .

Historically, NMF has been extensively compared with K-means and singular
value decomposition (SVD). We give several clarifications and caveats regarding
using NMF as a clustering method. It has been shown that K-means and NMF have
the equivalent form of an objective function, kA � WHk2F [13]. However, each
clustering method has its own conditions under which it performs well. K-means
assumes that data points in each cluster follow a spherical Gaussian distribution [16].
In contrast, the NMF formulation (7.2) provides a better low-rank approximation
of the data matrix A than the K-means formulation (7.4). If k � rank.A/, the
columns ofW are linearly independent due to rank.A/ � nonnegative-rank.A/1 [3].
Therefore, NMF performs well when different clusters correspond to linearly
independent vectors [30].

One caveat is that NMF does not always perform well as a clustering method.
Consider the example in Fig. 7.1, where the two cluster centers are along the same
direction and thus the two centroid vectors are linearly dependent. While NMF still
approximates all the data points well in this example, no two linearly independent

1The nonnegative rank of a matrix X 2 R
m�n
C

is the smallest number Ok such that X D WH where

W 2 R
m�

Ok
C

and H 2 R
Ok�n
C

.

7 Nonnegative Matrix Factorization 219

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x1 x1

x 2x 2

Standard K−means

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
Standard NMF

Fig. 7.1 An example with two ground-truth clusters, and the different clustering results given by
K-means and NMF. The “o” and “x” markers in each figure indicate the cluster membership of
the data points given by the clustering algorithm. The left figure shows that K-means correctly
identifies the two clusters where the two centroids are linearly dependent. The right figure shows
that NMF, on the contrary, uses two linearly independent vectors as cluster representatives marked
by the two thick arrows, and leads to incorrect clustering results

vectors in a two-dimensional space can represent the two clusters shown in Fig. 7.1.
Since K-means and NMF have different conditions under which each of them does
clustering well, they may generate very different clustering results in practice.

In contrast to NMF, rank-k SVD provides the best rank-k approximation but
allows negative entries:

min
UT UDI;V T VDI

kA �W Y kF D kA � U˙V T kF ; (7.5)

where U 2 R
m�k , ˙ 2 R

k�k , and V 2 R
n�k . Thus we cannot interpret

the coefficients in the lower-dimensional space spanned by the columns of U as
clustering assignments. In other words, the rows of V cannot be used as cluster
indicators directly. Instead, an additional clustering method such as K-means has to
be applied to a lower-dimensional representation of the data such as the rows of V
to generate clusters.

The success of NMF as a clustering method depends on the underlying data set,
and its greatest success has been in the area of document clustering [15, 26, 37,
44, 46, 52]. In a document data set, data points are often represented as unit-length
vectors [40] and embedded in a linear subspace. For a term-document matrix A,
a basis vector wj is interpreted as the keyword-wise distribution of a single topic.
When these distributions of k topics are linearly independent, which is usually the
case, NMF can properly extract the ground-truth clusters determined by the true
cluster labels.

Recently, NMF has been applied to topic modeling, a task related to document
clustering, and achieved satisfactory results [1, 2]. Both document clustering and
topic modeling can be considered as dimension reduction processes. Compared to

220 D. Kuang et al.

standard topic modeling methods such as probabilistic latent semantic indexing
(p-LSI) [20] and latent Dirichlet allocation (LDA) [5], NMF essentially gives the
same output types: A keyword-wise topic representation (the columns of W), and
a topic-wise document representation (the columns of H). The only difference,
however, is that the columns of W and H do not have a unit L1-norm unlike the
p-LSI and LDA outputs. Nonetheless, such a difference is negligible in that (7.1)
can be manipulated via diagonal scaling matrices as

A � WH D .WDW /.D
�1
W H/ D OW OH; (7.6)

where the diagonal component of the diagonal matrix DW 2 R
k�kC corresponds to

the column sums of W . Now the new matrix OW is column-normalized, giving an
output analogous to the first outputs from p-LSI and LDA, but the second output
OH is still not column-normalized. The column normalization on H does not affect

the interpretation of each document in terms of its relative relationships to topics. In
this sense, NMF can be used as an alternative to topic modeling methods.

Note that NMF with KL-divergence is another commonly used formulation
for topic modeling. It has a probabilistic interpretation and can be shown to be
equivalent to p-LSI under certain constraints. However, algorithms for solving NMF
with KL-divergence and p-LSI are typically much slower than those for solving
NMF based on the Frobenius norm (7.2) [51]. Therefore, we focus on (7.2) in
this chapter since there are many justified and efficient optimization algorithms
developed for (7.2) in the literature.

7.3 Optimization Framework for Nonnegative Matrix
Factorization

Although NMF is known as an NP-hard problem [49], one can still hope to find a
local minimum as an approximate solution for NMF. In this section, we introduce
an algorithmic framework to optimize the objective function (7.2), namely the block
coordinate descent (BCD) framework. Multiplicative updating (MU) is another
popular framework for solving NMF [33]. However, it has slow convergence and
may lead to inferior solutions [18, 39]. In the later section, we will compare the
solutions given by these two frameworks empirically and show the better clustering
quality given by BCD.

7.3.1 Block Coordinate Descent Framework

The BCD framework is a widely-applicable strategy in nonlinear optimization prob-
lems. It divides variables into several disjoint subgroups and iteratively minimize
the objective function with respect to the variables of each subgroup at a time.

7 Nonnegative Matrix Factorization 221

Algorithm 1 The BCD framework for solving NMF: minW;H�0 kA �WHk2F
1: Input: Matrix A 2 R

m�n, tolerance parameter 0 < � << 1, upper limit of the number of
iterations T

2: Initialize H
3: repeat
4: Obtain the optimal solution of subproblem (7.8a)
5: Obtain the optimal solution of subproblem (7.8b)
6: until A particular stopping criterion based on W;H; � is satisfied or the number of iterations

reaches upper limit T
7: Output: W;H

In the formulation of NMF (7.2), A is given as an input and the entries of W and
H are the variables to be solved. A natural partitioning of the variables is the two
blocks representing W and H , respectively. That is to say, we take turns solving

W arg min
W�0 f .W;H/; (7.7a)

H arg min
H�0 f .W;H/: (7.7b)

These subproblems can be written as

min
W�0kH

TW T � AT k2F ; (7.8a)

min
H�0kWH � Ak

2
F : (7.8b)

The subproblems (7.8) are called nonnegativity constrained least squares (NLS)
problems [32], and the BCD framework has been called the alternating nonnegative
least squares (ANLS) framework [23, 39]. It is summarized in Algorithm 1.

Note that we need to initialize H and solve (7.8a) and (7.8b) iteratively, as
stated in Algorithm 1. Alternatively, we can also initialize W and solve (7.8b) and
(7.8a) iteratively. Different initializations may lead to different solutions for NMF.
A common strategy is to run an NMF algorithm starting from different random
initializations and pick the solution with the smallest objective function value. Other
strategies for initializing W and/or H were also proposed in the literature. For
example, in the context of clustering, we can run spherical K-means, i.e. K-means
with 1 � aTi aj (one minus cosine similarity) as the distance function, and use the
resulting centroids as the initialization of W [50].

Even though the subproblems are convex, they do not have a closed-form
solution, and anumerical algorithm for the subproblems has to be provided. Many
approaches for solving the NLS subproblems have been proposed in the NMF
literature, e.g., an active-set method [23], a block principal pivoting [27, 28],

222 D. Kuang et al.

a projected gradient descent [39], a quasi-Newton method [24]. We skip these details
in this book chapter, but refer the readers to several software packages that solve
NLS efficiently.2;3

7.3.1.1 Convergence Property

The objective function of NMF is a fourth-order polynomial with respect to W and
H , and thus is nonconvex. For a nonconvex optimization problem, most algorithms
only guarantee the stationarity of a limit point [4], not necessarily a local minimum.
In practice, we often run an NMF algorithm in the BCD framework for multiple
times with different initializations of W and H , and select the output with the
smallest objective function value.

We have the following theorem regarding the convergence property of the BCD
framework:

Theorem 1. If a minimum of each subproblem in (7.8) is attained at each step,
every limit point of the sequence f.W;H/.i/g generated by the BCD framework is a
stationary point of (7.2).

The BCD framework requires that the optimal solution be returned for each NLS
subproblem. Note that the minimum of each subproblem is not required to be unique
for the convergence result to hold because the number of blocks is two, as proved
by Grippo and Sciandrone [19].

We remark that at a stationary point solution, the Karush-Kuhn-Tucher (KKT)
condition is satisfied:

W � 0; H � 0; (7.9a)

rfW D 2WHHT � 2AHT � 0; rfH D 2W TWH � 2W TA � 0; (7.9b)

W: � rfW D 0; H: � rfH D 0: (7.9c)

In contrast, the MU algorithm does not have the convergence property stated
in Theorem 1. We consider the MU algorithm proposed by Lee and Seung [34].
This algorithm has an advantage of being simple and easy to implement, and it has
contributed greatly to the popularity of NMF. Though it also has a form of updating
W and H alternately, it is different from the BCD framework in the sense that its
solutions for the subproblems (7.8) are not optimal. That is, the update rule of MU is:

W W: � AHT

WHHT
; H H: � W TA

W TWH
; (7.10)

2http://www.cc.gatech.edu/~hpark/nmfsoftware.php
3http://www.csie.ntu.edu.tw/~cjlin/nmf/index.html

http://www.cc.gatech.edu/~hpark/nmfsoftware.php
http://www.csie.ntu.edu.tw/~cjlin/nmf/index.html

7 Nonnegative Matrix Factorization 223

where the division operator indicates entrywise division. This update rule can be
seen as a gradient descent algorithm with specifically chosen step lengths. The step
lengths are conservative enough so that the result is always nonnegative. However,
we cannot achieve the optimal solution of every NLS subproblem using this update
rule.

Lee and Seung [34] showed that under the update rule (7.10), the objective
function in NMF (7.2) is non-increasing. However, it is unknown whether it
converges to a stationary point or a local minimum [18]. In fact, even though the
papers using MU algorithms claimed that the solution satisfied the KKT condition,
such as in [14], often their proofs did not include all the components of the KKT
condition in (7.9), for example, the sign of the gradients (7.9b).

Furthermore, since the values are updated only through multiplications in MU
algorithms, the entries of W and H typically remain nonzero. Hence, their solution
matrices typically are denser than those from algorithms in the BCD framework
empirically, and thus it is harder to interpret the solution matrices as clustering
results.

7.3.1.2 Stopping Criterion

Iterative methods have to be equipped with a criterion for stopping iterations.
A naive approach is to stop when the decrease of the objective function becomes
smaller than a pre-defined threshold:

jf .W .i�1/;H .i�1// � f .W .i/;H .i//j � �: (7.11)

Although this method is commonly adopted, it is potentially misleading because
the decrease of the objective function may become small before a stationary point
is achieved. A more principled criterion was proposed by Lin [39] as follows.
Recall the KKT condition (7.9) for the objective function of NMF. Let us define
the projected gradient rP fW 2 R

m�k as

.rP fW /ij D
(
r.fW /ij ; if .rfW /ij < 0 or Wij > 0I
0; otherwise,

(7.12)

for i D 1; � � � ; m and j D 1; � � � ; k, and rP fH similarly. Then, conditions (7.9)
can be rephrased as

rP fW D 0 and rP fH D 0: (7.13)

Let us denote the projected gradient matrices at the i -th iteration by rP f .i/
W and

rP f .i/
H and define

224 D. Kuang et al.

�.i/ D
q
krP f .i/

W k2F C krP f .i/
H k2F : (7.14)

Using this definition, the stopping criterion is written by

�.i/

�.1/
� �; (7.15)

where �.1/ is from the first iterate of .W;H/. Unlike (7.11), (7.15) guarantees the
stationarity of the final solution. For caveats when using (7.15), see [25].

7.3.2 Extension 1: Sparse NMF

With only nonnegativity constraints, the resulting factor matrixH of NMF contains
the fractional assignment values corresponding to the k clusters represented by
the columns of W . Sparsity constraints on H have been shown to facilitate the
interpretation of the result of NMF as a hard clustering result and improve the
clustering quality [21, 22, 26]. For example, consider two different scenarios of a
column of H 2 R

3�nC : .0:2; 0:3; 0:5/T and .0; 0:1; 0:9/T . Clearly, the latter is a
stronger indicator that the corresponding data point belongs to the third cluster.

To incorporate extra constraints or prior information into the NMF formulation
(7.2), various regularization terms can be added. We can consider an objective
function

min
W;H�0 kA �WHk

2
F C �.W /C .H/; (7.16)

where �.�/ and .�/ are regularization terms that often involve matrix or vector
norms. The L1-norm regularization can be adopted to promote sparsity in the factor
matrices [22,47]. When sparsity is desired onH , the L1-norm regularization can be
set as

�.W / D ˛kW k2F and .H/ D ˇ
nX

iD1
kH.W; i /k21; (7.17)

where H.W; i / represents the i -th column of H . The L1-norm term of .H/ in
(7.17) promotes sparsity on the columns of H while the Frobenius norm term of
�.W / is needed to prevent W from growing too large. Scalar parameters ˛ and ˇ
are used to control the strength of regularization.

The sparse NMF can be easily computed using the BCD framework. We can
reorganize the terms in the sparse NMF formulation (7.16) and (7.17) and the two
subproblems in the BCD framework become:

7 Nonnegative Matrix Factorization 225

min
W�0

����
�
HT

p
˛Ik

�
W T �

�
AT

0k�m

�����
2

F

; (7.18a)

min
H�0

����
�

Wp
ˇ1Tk

�
H �

�
A

0Tn

�����
2

F

: (7.18b)

where 1k 2 R
k�1; 0n 2 R

n�1 are the column vectors whose elements are all 1’s
and 0’s, respectively, and Ik is a k � k identity matrix. Hence, the two subproblems
(7.18a) and (7.18b) for the sparse NMF can be solved as NLS problems, similar to
Algorithm 1 for the original NMF.

7.3.3 Extension 2: Weakly-Supervised NMF

The flexible BCD framework allows another important variant called weakly-
supervised NMF (WS-NMF).4 WS-NMF can incorporate a variety of user inputs
so that the clustering and topic modeling results of NMF can be improved in a
user-driven way. In this section, we describe the formulation and the algorithm of
WS-NMF. Later in Sect. 7.6, we further discuss how WS-NMF can be utilized to
support various types of user interactions in a visual analytics environment.

In WS-NMF, such user inputs are manifested in the form of reference matrices for
W andH . These reference matrices play a role of makingW andH become similar
to them. That is, given reference matrices Wr 2 R

m�kC forW and Hr 2 R
k�nC for H ,

diagonal mask/weight matrices MW 2 R
k�kC and MH 2 R

n�nC , a data matrix A 2
R
m�nC , and an integer k 	 min .m; n/, WS-NMF has the additional regularization

terms that penalize the differences betweenHr andH (up to a column-wise scaling
via DH) and those between Wr and W as

f .W; H; DH /D min
W;H;DH

kA �WHk2F C k.W �Wr/MW k2F C k.H �HrDH/MH k2F
(7.19)

for W 2 R
m�kC and H 2 R

k�nC and a diagonal matrix DH 2 R
n�nC .

Through these regularization terms, WS-NMF can incorporate various types of
users’ prior knowledge. Each column ofHr specifies the soft clustering membership
of data items. A diagonal matrix DH accounts for a possible scaling different
between Hr and H and is a variable to be computed. For example, two vectors,
.0:1; 0:3; 0:6/ and .0:2; 0:6; 1:2/, are interpreted the same in terms of cluster
membership coefficients, and DH allows them to be treated as same. WS-NMF
also supports partial supervision on a subset of column (or data items) in Hr .

4The term “weakly-supervised” can be considered similar to semi-supervised clustering settings,
rather than supervised learning settings such as classification and regression problems.

226 D. Kuang et al.

The diagonal matrix MH achieves this by masking/down-weighting the columns
or data items in Hr with no prior information.

Next, Wr supervise the basis representations. In document clustering and topic
modeling, the columns of Wr specify the keyword-wise topic representations in W .
Similar to the role ofMH for the partial supervision onH , the diagonal matrixMW

allows the supervision on a subset of columns in W by masking/down-weighting
those columns in Wr with no supervision. However, unlike the supervision on H ,
the regularization on W via Wr does not involve any diagonal matrix analogous to
DH because scaling on either W or H suffices due to the relationship (7.6), which
indicates that ifW andH are the solution of a particular NMF problem, then so are
WD and D�1H for an arbitrary diagonal matrix D.

Finally, note that (7.19) does not have typical regularization parameters
that balance between different terms since MW and MH can account for the
effects of the parameters. In other words, ˛ k.W �Wr/MW k2F is equivalent to��.W �Wr/M

new
W

��2
F

when Mnew
W D ˛MW , and the same argument holds for MH .

The optimization of (7.19) follows the BCD framework by iteratively solvingW ,
H , and DH . Given initial values for these variables, W is updated as

W arg min
W�0

����

HT

MW

�
W T �

AT

MWW
T
r

�����
2

F

: (7.20)

Next, each column of H is updated one at a time by solving

H.W; i / arg min
H.W; i/�0

����

W

MH .i/ Ik

�
H.W; i / �

A .W; i /

MH .i/DH.i/Hr .W; i /
�����

2

F

;

(7.21)

where .W; i / indicates the i -th column of a matrix. Finally, the i -th diagonal
component DH .i/ of DH is obtained in a closed form as

DH .i/
8
<

:

Hr.W; i/T �H.W; i/
kHr.W; i/k22

if MH .i/ ¤ 0
0 otherwise

: (7.22)

7.4 Choosing the Number of Clusters

The number of clusters k is one of the input parameters that NMF requires. It is
often difficult to choose an appropriate k to achieve the best clustering quality. In
this section, we introduce our method to choose k based on random sampling and
consensus clustering.

Monti et al. [42] proposed a model selection method that used the notion of
stability of the clusters with respect to random sampling of the data points. Let A1

and A2 be two subsets sampled randomly from a data set of n data points. Suppose

7 Nonnegative Matrix Factorization 227

two data points ai and aj appear in both subsets generated by random sampling,
that is to say, ai ; aj 2 A1 \ A2. Let us run a clustering algorithm on both A1

and A2, and the correct number of clusters k is given. Conceptually, we expect that
if ai and aj belong to the same cluster derived from A1, they also belong to the
same cluster derived from A2. Based on this reasoning, Monti et al. [42] proposed
consensus clustering to aggregate the results of a clustering method over many runs
and achieve a consensus partitioning of data points.

We formulate the idea of a consensus matrix in the context of NMF-based
document clustering. For a data set with n documents, the .i; j /-th entry of a
consensus matrix QC 2 R

n�n is the co-clustered frequency of the i -th and j -th
documents over multiple runs of NMF. More rigorously, let r be the sampling
rate, the fraction of documents selected in each random sample. We generate T
subsets A1; � � � ;AT by random sampling, each with sampling rate r , and run an
NMF algorithm on each subset with the same number of clusters k. Define the
matrices C .t/ and S.t/ as the following (1 � t � T):

c
.t/
ij D

(
1; if the i -th and the j -th documents belong to the same cluster using At I
0; otherwise;

(7.23)

s
.t/
ij D

(
1; if both the i -th and the j -th documents appear in At I
0; otherwise:

(7.24)

Clearly, c.t/ij D 1 implies s.t/ij D 1. Then we can define the consensus matrix QC :

Qcij D
PT

tD1 c
.t/
ij

PT
tD1 s

.t/
ij

: (7.25)

The entries of QC have values in the interval Œ0; 1�. In the ideal scenario where no
ambiguity exists for the co-membership of any two documents, the entries of QC
could be 0 or 1 only. To measure the dispersion of a consensus matrix QC , we define
the dispersion coefficient � as:

� D 1

n2

nX

iD1

nX

jD1
4. Qcij � 0:5/2: (7.26)

For an ideal consensus matrix where all the entries are 0 or 1, we have � D 1; for
a scattered consensus matrix, 0 � � < 1. After obtaining �k values for various k’s,
we can determine the number of clusters as the one with the maximal �k .

Now we illustrate the above method for choosing the number of clusters with
a real-world text data set. We extracted the three largest clusters based on ground-
truth labels from the entire TDT2 data set. For running NMF, we applied the ANLS

228 D. Kuang et al.

Table 7.1 Dispersion coefficients for k D
2; 3; 4; 5 using the three largest clusters
based on ground-truth labels from the TDT2
data set

k D 2 k D 3 k D 4 k D 5

�.k/ 0:5642 0:9973 0:8515 0:9411

algorithm with block principal pivoting [27, 28] solving the NLS subproblems. To
construct the consensus matrix, we used the parameters T D 50 and r D 0:8 for
k D 2; 3; 4; 5. Table 7.1 shows the dispersion coefficients for these k’s. We can see
that k D 3 corresponds to the largest � and is thus chosen as the most appropriate
number of clusters.

Note that our method for choosing the number of clusters differs from the work
of Brunet et al. [6] in two aspects. First, the authors of [6] assessed the stability
of clustering results with respect to random initialization of NMF. In contrast,
our method reveals the stability of the cluster structure by examining whether
the clusters can be reproduced using a random sample of the data points. Second,
the rows and the columns of the consensus matrix were reordered in [6], and if the
reordered matrix exhibited a block-diagonal structure, the number of clusters was
determined to be appropriate. However, the optimal reordering was obtained by a
hierarchical clustering of the items using the consensus matrix as similarity values
between all the item pairs. Thus, it was very expensive to compute for large-scale
data sets. We experienced difficulty in computing the optimal reordering for a few
thousand documents. Therefore, we did not adopt the model selection method in [6]
but rather used the dispersion coefficient (7.26) to assess the stability of clusters.

7.5 Experimental Results

In this section, we present the empirical evidences that support NMF as a successful
document clustering and topic modeling method. We compare the clustering
quality between K-means and NMF; Within the NMF algorithms, we compare
the multiplicative updating (MU) algorithm and the alternating nonnegative least
squares (ANLS) algorithm in terms of their clustering quality and convergence
behavior, as well as sparseness and consistency in the solution.

7.5.1 Data Sets and Algorithms

We used the following text corpora in our experiments. All these corpora have
ground-truth labels for evaluating clustering quality but not given as an input to
the clustering algorithms.

7 Nonnegative Matrix Factorization 229

1. TDT2 contains 10,212 news articles from various sources (e.g., NYT, CNN, and
VOA) in 1998.

2. Reuters5 contains 21,578 news articles from the Reuters newswire in 1987.
3. 20 Newsgroups6 (20News) contains 19,997 posts from 20 Usenet newsgroups.

Unlike previous indexing of these posts, we observed that many posts have
duplicated paragraphs due to cross-referencing. We discarded cited paragraphs
and signatures in a post by identifying lines starting with “>” or “--”. The
resulting data set is less tightly-clustered and much more difficult to apply
clustering or classification methods.

4. From the more recent Reuters news collection RCV17 [35] that contains over
800,000 articles in 1996–1997, we selected a subset of 23,149 articles. Labels
are assigned according to a topic hierarchy, and we only considered leaf topics
as valid labels.

5. The research paper collection NIPS14-168 contains NIPS papers published in
2001–2003 [17], which are associated with labels indicating the technical area
(algorithms, learning theory, vision science, etc).

For all these data sets, documents with multiple labels are discarded in our
experiments. In addition, the ground-truth clusters representing different topics are
highly unbalanced in their sizes for TDT2, Reuters, RCV1, and NIPS14-16. We
selected the largest 20, 20, 40, and 9 ground-truth clusters from these data sets,
respectively. We constructed term-document matrices using tf-idf features [40],
where each row corresponds to a term and each column to a document. We removed
any term that appears less than three times and any document that contains less
than five words. Table 7.2 summarizes the statistics of the five data sets after pre-
processing. For each data set, we set the number of clusters to be the same as the
number of ground-truth clusters.

We further process each term-document matrix A in two steps. First, we
normalize each column of A to have a unit L2-norm, i.e., kaik2 D 1. Conceptually,

Table 7.2 Data sets used in our experiments

Data set # Terms # Documents # Ground-truth clusters

TDT2 26; 618 8; 741 20

Reuters 12; 998 8; 095 20

20 Newsgroups 36; 568 18; 221 20

RCV1 20; 338 15; 168 40

NIPS14-16 17; 583 420 9

5http://www.daviddlewis.com/resources/testcollections/reuters21578/
6http://qwone.com/jason/20Newsgroups/
7http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004rcv1v2README.htm
8http://robotics.stanford.edu/gal/data.html

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://qwone.com/jason/20Newsgroups/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004rcv1v2README.htm
http://robotics.stanford.edu/gal/data.html

230 D. Kuang et al.

this makes all the documents have equal lengths. Next, following [52], we compute
the normalized-cut weighted version of A:

D D diag.AT A1n/; A AD�1=2; (7.27)

where 1n 2 R
n�1 is the column vector whose elements are all 1’s, and D 2 R

n�nC
is a diagonal matrix. This column weighting scheme was reported to enhance the
clustering quality of both K-means and NMF [29, 52].

For K-means clustering, we used the standard K-means with Euclidean distances.
The Matlab kmeans function has a batch-update phase that re-assigns the data
points all at once in each iteration, as well as a more time-consuming online-update
phase that moves a single data point each time from one cluster to another if such a
movement reduces the sum of squared error [16]. We used both phases and rewrote
this function using BLAS3 operations and boosted its efficiency substantially.9

For the ANLS algorithm for NMF, we used the block principal pivoting
algorithm10 [27, 28] to solve the NLS subproblems (7.8) and the stopping criterion
(7.15) with � D 10�4. For the MU algorithm for NMF, we used the update formula
in (7.10). The MU algorithm is not guaranteed to converge to a stationary point
and thus could not satisfy the stopping criterion in (7.15) after a large number of
iterations in our experiments. Therefore, we used another stopping criterion

kH.i�1/ �H.i/kF =kH.i/kF � � (7.28)

with � D 10�4 to terminate the algorithm.
For the sparse NMF, we used the formulations (7.16) and (7.17). The choice of

the parameters ˛; ˇ that control the regularization strength and the sparsity of the
solution can be determined by cross validation, for example, by tuning ˛; ˇ until
the desired sparseness is reached. Following [22, 23], we set ˛ to the square of the
maximum entry in A and ˇ D 0:01 since these choices have been shown to work
well in practice.

7.5.2 Clustering Quality

We used two measures to evaluate the clustering quality against the ground-truth
clusters.

Clustering accuracy is the percentage of correctly clustered items given by the
maximum bipartite matching (see more details in [52]). This matching associates
each cluster with a ground-truth cluster in an optimal way and can be found by the
Kuhn-Munkres algorithm [31].

9http://www.cc.gatech.edu/grads/d/dkuang3/software/kmeans3.html
10https://github.com/kimjingu/nonnegfac-matlab

http://www.cc.gatech.edu/grads/d/dkuang3/software/kmeans3.html
https://github.com/kimjingu/nonnegfac-matlab

7 Nonnegative Matrix Factorization 231

Normalized mutual information (NMI) is an information-theoretic measure of
the similarity between two flat partitionings [40], which, in our case, are the ground-
truth clusters and the generated clusters. It is particularly useful when the number of
generated clusters is different from that of ground-truth clusters or when the ground-
truth clusters have highly unbalanced sizes or a hierarchical labeling scheme. It is
calculated by:

NMI D I.Cground-truth; Ccomputed/�
H.Cground-truth/CH.Ccomputed/

�
=2
D

P
h;l nh;l log n�nh;l

nhnl�P
h nh log nh

n
CPl nl log nl

n

�
=2
;

(7.29)

where I.�; �/ denotes mutual information between two partitionings, H.�/ denotes
the entropy of a partitioning, and Cground-truth and Ccomputed denote the partitioning
corresponding to the ground-truth clusters and the computed clusters, respectively.
nh is the number of documents in the h-th ground-truth cluster, nl is the number of
documents in the l-th computed cluster, and nh;l is the number of documents in both
the h-th ground-truth cluster and the l-th computed cluster.

Tables 7.3 and 7.4 show the clustering accuracy and NMI results, respectively,
averaged over 20 runs with random initializations. All the NMF algorithms have
the same initialization of W and H in each run. We can see that all the NMF
algorithms consistently outperform K-means except one case (clustering accuracy
evaluated on the Reuters data set). Considering the two algorithms for standard
NMF, the clustering quality of NMF/ANLS is either similar to or much better
than that of NMF/MU. The clustering quality of the sparse NMF is consistently
better than that of NMF/ANLS except on the 20 Newsgroups data set and always
better than NMF/MU.

Table 7.3 The average clustering accuracy given by the four clustering
algorithms on the five text data sets

K-means NMF/MU NMF/ANLS Sparse NMF/ANLS

TDT2 0:6711 0:8022 0:8505 0:8644

Reuters 0:4111 0:3686 0:3731 0:3917

20News 0:1719 0:3735 0:4150 0:3970

RCV1 0:3111 0:3756 0:3797 0:3847

NIPS14-16 0:4602 0:4923 0:4918 0:4923

Table 7.4 The average normalized mutual information given by the four
clustering algorithms on the five text data sets

K-means NMF/MU NMF/ANLS Sparse NMF/ANLS

TDT2 0:7644 0:8486 0:8696 0:8786

Reuters 0:5103 0:5308 0:5320 0:5497

20News 0:2822 0:4069 0:4304 0:4283

RCV1 0:4092 0:4427 0:4435 0:4489

NIPS14-16 0:4476 0:4601 0:4652 0:4709

232 D. Kuang et al.

0 20 40 60 80
10−2

10−1

10−2

10−3

10−1

100
100

101
101

Time (seconds)

Relative norm of projected gradient

0 20 40 60 80

Time (seconds)

Relative norm of projected gradient

NMF/MU
NMF/ANLS

NMF/MU
NMF/ANLS

a b

Fig. 7.2 The convergence behavior of NMF/MU and NMF/ANLS on the 20 Newsgroups data set
(k D 20) and RCV1 data set (k D 40). (a) 20 Newgroups. (b) RCV1

7.5.3 Convergence Behavior

Now we compare the convergence behaviors of NMF/MU and NMF/ANLS.
Figure 7.2 shows the relative norm of projected gradient �=�.1/ as the algorithms
proceed on the 20 Newsgroups and RCV1 data sets. The quantity �=�.1/ is not
monotonic in general but is used to check stationarity and determine whether to
terminate the algorithms. On both data sets, the norm of projected gradient for
NMF/ANLS has a decreasing trend and eventually reached the given tolerance �,
while NMF/MU did not converge to stationary point solutions. This observation is
consistent with the result that NMF/ANLS achieved better clustering quality and
sparser low-rank matrices.

7.5.4 Sparseness

We also compare the sparseness in the W and H matrices between the solutions
of NMF/MU, NMF/ANLS, and the sparse NMF/ANLS. Table 7.5 shows the
percentage of zero entries for the three NMF versions.11 Compared to NMF/MU,
NMF/ANLS does not only lead to better clustering quality and smaller objective
values, but also facilitates sparser solutions in terms of both W and H . Recall
that each column of W is interpreted as the term distribution for a topic. With a
sparser W , the keyword-wise distributions for different topics are more orthogonal,

11Results given by the sparseness measure based on L1 and L2 norms in [21] are similar in terms
of comparison between the three NMF versions.

7 Nonnegative Matrix Factorization 233

Table 7.5 The average sparseness ofW andH for the three NMF algorithms on the five text data
sets. %.�/ indicates the percentage of the matrix entries that satisfy the condition in the parentheses

NMF/MU NMF/ANLS Sparse NMF/ANLS
%.wij D 0/ %.hij D 0/ %.wij D 0/ %.hij D 0/ %.wij D 0/ %.hij D 0/

TDT2 21:05 6:08 55:14 50:53 52:81 65:55

Reuters 40:92 12:87 68:14 59:41 66:54 72:84

20News 46:38 15:73 71:87 56:16 71:01 75:22

RCV1 52:22 16:18 77:94 63:97 76:81 76:18

NIPS14-16 32:68 0:05 50:49 48:53 49:90 54:49

and one can select important terms for each topic more easily. A sparser H can
be interpreted as clustering indicators more easily. Table 7.5 also validates that the
sparse NMF generates an even sparserH in the solutions and often better clustering
results.

7.5.5 Consistency from Multiple Runs

We analyze the consistency of the clustering results obtained from multiple runs
of a particular method. We have chosen three methods: K-means, LDA,12 and
NMF/ANLS. The detailed procedure is as follows. First, we run each method
multiple times, e.g., 30 times in our experiment. Second, for each pair of different
runs, e.g., 435 cases, we measure the relative number of documents of which
the (hard) clustering membership results differ from each other. To solve the
correspondence between the two set of cluster indices generated independently
from multiple runs, we apply the Kuhn-Munkres algorithm [31] before comparing
the clustering memberships. Finally, we compute the consistency measure as the
average value of the relative numbers of documents over all the pairs of runs, e.g.,
435 cases.

Table 7.6 shows the results of these consistency measures for the five text data
sets. It can be seen that NMF/ANLS generates the most consistent results from
multiple runs compared to K-means and LDA. Combined with the accuracy and
NMI results shown in Tables 7.3 and 7.4, this indicates that NMF generally produces
the best clustering result with the least amount of variance. On the other hand,
K-means or LDA may require users to check many results by running them multiple
times until finding satisfactory results.

12For LDA, we used Mallet [41], a widely-accepted software library based on a Gibbs sampling
method.

234 D. Kuang et al.

Table 7.6 The consistency
measure of three clustering
algorithms on the five text
data sets

K-means LDA NMF/ANLS

TDT2 0:6448 0:7321 0:8710

Reuters 0:6776 0:6447 0:8534

20News 0:7640 0:6166 0:7244

RCV1 0:6636 0:5996 0:7950

NIPS14-16 0:6421 0:5352 0:8399

7.6 UTOPIAN: User-driven Topic Modeling
via Interactive NMF

In this section, we present a visual analytics system called UTOPIAN (User-
driven Topic Modeling Based on Interactive NMF)13 [9], which utilizes NMF
as a main tool to steer topic modeling results in a user-driven manner. As seen
in Fig. 7.3, UTOPIAN provides a visual overview of the NMF topic modeling
result as a 2D scatter plot where dots represent documents. The color of each dot
corresponds to the topic/clustering membership computed by NMF. The position
of each dot is determined by running a modified version [9] of t-distributed
stochastic neighborhood embedding [48] to the cosine similarity matrix of bag-
of-words vectors of documents. Additionally, the topics are summarized as their
representative keywords.

Beyond the visual exploration of the topic modeling result in a passive manner,
UTOPIAN provides various interaction capabilities that can actively incorporate
user inputs to topic modeling processes. The interactions supported by UTOPIAN
include topic keyword refinement, topic merging/splitting, and topic creation via
seed documents/keywords, all of which are built upon WS-NMF. In the following,
we describe each interaction in more detail.

Topic Keyword Refinement. In the topic modeling using NMF, the i -th topic,
which corresponds to the i -th column vectorW .i/ ofW is represented as a weighted
combination of keywords. This interaction allows users to change the weights
corresponding to keywords, corresponding to each component of the vector W .i/,
so that the meaning of the topic can be refined. For instance, users might want
to remove some of the uninformative terms by setting its weight value to zero. In
addition, users could increase/decrease the weight of a particular keyword to make
the corresponding topic more/less relevant to the keyword. In turn, this refined
vector W .i/ is placed in the corresponding i -th column vector of Wr in (7.19) as
the reference information during the subsequent WS-NMF. We also set a nonzero
value of M.l/

W to make this reference vector in effect.

Topic Merging. This interaction merges multiple topics into one. To this end,
we utilize the reference information Hr for H as follows. We first interpret the

13http://tinyurl.com/2013utopian

http://tinyurl.com/2013utopian

7 Nonnegative Matrix Factorization 235

Fig. 7.3 An overview of UTOPIAN. Given a scatter plot visualization generated by a modi-
fied t-distributed stochastic neighborhood embedding, UTOPIAN provides various interaction
capabilities: (1) topic merging, (2) document-induced topic creation, (3) topic splitting, and (4)
keyword-induced topic creation. Additionally, the user can refine topic keyword weights (not
shown here). The document viewer highlights the representative keywords from each topic

columns of H as hard clustering results and identify the set of documents clustered
to one of the merged topics. For these documents, we obtain their H.i/’s and merge
the values corresponding to the merged topics by adding them up to a single value,
and set the corresponding columns of Hr to the resulting H.i/’s. For example,
suppose two documents, whose H.i/’s are represented as (0.6, 0.3, 0.1) and (0.4,
0.5, 0.1), respectively, corresponding to the three original topics. The corresponding
column of Hr will be set to (0.6C0.4, 0.1) and (0.3C0.5, 0.1), respectively,
where the first component corresponds to the merged topic. Alternatively, for topic
merging, one could use the reference information forW , but we found our approach
empirically works better.

Topic Splitting. UTOPIAN also support a topic splitting interaction. It splits a
particular topic, e.g.,W .i/ ofW , into the two topics. To guide this splitting process,
users can assign the reference information for the two topics as follows. First, both
vectors are initialized as the same as W .i/. Now users can specify these two topics
differently using the topic keyword refinement interaction.. In this manner, the topic
splitting process in WS-NMF is guided by users based on the differently weighted
keyword-wise representations of the two topics.

Document-Induced Topic Creation. This interaction creates a new topic by
using user-selected documents as seed documents. For example, such seed doc-
uments can be a person’s own research papers and s/he might want to see the
topic formed by them as well as other papers relevant to this topic. To achieve
this interaction, we utilize the reference information for documents. That is, for
those documents specified by the user, their corresponding vectors in Hr in 7.19

236 D. Kuang et al.

are initialized to zero vectors but are set to one for the corresponding component
to the newly created topic. This generates the reference information such that these
documents are related only to the newly created topic. WS-NMF then creates a new
topic based on it, which is represented as a keyword-wise distribution, and as a
result, other relevant documents can be included.

Keyword-Induced Topic Creation. It creates a new topic via user-selected key-
words. For instance, given the summary of topics as their representative keywords,
users might want to explore more detailed (sub-)topics about particular keywords.
A new topic created using these keywords would reveal such information. This
interaction works similarly to document-induced topic creation except that we now
use the reference information for keywords. Given user-selected keywords, the
reference information of a new topic, i.e., a newly added column vector ofWr , is set
to a zero vector, but the components corresponding to the keywords are set to ones.
Accordingly, WS-NMF will include related documents in this topic, which, in turn,
reveals the details about this topic.

In all the above-described interaction capabilities, UTOPIAN provides slider user
interfaces with which users can interactively control how strongly the supervision
is imposed. The values specified via these user interfaces are used as those for the
nonzero elements in MW and MH .

7.6.1 Usage Scenarios

We show usage scenarios of the above-described interactions using the 20 News-
groups data set. For efficient interactive visualization in real time, we randomly
sampled 50 data items per each of the 20 categories. Figures 7.4, 7.5, 7.6, and 7.7
shows a sequence of interactions with these data in UTOPIAN.

Figure 7.4a shows an initial visualization result generated by UTOPIAN, which
gives a nice visual overview about generated topic clusters. One can see that
semantically similar topics are placed closely, e.g., the topics ‘christian, : : :’ and
‘jesus, god, hell’ (top right) and the topics ‘monitor, mac, driving’ and ‘scsi, id, bus’
(bottom middle) while unrelated topics far from each other, e.g., the topics ‘games,
play, scores’ (top left) and ‘armenian, arabs, israeli’ (bottom right) and the topics
‘window, file, spss’ (lower left) and ‘cars, oil, dealers’ (upper right).

Now, we perform a topic splitting interaction on the topic ‘games, play, scores.’
Initially, both the keywords ‘baseball’ and ‘hockey’ are shown to be highly ranked in
this topic, but we aim at distinguishing the two topics with respect to these keywords.
Thus, as shown in Fig. 7.4b, we increase the weight of the former keyword in the
left topic and that of the latter in the right topic. This interaction generates the two
split topics, as shown in Fig. 7.5, and the documents included in each topic properly
reflect such user intention. Next, we merge semantically similar topics. We select
the two topics ‘jesus, god, hell’ and ‘belief, religion, god’ to merge. The merged
topic is generated as ‘god, jesus, sin,’ as shown in Fig. 7.6.

7 Nonnegative Matrix Factorization 237

2. Keywords with weight increase

a

b

Fig. 7.4 The initial visualization and the topic splitting interaction for the subset of the 20
Newsgroup data set. From the topic ‘games, play, scores,’ we increase the weight of the keyword
‘baseball’ in one topic while increasing that of ‘hockey’ in the other. (a) The initial visualization.
(b) The topic refinement of the two split topics

238 D. Kuang et al.

Fig. 7.5 The two splitted topics, one of which is mainly related to baseball and the other to hockey,
are visualized. Next, the two topics ‘jesus, god, hell’ and ‘belief, religion, god’ are to be merged

Finally, we create a new topic via a keyword-induced topic creation interaction.
To this end, we select a keyword ‘dealers’ from the topic ‘cars, oil, dealers.’ As
shown in Fig. 7.7, the newly created topic ‘dealers, invoice, cost’ reveals the detailed
information about the relevant topic to this keyword.

7.7 Conclusions and Future Directions

In this book chapter, we have presented nonnegative matrix factorization (NMF) for
document clustering and topic modeling. We have first introduced the NMF formula-
tion and its applications to clustering. Next, we have presented the flexible algorith-
mic framework based on block coordinate descent (BCD) as well as its convergence
property and stopping criterion. Based on the BCD framework, we discussed two
important extensions for clustering, the sparse and the weakly-supervised NMF,

7 Nonnegative Matrix Factorization 239

Fig. 7.6 The merged topic ‘god, jesus, sin’ is generated. Next, a new topic based on the keyword
‘dealers’ from the topic ‘cars, oil, dealers’ is to be generated

and our method to determine the number of clusters. Experimental results on various
real-world document data sets show the advantage of our NMF algorithm in terms
of clustering quality, convergence behavior, sparseness, and consistency. Finally,
we presented a visual analytics system called UTOPIAN for interactive visual
clustering and topic modeling and demonstrated its interaction capabilities such as
topic splitting/merging as well as keyword-/document-induced topic creation.

The excellence of NMF in clustering and topic modeling poses numerous
exciting research directions. One important direction is to improve the scalability
of NMF. Parallel distributed algorithms are essential for this purpose, but at the
same time, the real-time interaction capability can also be considered from the
perspective of a human perception [8]. Another direction is to allow users to better
understand clustering and topic modeling outputs. In practice, the semantic meaning
of document clusters and topics is understood based on several representative

240 D. Kuang et al.

Fig. 7.7 The newly created topic ‘dealers, invoice, cost’ is shown

keywords and/or documents. However, significant noise in real-world data often
makes it difficult to understand the resulting clusters and topics. In this sense, how to
provide additional information such as the cluster/topic quality as well as contextual
meaning of given keywords has to be addressed.

Acknowledgements The work of the authors was supported in part by the National Science
Foundation (NSF) grants CCF-0808863 and the Defense Advanced Research Projects Agency
(DARPA) XDATA program grant FA8750-12-2-0309. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the NSF or the DARPA.

References

1. Arora S, Ge R, Kannan R, Moitra A (2012) Computing a nonnegative matrix factorization –
provably. In: Proceedings of the 44th symposium on theory of computing (STOC), pp 145–162

2. Arora S, Ge R, Halpern Y, Mimno D, Moitra A, Sontag D, Wu Y, Zhu M (2013). A practical
algorithm for topic modeling with provable guarantees. J Mach Learn Res 28(2):280–288

7 Nonnegative Matrix Factorization 241

3. Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. SIAM,
Philadelphia

4. Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont
5. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
6. Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern

discovery using matrix factorization. Proc Natl Acad Sci USA 101(12):4164–4169
7. Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for

data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560
8. Choo J, Park H (2013) Customizing computational methods for visual analytics with big data.

IEEE Comput Graph Appl 33(4):22–28
9. Choo J, Lee C, Reddy CK, Park H (2013) UTOPIAN: user-driven topic modeling based on

interactive nonnegative matrix factorization. IEEE Trans Vis Comput Graph 19(12):1992–2001
10. Cichocki A, Zdunek R, Phan AH, Amari S (2009) Nonnegative matrix and tensor factorizations:

applications to exploratory multi-way data analysis and blind source separation. Wiley, London
11. Devarajan K (2008) Nonnegative matrix factorization: an analytical and interpretive tool in

computational biology. PLoS Comput Biol 4(7):e1000029
12. Dhillon IS, Sra S (2005) Generalized nonnegative matrix approximations with Breg-

man divergences. In: Advances in neural information processing systems (NIPS), vol 18,
pp 283–290

13. Ding C, He X, Simon HD (2005) On the equivalence of nonnegative matrix factorization and
spectral clustering. In: Proceedings of SIAM international conference on data mining (SDM),
pp 606–610

14. Ding C, Li T, Jordan M (2008) Nonnegative matrix factorization for combinatorial optimiza-
tion: spectral clustering, graph matching, and clique finding. In: Proceedings of the 8th IEEE
international conference on data mining (ICDM), pp 183–192

15. Ding C, T Li, Jordan MI (2010) Convex and semi-nonnegative matrix factorization. IEEE Trans
Pattern Anal Mach Intell 32(1):45–55

16. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience, London
17. Globerson A, Chechik G, Pereira F, Tishby N (2007) Euclidean embedding of co-occurrence

data. J Mach Learn Res 8:2265–2295
18. Gonzales EF, Zhang Y (2005) Accelerating the Lee-Seung algorithm for non-negative matrix

factorization. Technical Report TR05-02, Rice University
19. Grippo L, Sciandrone M (2000) On the convergence of the block nonlinear Gauss-Seidel

method under convex constraints. Oper Res Lett 26:127–136
20. Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual

international ACM SIGIR conference on research and development in information retrieval
(SIGIR)

21. Hoyer PO (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learn
Res 5:1457–1469

22. Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-negativity-
constrained least squares for microarray data analysis. Bioinformatics 23(12):1495–1502

23. Kim H, Park H (2008) Nonnegative matrix factorization based on alternating non-negativity-
constrained least squares and the active set method. SIAM J Matrix Anal Appl 30(2):713–730

24. Kim D, Sra S, Dhillon I (2007) Fast Newton-type methods for the least squares nonnegative
matrix approximation problem. In: Proceedings of SIAM international conference on data
mining (SDM), pp 343–354

25. Kim J, He Y, Park H (2014) Algorithms for nonnegative matrix and tensor factorizations:
a unified view based on block coordinate descent framework. J Global Optim 58(2):285–319

26. Kim J, Park H (2008) Sparse nonnegative matrix factorization for clustering. Technical Report
GT-CSE-08-01, Georgia Institute of Technology

27. Kim J, Park H (2008) Toward faster nonnegative matrix factorization: a new algorithm and
comparisons. In: Proceedings of the 8th IEEE international conference on data mining (ICDM),
pp 353–362

242 D. Kuang et al.

28. Kim J, Park H (2011) Fast nonnegative matrix factorization: An active-set-like method and
comparisons. SIAM J Sci Comput 33(6):3261–3281

29. Kuang D, Park H (2013) Fast rank-2 nonnegative matrix factorization for hierarchical
document clustering. In: Proceedings of the 19th ACM international conference on knowledge
discovery and data mining (KDD), pp 739–747

30. Kuang D, Ding C, Park H (2012) Symmetric nonnegative matrix factorization for graph
clustering. In: Proceedings of SIAM international conference on data mining (SDM),
pp 106–117

31. Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logistics Q
2:83–97

32. Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice Hall, Englewood
Cliffs

33. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization.
Nature 401:788–791

34. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Advances in
neural information processing systems (NIPS), vol 14, pp 556–562

35. Lewis DD, Yang Y, Rose TG, Li F (2004) Rcv1: a new benchmark collection for text
categorization research. J Mach Learn Res 5:361–397

36. Li S, Hou XW, Zhang HJ, Cheng QS (2001) Learning spatially localized, parts-based
representation. In: Proceedings of the 2001 IEEE conference on computer vision and pattern
recognition (CVPR), pp 207–212

37. Li T, Ding C, Jordan MI (2007) Solving consensus and semi-supervised clustering problems
using nonnegative matrix factorization. In: Proceedings of the 7th IEEE international confer-
ence on data mining (ICDM), pp 577–582

38. Li L, Lebanon G, Park H (2012) Fast Bregman divergence NMF using Taylor expansion and
coordinate descent. In: Proceedings of the 18th ACM international conference on knowledge
discovery and data mining (KDD), pp 307–315

39. Lin C-J (2007) Projected gradient methods for nonnegative matrix factorization. Neural
Comput 19(10):2756–2779

40. Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge
University Press, Cambridge

41. McCallum AK (2002) MALLET: a machine learning for language toolkit. http://mallet.cs.
umass.edu

42. Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based
method for class discovery and visualization of gene expression microarray data. Mach Learn
52(1–2):91–118

43. Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics 5:111–126

44. Pauca VP, Shahnaz F, Berry MW, Plemmons RJ (2004) Text mining using non-negative
matrix factorizations. In: Proceedings of SIAM international conference on data mining (SDM),
pp 452–456

45. Pauca VP, Piper J, Plemmons RJ (2006) Nonnegative matrix factorization for spectral data
analysis. Linear Algebra Appl 416(1):29–47

46. Shahnaz F, Berry MW, Pauca VP, Plemmons RJ (2006) Document clustering using nonnegative
matrix factorization. Inf Process Manag 42:373–386

47. Tibshirani R (1994) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B
Methodol 58:267–288

48. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res
9:2579–2605

49. Vavasis SA (2009) On the complexity of nonnegative matrix factorization. SIAM J Optim
20(3):1364–1377

50. Wild S, Curry J, Dougherty A (2004) Improving non-negative matrix factorizations through
structured initialization. Pattern Recognit 37:2217–2232

http://mallet.cs.umass.edu
http://mallet.cs.umass.edu

7 Nonnegative Matrix Factorization 243

51. Xie B, Song L, Park H (2013) Topic modeling via nonnegative matrix factorization on
probability simplex. In: NIPS workshop on topic models: computation, application, and
evaluation

52. Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization.
In: Proceedings of the 26th annual international ACM SIGIR conference on research and
development in information retrieval (SIGIR), pp 267–273

Chapter 8
Overview of Overlapping Partitional
Clustering Methods

Chiheb-Eddine Ben N’Cir, Guillaume Cleuziou, and Nadia Essoussi

Abstract Identifying non-disjoint clusters is an important issue in clustering
referred to as Overlapping Clustering. While traditional clustering methods ignore
the possibility that an observation can be assigned to several groups and lead to
k exhaustive and exclusive clusters representing the data, Overlapping Clustering
methods offer a richer model for fitting existing structures in several applications
requiring a non-disjoint partitioning. In fact, the issue of overlapping clustering has
been studied since the last four decades leading to several methods in the literature
adopting many usual approaches such as hierarchical, generative, graphical and
k-means based approach. We review in this paper the fundamental concepts of
overlapping clustering while we survey the widely known overlapping partitional
clustering algorithms and the existing techniques to evaluate the quality of non-
disjoint partitioning. Furthermore, a comparative theoretical and experimental
study of used techniques to model overlaps is given over different multi-labeled
benchmarks.

Keywords Overlapping clustering • Non-disjoint partitioning • Non-exclusive
clusters • Partitional clustering methods • Evaluation of overlapping clustering
methods • Small overlaps • Large overlaps

8.1 Introduction

Clustering, also referred to as cluster analysis or learning, has become an important
technique in data mining and pattern recognition used either to detect hidden
structures or to summarize the observed data. Usually, a clear distinction is made
between learning problems that are supervised, also referred to as classification,

C.-E. Ben N’Cir • N. Essoussi
LARODEC, ISG Tunis, University of Tunis, 41 Avenue de la Liberté,
Cité Bouchoucha, Le Bardo 2000, Tunisia
e-mail: chiheb.benncir@isg.rnu.tn; nadia.essoussi@isg.rnu.tn

G. Cleuziou (�)
LIFO, Université d’Orléans, EA 4022, Orléans, France
e-mail: guillaume.cleuziou@univ-orleans.fr

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__8

245

mailto:chiheb.benncir@isg.rnu.tn
mailto:nadia.essoussi@isg.rnu.tn
mailto:guillaume.cleuziou@univ-orleans.fr

246 C.-E. Ben N’Cir et al.

and those that are unsupervised, referred to as clustering. The first deals with only
labeled data while the latter deals with only unlabeled data [22]. In practice, given a
description of N data over d variables, clustering aims to find k groups based on a
measure of similarity such that similarities between data in the same group are high
while similarities between data in different groups are low.

During the last four decades, many researches have been focused in designing
clustering methods resulting in many methods that are proposed in the literature
which are based on different approaches. Partitional clustering [29], also referred
as partitioning relocation clustering [7], constitutes an important approach that
several clustering methods are based on. Partitional clustering attempts to directly
decompose the data set into a set of disjoint clusters leading to an integer number
of clusters that optimizes a given criterion function. The criterion function may
emphasize a local or a global structure of the data and its optimization is an iterative
relocation procedure. Such type of clustering methods considers that clusters are
disjoint and does not support intersections. However, for many applications of
clustering, it would be recommended to tolerate overlaps between clusters to better
fit hidden structures in the observed data. This research’s issue is referred to as
overlapping clustering.

Overlapping clustering has been studied through various approaches during the
last half-century. In this paper, we first give a classification of existing methods able
to produce a non-disjoint partitioning of data based on their conceptual approach.
Then, we review overlapping clustering methods which extends or generalizes k-
means and k-medoid for overlapping clustering. We use the concept “overlapping
partitional clustering methods” to refer to this kind of methods which aims to build
a recovery of a data set containing N objects into a set of k covers or clusters, so to
minimize an objective criterion. The sum of the cardinality of the clusters are equal
or superior to N leading to k non-exclusive clusters.

The remaining sections are organized as in the following: Section 8.2 gives a
classification of existing overlapping methods based on the used approach to build
non-disjoint partitioning. Then Sect. 8.3 reviews the existing overlapping partitional
clustering methods while Sect. 8.4 reviews the existing techniques to asses the
quality of the resulting non-exclusive partitionings. Finally, Sect. 8.5 gives an
experimental evaluation of overlapping partitioning clustering methods on different
multi-labeled benchmarks.

8.2 Classification of Exiting Approaches
for Overlapping Clustering

Traditional learning methods ignore the possibility that an observation can belong
to more than one cluster and lead to k exhaustive and exclusive clusters representing
the data. Although this approach has been successfully applied in unsupervised
learning, there are many situations in which a richer model is needed for repre-
senting the data. For example, in social network analysis, community extraction

8 Overview of Overlapping Partitional Clustering Methods 247

algorithms need to detect overlapping clusters where an actor can belong to
multiple communities [23, 43, 46]. In video classification, overlapping clustering
is a necessary requirement where videos have potentially multiple genres [42]. In
emotion detection, overlapping clustering methods need to detect different emotions
for a specific piece of music [47]. In text clustering, learning methods should
be able to group document, which discuss more than one topic, into several
groups [25, 41], etc. The corresponding research domain has been referred to as
overlapping clustering and has been studied through various approaches.

Basically, the existing overlapping clustering methods are extensions from
usual clustering models such as hierarchical, generative, graph-based or partitional
models. Thereby, we propose a classification of existing methods based on the
conceptual approach to build non-disjoint partitioning of data. Figure 8.1 shows
a classification tree of these methods where the depth of the tree represents the
progression in time and the width of the tree represents the different categories and
subcategories. We detail in the following the main characteristics of each category.

The overlapping variants of hierarchies aim to reduce the discrepancy between
the original dissimilarities over the considered dataset and the ones induced by
the hierarchical structure. Although the flexibility in visualization offered by
hierarchical methods, they still too restrictive in overlaps while they not study all the
possible combinations of clusters for each observation. Examples of these methods
are the pyramids [21] and more generally the weak-hierarchies [8]. Concisely, these
structures are either too restrictive on the overlaps, as for pyramids, or hard to
acquire and visualize as for weak-hierarchies.

Overlapping methods based on graph theory are mostly used in the context of
community detection in complex networks [3, 17, 23, 26–28, 36, 45, 51]. In this
research area, a network is represented as an undirected or directed graph, depending
on the specificity of the problem, where vertices are the studied observations and
edges are links between the observations. All these graph-based methods use a
greedy heuristic for covering the similarity graph. The difference between them
consists on the criterion used for ordering and selecting the sub-graphs. The main
shortcoming of these methods is the computational complexity which is usually
exponential and could be reduced to O.N2/ as the case for OClustR (Overlapping
Clustering based on Relevance) [40].

Overlapping clustering methods using generative mixture models have been
proposed [2, 24, 30] as extensions of the EM algorithm [18]. These models are
supported by biological processes; they hypothesize that each data is the result
of a mixture of distributions : the mixture can be additive [2] or multiplicative
[24, 30] and the probabilistic framework makes possible to use not only gaussian
components but any exponential family distributions. On the other hand, generative
models are not parameterizable and do not allow the user to control the requirements
of the overlaps.

Other recent methods for overlapping clustering extend other approaches to
address the problem of overlapping clustering. For example, an extension of corre-
lation clustering [10, 11] and topological maps [16] have been recently proposed.
Overlapping correlation clustering has been defined as an optimization problem

248 C.-E. Ben N’Cir et al.

F
ig

.8
.1

C
la

ss
ifi

ca
tio

n
of

ov
er

la
pp

in
g

cl
us

te
ri

ng
m

et
ho

ds
ba

se
d

on
th

ei
r

co
nc

ep
tu

al
ap

pr
oa

ch
to

bu
ild

no
n-

di
sj

oi
nt

pa
rt

iti
on

in
g

of
da

ta

8 Overview of Overlapping Partitional Clustering Methods 249

that extends the framework of correlation clustering to allow overlaps by relaxing
the function which measures the similarity of assigned set of labels, instead of
one single label, for each data object. For topological maps, an extension of the
Self-Organizing-Maps (SOM) has been proposed by allowing for each data to be
assigned to one or several neurons on the grid by searching for a subset of neurons
winners rather than a single neuron. The main advantage of both correlation and
topological methods consists of their ability to learn the right number of overlapping
clusters.

Despite the use of all these approaches to build non-disjoint partitioning of
data, the Partitional approach remains the most commonly used while several
methods are based on. This category of methods consists either in modifying the
clusters resulting from a standard method into overlapping clusters or in proposing
new objective criteria to model overlaps. This survey’s emphasis is on overlap-
ping partitional clustering methods, specifically those extending and generalizing
k-means and K-medoid methods [31,35]. In this way, we present in the next section
a description of these methods.

8.3 Overlapping Partitional Clustering Methods

Several works have been focused on partitional clustering to build overlapping
clusters leading to two main categories of methods: the category of uncertain
memberships and the category of hard memberships. We denote by uncertain
memberships the solutions which model clusters’ memberships for each data object
as uncertainty function using fuzzy, possibilistic or evidential frameworks. The
uncertainty function measures the degree of belonging of each data to the underlying
group. However, we denote by hard memberships the solutions which lead to hard
and overlapping partitioning by considering a binary function to model clusters’
memberships.

8.3.1 Uncertain Memberships Based-Methods

Uncertain memberships based-methods consist either in extending results of uncer-
tain methods into overlapping clusters, typically the extension of fuzzy-c-means
(FCM) [33,51] and possibilistic c-means (PCM) [32], or in proposing new objective
criterion that takes into account the possibility of overlaps between clusters;
the Evidential c-means (ECM) introduced by Masson and Denoeux [37] and the
Belief c-means (BCM) proposed by Liu et al. [34] are two distinctive examples
of such criteria where their optimization processes lead to generate overlapping
clusters. All uncertain methods need a post-processing treatment to generate the
final overlapping clusters.

250 C.-E. Ben N’Cir et al.

We detail in the following the principal uncertain clustering methods which are
able to produce non-disjoint partitioning. We consider for all the detailed methods
a set of observations X D fxigNiD1 with xi 2 R

d and N the number of observations
where the aim, of each method, is to find a non-disjoint partitioning matrix ˘ D
f�cgkcD1 into k clusters and a set C D fmcgkcD1 of k clusters’ representatives
minimizing an objective criterion.

8.3.1.1 Fuzzy c-Means (FCM) and Possibilistic c-Means (PCM)

The FCM [9] identifies clusters as fuzzy sets where the objective function JFCM
allows that an observation belongs to many clusters with a coefficient indicating
membership degrees to all clusters in the [0,1] interval (0 stands for no membership
and 1 for total membership). FCM is based on the minimization of the following
function:

JFCM .˘;C / D
kX

cD1

NX

iD1
�
ˇ
ic:jjxi �mc jj2; (8.1)

where ˘ is the fuzziness membership matrix that indicates the coefficient of
closeness of an object to every cluster under the constraints:

�ic 2 Œ0::1� 8i; 8c
kX

cD1
.�ic/ D 1;8i (8.2)

ˇ > 1:

The parameter ˇ controls the fuzziness of the memberships: for high values of ˇ
the algorithm tends to set all the memberships equals while for ˇ tending to one it
has the behavior of k-means algorithm with crisp memberships. The minimization
of Eq. 8.1 is done iteratively using an alternating least square optimization of the
two parameters ˘ and C . The optimal fuzziness membership matrix ˘ and the
optimal clusters’ representatives C are computed in each step as the following.

��ic D
1

kX

lD1

� jjxi �mc jj2
jjxi �ml jj2

�. 1
ˇ�1 /

(8.3)

m�c D

NX

iD1
�
ˇ
icxi

NX

iD1
�
ˇ
ic

(8.4)

8 Overview of Overlapping Partitional Clustering Methods 251

Fig. 8.2 Extension of the results of fuzzy clustering to obtain overlapping clustering using a
threshold value equals to 0:3

The extension of FCM to overlapping clustering can be done by fixing a threshold
where all observations having memberships’ degrees that exceed this threshold are
assigned to the respective clusters. An example of this transformation is shown in
Fig. 8.2 where the obtained clusters’ memberships are non-disjoints. We note that in
some cases, when the fixed threshold is somewhat large, observations having all the
memberships lower than this threshold will not be assigned to any cluster. Obtained
clusters are usually much sensitive to value of the threshold.

In the same way that FCM, the PCM [32] method is proposed to relax the

constrained condition of the fuzzy partition

kX

cD1
.�ic/ D 1

!
in order to obtain

a possibilistic type of memberships matrix. The objective function of PCM1 is
described by:

JPCM .˘;C / D
kX

cD1

NX

iD1
�
ˇ
ic jjxi �mc jj2; (8.5)

1The original objective function of PCM takes into account the identification of outliers, whereas
we give in this paper a short structure of the objective function to facilitate the comparison of PCM
with the other described methods.

252 C.-E. Ben N’Cir et al.

under the constraints:

�ic 2 Œ0::1� 8i; 8c
kX

cD1
.�ic/ 2 Œ0; k� 8 i (8.6)

ˇ > 1:

Similar to FCM, the objective function JPCM is minimized iteratively where
memberships and clusters’ representatives are updated as follows:

��ic D
1

1C .jjxi �mc jj2/1=.ˇ�1/ ; (8.7)

m�c D

NX

iD1
�
ˇ
icxi

NX

iD1
�
ˇ
ic

: (8.8)

Each observation can belong to several clusters with a possibilistic membership.
The possibilistic memberships can be extended to overlapping ones by setting
memberships with higher values to 1 and the other are replaced with 0.

8.3.1.2 Evidential c-Means (ECM) and Belief c-Means (BCM)

ECM [37] is based on the concept of credal partition which is a general extension
of fuzzy and possibilistic partitioning. As opposed to FCM and PCM, the ECM
method evaluates all the possible combinations of clusters , denoted Aj , from the
set of single clusters ˝ D f!1; : : : ; !kg by allocating a mass of belief �i within
each possible combination.

Let the credal partition matrix ˘ D .�1; : : : ; �N / 2 RN�2k and the matrix C D
.m1; : : : ; mk/ of clusters’ representatives, ECM2 is based on the minimization of the
following objective function:

JECM .˘;C / D
NX

iD1

X

j=Aj	˝
c˛j �

ˇ
ij

��xi � Nmj

��2 (8.9)

2The original objective function of ECM takes into account the identification of outliers by
considering �i; a mass of belief to belong to any cluster, whereas we consider in this paper that
all combinations of clusters are tolerated except the empty set (Aj ¤ ;) in order to facilitate the
comparison of ECM with the other described methods.

8 Overview of Overlapping Partitional Clustering Methods 253

under the constraint:
X

j=Aj	˝
�ij D 1 8i 2 f1; ::; N g ; (8.10)

where �ij denotes the mass of belief for associating the observation xi to the specific
set Aj which can be either a single cluster or a combination of single clusters, cj
denotes the cardinality jAj j of each set which aims at penalizing the combination
of clusters with high cardinality, ˛ and ˇ are two parameters used respectively to
control the penalization term cj and the fuzziness degree �ij and

��xi � Nmj

��2 is the
distance between xi and the combination of clusters’ representativesmj of the focal
set Aj defined by:

mj D

X

j=Aj	˝
mj

cj
: (8.11)

To minimize the objective function of ECM, an alternating optimization scheme is
designed as in FCM where the update of the mass of belief �ij and the clusters’
representatives Ck is computed as described in Eqs. 8.12 and 8.13 .

��ij D
c
�˛=.ˇ�1/
j

��xi � Nmj

���2=.ˇ�1/
X

Ak

c
�˛=.ˇ�1/
k kxi � Nmkk�2=.ˇ�1/

8i 2 f1; ::; N g 8j=Aj � ˝; (8.12)

C �k�d D H�1k�kBk�d ; (8.13)

where the elements Blq of the matrix Bk�d for l 2 f1; ::; kg ; q 2 f1; ::; dg and the
elements Hlh of the matrix Hk�k for l; h 2 f1; ::; kg are defined respectively by:

Blq D
NX

iD1
xiq

X

j=!l2Aj
c˛�1j �

ˇ
ij Hlh D

NX

iD1

X

j=!h;!l	Aj
c˛�2j �

ˇ
ij : (8.14)

Similar to ECM, a more recent method, referred to as Belief c-means (BCM) [34],
is also developed within the framework of belief function which is an extension of
ECM that improves the quality of the credal partitions by assigning only relatively
distant observations to the combination of clusters. This method evaluates the
distance inter-prototypes before building the mass of believe �ij related to each
observation. The objective function optimized by BCM is described by:

JBCM .˘;C / D
NX

iD1

X

j=Aj	˝;jAj jD1
�
ˇ
ij

��xi �mj

��2 C
NX

iD1

X

j=Aj	˝;jAj j>1
c˛j �

ˇ
ij
cdij 2;

(8.15)

254 C.-E. Ben N’Cir et al.

Fig. 8.3 Example of the extension of credal partition containing six observations under three
clusters: observations are assigned to the combination of clusters having the max mass of evidence

where cdij 2 evaluates the distance xi with respect to inter-distances of clusters’
prototypes to which xi belongs to:

cdij 2 D

X

k2Aj
kxi �mkk2 C

X

l;p2Aj

��ml �mp

��2

jAj j C �C 2
jAj j

; (8.16)

with � the weighting factor of the distances among the clusters’ prototypes and

C2
jAj j D

jAj jŠ
2Š.jAj j�2/Š the number of combinations of jAj j taken 2 at a time.

In fact, both ECM and BCM lead to credal partitioning ofN data into 2k possible
combinations of k clusters. An example of credal partitioning is reported in Fig. 8.3.
We note that both possibilistic and fuzzy partitions can be recovered from the credal
partition. A possibilistic partition can be obtained by computing from each mi the
plausibilities (possibilities) of the different clusters and a fuzzy partition can be
obtained by calculating the pignistic probabilities of the different clusters from each
mi . The extension of both ECM and BCM to overlapping clustering, called hard
credal partition by the authors, can be done by assigning each object xi to the set
of clusters Aj with the highest mass. Overlapping observations are those having
highest mass for jAj j >D 2. The process that leads to hard credal partitioning is
called “Upper” [37] approximation.

8 Overview of Overlapping Partitional Clustering Methods 255

8.3.2 Hard Memberships Based-Methods

The category of hard memberships based methods generalizes the strict k-means to
look for optimal overlapping clusters. As opposed to fuzzy, possibilistic, and evi-
dential clustering, these methods produce hard overlapping clusters and do not need
any post processing treatment. Two kind of hard memberships based-methods have
been proposed: additive and geometrical based methods. We denote by additive the
methods which hypothesize that overlaps result in the addition of the representatives
of the related clusters. These methods group observations into overlapping clusters
while minimizing the sum of distances between each observation and the sum of
clusters’ representatives to which the observation belongs to. In contrast, we denote
by geometrical based-methods those formalizing overlaps as a barycenter on the
related cluster representatives. This category of methods is based on a geometrical
reasoning in the data space and groups observations into overlapping clusters while
minimizing the sum of distances between each observation and the average, instead
of the sum, of clusters’ representatives to which the observation belongs to.

8.3.2.1 Additive Methods

Examples of additive methods are Principal Cluster Analysis (PCL) [38, 39], the
Alternating Least Square algorithms (ALS) [19], the Low dimensional Additive
Overlapping Clustering [20] and the Bi-clustering ALS [49].

• PCL
PCL [39] introduces the possibility that an observation belongs to more than
one cluster based on the Additive model by considering variable values of
an observation equals to the sum of the clusters’ representatives to which the
observation belongs to. Given a dataset X , a model matrix M D ˘C is looked
for to optimally approximate X . The matrix M can be estimated by minimizing
the least squares loss function:

JPCL.˘;C / Dk X �˘C k2FD
X

xi2X
k xi �

X

c2˘i
mc k2; (8.17)

where k : k2F is the Frobenius norm of a matrix and mc is the representative of
cluster c.

To minimize the objective criterion (8.17), PCL proceeds by building clusters
one by one from a data set until achieving the expected number of clusters k. PCL
builds the memberships of each cluster c independently from the memberships
of the other clusters by minimizing the following criterion for each cluster c:

J cPCL D
X

xi2X
�ic k xi �mc k2 : (8.18)

256 C.-E. Ben N’Cir et al.

The minimization process starts with an empty cluster (i.e., with �ic D 0;

8xi 2 X) and sequentially add observations to it in a greedy way leading to
the smallest value of criterion (8.18). For every observation that is considered for
joining the cluster, a new representative mc and a new value of J cPCL have to be
calculated. The process is continued until there is no further decrease of J cPCL.
The computation of clusters’ representatives is also done locally for each cluster
independently from the other clusters by:

m�c D

X

xi2X
�icxi

X

xi2X
�ic

: (8.19)

The main characteristic of this method consists of its high computational
complexity evaluated by O.2NK/ which makes the method under-used in real
life applications of overlapping clustering.

• ALS
ALS [19] is based on the same objective criterion of PCL described in Eq. 8.17.
However, ALS proposes two other algorithms for minimizing this objective cri-
terion referred to as ALSlf 1 and ALSlf 2. For both algorithms, the minimization
of the objective criterion starts from an initial binary membership matrix ˘0.
This membership matrix can be initialized using a Bernoulli distribution with
parameter � D 0:5 or by computing the conditionally optimal memberships upon
k randomly drawn representatives from the initial data. Then, ALS estimates the
conditionally optimal representatives C upon ˘ ; subsequently it estimates the
conditionally optimal memberships ˘ upon C , and this process will be repeated
until convergence.

The estimation of optimal memberships are computed separably for each
observation xi by enumerating all possible binary configurations that lead to
decrease the objective criterion given the conditionally optimal representative
and the conditionally optimal memberships for the other observations. The
algorithm repeats this procedure for the next observation and so on. After a pass
through all observations, the new value of the objective criterion computed with
new memberships ˘1 is compared to the one computed with old memberships
˘0. The process stops when there is no further decrease in the objective criterion.
We note that ALSlf 1 differs from ALSlf 2 in that for each memberships update
˘i the conditionally optimal representatives C are recalculated immediately,
whereas in ALSlf 2 the representatives are only updated at the end of the
membership updating step.

In the other side, the optimal representatives are updated equivalently for
ALSlf 1 and ALSlf 2 based on the memberships matrix ˘ as follows:

C � D .˘ 0˘/�1˘ 0X: (8.20)

8 Overview of Overlapping Partitional Clustering Methods 257

In fact, we notice that ALS with its two variants explores all the possible 2k

combinations of clusters and takes the optimal one that leads to decrease the
objective criterion. This property makes this methods highly time consuming
when the number of clusters becomes large.

• Low dimensional Additive Overlapping Clustering
The Low dimensional Additive Overlapping Clustering [20] extends ALS
method by establishing an overlapping clustering of the observations and a
dimensional reduction of the variables (or dimensions) simultaneously. This
method is designed in order to perform relevant non-disjoint partitioning when
data contains a high number of dimensions. Given a set of observations X
described over d variables, the aim of this method is to find a recovery ˘ of k
overlapping clusters and a matrix QC of clusters’ representatives described over
Qd < d . The low dimensional additive Overlapping Clustering is based on the

same objective criterion used for ALS and PCL. The process of optimizing this
objective criterion uses an alternating optimization procedure similar to that of
ALS, except that optimal reduced clusters’ representatives are computed by:

QC � D .˘ 0˘/�1˘ 0T T 0X; (8.21)

where columns of matrix T represent the Qd orthogonal eigenvectors of the
product of matrixes ZXX 0Z with Z D ˘.˘ 0˘/�1˘ 0 denotes the orthogonal
projector operator.

8.3.2.2 Geometrical Methods

Examples of geometrical methods are the Overlapping k-means (OKM) [14],
Overlapping k-Medoid (OKMED) [15], Weighted Overlapping k-means (WOKM)
[15], Kernel Overlapping K-means (KOKM) [4, 5] and Parameterized R-OKM [6].
We also note that ECM and BCM, described with uncertain memberships methods,
can be categorized with geometrical methods while they are based on a geometrical
reasoning to model the different combinations of clusters.

• OKM
The OKM [14] method is an extension of the k-means algorithm which allows
observations to belong to one or different clusters. Given a set of N observations
X D fxigNiD1 with xi 2 R

d , OKM aims to find a recovery ˘ D f�cgkcD1 of k
overlapping clusters such that the following objective function is minimized:

JOKM.˘;C / D
NX

iD1
kxi � .xi /k2: (8.22)

This objective function minimizes the sum of squared Euclidean distances
between each observation xi and its representatives .xi / for all xi 2 X .
The representative .xi / is defined as the barycenter of clusters’ representatives
to which the observation xi belongs to:

258 C.-E. Ben N’Cir et al.

.xi / D
X

c2˘i

mc

j˘i j : (8.23)

where˘i is the set of clusters to which xi belongs to andmc is the representative
of cluster c. The minimization of the objective function is performed by
alternating two principal steps: computation of clusters’ representatives .C / and
the assignment of observations to one or several clusters .˘/. The update of
representatives is performed locally for each cluster as described in Eq. 8.24.

m�c D

X

xi2�c

1

j˘i j2 :exi
c

X

xi2�c

1

j˘i j2
; (8.24)

where exi c D j˘i j:xi � .j˘i j � 1/:.xi /˘nc and �c denotes the set of observations
assigned to cluster c. For the multiple assignment step, OKM uses an heuristic
to explore part of the combinatorial set of possible assignments. The heuristic
consists, for each observation, in sorting clusters from closest to the farthest, then
assigning the observation in the order defined while assignment minimizes the
distance between the observation and its representative.

• Parameterized R-OKM
The Parameterized R-OKM offers the possibility to regulate the overlaps using
a parameter ˛. As well as ˛ becomes large (˛ ! C1), Parameterized R-OKM
builds clusters with more reduced overlaps. However, overlaps become more
large as well as ˛ ! 0. When ˛ D 0, Parameterized R-OKM coincides exactly
with OKM. In fact, Parameterized R-OKM restricts the assignments of a data
point xi to multiple clusters according to the cardinality of the set of assignments
j˘i j. The Parameterized R-OKM is based on the minimization of the following
objective criterion:

JR�OKM.˘;C / D
NX

iD1
j˘i j˛:jjxi � .xi /jj2 (8.25)

where ˛ � 0 is fixed by the user. We note that j˘i j˛ has the same role of C˛
j

used within ECM and BCM methods which consists on penalizing or favoring
overlaps. For the minimization of the objective criterion, Parameterized R-OKM
uses the same minimization steps used for OKM as for the assignment and for
the update of clusters’ representatives. The later can be updated for each cluster
as follows:

8 Overview of Overlapping Partitional Clustering Methods 259

m�c D

X

xi2�c

1

j˘i j2�˛ :exi
c

X

xi2�c

1

j˘i j2�˛
: (8.26)

• Kernel Overlapping k-means
While most of geometrical overlapping methods build non-disjoint partitioning
of data with linear separations between clusters, KOKM hypothesizes that data
structuring in real life applications is usually complex; thus requiring nonlinear
separations to better fit the existing structures in data. In order to perform
nonlinear separations between clusters, KOKM introduces the use of kernel
methods for overlapping clustering. Two variants are proposed: the first [5]
proposes a kernelization of the Euclidean metric used in OKM using the kernel
induced distance measure while the second [4], referred as KOKM�, proposes to
perform all clustering steps in a high dimensional space where data are implicitly
mapped.

Given a set of observations X D fxigNiD1 and given an implicit nonlinear
mapping function � W X �! F which maps the input space X to a high
dimensional feature space F , the objective functions minimized by both variants
are respectively described by:

JKOKM .˘;C / D
NX

iD1
k�.xi / � �.xi /k2; (8.27)

JKOKM�.˘;C / D
NX

iD1
k�.xi / � �.xi /k2: (8.28)

The first variant computes representatives xi and clusters’ representatives mc in
the original space and only distances between observations are performed in the
mapping space. The optimization steps are similar to OKM except that distances
are computed in feature space as described in Eq. 8.29.

k �.xi / � �.xj / k2 D .�.xi / � �.xj //..�.xi / � �.xj //
D �.xi /�.xi / � 2�.xi /�.xj /C �.xj /�.xj /
D Kii � 2Kij CKjj : (8.29)

where Kij is the dot product of mapped data in the feature space which can be
computed without using �.

Conversely, the second variant performs all the learning process in the feature
space F . The representatives �.xi / are computed in feature space as follows:

260 C.-E. Ben N’Cir et al.

�.xi / D

kX

cD1
�ic:m

�
c

kX

cD1
�ic

; (8.30)

where �ic 2 f0; 1g is a binary variable that indicates membership of observation
xi to cluster c and m�

c is the representative of cluster c in the feature space. The
representative of each cluster in the feature space is defined by the medoid that
minimizes all distances over all observations included in this cluster:

m�c D arg min
xi2�c

.xi /

X

xj2�c; xj¤xi
j˘j jŒKii � 2Kij CKjj �

j�c j:
X

xj2�c; xj¤xi
j˘j j

: (8.31)

• OKMED
OKMED extends the method Partitioning Around Medoid (PAM) for overlap-
ping clustering. It consists in aggregating the data around representatives of the
clusters denoted as medoids which are chosen among the data themselves. The
objective criterion of OKMED is based on the optimization of the following
objective criterion:

JOKMED.˘;C / D
X

xi2X
kxi � .�i /k2: (8.32)

where .�i / is defined as the data from X that minimizes the sum of the
dissimilarities with all the medoids of the clusters where xi belongs to:

.�i / D arg min
xj2X

X

mc2Ai
kxj �mck2: (8.33)

The optimization of the objective function of OKMED is realized using an
alternating optimization between two steps: assignment of each data to its nearest
medoid and updating of the medoid for each cluster. The update of medoids
consist in searching among the set of data belonging to the cluster, the one that
minimizes the sum of the distances with any other data into the cluster. Formally,
optimal medoid for each cluster is described by:

m�c D arg min
xi2�c

.xi /
X

xj2�c
kxj � .�j /xi k2; (8.34)

8 Overview of Overlapping Partitional Clustering Methods 261

where .�j /xi denotes the representative of observation xj computed by consid-
ering xi the medoid of the cluster. The use of medoids as representatives of
clusters makes OKMED more robust to outliers and offers the possibility to use
any metric since it only requires a proximity matrix over the data.

• WOKM
The WOKM [15] method is a generalization of both OKM and Weighted
k-means methods to detect overlapping clusters. The WOKM introduces a vector
of local feature weighting �c , relative to each cluster c, which allows data to be
assigned to a cluster as regards to a subset of attributes that are important for
the cluster concerned. WOKM is based on the minimization of the following
objective function:

JWOKM .˘;C / D
NX

iD1

dX

vD1
�
ˇ
i;vkxi;v � .xi;v/k2; (8.35)

where d the number of features and �i a vector of weights relative to the
representative .xi / which is defined for each feature v as the following:

�i;v D

X

c2˘i
�c;v

j˘i j : (8.36)

The representative .xi;v/ is defined, for each feature v, as the weighted barycenter
of clusters’ representatives to which the observation xi belongs to:

.xi;v/ D

X

c2˘i
�ˇc;v:mc;v

X

c2˘i
�ˇc;v

: (8.37)

The optimization of the objective criterion is performed by iterating three steps.
The first step consists in assigning each data object to the nearest cluster while
minimizing the local error

Pd
vD1 �

ˇ
i;vkxi;v � .xi;v/k2. The second step consists in

updating clusters’ representatives using the following criterion:

m�c;v D

X

xi2�c

�
ˇ
i;v

j˘i j2 :exi
c

X

xi2�c

�
ˇ
i;v

j˘i j2
: (8.38)

262 C.-E. Ben N’Cir et al.

The third step concerns the update of the set of clusters weights f�cgkcD1 by using:

�c;v D

X

xi2�c
kxi;v �mc;vk2

!1=.1�ˇ/

dX

uD1

X

xi2�c
kxi;u �mc;uk2

!1=.1�ˇ/ : (8.39)

The computational complexity of WOKM stills linear, similar to OKM, evaluated
by O.N:k: lg k/.

8.3.3 Summary of Overlapping Partitional Methods

This section offers an overview of the main characteristics of overlapping partitional
clustering methods presented in a comparative way. Table 8.1 summarizes these
main characteristics. Our study is based on the following features of the methods:
(1) model of overlaps in the objective criterion, (2) requirement of the method to
use a post-assignment step to generate the final overlapping clusters, (3) type of
clusters’ representatives, (4) type of data supported by each method, (5) type of
separations between clusters, (6) computational complexity, (7) ability to handle
noise and outliers and (8) ability to regulate the sizes of overlaps.

Methods which integrate overlaps in their optimized criteria lead to two main
categories, additive and geometrical, which differers in the assumptions and in the
context of use. The adoption of additive or geometrical methods is motivated by the
requirement of the application. Additive-based methods have been well applied in
grouping patients into diseases. Each patient may suffer from more than one disease
and therefore could be assigned to multiple syndrome clusters. Thus, the final
symptom profile of a patient is the sum of the symptom profiles of all syndromes
he is suffering from. However, this type of methods needs sometimes to prepare
data to have zero mean to avoid false analysis. For example, if symptom variable
represents the body temperature, then when a patient simultaneously suffers from
two diseases, it is not realistic to assume that his body temperature equals to the sum
of body temperatures as associated with two diseases.

Conversely, geometrical-based methods have been well applied to group music
signals into different emotions and films into several genres. These methods
consider that overlapping observations must appear in the extremity surface between
overlapping clusters. For example, if a film belongs to action and horror genres, it
should have some shared properties with these categories of films but it can neither
be a full action film neither a full horror one. So, overleaping films belonging to
action and horror categories may appear in the limit surface between full horror and
full action films.

8 Overview of Overlapping Partitional Clustering Methods 263

Ta
bl

e
8.

1
T

he
m

ai
n

ch
ar

ac
te

ri
st

ic
s

of
th

e
ov

er
la

pp
in

g
pa

rt
iti

on
al

cl
us

te
ri

ng
m

et
ho

ds

M
et

ho
d

O
ve

rl
ap

m
od

el
Po

st
-a

ss
ig

nm
en

ts
te

p
R

ep
re

se
nt

at
iv

es
Ty

pe
of

da
ta

Se
pa

ra
tio

n
be

tw
ee

n
cl

us
te

rs
C

om
pl

ex
ity

O
ut

lie
rs

id
en

tifi
ca

tio
n

ov
er

la
p

re
gu

la
tio

n

FC
M

–
T

hr
es

ho
ld

C
en

tr
oi

d
N

um
er

ic
L

in
ea

r
O
.N
:k
/

N
o

Y
es

PC
M

–
T

hr
es

ho
ld

C
en

tr
oi

d
N

um
er

ic
L

in
ea

r
O
.N
:k
/

Y
es

Y
es

E
C

M
G

eo
m

et
ri

ca
l

M
ax

ev
id

en
ce

C
en

to
id

N
um

er
ic

L
in

ea
r

O
.N
:2
k
/

Y
es

Y
es

B
C

M
G

eo
m

et
ri

ca
l

M
ax

ev
id

en
ce

C
en

to
id

N
um

er
ic

L
in

ea
r

O
.N
:k
:2
k
/

Y
es

Y
es

O
K

M
G

eo
m

et
ri

ca
l

–
C

en
tr

oi
d

N
um

er
ic

L
in

ea
r

O
.N
:k
:l

g
k
/

N
o

N
o

P.
R

-O
K

M
G

eo
m

et
ri

ca
l

–
C

en
tr

oi
d

N
um

er
ic

L
in

ea
r

O
.N
:k
:l

g
k
/

N
o

Y
es

K
O

K
M

G
eo

m
et

ri
ca

l
–

C
en

tr
oi

d
A

ny
ty

pe
N

on
lin

ea
r

O
.N
:k
:l

g
k
/

N
o

N
o

K
O

K
M
�

G
eo

m
et

ri
ca

l
–

M
ed

oi
d

A
ny

ty
pe

N
on

lin
ea

r
O
.N

2
:k
/

N
o

N
o

O
K

M
E

D
G

eo
m

et
ri

ca
l

–
M

ed
oi

d
A

ny
ty

pe
L

in
ea

r
O
.N

3
:k
/

N
o

N
o

PC
L

A
dd

iti
ve

–
C

en
tr

oi
d

N
um

er
ic

L
in

ea
r

O
.2
N
:k
/

N
o

N
o

A
L

S l
f
1

A
dd

iti
ve

–
C

en
tr

oi
d

N
um

er
ic

L
in

ea
r

O
.N

3
:2
k
/

Y
es

N
o

A
L

S l
f
2

A
dd

iti
ve

–
C

en
tr

oi
d

N
um

er
ic

L
in

ea
r

O
.N

2
:2
k
/

Y
es

N
o

264 C.-E. Ben N’Cir et al.

While all described overlapping partitional clustering methods offer a richer
model to fit the existing structures in data, some parameters need to be estimated
before performing the learning. All the described methods require to configure
the number of clusters in prior which is not a trivial task in real life applications
where the number of expected clusters is usually unknown. As a solution, one could
use different model heuristics for determining the optimal number [20, 49]. For
example, the user can test different clusterings with increasingly number of clusters
and then, takes the clustering having the best balance between the minimization of
the objective function and the number of clusters [48]. Furthermore, all the described
overlapping partitional methods need to initialize the clusters’ representatives or the
primary clusters memberships. Clusters’ representatives can be set randomly from
data themselves or can be determined using existing initialization methods [12, 13].
For initializing memberships, a Bernoulli distribution of parameter � D 0:5 can be
used to generate random memberships. Using either a representative initialization
or memberships initialization, the result of the presented methods may be a local
optimum of the objective criterion, rather than the global optimum. To deal with
this problem, the user should adopt a multi-start procedure by testing different
initializations and keeping only the clustering which has the lowest value of the
objective criterion.

8.4 Evaluation of Overlapping Clustering

The evaluation of clustering, also referred to as cluster validity, is a crucial process
to assess the performance of the learning method in identifying relevant groups.
This process allows the comparison of several clustering methods and allows the
analysis of whether one method is superior to another one. Most of the validity
measures traditionally used for clustering assessment, including both internal and
external evaluations, become obsolete for overlapping clustering because of the
multiple assignment of each observation. Despite this, some works propose an
extension of well known validation measures to validate overlapping partitioning. In
particular, internal evaluation measures, such as purity and entropy-based measures,
cannot capture this aspect of the quality of a given clustering solution because they
focus on the internal quality of the clusters. However, external validation measures,
essentially Precision-Recall measures, were designed for overlapping partitioning.
We give in the following three evaluation methods used for computing precision-
recall measures.

8.4.1 Label Based Evaluation

Label based evaluation [44] is usually used in the field of Information Retrieval
(IR) where each document can discuss several topics. This evaluation method
is based on the evaluation of each class separately. Given a set of observations

8 Overview of Overlapping Partitional Clustering Methods 265

X D fx1; : : : ; xN g and two partitions over X to compare, C D fc1; : : : ; ckg a
non-exclusive partitioning of X into k classes representing true labels, and ˘ D
f�1; : : : ; �kg a non-exclusive partitioning of X into k clusters where ˘ is defined
by the clustering algorithm. Known the following:

• True positive TPij : the number of observations in �j that exist in ci ,
• False negative FNij : the number of observations in ci that not exist in �j
• False positive FPij : the number of observations in �j that not exist in ci ,

the Precision-Recall validation measures are computed for each class i and cluster
j as follows:

Precisionij D TPij

TPij C FPij
Recallij D TPij

TPij C FNij

F � measureij D .2 � Recallij � Precisionij /

.Recallij C Precisionij /
:

The computation of Precision-Recall measures for all labels is archived using macro-
averaging technique which is usually used in Information Retrieval tasks to evaluate
clustering results when the number of classes is not large [50] as follows:

Recall D

kX

iD1
max
j

Recallij

k

Precision D

kX

iD1
max
j

Precisionij

k

Fmeasure D

kX

iD1
max
j

Fmeasureij

k
:

(8.40)

8.4.2 Pair Based Evaluation

The pair based Precision-Recall measures are calculated over pairs of observa-
tions [2]. For each pair of observations that share at least one cluster in the
overlapping clustering results, Precision-Recall measures evaluate whether the
prediction of this pair as being in the same cluster is correct with respect to
the underlying true class in the data.

266 C.-E. Ben N’Cir et al.

Given a set of observation X D fx1; : : : ; xN g and two non-exclusive
partitionings over X to compare, C D fc1; : : : ; ckg a partition of X into k classes,
and ˘ D f�1; : : : ; �k1g a partition of X into k1 clusters and by Considering the
following:

• TP W the number of pairs of observations in X that share at least one class in C
and share at least one cluster in ˘ ,

• FN W the number of pairs of observations in X that share at least one class in C
and do not share any cluster in ˘ and

• FP W the number of pairs of observations in X that do not share any class in C
and share at least one cluster in ˘ ,

the Precision-Recall measures are computed as follows:

Precision D .TP /=.TP C FP /
Recall D .TP /=.TP C FN/

F-measure D .2 � Recall � Precision/=.RecallC Precision/:

8.4.3 BCubed Evaluation

Given the importance of observation occurrences in clusters and classes in overlap-
ping partitioning, the BCubed evaluation [1] takes into account the multiplicity of
classes and clusters which considers the fact that two observations sharing n classes
should share n clusters.

BCubed Precision-Recall measures are computed independently for each obser-
vation in the partitioning. Let the following:

Multiplicity precision.xi ; xj / D Min.j=.xi / \ =.xj /j; jL.xi / \ L.xj /j/
j=.xi / \ =.xj /j

Multiplicity recall.xi ; xj / D Min.j=.xi / \ =.xj /j; jL.xi / \ L.xj /j/
jL.xi / \ L.xj /j

(8.41)

where xi and xj are two observations, L.xi / the set of classes and =.xi / the set of
clusters associated to observation xi . In fact, Multiplicity Precision is defined only
when the pair of observations .xi ; xj / share at least one cluster, and Multiplicity
Recall is defined only when .xi ; xj / share at least one class. Multiplicity Precision
is maximal, equal to 1, when the number of shared clusters is lower or equal than the
number of shared classes and it is minimal, equal to 0, when the two observations do
not share any class. Reversely, Multiplicity Recall is maximal when the number of
shared classes is lower or equal than the number of shared clusters, and it is minimal
when the two observations do not share any cluster.

8 Overview of Overlapping Partitional Clustering Methods 267

The BCubed precision associated to one observation will be its averaged
multiplicity precision over other observations sharing some of its classes; and the
overall BCubed precision will be the averaged precision of all observations. The
overall BCubed recall is obtained using the same procedure. The overall BCubed
Precision-Recall measures can be formally described by:

Precision D AVGi ŒAVGj:C.xi /\C.xj /¤¿Multiplicity precision.xi ; xj /�8i; j 2 f1; ::; N g
Recall D AVGi ŒAVGj:L.xi /\L.xj /¤¿Multiplicity recall.xi ; xj /�8i; j 2 f1; ::; N g

F � measure D .2 � Precision � Recall/=.PrecisionC Recall/

8.4.4 Synthesis of Evaluation Methods
for Overlapping Clustering

Three evaluation methods for assessing the quality of overlapping clustering were
presented. The first evaluation method, label based evaluation, is based on matching
between labels while the two others are based on pairs of observations. In fact,
the label based evaluation requires to label the obtained clusters by matching
between classes and clusters which is not a trivial task for unsupervised learning,
especially for datasets with large overlaps. The labeling of clusters could lead to
biased matching, and consequently lead to biased validation measures. Moreover,
the matching between classes and clusters requires to configure a number of clusters
equal to that of classes which limits the process of evaluation. Although these
limitations, label based evaluation is usually used in Information Retrieval tasks
to evaluate clustering results when the number of classes and the sizes of overlaps
are not large [50].

To address the issue of labeling the obtained clusters and to make possible
the comparison of partitionings with different number of clusters, the pair based
Precision-Recall measures are calculated over pairs of observations. This evaluation
method offers a flexible evaluation of obtained clusters independently from the real
number of classes in the labeled dataset. However, the pair based evaluation has the
issue that obtained Recall could be biased as the built overlap in the partitioning
decreases and the actual overlap in the dataset increases. The biased Recall is
induced by considering only a binary function for assessing the relation between
a pair of observations and ignoring the multiplicity of shared clusters between pairs
of observations. For instance, if two observations share three classes in the actual
dataset and just share two clusters in the partitioning, the obtained Recall is 1 which
is not correct. This problem also occurs for the Precision when actual overlap in the
dataset is large.

Given the importance of observation occurrences in clusters and classes in over-
lapping partitioning, the relation between two observations can not be represented
as a binary function. If two observations share two classes and share just one

268 C.-E. Ben N’Cir et al.

cluster, then the clustering is not capturing completely the relation between both
observations as presented in case 3 in Fig. 8.4. On the other hand, if two observations
share three clusters but just two classes, then the clustering is introducing more
information than necessary as shown in case 3 in Fig. 8.4. This relation is considered
for BCubed validation measures by extending the pair based evaluation to take into
account the multiplicity of clusters and classes.

Figure 8.4 shows an illustrative example comparing Precision and Recall com-
puted for a pair of observations .x1; x2/ using BCubed and pair based evaluations
by considering different case-studies. We notice that Precision and Recall using
the label based evaluation are not reported because they can not be computed for
a pair of observations. This comparison shows that multiplicity Recall is reduced
compared to Recall computed with the pair based evaluation if the partitioning gives
less shared clusters than needed as described in case 3. In contrast, if the partitioning
gives more shared clusters than actual labels as described in case 4, the multiplicity
Precision is reduced compared to the one obtained with pair based evaluation.

As a summary, we can conclude that assessing the quality of overlapping
clustering using the BCubed evaluation is more suitable than the pair based
evaluation while it takes into account the multiplicity of shared clusters and classes
between the pair of observations.

8.5 Empirical Evaluation of Overlapping Partitional
Clustering Methods

Experiments are performed on real multi-labeled benchmarks from different
domains: video classification based on the users ratings (Eachmovie3 data set),
detection of emotion in music songs (Music emotion4 data set), clustering natural
scene image (Scene5 data set) and clustering on genes (Yeast6 data set). Table 8.2
shows the statistics for each data set where “Labels” is the number of categories
and “Cardinality” (natural overlaps) is the average number of categories for
each observation. These benchmarks were chosen because of their diversity of
application domains, their diversity of sizes (75 ! 2417), their diversity of
dimensions (3! 192) and their diversity of overlap rates (1:07! 4:23).

Results are compared using four validation measures: Precision, Recall,
F-measure and Overlap’s size. The first three measures are computed using both
pair-based and Bcubed-based evaluations as described in Sects. 8.4.2 and 8.4.3.

3cf. http://www.grouplens.org/node/76.
4cf.http://mlkd.csd.auth.gr/multilabel.html
5cf.http://mlkd.csd.auth.gr/multilabel.html
6cf.http://mlkd.csd.auth.gr/multilabel.html

http://www.grouplens.org/node/76
http://mlkd.csd.auth.gr/multilabel.html
http://mlkd.csd.auth.gr/multilabel.html
http://mlkd.csd.auth.gr/multilabel.html

8 Overview of Overlapping Partitional Clustering Methods 269

Fig. 8.4 Comparison of Recall and Precision measures computed using the BCubed and the Pair
based evaluations: (a) true labels and (b) different cases of the clustering

The fourth measure, Overlap’s size, evaluates the size of overlap built by the
learning method. This measure is determined by the average number of clusters to
which each observation belongs to:

270 C.-E. Ben N’Cir et al.

Table 8.2 Statistics of used data sets

Data set Domain N Dimension Labels Cardinality

EachMovie Video 75 3 3 1.14

Music emotion Music 593 72 6 1.86

Scene Images 2,407 192 6 1.07

Yeast Genes 2,417 103 14 4.23

Table 8.3 Comparison of the performance of overlapping partitioning method in Eachmovie
data set

Pair based evaluation BCubed Evaluation
Method P: R: F: P: R: F: Size of overlap

FCM(� D 0:333, ˇ D 2) 0.639 0.675 0.657 0.699 0.683 0.691 1.12
ECM (˛ D 1, ˇ D 2) 0.566 0.722 0.635 0.575 0.739 0.647 1.32

ECM (˛ D 0:5, ˇ D 2) 0.540 0.720 0.617 0.551 0.736 0.631 1.33

OKM 0.465 0.921 0.618 0.399 0.912 0.555 1.70

ALS 0.466 0.855 0.603 0.366 0.819 0.506 1.73

KOKM� (RBF) 0.660 0.757 0.705 0.685 0.735 0.709 1.20

KOKM� (Polynomial) 0.459 0.391 0.552 0.416 0.675 0.514 1.48

P. R-OKM (˛ D 1) 0.691 0.731 0.711 0.741 0.715 0.728 1.13
P. R-OKM (˛ D 0:1) 0.505 0.909 0.65 0.440 0.889 0.588 1.57

Table 8.4 Comparison of the performance of overlapping partitioning method in Emotion
data set

Pair based evaluation BCubed Evaluation
Method P: R: F: P: R: F: Size of overlap

FCM(� D 0:166, ˇ D 2) 0.492 0.394 0.437 0.480 0.354 0.408 1.43

ECM (˛ D 1, ˇ D 2) 0.482 0.675 0.562 0.373 0.648 0.473 2.61

ECM (˛ D 0:5, ˇ D 2) 0.488 0.703 0.576 0.360 0.711 0.478 2.80

OKM 0.483 0.646 0.552 0.353 0.544 0.428 2.35

ALS 0.471 0.999 0.640 0.307 0.970 0.466 3.46

KOKM� (RBF) 0.487 0.548 0.516 0.396 0.462 0.426 2.15

KOKM� (Polynomial) 0.481 0.360 0.412 0.446 0.288 0.352 1.52

P. R-OKM (˛ D 1) 0.493 0.351 0.410 0.86 0.278 0.354 1.26

P. R-OKM (˛ D 0:1) 0.487 0.569 0.525 0.392 0.475 0.430 1.88

Overlap size D

NX

iD1
ci

N
; (8.42)

where ci is the number of clusters to which observation xi belongs to. The latter is
compared with the true rate of overlaps in the labeled data set.

8 Overview of Overlapping Partitional Clustering Methods 271

Table 8.5 Comparison of the performance of overlapping partitioning method in Scene data set

Pair based evaluation BCubed Evaluation
Method P: R: F: P: R: F: Size of overlap

FCM(� D 0:166, ˇ D 2) 0.247 0.946 0.392 0.102 0.946 0.185 3.34

ECM (˛ D 1, ˇ D 2) 0.255 0.848 0.393 0.110 0.908 0.171 2.96

ECM (˛ D 0:5, ˇ D 2) 0.285 0.813 0.422 0.105 0.879 0.188 3.01

OKM 0.233 0.928 0.372 0.192 0.926 0.216 2.85

ALS � � � � � � �
KOKM� (RBF) 0.247 0.813 0.379 0.191 0.809 0.309 2.10

KOKM� (Polynomial) 0.236 0.844 0.369 0.156 0.848 0.263 2.36

P. R-OKM (˛ D 1) 0.467 0.426 0.446 0.490 0.438 0.462 1.00
P. R-OKM (˛ D 0:1) 0.30 0.791 0.435 0.293 0.797 0.428 1.69

Table 8.6 Comparison of the performance of overlapping partitioning method in Yeast data set

Pair based evaluation BCubed Evaluation
Method P: R: F: P: R: F: Size of overlap

FCM(� D 0:0714, ˇ D 2) 0.784 1.00 0.879 0.148 1.00 0.257 13.60

ECM (˛ D 1, ˇ D 2) � � � � � � �
ECM (˛ D 0:5, ˇ D 2) � � � � � � �
OKM 0.783 0.877 0.827 0.587 0.485 0.531 4.80
ALS � � � � � � �
KOKM� (RBF) 0.785 0.793 0.789 0.558 0.467 0.509 5.03

KOKM� (Polynomial) 0.782 0.755 0.768 0.614 0.398 0.483 4.59
P. R-OKM (˛ D 1) 0.801 0.075 0.137 0.806 0.014 0.027 1.00

P. R-OKM (˛ D 0:1) 0.783 0.546 0.643 0.749 0.178 0.287 3.04

Tables 8.3, 8.4, 8.5 and 8.6 report Precision (P.), Recall (R.), F-measure (F.) and
Size of overlaps for the best run of each method, which gives the minimal value
of the objective criterion, among 20 runs on Eachmovie, Emotion, Scene and Yeast
data sets. Values in bold correspond to the best obtained scores. Results of some
methods in Yeast and Scene data sets are not reported because of their computational
complexity which becomes time consuming and need more than 24 h. A different
initialization of prototypes have been used over the 20 runs, whereas within each
run the same initialization of prototypes have been used for the different methods.
We note that the number of clusters considered within each method was set to the
underlying number of labels in each data set. For the other parameters we consider
the following:

• for FCM, we set the fuzziness parameter ˇ D 2 and the threshold value � D 1=k
with k denotes the number of clusters. However, we note that obtained results
of FCM show a high sensitivity to the used threshold as well as the number
of clusters increases: for example, in the Yeast data set, using a threshold
equal to 0:0714 the obtained F-measure is equal to 0:257 while using the same
method with a threshold equal to 0:0715 the F-measure decreases to 0:017

272 C.-E. Ben N’Cir et al.

because clusters memberships are almost null. These results show the limit of
the extension of FCM to detect overlapping groups.

• for ECM, we fix the fuzziness parameter ˇ D 2 and we test two values of ˛ equal
to 1 and 0:5 for all the data sets.

• for KOKM�, we perform different executions using two types of kernels which
are RBF (Radial basis Function) and polynomial kernels with parameters 	 D
1;000 and d D 3 respectively. As for FCM, we show that results are highly
sensitive to the type and the considered parameters of the kernel.

• for Parameterized R-OKM, we perform experiments using two values of ˛ equal
to 1 and 0:1 for all the data sets. We note that other considered values of ˛
largely improves the performance of Parameterized R-OKM. However, we only
report these two values of ˛ to standardize the presented results for the different
benchmarks.

• for ALS, reported results are built after reducing data in the interval [-1 1].
We note that ALS fails to build overlapping groups in almost benchmarks
(Eachmovie, Emotion and Scene) when data are not centered to have zero mean.

The analysis of the experimental results firstly shows the reliability of the
extended Bcubed measures for evaluating overlapping clustering compared to pair
based-evaluation: obtained F-measures are higher for clusterings whose overlap
rate comes closer to the expected one on the whole. For example, in Scene data
set (actual overlapD 1.07) using pair based-evaluation obtained F-measures for
ECM and Parameterized R-OKM are nearly equal (0:442 and 0:435 respectively).
The F-measure obtained with ECM is induced by high Recall since overlaps rate
(overlapD 3) largely exceeds the actual overlap in Scene while for Parameterized R-
OKM F-measure is induced by high Precision since built overlap (overlapD 1.68)
is near to the actual one. However, using Bcubed evaluation we obtain more reliable
evaluation where clustering obtained with Parameterized R-OKM largely exceeds
clustering obtained with ECM in terms of F-measure.

Second, empirical results show that Overlap rates have a strong influence on
the matching measurement of the clusterings with respect to the expected classes.
Methods which allow to control overlap’s size, such as Parameterized R-OKM,
ECM and FCM can give partitionings which better fit existing structures in the data
set, unless good customization of their parameters is required. Whatever the
approach used, almost of evaluated methods produce large overlaps exceeding the
expected rates, known the actual ones. Producing partitionings which have regulated
overlaps improves the F-measure and leads to non-disjoint groups fitting better the
data. This fact demonstrates that size of overlaps is an important characteristic that
should be controlled while building overlapping groups.

The third conclusion concerns the comparison of uncertain and hard member-
ships based methods. The results show the limit of using uncertain memberships
methods when the number of expected clusters increases. As the case for Yeast
data set, uncertain memberships methods require a 10�4 precision to fix a threshold
value for FCM to be able to produce a non disjoint partitioning of data. However,
overlapping groups are easily built using hard memberships methods. We also notice
the importance of the computational complexity of overlapping clustering methods

8 Overview of Overlapping Partitional Clustering Methods 273

when the size of data become large either in terms of number of observations or
expected number of clusters.

8.6 Conclusion

We focused in this paper on overlapping clustering, for which we give a classifica-
tion of existing methods based on the conceptual approach to look for non-disjoint
partitioning. Our study is essentially based on overlapping methods which are based
on the partitional approach. For that, we survey existing overlapping partitional
methods in the literature, classified in two main categories: uncertain memberships
and hard memberships. We also gave theoretical and experimental comparisons
of existing partitional methods. Furthermore, another important issue that we
discussed in this paper is overlapping cluster validity. We presented three external
methodologies used to evaluate reliability of non-disjoint partitionings through the
evaluation of Precision-recall measures.

At the end of this survey, we claim that overlapping clustering has a growing
interest in machine learning research while many real life applications require a
non disjoint partitioning of data. Many active challenges in overlapping clustering
applications motivate researchers to propose more perfective and efficient learning
process. For example, recent works are interested with the identification of non dis-
joint groups when data contain outliers, or detecting overlapping clusters when data
have groups with uneven density. Other works are interested with the identification
of overlapping clustering from data having high number of dimensions, or a huge
number of observations. All these challenges within overlapping clustering open an
exciting directions for future researchers.

References

1. Amigo E, Gonzalo J, Artiles J, Verdejo F (2009) A comparison of extrinsic clustering
evaluation metrics based on formal constraints. Inf Retrieval 12(4):461–486

2. Banerjee A, Krumpelman C, Basu S, Mooney RJ, Ghosh J (2005). Model based overlapping
clustering. In: International conference on knowledge discovery and data mining, pp 532–537

3. Baumes J, Goldberg M, Magdon-Ismail M (2005) Efficient identification of overlapping
communities. In: IEEE international conference on Intelligence and security informatics,
pp 27–36

4. BenN’Cir C, Essoussi N (2012) Overlapping patterns recognition with linear and non-linear
separations using positive definite kernels. Intern J Comput Appl 56:1–8

5. BenN’Cir C, Essoussi N, Bertrand P (2010) Kernel overlapping k-means for clustering in
feature space. In: International conference on knowledge discovery and information retrieval
(KDIR), pp 250–256

6. BenN’Cir C, Cleuziou G, Essoussi N (2013) Identification of non-disjoint clusters with small
and parameterizable overlaps. In: IEEE international conference on computer applications
technology (ICCAT), pp 1–6

274 C.-E. Ben N’Cir et al.

7. Berkhin P (2006) A survey of clustering data mining techniques. Grouping Multidimensional
Data - Recent Advances in Clustering, Springer pp 28–71

8. Bertrand P, Janowitz M (2003) The k-weak hierarchical representations: an extension of the
indexed closed weak hierarchies. Discrete Appl Math 127(2):199–220

9. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer
Academic Publishers, USA

10. Bonchi F, Gionis A, Ukkonen A (2011) Overlapping correlation clustering. In: 11th IEEE
international conference on data mining (ICDM), pp 51–60

11. Bonchi F, Gionis A, Ukkonen A (2013) Overlapping correlation clustering. Knowl Inf Syst
35(1):1–32

12. Celebi ME, Kingravi H (2012) Deterministic initialization of the k-means algorithm using
hierarchical clustering Intern J Pattern Recognit Artif Intell 26(7):1250018

13. Celebi ME, Kingravi H, Vela P-A (2013) A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

14. Cleuziou, G. (2008). An extended version of the k-means method for overlapping clustering.
In: International conference on pattern recognition (ICPR), pp 1–4

15. Cleuziou G (2009) Two variants of the OKM for overlapping clustering. In: Advances in
knowledge discovery and management, Springer pp 149–166

16. Cleuziou G (2013) Osom: a method for building overlapping topological maps. Pattern
Recognit Lett 34(3):239–246

17. Davis GB, Carley KM (2008) Clearing the fog: fuzzy, overlapping groups for social networks.
Soc Netw 30(3):201–212

18. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the
EM algorithm. J R Stat Soc 39(1):1–38

19. Depril D, Van Mechelen I, Mirkin B (2008) Algorithms for additive clustering of rectangular
data tables. Comput Stat Data Anal 52(11):4923–4938

20. Depril D, Mechelen IV, Wilderjans TF (2012) Low dimensional additive overlapping clustering.
J Classif 29(3):297–320

21. Diday E (1984) Orders and overlapping clusters by pyramids. Technical Report 730, INRIA
22. Duda RO, Hart PE, Stork DG (2001) Pattern Classification (2nd edition), (John Wiley & Sons,

New York, NY)
23. Fellows MR, Guo J, Komusiewicz C, Niedermeier R, Uhlmann J (2011). Graph-based data

clustering with overlaps. Discrete Optim 8(1):2–17
24. Fu Q, Banerjee A (2008) Multiplicative mixture models for overlapping clustering. In: 8th

IEEE international conference on data mining, pp 791–796
25. Gil-García R, Pons-Porrata A (2010) Dynamic hierarchical algorithms for document clustering.

Pattern Recognit Lett 31(6):469–477
26. Goldberg M, Kelley S, Magdon-Ismail M, Mertsalov K, Wallace A (2010). Finding overlapping

communities in social networks. In: IEEE second international conference on social computing
(SocialCom), pp 104–113

27. Gregory S (2007) An algorithm to find overlapping community structure in networks. In:
Knowledge discovery in databases: PKDD 2007, vol 4702, pp 91–102

28. Gregory S (2008) A fast algorithm to find overlapping communities in networks. In: Machine
learning and knowledge discovery in databases, vol 5211, pp 408–423

29. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf
Syst 17(2–3):107–145

30. Heller K, Ghahramani Z (2007) A nonparametric Bayesian approach to modeling overlapping
clusters. In: 11th International conference on AI and statistics (AISTATS)

31. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett
31(8):651–666

32. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy
Syst 1(2):98–110

33. Lingras P, West C (2004) Interval set clustering of web users with rough k-means. J Intell Inf
Syst 23(1):5–16

8 Overview of Overlapping Partitional Clustering Methods 275

34. Liu Z-G, Dezert J, Mercier G, Pan Q (2012) Belief c-means: an extension of fuzzy c-means
algorithm in belief functions framework. Pattern Recognit Lett 33(3):291–300

35. MacQueen JB (1967) Some methods for classification and analysis of multivariate obser-
vations. In: Fifth Berkeley symposium on mathematical statistics and probability, vol 1,
pp 281–297

36. Magdon-Ismail M, Purnell J (2011) Ssde-cluster: fast overlapping clustering of networks using
sampled spectral distance embedding and gmms. In: IEEE third international conference on
social computing (socialcom), pp 756–759

37. Masson M-H, Denoeux T (2008) Ecm: an evidential version of the fuzzy c-means algorithm.
Pattern Recognit 41(4):1384–1397

38. Mirkin BG (1987) Method of principal cluster analysis. Autom Remote Control 48:1379–1386
39. Mirkin BG (1990) A sequential fitting procedure for linear data analysis models. J Classif

7(2):167–195
40. Pérez-Suárez A, Martínez-Trinidad JF, Carrasco-Ochoa JA, Medina-Pagola JE (2013a) Oclustr:

a new graph-based algorithm for overlapping clustering. Neurocomputing 109:1–14
41. Pérez-Suárez A, Martínez-Trinidad JF, Carrasco-Ochoa JA, Medina-Pagola JE (2013b) An

algorithm based on density and compactness for dynamic overlapping clustering. Pattern
Recognit 46(11):3040–3055

42. Snoek CGM, Worring M, van Gemert JC, Geusebroek J-M, Smeulders AWM (2006) The
challenge problem for automated detection of 101 semantic concepts in multimedia. In: 14th
annual ACM international conference on multimedia, pp 421–430

43. Tang L, Liu H (2009) Scalable learning of collective behavior based on sparse social
dimensions. In: ACM conference on information and knowledge management, pp 1107–1116

44. Tsoumakas G, Katakis I, Vlahavas I (2010) Mining multi-label data. In: Data mining and
knowledge discovery handbook, Springer pp 667–685

45. Wang Q, Fleury E (2011) Uncovering overlapping community structure. In: Complex networks,
vol 116, pp 176–186

46. Wang X, Tang L, Gao H, Liu H (2010) Discovering overlapping groups in social media. In:
IEEE international conference on data mining, pp 569–578

47. Wieczorkowska A, Synak P, Ras Z (2006) Multi-label classification of emotions in music.
In: Intelligent information processing and web mining. Advances in soft computing, vol 35,
pp 307–315

48. Wilderjans T, Ceulemans E, Mechelen I, Depril D (2011) Adproclus: a graphical user interface
for fitting additive profile clustering models to object by variable data matrices. Behav Res
Methods 43(1):56–65

49. Wilderjans TF, Depril D, Mechelen IV (2013) Additive biclustering: a comparison of one new
and two existing als algorithms. J Classif 30(1):56–74

50. Yang Y (1999) An evaluation of statistical approaches to text categorization. J Inf Retrieval
1:67–88

51. Zhang S, Wang R-S, Zhang X-S (2007) Identification of overlapping community structure in
complex networks using fuzzy c-means clustering. Phys A Stat Mech Appl 374(1):483–490

Chapter 9
On Semi-Supervised Clustering

Marco Bongini, Friedhelm Schwenker, and Edmondo Trentin

Abstract Due to its capability to exploit training datasets encompassing both
labeled and unlabeled patterns, semi-supervised learning (SSL) has been receiving
attention from the community throughout the last decade. Several SSL approaches
to data clustering have been proposed and investigated, as well. Unlike typical
SSL setups, in semi-supervised clustering (SSC) the partial supervision is generally
not available in terms of class labels associated with a subset of the training
sample. In fact, general SSC algorithms rely rather on additional constraints
which bring some kind of a-priori, weak side-knowledge to the clustering process.
Significant instances are: COP-COBWEB and COP k-means, HMRF k-means,
seeded k-means, constrained k-means, and active fuzzy constrained clustering. This
chapter is a survey of major SSC philosophies, setups, and techniques. It provides
the reader with an insight into these notions, categorizing and reviewing the major
state-of-the-art approaches to SSC.

Keywords Partially supervised learning • Semi-supervised clustering • Active
learning • Constrained clustering • Fuzzy clustering

9.1 Introduction1

There are at least three major perspectives on data clustering, according to the aim
one is specifically interested in. First of all, clustering algorithms are a family of
techniques that crunch a bunch of data and come up with a sound partition of the
dataset, where “sound” herein means “with a high degree of inner coherence and

1Part of this section is based on our paper Schwenker and Trentin [48].

M. Bongini (�) • E. Trentin
DIISM, University of Siena, Italy
e-mail: bongini@dii.unisi.it; trentin@dii.unisi.it

F. Schwenker
Institute of Neural Information Processing, University of Ulm, Germany
e-mail: friedhelm.schwenker@uni-ulm.de

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__9

277

mailto:bongini@dii.unisi.it
mailto:trentin@dii.unisi.it
mailto:friedhelm.schwenker@uni-ulm.de

278 M. Bongini et al.

outer separation” (grouping perspective) [30]. Then, clustering algorithms are a
simple and somewhat effective attempt at solving the “data description problem”,
i.e. the problem of finding adequate and not-too-complex descriptive statistics of
a data sample, where “adequate” herein means “as close to sufficient2 as possible”
and “not-too-complex” means “whose size is much smaller than the sample size”
(data description perspective) [21]. Finally, clustering algorithms may just play
the subsidiary role of building blocks (e.g., in a divide and conquer fashion) or
initializers (e.g., for the Gaussian kernels of a radial basis functions network [10])
for more sophisticated pattern classifiers (subservience perspective) [11]. All in all,
the development of robust data clustering from a limited, unlabeled training set of
data represented in a proper feature space X (where X is generally a real-valued
vector space, i.e., X � R

d) has long been one of the most relevant tasks in machine
learning and statistical pattern recognition [31].

Fully unsupervised clustering is the main topic of standard approaches to cluster-
ing in traditional unsupervised machine learning. In the unsupervised framework, in
fact, a variety of methods and algorithms can be found in the machine learning
literature. Aside from clustering, major instances are represented by probability
density estimation, self-organizing mapping, and dimensionality reduction (just to
mention a few). The goal of the learning process is usually defined through an
objective function, where the learning schemes use the data in the training set
without any prior knowledge of their labels (e.g. their class labels, if a classification
task is faced). In a typical unsupervised learning scenario the training set is
defined as

U D fui jui 2 R
d ; i D 1; : : : ;M g

where the data ui are independently drawn from an identical probability density
function over Rd (i.i.d. assumption) [11]. Clearly, the lack of labels (encapsulating
any prior expert knowledge) renders unsupervised learning a particularly difficult
machine learning problem [29]. In pattern classification tasks, the absence of
target class labels during the training phase virtually prevents the machine from
resulting in a (more or less reliable) classifier. Although individual clusters yielded
by unsupervised clustering are often assumed to form “classes” in an implicit
sense, there is no theoretical ground behind such an assumption in the general
case. Indeed, from a general standpoint the dataset U might not even involve any
classification task at all. All the learning algorithm can do is analyzing the data,
in an attempt to capture either probabilistic (e.g., the probability density function)
or geometric/topological information (e.g., some distance/similarity measure, or a
partitioning of the data into homogeneous clusters) describing the nature of the data
distribution.

2According to the statistical notion of sufficient statistics.

9 On Semi-Supervised Clustering 279

On the other end, in the fully supervised framework any pattern x in the training
set is uniquely associated with a corresponding (target) label y 2 Y . It is assumed
that Y D fy1; : : : ; yLg is the set of L (different) class labels, reflecting the ground
truth on the classification problem at hand. Intervention from human experts is
needed in order to label the training dataset properly. During an initial stage of data
collection and annotation, the supervised training set

S D f.xi ; yi / j xi 2 R
d ; yi 2 Y; i D 1; : : : ; mg

is therefore prepared. Again, the patterns in S are i.i.d. according to some unknown
probability density function defined on R

d � Y [11]. Subsequently, S is fed into
a pre-selected supervised learning algorithm aimed at training a classifier C , that is
a mapping C W Rd ! Y . This algorithm is expected to exploit the information
encapsulated within both the feature vectors and the corresponding class labels.
Alongside of the algorithm, a hypothesis space has to be fixed, as well. The latter
consists of all the potential candidate classifiers C which may become the eventual
outcome of the computation on S of the learning algorithm chosen [1].

It is seen that data annotation is an expensive, time-consuming, and error-prone
process. Individual data have to be carefully inspected by one or more domain
experts in order to pinpoint the corresponding class labels. Moreover, the exact class
labels may not even be explicitly observable. Nonetheless, supervised learning is
still far the most prominent branch of machine learning and pattern recognition.

Moving a step beyond the traditional learning frameworks, it is easy to see that
a somewhat intermediate scenario occurs when clustering (or, classification) relies
on a dataset T whose data are only partially labeled. Formally, T D S [U for a
proper, labeled subset S and its unlabeled counterpart U . While classic clustering
techniques do not lead (intrinsically) to any classifier C in this setup, regular
supervised classifiers can still be trained over S all the same. Unfortunately, in
so doing all the data in U would not be exploited, resulting in a waste of potentially
useful additional information which could strengthen the very classifier. As a
consequence, the framework of partially supervised learning (PSL) was introduced
[48], having the form of a family of machine learning algorithms lying between
supervised and unsupervised learning. Within the realm of PSL, semi-supervised
clustering (SSC) finds its place. SSC algorithms may offer a precious building
block for the development of robust classifiers from partially labeled data. Moreover,
they may just as well exploit the presence of the partial supervision (either in the
form of S , or in the form of constraints expressing some side-knowledge), and
possibly yield a partitioning of the data into clusters that improves over traditional
unsupervised clustering techniques. Broadly speaking, in SSC the basic idea may be
to exploit some type of prior information on the data at hand, such as: (a) the class
labels of some patterns, or (b) certain constraints on pairs of patterns, e.g. “must-
link” (ML) or “cannot-link” (CL), as in constrained and seeded k-means clustering
[6, 8, 13, 50, 55]. It is a noticeable fact that, to this end, involvement of a human
annotator in the pre-processing cycle may not even be required. It will be seen
shortly that an interesting relationship holds between the expressiveness of labels

280 M. Bongini et al.

and of constraints, respectively, as sources of side-knowledge. Furthermore, some
instances of SSC can be seen as “clustering under weak supervision” (for instance,
clustering with a fuzzy teacher).

In practical SSC applications, after collecting the raw data, several questions arise
concerning the following data processing steps: (1) how can labeled data, unlabeled
data, and/or constraints be combined and exploited within a unifying, effective
clustering scheme; (2) how do we chose the specific constraints, or patterns in S ,
such that they are utterly informative; (3) how can the machine deal with soft/fuzzy
labels, multiple labels, or soft/fuzzy constraints in a PSL scenario. In an attempt to
put forward plausible answers to these (and, further) questions, several prominent
directions of research have been developed so far by the community in the SSC area.
These directions are the subject of the present chapter.

We made every effort in reviewing and categorizing the different approaches
to SSC in a suitable manner. This resulted in the following organization of the
chapter. Section 9.2 overviews the whole research area and introduces the reference
taxonomy of the different techniques. This section covers also the usual catego-
rization of algorithms into hierarchical vs. partitional procedures, respectively, and
elaborates on the nature of the available “supervision” (i.e., labels vs. constraints).
The major issues found in SSC and the corresponding keystones are discussed
in Sect. 9.3, including the assessment of clustering quality via internal/external
measures (Sect. 9.3.1), and a survey of constraints-related questions (Sect. 9.3.2).

The individual techniques and algorithms for SSC are handed out in Sect. 9.4,
according to the following arrangement: COP-COBWEB and COP k-means
(Sect. 9.4.1), HMRF k-means and the corresponding probabilistic framework
(Sect. 9.4.2), SSC based on data-driven learnable similarity measures (Sect. 9.4.3),
seeded k-means and constrained k-Means (Sect. 9.4.4), the Zheng-Li algorithm
(Sect. 9.4.5), active fuzzy constrained clustering (Sect. 9.4.6), and a kernel approach
to semi-supervised graph clustering (Sect. 9.4.7). Finally, Sect. 9.5 pinpoints some
directions for future research, while conclusions are drawn in Sect. 9.6.

9.2 Overview and Taxonomy of Algorithms

The goal of this section is to offer a quick overview of the most important SSC
algorithms, comparing the most relevant approaches found in the literature. By
doing this, we introduce a raw categorization of the methods and highlight their
main characteristics. First of all, we discuss the directions along which it is possible
to classify SSC approaches. Like in traditional unsupervised clustering, we have the
fundamental distinction between hierarchical and partitional clustering algorithms.
Due to the easier way in which they accept constraints, partitional SSC approaches
have been generally more exploited than hierarchical SSC methods. A second
distinction can be made according to the nature of the side-knowledge (supervision)

9 On Semi-Supervised Clustering 281

presented to the SSC algorithm. Essentially, amongst the many potential ways to
furnish supervision to a SSC procedure, only two of them are actually applied (with
few exceptions).

9.2.1 Types of Supervision (Side-Knowledge)

In the literature, the most popular and natural way to provide a machine with
supervision is through labeled data. Unfortunately, as pointed out in [14], labels
may not fit well the general clustering problem. As a matter of fact, when facing
a clustering task a labeling might not even be defined at any conceptual level.
Moreover, even when a labeling exists (at least in principle), it may be “difficult” for
the supervisor (i.e., the human expert) to come up with the correct label in response
to a query issued by an active learning SSC machine. On the other hand, assessing
whether a specific pair of patterns shall be clustered together or in separate clusters
is way easier. This is the rationale behind the introduction of the so-called must-
link and cannot-link constraints, defined in [54] and widely applied since. They are
straightforwardly defined as follows:

• a must-link (ML) constraint specifies that two patterns should be in the same
cluster;

• a cannot-link (CL) constraint specifies that two patterns cannot be in the same
cluster.

Therefore, we have the two main types of side-knowledge:

• label-based supervision: widely used in the community, due to the easy access
to benchmark datasets, mainly rooted in the pattern classification environment.
While it is a valid tool to test an algorithm, in the general case it is not well-
suited for real-world clustering applications;

• constraint-based supervision: widely applied in the SSC literature, too. It is better
suited for real-world applications, especially for active learning approaches.

Nevertheless, other types of constraints are available in the literature, mainly in
the hierarchical SSC framework (as pointed out in Sect. 9.2.3). In the latter case, they
are mostly “ordering” constraints that affect the order in which clusters are merged
in the framework of agglomerative clustering. A relevant example is represented by
the must link before (MLB) constraints [4], which are defined as .x; .S1; : : : ;Sm//.
The terms Si are sets of patterns, and the meaning of the rule is that the pattern x
should link with patterns contained in Si before than with those in Sj if i < j .

282 M. Bongini et al.

9.2.2 Partitional SSC Algorithms

Traditional unsupervised partitional procedures, starring the k-means algorithm,
have possibly been the most popular clustering techniques for decades. Their
straightforward contextualization within the semi-supervised framework results in
the so-called partitional semi-supervised clustering (PSSC) algorithms. PSSC has
been widely investigated in the literature, where the majority of the algorithms
proposed so far rely on a k-means-based schema. An utterly relevant instance
is represented by the COP-kMeans algorithm [55], where a k-means strategy is
integrated with hard (i.e., strictly required) ML and CL constraints. Thus, the
algorithm cannot deal efficiently with noise (or, contradictions) in constraints, as
we will see in Sects. 9.3.2.3 and 9.4.1. Other relevant approaches can be found in
[6], where seeded k-means and constrained k-means algorithms are described. Both
of them take advantage from label-based supervision, using the latter to initialize
the k-means centroids. In practice, the prototypes (or, centroids) of the clusters
are not initialized randomly, but rather relying on the side-knowledge. After the
initialization, seeded k-means behaves just like the classical spherical k-means [20].
Therefore, it does not involve the side-knowledge any longer, and inconsistencies
w.r.t. the labeling might even emerge at some time during the clustering process
(making the approach suitable to cases of noisy side-knowledge). The constrained
k-means is based on the spherical k-means, too, but it does not violate the “seeding”
(i.e., the labeling specified via S) throughout the following iterations of the
algorithm. As a consequence, the technique is not an optimal approach to scenarios
involving uncertain supervision. A study of the effects of supervision on PSSC,
again carried out using the k-means algorithm, can be found in [56]. Therein, the
authors compared the effect of different combinations of distance metric learning
and constraints on the results of the consequent clustering process. More recently,
an original approach using probabilistic graphical models was described in [8]. It
relies on a k-means-based algorithm (HMRF-kMeans) that accounts for the ML/CL
constraints, including them in the objective function in the form of a penalty
term. This method is presented in detail in Sect. 9.4.2. A different algorithm is
described in [36], with a “centroid-less” k-means scheme [58] developed using non-
negative matrix factorization. Again, ML and CL constraints are used to express the
available supervision. Furthermore, the SS-kernel-kMeans algorithm is introduced
in [34]. This approach, which generalizes the HMRF-kMeans, as well as the
Spectral Learning algorithm [32], is based again on a modified k-means, including a
weighted kernel function inspired by the work of Dhillon et al. [19]. Finally, another
recent kernel-based algorithm can be found in [22], where sample-to-cluster weights
are introduced. The supervision can be given in the form of ML and CL constraints.

9 On Semi-Supervised Clustering 283

9.2.3 Hierarchical SSC Algorithms

Hierarchical clustering is a widely applied class of unsupervised clustering algo-
rithms that can be further divided into agglomerative and divisive clustering
approaches [21]. The hierarchical SSC (HSSC) is its natural extension to the
semi-supervised scenario. However, to the best of our knowledge, all the HSSC
approaches in the literature are agglomerative.

A detailed investigation on the type of constraints and their effects on the HSSC
process can be found in [16]. As pointed out in [60] and in [59], the HSSC is not
naturally designed to incorporate ML and CL constraints (although this is possible
from a theoretical viewpoint [16, 17]), due to the fact that patterns may be linked
over possibly different levels of the hierarchy. Therefore, the literature on HSSC
investigates other kinds of side-knowledge than the classical ML/CL constraints.
A first, relevant example is found in [4], which introduced the aforementioned
must-link-before constraint. It is seen that the MLB changes the order in which
the clusters are merged during the agglomerative process, insofar that it modifies
the distance between nearest clusters whenever their merge results in the violation
of a constraint. A different example can be found in [59], where a new kind
of ordering constraint is introduced which works on the merge order without
affecting the metric. A more recent agglomerative approach was presented by Zheng
et al. in [60], relying on triple-wise relative constraints, a special case of MLB
constraints (a detailed description is given in Sect. 9.4.5). Furthermore, a label-based
approach relying on a complete-linkage algorithm was introduced in [15], where the
supervision is exploited to empower the dendrogram.

The algorithms listed so far do not use the ML and CL constraints as source
of supervision. A relevant exception is the COP-COBWEB3 [54], based on the
COBWEB algorithm [23], and capable of dealing with hard ML and CL constraints.
The algorithm requires the satisfaction of all constraints, and it is not an optimal
solution in case of uncertainty in constraints. Finally, we should notice a couple of
Fuzzy HSSC algorithms presented by Grira et al. [26, 27]. Due to the fuzzy setup,
they are able to successfully incorporate the ML/CL constraints, too. The first one
is based on competitive agglomeration [26], while the second introduces an active
learning strategy [27]. This is described in detail in Sect. 9.4.6.

3The authors introduce their algorithm as a partitional method, since it yields a flat partition of the
data, corresponding to the top level of the resulting COBWEB hierarchy. Nevertheless, it is our
conviction that COP-COBWEB is actually a HSSC approach, due to the hierarchical way in which
the process is carried out. The eventual selection of a partition from the dendrogram does not affect
this; actually, it is quite a common fact in the hierarchical framework.

284 M. Bongini et al.

9.3 Main Issues and Key Points

In the present section we review some fundamental, general issues of SSC, and some
major, related problems. Section 9.3.1 elaborates on the delicate topic of quality
assessment of the outcome of clustering procedures. Relevant questions on partial
supervision are then faced in Sect. 9.3.2.

9.3.1 Evaluation of Clustering Quality: Internal/External
Measures

Evaluating the quality of the clustering process (that is, the fitness of the resulting
partition of the data to the nature of the problem at hand) is one of the most important
and challenging issues in cluster analysis research. In cluster validation a variety of
questions arise, including:

• are there clusters in the data?
• How many clusters are in the data?
• What is the correct shape of the clusters?
• Does the clustering result fit the data/agree with prior knowledge?
• Is the result of algorithm A better than the result of algorithm B?

Despite the vast amount of research that has been published on this issues (see
for instance [3, 38, 53, 57] and references therein) no conclusive approach to cluster
validation has been developed, so far. In the literature, three major types of criteria
have been investigated for cluster evaluation [30]:

• External criteria: the result of the clustering procedure is evaluated by comparing
it to a given external and pre-defined structure, for instance a user-defined
labeling of the dataset. Based on this external information the clustering result
is tested. A possible test could be to investigate how well a partition computed by
a clustering algorithm fits a partition which is pre-defined by a human annotator.
For this, in the first set the corresponding contingency matrix must be calculated,
and, based on this, an external cluster validation measure is applied (e.g. entropy
index, Huberts � statistic, Jaccard coefficient, adjusted Rand Index, and many
others [44, 57]).

• Internal criteria: in this kind of evaluation the results of the clustering algorithm
are evaluated through quantities derived from the data themselves, for instance
from the distance matrix of the instances, or from distances to the cluster
centers. Internal cluster validation is mostly based on compactness and separation
measures. Compactness criteria measure how mutually close the instances in a
cluster are. For instance, the variance of distances between pairs of objects, or the
variance of distances to a cluster center, might be considered as a compactness
measure for a single cluster, as well as for a complete partition. Separation is

9 On Semi-Supervised Clustering 285

a measure of how well separated a cluster is from the others. Examples are the
distances between cluster centers, or the pairwise distances between instances of
clusters [18,38]. The general algorithm for finding the clustering by using a given
internal validation measure has the following form:

1. Initialize a set of clustering algorithms.
2. For each clustering algorithm, use different combinations of parameters to get

different clustering results.
3. Compute the internal validation measure of each clustering from step 2.
4. Choose the best clustering according to the criteria.

• Relative criteria: the idea of relative criteria is to compare different clustering
results which stem from running the same algorithm on different parameter
values. In so doing, relative cluster criteria are suitable to comparing the
results of diverse clusterings, and to pinpoint the best one. External criteria are
mostly relative criteria, but also many internal criteria can be seen as relative
criteria [53].

For the evaluation of semi-supervised clustering algorithms, typically, external
measures are applied to compare clustering results, often together with cross-
validation [6]. The problem in SSC settings is to take into account, and to measure,
the amount of prior knowledge. For instance, in the scenario of cannot-link and
must-link constraints, it is easy to see (for small toy examples) that different sets of
CL and ML constraints (with different number of links) can fix the cluster structure.
Therefore statistical measures, such as purity or mutual information as suggest by
Strehl et al. [51] or [6] might be useful in SSL, but to the best of our knowledge this
topic has not been investigated in depth so far.

9.3.2 Relevant Questions on Supervision

In this section we investigate some of the most relevant supervision-related prob-
lems we found in the literature on SSC. For some of them we found, and we report
here, a solution (or, several solutions that can be compared to each other), while
others are still open.

9.3.2.1 Equivalence Between Constraint-Based
and Label-Based Supervision

As stated in Sect. 9.2.1, the supervision can be furnished to the clustering process
in several ways, the two most successfully being (a) explicit labels, and (b) ML/CL
constraints. A very relevant question arises naturally at this point: are labels and
constraints mutually equivalent, at least at some level of abstraction? In the literature
the question is not thoroughly investigated, and usually such an investigation is

286 M. Bongini et al.

accomplished in an implicit way only. Significant exceptions can be found in [9]
and [14]. The answer that emerges is that constraints have a greater modeling
capability (i.e. are more general) than labels. Basically, an univocal mapping of
labels onto constraints (L2C) is always possible, while in the general case the vice-
versa (C2L) is not. In the L2C case, a straightforward approach can be obtained
assigning a ML constraint to all pairs of patterns sharing the same label, and a
CL constraint to any other pairs. The other way around, a simple case study is
enough for demonstrating that the C2L mapping is not always realizable. Let us
consider a toy dataset U D fA;B;C;Dg embracing 4 patterns to be clustered
relying on an active learning scheme. With two queries to the supervisor we can
obtain the ML constraints .A;B/ and .C;D/, respectively. This can be expressed
as labeling in two possible forms: A;B ! c1IC;D ! c2 or A;B;C;D ! c1.
Both expressions are not correct: indeed, in the first case we have an implicit CL
constraint that was not posed by the user, likewise the second case where another,
implicit ML constraint is entailed. Thence, there is no correct label representation
for the supervised assignment of constraints at hand. From an applicative point
of view, as pointed out in [14] the constraint-based supervision is more natural
in those clustering contexts where the user might not know the labeling of the
patterns (at times, it is possible that such a labeling does not even exist). On the
other hand, the task of assessing whether two patterns shall end up in the same
cluster, or not, may be quite easy for the supervisor. Therefore, we can conclude
that ML/CL constraints offer a more general tool to furnish supervision to the SSC
process in an easier way. In particular, in real-word applications they are easier to
use and more realistic for an active learning schema. Nevertheless, labels remain a
valid tool, as well. For instance, a label-based SSC approach offers a natural way to
testing algorithms applied to benchmark datasets containing labeled data.

9.3.2.2 Selecting the Best Query in Active Learning

Active learning approaches are quite common in SSC environments [7, 14, 27]. It
is easy to see that the identity, nature, and number of the specific constraints (or,
labels) have a significant influence on the outcome of the active learning SSC
algorithm. An intuitive justification of this statement is that obtaining additional
information about well-separated clusters is almost useless, while information about
overlapping (or, ill-defined) clusters is of the utmost relevance. The literature reports
experimental evidence confirming this notion [7, 26, 27]. A similar problem has
been investigated also in unsupervised clustering literature [28]. All in all, the goal
is to find the best criteria an active SSC learner can apply for selecting the most
informative patterns to be submitted to the oracle (i.e., to the human expert) for
getting supervision. To this end, basically we have two major approaches that fit two
different scenarios, respectively. The first one is the farthest-first traversal method,
employed by Basu et al. in [7] with the PCK-Means algorithm, that (ideally) queries
the oracle uniformly over all the data space. This is a sound approach whenever all
the queries must be asked to the oracle in advance (i.e., before the actual clustering

9 On Semi-Supervised Clustering 287

process takes place). With no (even tentative) prior information on position and
shape of the clusters, a uniform supervision is an unbiased, likely choice. The idea
is to get the best initialization possible for a semi-supervised k-means approach
(which is a crucial step, under the circumstances). To achieve this, a farthest first-
traversal method is used. First, the algorithm attempts to obtain an example for each
cluster. This is consistent with the farthest-first schema that tends to explore all the
patterns sets selecting at each step the pattern farthest from the ones already chosen.
Then, in the second phase the algorithm tries to consolidate the centroid estimation,
by adding new patterns to be queried on the basis of the same approach. For each
pattern added to the set we run queries with each other in the set, until we obtain
either a ML answer, or CL answers for all the current clusters; finally, the scheme is
iterated and used to start a new cluster. Note that for each pattern we have to ask at
most k � 1 queries.

The second approach was proposed by Grira et al. in [27]. It fits a schema
where the queries are submitted to the oracle during the clustering process. In so
doing, the algorithm can query for supervision in those regions of the feature
space where the separation between clusters does not appear to be neither neat
nor trustworthy yet. More specifically, at each new query the algorithm tries to get
information in the weakest point of the current clustering, that is the worst defined
cluster border. To do that, the original algorithm (described in detail in Sect. 9.4.6)
uses the fuzzy hypervolume to identify the worst-defined cluster. Then, the cluster
(fuzzy) membership function is used in order to select the feature vector closest
to the frontier to be coupled with the closest pattern in the closest cluster, and
jointly queried for supervision. The original setup was defined for a fuzzy clustering
technique, but it can be applied (at least, in principle) to a crisp SSC setup, too (just
by using different, adequate approaches to identifying the worst-defined cluster and
to pinpointing the “borderline” items in need of supervision).

Finally, the optimal query selection strategy depends strongly on the task at
hand, as well as on the specific algorithm adopted. If supervision is required for
the initialization stage (which is likely to be the case whenever the algorithm is run
only once), a method such as the farthest-first traversal is viable. On the other hand,
if we have an iterative procedure with several steps of cluster re-assignments, an
approach that queries for supervision close to the borders of ill-separated clusters
(like the latter described above) may turn out to be best.

9.3.2.3 Uncertain Supervision

In the vast majority of SSC applications the oracle that provides the supervision
(either in form of class labels or in form of ML/CL constraints) is assumed to be
infallible. Unfortunately, this is not generally the case when we face a real-world
problem. Any kind of background knowledge used in SSC, or feedbacks in active
learning schemata, are likely to contain noise and/or supervision errors. What sort
of problems may arise from such uncertainty? To answer the question we shall
severalize the different scenarios of uncertain labels and uncertain constraints. If we

288 M. Bongini et al.

have a label-based SSC algorithm, this usually leads to a wrong clustering of the
mislabeled data. Thus, the weak/noisy supervision of the clustering process is likely
to yield a sub-optimal solution, even worsening the quality offered by a traditional
unsupervised clustering approach. Nonetheless, while in the case of supervision-
via-labels the process will converge after all (leading to a valid clustering of some
sort), constraint-based SSC processes may even get stuck under the circumstances.
The common procedure is to perform a transitive closure of the constraints before
the actual clustering process takes place. If the noise/errors present in the original
constraints lead to an inconsistent closure (i.e., a new set of constraints containing
contradictions) then, in general, most constrained-based SSC algorithm will not
be able to yield a solution. An example of this situation is the following: let
M D ˚�

xi ; xj
� I �xj ; xk

�	
be the set of ML constraints and C D f.xi ; xk/g be

the set of CL constraints. Clearly, there is no solution if we require the satisfaction
of all the constraints. Nevertheless, some algorithms are able to deal with such
contradictions, even leading to good solutions [8, 27, 34]. An example of successful
strategy is introduced in [9], where the constraints are included in the objective
function in the form of a penalty term, such that the algorithm can violate (some of)
them if necessary. In practice, both label-based and constraint-based supervision
may yield interesting and useful solutions even under noisy/weak supervision.
Notwithstanding, when working with constraints we should be aware of the risks,
thence opting for clustering algorithms capable of dealing with a faulty supervisor.

9.4 Algorithms for SSC

This section surveys in detail all the SSC algorithms we categorized earlier, in the
order, providing the reader with a description of the different techniques, several
bibliographic references to the relevant literature, and a concise report on the
established performance in the field.

9.4.1 COP-COBWEB and COP-kMeans

COP-COBWEB is a modified version of the COBWEB algorithm [23], which
computes a clustering that maximizes the inter-cluster dissimilarity and the intra-
cluster similarity [54]. This hierarchical algorithm takes a dataset X , the two sets
of constraints M and C , and it returns a partition of the dataset that fulfilled the
specified constraints by utilizing a set of operators Must-link check, Add, New,
Merge, Split, Update, and a pre-defined quality measure Q.P/ defined for a
partition P ofX . The input to the recursive COP-COBWEB algorithm is a dataset
X D fx1; : : : ; xN g, a set of must-links M
 X � X , and a set of cannot-links
C
 X � X . For an instance xi 2 X , the first step (step 2a) is to check the ML
conditions. If there is such a ML constraint that xi must be in the same cluster

9 On Semi-Supervised Clustering 289

Algorithm 1 COP-COBWEB
COP-COBWEB (X , M , C)
1. Initialize clustering P WD ;
2. For each instance xi 2 X , try to insert xi into the existing clustering
2a. Must-link check: if there exits a must-link .xi ; xj / 2M and xj 2 P

for some existing cluster P 2P then include xi into cluster P ,
Pmust D .P n P /[fP [fxigg and GoTo Split.

2b. Add: for each cluster Pj 2P , a new clustering is given by
Padd�j D .P n Pj /[fPj [fxigg unless .xi ; xk/ 2 C
for some instance xk 2 Pj

2c. New: Pnew DP [fxig
2d. Merge: Let Pmax1 and Pmax2 be the two best clusters for xi

with respect to quality measure Q then merge,
Pmerge D ..P nPmax1/nPmax2/[fPmax1[Pmax2[fxigg unless .xl ; xk/ 2 C
for some instances xk 2 Pmax1 and xl 2 Pmax2

2e. Split: Let Pmax the best clusters for xi from step (2a.) or (2b.)
with respect to quality measure Q, then let
Pspli t D .P n Pmax/[COP-COBWEB.Pmax [fxig;M ;C /

2f. Update: Let m D argmax C.Pk/ for k 2 fmust; add � j; new; merge; spli tg and
update P WDPm.

3. return P

P as another instance xj , then xi is added to P . If such a ML constraint is not
given, then xi is added to any cluster, but taking into account possible cannot-links
(in step 2b). In the next step (step 2c), creating a new cluster for an instance xi
is considered. Merging two suitable clusters (step 2d) needs again a check for CL
constraints. A splitting step (2e) is then recursively applied to the cluster that fits
best the instance xi , with respect to quality measure Q (see Algorithm 1 and [54]).

The general concept of CL and ML constraints can be incorporated into existing
clustering algorithms, for instance k-means [39, 40] or incremental clustering
algorithms, especially neural clustering algorithm (such as Kohonen maps [33], or
neural gas [41]). The major modification in such algorithms is to ensure that the
given constraints M and C are not violated, when adapting the cluster assignments
of the instances.

A partitional example is Algorithm 2 [55] where the batch k-means using CLs
and ML constraints is given. In k-means the quality measure is usually defined
through l2 empirical discretization:

Q.fP1; : : : ; Pkg/ D
NX

1D1
kxi � yki k22 (9.1)

where k � k is the Euclidean norm, y1; : : : ; yk are the centroids of the clusters
fP1; : : : ; Pkg (these are the cluster averages, evaluated over all instances in the
corresponding cluster), and yki denotes the cluster center (among all clusters) which
is the nearest to pattern xi . Checking the ML constraints M means to ensure

290 M. Bongini et al.

that there is no must-link into an instance of a cluster Pj with j 6D ki , and
checking the cannot-link constraints C means to avoid a cannot-link .i; l/ 2 C
with a datapoint xl 2 Pki . In case of contradictions, the algorithm fails and returns
an empty clustering as a result. This behavior is too strict in many applications,
thus considering soft, or probabilistic, constraints rather than hard constraints in
Algorithms 1 and 2 may lead to more flexible SSC algorithms.

Algorithm 2 COP-kMeans
COP-kMeans (X , M , C)
1. Initialize clustering P WD fP1; : : : ; Pkg and

compute the corresponding cluster centers y1; : : : ; yk
2. For each instance xi 2 X compute the closest cluster center yki using Q.fP1; : : : ; Pkg/

and assign xi to Pki if the constraints M and C are satisfied
otherwise Return P WD ;

3. Compute cluster centers y1; : : : ; yk by averaging over corresponding clusters fP1; : : : ; Pkg
4. Until convergence iterate step 2. and 3.
5. Return P WD fP1; : : : ; Pkg

9.4.2 A Probabilistic Framework for SSC: The HMRF
k-Means Method

The method described in this section is a partitional approach to SSC based on
probabilistic graphical models, originally proposed in [8]. The approach exploits
the benefits of constraints-based supervision in three ways:

• improved initialization;
• assignment of pattern to cluster;
• iterative distance measure learning.

The algorithm takes in input the dataset X D fx1; : : : ; xN g, the sets M of ML
constraints and C of CL constraints, and their violation costsW andW , respectively.
Moreover, a distortion measure D should be specified by the user.

The probabilistic graphical model at the root of this approach is a hidden Markov
random field (HMRF), which has the following components:

• a hidden field of random variables L D fligNiD1 with values in f1; : : : ; Kg,
corresponding to the K cluster labels;

• an observable set X D fxigNiD1 of random variables drawn from P.xi jli /.
An emission Markov assumption holds, such that P.X jL/ DQxi2X P.xi jli /.
Each random variable li has a neighborhood Ni which is a set including all the

other random variables lj that appear in an ML or CL constraint with li . Thus, Ni
can be computed from M and C in a straightforward manner. Let us assume that

9 On Semi-Supervised Clustering 291

a Markov random field is defined over the hidden variables, that is to say that the
classic Markov property P.li jL n flig/ D P.li jNi/ holds. Therefore, the posterior
probability of a certain complete cluster assignment L given the dataset X can be
written as:

P.LjX/ D 1

CZ
exp

0

@�
X

i

X

j

V .i; j /

1

A � p �X; f
hgKhD1
�

(9.2)

where
h is the hth cluster centroid, Z is the usual normalizing constant for MRFs
(i.e., the so-called partition function), and C is another constant that is considered
to be “equivalent” to the prior probability P.X/ of the dataset. The quantity V.i; j /
is the pairwise potential of the MRF, defined as:

V.i; j / D
8
<

:

fM .xi ; xj / if.xi ; xj / 2M

fC .xi ; xj / if.xi ; xj / 2 C

0 otherwise
(9.3)

where fM .�; �/ and fC .�; �/ are the non-negative penalty functions for ML and
CL violations, respectively. Finally, p.X; f
hgKhD1/ is the conditional probability
P.X jL/ of the dataset given the clustering assignment L. The maximization of
Eq. (9.2) is an “incomplete data problem” that can be solved using the Expectation-
Maximization (EM) technique. In turn, EM is equivalent to k-means in case of hard
(i.e., crisp) clustering assignments. Thus, it is feasible to use k-means in order to
maximize Eq. (9.2).

The conditional probability function and the penalty functions are chosen
depending on the metric which can be selected to fit a specific problem, thus
adapting Eq. (9.2) to different clustering tasks. In [8] the authors restrict their
attention to the conditional probability densities of this form:

P.X jL/ D p.X; f
hgKhD1/ D
1

Z3
exp

0

@�
X

xi2X
D.xi :
li /

1

A

which can include several different cluster models. They propose two suitable
penalty functions, weighting the constraint violation proportionally to the pattern
distance. In so doing, they penalize the metrics that either (a) set apart patterns that
should rather belong to the same cluster, or (b) set close patterns that should lie in
different clusters. This is accomplished by defining:

fM .xi ; xj / D wij �D
�
xi ; xj

�
1
�
li ¤ lj

�
(9.4)

and:

fC .xi ; xj / D wij
�
�DMAX � �D

�
xi ; xj

��
1
�
li D lj

�
(9.5)

292 M. Bongini et al.

where �D is a monotonically increasing function of the distance between xi and xj .
This choice leads to the following objective function to be minimized:

Jobj D
X

xi2X
D.xi ;
li /C

X

.xi ;xj /2M ;li¤lj
wij �D.xi ; xj /

C
X

.xi ;xj /2C ;liDlj
wij

�
�DMAX � �D.xi ; xj /

�C log .Z/ (9.6)

The choice of a suitable distortion measure is fundamental in order to obtain
a good clustering. The distortion measure should fit the task at hand, i.e. the type
of data to be clustered as well as the algorithm used. For the study presented in [8],
the authors proposed and investigated the cosine similarity and the Kullback-Leibler
divergence. The distortion measure obtained using a parameterized cosine similarity
takes the following form:

DcosA.xi ; xj / D 1 �
xTi Axj

kxikA
��xj

��
A

(9.7)

with norm kxkA D
p

xT Ax. Now, it is trivial to insert DcosA.xi ; xj / into Eq. (9.6),
i.e. �D.xi ; xj / D DcosA.xi ; xj /, to obtain the relative objective function Jcosa .

The second distortion measure proposed is based on I-divergence, strictly related
to the Kullback-Leibler divergence. The I-divergence is parameterized trough a
vector of non-negative weights a as follows:

DIa.xi ; xj / D
dX

mD1
amxim log

�
xim

xjm

�
(9.8)

where d is the dimensionality of the patterns into the dataset. The selected �D has
the following form (satisfying the symmetry requirement):

�D.xi ; xj / D DIMa.xi ; xj /

D
dX

mD1
am

�
xim log

�
2xim

xim C xjm
�
C xjm log

�
2xjm

ximxjm

��
(9.9)

By putting Eqs. (9.8) and (9.9) in place into Eq. (9.6), the I-parameterized
objective function JIa is readily obtained.

The algorithm for minimizing the selected objective function (either Jcosa or JIa)
is an EM procedure. The initialization of the centroids is performed in two steps:

1. The transitive closure of ML constraints in M is used to obtain connected
components. Let � be the number of connected components. We can create �
neighborhoods fNpg�pD1 from the connected components that correspond to ML
neighborhoods on the latent variables of the HMRF.

9 On Semi-Supervised Clustering 293

2. The neighborhoods are then used to initialize the centroids of the clusters in this
way: if � D K then the centroids f
igKiD1 are initialized to coincide with the
centroids of the neighborhoods. If � < K, then we proceed as before for the first
� centroids. The remaining centroids are initialized with random perturbations
of the centroid of the whole dataset X . If � > K, then K neighborhoods are
selected as initial clusters by using a weighted farthest-first traversal on the
centroids of the � neighborhoods. The weights are proportional to the size of the
corresponding neighborhoods (in doing so, more relevance is assigned to larger
ones).

The expectation-maximization (EM) iterative algorithmic structure of the method
thus relies on the following steps:

• E-step: in standard k-means this is done by assigning each pattern to the nearest
centroid. Things are different in the HMRF model, due to the interaction between
neighbor labels. Moreover, computing the assignment of patterns to centroids that
minimize the objective function is computationally intractable in any non-trivial
HMRF model [49]. Therefore, the ICM approach is adopted to approximate the
optimal solution. This algorithm computes the assignment in random order for
each point xi , assigning xi to the cluster h that minimizes:

Jobj .xi ;
h/ D D.xi ;
h/C
X

.xi ;xj /2M ;h¤lj
wij �D.xi ; xj /

C
X

.xi ;xj /2C ;hDlj
�DMAXwij �D.xi ; xj / (9.10)

Once the assignment is completed, the patterns are reordered and reassigned
accordingly, until no further label changes are obtained.

• M-step: first, the centroids are estimated as follows, for cosine and I-distortion
measures respectively:

h D
P

xi2Xh xi��P
xi2Xh xi

��
A

h D 1

1C ˛
�P

xi2Xh xi
jXhj C ˛ 1

n

�

Then, we need to update the parameters of the distortion measure so as to
minimize the objective function. This means to adapt the distortion measure so
that similar points turn out to be closer to each other, while dissimilar points are
set apart. Generally, a closed-form analytical solution does not exist. Resorting
to the gradient-descent method yields a viable approximated solution. For both
cosine and I-distortion measures, gradient-descent prescribes an update rule
having form am D am C @Jobj@am

with:

294 M. Bongini et al.

@Jobj

@am
D
X

xi2X

@D.xi ;
li /
@am

C
X

.xi ;xj /2M ;li¤lj
wij

@D.xi ; xj /
@am

C
X

.xi ;xj /2C ;liDlj
wij

�
@DMAX

@am
� @D.xi ; xj /

@am

�
(9.11)

The gradients @D.xi ;xj /
@am

for the proposed distortion measures can be written,
respectively, as:

@Dcosa .xi ; xj /
@am

D
ximxjm kxikA

��xj
��
A
� xTi Axj

x2imkxjk2ACx2jmkxik2A
2kxikAkxjkA

kxik2A
��xj
��2
A

@DIa.xi ; xj /
@am

D xim log

�
xim

xjm

�
� �xim � xjm

�

The HMRF k-means method is tested in [8] on three small datasets of textual
documents. This is a challenging task, due to the limited amount of patterns
w.r.t the dimensionality of the word space, and many standard clustering and
semi-supervised clustering algorithms can reach only local optima. The clustering
evaluation measure of choice is the normalized mutual information (NMI). The
authors compared their method w.r.t. the ablations and the unsupervised k-means.
The experiments show a significant improvement in terms of NMI over the
unsupervised case, and confirm the complete algorithm yields better results than
the ablations does on the three datasets.

9.4.3 Semi-Supervised Learning of the Distance Measure

Both traditional and semi-supervised clustering algorithms rely on some sort of
distance measure, between either patterns or clusters [21], Euclidean metric being
the most popular choice. A specific algorithm (e.g., agglomerative hierarchical
clustering) results in radically different behaviors according to the metric used.
Fitness of the resulting algorithm to the task at hand depends on how well the very
distance measure fits the underlying nature of the data. Model selection techniques
may be applied in order to select the metric a-posteriori from a set of pre-defined
measures (such as L1 or L2 norms, Mahalanobis distance, etc.). A more general
and sound idea is just to let the machine discover the proper distance measure
from the available data, whenever possible. An early approach along this line was
put forward in [55], where side-knowledge specified by the supervisor tells the
clustering algorithm whether certain pairs of patterns shall be put in the same cluster

9 On Semi-Supervised Clustering 295

(since they are close to each other) or not (since they are distant). Although this
scheme enforces the quality of the resulting clustering, there is no explicit, actual
metric learning in it. Furthermore, as observed in [56], since this kind of side-
knowledge is defined at a pairwise pattern level, it does not generalize well to unseen
regions of the feature space.

The technique proposed in [56] relies on genuine distance measure learning,
which may as well fit a SSC scenario with side-information. In this context, the
partial supervision is in the form of a set of user-specified pairs of patterns that
are known to be similar to (or, possibly, dissimilar from) each other. The metric
learning task is formulated in such a way that it turns out to be a convex optimization
problem, making it easy to find effective, gradient-based solutions that are free from
local optima of the objective function to be extremized.

Formally, distance measures dA W Rd � R
d ! R are considered in [56], having

form

dA.x; y/ D
p
.x � y/T A.x � y/ (9.12)

for any pair .x; y/ of patterns in the d -dimensional feature space. Although
Eq. (9.12) expresses a linear metric, a family of nonlinear distance measures can be
accounted for by applying any nonlinear transformation �.:/ to the feature vectors
and computing

p
.�.x/ � �.y//T A.�.x/ � �.y// instead. The user specifies the

side-knowledge by defining two sets, say S and D , containing examples of
“similar” and “dissimilar” pairs of patterns, respectively. Equation (9.12) poses the
metric learning task as a parameter learning problem: learn the parameters of the
linear transformation A relying on the information contained in S and D , subject
to constraints that ensure that the resulting dA.:/ is a proper metric (i.e., that dA.:/
is non-negative and satisfies the triangular property). To this end, A is required to
be positive semi-definite, A 0. In [56] the learning problem is first instantiated as
a convex optimization problem: find A that minimizes

P
.x;y/2S d2A.x; y/ such thatP

.x;y/2D dA.x; y/ � 1 and A 0. The constraint
P

.x;y/2D dA.x; y/ � 1 prevents
degenerate (i.e., null) solutions. If a diagonalA is taken into consideration, Newton’s
method yields a simple, straightforward, and efficient solution to the problem.
Unfortunately, in the general case whereA is a full (non-diagonal) matrix, satisfying
A 0 is difficult and Newton’s method becomes too expensive computationally.
For these reasons, in [56] the minimization problem is rewritten in the form of
a (theoretically, yet not numerically) equivalent maximization problem as follows:
maximize

P
.x;y/2D dA.x; y/ w.r.t. A such that

P
.x;y/2S d2A.x; y/ � 1 and A 0.

This problem can be solved via gradient-ascent (to accomplish the maximization)
combined with the iterative projection algorithm [45] (to ensure satisfaction of the
constraints). In practice, at each iteration of the algorithm the gradient-ascent step
is followed by a projection of A onto the sets fM j P.x;y/2S d2M .x; y/ � 1g and
fM j M 0g (these projections turn out to be relatively simple and inexpensive).
Empirical evidence reported on in [56] shows that these learnable distance measures
result in improved clustering techniques.

296 M. Bongini et al.

Algorithm 3 Seeded-kMeans
Seeded-kMeans (X , S D fS1; : : : ; Skg)
1. Initialize the cluster centers y1; : : : ; yk by yi D 1

jSi j

P
x2Si

x

2. Repeat until convergence
2.a assign each data point x 2 X to cluster Pi if yi D argminkx � yj k
2.b update cluster centers by yi D 1

jPi j

P
x2Pi

x

3. Return P WD fP1; : : : ; Pkg

Algorithm 4 Constrained-kMeans
Constrained-kMeans (X , S D fS1; : : : ; Skg)
1. Initialize the cluster centers y1; : : : ; yk by yi D 1

jSi j

P
x2Si

x

2. Repeat until convergence
2.a assign each data point x 2 X to clusters:

if x 2 Sj for some set of seed points, then assign x to Pj
else if yi D argminkx � yj k then assign x to Pi

2.c update cluster centers by yi D 1
jPi j

P
x2Pi

x

3. Return P WD fP1; : : : ; Pkg

9.4.4 Seeded k-Means and Constrained k-Means

In this section we describe two simple partitional algorithms based on seeding.
Seeding is possibly one of the basic ideas in semi-supervised clustering

approaches. Let us consider a dataset X D fx1; : : : ; xN g and a subset S
 X

of category-labeled instances, the so-called seed points. In Seeded-kMeans (see
Algorithm 3) the seed points are assumed to be given in k subsets S WD fS1;
: : : ; Skg, used to initialize the cluster centers y1; : : : ; yk and the corresponding
clustering P WD fP1; : : : ; Pkg for a subsequent k-means. Thus, seeded-kMeans
is an initialization procedure [6], where the seed points are not used during the
clustering process.

In the first step of constrained-kMeans the cluster centers of the k-means are
initialized in the same way as in Seeded-kMeans. In the second step (the kMeans-
step) of the algorithm (see Algorithm 4) these assignments can not be changed. In
the work by Basu et al. [6] a numerical evaluation for Constrained-kMeans, Seeded-
kMeans, Random-kMeans and COP-kMeans on two benchmark data sets (CMU
20 Newsgroup data and Yahoo! News data) is shown. They found that all three
SSC algorithms (Constrained-kMeans, Seeded-kMeans, COP-kMeans) outperform
Random-kMeans in terms of the mutual information index. In Random-kMeans the
K means are initialized by taking the means of K subsets generated at random from
the entire dataset (for details refer to [12]) It was shown that Seeded-kMeans is
more robust against seeding noise (meaning noise in the external pre-labeled dataset)
than Constrained-kMeans and COP-kMeans. In this context it should be mentioned

9 On Semi-Supervised Clustering 297

that the transformation of category-based labels into CLs and MLs, as required in
Constrained-kMeans and Seeded-kMeans, might be problematic, because a category
is typically not given by a single cluster but this is not reflected in the category labels.

9.4.5 The Zheng-Li Algorithm

This approach is a recent SSC hierarchical algorithm proposed by Zheng and
Li in [60] and based on an ultra-metric dendrogram distance (the results of
hierarchical clustering can be equivalently represented by means of ultra-metric
distance matrices [43]). The method incorporates supervision in terms of triple-wise
relative constraints (TWC). Those constraints are in the form

�
xi ; xj ; xk

�
, meaning

that the pattern xi shall be closer to xj than to xk , i.e. d
�
xi ; xj

�
< d .xi ; xk/. Note

that they can be thought of as a special case of MLB constraints. The rationale
behind their use is that the standard ML/CL constraints are not suitable for classical
hierarchical clustering approaches, since patterns are linked over different levels of
the hierarchy [4, 5].

The Zheng-Li algorithm (ZLA) takes in input the dataset X , the corresponding
set of pairwise dissimilarities D D fd �xi ; xj

� j8xi ; xj 2 Xg (usually
the latter can be easily computed from X) and a set of TWCs C D˚�

xi ; xj ; xk
� jd �xi ; xj

�
< d .xi ; xk/

	
. The goal of the algorithm is to return in

output a dendrogram H that

• satisfies as many TWCs as possible;
• keeps the merge order based on pattern dissimilarities as close as possible.

In order to ensure the best results, a two step pre-processing phase takes place
before the actual clustering process starts. It consists of the usual transitive closure
of constraints, followed by a conflict-removal step. In case of TWCs, the transitive
closure can be accomplished adding a new constraint

�
xi ; xj ; xl

�
for each pair of

constraints in the form
˚�

xi ; xj ; xk
� I .xi ; xk; xl /

	
. Then, as long as there are conflicts

(e.g. c1 D
�
xi ; xj ; xk

�
, c2 D .xi ; xk; xl / and c3 D

�
xi ; xl ; xj

�
), a conflicting

constraint is selected at random and removed, reiterating this step until no further
conflicts remain in place.

At each step the (regular) agglomerative hierarchical clustering algorithm takes
the pair of nearest clusters formed so far, and merges them into a single, larger
cluster. Therefore:

d
�

i ;
j

� � min
�
d .
i ;
k/ ; d

�

j ;
k

��

) 8i; j; kmin
�
d .
i ;
k/ ; d

�

j ;
k

�� � d �
i[j ;
k
�

(9.13)

where
i[j is the centroid of the cluster obtained from the merge of clusters i and j .

298 M. Bongini et al.

The property in Eq. (9.13) is known as the reducibility property [46]. Once such
condition holds true, the updated dissimiliarities satisfy the ultrametric inequality:

d
�
xi ; xj

� � max
�
d .xi ; xk/ ; d

�
xj ; xk

��8xi ; xj ; xk 2 X (9.14)

Therefore, the hierarchical clustering can be basically understood as an ultra-
metric transformation OD on the initial dissimilarity matrix D which uniquely
characterized the ultra-metric tree. That is to say, the hierarchical clustering problem
can be seen as a search problem, namely the search for the optimal ultra-metric
transformation OD:

arg min
OD

0

@
X

xi ;xj2X

�
Dij � ODij

�2
1

A (9.15)

that is a NP-hard problem [35], such that an approximation approach is needed.
The ultra-metric distance matrix can also be obtained using transitive dissim-

ilarity. To all intents and purposes, we can see D as the transition matrix on a
graph, where each column/row is associated with a node of the graph, and the
entries represent the weight associated with the corresponding pair of nodes/patterns
(i.e., an edge of the graph). Given any path Pij between xi and xj , its transitive
dissimilarity can then be written as

T
�
Pij
� D max

�
d .xi ; xk1/ ; d .xk1 ; xk2/ ; : : : ; d

�
xkn ; xj

��
(9.16)

Now it is possible to define the minimal transitive dissimilarity as

mij D min
Pij

�
T
�
Pij
��

(9.17)

and the following theorem holds true:

Theorem 1. For any weighted dissimilarity graph, the minimal transitive dissimi-
larity between any pair of vertices satisfies the ultra-metric inequality:

mij � max
�
mik;mkj

�8xi ; xj ; xk

In [60] the authors propose two approaches to the problem: the optimization-
based and the transitive dissimilarity-based approaches.

1. Optimization-based: in this approach the dissimilarity matrix is assumed to be
non-negative and symmetric. In this case D can be represented with a m � 1
vector d containing the entries of the upper/lower triangle elements. Then, it is
possible to define a m � 1 vector c such that, for each TWC

�
xi ; xj ; xk

� 2 C ,

9 On Semi-Supervised Clustering 299

Algorithm 5 Least-square error minimization with Iterative Projection
LSE Minimization with Iterative Projection (d, C, E)

Init: a D d and u D 0
1. While not converged do
2. p D t mod r
3. s D a.t � 1/C 1

2
Ecpu.t � 1/p

4. forq D 1 to r do
5. if q D p

6. u.t/q D max .2cT
q s=cT

qEcq; 0/

7. else
8. u.t/q D u.t � 1/q
9. end if
10. end for
11. a.t/ D s� 1

2
Ecqu.t/q

12. t D t C 1
13. end while
14. return Od D a

Algorithm 6 Minimum transitive dissimilarity with modified Floyd-Warshall
Modified Floyd-Warshall (G, C)

Init: M D G

1. For k D 0 to N do
2. For i D 0 to N do
3. For j D 0 to N do
4. For all c D �

xi ; xj ; xl
�

do
5. minCon D min .minCon; d .xi ; xl //
6. end for
7. mij D min

�
mij ;max

�
mik;mkj

�
; minCon

�

8. end for
9. end for
10. end for
11. return M

the entry corresponding to .i; j / is 1, and the entry corresponding to .i; k/ is �1.
Thence, we have dT C � 0. Thus, our problem can be written as:

arg Od min

��
d � Od

�T
E
�

d � Od
��

subject to Eq. (9.16) and to Cd � 0. A possible solution, based on the iterative
projections approach, is described in Algorithm 5.

2. Transitive dissimilarity-based: the approach followed in this case is a Floyd-
Warshall algorithm [24], modified such that the TWCs are taken into account.
The pseudo-code is handed out in Algorithm 6.

The experimental evaluation was accomplished on several datasets from the
UCI repository [42] (including the Iris dataset, commonly used in SSC studies),

300 M. Bongini et al.

and on benchmark text datasets for document clustering. The experiments show
improvement over classical unsupervised approaches, leading to results that com-
pare positively with the performance yielded by HACoc [59], alongside of a reduced
computational burden.

9.4.6 Active Fuzzy Constrained Clustering

The Active Fuzzy Constrained Clustering (AFCC) algorithm is described in [27].
It is an interesting fuzzy semi-supervised hierarchical approach that relies on
supervision in the form of standard ML/CL constraints. The algorithm takes in
input:

1. the set X of patterns to be clustered;
2. the set M of ML constraints and the set C of CL constraints.

At each step it computes:

1. a fuzzy partition matrix U expressing the membership of patterns to clusters;
2. the cluster centroids,
i 8i D 1 : : : C .

This fuzzy approach relies on a cost (i.e., objective) function that is inspired from
its crisp counterpart proposed by Basu et al. [6], described in Sect. 9.4.4. The cost
function that AFCC aims at minimizing is written as:

�.U; V / D
CX

kD1

NX

iD1
u2ikd

2.xi ;
k/C ˛

X

.xi ;xj /2M

CX

kD1

CX

lD1;l¤k
uikujl

C
X

.xi ;xj /2C

CX

kD1
uikujk

!
� ˇ

CX

kD1

"
NX

iD1
uik

#2
(9.18)

The second term realizes a penalty for the ML and CL constraints that are
violated, weighting the penalty via the fuzzy-cluster membership values uik .
The overall penalty is further weighted by the value ˛, which is a measure of
the reliability of the oracle. Finally, the third term comes from the competitive
agglomeration method [25], and manages the competition between clusters. Using
Lagrange multipliers, the authors proposed the following update equations for the
fuzzy partition matrix U :

urs D
1

d2.xr ;
s/PC
kD1 1

d2.xr ;
k/

C ˛

2d2 .xr ;
s/

�
Cvr � Cvrs

�C ˇ

d2 .xr ;
s/

�
Ns �Nr

�

(9.19)

9 On Semi-Supervised Clustering 301

where

Cvrs D
X

.xr ;xj /2M

CX

lD1;l¤s
ujl C

X

.xr ;xj /2C
ujs (9.20)

Cvr D
PC

kD1

�P
.xr ;xj /2M

PC
lD1;l¤k ujlCP.xr ;xj /2C

ujk

�

d2.xr ;
k/PC
kD1 1

d2.xr ;
k/

(9.21)

and

Nr D
PC

kD1
Nk

d2.xr ;
k/PC
kD1 1

d2.xr ;
k/

(9.22)

Finally, in order to complete the overview of the AFCC algorithm, we need to
review the strategy for constraint selection (thus, the active learning part). As stated
in Sect. 9.3.2.2, in an active learning schema the selection of the most informative
pair of patterns to be queried for supervision is of the utmost relevance. To put in
practice this notion, in [27] the authors focus, at each query, on the frontier of the
worst-defined cluster. To select that cluster, they use the fuzzy hypervolume (FHV):

FHV D jCkj (9.23)

where jCkj is the determinant of the covariance matrix of the kth cluster. Once
selected the worst-defined cluster accordingly, its frontier is defined as the set of
patterns having the lowest membership value. Then, from a theoretical viewpoint,
for each element on the frontier we should search for the corresponding nearest
cluster. Clearly, this method would entail a high computational burden. Two suitable
approximations were proposed instead:

1. pre-define a threshold � and define the frontier as the set of patterns having
membership less than (or, equal to) � . Usually this frontier turns out to be larger
than the true boundary. A pair of these patterns is then selected and presented to
the oracle.

2. Non-redundancy: at each selection, choose the pattern (in the frontier) that is the
farthest from those already selected.

The pseudo-code for AFCC is summarized in Algorithm 7, which relies on the
Mahalanobis distance measure.

302 M. Bongini et al.

Algorithm 7 Active Fuzzy Constrained Clustering
Active Fuzzy Constrained Clustering (X, M , C , number of clusters)
Init: compute randomly the clusters prototypes

initialize memberships with equal probability
1. repeat
2. Compute ˇ

3. Compute ˛

4. Compute cluster memberships uik
5. Compute cardinalities Nk81 � k � C
6. For k D 1 to C do
7. if (Nk � Threshold)
8. discard cluster k

9. end if
10. end for
11. Update number of cluster C

12. Update prototypes
13.until prototypes stabilize

The two weighting factors ˛ and ˇ can be obtained at each iteration t as follows:

˛ D N

M

PC
kD1

PN
iD1 u2ikd

2 .xi ;
k/PC
kD1

PN
iD1 u2ik

(9.24)

and

ˇ.t/ D
0 exp

�
� jt�t0j

�

�

PC
jD1

�PN
iD1 uij

�2

"
CX

jD1

NX

iD1
u2ij d

2
�
xi ;
j

�

C˛

0

B@
X

.xi ;xj /2M

CX

kD1

CX

lD1;l¤k
uikujl C

X

.xi ;xj /2C

CX

kD1
uikujk

1

CA

#
(9.25)

where M is the number of ML constraints.
The experimental results presented in [27] show good performance in compar-

ison with unsupervised clustering approaches, as well as w.r.t. other supervised
clustering algorithms like PCCA [26] and constrained k-means on several classifi-
cation datasets (including the Iris dataset). One of the strongest selling points of
the algorithm is its hierarchical schema that discovers the number k of clusters
spontaneously, without the need to fix it in advance.

9 On Semi-Supervised Clustering 303

9.4.7 Semi-Supervised Graph Clustering: A Kernel Approach

In a typical clustering algorithm, such as k-means, the input data set X D fx1;
: : : ; xN g consists of N feature vectors each with d attribute values, so for instance
X can be seen as a matrixX 2 R

N�d . Furthermore a proximity measure is assumed
to be defined on the entire input space, so that proximities between objects can be
computed for pairs of feature vectors. In contrast, the input data in graph clustering
is assumed to be a graph G D .V;E;A/. Here V is the finite non-empty set of
vertices, such that V D f1; : : : ; N g coincides with the set of patterns to be clustered;
E
 V � V is the set of edges, describing a binary relation defined over V that
expresses whether pairs of patterns are close together or not; and A 2 R

N�N is
the edge adjacency matrix, whose components Aij represent the proximity measure
between vertices i and j . Obviously, given a set of feature vectors along with a
proximity measure, the problem can be transformed in a graph-based representation
easily [2, 47]. Subsequently, we introduce a kernel-based partitional approach for
semi-supervised graph clustering. More details, as well as related work, can be
found in [34].

In graph clustering the goal is to compute a partition P WD fP1; : : : ; Pkg of V
which minimizes a particular objective measure. Let C;D
 V be two subsets of
the vertex set, and define links.C;D/ WDPi2C;j2D Aij and deg.C / D links.C; V /.
Based on these characteristic values several graph clustering objective functions can
be defined:

i) Ratio association:

maximizefP1;:::;Pkg
kX

iD1

links.Pi ; Pi /

jPi j

ii) Ratio cut:

minimizefP1;:::;Pkg
kX

iD1

links.Pi ; V n Pi/
jPi j

iii) Normalized cut:

minimizefP1;:::;Pkg
kX

iD1

links.Pi ; V n Pi/
deg.Pi /

The ratio association index tries to maximize the sum of the similarity of
instances within a cluster. Normalization by the number of objects is introduced
to compensate for differences in the cluster sizes. Ratio cut tries to minimize the
similarity between the objects to the other clusters, again each term is normalized
by the cluster size. The normalized cut uses in principle the same objective function,
but uses deg.Pi /, instead, as the cluster size.

304 M. Bongini et al.

The link from clustering vectors to graph-clustering can be made via weighted
kernel k-means. In weighted kernel k-means the goal is to search for a partition
P WD fP1; : : : ; Pkg of a dataset X D fx1; : : : ; xN g
 R

d such that the following
objective function is minimized:

Q.fP1; : : : ; Pkg/ D
kX

jD1

X

xi2Pj
˛ik�.xi / � yj k22 (9.26)

where the generalized cluster center is given by

yj D
P

xi2Pj ˛i�.xi /P
xi2Pj ˛i

(9.27)

and the function � is a nonlinear transformation from R
d into some pre-defined

Euclidean space, and ˛i , i D 1; : : : ; N are positive weights. In case of � D id

(where id is the identity function) and ˛i D 1 for i D 1; : : : ; N we get the standard
k-means objective function.

Inserting Eq. (9.27) into the distances of objective function (9.26) yields

k�.xi / � yj k22 D �.xi /�.xi / � 2
P

xl2Pj ˛l�.xi /�.xl /P
xl2Pj ˛l

C
P

xl2Pj ;xq2Pj ˛l˛q�.xl /�.xq/
.
P

xl2Pj ˛l /2
(9.28)

By using a positive-semidefinite kernel function k, dot-products can be expressed
by k.xi ; xl / D �.xi /�.xl /, and the kernel matrix .Ki;j /i;jD1;:::;N is given by
Ki;j D k.xi ; xl / D �.xi /�.xl /. Using the kernel matrix the distances can be
re-formulated as

k�.xi / � yj k22 D Ki;i � 2
P

xl2Pj ˛lKi;l
P

xl2Pj ˛l
C
P

xl2Pj ;xq2Pj ˛l˛qKl;q

.
P

xl2Pj ˛l /2
(9.29)

For the most popular graph clustering objective functions, i.e. ratio association,
ratio cut, and normalized cut, the corresponding weights ˛ and kernel matrix K are
given in Table 9.1. In the table I denotes the identity matrix, D the diagonal matrix
whose entry is given by the corresponding row sum of the adjacency matrix A, L
the Laplacian matrix L D D � A, and 	 is a non-negative real value such that the
kernel is positive definite.

For a particular set of weights ˛ and kernel matrix K, the generalized Kernel-
kMeans-algorithm (see Algorithm 8) is used.

9 On Semi-Supervised Clustering 305

Table 9.1 Weights and kernels for graph clustering objective functions: ratio
association, ratio cut, and normalized cut

Objective function Value of node weights Kernel Matrix

Ratio association 1 for all objects/nodes K D 	I C A
Ratio cut 1 for all objects/nodes K D 	I � L
Normalized cut deg for all objects/nodes K D 	D�1 CD�1AD�1

Algorithm 8 Kernel-kMeans
Kernel-kMeans (K, k, ˛, P)
1. Initialize cluster centers y1; : : : ; yk using P
2. For each instance xi 2 X and its cluster center yj compute k�.xi /� yj k22 by (9.29)
3. Assign instances xi to their closest center Pj�

4. Compute and update cluster centers y1; : : : ; yk by (9.27)
5. Until convergence iterate step 2., 3., and 4.
6. Return P WD fP1; : : : ; Pkg

In semi-supervised graph clustering, where the side-knowledge is given through
cannot-link constraints C and must-link constraints M , the corresponding objective
functions can be derived in a slightly different way. Let us assume that the
constraints define aN �N matrixW byWij D �wij if .xi ; xj / 2 C is a cannot-link
and Wij D wij if .xi ; xj / 2M is a must-link. Therefore the three semi-supervised
objective functions can be derived as follows:

i) Semi-supervised ratio association:

maximizefP1;:::;Pkg
kX

iD1

links.Pi ; Pi /

jPi j C
X

.xi ;xj /2M

kiDkj

wij
jPki j

�
X

.xi ;xj /2C

kiDkj

wij
jPki j

ii) Semi-supervised ratio cut:

minimizefP1;:::;Pkg
kX

iD1

links.Pi ; V n Pi/
jPi j �

X

.xi ;xj /2M

kiDkj

wij
jPki j

C
X

.xi ;xj /2C

kiDkj

wij
jPki j

iii) Semi-supervised normalized cut:

minimizefP1;:::;Pkg
kX

iD1

links.Pi ; V n Pi/
deg.Pi /

�
X

.xi ;xj /2M

kiDkj

wij
deg.Pki /

C
X

.xi ;xj /2C

kiDkj

wij
deg.Pki /

The corresponding transformation as a kernel-based formulation for semi-
supervised clustering is given in Table 9.2. Kulis et al. [34] present their

306 M. Bongini et al.

Table 9.2 Weights and kernels for Semi-Supervised graph clustering objective func-
tions: SS ratio association, SS ratio cut, and SS normalized cut

Objective function Value of node weights Kernel Matrix

SS ratio association 1 for all objects/nodes K D 	I C ACW
SS ratio cut 1 for all objects/nodes K D 	I � LCW
SS normalized cut deg for all objects/nodes K D 	D�1 CD�1.ACW /D�1

Semi-Supervised Kernel-kMeans algorithm on the basis of the Kernel-kMeans
algorithm, where the weights and the kernel are generated through the settings given
in Table 9.2. Furthermore, the initial partition for the Kernel-kMeans algorithm
is computed according to the cannot-link and must-link constraints. After this
initial steps Kernel-kMeans is applied to compute the resulting partition. In [34]
a numerical evaluation is performed on six different benchmark datasets. By using
the normalized mutual information index [51] as a validity measure, the authors
demonstrated that Semi-Supervised Kernel-kMeans is able to outperform several
current semi-supervised clustering algorithms.

9.5 A Glimpse of the Future: Some Research Directions

While SSL approaches to classification problems have been widely investigated in
the last 15 years or so, research on SSC is mostly in its infancy and several issues
are still open (and, far from being solved to date). In the following, we pinpoint
some directions (and, challenges) for further developments of the field, aimed at
overcoming these issues. The treatment is intentionally and necessarily kept on an
abstract, mainly speculative level.

The first direction we recommend is closing the remaining gap between SSC
research and the vast knowledge the community has accumulated throughout the
decades in the related area of statistical pattern recognition from missing/incomplete
data [37]. For instance, the popular mixture-of-mixtures framework [52] used in
the estimation of parametric models for the missing data and for the corresponding
missingness mechanism may be interpreted in terms of a semi-supervised “clus-
tering of clusters” approach, under Gaussian assumptions, by bearing in mind the
usual relationship between maximum-likelihood estimation of mixture of Gaussian
components and the k-means algorithm [21]. Moreover, while explicit modeling
of the missingness mechanism behind a pattern of missingness M by means of
an explicit parametric density function P.M j:; �/ [37] is typical (and fruitful) in
statistical SSL, its exploitation in SSC has not been attempted so far, in spite of the
fact that accounting for the nature of the mechanism may turn out to be crucial [37].
In SSL the model P.M j:; �/may be used, along with the data model, for factorizing
the joint distribution of M and of the data given M (i.e., the data are explained
differently according to the mechanism underlying their missingness). Similarly, in

9 On Semi-Supervised Clustering 307

SSC the clustering itself could be obtained and explained as a corollary of the very
missingness mechanism M.:/ D P.M j:; �/.

The presence of an underlying, possibly hidden mechanism M.:/ behind the
data distribution, a mechanism which must be accounted for by the SSC algorithm
(as if M.:/ were a constraint to satisfy), pinpoints another possible research
direction. The general notion is that the side-knowledge (either as labeled subset
of the data, or as set of constraints) can be regarded as a highly informative
collection of implicit (meta-)constraints M1 .:/; : : : ; Mm.:/ posed on the whole
dataset. These meta-constraints, in turn, reverberate on the topological and/or
statistical properties of the (unlabeled) data. Hence, any robust SSC algorithm
shall comply with M1 .:/; : : : ; Mm.:/, yielding outcomes that satisfy the meta-
constraints. In so doing, the meta-constraints are expected to improve effectively
the clustering process itself.

Finally, some relevant supervised machine learning paradigms which are not
explicitly statistical in nature, such as artificial neural networks (ANN), could
benefit from a robust SSC of the data. Robust clustering should be accomplished
in compliance with (i.e., constrained by) the underlying laws these (say) ANNs
learned to encapsulate. In so doing, improved laws are further learned by ANNs
complying, in turn, with the very nature of the consequent SSC of the whole
(labeled plus unlabeled) dataset (and so on, in an iterative fashion). An illustrative
example may be sketched as follows. Let us consider a mixture of c neural
experts �1.x/; : : : ; �c.x/ aimed at learning a mapping y D Pc

iD1 ˛i .x/�i .x/,
where ˛i .x/ 2 .0; 1/ is the credit that i -th expert receives over input x. In this
example we assume that ˛i .x/ D 1 if x 2 Xi and ˛i .x/ D 0 otherwise,
where the feature space is partitioned into c non-overlapping regions X1; : : : ; Xc of
competence of the corresponding experts. Also, let us assume that each expert �i .x/
is trained on a semi-supervised dataset Ti D f.xij ; yij /jxij 2 Xi ; j D 1; : : : ; nig
(which includes all and only the labeled portion of the whole dataset that lies
in Xi) in order to maximize the conditional likelihood pi .yjx/. Starting from a
preliminary partition X1; : : : ; Xc of the feature space, initial maximum-likelihood
models �1.x/; : : : ; �c.x/ are estimated. At this point, SSC is used to obtain a
new partition X 01; : : : ; X 0c by relying on ML-constraints and CL-constraints defined
according to a threshold � 2 R

C on the conditional-likelihood such that any pair of
input patterns .x1; x2/ (either labeled or unlabeled, and regardless of the preliminary
regions Xh;Xk they are originally from) must link if, for a certain i in 1; : : : ; c,
pi . Qy1jx1/ > � and pi . Qy2jx2/ > � , where Qy1 D �i .x1/ and Qy2 D �i .x2/ (i.e,
a ML constraint is introduced over pairs of patterns for which one of the experts
expresses high statistical confidence), while they cannot link if pi . Qy1jx1/ > �

and pj . Qy2jx2/ > � with j ¤ i . Note that normalized probabilistic quantities
are assumed, for instance

Pc
iD1 pi .yjx/ D 1 and � 2 .0; 1/. Using the new

partition X 01; : : : ; X 0c yielded by SSC from these constraints, the experts are trained
again on their new regions of competence, obtaining maximum-likelihood estimates
�01.x/; : : : ; �0c.x/ which are used, in turn, to create new ML and CL constraints, and
so on.

308 M. Bongini et al.

9.6 Conclusions

Clustering aims at partitioning a dataset into subsets having both high inner
coherence and outer separation (grouping perspective), or at describing a data
sample in a simple and statistically sound way (data description perspective), or
at initializing/boosting sophisticated pattern classifiers (subservience perspective).
Traditional clustering algorithms exploit topological or probabilistic properties of
the real-valued features of the input patterns, neither requiring nor accounting for
the prior knowledge that human experts may associate with (a subset of) the training
data. Semi-supervised clustering algorithms try and build on this side-knowledge in
order to come up with improved solutions. In so doing, they relate to (and, cross-
fertilize with) the general area of partially supervised learning.

In this chapter we have reviewed several algorithms and current concepts of
clustering under partial supervision, namely: COP-COBWEB and COP k-means,
the HMRF k-means method, SSC with data-driven learnable metric, seeded and
constrained k-means, the Zheng-Li algorithm, active fuzzy constrained clustering,
and a kernel approach to semi-supervised graph clustering. All in all, although
the state-of-the-art of SSC is still in its early developmental stages, the variety of
techniques found in the literature to date witnesses the significant potential (both
theoretical and practical) behind this branch of science. A potential which, possibly
along with some of the directions for further research we pointed out in Sect. 9.5, is
likely to unfold to a much greater extent in the years to come.

References

1. Alpaydin E (2010) Introduction to machine learning, 2nd edn. MIT Press, Cambridge
2. Anand R, Reddy CK (2011) Graph-based clustering with constraints. In: Proceedings of the

15th Pacific-Asia conference on advances in knowledge discovery and data mining - volume
part II, PAKDD’11, pp 51–62. Springer, New York

3. Arbelaitz O, Gurrutxaga I, Muguerza J, Perez JM, Perona I (2013) An extensive comparative
study of cluster validity indices. Pattern Recogn 46(1):243–256

4. Bade K, Nurnberger A (2006) Personalized hierarchical clustering. In: IEEE/WIC/ACM
international conference on web intelligence, pp 181–187

5. Bade K, Nurnberger A (2008) Creating a cluster hierarchy under constraints of a partially
known hierarchy. In: SDM ’08, pp 13–24

6. Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: Proceedings
of the 19st international conference on machine learning, pp 19–26

7. Basu S, Banerjee A, Mooney R (2004) Active semi-supervision for pairwise constrained
clustering. In: Proceedings of the 2004 SIAM international conference on data mining (SDM-
04). URL http://www.cs.utexas.edu/users/ai-lab/?basu:sdm04

8. Basu S, Bilenko M, Mooney R (2004) A probabilistic framework for semi-supervised
clustering. In: Proc. of the 10th ACM SIGKDD conference on knowledge discovery and data
mining (KDD’04), pp 59–68

9. Bilenko M, Basu S, Mooney R (2004) Integrating constraints and metric learning in semi-
supervised clustering. In: Proceedings of the 21st international conference on machine learning,
Banff, Canada, pp 81–88

http://www.cs.utexas.edu/users/ai-lab/?basu:sdm04

9 On Semi-Supervised Clustering 309

10. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press,
New York

11. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York
12. Celebi ME, Kingravi H, Vela PA (2013) A comparative study of efficient initialization methods

for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210
13. Chu SM, Tang H, Huang TS (2009) Fishervoice and semi-supervised speaker clustering. In:

IEEE international conference on acoustics, speech and signal processing (ICASSP’F09),
pp 4089–4092. IEEE, Washington, DC, USA.

14. Cohn D, Caruana R, McCallum A (2003) Semi-supervised clustering with user feedback.
Tech. rep.

15. Daniels K, Giraud-Carrier C (2006) Learning the threshold in hierarchical agglomerative
clustering. In: Machine learning and applications (ICMLA ’06) 5th international conferance,
pp 270–278

16. Davidson I, Ravi SS (2005) Agglomerative hierarchical clustering with constraints: Theoretical
and empirical results. In: Lecture notes in computer science, pp 59–70. Springer, New York

17. Davidson I, Ravi SS (2007) Intractability and clustering with constraints. In: Proceedings
of the 24th international conference on machine learning, ICML ’07, pp. 201–208. ACM,
New York. DOI 10.1145/1273496.1273522. URL http://doi.acm.org/10.1145/1273496.
1273522

18. Deborah L, Baskaran R, Kannan A (2010) A survey on internal validity measure for cluster
validation. Int J Comput Sci Eng Survey 1(2):85–102

19. Dhillon I, Guan Y, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts.
In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, p 556. ACM, New York

20. Dhillon IS, Fan J, Guan Y (2001) Efficient clustering of very large document collections.
In: Grossman RL, Kamath C, Kegelmeyer P, Kumar V, Namburu RR (eds) Data mining for
scientific and engineering applications. Springer, New York, pp 357–381

21. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Willey, New York
22. Faußer S, Schwenker F (2012) Semi-supervised kernel clustering with sample-to-cluster

weights. In: Schwenker F, Trentin E (eds) Partially supervised learning - First IAPR TC3
workshop, PSL 2011, Ulm, Germany, September 15–16, 2011, Revised Selected Papers,
pp 72–81. Springer, New York

23. Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn
2(2):139–172

24. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345
25. Frigui H, Krishnapuram R (1997) Clustering by competitive agglomeration. Pattern Recogn

7:1109–1119
26. Grira N, Crucianu M, Boujemaa N (2005) Semi-supervised fuzzy clustering with pairwise-

constrained competitive agglomeration. In: IEEE international conference on fuzzy systems
27. Grira N, Crucianu M, Boujemaa N (2008) Active semi-supervised fuzzy clustering. Pattern

Recogn 41:1834–1844
28. Hofmann T, Buhmann JM (1998) Active data clustering. In: In advances in neural information

processing systems 10, pp 528–534
29. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666
30. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Upper Saddle River
31. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: A review. IEEE Trans Pattern

Anal Mach Intell 22(1):4–37
32. Kamvar SD, Klein D, Manning CD (2003) Spectral learning. In: IJCAI, pp 561–566
33. Kohonen T (ed) (1997) Self-organizing maps. Springer, New York
34. Kulis B, Basu S, Dhillon I, Mooney R (2009) Semi-supervised graph clustering: A kernel

approach. Mach Learn 74(1):1–22
35. Křivánek M, Morávek J (1986) Np-hard problems in hierarchical-tree clustering. Acta Inf

23(3):311–323. DOI 10.1007/BF00289116. URL http://dx.doi.org/10.1007/BF00289116

http://doi.acm.org/10.1145/1273496.1273522
http://doi.acm.org/10.1145/1273496.1273522
http://dx.doi.org/10.1007/BF00289116

310 M. Bongini et al.

36. Li T, Ding C, Jordan MI (2007) Solving consensus and semi-supervised clustering problems
using nonnegative matrix factorization. In: Proceedings of the 2007 seventh IEEE international
conference on data mining, ICDM ’07, pp 577–582. IEEE Computer Society, Washington, DC,
USA. DOI 10.1109/ICDM.2007.98. URL http://dx.doi.org/10.1109/ICDM.2007.98

37. Little RJA, Rubin DB (2002) Statistical analysis with missing data. Wiley, New York
38. Liu Y, Li Z, Xiong H, Gao X, Wu J (2010) Understanding of internal clustering validation mea-

sures. In: Proceedings of the 2010 IEEE international conference on data mining, pp. 911–916.
IEEE Computer Society, Washington, DC, USA

39. Lloyd S (2006) Least squares quantization in pcm. IEEE Trans Inform Theory 28(2):129–137
40. MacQueen JB (1967) Some methods for classification and analysis of multivariate observa-

tions. In: Cam LML, Neyman J (eds) Proc. of the fifth Berkeley symposium on mathematical
statistics and probability, vol 1. University of California Press, California, pp 281–297

41. Martinetz TM, Berkovich SG, Schulten KJ (1993) Neural-gas’ network for vector quantization
and its application to time-series prediction. IEEE Trans Neural Network 4(4):558–569

42. Newman CBD, Merz C (1998) UCI repository of machine learning databases. URL http://www.
ics.uci.edu/~mlearn/MLRepository.html

43. Podani J (2000) Simulation of random dendrograms and comparison tests: Some comments.
J Classification 17(1):123–142

44. Rendón E, Abundez IM, Gutierrez C, Zagal SD, Arizmendi A, Quiroz EM, Arzate HE (2011)
A comparison of internal and external cluster validation indexes. In: Proceedings of the 2011
american conference on applied mathematics and the 5th WSEAS international conference
on computer engineering and applications, pp. 158–163. World Scientific and Engineering
Academy and Society (WSEAS)

45. Rockafellar RT (1970) Convex analysis. Princeton Mathematical Series. Princeton University
Press, Princeton

46. Sattah S, Tversky A (1977) Additive similarity trees. Psychometrika 3:319–345
47. Schaeffer SE (2007) Survey: graph clustering. Comput Sci Rev 1(1):27–64
48. Schwenker F, Trentin E (2014) Pattern classification and clustering: A review of partially

supervised learning approaches. Pattern Recogn Lett 37:4–14
49. Segal E, Wang H, Koller D (2003) Discovering molecular pathways from protein interaction

and gene expression data. Bioinformatics 74(19):264–272
50. Soleymani Baghshah M, Bagheri Shouraki S (2010) Kernel-based metric learning for semi-

supervised clustering. Neurocomputing 73(7):1352–1361
51. Strehl A, Ghosh J, Mooney R (2000) Impact of similarity measures on web-page clustering. In:

Proceedings of the 17th national conference on artificial intelligence: workshop of artificial
intelligence for web search (AAAI 2000), 30–31 July 2000. AAAI, Austin, Texas, USA,
pp 58–64

52. Streit RL, Luginbuhl TE (1994) Maximum likelihood training of probabilistic neural networks.
IEEE Trans Neural Network 5(5):764–783

53. Vendramin L, Campello RJGB, Hruschka ER (2010) Relative clustering validity criteria:
A comparative overview. Stat Anal Data Min 3(4):209–235

54. Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceeding of the
17th international conference on machine learning, ICML 2000, pp 1103–1110

55. Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained k-means clustering with
background knowledge. In: Proc. of the 18th international conference on machine learning
(ICML’01), pp 577–584

56. Xing EP, Ng AY, Jordan MI, Russell S (2003) Distance metric learning, with application to
clustering with side-information. In: Advances in neural information processing systems 15,
pp 505–512. MIT Press, Cambridge

57. Xiong H, Li Z (2013) Clustering validation measures. In: Data clustering: algorithms and
applications, pp 571–606

http://dx.doi.org/10.1109/ICDM.2007.98
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

9 On Semi-Supervised Clustering 311

58. Zha H, He X, Ding C, Simon H, Gu M (2001) Spectral relaxation for k-means clustering. In:
NIPS, pp 1057–1064. MIT Press, Cambridge

59. Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints.
In: Proceedings of the 2010 third international conference on knowledge discovery and
data mining, WKDD ’10, pp. 195–199. IEEE Computer Society, Washington, DC, USA.
DOI 10.1109/WKDD.2010.123. URL http://dx.doi.org/10.1109/WKDD.2010.123

60. Zheng L, Li T (2011) Semi-supervised hierarchical clustering. In: IEEE international
conference on data mining, pp 982–991

http://dx.doi.org/10.1109/WKDD.2010.123

Chapter 10
Consensus of Clusterings Based
on High-Order Dissimilarities

Helena Aidos and Ana Fred

Abstract Over the years, many clustering algorithms have been developed,
handling different issues such as cluster shape, density or noise. Most clustering
algorithms require a similarity measure between patterns, either implicitly or
explicitly. Although most of them use pairwise distances between patterns, e.g.,
the Euclidean distance, better results can be achieved using other measures. The
dissimilarity increments is a new high-order dissimilarity measure, that uses the
information from triplets of nearest neighbor patterns. The distribution of such
measure (DID) was recently derived under the hypothesis of local Gaussian
generative models, leading to new clustering algorithms. DID-based algorithm
builds upon an initial data partition, different initializations producing different data
partitions. To overcome this issue, we present an unifying approach based on a
combination strategy of all these different initializations. Even though this allows
obtaining a robust partition of the data, one must select a clustering algorithm to
extract the final partition. We also present a validation criterion based on DID to
select the best final partition, consisting in the estimation of graph probabilities for
each cluster based on the DID.

Keywords Gaussian mixture decomposition • Dissimilarity increments distribu-
tion • Minimum description length • Evidence accumulation • Validity index

10.1 Introduction

Clustering techniques have been used in several areas, like machine learning,
artificial intelligence, pattern recognition, web mining, image processing, biology,
marketing [13, 48]. The main goal of clustering is to arrange data objects in groups
(clusters), such that objects belonging to the same cluster are similar. It is a form
of unsupervised learning, since no information about the groups to which the
objects belong is known a priori. Several clustering algorithms have been developed

H. Aidos (�) • A. Fred
Instituto de Telecomunicações, Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal
e-mail: haidos@lx.it.pt; afred@lx.it.pt

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__10

313

mailto:haidos@lx.it.pt
mailto:afred@lx.it.pt

314 H. Aidos and A. Fred

over the years and, typically, they are suitable for the specialized area they have
been designed. This means that usually some assumptions are made in favor of
the application of interest and performance may be affected when used in other
problems, since the same assumptions may not be verified. Many survey papers on
clustering techniques can be found in the literature [26, 27, 56].

Two major clustering strategies have been adopted in published methods: par-
titional (non-hierarchical) and hierarchical [27, 48, 56]. Hierarchical clustering
techniques group objects with a sequence of nested partitions, either from singleton
clusters to a cluster including all data (agglomerative strategy) or in the opposite
way (divisive strategy), while partitional clustering techniques divide the data into
clusters without the hierarchical structure [13, 27, 48].

There are two main categories of hierarchical methods: agglomerative and
divisive hierarchical methods. Agglomerative methods start by considering each
data point as one cluster, and each partition is obtained from the previous one by
merging two clusters into a single cluster, according to a proximity criterion. Single-
link and complete-link [29] are the most representative algorithms in this class. In
the literature can be found various research papers comparing the performance of
several agglomerative algorithms in the context of different applications [11, 43].
Divisive methods work in the opposite way: one starts with a single cluster with
all the objects and a divisive procedure is applied repeatedly until all clusters
are singletons. The division of clusters can be made based on all features of the
vectors [21, 41] or it is achieved based on a single feature at each step [35, 55].
Most hierarchical clustering methods do not have a probabilistic interpretation,
however there are some model-based hierarchical clustering [7, 30, 52]. Traditional
hierarchical methods may have problems handling large-scale datasets, therefore
more recent hierarchical agglomerative algorithms have been developed [22,23,32].

Partitional methods divide data into several small groups, instead of creating
a hierarchy of clusters. Traditional hierarchical clustering algorithms, once the
clusters are constructed, cannot recover from a bad grouping by revisiting already
formed clusters. Partitional techniques can overcome this difficulty imposed by
hierarchical approaches by gradually adjusting formed clusters.

One important class of partitional methods is the one of prototype-based methods,
such as k-means [24, 25] and k-medoids [33] approaches. Both approaches use a
representative for each cluster: k-medoids uses a point of the data as prototype,
which turns to be insensitive to outliers, and k-means uses a centroid, which
is the mean of points within a cluster, turning this algorithm easier to interpret
geometrically (it finds spherical clusters in data) and it is sensitive to outliers.
Partitioning around medoids (PAM) and clustering large applications (CLARA)
[33] are two versions of k-medoids methods. The k-means method is the simplest
and most widespread clustering algorithm, with several extensions. Iterative self-
organizing data analysis technique (ISODATA) [5] is a well-known variant of
k-means.

Another class of partitional methods is the one of probabilistic approaches, which
assume that the data come from a mixture of models whose distributions we want

10 Consensus of Clusterings Based on High-Order Dissimilarities 315

to learn. This category includes methods based on a minimum description length
criterion [15], entropy-based expectation-maximization (EM) algorithm (EBEM)
[6] and split and merge EM (SMEM) [51].

Density-based partitioning methods try partitioning data by identifying dense
areas of data, which leads to the ability of discovering clusters of arbitrary shapes
and less sensitivity to outliers. Density based spatial clustering of applications with
noise (DBSCAN) [12] is the most representative algorithm of this class and has
several variants [45].

Some clustering techniques are grid-based approaches, which use a grid-like
structure to split the information space, separating the dense grid regions from
the less dense ones to form groups. Algorithms using this approach are fast and han-
dle outliers very well. This class of algorithms contains hierarchical techniques, but
also partitioning techniques. A very important grid-based algorithm is CLIQUE [1].

Another class of clustering strategies is based on graph theoretical approaches,
and consists in partition a graph by simply deleting some edges. Examples of
algorithms in this class are spectral clustering methods [31, 39].

Clustering ensemble methods is an approach that takes advantage of the diversity
of solutions over the same dataset, produced by different algorithms, different
initializations or parameters values [4, 16, 34, 46]. They can be generated based
on the choice of data representation or on the choice of clustering algorithms or
algorithmic parameters. These methods propose a consensus partition, given a set
of data partitions, based on a combination strategy. Several authors have shown
that these methods tend to reveal more robust and stable cluster structures than the
individual clusterings in the clustering ensemble [16,46]. Different paradigms were
followed in the literature: (a) similarity between objects, induced by the clustering
ensemble [16,17,20,46]; (b) similarity between partitions [4,10,50]; (c) combining
similarity between objects and partitions [14]; (d) probabilistic approaches to cluster
ensembles [49, 53, 54].

Most clustering techniques require, either implicitly or explicitly, a similarity
measure between patterns. However, choosing such a measure is typically difficult,
given no prior knowledge about cluster shapes or structure. Although, most
clustering algorithms use pairwise distances between patterns, e.g., the Euclidean
distance, better results can be achieved using other measures. Recently, a new
high order dissimilarity measure has been proposed, the dissimilarity increments,
which uses the information from triplets of nearest neighbor patterns. This gives
more information about the structure of a cluster, since a smooth evolution of the
dissimilarity increments should occur if the patterns are in the same cluster, and high
values should occur for patterns lying in different clusters [19].

The dissimilarity increments distribution was recently derived under the hypothe-
sis of local Gaussian generative models for the data in R

l , which lead to the proposal
of new clustering algorithms based on this distribution. Here, we give special focus
on a partitional clustering algorithm, called GMDID [2]. GMDID builds upon an
initial data partition, e.g., a partition given by a Gaussian mixture decomposition.
This algorithm consists of a merge strategy, which iteratively accepts or rejects
the merging of two clusters based on this new distribution. We have two merging

316 H. Aidos and A. Fred

criteria: a likelihood-ratio test, which merges pairs of clusters with a p-value less
than a given significance level ˛, and a parameter-free merge criterion based on the
minimum description length principle.

However, GMDID is dependent of a Gaussian mixture decomposition, so
different initializations produce different data partitions. This means that if the
algorithm used to build the initial partition produces single clusters which in reality
should be two separate clusters, the GMDID algorithm does not naturally undo this.
To overcome this issue, we present an unifying approach consisting of a consensus
function based on a combination strategy of all these different initializations. Even
though this allows obtaining a robust partition of the data, one must select a
clustering algorithm to extract the final partition. We also present the use of a
validation criterion based on dissimilarity increments distribution to select the best
final partition. That validation criterion consists in estimating graph probabilities for
each cluster based on the dissimilarity increments distribution, and then applying the
minimum description length of the graph-based representation of a partition.

Experimental results in both synthetic and real-world datasets show that the
GMDID algorithm outperforms other state-of-art clustering algorithms. Further-
more, they show that the presented validation criterion is effective in the choice
between results in the presented unified approach, i.e., finding the clustering
algorithm leading to the best results.

This chapter is organized as follows: Sect. 10.2 presents the definition, dis-
tribution and properties of the dissimilarity increments. Section 10.3 presents a
partitional algorithm based on the dissimilarity increments distribution and in
Sect. 10.4 a consensus clustering strategy using the partitional clustering method
presented in Sect. 10.3. Since a consensus partition is obtained by applying a
clustering algorithm, a validation index is required to choose the best final partition.
Such criterion is presented in Sect. 10.5. Experimental results for the partitional
algorithm and the consensus clustering are presented in Sect. 10.6 and conclusions
are drawn in Sect. 10.7.

10.2 High-Order Dissimilarity: The Dissimilarity
Increments Principle

In Pattern Recognition, namely in clustering analysis, a pairwise (dis)similarity is
used to decide whether two points are similar and should belong to the same group
(or cluster) or are very different and should not be in the same group. However, if
the data has some sparse groups, a pairwise measure, like Euclidean distance, would
have a high value and the points would be interpreted as being very different, even if
they share some properties. So, it is important to not only look to pairwise measures,
but find a way to understand the data distribution inside each group.

10 Consensus of Clusterings Based on High-Order Dissimilarities 317

10.2.1 Dissimilarity Increments: Definition and Properties

Definition 1. Consider a set of patterns X . Given xi , an arbitrary element of X and
some dissimilarity measure, d.�; �/, between patterns, let .xi ; xj ; xk/ be the triplet of
nearest neighbors, obtained as follows:

.xi ; xj ; xk/ � nearest neighbor

xj W j D arg
l

minfd.xl ; xi /; l ¤ ig

xk W k D arg
l

minfd.xl ; xj /; l ¤ i; l ¤ j g:

The dissimilarity increment [19] between neighboring patterns is defined as

dinc.xi ; xj ; xk/ D
ˇ̌
d.xi ; xj / � d.xj ; xk/

ˇ̌
: (10.1)

The dissimilarity increment measure gives different information about the
structure of a cluster than the pairwise distances, because a cluster is a set of
patterns sharing some characteristics. Next, we will explain some useful properties
of dissimilarity increments.

Property 1: It Has a Smooth Evolution. Inside a cluster, abrupt changes in the
dissimilarity increments should not occur. If abrupt changes takes place, it indicates
that we are in the presence of a different cluster.

Property 2: It Works with Different Types of Data Representations. The
dissimilarity increment can be computed using a feature representation and some
(dis)similarity measure, like the Euclidean distance. However, when no features
are available, but a (dis)similarity representation of the objects is available, clus-
tering methods based on this measure can still be applied.

Property 3: It Identifies Sparse Clusters. Most of the distance measures, e.g.,
Euclidean distance, used in the literature discard samples that are far apart in a
sparse cluster. This measure can easily identify those patterns as belonging to the
same cluster.

Property 4: It Is Invariant to Shape Features or Orientation. The dissimilarity
increment can be applied to identify clusters with odd shapes, since it only takes
into account the nearest neighbors.

10.2.2 Dissimilarity Increments Distribution (DID)

The dissimilarity increments distribution (DID) is herein derived, assuming that the
Euclidean distance, d.�; �/, is the dissimilarity measure used in Definition 1.

318 H. Aidos and A. Fred

10.2.2.1 DID for High-Dimensional Data

The probability density function of the dissimilarity increments measure is derived
by assuming that X is a l-dimensional set of patterns (cluster), and that its elements
are independent and identically distributed according to a multivariate Gaussian
distribution, x � N .�; ˙/.

In the derivation of DID, firstly, we need to determine the probability density
function for the Euclidean distance between two patterns. For that, we transform our
data from the multivariate Gaussian distribution to a standard normal distribution
through a process called “whitening” or “sphering”. The squared Euclidean distance,
.d�/2, in the transformed (normalized) space follows a chi-squared distribution with
l degrees of freedom.

After some approximations (see Appendix for details), we obtain the transfor-
mation equation from the normalized space (standard normal distribution) to the
original space as

d2 D ��l=2C1

� .1C l=2/
tr.˙/

�
d�
�2
; (10.2)

where d2 and .d�/2 are the squared Euclidean distance in the original and
normalized spaces, respectively. Therefore, the probability density function of the
Euclidean distance, d � d.x; y/, is

p.y/ D 2Gl.tr.˙//yl�1 exp
˚�Cl.tr.˙//y2

	
; y 2 Œ0;C1Œ; (10.3)

where we define

Gl.tr.˙// � l l=2� .l=2/l=2�12�l tr.˙/�l=2�l=2.l=2�1/ (10.4)

and

Cl.tr.˙// � l� .l=2/.4 tr.˙//�1�l=2�1: (10.5)

Now, from Definition 1, the dissimilarity increments is defined as the absolute
value of the difference of two Euclidean distances, and, in Eq. (10.3) we have
the probability density function of the Euclidean distance between two patterns.
Therefore, after a convolution (see Appendix for details), the probability density
function for the dissimilarity increments is given by

pdinc.wI tr.˙// D
Gl.tr.˙//2

2l�5=2Cl .tr.˙//l�1=2
exp

�Cl.tr.˙//

2
w2
�

"
l�1X

kD0

2l�2�kX

iD0
.�1/iwkCi

l � 1
k

!
2l � 2 � k

i

!
2
k=2�i=2Cl .tr.˙//k=2Ci=2

10 Consensus of Clusterings Based on High-Order Dissimilarities 319

�

�
2l � 1 � k � i

2
;
Cl .tr.˙//

2
w2
��
; (10.6)

with Gl.tr.˙// and Cl.tr.˙// defined in Eq. (10.4) and (10.5), respectively, and
� .a; x/ is the incomplete gamma function [44].

The DID in Eq. (10.6) requires explicit knowledge of the diagonal covariance
matrix, ˙ . Therefore, we fit the data model by rewriting the distribution as a
function of the mean value of the dissimilarity increment,

� � EŒdinc�: (10.7)

Thus, tr.˙/ depends of � and is given by (see [2] for details)

tr.˙/ D �2Q2
l

"
l�1X

kD0

2l�2�kX

iD0
.�1/i

l � 1
k

!
2l � 2 � k

i

!
2k

B1=2

�
k C i
2
C 1; l � k C i C 1

2

�#�2
; (10.8)

where

Ql � 2l�7=2l 1=2�l=4�1=2� .l=2/5=2� .l C 1=2/�1 (10.9)

andBx.a; b/ is the incomplete beta function [44]. Plugging Eq. (10.8) into Eq. (10.6)
we obtain an approximation for the DID of a cluster, pdinc.wI�/, that only depends
on the mean of all increments in that cluster.

10.2.2.2 DID for Two-Dimensional Data

Now, we particularize for a two-dimensional set of patterns in the same conditions
as in Sect. 10.2.2.1. So, if we replace l by 2 in Eq. (10.6), we get

pdinc.wI tr.˙// D
w

2 tr.˙/
exp

� w2

2 tr.˙/

�

C
p
�

2 tr.˙/3=2

�
tr.˙/ � w2

2

�
exp

� w2

4 tr.˙/

�
erfc

w

2
p

tr.˙/

!
;

(10.10)

where erfc.�/ is the complementary error function.
The empirical estimation based on the expected value of the increments is

obtained by replacing l with 2 in Eq. (10.8), which gives

tr.˙/ D 4�2

2�ˇ2
; (10.11)

320 H. Aidos and A. Fred

with ˇ �
�
2 �p2

�
and � is defined in Eq. (10.7). Replacing in Eq. (10.10) we get

an approximation for the DID of a cluster that only depends of the mean of all the
increments in that cluster:

pdinc.wI�/ D
�ˇ2

4�2
w exp

��ˇ

2

4�2
w2
�

C �2ˇ3

8
p
2�3

exp

��ˇ

2

8�2
w2
� �

4�2

�ˇ2
� w2

�
erfc

�p
�ˇ

2
p
2�

w

�
:

(10.12)

The probability density function for the dissimilarity increments in Eq. (10.6) is
for data lying in a l-dimensional space. That formula is computationally heavy due
to the computation of exponentials of very large numbers, which are troublesome
to handle numerically. Therefore, we will mostly work with 2-DID, and later
we empirically show that 2-DID is a good fit to data lying in other dimensions
different from 2.

10.2.2.3 Characterization and Properties of 2-DID

Here we characterize the 2-DID by presenting its cumulative distribution function
and some other properties.

Support of the Function

The dissimilarity increments can only take positive values, because it is an absolute
value; then the support of the function given by Eq. (10.12) is Œ0;1/.

Probability Density Function

Equation (10.12) is in fact a probability density function, since
R1
0
pdinc.wI�/dw D

1 and it is non-negative. Figure 10.1a shows the influence of � in the probability
density function. The smaller the � values, the more narrow is the function, which
means that the data is more dense. Conversely, the higher the � values, the wider is
the probability density function, indicating that the data is more sparse. Moreover,
when w D 0, we get pdinc.0I�/ D �ˇ

2
p
2�

, with ˇ D 2 �p2.

10 Consensus of Clusterings Based on High-Order Dissimilarities 321

a b

Fig. 10.1 The influence of the parameter � in the probability density function and cumulative
distribution function of 2-DID. (a) Probability density function. (b) Cumulative distribution
function

Cumulative Distribution Function

The cumulative distribution function for 2-DID is defined by

F.w/ D 1 � exp

��ˇ

2

4�2
w2
�
C �ˇ

2
p
2�

w exp

��ˇ

2

8�2
w2
�

erfc

�p
�ˇ

2
p
2�

w

�
;

(10.13)

where ˇ D 2 � p2. Figure 10.1b shows the shape of the cumulative distribution
function for different � values.

Expected Value

The expected value of 2-DID is the parameter � of the probability density function.
Equivalently, EŒw� D �.

Variance

The variance of 2-DID is given by

varŒw� D 8 � �.ˇ2 C 2/
�ˇ2

�2; (10.14)

where ˇ D 2 �p2.

322 H. Aidos and A. Fred

10.2.3 DID Models and Data Fitting

At the end of Sect. 10.2.2.2 we claimed that Eq. (10.12) is a good fit to data with
dimensions different from 2. So, our goal is to empirically show that the DID for any
l-dimensional data can be well approximated by a 2-DID. In order to compare two
distributions we need some statistical measures, like the Cramér-von-Mises criterion
and Jensen-Shannon divergence.

The Cramér-von-Mises criterion [3] is a criterion used to determine how well
a cumulative distribution function F fits a given empirical cumulative distribution
function Fn. It is defined as

!2 �
Z 1

�1
ŒFn.x/ � F.x/�2 dF.x/: (10.15)

Let x1; x2; : : : ; xn be the empirically observed values, in nondecreasing order; in [3]
it is shown that

T � n!2 D 1

12n
C

nX

iD1

2i � 1
2n

� F.xi /
�2
: (10.16)

For common distributions, one should use tables of values of T calculated for the
distribution F . We do not know the tables for the l-DID or 2-DID distributions,
so we will simply compare the values of T directly: smaller values mean that the
considered distribution is closer to the empirical distribution.

The Jensen-Shannon divergence (DJS) [38] is a measure of the similarity
between two probability distributions P andQ. It is similar to the Kullback-Leibler
divergence but it is always finite and symmetric. It is defined as

DJS.P;Q/ � 1

2
DKL.P;M/C 1

2
DKL.Q;M/; (10.17)

where M D 1
2
.P C Q/ and DKL.P;M/ D R

P.x/ log P.x/

M.x/
dx is the Kullback-

Leibler divergence. Two probability distributions are similar if the DJS has a small
value. The higher the value, the more dissimilar the distributions are.

10.2.3.1 Best Approximation to DID for High-Dimensional Data

The two statistical measures defined above are used to empirically show that the DID
for two-dimensional data is a good approximation to the DID for l-dimensional data.
Moreover, both distributions for dissimilarity increments (2-DID and l-DID) are a
much better approximation to the real distribution than the exponential distribution
considered by Fred and Leitão [19].

10 Consensus of Clusterings Based on High-Order Dissimilarities 323

a b

Fig. 10.2 Empirical distribution comparison for Gaussian datasets with 2000 patterns in l

dimensions, with l ranging from 2 to 25. Cramér-von-Mises test (T) between each theoretical
distribution (Exponential, 2-DID and l-DID) and the empirical distribution, and Jensen-Shannon
divergence (DJS) between pairs of theoretical distributions (Exponential, 2-DID and l-DID) [2].
(a) Cramér-von-Mises criterion. (b) Jensen-Shannon divergence

We generate datasets with 2000 patterns in l dimensions, where l varies from
2 to 25. Without loss of generality, the datasets are normal distributed and the
Gaussians are all centered in the origin with diagonal covariance matrices, whose
elements are randomly chosen between 0 and 1. The results of the two statistical
measures, Cramér-von-Mises and Jensen-Shannon divergence are presented in
Fig. 10.2.

Recall that the Cramér-von-Mises criterion is used to compare the fit between
a cumulative distribution function and the empirical one. For 2-DID we used
the cumulative distribution function defined by Eq. (10.13) and the cumulative
distribution function for the exponential distribution is known from the literature.
However, it is quite hard to derive the cumulative distribution function for l-DID,
and for that reason we computed it numerically using the trapezoidal method.

Figure 10.2a shows that, according to the Cramér-von-Mises criterion (T), both
DID distributions are a better fit to the histogram of the real dissimilarity increments
distribution than the exponential distribution, i.e., T is better by approximately
102:5. Moreover, 2-DID seems slightly better than l-DID, although we suspect,
from our experiments, that this is due to approximation errors that occur during
the computation of the l-DID and also due to the numerical computation of its
cumulative distribution function.

Figure 10.2b compares pairs of distributions (2-DID vs exponential, 2-DID
vs l-DID and l-DID vs exponential) through the Jensen-Shannon divergence
(DJS). We notice that 2-DID and l-DID are very similar to each other, i.e., DJS

is almost zero, while the comparison between exponential distribution and any
DID distribution gives higher results. This empirically indicates that 2-DID is a
good approximation to l-DID, and since 2-DID is computationally much more
manageable, from now on we will always use 2-DID, defined in Eq. (10.12), and
will only refer to it as DID.

324 H. Aidos and A. Fred

10.2.3.2 Fitting DID to Non-Gaussian Data

The underlying hypothesis of the DID is that the data comes from a Gaussian
distribution with diagonal covariance ˙ . However, the distribution in Eq. (10.12)
only depends of �, i.e., the mean of the dissimilarity increments in a cluster. This
means that we are able to use DID with non-Gaussian clusters, and it may result
in good fits to the histogram of the dissimilarity increments. We now try fitting
DID to several continuous and discrete well-known distributions, by generating
2000 patterns in 20 dimensions from Gaussian, Uniform, Exponential, Poisson,
and Geometric distributions. The histograms of the dissimilarity increments and
corresponding fit of DID is presented in Fig. 10.3.

A visual inspection to Fig. 10.3 indicates that DID has a good fit to the histogram
of dissimilarity increments for all the distributions analyzed. We also present the
values of the Cramér-von-Mises criterion (T) to demonstrate how good the fit is, and
we see that T values are of the same order of magnitude for all these distributions.

10.3 Partitional Clustering

Based on the DID described in Sect. 10.2, a partitional clustering algorithm was
derived [2]. The algorithm starts by assuming an initial data partition, denoted by
P init , which should have more clusters than the real one. The idea is to use the DID
to decide whether two clusters should be merged into one cluster or not, i.e., the
decision to merge two clusters will depend on the DID of each separate cluster and
the DID of the two clusters combined.

To compare pairs of clusters and decide which pairs of clusters should be tested
first, we sort them by ascending order, using the Mahalanobis distance [48]. All
pairs of clusters are tested, using the DID, until all the remaining clusters fail the
test. The overall procedure of this algorithm is summarized in Algorithm 9.

Algorithm 9 DID-based algorithm [2]
Require: data with N samples
Require: P init D fC1; : : : ; CKg, initial data partition

Compute Dij as Mahalanobis distance between clusters i and j
for all pairs .i; j / in ascending order of Dij do

Compute pi , DID for cluster i , from (Eq. (10.12))
Compute pj , DID for cluster j , from (Eq. (10.12))
Compute pij , DID for cluster produced merging clusters i and j , from (Eq. (10.12))
if merge criterion is true then

Merge clusters i and j
end if

end for
return data partition P D fC1; : : : ; CK0g, with K0 � K

10 Consensus of Clusterings Based on High-Order Dissimilarities 325

0 5 10 15
0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−3

−2

−1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T=2.4753 T=0.9812 T=3.8872

T=2.9028 T=0.9153 T=2.1267

a b c

d e f

Fig. 10.3 Histograms (bar plots) and fitted DID (solid line curves) computed on several
20-dimensional datasets. First row: scatterplots of the first two dimensions of (a) a Gaussian
distribution; (b) a Uniform distribution; (c) an Exponential distribution. Second row: corresponding
histograms of dissimilarity increments and fit of the DID. Third row: scatterplots of the first two
dimensions of (d) a Poisson distribution; (e) a Uniform distribution; (f) a Geometric distribution.
Fourth row: corresponding histograms of dissimilarity increments and fit of the DID. Below each
pair of figures, we present the corresponding value of the Cramér-von-Mises criterion (T) [2]

326 H. Aidos and A. Fred

10.3.1 Initial Data Partition

We can obtain an initial data partition using any partitional clustering algorithm,
such as Gaussian mixture decomposition (GMD) or k-means. Using GMD to obtain
the initial data partition, our clustering algorithm is called GMDID, and using
k-means, is called KMDID.

Here, GMDID uses the algorithm proposed in [15], which is an expectation-
maximization (EM) algorithm that finds the number of components using the
minimum description length criterion. This GMD algorithm produces a partition
of the dataset with as many clusters as Gaussian components.

We also run k-means initialized with Variance Partitioning [47], but with several
values of k. The choice of the best partition was made using G-DID, a validation
criterion presented in Sect. 10.5, and that partition was used as initial partition for
the KMDID approach.

10.3.2 Merge Criterion

A likelihood-ratio test or the minimum description length is used as a merge
criterion in Algorithm 9. The first one has a parameter, which is a significance level,
the other one is parameter-free.

Consider Ci and Cj two clusters candidate for merging, and �i and �j the
parameter of the DID in Eq. (10.12) for clusters Ci and Cj , respectively. We define
�ij as the parameter of the DID of merging clusters Ci and Cj into one cluster, Cij .

Likelihood-Ratio Test. A likelihood-ratio test (LRT) [37] consists of the logarithm
of the ratio between the joint likelihood of two models, L .W j�i ; �j /, and the
likelihood of a single model, L .W j�ij /. The two models are represented by the
DID of clusters Ci and Cj ,

L .W j�i ; �j / D
Y

t

pdinc.W D wt I�i /
Y

t 0

pdinc.W D wt 0 I�j / (10.18)

and the single model corresponds to the DID of the merged cluster, Cij ,

L .W j�ij / D
Y

t

pdinc.W D wt I�ij /: (10.19)

This LRT is approximated by a chi-square distribution with one degree of
freedom (two parameters in the numerator, �i and �j , corresponding to the expected
value of the dissimilarity increments for each of the two clusters Ci and Cj , and
one parameter in the denominator, �ij , corresponding to the expected value of the
dissimilarity increments for the two clusters combined). Therefore,

10 Consensus of Clusterings Based on High-Order Dissimilarities 327

� 2 log

�
L .W j�i ; �j /
L .W j�ij /

�
� �2.1/: (10.20)

Two clusters are merged if the p-value from �2.1/ is less than a given significance
level ˛. This significance level is a parameter to be chosen according to some
criterion.

Minimum Description Length. The minimum description length (MDL) [40] of
the separate clusters, Ci and Cj , and the merged cluster, Cij , is used as another type
of merging criterion. The description length of the separate cluster is defined as the
sum of the length of the model description, according to the DID hypothesis of each
cluster, and the cost of encoding our estimation of the DID. Thus,

DL2DID D�
0

@
jSdinc .�i /jX

tD1
logp

dinc
.wt I�i /C

jSdinc .�j /jX

tD1
logp

dinc
.wt I�j /

1

A (10.21)

C log jSdinc.�i /j C log jSdinc.�j /j;

where jSdinc.�i /j and jSdinc.�j /j is the total number of increments of clusters Ci and
Cj , respectively. Similarly, the description length of the merged cluster is

DL1DID D �
0

@
jSdinc .�ij /jX

tD1
logp

dinc
.wt I�ij /

1

AC 1

2
log jSdinc.�ij /j; (10.22)

where jSdinc.�ij /j is the total number of increments of the merged cluster Cij
Consider models M2 and M1 corresponding to two separate DID models (two

separate clusters, Ci and Cj) and one single DID model (clusters Ci and Cj merged
into a single cluster, Cij), respectively. For s 2 f1; 2g,

choose Ms W s D argmin
i

fDLiDIDg; (10.23)

and consequently, two clusters are merged if DL1DID is less than DL2DID.

10.4 Consensus Clustering with DID

Consider X D fx1; : : : ; xN g is a set of N objects and a clustering algorithm that
takes X as input and groups the objects into k clusters, forming a partition P .
A clustering ensemble, P D fP 1; P 2; : : : ; PM g, is a set of M different partitions of
the data X :

328 H. Aidos and A. Fred

P 1 D ˚C1
1 ; C

1
2 ; : : : ; C

1
k1

	

:::

PM D ˚CM
1 ; C

M
2 ; : : : ; C

M
kM

	
;

where C i
j is the j -th cluster in data partition P i , which has ki clusters and nij is the

cardinality of C i
j , with

Pki
jD1 nij D N; i D 1; : : : ;M .

Different clustering algorithms, or one algorithm with different initializations or
parameters can be used to obtain the clustering ensemble. Here, we used GMDID
described in Sect. 10.3 with different initializations for the Gaussian mixture
decomposition. Also, the two merging criteria are used to construct two different
clustering ensembles.

Now, the evidence accumulation approach [17] takes this ensemble and produces
a co-association matrix by taking the co-occurrences of pairs of patterns in the
same cluster as votes for their association. The idea is that patterns which should be
grouped together are probably going to be assigned to the same cluster in different
data partitions. Formally, the M data partitions of N patterns yield a N � N
co-association matrix:

C .i; j / D nij

M
; (10.24)

where nij is the number of times the pattern pair .i; j / is assigned to the same cluster
among the M partitions.

Finally, the consensus partition is found by applying a clustering algorithm to the
co-association matrix. The overall procedure is summarized in Algorithm 10.

10.5 Validation with DID

In this section we present a validity index for clustering, which can be used to
evaluate several data partitions obtained by a single clustering algorithm with
different initializations or parameters, or clustering ensemble methods. That cluster
validity index, called graph-based dissimilarity increments distribution (G-DID),

Algorithm 10 Evidence accumulation approach
Require: data with N samples

for i D 1 to M do
Obtain partition P i by applying clustering algorithm(s)

end for
Compute co-association matrix using Eq. (10.24)
Apply a clustering algorithm to the co-association matrix
return Consensus partition

10 Consensus of Clusterings Based on High-Order Dissimilarities 329

Algorithm 11 Graph generative model [18]
Require: Number of edges, nedges
Require: Initial weight, dini
Require: Parameter distribution, �

Form an initial edge, e1, with weight dini
for i D 1 to .nedges � 1/ do

Randomly select an edge ej and one of its vertices, vj
Let dj be the weight of ej
Draw an increment value, wi , according to the DID pdinc .wI�/ Eq. (10.12)
Add a new edge ei to the graph, connected to vj and with weight given by di D dj ˙ wi

end for

consists in a minimum description length of the graph-based representation of a
partition, assuming that each cluster is a subgraph with the topology given by the
minimum spanning tree (MST) and each cluster is model by the DID described in
Sect. 10.2. This index was presented in [18], but using the exponential distribution
to model the dissimilarity increments.

A cluster is modeled by a probabilistic attributed graph (PAG), where nodes
represent objects, and edges have two attributes: the dissimilarity between linked
objects, and the probability of edge formation. The nearest neighbor relationships
presented in the dissimilarity increments definition, lead us to the MST as the
graph topology of a cluster. That MST is computed from the completely connected
graph with edge weights, which corresponds to dissimilarity between linked objects.
Moreover, for each edge ej (with weight, dissimilarity, dj), one can connect an
edge ei (with weight, di) with probability pdinc.wi I�/, where wi D jdi � dj j. This
procedure is called graph generative model between linked objects and the overall
procedure is given in Algorithm 11. The probability of edge formation is computed
assuming that an edge may have several connections with other edges in the MST,
and that all these edges may contribute for the generation of ei , and it is given by

Of .ei ; �/ D
X

em

pdinc.wmI�/P.em/; (10.25)

where em is an edge connected to ei , wm is the corresponding dissimilarity increment
computed from ei and em, and P.em/ D 1=jcei j, with jcei j the number of edges
directly connecting to ei .

Now, a disconnected graph G D fG1; : : : ; GkP g represents a partition P with kP
clusters, where each cluster Ci is represented by a subgraph, Gi . The probability of
a partition P is given by

Of .P / D
kPY

iD1
Of .Gi jP / D

kPY

iD1

Y

ej2Gi
Of .ej ; �i /: (10.26)

330 H. Aidos and A. Fred

Algorithm 12 G-DID index [18]
Require: P D fC1; : : : ; CkP g a data partition

for i D 1 to kP do
Estimate O�i associated with Ci
Obtain the MST for cluster Ci
Determine the PAG, Gi :

(i) Gi topology is given by the MST
(ii) edge weights are given by the distance between linked objects in Gi
(iii) estimate edges probabilities Of .ej ; O�i /;8ej 2 Gi according to Eq. (10.25)

end for
Determine partition probability Of .P / using Eq. (10.26)
return G-DID index computed using Eq. (10.27)

The cluster validity index, G-DID, is a description length of the graph represen-
tation of partition P , and is defined as

G-DID.P / D � log Of .P /C kP

2
log jSdinc j; (10.27)

with jSdinc j the cardinality of the set of increments of the dataset. The first term
represents the description length of the partition according to the DID hypothesis,
and the second term, the cost of encoding our estimation of the DID. The overall
procedure for computing this index is summarized in Algorithm 12. This index can
also be used to select among a set of M partitions P D fP 1; P 2; : : : ; PM g, we only
need to use a MDL criterion

choose P i W i D arg min
j
fG-DID.P j /g: (10.28)

10.6 Experimental Results and Discussion

The performance of the algorithms presented previously are assessed using 10
datasets: four synthetic datasets, four real-world datasets from the UCI Machine
Learning Repository1 and two datasets containing Usenet articles from different
discussion groups, which were obtained from the 20-Newsgroups database.2 The
synthetic datasets were chosen to take into account a wide variety of situations:
well-separated and touching clusters, Gaussian and non-Gaussian clusters, arbitrary
shapes and diverse cluster densities. Figure 10.4 shows these synthetic datasets.

1http://archive.ics.uci.edu/ml.
2http://www.ai.mit.edu/people/jrennie/20Newsgroups/.

http://archive.ics.uci.edu/ml
http://www.ai.mit.edu/people/jrennie/20Newsgroups/

10 Consensus of Clusterings Based on High-Order Dissimilarities 331

a b

c d

Fig. 10.4 Synthetic datasets. (a) d2. (b) Mixed Image 2. (c) Spiral. (d) Circs

The Breast-cancer dataset consists of 683 patterns represented by nine features
and has two clusters. The House-votes dataset consists of votes for each of the U.S.
House of Representatives Congressmen on the 16 key votes identified by the Con-
gressional Quarterly Almanac. It is composed by two clusters and only the patterns
without missing values were considered, for a total of 232 samples (125 democrats
and 107 republicans). The Iris dataset consists of three species of Iris plants (Setosa,
Versicolor and Virginica). This dataset is characterized by four features and 50
samples in each cluster. The Crabs dataset consists of 200 patterns represented by
5 features and has two classes. Crabs and House-votes were normalized to have
unit variance. The Diff-300 consists of 300 documents corresponding to 3 topics
in the Usenet discussions, with 10 features per document. There are three topics,
each one has exactly 100 documents: alt.atheism, rec.sport.baseball, sci.space from
the 20-newsgroups. The Same-300 consists of 297 documents, with 10 features
per document. The documents are very close to each other, even from different
classes; the classes are: talk.politics.misc, talk.politics.guns, talk.politics.mideast.
A summary of the real-world datasets is given in Table 10.1.

332 H. Aidos and A. Fred

Table 10.1 Real-world datasets

Dataset Number of samples Number of features Number of clusters

Breast-cancer 683 9 2

Crabs 200 5 2

House-votes 232 16 2

Iris 150 4 3

Diff-300 300 10 3

Same-300 297 10 3

We assess the quality of each partition P using the consistency index (CI) [16]
(also known as accuracy or H index [42]), which is the percentage of agreement
between a partition P D fC1; : : : ; CKg and the ground truth information, Pgt D
fCgt

1 ; : : : ; C
gt

K0

g. Equivalently,

CI.P; P gt / D 1

N

X

k0Dmatch.k/
mk;k0 ; (10.29)

where mk;k0 is the contingency table, mk;k0 D jCk \ Cgt

k0

j.

10.6.1 Partitional Clustering

This section of experimental results will be split in two case studies: known number
of clusters and unknown number of clusters. In the first one, we compare the
performances of GMDID for different initializations and merge criteria (LRT and
MDL), assuming that the true number of clusters is known. The combination
of random initialization and parameter-free merging criterion is then chosen and
compared with k-means, and typical hierarchical methods. The second case study
assumes that no a priori information about the number of clusters is available, and
compare the performances of DID-based algorithms (GMDID and KMDID) with
GMD and k-means. Also, we compare GMDID with typical hierarchical methods
using the lifetime criterion and G-DID to select the number of clusters.

10.6.1.1 Known Number of Clusters

GMD can be initialized in several ways one possibility consists in chooseM random
points from the dataset (we denote this as GMDrand). Another possibility is using
the final partition given by k-means as part of the initialization of the GMD (denoted
by GMDini t), adding additional randomly chosen centroids, from the dataset, in
a total of 50 initial centroids. In the k-means algorithm different initializations
yield different final partitions, due to random initialization. So, we use the Variance

10 Consensus of Clusterings Based on High-Order Dissimilarities 333

Partitioning method proposed in [47] to initialize k-means, because the results were
comparable to the best run out of 20 with random initializations; however, any other
kind of initialization could be used [8, 9]. We performed 20 runs of both types of
GMD (GMDrand and GMDini t) and chose the best run according to the intrinsic
criterion of the GMD [15] (which is MDL-based).

DID-based algorithms, described in Sect. 10.3, have a merging criterion that can
be MDL-based, which is parameter-free, or a likelihood-ratio test, with a parameter
˛ corresponding to a significance level. We set ˛ to f0:001, 0.005, 0.01, 0.05, 0.1,
0:15g and chose the best parameter according to the G-DID index presented in
Sect. 10.5.

Table 10.2 presents the results produced by these initializations. Here, we are
assuming that the true number of clusters is known, and from the definition of
GMDID, this algorithm can use that information only as a lower bound to the
number of clusters. This means that, in this experiments (where the true number
of clusters is known), we included a stopping criterion for GMDID when the true
number of clusters is reached. Therefore, in Table 10.2 this algorithm sometimes
overestimates the number of clusters, and underestimates it when GMD does that.

From Table 10.2, we notice that GMDID, using the MDL criterion (GMDIDM)
and as initial partition the GMDrand , is the best algorithm overall, especially in
synthetic datasets. Since k-means is not suitable for situations where clusters have
arbitrary shapes and densities, the centroids used to initialize GMDini t are wrongly
positioned, affecting the results of GMDID.

In Table 10.3 we intend to compare DID-based algorithm with k-means ini-
tialized by Variance Partitioning method [47] and some hierarchical methods. To
facilitate that comparison, we choose one of the versions of GMDID presented
in Table 10.2, because it has a random initialization and is parameter-free in the
merging criterion. However, the values in Table 10.3 can be compared to the ones
in Table 10.2.

From Table 10.3, we note that GMDIDrand
M is overall the best method. Moreover,

SL is the best hierarchical clustering algorithm in most synthetic datasets and is
a poor choice for the real-world datasets presented. WL is a good choice, for
real-world datasets, within the hierarchical clustering algorithms. However, when
compared to the partitional methods, WL only achieve the best result for the Breast-
cancer dataset. GMDIDrand

M is the best method in three real-world datasets and
k-means in two datasets.

10.6.1.2 Unknown Number of Clusters

Assuming that no a priori information about the number of clusters is available, we
run GMDID using as initial partition the GMD with fully random initialization. As
described above, we performed 20 runs of GMD and choose the best run using its
intrinsic criterion. Also, we run k-means initialized with Variance Partitioning [47],
but with several values of k (k ranges from 2 to 25), and the choice of the best

334 H. Aidos and A. Fred

Ta
bl

e
10

.2
C

on
si

st
en

cy
in

de
x

(i
n

%
)

fo
r

se
ve

ra
lv

ar
ia

nt
s

of
G

M
D

[1
5]

an
d

G
M

D
ID

w
he

n
th

e
tr

ue
nu

m
be

r
of

cl
us

te
rs

(N
c)

is
kn

ow
n.

T
he

va
lu

es
in

pa
re

nt
he

se
s

co
rr

es
po

nd
to

th
e

nu
m

be
r

of
cl

us
te

rs
fo

un
d

by
ea

ch
al

go
ri

th
m

.G
M

D
r
a
n
d

is
th

e
G

au
ss

ia
n

m
ix

tu
re

de
co

m
po

si
tio

n
w

ith
ra

nd
om

in
iti

al
iz

at
io

n
an

d
G

M
D
in
it

us
es

k
-m

ea
ns

ou
tp

ut
as

in
iti

al
iz

at
io

n;
G

M
D

ID
is

th
e

al
go

ri
th

m
pr

es
en

te
d

in
Se

ct
.1

0.
3;
.�/

M
m

ea
ns

us
in

g
M

D
L

cr
ite

ri
on

an
d
.�/

L
m

ea
ns

us
in

g
L

R
T

cr
ite

ri
on

.T
he

be
st

re
su

lts
fo

r
ea

ch
da

ta
se

ta
re

sh
ow

n
in

bo
ld

D
at

as
et

s
N

c
G

M
D
r
a
n
d

G
M

D
ID

r
a
n
d

M
G

M
D

ID
r
a
n
d

L
G

M
D
in
it

G
M

D
ID

in
it

M
G

M
D

ID
in
it

L

d2
4

34
.0

0(
13

)
10

0(
4)

90
.5

0(
5)

34
.5

0(
13

)
10

0(
4)

90
.5

0(
5)

M
ix

ed
Im

ag
e

2
8

34
.1

0(
38

)
10

0(
8)

99
.1

9(
8)

41
.0

0(
29

)
99

.8
6(

8)
99

.0
5(

8)

Sp
ir

al
2

7.
00

(4
5)

10
0(

2)
10

0(
2)

11
.0

0(
36

)
61

.5
0(

5)
58

.5
0(

4)

C
ir

cs
2

35
.7

5(
14

)
99

.0
0(

2)
79

.0
0(

3)
49

.2
5(

12
)

98
.2

5(
3)

98
.2

5(
2)

B
re

as
t-

ca
nc

er
2

45
.1

0(
5)

75
.1

1(
3)

75
.1

1(
3)

68
.2

3(
5)

79
.6

5(
3)

74
.9

6(
4)

C
ra

bs
2

68
.5

0(
3)

74
.5

0(
2)

74
.5

0(
2)

58
.5

0(
2)

58
.5

0(
2)

58
.5

0(
2)

H
ou

se
-v

ot
es

2
87

.0
7(

2)
87

.0
7(

2)
87

.0
7(

2)
89

.2
2(

2)
89

.2
2(

2)
89

.2
2(

2)

Ir
is

3
71

.3
3(

5)
98

.0
0(

3)
98

.0
0(

3)
76

.0
0(

5)
96

.0
0(

3)
96

.0
0(

3)

D
if

f-
30

0
3

90
.6

7(
3)

90
.6

7(
3)

90
.6

7(
3)

73
.6

7(
3)

73
.6

7(
3)

73
.6

7(
3)

Sa
m

e-
30

0
3

47
.4

7(
2)

47
.4

7(
2)

47
.4

7(
2)

53
.8

7(
3)

53
.8

7(
3)

53
.8

7(
3)

10 Consensus of Clusterings Based on High-Order Dissimilarities 335

Table 10.3 Consistency index (in %) for clustering algorithms when the true
number of clusters (Nc) is known. The values in parentheses correspond to the
number of clusters found by each algorithm. GMDIDrand

M is GMDID with initial
partition given by GMD with random initialization [15] and using MDL as merging
criterion. k-means is initialized with Variance Partitioning method [47] and k is
equal to Nc. Hierarchical clustering algorithms: single-link (SL), average-link (AL),
complete-link (CL) and Ward’s link (WL). The best results for each dataset are
shown in bold

True number of clusters

Dataset Nc GMDIDrand
M k-means SL AL CL WL

d2 4 100(4) 60.50 100 61.50 61.50 51.00

Mixed Image 2 8 100(8) 41.95 47:50 51.56 51.01 53.99

Spiral 2 100(2) 55.00 100 52.00 52.00 52.00

Circs 2 99.00(2) 72.75 100 61.50 71.00 69.75

Breast-cancer 2 75.11(3) 96.05 65:15 94.29 85.21 96.63
Crabs 2 74.50(2) 54.00 50:50 51.50 52.00 55.50

House-votes 2 87.07(2) 89.22 53:02 88.36 81.03 85.78

Iris 3 98.00(3) 89.33 68:00 90.67 84.00 89.33

Diff-300 3 90.67(3) 58.67 35:67 36.67 36.67 66.00

Same-300 3 47.47(2) 54.21 35:02 33.67 36.70 38.05

partition was made using G-DID. That partition was then used as initial partition for
KMDID. The results of these initializations are presented in Table 10.4.

Again, the best DID-based method for the synthetic datasets is when the initial
partition is given by GMD. Recall that KM corresponds to k-means with a fixed
initialization and k chosen by G-DID. From Table 10.4, we notice that, in most
cases, G-DID chooses k less or equal to the true number of clusters. Consequently,
KMDID has poor results in almost all datasets, except for Circs dataset. Overall,
GMD is the best method for the real-world datasets, but is the worst for datasets
with non-Gaussian and/or arbitrary shapes clusters.

Comparing the results of GMDID when the true number of clusters is available
(GMDIDrand

M from Table 10.2) and when it is not available (GMDIDM from
Table 10.4), they are similar except for the Crabs, Iris and Diff-300 datasets.
This suggests that the method incorrectly merges clusters due to the fact that
those datasets may have the same DID for different clusters. On the other hand,
the similarity in the results between GMDIDrand

M (Table 10.2) and GMDIDM

(Table 10.4) is a strong indication that GMDID can identify correctly the true
number of clusters.

Tables 10.5 and 10.6 presents the results for the hierarchical algorithms (similar
to Table 10.3), however we are assuming that the number of clusters is unknown.
Therefore, the number of clusters is obtained by applying the lifetime criterion [17]
(see Table 10.5) and G-DID presented in Sect. 10.5 (see Table 10.6).

Overall, GMDIDM outperforms other clustering algorithms and KM is the best
algorithm only for Iris dataset (see Table 10.5). Typical hierarchical clustering
algorithms performs poorly when the number of clusters is unknown and the lifetime

336 H. Aidos and A. Fred

Ta
bl

e
10

.4
C

on
si

st
en

cy
in

de
x

(i
n

%
)

fo
r

pa
rt

iti
on

al
cl

us
te

ri
ng

al
go

ri
th

m
s

w
he

n
th

e
tr

ue
nu

m
be

r
of

cl
us

te
rs

(N
c)

is
un

kn
ow

n.
T

he
va

lu
es

in
pa

re
nt

he
se

s
co

rr
es

po
nd

to
th

e
nu

m
be

r
of

cl
us

te
rs

fo
un

d
by

ea
ch

al
go

ri
th

m
.K

M
is
k

-m
ea

ns
ru

n
fo

r
se

ve
ra

lv
al

ue
s

of
k

an
d

ch
os

en
ac

co
rd

in
g

to
th

e
G

-D
ID

,
an

d
in

iti
al

iz
ed

w
ith

V
ar

ia
nc

e
Pa

rt
iti

on
in

g
[4

7]
;G

M
D

is
G

au
ss

ia
n

m
ix

tu
re

de
co

m
po

si
tio

n
[1

5]
w

ith
ra

nd
om

in
iti

al
iz

at
io

n;
K

M
D

ID
an

d
G

M
D

ID
ar

e
th

e
D

ID
-b

as
ed

al
go

ri
th

m
s

pr
es

en
te

d
in

Se
ct

.1
0.

3;
.�/

M
m

ea
ns

us
in

g
M

D
L

cr
ite

ri
on

an
d
.�/

L
m

ea
ns

us
in

g
L

R
T

cr
ite

ri
on

.
T

he
be

st
re

su
lts

fo
r

ea
ch

da
ta

se
ta

re
sh

ow
n

in
bo

ld

D
at

as
et

s
N

c
K

M
K

M
D

ID
M

K
M

D
ID

L
G

M
D

G
M

D
ID

M
G

M
D

ID
L

d2
4

44
.5

0(
2)

58
.0

0(
1)

44
.5

0(
2)

34
.0

0(
13

)
10

0(
4)

90
.5

0(
5)

M
ix

ed
Im

ag
e

2
8

46
.4

1(
7)

45
.8

7(
6)

45
.8

7(
6)

34
.1

0(
38

)
10

0(
8)

99
.1

9(
8)

Sp
ir

al
2

55
.0

0(
2)

55
.0

0(
2)

55
.0

0(
2)

7.
00

(4
5)

10
0(

2)
10

0(
2)

C
ir

cs
2

57
.2

5(
11

)
10

0(
2)

10
0(

2)
35

.7
5(

14
)

99
.0

0(
2)

79
.0

0(
3)

B
re

as
t-

ca
nc

er
2

96
.0

5(
2)

65
.0

1(
1)

65
.0

1(
1)

45
.1

0(
5)

75
.1

1(
3)

75
.1

1(
3)

C
ra

bs
2

54
.0

0(
2)

54
.0

0(
2)

54
.0

0(
2)

68
.5

0(
3)

50
.0

0(
1)

50
.0

0(
1)

H
ou

se
-v

ot
es

2
75

.4
3(

3)
75

.4
3(

3)
75

.4
3(

3)
87

.0
7(

2)
87

.0
7(

2)
87

.0
7(

2)

Ir
is

3
89

.3
3(

3)
66

.6
7(

2)
66

.6
7(

2)
71

.3
3(

5)
66

.6
7(

2)
66

.6
7(

2)

D
if

f-
30

0
3

58
.3

3(
2)

33
.3

3(
1)

33
.3

3(
1)

90
.6

7(
3)

62
.3

3(
2)

62
.3

3(
2)

Sa
m

e-
30

0
3

35
.3

5(
2)

35
.3

5(
2)

35
.3

5(
2)

47
.4

7(
2)

47
.4

7(
2)

47
.4

7(
2)

10 Consensus of Clusterings Based on High-Order Dissimilarities 337

Ta
bl

e
10

.5
C

on
si

st
en

cy
in

de
x

(i
n

%
)f

or
cl

us
te

ri
ng

al
go

ri
th

m
s

w
he

n
th

e
tr

ue
nu

m
be

ro
fc

lu
st

er
s

(N
c)

is
un

kn
ow

n.
T

he
va

lu
es

in
pa

re
nt

he
se

s
co

rr
es

po
nd

to
th

e
nu

m
be

r
of

cl
us

te
rs

fo
un

d
by

ea
ch

al
go

ri
th

m
.

G
M

D
ID

M
w

ith
in

iti
al

pa
rt

iti
on

gi
ve

n
by

G
M

D
[1

5]
w

ith
fu

lly
ra

nd
om

in
iti

al
iz

at
io

n,
an

d
K

M
is
k

-
m

ea
ns

ru
n

fo
r

se
ve

ra
l

va
lu

es
of
k

an
d

ch
os

en
ac

co
rd

in
g

to
th

e
G

-D
ID

,a
nd

in
iti

al
iz

ed
w

ith
V

ar
ia

nc
e

Pa
rt

iti
on

in
g

[4
7]

.
H

ie
ra

rc
hi

ca
l

cl
us

te
ri

ng
al

go
ri

th
m

s:
si

ng
le

-l
in

k
(S

L
),

av
er

ag
e-

lin
k

(A
L

),
co

m
pl

et
e-

lin
k

(C
L

)
an

d
W

ar
d’

s
lin

k
(W

L
).

T
he

nu
m

be
r

of
cl

us
te

rs
fo

r
SL

,
A

L
,

C
L

e
W

L
ar

e
fo

un
d

by
th

e
lif

et
im

e
cr

ite
ri

on
[1

7]
.T

he
be

st
re

su
lts

fo
r

ea
ch

da
ta

se
ta

re
sh

ow
n

in
bo

ld

L
if

et
im

e
cr

ite
ri

on

D
at

as
et

s
N

c
G

M
D

ID
M

K
M

SL
A

L
C

L
W

L

d2
4

10
0(

4)
44

.5
0(

2)
68

.5
0(

2)
46

.0
0(

2)
51

.0
0(

3)
46

.0
0(

3)

M
ix

ed
Im

ag
e

2
8

10
0(

8)
46

.4
1(

7)
47

.5
0(

9)
47

.3
6(

3)
51

.5
6(

5)
47

.3
6(

3)

Sp
ir

al
2

10
0(

2)
55

.0
0(

2)
10

0(
2)

36
.0

0(
4)

40
.0

0(
4)

28
.0

0(
5)

C
ir

cs
2

99
.0

0(
2)

57
.2

5(
11

)
99

.7
5(

3)
62

.7
5(

7)
65

.0
0(

4)
60

.7
5(

7)

B
re

as
t-

ca
nc

er
2

75
.1

1(
3)

96
.0

5(
2)

65
.1

5(
3)

94
.0

0(
3)

92
.8

3(
2)

96
.6

3(
2)

C
ra

bs
2

50
.0

0(
1)

54
.0

0(
2)

50
.5

0(
2)

51
.5

0(
2)

52
.0

0(
2)

55
.5

0(
2)

H
ou

se
-v

ot
es

2
87

.0
7(

2)
75

.4
3(

3)
5.

60
(1

60
)

5.
60

(1
60

)
5.

6(
16

0)
85

.7
8(

2)

Ir
is

3
66

.6
7(

2)
89

.3
3(

3)
66

.6
7(

2)
66

.6
7(

2)
66

.6
7(

2)
66

.6
7(

2)

D
if

f-
30

0
3

62
.3

3(
2)

58
.3

3(
2)

35
.6

7(
3)

34
.6

7(
2)

40
.6

7(
13

)
53

.0
0(

11
)

Sa
m

e-
30

0
3

47
.4

7(
2)

35
.3

5(
2)

35
.3

5(
4)

34
.6

8(
7)

35
.6

9(
14

)
36

.3
6(

2)

338 H. Aidos and A. Fred

Ta
bl

e
10

.6
C

on
si

st
en

cy
in

de
x

(i
n

%
)

fo
r

cl
us

te
ri

ng
al

go
ri

th
m

s
w

he
n

th
e

tr
ue

nu
m

be
r

of
cl

us
te

rs
(N

c)
is

un
kn

ow
n.

T
he

va
lu

es
in

pa
re

nt
he

se
s

co
rr

es
po

nd
to

th
e

nu
m

be
r

of
cl

us
te

rs
fo

un
d

by
ea

ch
al

go
ri

th
m

.
G

M
D

ID
M

w
ith

in
iti

al
pa

rt
iti

on
gi

ve
n

by
G

M
D

[1
5]

w
ith

fu
lly

ra
nd

om
in

iti
al

iz
at

io
n,

an
d

K
M

is
k

-m
ea

ns
ru

n
fo

r
se

ve
ra

lv
al

ue
s

of
k

an
d

ch
os

en
ac

co
rd

in
g

to
th

e
G

-D
ID

,a
nd

in
iti

al
iz

ed
w

ith
V

ar
ia

nc
e

Pa
rt

iti
on

in
g

[4
7]

.H
ie

ra
rc

hi
ca

l
cl

us
te

ri
ng

al
go

ri
th

m
s:

si
ng

le
-l

in
k

(S
L

),
av

er
ag

e-
lin

k
(A

L
),

co
m

pl
et

e-
lin

k
(C

L
)

an
d

W
ar

d’
s

lin
k

(W
L

).
T

he
nu

m
be

r
of

cl
us

te
rs

fo
r

SL
,A

L
,C

L
e

W
L

ar
e

fo
un

d
by

th
e

G
-D

ID
cr

ite
ri

on
pr

es
en

te
d

in
Se

ct
.1

0.
5.

T
he

be
st

re
su

lts
fo

r
ea

ch
da

ta
se

ta
re

sh
ow

n
in

bo
ld

G
-D

ID
cr

ite
ri

on

D
at

as
et

s
N

c
G

M
D

ID
M

K
M

SL
A

L
C

L
W

L

d2
4

10
0(

4)
44

.5
0(

2)
10

0(
4)

49
.0

0(
8)

61
.5

0(
6)

61
.5

0(
5)

M
ix

ed
Im

ag
e

2
8

10
0(

8)
46

.4
1(

7)
94

.3
2(

45
)

22
.3

3(
74

)
60

.4
9(

11
)

28
.6

9(
42

)

Sp
ir

al
2

10
0(

2)
55

.0
0(

2)
10

0(
2)

24
.0

0(
22

)
16

.0
0(

36
)

16
.0

0(
22

)

C
ir

cs
2

99
.0

0(
2)

57
.2

5(
11

)
10

0(
2)

58
.7

5(
16

)
58

.2
5(

16
)

69
.7

5(
4)

B
re

as
t-

ca
nc

er
2

75
.1

1(
3)

96
.0

5(
2)

65
.1

5(
11

)
75

.2
6(

12
)

67
.7

9(
16

)
82

.2
8(

3)

C
ra

bs
2

50
.0

0(
1)

54
.0

0(
2)

50
.5

0(
2)

43
.5

0(
3)

52
.0

0(
2)

33
.0

0(
4)

H
ou

se
-v

ot
es

2
87

.0
7(

2)
75

.4
3(

3)
53

.0
2(

2)
87

.5
0(

3)
81

.0
3(

2)
76

.7
2(

3)

Ir
is

3
66

.6
7(

2)
89

.3
3(

3)
62

.6
7(

15
)

79
.3

3(
6)

50
.0

0(
13

)
66

.6
7(

2)

D
if

f-
30

0
3

62
.3

3(
2)

58
.3

3(
2)

32
.6

7(
14

)
38

.0
0(

19
)

41
.6

7(
12

)
66

.0
0(

3)

Sa
m

e-
30

0
3

47
.4

7(
2)

35
.3

5(
2)

35
.3

5(
5)

34
.6

8(
7)

39
.0

6(
10

)
41

.4
1(

10
)

10 Consensus of Clusterings Based on High-Order Dissimilarities 339

criterion is applied to identify the number of clusters, except WL for Breast-cancer
and Crabs datasets. For Breast-cancer dataset, KM, AL, CL and WL are the best
algorithms; but for the House-votes dataset, SL, AL and CL are the worst algorithms.
Moreover, on average, AL and CL are the worst algorithms.

Again, from Table 10.6, we note that, overall, GMDIDM is the best algorithm,
and AL and CL are the worst algorithms, when the true number of clusters is
unknown and G-DID is used to obtain the number of clusters. However, AL is
the best algorithm for House-votes dataset, although the difference is very small
when compared to GMDIDM . Notice that CI has high values even when the number
of clusters identified is high, e.g., Mixed Image 2 for SL. For this dataset, G-DID
identified 45 clusters for SL with a CI of 94.32 %, this happens because SL identifies
some points of this dataset as being singleton clusters.

Comparing the results of the traditional hierarchical algorithms with the number
of clusters found by the two criteria mentioned (lifetime and G-DID), there are some
improvements in the results when G-DID is used for SL, AL and CL. Only WL
had worsen a little compared to the lifetime criterion. Moreover, AL, CL and WL
were the best algorithms for the Breast-cancer dataset when the lifetime criterion
was used, but with G-DID criterion the results are lower. The highest improvement
occurred for SL, in almost all datasets, and AL and CL for the House-votes dataset.

10.6.2 Consensus Clustering

The clustering ensemble, described in Sect. 10.4, was obtained by performing
M D 200 runs of GMDID algorithm, with different random initializations. The
two different merging criteria, described in Sect. 10.3, were used to create different
consensus clustering. Since the MDL criterion is parameter-free, only the initial par-
titions contribute to the diversity of solutions. The LRT criterion has one parameter,
so, the clustering ensemble was obtained through the initial partitions and by varying
the parameter ˛, which will take values from f0:001; 0:005; 0:01; 0:05; 0:1; 0:15g.
Finally, the consensus partition was extracted by applying four traditional clustering
algorithms: single-link (SL), average-link (AL), complete-link (CL) and Ward’s link
(WL). The number of clusters were obtained by applying three different strategies:
assuming the true number of clusters is known, using the lifetime criterion [17]
and the G-DID criterion (see Sect. 10.5). The results for the known true number
of clusters, lifetime criterion and G-DID criterion are presented in Tables 10.7, 10.8
and 10.9, respectively. Each table presents the best CI, with the merging criterion for
GMDID and the hierarchical algorithm to extract the consensus partition that gives
the best CI (columns 2 to 4). Moreover, it also presents the CI values obtained when
we selected the best partition according to G-DID index and Dunn’s index [48], and
the corresponding merging criterion and hierarchical clustering algorithm.

Table 10.7 shows that G-DID index is a good criterion to select the best partition
and GMDID merging criterion, it chooses 7 out of 10 datasets, while Dunn’s index
selects 6 out of 10 datasets. For the Breast-cancer, the partition chosen by G-DID

340 H. Aidos and A. Fred

Ta
bl

e
10

.7
C

om
pa

ri
so

n
of

G
-D

ID
an

d
D

un
n’

s
in

de
x

fo
rs

el
ec

tin
g

th
e

be
st

co
m

bi
na

tio
n

of
m

er
gi

ng
cr

ite
ri

on
an

d
hi

er
ar

ch
ic

al
al

go
ri

th
m

,w
he

n
th

e
tr

ue
nu

m
be

r
of

cl
us

te
rs

(N
c)

is
kn

ow
n.

B
es

tfi
na

lp
ar

ti
ti

on
(s

)
co

rr
es

po
nd

to
th

e
be

st
co

ns
is

te
nc

y
in

de
x

va
lu

es
(C

I,
in

%
),

ac
ro

ss
al

lc
om

bi
na

tio
ns

of
m

er
gi

ng
cr

ite
ri

on
an

d
cl

us
te

ri
ng

al
go

ri
th

m
;

co
lu

m
n

3
(C

ri
t)

an
d

4
(A

lg
)

in
di

ca
te

th
e

m
er

gi
ng

cr
ite

ri
on

an
d

al
go

ri
th

m
s

le
ad

in
g

to
be

st
C

I.
Se

le
ct

io
n

us
in

g
G

-D
ID

an
d

D
un

n’
s

in
de

x
pr

es
en

tt
he

C
I

va
lu

es
,w

ith
co

rr
es

po
nd

in
g

m
er

gi
ng

cr
ite

ri
on

an
d

cl
us

te
ri

ng
al

go
ri

th
m

,
w

he
n

th
os

e
in

de
xe

s
ar

e
us

ed
to

se
le

ct
ed

th
e

be
st

fin
al

pa
rt

iti
on

(c
ol

um
ns

5
to

7
an

d
8

to
10

,r
es

pe
ct

iv
el

y)
.W

he
n

th
e

C
I

of
th

e
se

le
ct

ed
pa

rt
iti

on
s

by
ea

ch
in

de
x

(G
-D

ID
an

d
D

un
n’

s
in

de
x)

ar
e

m
at

ch
ed

w
ith

th
e

be
st

C
I,

th
e

va
lu

es
ar

e
sh

ow
n

in
bo

ld

T
ru

e
nu

m
be

r
of

cl
us

te
rs

D
at

as
et

s

B
es

tfi
na

l
Se

le
ct

io
n

us
in

g
Se

le
ct

io
n

us
in

g
pa

rt
iti

on
(s

)
G

-D
ID

D
un

n’
s

in
de

x
C

I
C

ri
t

A
lg

C
I

C
ri

t
A

lg
C

I
C

ri
t

A
lg

d2
10

0
M

D
L

A
ll

10
0

M
D

L
A

ll
10

0
M

D
L

A
ll

M
ix

ed
Im

ag
e

2
10

0
M

D
L

A
ll

10
0

M
D

L
A

ll
10

0
M

D
L

A
ll

Sp
ir

al
10

0
L

R
T

SL
,A

L
,C

L
10

0
L

R
T

SL
,A

L
,C

L
10

0
L

R
T

SL
,A

L
,C

L

C
ir

cs
10

0
A

ll
A

ll
10

0
A

ll
A

ll
10

0
A

ll
A

ll

B
re

as
t-

ca
nc

er
9
5
:3
1

M
D

L
C

L
9
5
:1
7

L
R

T
A

L
,C

L
64

.8
6

A
ll

SL

C
ra

bs
9
4
:0
0

A
ll

A
L

7
4
:5
0

A
ll

SL
74

.5
0

A
ll

SL

H
ou

se
-v

ot
es

87
:0

7
A

ll
A

ll
87
:0

7
A

ll
A

ll
87

.0
7

A
ll

A
ll

Ir
is

96
:6

7
A

ll
A

ll
96
:6

7
A

ll
A

ll
96

.6
7

A
ll

A
ll

D
if

f-
30

0
76
:3

3
A

ll
W

L
76
:3

3
A

ll
W

L
33

.6
7

A
ll

SL

Sa
m

e-
30

4
7
:4
7

A
ll

C
L

,W
L

4
5
:1
2

A
ll

A
L

(*
)

A
ll

A
L

,C
L

,W
L

.�
/

D
un

n’
s

in
de

x
is

th
e

sa
m

e
fo

r
al

lt
he

pa
rt

iti
on

s,
bu

tt
he

C
I

is
di

ff
er

en
ta

cr
os

s
pa

rt
iti

on
s

10 Consensus of Clusterings Based on High-Order Dissimilarities 341

is comparable to the best partition, and the one chosen by Dunn’s index is clearly
worst. G-DID index only fails the selection of the best partition for Crabs and Same-
300 datasets. Moreover, Dunn’s index, for Same-300 dataset, does not have CI value,
because the index has the same value for all the consensus partitions obtained, but
the CI value was different.

Table 10.3 presents results for GMDID when the true number of clusters is
known, and we see that consensus clustering improves those results in some
datasets, specially Breast-cancer and Crabs dataset. Table 10.3 also presents results
for hierarchical clustering algorithms using Euclidean distance, while Table 10.7
presents results for the same algorithms but using the co-association matrix defined
in Sect. 10.4, instead of the Euclidean distance. Comparing those results, we
notice that hierarchical clustering algorithms using the Euclidean distance have
lower results than the ones using the co-association matrix, except for Breast-
cancer and House-votes datasets. However, in these two datasets, the difference
is not significant: for Breast-cancer, WL has 96.63 % and consensus clustering
obtained with CL has 95.31 %, and for House-votes, AL has 88.36 % and consensus
clustering obtained with any clustering algorithm has 87.07 %.

Assuming that the true number of clusters is unknown and the lifetime criterion
is used to obtain the number of clusters, from Table 10.8, we see that the best
solution is chosen in 6 out of 10 datasets using G-DID index and 4 out of 10 datasets
using Dunn’s index. However, for Breast-cancer dataset, G-DID selection is worsen
compared to Table 10.7. Breast-cancer and Same-300 datasets does not have CI
values using Dunn’s index for the same reason mentioned above.

Comparing the results given in Table 10.5 with the ones in Table 10.8, we note
that consensus clustering has better results than GMDID or even than KMDID
(see Table 10.4). For synthetic datasets, the results are equally good; for real-world
datasets the consensus clustering is better in 4 out of 6 datasets, GMDID is better
in 2 out of 6 datasets and WL is better in 1 (Breast-cancer) out of 6 datasets. Also,
consensus clustering is better than traditional hierarchical algorithms (algorithms
using Euclidean distance) in all datasets, except the Breast-cancer dataset, with
96.63 % for WL and 95.31 % for consensus clustering obtained with CL.

Now, if the true number of clusters is unknown and G-DID criterion is used, from
Table 10.9, we note that G-DID chooses the best solutions in 6 out of 10 datasets
and Dunn’s index 5 out of 10 datasets. Overall, using G-DID to select the number of
clusters have lowered the best results in 5 out 10 datasets compared to the lifetime
criterion; however, for Diff-300 dataset, the results have improved with G-DID
index. Also, note the robustness in the merging criterion when the G-DID index
is used to select the number of clusters, i.e., the best solution is achieved, for all
datasets, with both merging criteria. Using the lifetime criterion or even considering
the true number of clusters, that only happens for some datasets.

Again, comparing the results given in Table 10.9 with the ones without consensus,
Table 10.6, GMDID is better than the consensus clustering in 4 out of 10 datasets
and has equal results in 3 out of 10 datasets. In terms of hierarchical clustering
algorithm with Euclidean distance, SL is better than consensus clustering in the
Spiral dataset, WL in the Breast-cancer dataset, and AL in the House-votes and Iris
datasets.

342 H. Aidos and A. Fred

Ta
bl

e
10

.8
C

om
pa

ri
so

n
of

G
-D

ID
an

d
D

un
n’

s
in

de
x

fo
r

se
le

ct
in

g
th

e
be

st
co

m
bi

na
tio

n
of

m
er

gi
ng

cr
ite

ri
on

an
d

hi
er

ar
ch

ic
al

al
go

ri
th

m
,

w
he

n
th

e
tr

ue
nu

m
be

r
of

cl
us

te
rs

(N
c)

is
un

kn
ow

n
an

d
th

e
lif

et
im

e
cr

ite
ri

on
[1

7]
is

us
ed

.
B

es
t

fin
al

pa
rt

it
io

n(
s)

co
rr

es
po

nd
to

th
e

be
st

co
ns

is
te

nc
y

in
de

x
va

lu
es

(C
I,

in
%

),
ac

ro
ss

al
l

co
m

bi
na

tio
ns

of
m

er
gi

ng
cr

ite
ri

on
an

d
cl

us
te

ri
ng

al
go

ri
th

m
;

co
lu

m
n

3
(C

ri
t)

an
d

4
(A

lg
)

in
di

ca
te

th
e

m
er

gi
ng

cr
ite

ri
on

an
d

al
go

ri
th

m
s

le
ad

in
g

to
be

st
C

I.
Se

le
ct

io
n

us
in

g
G

-D
ID

an
d

D
un

n’
s

in
de

x
pr

es
en

tt
he

C
I

va
lu

es
,w

ith
co

rr
es

po
nd

in
g

m
er

gi
ng

cr
ite

ri
on

an
d

cl
us

te
ri

ng
al

go
ri

th
m

,w
he

n
th

os
e

in
de

xe
s

ar
e

us
ed

to
se

le
ct

ed
th

e
be

st
fin

al
pa

rt
iti

on
(c

ol
um

ns
5

to
7

an
d

8
to

10
,r

es
pe

ct
iv

el
y)

.W
he

n
th

e
C

I
of

th
e

se
le

ct
ed

pa
rt

iti
on

s
by

ea
ch

in
de

x
(G

-D
ID

an
d

D
un

n’
s

in
de

x)
ar

e
m

at
ch

ed
w

ith
th

e
be

st
C

I,
th

e
va

lu
es

ar
e

sh
ow

n
in

bo
ld

L
if

et
im

e
cr

ite
ri

on

D
at

as
et

s

B
es

tfi
na

l
Se

le
ct

io
n

us
in

g
Se

le
ct

io
n

us
in

g
pa

rt
iti

on
(s

)
G

-D
ID

D
un

n’
s

in
de

x
C

I
C

ri
t

A
lg

C
I

C
ri

t
A

lg
C

I
C

ri
t

A
lg

d2
10

0
M

D
L

C
L

,W
L

10
0

M
D

L
C

L
,W

L
37

.5
0

L
R

T
A

L

M
ix

ed
Im

ag
e

2
10

0
M

D
L

A
L

,C
L

10
0

M
D

L
A

L
,C

L
86

.4
7

M
D

L
SL

Sp
ir

al
10

0
L

R
T

SL
10

0
L

R
T

SL
10

0
L

R
T

SL

C
ir

cs
10

0
A

ll
A

L
,C

L
,W

L
10

0
A

ll
A

L
,C

L
,W

L
10

0
A

ll
A

L
,C

L
,W

L

B
re

as
t-

ca
nc

er
9
5
:3
1

M
D

L
C

L
6
8
:6
7

M
D

L
SL

(*
)

A
ll

A
ll

C
ra

bs
9
4
:0
0

A
ll

A
L

7
3
:5
0

A
ll

SL
73

.5
0

A
ll

SL

H
ou

se
-v

ot
es

87
:0

7
A

ll
A

ll
87
:0

7
A

ll
A

ll
87

.0
7

A
ll

A
ll

Ir
is

96
:6

7
A

ll
A

ll
96
:6

7
A

ll
A

ll
96

.6
7

A
ll

A
ll

D
if

f-
30

0
5
8
:6
7

A
ll

C
L

3
3
:6
7

A
ll

SL
33

.6
7

A
ll

SL

Sa
m

e-
30

5
1
:5
2

A
ll

C
L

4
5
:1
2

A
ll

W
L

(*
)

A
ll

A
ll

.�
/

D
un

n’
s

in
de

x
is

th
e

sa
m

e
fo

r
al

lt
he

pa
rt

iti
on

s,
bu

tt
he

C
I

is
di

ff
er

en
ta

cr
os

s
pa

rt
iti

on
s

10 Consensus of Clusterings Based on High-Order Dissimilarities 343

Table 10.9 Comparison of G-DID and Dunn’s index for selecting the best combination
of merging criterion and hierarchical algorithm, when the true number of clusters (Nc) is
unknown and the G-DID criterion presented in Sect. 10.5 is used. Best final partition(s)
correspond to the best consistency index values (CI, in %), across all combinations of merging
criterion and clustering algorithm; column 3 (Crit) and 4 (Alg) indicate the merging criterion
and algorithms leading to best CI. Selection using G-DID and Dunn’s index present the CI
values, with corresponding merging criterion and clustering algorithm, when those indexes
are used to selected the best final partition (columns 5 to 7 and 8 to 10, respectively). When
the CI of the selected partitions by each index (G-DID and Dunn’s index) are matched with
the best CI, the values are shown in bold

G-DID criterion

Datasets

Best final Selection using Selection using
partition(s) G-DID Dunn’s index
CI Crit Alg CI Crit Alg CI Crit Alg

d2 100 All All 100 All All 100 All All

Mixed Image 2 98:64 All SL,AL 95:67 All WL 98:64 All SL,AL

Spiral 87:50 All SL 87:50 All SL 61:5 All CL

Circs 100 All All 100 All All 100 All All

Breast-cancer 68:67 All All 68:67 All SL 68:67 All All

Crabs 94:00 All AL 74:50 All SL 74:50 All SL

House-votes 87:07 All WL 81:90 All SL 86:21 All AL,CL

Iris 66:67 All All 66:67 All All 66:67 All All

Diff-300 76:33 All WL 76:33 All WL 33:67 All SL

Same-30 45:12 All SL 38:72 All CL 38:72 All CL

Furthermore, the consensus clustering is a very robust methodology since in
most of the datasets we have more than one criterion and/or clustering algorithm
producing the same result. For example, Iris dataset has 96.67 % with both merging
criteria and all hierarchical clustering methods used to extract the final partition,
when the true number of clusters is known and using the lifetime criteria. Also,
using G-DID criterion to identify the number of clusters of the final partition, all the
hierarchical clustering methods, gave the same result (66.67 %).

Figures 10.5 and 10.6 shows the visualization for the Iris dataset, using the
multidimensional scaling [36] to reduce the original space (4-dimensional space)
to 2-dimensional space. The multidimensional scaling was applied using the co-
association matrix of Fig. 10.5a as similarity measure, and to the Euclidean distance
(converted to similarity and shown in Fig. 10.6a).

First of all, a visual inspection to the co-association matrix and to the Euclidean
matrix, we notice that the clusters are more distinguishable in the co-association
than in the Euclidean matrix, i.e., the co-association matrix presents a more
visible separability between clusters. Moreover, using the co-association matrix,
multidimensional scaling puts patterns in the same cluster closer, almost cluttered
in a single point. Visually it seems that we have three distinct clusters, and those
are the ones found by any hierarchical clustering algorithm applied over the co-
association matrix (see Fig. 10.5c for an example). Those three distinct clusters

344 H. Aidos and A. Fred

20 40 60 80 100 120 140

20

a
b

c d

40

60

80

100

120

140

cluster 1
cluster 2
cluster 3

cluster 1
cluster 2
cluster 3

Fig. 10.5 Visualization in a two-dimensional space using multidimensional scaling of the Iris
dataset, using the co-association matrix in (a) as similarity between patterns. (b) and (c) are
visualizations colored according to the ground truth information and labeling obtained from
average-link (AL), respectively. (d) presents the dendrogram of the average-link applied to the
co-association matrix

are confirmed by the dendrogram in Fig. 10.5d and with a consistency index of
96.67 % (see Table 10.8). While, using the Euclidean distance, multidimensional
scaling shows the Gaussian property of each cluster. However, the Euclidean matrix
is not so “clean” as the co-association matrix. Visually we can only distinguish two
clusters in the visualization, and the dendrogram (Fig. 10.6d) has the highest lifetime
for two clusters, with a consistency index of 66.67 % (see Table 10.5).

10.7 Conclusions

In this chapter we presented a statistical model of a high-order dissimilarity measure,
called dissimilarity increments. The distribution of the dissimilarity increments
(DID) was recently derived under the hypothesis of local Gaussian generative
models for the data in R

l , and has been proven that 2-DID is a good approximation

10 Consensus of Clusterings Based on High-Order Dissimilarities 345

20 40 60 80 100 120 140

20

40

60

80

100

120

140

cluster 1
cluster 2
cluster 3

cluster 1
cluster 2
cluster 3

a
b

c d

Fig. 10.6 Visualization in a two-dimensional space using multidimensional scaling of the Iris
dataset, using the Euclidean distance matrix (which was converted to similarity) in (a) as similarity
between patterns. (b) and (c) are visualizations colored according to the ground truth information
and labeling obtained from average-link (AL), respectively. (d) presents the dendrogram of the
traditional average-link, i.e., average-link applied to the Euclidean distance matrix

to DID for high-dimensional data. This means that we only need to estimate 2-DID
for clusters, instead of l-DID, which is much simpler.

A partitional clustering algorithm was presented based on DID, with the starting
point being a partition given by a Gaussian mixture decomposition or k-means.
The decision of merging components is based on a likelihood-ratio test or a
minimum description length between the statistical model for the combined com-
ponents and the statistical model for the separate components. DID-based algorithm
builds upon an initial data partition; if the algorithm used to build the initial
partition produces single clusters which in reality should be two separate clusters,
the presented algorithm does not undo this. Still, DID-based algorithm improves the
results, and in most of the datasets it is better than other clustering algorithms, when
the true number of clusters is known. If the true number of clusters is unknown a
priori, DID-based algorithm can detect the true number, in most cases.

346 H. Aidos and A. Fred

As mentioned, DID-based algorithm is dependent of an initial data partition,
and different initializations produce different data partitions. Therefore, an unifying
approach consisting of a consensus function based on a combination strategy of all
these different initializations was presented. The final partition needs to be extracted
using a clustering algorithm and choosing the best strategy automatically is not
an easy task. So, we present a validation criterion, consisting in the estimation
of graph probabilities for each cluster based on the DID, to select the best final
partition. This unifying approach improves results in both synthetic and real-world
datasets compared to traditional clustering algorithms, and it improves the results in
some datasets of the DID-based algorithm presented here. Moreover, the validation
criterion has a good performance in selecting a partition.

Appendix

Assume that X D fx1; : : : ; xN g is a l-dimensional set of patterns, and xi �
N .�; ˙/. Also, with no loss of generality, assume that � D 0 and ˙ is diagonal;
this only involves translation and rotation of the data, which does not affect
Euclidean distances. If x denotes a sample from this Gaussian, we transform x
into x� through a process known as “whitening” or “sphering”, such that its i -th
entry is given by x�i � xi=˙ii ; x�i thus follows the standard normal distribution,
N .0; 1/. Now, it is known that the difference between samples, such as x�i � y�i ,
from two univariate standard normal distributions follows a normal distribution with
covariance 2. Therefore,

x�i � y�ip
2
� N .0; 1/: (10.30)

It can be shown that the squared Euclidean distance,

.d�.x�=
p
2; y�=

p
2//2 D

lX

iD1

�
x�i � y�ip

2

�2
� �2.l/; (10.31)

i.e., follows a chi-square distribution with l degrees of freedom [28]. Thus, the
probability density function for .d�/2 � .d�.�; �//2 is given by:

p.x/ D 2�l=2

� .l=2/
x
l=2�1 exp

n
�x
2

o
; x 2 Œ0;C1Œ; (10.32)

where � .�/ denotes the gamma function.
After the sphering, the transformed data has circular symmetry in R

l . We define
angular coordinates in a .l � 1/-sphere, with �i 2 Œ0; �Œ; i D 1; : : : ; l � 2 and
�l�1 2 Œ0; 2�Œ. Define x � y � .b1; b2; : : : ; bl /, where bi can be expressed in terms
of polar coordinates as

10 Consensus of Clusterings Based on High-Order Dissimilarities 347

b1 D
p
2˙11 d

� cos �1

bi D
p
2˙ii d

�
"
i�1Y

kD1
sin �k

#
cos �i ; i D 2; : : : ; l � 1

bl D
p
2˙ll d

�
"
l�1Y

kD1
sin �k

#
:

The squared Euclidean distance in the original space, d2, is

d2 D kx � yk2

D 2
"
˙11 cos2 �1 C

l�1X

iD2
˙ii

i�1Y

kD1
sin2 �k

!
cos2 �i C˙ll

l�1Y

kD1
sin2 �k

!#
�
d�
�2

� 2A.�/ �d��2 ; (10.33)

where A.�/, with � D .�1; �2; : : : ; �l�1/, is called the expansion factor. Naturally,
this expansion factor depends on the angle vector �, and it is hard to properly deal
with this dependence. Thus, we will use the approximation that the expansion factor
is constant and equal to the expected value of the true expansion factor over all
angles �. This expected value is given by

EŒA.�/� D
Z

Sl�1

"
l�2Y

iD1
p�i .�i /

#
p�l�1 .�l�1/A.�/ dSl�1V (10.34)

where the volume element is dSl�1V D
�Ql�2

iD1 sinl�.iC1/ �i
�

d�1 : : : d�l�1. Since

we sphered the data, we can assume for simplicity that �i � Unif .Œ0; �Œ/ for
i D 1; : : : ; l � 2 and that �l�1 � Unif .Œ0; 2�Œ/; then p�i .�i / D 1=� and
p�l�1 .�l�1/ D 1=2�. Thus, after some computations (see [2] for details), the expected
value of the true expansion factor over all angles � is given by

EŒA.�/� D ��l=2C1

2� .1C l=2/
tr.˙/: (10.35)

Using Eq. (10.35), the transformation Eq. (10.33) from the normalized space to
the original space is given by

.d/2 D ��l=2C1

� .1C l=2/
tr.˙/

�
d�
�2
: (10.36)

Assume that Y D aX , a constant, with pX.x/ the probability density function
of X , so pY .y/ D pX.y=a/dx=dy D pX.y=a/ � 1=a. From Eq. (10.32), we obtain
the probability density function for the squared Euclidean distance in the original

348 H. Aidos and A. Fred

space, .d/2. Again, assuming that Y 2 D X and pX.x/ the probability density
function of X , we have pY .y/ D pX.y2/dx=dy D pX.y2/ � 2y. Therefore, we obtain
the probability density function of the Euclidean distance, d � d.x; y/, as

p.y/ D 2Gl.tr.˙//yl�1 exp
˚�Cl.tr.˙//y2

	
; y 2 Œ0;C1Œ; (10.37)

where we define

Gl.tr.˙// � l l=2� .l=2/l=2�12�l tr.˙/�l=2�l=2.l=2�1/ (10.38)

and

Cl.tr.˙// � l� .l=2/.4 tr.˙//�1�l=2�1: (10.39)

Now, the dissimilarity increment is defined as the absolute value of the difference
of two Euclidean distances. Define d � d.x; y/ and d 0 � d.y; z/, which follow the
distribution in Eq. (10.37). The probability density function of dinc D d�d 0 is given
by the convolution

pdinc.wI tr.˙// D
Z 1

�1
.2Gl.tr.˙///

2 .t.t C w//l�1 exp
˚�Cl.tr.˙//

�
t 2 C .t C w/2

�	

1ft�0g1ftCw�0gdt: (10.40)

Therefore, after some calculations (see [2] for details), the probability density
function for the dissimilarity increments is given by

pdinc.wI tr.˙// D
Gl.tr.˙//2

2l�5=2Cl .tr.˙//l�1=2
exp

�Cl.tr.˙//

2
w2
�

"
l�1X

kD0

2l�2�kX

iD0
.�1/iwkCi

l � 1
k

!
2l � 2 � k

i

!
2
k=2�i=2Cl .tr.˙//k=2Ci=2

�

�
2l � 1 � k � i

2
;
Cl .tr.˙//

2
w2
��
; (10.41)

where � .a; x/ is the incomplete gamma function [44].

Acknowledgements This work was supported by the Portuguese Foundation for Science and
Technology grant PTDC/EEI-SII/2312/2012.

10 Consensus of Clusterings Based on High-Order Dissimilarities 349

References

1. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of
high dimensional data for data mining applications. In: Haas LM, Tiwary A (eds) Proceedigns
ACM SIGMOD International Conference on Management of Data (SIGMOD 1998), ACM
Press, Seattle, WA, USA, pp 94–105

2. Aidos H, Fred A (2012) Statistical modeling of dissimilarity increments for d -dimensional
data: Application in partitional clustering. Pattern Recogn 45(9):3061–3071

3. Anderson TW (1962) On the distribution of the two-sample Cramér-von-Mises criterion. Ann
Math Stat 33(3):1148–1159

4. Ayad HG, Kamel MS (2008) Cumulative voting consensus method for partitions with variable
number of clusters. IEEE Trans Pattern Anal Mach Intell 30(1):160–173

5. Ball GH, Hall DJ (1965) ISODATA, a novel method of data analysis and pattern classification.
Tech. rep., Stanford Research Institute

6. Benavent AP, Ruiz FE, Martínez JMS (2006) EBEM: An entropy-based EM algorithm for
Gaussian mixture models. In: 18th International Conference on Pattern Recognition (ICPR
2006), IEEE Computer Society, Hong Kong, vol 2, pp 451–455

7. Castro RM, Coates MJ, Nowak RD (2004) Likelihood based hierarchical clustering. IEEE
Trans Signal Process 52(8):2308–2321

8. Celebi ME, Kingravi HA (2012) Deterministic initialization of the k-means algo-
rithm using hierarchical clustering. Int J Pattern Recogn Artif Intell 26(7) DOI:
10.1142/S0218001412500188

9. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

10. Dimitriadou E, Weingessel A, Hornik K (2002) A combination scheme for fuzzy clustering. In:
Pal NR, Sugeno M (eds) Advances in soft computing - proceedings international conference on
fuzzy systems (AFSS 2002). Lecture Notes in Computer Science, vol 2275. Springer, Calcutta,
pp 332–338

11. Duflou H, Maenhaut W (1990) Application of principal component and cluster analysis to the
study of the distribution of minor and trace elements in normal human brain. Chemometr Intell
Lab Syst 9:273–286

12. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Simoudis E, Han J, Fayyad UM (eds) Proceedings of
the 2nd international conference on knowledge discovery and data mining (KDD 1996). AAAI
Press, Portland, Oregon, USA, pp 226–231

13. Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis, 5th edn. Wiley
14. Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite graph partitioning.

In: Brodley CE (ed) Machine learning - proceedings of the 21st international conference (ICML
2004), ACM, Banff, Alberta, Canada, ACM International Conference Proceeding Series, vol 69

15. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans
Pattern Anal Mach Intell 24(3):381–396

16. Fred A (2001) Finding consistent clusters in data partitions. In: Kittler J, Roli F (eds) Multiple
classifier systems - proceedings 2nd international workshop (MCS 2001). Lecture Notes in
Computer Science, vol 2096. Springer, Cambridge, pp 309–318

17. Fred A, Jain A (2005) Combining multiple clusterings using evidence accumulation. IEEE
Trans Pattern Anal Mach Intell 27(6):835–850

18. Fred A, Jain A (2008) Cluster validation using a probabilistic attributed graph. In: 19th
international conference on pattern recognition (ICPR 2008), IEEE, Tampa, Florida, USA,
pp 1–4

19. Fred A, Leitão J (2003) A new cluster isolation criterion based on dissimilarity increments.
IEEE Trans Pattern Anal Mach Intell 25(8):944–958

http://dx.doi.org/10.1142/S0218001412500188

350 H. Aidos and A. Fred

20. Fred A, Lourenço A, Aidos H, Bulò SR, Rebagliati N, Figueiredo M, Pelillo M (2013)
Similarity-based pattern analysis and recognition, chap Learning similarities from examples
under the evidence accumulation clustering paradigm. Springer, New York, pp 85–117

21. Gowda KC, Ravi TV (1995) Divisive clustering of symbolic objects using the concepts of both
similarity and dissimilarity. Pattern Recogn 28(8):1277–1282

22. Guha S, Rastogi R, Shim K (1998) CURE: An efficient clustering algorithm for large datasets.
In: Haas LM, Tiwary A (eds) Proceedins of the ACM SIGMOD international conference of
management of data (SIGMOD 1998). ACM Press, Seattle, Washington, USA, pp 73–84

23. Guha S, Rastogi R, Shim K (1999) ROCK: A robust clustering algorithm for categorical
attributes. In: Kitsuregawa M, Papazoglou MP, Pu C (eds) Proceedings of the 15th international
conference on data engineering (ICDE 1999). IEEE Computer Society, Sydney, Australia,
pp 512–521

24. Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. J Roy Stat
Soc C (Appl Stat) 28(1):100–108

25. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31:651–666
26. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: A review. IEEE Trans Pattern

Anal Mach Intell 22(1):4–37
27. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv

31(3):264–323
28. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Applied

probability and statistics, vol 1, 2nd edn. Wiley, New York
29. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254
30. Kamvar S, Klein D, Manning C (2002) Interpreting and extending classical agglomerative

clustering algorithms using a model-based approach. In: Sammut C, Hoffmann AG (eds)
Machine learning - proceedings of the 19th international conference (ICML 2002). Morgan
Kaufmann, Sydney, Australia, pp 283–290

31. Kannan R, Vempala S, Vetta A (2000) On clusterings – good, bad and spectral. In: 41st
annual symposium on foundations of computer science (FOCS 2000). IEEE Computer Science,
Redondo Beach, CA, USA, pp 367–377

32. Karypis G, Han EH, Kumar V (1999) Chameleon: Hierarchical clustering using dynamic
modeling. Computer 32(8):68–75

33. Kaufman L, Rousseeuw PJ (2005) Finding groups in data: an introduction to cluster analysis.
Wiley

34. Kuncheva LI, Hadjitodorov ST (2004) Using diversity in cluster ensembles. In: Proceedings
of the IEEE international conference on systems, man & cybernetics, vol 2. IEEE, The Hague,
Netherlands, pp 1214–1219

35. Lance GN, Williams WT (1968) Note on a new information-statistic classificatory program.
Comput J 11:195

36. Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Information science and
statistics. Springer, New York

37. Lehmann EL, Romano JP (2005) Testing statistical hypotheses, 3rd edn. Springer texts in
statistics. Springer, New York

38. Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inform Theory
37(1):145–151

39. von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
40. MacKay DJ (2006) Information theory, inference, and learning algorithms, 5th edn. Cambridge

University Press, Cambridge
41. MacNaughton-Smith P, Williams WT, Dale MB, Mockett LG (1964) Dissimilarity analysis: a

new technique of hierarchical sub-division. Nature 202:1034–1035
42. Meila M (2003) Comparing clusterings by the variation of information. In: Schölkopf B,

Warmuth MK (eds) Computational learning theory and kernel machines - proceedings 16th
annual conference on computational learning theory and 7th kernel workshop (COLT 2003).
Lecture Notes in Computer Science, vol 2777. Springer, Washington, USA, pp 173–187

10 Consensus of Clusterings Based on High-Order Dissimilarities 351

43. Milligan GW, Soon SC, Sokol LM (1983) The effect of cluster size, dimensionality, and the
number of clusters on recovery of true cluster structure. IEEE Trans Pattern Anal Mach Intell
PAMI-5(1):40–47

44. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical
functions. Cambridge University Press, Cambridge

45. Sander J, Ester M, Kriegel HP, Xu X (1998) Density-based clustering in spatial databases: the
algorithm GDBSCAN and its applications. Data Min Knowl Discov 2:169–194

46. Strehl A, Ghosh J (2002) Cluster ensembles - a knowledge reuse framework for combining
multiple partitions. J Mach Learn Res 3:583–617

47. Su T, Dy JG (2007) In search of deterministic methods for initializing k-means and Gaussian
mixture clustering. Intell Data Anal 11(4):319–338

48. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Elsevier Academic,
Amsterdam

49. Topchy A, Jain A, Punch W (2003) Combining multiple weak clusterings. In: Proceedings of
the 3rd IEEE international conference on data mining (ICDM 2003). IEEE Computer Society,
Melbourne, Florida, USA, pp 331–338

50. Topchy A, Jain A, Punch W (2005) Clustering ensemble: Models of consensus and weak
partitions. IEEE Trans Pattern Anal Mach Intell 27(12):1866–1881

51. Ueda N, Nakano R, Ghahramani Z, Hinton GE (2000) SMEM algorithm for mixture models.
Neural Comput 12(9):2109–2128

52. Vaithyanathan S, Dom B (2000) Model-based hierarchical clustering. In: Boutilier C, Gold-
szmidt M (eds) Proceedings of the 16th conference in uncertainty in artificial intelligence (UAI
2000). Morgan Kaufmann, Stanford, California, USA, pp 599–608

53. Wang H, Shan H, Banerjee A (2009) Bayesian cluster ensembles. In: Proceedings of the
SIAM international conference on data mining (SDM 2009). SIAM, Sparks, Nevada, USA,
pp 211–222

54. Wang P, Domeniconi C, Laskey KB (2010) Nonparametric Bayesian clustering ensembles. In:
Balcázar JL, Bonchi F, Gionis A, Sebag M (eds) Machine learning and knowledge discovery
in databases - proceedings european conference: Part III (ECML PKDD 2010). Lecture notes
in computer science, vol 6323. Springer, Barcelona, Spain, pp 435–450

55. Williams WT, Lambert JM (1959) Multivariate methods in plant ecology: 1. association-
analysis in plant communities. J Ecol 47(1):83–101

56. Xu R, Wunsch II D (2005) Survey of clustering algorithms. IEEE Trans Neural Network
16(3):645–678

Chapter 11
Hubness-Based Clustering
of High-Dimensional Data

Nenad Tomašev, Miloš Radovanović, Dunja Mladenić,
and Mirjana Ivanović

Abstract Hubness has recently been established as a significant property of
k-nearest neighbor (k-NN) graphs obtained from high-dimensional data using a
distance measure, with traits and effects relevant to the cluster structure of data, as
well as clustering algorithms. The hubness property is manifested with increasing
(intrinsic) data dimensionality. The distribution of data point in-degrees, i.e. the
number of times points appear among the k nearest neighbors of other points
in the data, becomes highly skewed. This results in hub points that can have
in-degrees multiple orders of magnitude higher than expected. In this chapter we
review and refine existing work which explains the mechanisms of the phenomenon,
establishes the location of hub points near central regions of clusters in the data,
and shows how hubness can negatively affect existing clustering algorithms by
virtue of hub points lowering between-cluster distance. Next, we review the newly
proposed partitional clustering algorithms, based on K-means, which take advantage
of hubness by employing hubs in the process of cluster prototype selection. These
“soft” K-means extensions avoid premature convergence to suboptimal stable cluster
configurations and are able to reach the global optima more often. The algorithms
offer significant improvements over the K-means baseline in scenarios involving
high-dimensional and noisy data. The improvements stem from a better placement
of hub points into clusters, which helps in increasing the between-cluster distance.
Finally, we introduce novel clustering algorithms as “kernelized” versions of
the most successful hubness-based methods discussed above, that are able to more
effectively handle arbitrarily-shaped clusters.

N. Tomašev (�) • D. Mladenić
Artificial Intelligence Laboratory and Jožef Stefan International, Jožef Stefan Institute,
Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
e-mail: nenad.tomasev@gmail.com; dunja.mladenic@ijs.si

M. Radovanović • M. Ivanović
Faculty of Sciences, Department of Mathematics and Informatics, University of Novi Sad
Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
e-mail: radacha@dmi.uns.ac.rs; mira@dmi.uns.ac.rs

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__11

353

mailto:nenad.tomasev@gmail.com
mailto:dunja.mladenic@ijs.si
mailto:radacha@dmi.uns.ac.rs
mailto:mira@dmi.uns.ac.rs

354 N. Tomašev et al.

Keywords Clustering • Hubness • k-nearest neighbor • High-dimensional data
• Curse of dimensionality • Kernel methods

11.1 Introduction

High-dimensional data arises naturally in many domains and is known to pose sub-
stantial difficulties for traditional clustering approaches, both in terms of efficiency
and effectiveness [63]. Sparsity of high-dimensional feature spaces significantly
reduces the overall quality of density estimates around data points [61], which
are often used for determining the cluster structure. Additionally, many standard
distance measures tend to concentrate with increasing dimensionality [2, 26].
Consequently, it becomes more difficult to distinguish between close and distant
points and to properly detect cluster boundaries.

Due to the outlined difficulties with applying density-based and distance-based
clustering approaches in the high-dimensional case, a different class of techniques
is usually used for high-dimensional data clustering. Typically the idea is to observe
clusters on a lower dimensional manifold and to automatically detect a proper
projection of the original data [39]. Subspace techniques are frequently used for
clustering high-dimensional data streams.

We propose to employ a different approach, by exploiting the recently described
phenomenon of hubness in k-nearest neighbor graphs constructed from intrinsically
high-dimensional data using a distance measure.

Before we proceed with describing the main ideas of hubness-based data cluster-
ing, we will briefly address other types of high-dimensional clustering techniques
in Sect. 11.2 and also give a detailed introduction to the phenomenon of hubness
in Sect. 11.3. Section 11.4 examines how hubness affects clustering in general and
Sect. 11.5 deals with hubness under kernel mappings some of which are used for
kernel-based extensions of the clustering methods that are discussed in this chapter.
Finally, Sect. 11.6 describes hubness-based clustering approaches and Sect. 11.7
evaluates hubness-based techniques by comparing them to the baselines on a series
of high-dimensional clustering tasks. We conclude the chapter by discussing the
application domains for hubness-based methods, related work, as well as possible
future development directions in Sects. 11.8 and 11.9.

11.2 High-Dimensional Data Clustering

In many practical applications, for instance document clustering and topic detec-
tion [37, 38, 40], meaningful clusters can be found by projecting data onto certain
lower-dimensional feature subspaces and manifolds. Sometimes, there might exist
multiple subspaces holding different cluster structures that correspond to different
contexts. In general, there are two types of subspace clustering approaches—those

11 Hubness-Based Clustering of High-Dimensional Data 355

that try to find an actual formal feature subspace, and those that simulate the
process by automatically assigning weights to features in order to increase the
influence of certain features on the proximity measure and decrease the influence of
others [7,15,44]. One idea is to increase the weights of the low-variance dimensions
in the distance function [9]. Such weights help with detecting groups of points
that have a low variance in one or more dimensions. Subspace clustering has
recently been successfully applied to the problem of clustering high-dimensional
data streams [1, 49].

It is possible to rely on standard clustering methods to perform the partitioning in
the selected lower-dimensional subspace [38]. However, this might be suboptimal
in those cases when potential lower-dimensional subspaces are not really low-
dimensional and even the simplified clustering task can still be non-trivial. Many
subspace clustering methods are density-based [3] or an extension of K-means, but
it is possible to use decision trees and other partitioning techniques as well [42].

Subspace clustering is not the only approach to clustering high-dimensional
data. Expectation maximization (EM) can be modified to learn a mixture model in
many-dimensional spaces, despite the apparent limitations [20]. Instead of using the
covariance matrix, the probabilities in the Gaussian mixture model can be estimated
from the eigenvectors and eigenvalues of the PCA decomposition of the data.

Another popular approach to high-dimensional clustering is based on shared-
neighbor similarity measures, that reduce the negative effects of the dimensionality
curse [22, 34, 47, 50, 82, 86]. Cardinality of the intersection between k-nearest
neighbor sets can be used for measuring pairwise similarity between points and
these secondary distances have been shown to be less susceptible to concentration
and usually exhibit more favourable properties than the original metrics [33]. Metric
learning can therefore help with improving clustering performance. An additional
advantage of using shared-neighbor approaches and relevant set correlations in
particular for data clustering is that they are independent of the data representation
and the primary similarity measure. They merely assume an existence of an
oracle that accepts a query and returns the most relevant data points for that
query. The relevant set correlation approach was shown to be very promising for
high-dimensional data clustering [32] and it has also been adapted for partitional
clustering [79].

In certain cases when dimensionality reduction offers unstable clustering perfor-
mance, it is advisable to revert to using clustering ensembles that can help with
stabilizing the process and can improve the overall clustering quality [23, 24].

11.3 The Hubness Phenomenon

Hubness is an aspect of the curse of dimensionality pertaining to nearest neighbors
which has only recently come to attention, unlike the much discussed distance
concentration phenomenon. Let D
 Rd be a set of data points and let Nk.x/
denote the number of k-occurrences of point x 2 D, i.e., the number of times x

356 N. Tomašev et al.

occurs in k-nearest-neighbor lists of other points from D. As the dimensionality of
data increases, the distribution of k-occurrences becomes considerably skewed [54].
As a consequence, some data points, which we will refer to as hubs, are included in
many more k-nearest-neighbor lists than other points. In the rest of the text we will
refer to the number of k-occurrences of point x 2 D as its hubness score. It has
been shown that hubness, as a phenomenon, appears in high-dimensional data as an
inherent property of high dimensionality, and is not an artefact of finite samples nor
a peculiarity of some specific data sets [54]. Naturally, the exact degree of hubness
may still vary and is not uniquely determined by dimensionality.

11.3.1 The Emergence of Hubs

The concentration of distances enables one to view unimodal high-dimensional data
as lying approximately on a hypersphere centered at the data distribution mean
[54]. However, the variance of distances to the mean remains non-negligible for
any finite number of dimensions [26, 27], which implies that some of the points
still end up being closer to the data mean than other points. It is well known that
points closer to the mean tend to be closer (on average) to all other points, for any
observed dimensionality. In high-dimensional data, this tendency is amplified [54].
Such points will have a higher probability of being included in k-nearest neighbor
lists of other points in the data set, which increases their influence, and they emerge
as neighbor-hubs.

To illustrate the above discussion, Fig. 11.1 depicts, for i.i.d. normally distributed
data (for simplicity, we consider single-cluster data), the distribution of Euclidean
distances of all points to the true data mean (the origin) for several d values. By
definition, the distribution of distances is actually the Chi distribution with d degrees
of freedom [54]. In this setting, distance concentration refers to the fact that the
standard deviation of distance distributions is asymptotically constant with respect

Fig. 11.1 Probability density
function of observing a point
at distance r from the mean of
a multivariate d -dimensional
normal distribution, for
d D 1; 3; 20; 100 [54]

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8
Distribution of distances from iid normal data mean

Distance from iid normal data mean (r)

p(
r)

d = 1
d = 3
d = 20
d = 100

11 Hubness-Based Clustering of High-Dimensional Data 357

to increasing d , while the means of the distance distributions asymptotically behave
like
p
d [26, 54], making the their ratio tend to 0 as d ! 1, thus enabling the

aforementioned hypersphere view of high-dimensional data.
To understand why points closer to the data (cluster) mean become hubs in high

dimensions, i.e., to illustrate the mechanism that enables high dimensionality to
amplify the tendency of points close to the mean to be closer to other points from
the cluster as dimensionality increases, let us consider the following example. We
observe, within the i.i.d. normal setting, two points drawn from the data, but at
specific positions with respect to the origin: point bd which is at the expected
distance from the origin, and point ad which is two standard deviations closer.
In light of the above, the distances of ad and bd from the origin change with
increasing d , and it could be said that different ad -s (and bd -s) occupy analogous
positions in the data spaces, with respect to changing d . The distances of ad
(and bd) to all other points, again following directly from the definition [54], are
distributed according to noncentral Chi distributions with d degrees of freedom
and noncentrality parameter � equaling the distance of ad (bd) to the origin.
Figure 11.2a plots the probability density functions of these distributions for several
values of d . It can be seen that, as d increases, the distance distributions for ad
and bd move away from each other. This tendency is depicted more clearly in
Fig. 11.2b which plots the difference between the means of the two distributions
with respect to d . A general theorem which proves the behavior illustrated in
Fig. 11.2b for two more arbitrarily selected points is presented by [54], along with
a comprehensive discussion various other properties of data with respect to the
hubness phenomenon.

In the preceding example, two simplifying assumptions were adopted: (1) the
data is distributed in a single cluster, and (2) features are identically distributed and
independent. It was established that hubs also exist in clustered (multimodal) data,
tending to be situated in the proximity of cluster centers [54]. In addition, the degree
of hubness does not depend on the embedding dimensionality, but rather on the
intrinsic data dimensionality, which is viewed as the minimal number of variables
needed to account for all pairwise distances in the data [54].

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

a b

Distance from other points (r)

p(
r)

Distribution of distances from two points at analogous positions in iid normal data

d = 3
d = 20
d = 100

Dashed line: point at expected dist. from mean
Full line: point two standard deviations closer

0 20 40 60 80 100
0.2

0.4

0.6

0.8

d

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns

Fig. 11.2 (a) Distribution of distances to other points from i.i.d. normal random data for a point at
the expected distance from the origin (dashed line), and a point two standard deviations closer (full
line). (b) Difference between the means of the two distributions, with respect to increasing d [54]

358 N. Tomašev et al.

Generally, the hubness phenomenon is relevant to (intrinsically) high-
dimensional data regardless of the distance or similarity measure employed. Its
existence was verified for Euclidean (l2) and Manhattan (l1) distances, lp distances
with p > 2, fractional distances (lp with rational p 2 .0; 1/), Bray-Curtis,
normalized Euclidean, and Canberra distances, cosine similarity, and the dynamic
time warping distance for time series [54–56]. In this paper, unless otherwise stated,
we will assume the Euclidean distance. The methods we discuss in Sect. 11.4,
however, depend mostly on neighborhood relations that are derived from the
distance matrix, and are therefore independent of the particular choice of distance
measure.

Before continuing, we should clearly define what constitutes a hub. Similarly
to [54], we will say that hubs are points x having Nk.x/ more than two standard
deviations higher than the expected value k (in other words, significantly above
average). However, in the discussion that follows, we will mostly concern ourselves
with one major hub in each cluster, i.e. the point with the highest hubness score.

It is possible to take a “soft” approach and introduce fuzziness into the hub
concept by saying that each non-orphan point that occurs more frequently than
average is a hub to a certain degree and that the degree to which a point can be
considered a hub is proportional to its neighbor occurrence frequency and somehow
related either to the maximal previously observed neighbor occurrence frequency
or the standard deviation of neighbor occurrence frequencies. Different cut-off
thresholds are also possible.

11.3.2 Relation of Hubs to Data Clusters

The question of how well high-hubness elements cluster, as well as the general
impact of hubness on clustering algorithms, was first investigated by [54]. A cor-
relation between low-hubness elements (i.e., anti-hubs or orphans) and outliers was
also observed. A low hubness score indicates that a point is on average far from
the rest of the points and hence probably an outlier. In high-dimensional spaces,
however, low-hubness elements are expected to occur by the very nature of these
spaces and data distributions. These data points will lead to an average increase of
within-cluster distance. It was also shown for several clustering algorithms that hubs
do not cluster well compared to the rest of the points. This is due to the fact that some
hubs are actually close to points in different clusters. Hence, they lead to a decrease
of between-cluster distance. This has been observed on real data sets clustered using
state-of-the art prototype-based methods, and was identified as a possible area for
performance improvement [54]. We will revisit this point with a more refined study
in Sect. 11.4.

Several other natural questions regarding hubs and clustering were raised and
answered by [78]. It was shown that hubs are not the same as cluster medoids
(although the two notions can overlap for some data points). Also, regarding the
relationship between cluster centroids produced by executing an iterative algorithm

11 Hubness-Based Clustering of High-Dimensional Data 359

such as K-meansCC, it was observed that as iterations progress, centroids become
closer and closer to data hubs, hinting at the possibility of developing an iterative
approximation procedure which employs hubs as cluster prototypes [78].

Additional simulations with synthetic data by [78] explored the relationships
between distance to the true cluster center (as an oracle), hubness and measured
density, demonstrating that in low dimensions density pinpoints the location of
the cluster center with great accuracy, while in high dimensions, density loses
this power, and is no longer a good indicator of the main part of the cluster.
Hubness, on the other hand, exhibited the opposite trend to density: it had weak
correlation with the distance to the true cluster center in low dimensions, while
in the high-dimensional setting of the correlation became much stronger, meaning
that the hubness score of a point represents a very good indicator of its proximity
to the cluster center. This is shown in Fig. 11.3, for high-dimensional synthetic
Gaussian data. Regarding medoids, [78] have shown, based on the ratio between
the average distance to the strongest hub and average distance to the medoid, that
in high dimensions the hub is equally informative about the location of the cluster
center as the medoid, while in low dimensions the hub and medoid are unrelated.
At the same time, generally the locally strongest hub and the medoid are in neither
case the same point.

The preceding observations offer justification for the idea to use hubs as cluster
prototypes. As was shown, it is expected of points with high hubness scores to
be closer to centers of clustered subregions of high-dimensional space than other
data points, making them viable candidates for representative cluster elements. We
are not limited to observing only points with the highest hubness scores, we can
also take advantage of hubness information for any given point. More generally,
in presence of irregularly shaped clusters, hubs are expected to be found near
the centers of compact sub-clusters, which is also beneficial. In addition, hubness
of points is straightforward to compute exactly, while the computation of cluster
centroids and medoids must involve some iterative inexact procedure intrinsically
tied to the process of cluster construction. The remaining question of how to assign
individual hubs to particular clusters will be addressed in Sect. 11.6.

11.4 Effects of Hubness on Clustering

In this section we revisit and refine the study by [54, Section 7.3.1], which
demonstrated the negative effects of hubness on existing clustering algorithms.

Two of the main objectives of (distance-based) clustering algorithms are to
produce such grouping of points which minimizes within-cluster distances, while
maximizing between-cluster distances. The hubness phenomenon has an impact on
both of these objectives.

As we discussed in Sect. 11.3, anti-hubs act as distance-based outliers which
are far from all other points. Thus, they tend to increase within-cluster distance for
any clusters they are associated with. Distance-based outliers and their influence

360 N. Tomašev et al.

0 1000 2000 3000 4000 5000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Correlation between density and norm: d = 5

a b

c d

No. of data points

co
rr

(d
en

si
ty

, n
or

m
)

0 1000 2000 3000 4000 5000

0
5

10
15

20
−1

−0.8

−0.6

−0.4

−0.2

No. of data points

Correlation between norm and hubness: d = 5

k

co
rr

(n
or

m
,N

k
)

0 1000 2000 3000 4000 5000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Correlation between density and norm: d = 100

No. of data points

co
rr

(d
en

si
ty

, n
or

m
)

0
1000

2000
3000

4000
5000

0
5

10
15

20
−1

−0.8

−0.6

−0.4

−0.2

No. of data points

Correlation between norm and hubness: d = 100

k

co
rr

(n
or

m
,N

k
)

Fig. 11.3 Interaction between norm, hubness and density in low- and high-dimensional synthetic
Gaussian data [78]. (a) Correlation between density and norm for d D 5. (b) Correlation
between norm and hubness for d D 5. (c) Correlation between norm and hubness for d D 100.
(d) Correlation between norm and hubness for d D 100

on clustering are well-studied subjects [65]: since outliers do not cluster well
because of the high within-cluster distance, they are often discovered and eliminated
beforehand. The existence of outliers is attributed to various reasons (for example,
erroneous measurements). Nevertheless, the skewness of Nk suggests that in high-
dimensional data outliers are also expected due to inherent properties of vector
space.

On the other hand, between-cluster distance may be reduced for points with high
k-occurrences, i.e., hubs, since they tend to be close to many other points. For this
reason, hubs also do not cluster well, but unlike anti-hubs (outliers) this is because
they have low between-cluster distance. In contrast to outliers, the influence of hubs
on clustering traditionally has not attracted significant attention.

11 Hubness-Based Clustering of High-Dimensional Data 361

To examine the influence of both outliers and hubs, we used the popular
silhouette coefficients (SC) [65]. For the i th point, let ai be the average distance
to all points in its cluster (ai corresponds to within-cluster distance), and bi the
minimum average distance to points from other clusters (bi corresponds to between-
cluster distance). This is shown in Eq. (11.1), where �c denotes the c-th cluster.
The SC of the i th point is .bi � ai /=max.ai ; bi /, ranging between �1 and 1
(higher values are preferred). The SC of a set of points is obtained by averaging
the silhouette coefficients of the individual points.

ai D
P

xj2�ci ;xj¤xi jxi2�ci d.xi ; xj /
j�ci j

bi D min
�c;xi…�c

P
xj2�c d.xi ; xj /
j�c j

SCi D bi � ai
max.ai ; bi /

(11.1)

In order to explore the effects on clustering quality of hubs and anti-hubs, we
employ the popular K-meansCC algorithm, but differently from [54, Section 7.3.1]
we vary the number of clusters K. For a given data set, we select as hubs those
points x withNk.x/more than two standard deviations higher than the mean (we use
the number of neighbors k D 10). Let nh be the number of hubs selected. Next,
we select as outliers the nh points with the lowest Nk.x/. Finally, we designate all
remaining points as regular points. To examine the K-meansCC clustering success
for hubs and anti-hubs, we measure the relative SC of hubs (anti-hubs): the mean
SC of hubs (anti-hubs) divided by the mean SC of regular points. For several real-
world data sets used in Sect. 11.7, Fig. 11.4 shows with solid lines the relative
silhouette coefficients, obtained as averages over 50 runs of K-meansCC. For lower
values of K, outliers have relative SC less than one, meaning that they cluster
worse than regular points. As K increases, outliers begin to cluster better, at some
instant exceeding the regular points. This can be considered natural, since with the
increased number of clusters, outliers will tend to be isolated in their own small
clusters, which prevents them from spoiling within-cluster distance of larger clusters
they are “forced” to be included in when K is small, at the same time producing
increased between-cluster distance for such small “outlying” clusters. In Fig. 11.4,
this trend is clearly illustrated with plots of relative a and b components of the SC
for the anti-hubs, with the a components starting to drop after initially increasing,
and b components continually increasing or staying approximately constant.

On the other hand, for hubs exactly opposite trends emerge. For smaller K
values hubs generally cluster well, which is exemplified in Fig. 11.4 with solid
black lines indicating their relative SC being below 1, since they “snugly” fit the
central regions of the large clusters. However, as K increases the relative SC of
hubs begins to drop. In this situation, in whichever cluster a hub is placed, it
will tend to decrease between-cluster distance, since hubs are close to many other
points, and in the scenario involving a large number of small clusters, many of the

362 N. Tomašev et al.

2 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

K

R
at

io
 w

.r
.t.

 r
eg

ul
ar

 p
oi

nt
s

ovarian

SC hubs
SC anti−hubs
a hubs
a anti−hubs
b hubs
b anti−hubs

2 20 40 60 80 100

0.8

1

1.2

1.4

1.6

1.8

2

K

R
at

io
 w

.r
.t.

 r
eg

ul
ar

 p
oi

nt
s

parkinsons

SC hubs
SC anti−hubs
a hubs
a anti−hubs
b hubs
b anti−hubs

2 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

K

R
at

io
 w

.r
.t.

 r
eg

ul
ar

 p
oi

nt
s

sonar

SC hubs
SC anti−hubs
a hubs
a anti−hubs
b hubs
b anti−hubs

2 200 400 600 800 1000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

K

R
at

io
 w

.r
.t.

 r
eg

ul
ar

 p
oi

nt
s

abalone

SC hubs
SC anti−hubs
a hubs
a anti−hubs
b hubs
b anti−hubs

2 20 40 60 80 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

K

R
at

io
 w

.r
.t.

 r
eg

ul
ar

 p
oi

nt
s

spectrometer

SC hubs
SC anti−hubs
a hubs
a anti−hubs
b hubs
b anti−hubs

2 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

K

R
at

io
 w

.r
.t.

 r
eg

ul
ar

 p
oi

nt
s

ds3haar

SC hubs
SC anti−hubs
a hubs
a anti−hubs
b hubs
b anti−hubs

Fig. 11.4 Silhouette coefficients (SC) of hubs (black solid lines) and anti-hubs (red solid lines),
relative to the SC of regular points, for varying numbers of clusters in K-meansCC. Also plotted
are the relative values for a (dashed lines) and b (dash-dot lines) components of the SC

points hubs are close to will originate from different clusters. This is illustrated
in the figure with plots of relative b components for the hubs, which tend to
decrease as the number of clusters increases. In addition, somewhat surprisingly
(but completing the analogy with the anti-hubs/outliers), the relative a component
increases for the hubs, signifying that in the many-small-cluster scenario the hubs’
advantage of being close to many other points and having small within-cluster
distance diminishes compared to the regular points.

11 Hubness-Based Clustering of High-Dimensional Data 363

Putting the striking analogy between hubs and anti-hubs (in the context of
clustering quality) aside, regardless of whether hubs cluster better or worse than
regular points according to full silhouette coefficients, the between-cluster b
component of the SC is always low. This constitutes a major area for improvement
of clustering algorithms and, as will be demonstrated, is the principal reason why
the reviewed and proposed hub-based algorithms work well.

11.5 Interaction Between Kernels and Hubness

In Sect. 11.6, we will consider a “kernelized” version of existing hubness-based
clustering algorithms. Before that, let us examine the interaction of kernel functions
and hubness, i.e., the differences (if any) between hubness in the original space and
kernel space. For a given kernel function K.x; y/, norm distance metric D.x; y/
in Hilbert space, such as Euclidean distance on Rd used throughout this chapter,
the square of the distance between �.x/ and �.y/, the projections of x and y to
kernel space, can be expressed asD2.�.x/; �.y// D K.x; x/� 2K.x; y/CK.y; y/.
Hubness in kernel space is, therefore, straightforward to compute using the distances
expressed by K.

We will consider three of the most popular choices of kernel functions—the
polynomial, radial basis function (RBF), and sigmoid kernel [41, 83]:

Kpoly.x; y/ D .1C hx; yi/p;
KRBF.x; y/ D exp.��kx � yk2/;
Ksigm.x; y/ D tanh.ahx; yi C r/;

where usually p 2 f1; 2; : : :g, and �; a; r 2 R, � > 0.
For the polynomial kernel, with its one parameter p, in the case when p D 1

(for which the kernel is also referred to as the linear kernel) it can be shown that
distances in the kernel space are exactly the same as in the original space [83], which
implies that hubness will be the same as well (and also that kernelized clustering
algorithms will produce the same groupings as the original algorithms). For other
values of p this is not the case, and to illustrate the difference Fig. 11.5 plots the
Spearman correlations between N10 of points in the original space and in the kernel
space (CN10), as well as the skewness of the distribution ofN10 in kernel space (SN10),
for all values of p 2 f1; 2; : : : ; 20g, on UCI and image data sets used in Sect. 11.7.
Starting with the expected perfect correlation for p D 1, the general trend is for
correlation to weaken with increasing p, albeit at different rates for different data
sets. Skewness of N10, on the other hand, increases for the majority of data sets,
while for some it remains approximately constant. Notably, we have not detected
significant drops of skewness with increasing p.

The RBF kernel is a smooth monotone function on distances in the original space,
and as such produces distances in the kernel space that preserve the ordering of k

364 N. Tomašev et al.

1 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Polynomial kernel

 p

C
N

10

abalone
arcene
iris
ovarian
parkinsons
sonar
spambase
spectrometer
wine
wpbc

1 5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

3

Polynomial kernel

 p

S
N

10

abalone
arcene
iris
ovarian
parkinsons
sonar
spambase
spectrometer
wine
wpbc

1 5 10 15 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Polynomial kernel

 p

C
N

10

ds3haar
ds4haar
ds5haar
ds6haar
ds7haar

1 5 10 15 20
1

2

3

4

5

6

7

8

9

10

11
Polynomial kernel

 p

S
N

10

ds3haar
ds4haar
ds5haar
ds6haar
ds7haar

Fig. 11.5 Correlation between N10 in original and kernel space (left), and skewness of the
distribution of N10 in kernel space (right), for the polynomial kernel with different values of
parameter p

nearest neighbors, i.e., preserve kNN graphs from the original space [83]. Therefore,
hubness in the kernel space remains the same as in the original space. Unlike the
linear kernel, distances are not exactly preserved, which is why it still makes sense
to employ the RBF kernel in clustering algorithms which operate with distances
(and not only with nearest neighbors). Furthermore, numeric concerns limit the
usable values of a to a relatively small range (depending on the data set and numeric
precision used).

Finally, sigmoid kernel’s two free parameters produce kernel functions with
different properties [41], which are more or less meaningful to use in practical
situations. We explore the range of parameter values similar to those considered
by [41]: log.a/ 2 f�10;�8; : : : ; 10g, and r 2 f�5;�4; : : : ; 5g. Figure 11.6 shows
surface plots of CN10 and SN10 on three data sets representative of the general
trend. The influence of the a parameter is similar to the general influence of p in
the polynomial kernel: for small values of a, hubness in kernel space is closely
correlated with hubness in the original space, and as a increases the correlation
significantly weakens, while the r parameter is not particularly influential in this
regard except in the transitional regions where it can speed up the drop in correlation
with increasing a. As for skewness, it generally increases substantially with

11 Hubness-Based Clustering of High-Dimensional Data 365

−5

0

5
−10

−5
0

5
10

−0.5

0

0.5

1

 r

Sigmoid kernel: sonar

−5

0

5

−10
−5

0
5

10
1

2

3

4

5

 r

Sigmoid kernel: sonar

log(a)log(a)

log(a)log(a)

log(a)log(a)

S
N

10

C
N

10
C

N
10

C
N

10

S
N

10
S

N
10

−5

0

5
−10

−5
0

5
10

−0.5

0

0.5

1

 r

Sigmoid kernel: spectrometer

−5

0

5

−10
−5

0
5

10
0

2

4

6

8

 r

Sigmoid kernel: spectrometer

−5

0

5
−10

−5
0

5
10

−0.5

0

0.5

1

r

Sigmoid kernel: ds3haar

−5

0

5

−10
−5

0
5

10
0

5

10

15

20

 r

Sigmoid kernel: ds3haar

Fig. 11.6 Correlation between N10 in original and kernel space (left), and skewness of the
distribution of N10 in kernel space (right), for the sigmoid kernel with different values of
parameters a and r

increasing a (please note the reversed scale for log.a/ compared to the correlation
plots), with r again not playing a particularly significant role.

To summarize, the parameters of the considered kernels, except for the RBF
kernel, can produce mappings of distances which may or may not preserve hubness
from the original space, and in the case where hubness is not preserved it is usually
amplified, meaning that in the kernel space there is a tendency to have strong hub
points which are not hub points at all in the original space. Thus, we can conclude
that “kernelizing” hubness-based clustering algorithms can have a significant impact
on the groupings that are produced.

366 N. Tomašev et al.

11.6 Clustering Algorithms Based on Hubness

It was shown that pointwise hubness scores correlate well with local cluster
centrality in intrinsically high-dimensional Gaussian mixture data [78] and neighbor
occurrence frequency (Nk.x/) can be used as an estimate of centrality in many
dimensions.

This information can be integrated with different types of clustering approaches.
Several hubness-based extensions of K-means were proposed by [78], as a way
of exploiting Nk.x/ information in partitional clustering. In global K-hubs (GKH),
hubs are used as cluster prototypes instead of cluster centroids in K-means iterations.
Initial experiments have shown that this approach is somewhat rigid, as it is prone
to premature convergence to decent but suboptimal cluster configurations. GKH
was “softened” by introducing stochasticity, so that hubs are used as prototypes in
iterations with a certain probability and that other points might become prototypes
as well, with a probability proportional to Nk.x/2. The algorithm was named global
hubness-proportional clustering (GHPC). The alternating probabilistic framework
was controlled by a temperature parameter, as in simulated annealing. The motiva-
tion behind using hubs as cluster prototypes is outlined in Fig. 11.7.

Essentially, when a cluster in the current iteration is composed of multiple com-
pact components, centroids and medoids do not necessarily represent meaningful
prototypes. Ideally, we might like to assign these separate components to different
clusters in the following iterations, while searching for the best split and the optimal
cluster configuration. However, centroid and medoid updates might either lead to
minor differences between iterations, inflating the iteration count or even converge
into a suboptimal configuration. Furthermore, centroids and medoids of such multi-
component clusters do not really correspond to local component centers. Therefore,
using hubs as prototypes and hubness while guiding the prototype search might help
with overcoming these issues in certain cases in intrinsically high-dimensional data.

It should be noted that there are more benefits to using hubness instead of
density for guiding the prototype search in clustering, other than the mere fact that
it correlates better with local cluster centrality. Namely, hubness does not depend

Fig. 11.7 An illustrative example of the difference between using hubs and centroids/medoids as
cluster prototypes in partitional clustering iterations: The red dashed circle marks the centroid (C),
yellow dotted circle the medoid (M), and green circles denote two elements of highest hubness
(H1;H2), for neighborhood size 3 [78]

11 Hubness-Based Clustering of High-Dimensional Data 367

on scale. This plays an important role in data sets that incorporate several levels of
granularity by containing clusters of highly varying densities. Scaling a cluster up
or down does not change its neighbor structure and does not, in general, affect the
hubness scores of data points.

Naturally, hub prototype cluster configurations are not necessarily optimal on
any given data. Sometimes, there are still benefits when using centroids as cluster
prototypes instead. Therefore, an extension of GHPC was examined, where the
deterministic iteration step was to take centroids as cluster prototypes and the
probabilistic step was still used to choose prototype points proportional to their
Nk.x/2 scores. This hybrid approach was named global hubness-proportional K-
means (GHPKM) and was shown to perform somewhat better than GHPC in several
real-world clustering tasks.

As GKH, GHPC and GHPKM are only capable of capturing hyperspherical
clusters, it was mentioned by [78] that it might be promising to explore alternative
ways of clustering with hubs that would be able to handle clusters of different
shapes as well. It was argued that kernels might be used to introduce additional non-
linearity to the approaches, similarly to what was done with kernel K-means [18].

We will first formally present and examine in more detail the previously proposed
hubness-based partitional approaches that were mentioned above. We will proceed
by proposing and describing a novel hubness-based extension of the kernel K-means
algorithm [18].

11.6.1 Deterministic Approach

A simple way to employ hubs for clustering is to use them as one would normally
use centroids. This is a simple extension of the K-means method. The algorithm,
referred to as K-hubs, is given in Algorithm 13.

This initial approach converges to final cluster configurations very quickly. In ear-
lier experimentation, it took no more than four iterations on all the data sets used
for testing, most of which contained around 10,000 data instances. Nevertheless,
its instability and sensitivity to initialization [11, 12] render it ineffective in most
practical cases.

Algorithm 13 K-hubs
initializeClusterCenters();
Cluster[] clusters = formClusters();
repeat

for all Cluster c 2 clusters do
DataPoint h = findClusterHub(c);
setClusterCenter(c, h);

end for
clusters = formClusters();

until noReassignments
return clusters

368 N. Tomašev et al.

11.6.2 Probabilistic Approach

Local hubs, that is, points with the highest hubness scores among their respective
temporary clusters during iterations, are certainly good candidates for cluster
prototypes. K-hubs illustrates that by being able to reach meaningful cluster
configurations quickly. However, hubness of other points in the data set contains
potentially useful information related to the cluster structure. Global hubness-
proportional clustering algorithm (GHPC), described in Algorithm 14, implements a
squared hubness-proportional stochastic scheme based on the widely used simulated
annealing approach to optimization [17]. The temperature factor was introduced to
the algorithm, so that it may start as being entirely probabilistic and eventually end
by executing deterministic K-hubs iterations.

The skewness of the k-occurrence distribution is why this approach becomes
meaningful when clustering in many dimensions. A vast majority of points have low
Nk.x/ scores, which means that they will be disregarded by GHPC, as they will be
considered bad candidates for cluster prototypes and assigned a very low probability
of being selected. The square of the actual neighbor occurrence frequency is used
(Nk.x/2) in order to emphasize this feature of the algorithm. This is conceptually
similar to the use of squared point-center distances for determining initial cluster
seeds in K-meansCC [4], the important difference being that the squared neighbor
occurrence frequencies are used for determining local point centrality, while theD2

initialization scheme is used for achieving a good spread of the initial points.

Algorithm 14 GHPC
initializeClusterCenters();
Cluster[] clusters = formClusters();
float t = t0; {initialize temperature}
repeat

float � = getProbFromSchedule(t);
for all Cluster c 2 clusters do

if randomFloat(0,1) < � then
DataPoint h = findClusterHub(c);
setClusterCenter(c, h);

else
for all DataPoint x 2 c do

setChoosingProbability(x, N2
k (x));

end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);

end if
end for
clusters = formClusters();
t = updateTemperature(t);

until noReassignments
return clusters

11 Hubness-Based Clustering of High-Dimensional Data 369

The actual exponent can be varied and more experiments would be needed to
determine its optimal value in general. A high exponent would increase the skewness
in selection probabilities of different points, thereby decreasing the exploratory
potential of the algorithm and increasing its greedy exploitation. The exploration
vs exploitation dilemma is well-known in various optimization problems and
the optimal trade-off between the two depends on particular data characteristics.
In terms of data hubness, it might be advisable to use higher exponents for low- and
medium-dimensional data and lower exponents for very high-dimensional data.

GHPC uses a rather trivial temperature schedule in the getProbFromSchedule(t)
function. The number of probabilistic iterations NProb is passed as an argument
to the algorithm and the probability � D min.1; t=NProb/. It is possible to use
more complex cooling schemes and this might lead to slightly better results in
practice. The basic temperature schedule implemented in GHPC, however, has
proven sufficient in many cases.

GHPC executes a search through the data space based on hubness as an estimate
of local cluster centrality. To justify the use of the proposed stochastic scheme, a
series of tests was performed on Gaussian mixtures [78], for dimensionality d D 50,
n D 10;000 instances, and K D 25 clusters in the data. Neighborhood size was set
to k D 10 and for each preset number of probabilistic iterations in the annealing
schedule, the clustering was run 50 times, each time re-initializing the seeds. The
results are displayed in Fig. 11.8. The silhouette index [65] was used to estimate
the clustering quality. Due to a significant skewness of the squared hubness scores,
adding more probabilistic iterations helps in achieving better clustering, up to a
certain plateau that is eventually reached.

Fig. 11.8 Estimated quality of clustering for various durations of probabilistic search in GHPC,
on synthetic Gaussian mixtures [78]

370 N. Tomašev et al.

11.6.3 A Hybrid Approach: Extending K-Means

K-hubs and GHPC share a property that they do not assume any underlying data
representation and can handle arbitrary object types, as long as some measure of
similarity can be established between objects. In cases when features are available
as vectors and centroids are computable, it is possible to use hubness information
for clustering in conjunction with the basic principles of K-means. In this case,
hubness scores can be used to guide the prototype search and help K-means to avoid
premature convergence to local cluster configuration optima. This simple extension
of K-means has been shown to perform well in practice [78]. It is formally described
in Algorithm 15 and will be referred to as global hubness-proportional K-means
(GHPKM). The only difference between GHPKM and GHPC is in the deterministic
part of each iteration, where the deterministic option executes standard K-means
updates by selecting centroids for cluster prototypes. In the probabilistic branch,
points are selected with a probability proportional to Nk.x/2, as in GHPC.

11.6.4 Using Kernels in Hubness-Based Clustering

A major problem with K-hubs, GHPC and GHPKM is that they are limited to
discovering hyperspherical clusters. In many applications this is not sufficient. It is
therefore natural to explore other options, including the use of kernels as means of

Algorithm 15 GHPKM
initializeClusterCenters();
Cluster[] clusters = formClusters();
float t = t0; {initialize temperature}
repeat

float � = getProbFromSchedule(t);
for all Cluster c 2 clusters do

if randomFloat(0,1) < � then
DataPoint h = findClusterCentroid(c);
setClusterCenter(c, h);

else
for all DataPoint x 2 c do

setChoosingProbability(x, N2
k (x));

end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);

end if
end for
clusters = formClusters();
t = updateTemperature(t);

until noReassignments
return clusters

11 Hubness-Based Clustering of High-Dimensional Data 371

inducing additional non-linearity to the cluster discovery process. Kernel K-means
is a natural extension of K-means that supports the use of kernels [18]. As K-hubs,
GHPC and GHPKM are all essentially extensions and variations of K-means as well,
it is possible to combine these approaches in order to enable kernel clustering via
the hubness-based methodology.

Let �c be the data clusters, where c 2 f1::Kg. Using the non-linear function �,
the objective function of kernel GHPKM is, similarly to the objective function of
kernel K-means, as follows:

F.f�cgKcD1/ D
KX

cD1

X

x2�c
w.x/ � k�.x/ � pck2 (11.2)

In Eq. (11.2), w.x/ are weights that may be assigned to different points, if needed.
In our experiments, we have used w.x/ D 1 for all x. Cluster prototypes are
denoted by pc . This is where the first difference between kernel K-means and kernel
GHPKM appears, as pc points in kernel GHPKM are not necessarily centroids, but
can also be hubs, or rather—points that are taken as prototypes with a probability
proportional to Nk.x/2, as in GHPC and GHPKM. As the iterations progress, this
difference disappears, as they become more and more deterministic, due to the cool-
down in the simulated annealing procedure that governs the optimization. Therefore,
kernel GHPKM will eventually end up minimizing the same function as kernel
K-means, but it will also perform a slightly more randomized initial search that
might help with avoiding premature convergence to local optima, as in GHPKM.

Denote the centroid of cluster c bymc . The centroid under the mapping � is then
calculated according to Eq. (11.3). We will similarly denote the currently selected
prototype hub of cluster c as pc D hc , when there is a need to clarify the difference.

mc D
P

x2�c w.x/ � �.x/
P

x2�c w.x/
(11.3)

When defined as in Eq. (11.3), centroids minimize the weighted squared distance
to other mapped points in the cluster, as suggested by Eq. (11.4). Using hubs as
prototypes does not minimize this squared distance sum, but might be beneficial for
different reasons.

mc D argminz
P

x2�c
w.x/�k�.x/�zk2 (11.4)

The squared distance to the prototype can be easily calculated in the case when
the prototype is selected from the cluster point pool. This actually speeds up the
distance calculations somewhat. This dichotomy is given in Eq. (11.5), and the
formula for calculating the distance to the cluster centroid according to the kernel
trick is given in Eq. (11.6). This is necessary, as we are not explicitly mapping
the points via �, so there is no way to explicitly calculate the centroid itself in an
effective manner.

372 N. Tomašev et al.

k�.x/ � pck2 D
(
k�.x/ �mck2 if pc D mc

K.x; x/CK.hc; hc/ � 2 �K.x; hc/; if pc D hc
(11.5)

k�.x/ �mck2 D k�.x/ �
P

z2�c w.z/ � �.z/
P

z2�c w.z/
k2 D K.x; x/ � 2�

P
z2�c w.z/ �K.x; z/
P

z2�c w.z/
C
P

z1;z22�c w.z1/ � w.z2/ �K.z1; z2/

.
P

z2�c w.z//2
(11.6)

The details of Kernel GHPKM are given in pseudo-code in Algorithm 16.
For each cluster we keep track of whether we have chosen the prototype point
according to the squared hubness-proportional procedure or have chosen to use
the centroid implicitly for determining future point assignments. While looping
through the points, Eqs. (11.5) and (11.6) are used interchangeably, depending
on the situation.

11.6.5 Scalability of Hubness-Based Approaches

Calculating all the Nk.x/ factors for guiding the prototype search in clustering
iterations requires computing the entire kNN graph. Using a naive approach that
does not take advantage of any spatial data structures or approximate calculations
can be costly and prohibitive for very large data sets that are frequently encountered
in modern practical applications. In such large data sets, there might be millions of
examples that need to be clustered in a certain way.

There exist, however, fast approximate methods which can be used to construct
fairly accurate approximations in reasonable time. It is possible to use either a
generic approach [14] or some metric-specific approximation method based on
locality-sensitive hashing [52,57,80,81]. The performance of different approximate
kNN search methods depends on data characteristics of the data set in question and
the intrinsic difficulty of the k-nearest neighbor search problem in the particular
context [30].

As the neighbor occurrence frequency of a point is inferred from its reverse k-
nearest neighbor sets, fast approximate reverse k-nearest neighbor queries are also
potentially relevant for on-line, incremental hubness-based approaches, where new
observations come in streams and the training set needs to be frequently updated.
Early approaches were based on running approximate kNN queries and then
analyzing and modifying the approximate kNN sets [62]. Many approaches use
tree-based indexing techniques or influence zones [13] and some focus on multi-
type queries [46]. Some attention has been given recently to probabilistic reverse
k-nearest neighbor queries on fuzzy and uncertain data [8, 84].

The data which we had available for our experiments was not prohibitively big,
so we only report the results on the accurate, complete, k-nearest neighbor graphs.
It is worth noting, however, that it was already shown for some other hubness-aware

11 Hubness-Based Clustering of High-Dimensional Data 373

Algorithm 16 Kernel GHPKM
initializeClusterCenters();
float t = t0; {initialize temperature}
repeat

float � = getProbFromSchedule(t);
for all Point x 2 dataset do

closestCluster = NULL;
minimalDistance = MAX_VALUE;
for all Cluster c 2 clusters do

if getClusterCenter(c) NOT NULL then
distance = getDistanceToHub(c);{Equation (11.5)}
if distance � minimalDistance then

minimalDistance = distance;
closestCluster = c;

end if
else

distance = getDistanceToCentroid(c);{Equation (11.6)}
if distance � minimalDistance then

minimalDistance = distance;
closestCluster = c;

end if
end if

end for
assignPointToFutureCluster(x, closestCluster)

end for
updateClusterAssignments();
for all Cluster c 2 clusters do

if randomFloat(0,1) < � then
setClusterCenter(c, NULL);

else
for all DataPoint x 2 c do

setChoosingProbability(x, N2
k (x));

end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);

end if
end for
t = updateTemperature(t);
calculateErrorFunction(){Equation (11.2)};

until convergenceCriterion
clusters = formClusters();
return clusters

374 N. Tomašev et al.

methods to be quite robust with regards to the approximate neighbor sets [67] and
that there is usually no significant decrease in accuracy even for nearly linear graph
construction time complexities.

However, not all complexity is due to the kNN set calculations. In kernel
GHPKM, there is also the known complexity of the kernel K-means base algorithm,
that equals O.n2.� C d//, where � is the total number of iterations and d is
data dimensionality. It is also worth noting that kernel GHPKM tends to have
more iterations than kernel K-means itself, due to its stochastic nature and the
fact that it uses some more time for the hubness-guided exploration of the cluster
configuration space before it switches to the exploitation phase. Therefore, this
exact implementation is not well suited for large-scale clustering but rather when
trying to achieve a higher quality of clustering on small-to-medium size intrinsically
high-dimensional data. Nevertheless, it should be noted that there exist approximate
kernel K-means implementations as well [16] that are able to handle very large data
sets, so the approximate implementations of kernel GHPKM will also be evaluated
in the future, in order to enable hubness-based clustering of very large data sets.

11.7 Experimental Comparisons

Experimental comparisons performed by [78] have shown that hubness-based clus-
tering methods offer promising performance. Extensive evaluation was done both on
high-dimensional synthetic Gaussian mixture data as well as a series of real world
data sets, some of which exhibited substantial hubness. Promising performance was
also observed in presence of high noise levels, where GHPKM was the best among
the basic hubness-based approaches in detecting the underlying Gaussian clusters
that were placed in volumes of uniform noise. These improvements were more
pronounced in cases of higher dimensionality. A quick comparison of the evolution
of silhouette index in those experiments is shown in Fig. 11.9.

a b

Fig. 11.9 Gradual change in cluster quality measures with rising noise levels. Differences between
algorithm performance are more pronounced in the high-dimensional case [78]. (a) Silhouette
index values for d D 10, k D 50. (b) Silhouette index values for d D 50, k D 50

11 Hubness-Based Clustering of High-Dimensional Data 375

We will not review the experiments on synthetic data in much detail here.
Interested readers can look up the original results in the paper [78]. Instead, we
will focus on presenting comparisons on real-world data, extended by including
the evaluation of kernel GHPKM. The downside is, of course, that real-world test
cases are less controlled as optimal configurations are usually not available a priori
in the high-dimensional case. Nevertheless, these tests are more challenging and
more practically relevant.

There were two different experimental setups on real-world data sets. In the first
setup, a single data set was clustered for many different K-s, in order to compare
algorithm performance over a range of cluster numbers. In the second setup, 20
different data sets were all clustered by the number of classes known to be present
in the data. For all centroid-based algorithms, including KM, we used the D2

(K-meansCC) initialization procedure [4]. As for choice of k, there is no consensus
on what might be the best or easiest way for choosing proper neighborhood size
in algorithms that use k-nearest neighbor sets. One option would be to do initial
cross-validation in order to detect potential parameter values. However, the initial
experiments have shown that hubness-based clustering algorithms are not very
sensitive to the choice of k, as long as it remains in a reasonably low range. The
performance of GHPC was rather constant for neighborhood sizes k 2 Œ1; 20� [78].

The clustering quality in these experiments was measured by two quality indices,
the silhouette index and the isolation index [28], which measures a percentage of
k-neighbor points that are clustered together.

In the first experimental setup, the algorithms were compared on the two-part
Miss-America data set (cs.joensuu.fi/sipu/datasets/). Each part consists of 6,480
instances having 16 dimensions. Results were compared for various predefined
numbers of clusters in algorithm calls. Each algorithm was tested 50 times for
each number of clusters. Neighborhood size was 5. Histogram intersection kernel
was used in the kernel methods and Euclidean distance in other cases. Histogram
intersection kernel is non-parametric and is believed to perform well on image data,
which is why it was employed in these experiments.

The results for both parts of the data set are given in Table 11.1. Kernel GHPKM
clearly outperformed all remaining tested approaches on this data set, both in
terms of silhouette and isolation index. If we compare the value of the silhouette
index for kernel GHPKM of 0.75 for K D 2 on part I to the second best value
achieved by kernel K-means of 0.33, we see that the difference is quite substantial.
Similar and even more pronounced differences can be seen for other values of K.
On the other hand, GHPC clearly outperformed the other considered non-kernel
clustering algorithms on this data set. This shows that hubs can serve as good cluster
prototypes.

As intrinsically high-dimensional, high-hubness data, we have taken several
subsets of the ImageNet public repository (www.image-net.org). These data sets
are described in detail by [72, 73]. Two separate cases are examined: Haar wavelet
representation and SIFT codebook + color histogram representation [43, 85]. This
totals to 10 different clustering problems. The neighborhood size k was set to 20.
Silhouette values are given in Table 11.2 and the average values of the isolation

cs.joensuu.fi/sipu/datasets/
http://www.image-net.org

376 N. Tomašev et al.

Table 11.1 Clustering quality on the Miss-America data set Parts I and II,
measured by silhouette index and isolation index, for various cluster numbers.
Kernel-GHPKM clearly outperforms all other approaches on this data set. Also,
GHPC clearly outperforms all non-kernel tested approaches here. Highest scores
are given in bold

(a) Silhouette index

K 2 4 6 8 10 12 14 16

Part I GKH 0.28 0.14 0.12 0.08 0.07 0.05 0.06 0.05
GHPC 0.38 0.29 0.25 0.21 0.15 0.10 0.10 0.09
KMCC 0.14 0.12 0.09 0.08 0.07 0.07 0.07 0.07
GHPKM 0.28 0.18 0.17 0.14 0.13 0.11 0.10 0.08
ker-KMCC 0.33 0.36 0.36 0.34 0.35 0.22 0.28 0.14
ker-GHPKM 0.75 0.75 0.77 0.76 0.78 0.75 0.76 0.73

Part II GKH 0.33 0.21 0.13 0.08 0.08 0.07 0.06 0.06
GHPC 0.33 0.27 0.22 0.26 0.18 0.19 0.12 0.11
KMCC 0.18 0.12 0.10 0.08 0.07 0.08 0.07 0.07
GHPKM 0.33 0.22 0.18 0.14 0.12 0.11 0.10 0.08
ker-KMCC 0.46 0.30 0.41 0.46 0.29 0.28 0.24 0.23
ker-GHPKM 0.54 0.48 0.50 0.54 0.51 0.50 0.51 0.52

(b) Isolation index

K 2 4 6 8 10 12 14 16

Part I GKH 0.83 0.58 0.53 0.38 0.27 0.22 0.21 0.15
GHPC 0.91 0.89 0.71 0.53 0.42 0.33 0.30 0.26
KMCC 0.62 0.46 0.34 0.23 0.19 0.16 0.13 0.12
GHPKM 0.85 0.54 0.45 0.38 0.29 0.26 0.24 0.23
ker-KMCC 0.77 0.92 0.93 0.92 0.95 0.91 0.91 0.80
ker-GHPKM 0.88 0.94 0.94 0.94 0.95 0.93 0.94 0.91

Part II GKH 0.82 0.56 0.35 0.26 0.21 0.17 0.15 0.14
GHPC 0.80 0.64 0.45 0.48 0.37 0.35 0.26 0.23
KMCC 0.62 0.35 0.28 0.20 0.16 0.14 0.11 0.09
GHPKM 0.77 0.50 0.36 0.29 0.26 0.24 0.22 0.19
ker-KMCC 0.88 0.78 0.90 0.94 0.91 0.89 0.90 0.91
ker-GHPKM 0.88 0.88 0.91 0.94 0.90 0.90 0.90 0.92

index in Table 11.3. Histogram intersection kernel was again used in kernel-based
approaches and Manhattan distance in other clustering methods. Unlike in the
original paper [78], feature values were not previously normalized to the Œ0; 1�
range. This leads to an improved clustering performance on SIFT representations
and comparable performance on the Haar ImageNet representations. However, it
seems that kernel K-means performs much worse when excluding normalization, so
the comparisons of kernel methods in both cases are shown in Fig. 11.10.

As Table 11.2 shows, kernel GHPKM clearly outperforms kernel K-means on
Haar ImageNet representations. Both methods perform poorly with the histogram
intersection kernel on the non-normalized SIFT representations. Other kernels might

11 Hubness-Based Clustering of High-Dimensional Data 377

Ta
bl

e
11

.2
C

lu
st

er
in

g
qu

al
ity

ex
pr

es
se

d
as

si
lh

ou
et

te
in

de
x

on
hi

gh
-h

ub
ne

ss
da

ta
se

ts
fr

om
th

e
Im

ag
eN

et
re

po
si

to
ry

.
W

e
ex

am
in

e
bo

th
SI

FT
an

d
H

aa
r

im
ag

e
fe

at
ur

e
re

pr
es

en
ta

tio
ns

.
H

is
to

gr
am

in
te

rs
ec

tio
n

ke
rn

el
w

as
us

ed
in

th
e

ke
rn

el
-b

as
ed

al
go

ri
th

m
s

an
d

M
an

ha
tta

n
di

st
an

ce
in

ot
he

r
ca

se
s.

Fe
at

ur
es

w
er

e
no

t
no

rm
al

iz
ed

.T
he

sk
ew

ne
ss

of
N
k

fo
r
k
D
1

is
sh

ow
n

as
S
N
1
.H

ig
he

st
sc

or
es

ar
e

gi
ve

n
in

bo
ld

D
at

a
se

t
Si

ze
d

K
S
N
1

G
K

H
G

H
PC

K
M
CC

G
H

PK
M

ke
r-

K
M

ke
r-

G
H

PK
M

ds
3h

aa
r

27
31

10
0

3
2.

27
0.

55
0.

57
0.

68
0.

70
�0

.0
2

0.
04

ds
4h

aa
r

60
54

10
0

4
2.

44
0.

41
0.

49
0.

60
0.

61
�0

.0
8

0.
83

ds
5h

aa
r

65
55

10
0

5
2.

43
0.

49
0.

52
0.

63
0.

64
�0

.1
1

0.
87

ds
6h

aa
r

60
10

10
0

6
2.

13
0.

42
0.

39
0.

57
0.

57
�0

.2
9

0.
78

ds
7h

aa
r

10
54

4
10

0
7

4.
60

0.
25

0.
44

0.
64

0.
66

�0
.2

5
0.

78

A
V

G
-H

aa
r

0.
42

0.
44

0.
62

0.
64

�0
.1

5
0.

66

ds
3s

if
t

27
31

41
6

3
15

.8
5

0.
13

0.
16

0.
23

0.
24

0.
03

�0
.0

9

ds
4s

if
t

60
54

41
6

4
8.

88
0.

07
0.

08
0.

19
0.

20
�0

.0
6

0.
10

ds
5s

if
t

65
55

41
6

5
26

.0
8

0.
07

0.
08

0.
23

0.
24

�0
.0

3
�0

.0
7

ds
6s

if
t

60
10

41
6

6
13

.1
9

0.
06

0.
05

0.
14

0.
15

�0
.1

2
�0

.0
6

ds
7s

if
t

10
54

4
41

6
7

9.
15

0.
03

0.
02

0.
13

0.
16

�0
.1

3
0.

01

A
V

G
-S

if
t

0.
07

0.
08

0.
19

0.
20

�0
.0

6
�0

.0
2

A
V

G
-T

ot
al

0.
25

0.
26

0.
40

0.
42

�0
.1

0
0.

32

378 N. Tomašev et al.

Table 11.3 Average isolation index values achieved by the compared
algorithms on UCI and ImageNet data sets. Highest scores are given in bold

Data sets GKH GHPC KMCC GHPKM ker-KM ker-GHPKM

AVG-UCI 0:48 0:47 0:44 0:47 0:77 0:60

AVG-Haar 0:65 0:68 0:81 0:82 0:38 0:98
AVG-Sift 0:29 0:29 0:48 0:51 0:50 0:97
AVG-Img 0:47 0:49 0:65 0:66 0:44 0:97
AVG-Total 0:47 0:48 0:55 0:57 0:61 0:78

Fig. 11.10 The influence of feature normalization to the Œ0; 1� range on the performance of kernel-
based methods on Haar representations of ImageNet data. Kernel K-means and kernel GHPKM
are compared in both cases

be more appropriate in that case. On SIFT representations, GHPKM was slightly
better than K-meansCC, though the difference is not significant.

As mostly low-to-medium hubness data (with the exception of spambase),
several UCI data sets (archive.ics.uci.edu/ml/datasets.html) were randomly selected
for comparisons. Values of all the individual features in the data sets were
normalized prior to testing, as such preprocessing seems to slightly increase the
hubness of the data in this case. The data sets were mostly simple, composed only
of a few clusters. The value of k was set to 20. The results are shown in Table 11.4.
RBF kernel was used in the kernel methods and the � parameter was set to � D 1

d
by

default, which is a common practice. In these experiments we did not try to optimize
parameter values or kernel choices, due to the time complexity of the computations
in the current implementations.

In the absence of hubness, purely hubness-based methods usually do not perform
well. Note, however, that they score comparably to KMCC and kernel K-means
on several UCI data sets and sometimes even outperform these baselines. Never-
theless, these examples show that in order to expect significant performance gains
from using hubness-based clustering methods, a significant neighbor k-occurrence
skewness is required.

archive.ics.uci.edu/ml/datasets.html

11 Hubness-Based Clustering of High-Dimensional Data 379

Ta
bl

e
11

.4
C

lu
st

er
in

g
qu

al
ity

ex
pr

es
se

d
as

si
lh

ou
et

te
in

de
x

on
m

os
tly

lo
w

to
m

ed
iu

m
-h

ub
ne

ss
da

ta
se

ts
fr

om
th

e
U

C
I

re
po

si
to

ry
.

H
ub

ne
ss

-b
as

ed
m

et
ho

ds
ar

e
m

uc
h

le
ss

ef
fe

ct
iv

e
w

he
n

da
ta

hu
bn

es
s

is
no

t
pr

on
ou

nc
ed

.
T

he
sk

ew
ne

ss
of
N
k

fo
r
k
D
1

is
sh

ow
n

as
S
N
1
.H

ig
he

st
sc

or
es

ar
e

gi
ve

n
in

bo
ld

D
at

a
se

t
Si

ze
d

K
S
N
1

G
K

H
G

H
PC

K
M
CC

G
H

PK
M

ke
r-

K
M

ke
r-

G
H

PK
M

w
pb

c
19

8
33

2
0.

64
0.

16
0.

16
0.

16
0.

16
0.

32
0.

18

sp
am

ba
se

46
01

57
2

21
.4

6
0.

29
0.

38
0.

31
0.

50
0.

48
0.

37

ar
ce

ne
10

0
10

00
2

1.
08

0.
21

0.
22

0.
20

0.
23

0.
36

0.
37

ov
ar

ia
n

25
3

15
15

4
2

1.
20

0.
17

0.
17

0.
18

0.
19

0.
25

0.
18

ir
is

15
8

4
3

0.
46

0.
48

0.
47

0.
49

0.
49

0.
67

0.
61

pa
rk

in
so

ns
19

5
22

2
0.

39
0.

25
0.

30
0.

37
0.

37
0.

64
0.

28

so
na

r
20

8
60

2
1.

35
0.

11
0.

11
0.

19
0.

15
0.

26
0.

17

w
in

e
17

8
13

3
0.

76
0.

27
0.

33
0.

34
0.

35
0.

25
0.

35
ab

al
on

e
41

77
8

29
0.

92
0.

22
0.

20
0.

26
0.

27
�0

.2
0

0.
40

sp
ec

tr
om

et
er

53
1

10
0

10
1.

20
0.

16
0.

16
0.

23
0.

25
0.

23
0.

24

A
V

G
-U

C
I

0.
23

0.
25

0.
27

0.
30

0.
33

0.
31

380 N. Tomašev et al.

The improvements in silhouette index that were observed on high-dimensional
data were explained by separately observing the index values and index component
values for different types of points—hubs, outliers and regular points [78]. It was
shown that hubness-based clustering methods mostly help with improving the
b-component in the silhouette index for hub points. This result suggests that
hubness-based methods achieve most of their improvements by ensuring that hubs
remain distributed among clusters in such a way as to increase the overall between-
cluster distances.

11.8 Application Domains and Other Types
of Hubness-Aware Methods

Hubness is a phenomenon that was first observed in music recommendation and
retrieval [5, 6, 25, 29, 45]. Hub songs were occurring very frequently in top-k result
sets even in those cases when there was little or no observable semantic correlation
with the queries, according to expert analysis. While the existence of hubs is quite
natural in many types of complex real-world networks where power laws frequently
arise, such as protein-protein interaction networks [21, 31, 51], this finding was
considered surprising at the time, as kNN graphs were not closely examined in
this way before. Similar problems have been noted in a related task of speaker
recognition [19, 59]. The phenomenon was initially attributed to the particular
representations and metrics that were standard at the time. However, as subsequent
analysis has shown, hubness is ubiquitous in intrinsically high-dimensional data and
has since been confirmed in images [53, 71, 72], text [55, 75, 77], time series [56],
collaborative filtering data [48], etc. In general, most data that is encountered today
in practical machine learning and data mining applications is highly complex and
intrinsically high-dimensional. Therefore, it is expected to exhibit certain hubness.
The exact skewness of the occurrence distribution may vary, but hubs are still
expected to emerge. Hubness removal and/or hubness-aware learning have recently
been advocated for high-hubness data [60].

In many tasks, data hubness is detrimental to analysis, as hubs often tend to
act as semantic singularities when labels are present. This is both a geometric
consequence of their emergence, as well as a consequence of frequent and severe
cluster assumption violation in many real-world data sets. Therefore, hubness-
aware methods have been proposed for instance selection [10, 66], metric learning
[35,36,58,64,70] and classification [67,69,74,76]—in order to reduce the negative
impact of detrimental hub points in supervised learning. Hubness has also been
shown to affect the performance of learning methods under class imbalance in high-
dimensional data [68].

As for clustering, we have shown that hubness can actually be exploited
for improving clustering performance and that it is possible to base clustering
approaches for intrinsically high-dimensional data on the assumption that neighbor

11 Hubness-Based Clustering of High-Dimensional Data 381

occurrence frequencies correlate well with local cluster centrality. Hubness-based
clustering algorithms excel precisely in those cases where most standard clustering
methods start facing problems—in cases of high dimensionality and high sparsity.
In fact, they are not really applicable to the low-dimensional case and this should
be kept in mind. As our experimental comparisons suggest, biggest improvements
can be seen in cases where data hubness is most pronounced, as the skewness of the
neighbor k-occurrence distribution is their working assumption.

11.9 Possible Future Directions

Our experiments support hubness-based clustering as a promising approach for
handling intrinsically high-dimensional data and here we have presented several
simple partitional clustering methods based on exploiting hubness in the search for
cluster prototypes. Neighbor occurrence frequency acts as a good local centrality
measure in high-dimensional data, so it easily conceivable that it can be integrated
with ease into other types of existing clustering approaches as well, not only
into extensions of K-means. It is especially tempting to consider hubs in those
algorithms that use the k-nearest neighbor graph for clustering—and there is a
considerable number of algorithms that fall into that category. Also, it would be
interesting to see how hubness can be exploited to possibly improve or enrich
other types of clustering methods that are tailored specifically for intrinsically high-
dimensional data, like shared-neighbor clustering methods or subspace clustering
methods. Another tempting idea would be to extend the existing hubness-based
approaches to include label information when available, in order to adapt them to
semi-supervised clustering tasks. These are some general directions that we intend
to pursue in the future.

In kernel GHPKM, a more thorough investigation into the effects of parameter
values of different kernels and the consequences of preserving/changing the original
kNN structure in the maps is required. The initial results presented in this chapter
need to be expanded in order to obtain a fuller understanding of the underlying
processes and to consequently be able to use the algorithms to their fullest potential.

Additionally, as scalability is becoming crucial in many practical applications,
it is necessary to develop efficient hubness-based approximations that would be
applicable to large data sets.

Acknowledgements Miloš Radovanović and Mirjana Ivanović gratefully acknowledge the sup-
port of this work by the Serbian Ministry of Education, Science and Technological Development
through project Intelligent Techniques and Their Integration into Wide-Spectrum Decision Support,
no. OI174023.

382 N. Tomašev et al.

References

1. Aggarwal C (2009) On high dimensional projected clustering of uncertain data streams.
In: Proceedings of the 25th IEEE international conference on data engineering (ICDE),
pp 1152–1154

2. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics
in high dimensional spaces. In: Proceedings of the 8th international conference on database
theory (ICDT), pp 420–434

3. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (2005) Automatic subspace clustering of high
dimensional data. Data Min Knowl Discov 11(1):5–33

4. Arthur D, Vassilvitskii S (2007) k-meansCC: The advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM symposium on discrete algorithms (SODA),
pp 1027–1035

5. Aucouturier JJ (2006) Ten experiments on the modelling of polyphonic timbre. PhD thesis,
University of Paris 6, Paris, France

6. Aucouturier JJ, Pachet F (2004) Improving timbre similarity: How high is the sky? J Negative
Results Speech Audio Sci 1(1):1–13

7. Bai L, Liang J, Dang C, Cao F (2011) A novel attribute weighting algorithm for clustering
high-dimensional categorical data. Pattern Recogn 44(12):2843–2861

8. Bernecker T, Emrich T, Kriegel HP, Renz M, Zankl S, Züfle A (2011) Efficient probabilis-
tic reverse nearest neighbor query processing on uncertain data. Proc VLDB Endowment
4(10):669–680

9. Bohm C, Kailing K, Kriegel HP, Kroger P (2004) Density connected clustering with local
subspace preferences. In: Proceedings of the Fourth IEEE international conference on data
mining (ICDM), pp 27–34

10. Buza K, Nanopoulos A, Schmidt-Thieme L (2011) INSIGHT: Efficient and effective instance
selection for time-series classification. In: Proceedings of the 15th Pacific-Asia conference on
knowledge discovery and data mining (PAKDD), Part II, pp 149–160

11. Celebi ME, Kingravi HA (2012) Deterministic initialization of the k-means algorithm using
hierarchical clustering. Int J Pattern Recogn Artif Intell 26(7):1250,018

12. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

13. Cheema M, Lin X, Zhang W, Zhang Y (2011) Influence zone: Efficiently processing reverse k
nearest neighbors queries. In: Proceedings of the 27th IEEE international conference on data
engineering (ICDE), pp 577–588

14. Chen J, ren Fang H, Saad Y (2009) Fast approximate kNN graph construction for high
dimensional data via recursive Lanczos bisection. J Mach Learn Res 10:1989–2012

15. Chen X, Ye Y, Xu X, Huang JZ (2012) A feature group weighting method for subspace
clustering of high-dimensional data. Pattern Recogn 45(1):434–446

16. Chitta R, Jin R, Havens TC, Jain AK (2011) Approximate kernel k-means: Solution to large
scale kernel clustering. In: Proceedings of the 17th ACM SIGKDD international conference on
knowledge discovery and data mining, pp 895–903

17. Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill, London
18. Dhillon IS, Guan Y, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts.

In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 551–556

19. Doddington G, Liggett W, Martin A, Przybocki M, Reynolds D (1998) SHEEP, GOATS,
LAMBS and WOLVES: A statistical analysis of speaker performance in the NIST 1998 speaker
recognition evaluation. In: Proceedings of the 5th international conference on spoken language
processing (ICSLP), paper 0608

20. Draper B, Elliott D, Hayes J, Baek K (2005) Em in high-dimensional spaces. IEEE Trans Syst
Man Cybern 35(3):571–577

11 Hubness-Based Clustering of High-Dimensional Data 383

21. Ekman D, Light S, Björklund A, Elofsson A (2006) What properties characterize the hub
proteins of the protein-protein interaction network of saccharomyces cerevisiae? Genome Biol
7:1–13

22. Ertz L, Steinbach M, Kumar V (2003) Finding topics in collections of documents: A shared
nearest neighbor approach. In: Wu W, Xiong H, Shekhar S (eds) Clustering and information
retrieval. Kluwer, Dordrecht

23. Fern XZ, Brodley CE (2003) Random projection for high dimensional data clustering: A cluster
ensemble approach. In: Proceedings of 20th international conference on machine learning
(ICML), pp 186–193

24. Fern XZ, Brodley CE (2004) Cluster ensembles for high dimensional clustering: An empirical
study. Tech. Rep. CS06-30-02, Oregon State University

25. Flexer A, Schlueter J, Schnitzer D (2012) Putting the user in the center of music information
retrieval. In: Proceedings of the 13th international society for music information retrieval
conference (ISMIR), pp 385–390

26. François D, Wertz V, Verleysen M (2007) The concentration of fractional distances. IEEE Trans
Knowl Data Eng 19(7):873–886

27. France S, Carroll D (2009) Is the distance compression effect overstated? Some theory and
experimentation. In: Proceedings of the 6th international conference on machine learning and
data mining in pattern recognition (MLDM), pp 280–294

28. Frederix G, Pauwels EJ (2004) Shape-invariant cluster validity indices. In: Proceedings of the
4th industrial conference on data mining (ICDM), pp 96–105

29. Gasser M, Schnitzer D, Flexer A (2010) Hubs and orphans – an explorative approach. In:
Proceedings of the 7th sound and music computing conference (SMC)

30. He J, Kumar S, Chang SF (2012) On the difficulty of nearest neighbor search. In: Proceedings
of the 29th international conference on machine learning (ICML), pp 1127–1134

31. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Genetics
2(6):826–834

32. Houle ME (2008) The relevant-set correlation model for data clustering. J Stat Anal Data Min
1(3):157–176

33. Houle ME, Kriegel HP, Kröger P, Schubert E, Zimek A (2010) Can shared-neighbor distances
defeat the curse of dimensionality? In: Proceedings of the 22nd international conference on
scientific and statistical database management (SSDBM), pp 482–500

34. Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near
neighbors. IEEE Trans Comput 22:1025–1034

35. Jégou H, Harzallah H, Schmid C (2007) A contextual dissimilarity measure for accurate and
efficient image search. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pp 1–8

36. Jégou H, Schmid C, Harzallah H, Verbeek J (2010) Accurate image search using the contextual
dissimilarity measure. IEEE Trans Pattern Anal Mach Intell 32(1):2–11

37. Jing L, Ng M, Xu J, Huang J (2005) Subspace clustering of text documents with feature
weighting k-means algorithm. In: Ho T, Cheung D, Liu H (eds) Advances in knowledge
discovery and data mining, lecture notes in computer science, vol 3518. Springer, New York,
pp 802–812

38. Jing L, Ng M, Huang J (2007) An entropy weighting k-means algorithm for subspace clustering
of high-dimensional sparse data. IEEE Trans Knowl Data Eng 19(8):1026–1041

39. Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data
3(1):1:1–1:58

40. Li T, Ma S, Ogihara M (2004) Document clustering via adaptive subspace iteration. In:
Proceedings of the 27th annual international ACM SIGIR conference on research and
development in information retrieval, pp 218–225

41. Lin HT, Lin CJ (2003) A study on sigmoid kernels for SVM and the training of non-PSD
kernels by SMO-type methods. Tech. rep., Department of Computer Science, National Taiwan
University

384 N. Tomašev et al.

42. Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction. In: Proceedings of
the 26th ACM SIGMOD international conference on management of data, pp 20–29

43. Lowe D (1999) Object recognition from local scale-invariant features. In: Proceedings of the
7th IEEE international conference on computer vision (ICCV), vol 2, pp 1150–1157

44. Lu Y, Wang S, Li S, Zhou C (2011) Particle swarm optimizer for variable weighting in
clustering high-dimensional data. Mach Learn 82(1):43–70

45. M S, A F (2012) A mirex meta-analysis of hubness in audio music similarity. In: Proceedings of
the 13th international society for music information retrieval conference (ISMIR), pp 175–180

46. Ma X, Zhang C, Shekhar S, Huang Y, Xiong H (2011) On multi-type reverse nearest neighbor
search. Data Knowl Eng 70(11):955–983

47. Moëllic PA, Haugeard JE, Pitel G (2008) Image clustering based on a shared nearest neighbors
approach for tagged collections. In: Proceedings of the international conference on content-
based image and video retrieval (CIVR), pp 269–278

48. Nanopoulos A, Radovanović M, Ivanović M (2009) How does high dimensionality affect
collaborative filtering? In: Proceedings of the 3rd ACM conference on recommender systems
(RecSys), pp 293–296

49. Ntoutsi I, Zimek A, Palpanas T, Kröger P, Kriegel HP (2012) Density-based projected
clustering over high dimensional data streams. In: Proceedings of the 12th SIAM international
conference on data mining (SDM), pp 987–998

50. Patidar A, Agrawal J, Mishra N (2012) Analysis of different similarity measure functions and
their impacts on shared nearest neighbor clustering approach. Int J Comput Appl 40:1–5

51. Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein-protein interaction
networks. Int J Mol Sci 11(4):1930–1943

52. Paulevé L, Jégou H, Amsaleg L (2010) Locality sensitive hashing: A comparison of hash
function types and querying mechanisms. Pattern Recogn Lett 31(11):1348–1358

53. Pracner D, Tomašev N, Radovanović M, Mladenić D, Ivanović M (2011) WIKImage: Corre-
lated image and text datasets. In: Proceedings of the 14th international multiconference on
information society (IS), Jožef Stefan Institute, Ljubljana, Slovenia, vol A, pp 141–144

54. Radovanović M, Nanopoulos A, Ivanović M (2010) Hubs in space: Popular nearest neighbors
in high-dimensional data. J Mach Learn Res 11:2487–2531

55. Radovanović M, Nanopoulos A, Ivanović M (2010) On the existence of obstinate results in
vector space models. In: Proceedings of the 33rd annual international ACM SIGIR conference
on research and development in information retrieval, pp 186–193

56. Radovanović M, Nanopoulos A, Ivanović M (2010) Time-series classification in many intrinsic
dimensions. In: Proceedings of the 10th SIAM international conference on data mining (SDM),
pp 677–688

57. Satuluri V, Parthasarathy S (2012) Bayesian locality sensitive hashing for fast similarity search.
Proc VLDB Endowment 5(5):430–441

58. Schnitzer D, Flexer A, Schedl M, Widmer G (2011) Using mutual proximity to improve
content-based audio similarity. In: Proceedings of the 12th international society for music
information retrieval conference (ISMIR), pp 79–84

59. Schnitzer D, Schlüter J, Flexer A (2012) The relation of hubs to the Doddington zoo in speaker
verification. In: Proceedings of the 21st european signal processing conference (EUSIPCO)

60. Schnitzer D, Flexer A, Tomašev N (2014) A case for hubness removal in high-dimensional
multimedia retrieval. In: Advances in information retrieval, lecture notes in computer science,
vol 8416. Springer, New York, pp 687–692

61. Scott D, Thompson J (1983) Probability density estimation in higher dimensions. In: Proceed-
ings of the 15th symposium on the interface, pp 173–179

62. Singh A, Ferhatosmanoglu H, Tosun AŞ (2003) High dimensional reverse nearest neighbor
queries. In: Proceedings of the 12th international conference on information and knowledge
management (CIKM), pp 91–98

63. Steinbach M, Ertöz L, Kumar V (2004) The challenges of clustering high dimensional data. In:
Wille LT (ed) New directions in statistical physics. Springer, New York, pp 273–309

11 Hubness-Based Clustering of High-Dimensional Data 385

64. Suzuki I, Hara K, Shimbo M, Saerens M, Fukumizu K (2013) Centering similarity measures
to reduce hubs. In: Proceedings of the conference on empirical methods in natural language
processing (EMNLP), pp 613–623

65. Tan PN, Steinbach M, Kumar V (2005) Introduction to data mining. Addison Wesley, Reading
66. Ting-ting Z, Zhen-feng H (2012) Instance selection algorithms of balanced class distribution

based on hubness for time series. J Comput Appl cations 32:3034–3037
67. Tomašev N, Mladenić D (2012) Nearest neighbor voting in high dimensional data: Learning

from past occurrences. Comput Sci Inform Syst 9(2):691–712
68. Tomašev N, Mladenić D (2013) Class imbalance and the curse of minority hubs. Knowl Based

Syst 53:157–172
69. Tomašev N, Mladenić D (2013) Hub co-occurrence modeling for robust high-dimensional knn

classification. In: Machine learning and knowledge discovery in databases, lecture notes in
computer science, vol 8189. Springer, New York, pp 643–659

70. Tomašev N, Mladenić D (2013) Hubness-aware shared neighbor distances for high-
dimensional k-nearest neighbor classification. Knowl Inform Syst 39(1):89–122

71. Tomašev N, Mladenić D (2013) Image hub explorer: Evaluating representations and metrics
for content-based image retrieval and object recognition. In: Machine learning and knowledge
discovery in databases. Springer, Berlin, pp 637–640

72. Tomašev N, Brehar R, Mladenić D, Nedevschi S (2011) The influence of hubness on
nearest-neighbor methods in object recognition. In: Proceedings of the 7th IEEE international
conference on intelligent computer communication and processing (ICCP), pp 367–374

73. Tomašev N, Radovanović M, Mladenić D, Ivanović M (2011) Hubness-based fuzzy measures
for high-dimensional k-nearest neighbor classification. In: Proceedings of the 7th international
conference on machine learning and data mining (MLDM), pp 16–30

74. Tomašev N, Radovanović M, Mladenić D, Ivanović M (2011) A probabilistic approach
to nearest-neighbor classification: Naive hubness bayesian kNN. In: Proceedings of the
20th ACM international conference on information and knowledge management (CIKM),
pp 2173–2176

75. Tomašev N, Leban G, Mladenić D (2013) Exploiting hubs for self-adaptive secondary re-
ranking in bug report duplicate detection. In: Proceedings of the conference on information
technology interfaces (ITI)

76. Tomašev N, Radovanović M, Mladenić D, Ivanović M (2013) Hubness-based fuzzy measures
for high-dimensional k-nearest neighbor classification. Int J Mach Learn Cybern. DOI
10.1007/s13042-012-0137-1

77. Tomašev N, Rupnik J, Mladenić D (2013) The role of hubs in cross-lingual supervised
document retrieval. In: Proceedings of the Pacific-Asia conference on knowledge discovery
and data mining (PAKDD). Springer, New York, pp 185–196

78. Tomašev N, Radovanović M, Mladenić D, Ivanović M (2014) The role of hubness in clustering
high-dimensional data. IEEE Trans Knowl Data Eng 26(3):739–751

79. Vinh NX, Houle ME (2010) A set correlation model for partitional clustering. In: Zaki M, Yu
J, Ravindran B, Pudi V (eds) Advances in knowledge discovery and data mining, lecture notes
in computer science, vol 6118. Springer, New York, pp 4–15

80. Wang J, Kumar S, Chang SF (2012) Semi-supervised hashing for large-scale search. IEEE
Trans Pattern Anal Mach Intell 34(12):2393–2406

81. Xia H, Wu P, Hoi SC, Jin R (2012) Boosting multi-kernel locality-sensitive hashing for scalable
image retrieval. In: Proceedings of the 35th international ACM SIGIR conference on research
and development in information retrieval, pp 55–64

82. Yin J, Fan X, Chen Y, Ren J (2005) High-dimensional shared nearest neighbor clustering
algorithm. In: Fuzzy systems and knowledge discovery, lecture notes in computer science, vol
3614. Springer, New York, pp 484–484

83. Yu K, Ji L, Zhang X (2002) Kernel nearest-neighbor algorithm. Neural Process Lett
15(2):147–156

http://dx.doi.org/10.1007/s13042-012-0137-1

386 N. Tomašev et al.

84. Zhang P, Cheng R, Mamoulis N, Renz M, Zufle A, Tang Y, Emrich T (2013) Voronoi-based
nearest neighbor search for multi-dimensional uncertain databases. In: Proceedings of the 29th
IEEE international conference on data engineering (ICDE), pp 158–169

85. Zhang Z, Zhang R (2009) Multimedia data mining. Chapman and Hall, Boka Raton
86. Zheng L, Huang D (2012) Outlier detection and semi-supervised clustering algorithm based

on shared nearest neighbors. Comput Syst Appl 29:117–121

Chapter 12
Clustering for Monitoring Distributed
Data Streams

Maria Barouti, Daniel Keren, Jacob Kogan, and Yaakov Malinovsky

Abstract Monitoring data streams in a distributed system is a challenging problem
with profound applications. The task of feature selection (e.g., by monitoring the
information gain of various features) is an example of an application that requires
special techniques to avoid a very high communication overhead when performed
using straightforward centralized algorithms.

Motivated by recent contributions based on geometric ideas, we present an
alternative approach that combines system theory techniques and clustering. The
proposed approach enables monitoring values of an arbitrary threshold function
over distributed data streams through a set of constraints applied independently on
each stream and/or clusters of streams. The clusters are designed to evolve in time
and to adapt themselves to the data stream. A correct choice of clusters yields a
reduction in communication load. Unlike many clustering algorithms that attempt
to collect together similar data items, monitoring requires clusters with dissimilar
vectors canceling each other as much as possible. In particular, sub-clusters of a
good cluster do not have to be good. This novel type of clustering dictated by the
problem at hand requires development of new algorithms and/or modification of the
existing ones, and the chapter is a step in this direction.

We report experiments on real-world data with a newly devised clustering
algorithm. The experiments detect instances where communication between nodes
is required, and show that the clustering approach reduces communication load.
We then propose an application of the well known clustering algorithms to the
monitoring problem.

Keywords Data streams • Distributed system • Clustering • Adaptive stream
mining

M. Barouti (�) • J. Kogan • Y. Malinovsky
Department of Mathematics and Statistics, UMBC, Baltimore, MD 21250, USA
e-mail: bmaria2@umbc.edu; kogan@umbc.edu; yaakovm@umbc.edu

D. Keren
Department of Computer Science, Haifa University, Haifa 31905, Israel
e-mail: dkeren@cs.haifa.ac.il

© Springer International Publishing Switzerland 2015
M.E. Celebi (ed.), Partitional Clustering Algorithms,
DOI 10.1007/978-3-319-09259-1__12

387

mailto:bmaria2@umbc.edu
mailto:kogan@umbc.edu
mailto:yaakovm@umbc.edu
mailto:dkeren@cs.haifa.ac.il

388 M. Barouti et al.

12.1 Introduction

In many emerging applications one needs to process a continuous stream of data in
real time. Sensor networks [21], network monitoring [11], and real-time analysis of
financial data [30, 31] are examples of such applications. Monitoring queries are a
particular class of queries in the context of data streams. Previous work in this area
deals with monitoring simple aggregates [11], or term frequency occurrence in a set
of distributed streams [22]. The current contribution is motivated by results recently
reported in [24, 25] where a more general type of monitoring query is described as
follows:

Let S D fs1; : : : ; sng be a set of data streams collected at n nodes N D
fn1; : : : ;nng. Let v1.t/; : : : ; vn.t/ be d -dimensional, real-valued, time varying
vectors derived from the streams. For a function f W Rd ! R we would like
to monitor the inequality

f

�
v1.t/C � � � C vn.t/

n

�
> 0 (12.1)

while minimizing communication between the nodes. Often the threshold might be
a constant r other than 0. In what follows, for notational convenience, we shall
always consider the inequality f > 0, and when one is interested in monitoring the
inequality f > r we will modify the threshold function and consider g D f � r ,
so that the inequality g > 0 yields f > r . In e.g. [5, 14, 15, 24] a few real-life
applications of this monitoring problem are described; see also Sect. 12.2 here.

The difference between monitoring problems involving linear and non-linear
functions f is discussed and illustrated by a simple example involving a quadratic
function f in [24]. The example demonstrates that, for a non-linear f , it is often
very difficult to determine from the values of f at the nodes whether its value
evaluated at the average vector is above the threshold or not. The present chapter
deals with the information gain function (see Sect. 12.2 for details), and rather
than focus on the values of f we consider the location of the vectors vi .t / relative
to the boundary of the subset of Rd where f is positive. We denote this set by
ZC.f / D fv W f .v/ > 0g, and state (12.1) as

v.t/ D v1.t/C � � � C vn.t/
n

2 ZC.f /: (12.2)

Thus, the functional monitoring problem is transformed to the monitoring of a
geometric condition. As a simple illustration, consider the case of three scalar
functions v1.t/, v2.t/ and v3.t/, and the identity function f (i.e. f .x/ D x).
We would like to monitor the inequality

v.t/ D v1.t/C v2.t/C v3.t/

3
> 0

12 Clustering for Monitoring Distributed Data Streams 389

while keeping the nodes silent as long as possible. One strategy is to verify the initial

inequality v.t0/ D v1.t0/C v2.t0/C v3.t0/

3
> 0 and to keep the nodes silent while

jvi .t / � vi .t0/j < ı D v.t0/; t � t0; i D 1; 2; 3:

The first time t when one of the functions, say v1.t/, crosses the boundary of the
local constraint, i.e. jv1.t/� v1.t0/j � ı the nodes communicate, t1 is set to be t , the
mean v.t1/ is computed, the local constraint ı is updated and made available to the
nodes. The nodes are kept silent as long as the inequalities

jvi .t / � vi .t1/j < ı; t � t1; i D 1; 2; 3

hold. This type of monitoring was suggested in [19] for a variety of vector
norms. The numerical experiments conducted in [19] with the dataset described
in Sect. 12.5.1 show that:

1. The number of time instances the mean violates (12.1) is a small fraction
(< 1%) of the number of time instances when the local constraint is violated
at the nodes.

2. The lion’s share of communications (about 75 %) is required because of a single
node violation of the local constraint ı.

3. The smallest number of communications is required when one uses the l1 norm.

We note that if, for example, the local constraint is violated at n1, i.e. jv1.t/ �
v1.t0/j � ı, and at the same time

v1.t/ � v1.t0/ D �Œv2.t/ � v2.t0/�;

while jv3.t/ � v3.t0/j < ı then jv.t/ � v.t0/j < ı, f .v.t// > 0, and update of the
mean can be avoided. Separate monitoring of the two node cluster fn1;n2g would
require communication involving two nodes only, and could reduce communication
load. We aim to extend this idea to the general case—involving many nodes,
arbitrary functions, and high-dimensional data.

Clustering in general is a difficult problem, and many clustering problems are
known to be NP-complete [4]. Unlike standard clustering that attempts to collect
together similar data items [23], we are seeking clusters with dissimilar data items,
which cancel out each other as much as possible. While sub-clusters of a “classical”
good cluster are usually good, this may not be the case when a cluster contains
dissimilar objects. These observations indicate that a straightforward application of
common clustering methods to our problem is not possible.

A basic attempt to cluster nodes was suggested in [20] with results reported for
the dataset presented in Sect. 12.5.1. Clustering together just two nodes reported in
[20] reduces communication by about 10 %.

In this chapter we advance clustering approach to monitoring. The main
contribution of this work is twofold:

390 M. Barouti et al.

1. We suggest a specific clustering strategy applicable to a variety of vector norms,
and report the communication reduction achieved when the proposed strategy is
applied with l1, l2, and l1 norms.

2. We suggest an application of well known clustering algorithms to monitoring.

The chapter is organized as follows. In Sect. 12.2 we present a relevant Text
Mining application. Section 12.3 provides motivation for node clustering. A specific
implementation of node clustering is presented in Sect. 12.4. Experimental results
are reported in Sect. 12.5. In Sect. 12.6 we discuss a possible application of clas-
sical clustering algorithms to monitoring. Section 12.7 concludes the chapter and
indicates new research directions. Appendix 1 summarizes some useful properties
of the first and second moments. Appendix 2 details the accounting of message
transmission.

In the next section we provide a Text Mining related example that leads to a non
linear threshold function f .

12.2 Text Mining Application

Let T be a textual database (for example a collection of mail or news items). We
denote the size of the set T by jTj. We will be concerned with two subsets of T:

1. R-the set of “relevant” texts (e.g. texts not labeled as “spam”),
2. F-the set of texts that contain a “feature” (word or term for example).

We denote complements of the sets by R, F respectively (i.e. R[R D F[F D T),
and consider the relative size of the four sets F \ R, F \ R, F \ R, and F \ R as
follows:

x11.T/ D jF \ Rj
jTj ; x12.T/ D jF \ Rj

jTj ;

x21.T/ D jF \ Rj
jTj ; x22.T/ D jF \ Rj

jTj : (12.3)

Note that

0 � xij � 1; and x11 C x12 C x21 C x22 D 1: (12.4)

The function f is defined on the simplex (i.e. xij � 0,
X

xij D 1), and given by

X

i;j

xij log

�
xij

.xi1 C xi2/.x1j C x2j /
�
; (12.5)

12 Clustering for Monitoring Distributed Data Streams 391

where log x D log2 x throughout the chapter. It is well-known that (12.5) provides
the information gain for the “feature” (see e.g. [16]).

As an example, we consider n agents installed on n different servers, and a stream
of texts arriving at the servers. Let Th D fth1; : : : ; thwg be the last w texts received

at the hth server, with T D
n[

hD1
Th. Note that

xij .T/ D
nX

hD1

jThj
jTj xij .Th/;

i.e., entries of the global contingency table fxij .T/g are the weighted average of the
local contingency tables fxij .Th/g, h D 1; : : : ; n.

To check that the given “feature” is sufficiently informative with respect to the
target relevance label r , one may want to monitor the inequality

f .x11.T/; x12.T/; x21.T/; x22.T// � r > 0 (12.6)

with f given by (12.5) while minimizing communication between the servers.
We next provide arguments in support of clustering for monitoring distributed

data streams.

12.3 Monitoring Threshold Functions
Through Clustering: Motivation

In what follows we denote a norm of a vector v by kvk. While the experiments
reported in this chapter have been conducted with l1, l2, and l1 norms, the proposed
monitoring and node clustering procedures can be applied with any norm. We shall
identify a specific norm used when needed. For a vector set X D fx1; : : : ; xmg
 Rd

we denote the arithmetic mean
x1 C � � � C xm

m
of the set by �.X/. With slight abuse

of notations the central second moment
mX

iD1
.xi � �.X//T .xi � �.X// is denoted

by 	2.X/. The zero set fv W v 2 Rd ; f .v/ D 0g of a function f is denoted by Zf .
Our aim is to monitor data streams with as little communication as possible over

a sequence of discrete time instances that we shall denote by t . The time instances
that require communication between nodes are denoted by ti , i D 0; 1; 2; : : : . The
approach suggested in this chapter builds on the monitoring strategy involving no
clustering proposed in [19] and briefly described as follows:

392 M. Barouti et al.

Algorithm 12.3.1 Monitoring Threshold Function

• A node is designated as a root r.
• The root sets i D 0.
• Until end of stream

1. The root sends a request to each node n for the vectors vn.ti /. The nodes
respond to the root. The root computes the distance ı between the mean
1

n

X

n2N

vn.ti / and the zero set Zf of the function f . The root transmits ı to

each node.
2. do for each n 2 N

If jjvn.t/ � vn.ti /jj < ı
the node n is silent

else
n notifies the root about the violation of its local constraint ı
the root sets i D i C 1
go to Step 1.

endif

• Stop

An application of the above procedure to data streams generated from the Reuters
Corpus RCV1-V2 (see Sect. 12.5 for detailed description of the data and experi-
ments) leads to 4006 time instances in which the local constraints are violated, and
the root is updated. Results presented in Table 12.1 show that in 3034 out of 4006
time instances, communications with the root are triggered by constraint violations
at exactly one node.

The results immediately suggest to cluster nodes to further reduce communica-
tion load. Each cluster will be equipped with a “coordinator” c (one of the cluster’s
nodes). If a cluster node n violates its local constraint at time t , then the coordinator
collects vectors vn.t/ � vn.ti / from all the nodes in the cluster, computes the mean
of the vectors, and checks whether the mean violates the coordinator constraint
ı (at this point, node and coordinator constraints are identical, see Sect. 12.4 for
discussion pertaining to constraints). We shall follow [24] and refer to this step as
“the balancing process.” If the coordinator constraint is violated, the coordinator
alerts the root, and the mean of the entire dataset is recomputed by the root (for
detailed description of the procedure see Sect. 12.4).

For the problem at hand we would like to partition the set of nodes N into k
clusters ˘ D f�1; : : : ; �kg so that

Table 12.1 number of local constraint violations simultaneously by k nodes, r D 0:0025, l2 norm,
the feature is “bosnia”

of nodes violators 1 2 3 4 5 6 7 8 9 10

of violation instances 3034 620 162 70 38 26 34 17 5 0

12 Clustering for Monitoring Distributed Data Streams 393

N D
k[

iD1
�i ; and �i

\
�j D ; if i 6D j:

We denote the size of �i by j�i j. If for each cluster �i one has

1

j�i j

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
X

n2�i
Œvn.t/ � vn.tj /�

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ < ı;

then, due to convexity of any norm, one has

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

n

X

n2N

vn.t/ � 1
n

X

n2N

vn.tj /

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ �

kX

iD1

j�i j
n

"
1

j�i j

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
X

n2�i
Œvn.t/ � vn.tj /�

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

#
< ı:

Hence the “new” mean
1

n

X

n2N

vn.t/ belongs to ZC.f / if the “old” mean

1

n

X

n2N

vn.tj / belongs to this set. We therefore may attempt to define the quality

of a k cluster partition ˘ as

Q.˘/ D max
i

(
1

j�i j

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
X

n2�i
Œvn.t/ � vn.tj /�

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

)
; i D 1; : : : ; k: (12.7)

Our aim is to identify k and a k cluster partition ˘o that minimizes (12.7). The
monitoring problem requires to assign nodes fni1 ; : : : ;nik g to the same cluster � so
that the total average change within cluster �

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

j�j
X

n2�
Œvn.t/ � vn.tj /�

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ for t > tj

is minimized, i.e., nodes with different variations vn.t/�vn.tj / that cancel out each
other as much as possible are assigned to the same cluster.

A standard clustering problem is often described as “. . . finding and describing
cohesive or homogeneous chunks in data, the clusters” (see e.g. [23]). Unlike
classical clustering procedures, this one needs to combine “dissimilar” nodes
together.

The proposed partition quality Q.˘/ (see (12.7)) generates three immediate
problems:

1. Since the arithmetic mean a of a finite set of real numbers fa1; : : : ; akg satisfies

minfa1; : : : ; akg � a � max fa1; : : : ; akg

394 M. Barouti et al.

the single cluster partition always minimizes Q.˘/. Considering the entire set
of nodes as a single cluster with its own coordinator that communicates with the
root introduces an additional unnecessary “bureaucracy” layer that only increases
communications. We seek a trade-off which yields clusters with “good” sizes
(this is rigorously defined in Sect. 12.4).

2. Computation of Q.˘/ involves future values vn.t/, which are not available at
time tj when the clustering is performed.

3. Since the communication overhead of the balancing process is proportional to
the size of a cluster, the individual clusters’ sizes should affect the clustering
quality q.�/.

In the next section we address these problems.

12.4 Monitoring Threshold Functions
Through Clustering: Implementation

We argue that in addition to the average magnitude of the variations vn.t/ � vn.tj /

inside the cluster � , the cluster’s size also affects the frequency of updates, and, as
a result, the communication load. We therefore define the quality of the cluster � by

q.�/ D 1

j�j

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
X

n2�
Œvn.t/ � vn.tj /�

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇC ˛j�j; (12.8)

where ˛ is a nonnegative scalar parameter. The quality of the partition ˘ D
f�1; : : : ; �kg is defined by

Q.˘/ D max
i2f1;:::;kg

q.�i /; (12.9)

When ˛ D 0 the partition that minimizes Q.˘/ is a single cluster partition (that
we would like to avoid). When max

n

ˇ̌ˇ̌
vn.t/ � vn.tj /

ˇ̌ˇ̌ � ˛ the optimal partition is

made up of n singleton clusters. In this chapter we focus on

0 < ˛ < max
n2N

ˇ̌ˇ̌
vn.t/ � vn.tj /

ˇ̌ˇ̌
: (12.10)

The constant ˛ depends on t and tj , and below we show how to avoid this
dependence.

Computation of Q.˘/ required for the clustering procedure is described below.
In order to compute Q.˘/ at time tj one needs to know vn.t/ at a future time
t > tj which is not available. While the future behavior is not known, we shall
use past values of vn.t/ for prediction. For each node n we build “history” vectors
hn.tj / defined as follows:

12 Clustering for Monitoring Distributed Data Streams 395

1. hn.t0/ D 0
2. if (hn.tj / is already available)

hn.tjC1/ D hn.tj /

for t increasing from tj to tjC1 do

hn.tjC1/ D 1

2
hn.tjC1/C Œvn.t/ � vn.tj /�

The vectors hn.tj / accumulate the history of changes, with older changes assigned
smaller weights. We shall use the vectors fhn.tj /g to generate a node partition
at time tj . We note that normalization of the vector set that should be clustered
does not change the induced optimal partitioning of the nodes. When the vector
set is normalized by the magnitude of the longest vector in the set, the range
for ˛ conveniently shrinks to Œ0; 1�. In what follows we set h D max

n2N
jjhn.tj /jj,

assume that h > 0, and describe a “greedy” clustering procedure for the normalized
vector set

fa1; : : : ; ang; ai D 1

h
hni .tj /; i D 1; : : : ; n:

We start with the n cluster partition ˘n (each cluster is a singleton). We set k D n

and loop the following procedure until the number of clusters reduces to k D 2.

Algorithm 12.4.1 (Incremental Clustering)

• Set k D n.
• do until k > 2:

1. in partition ˘k identify cluster �j of maximal quality, i.e.,

q
�
�j
� � q .�i / i 6D j:

2. identify cluster �i so that the merger of �i with �j produces a cluster of
smallest possible quality, i.e.,

q
�
�j
[
�i

�
� q

�
�j
[
�l

�
; l 6D j;

where cluster’s quality is defined by (12.8).
3. Build partition ˘k�1 by merging clusters �j and �i .
4. Set k D k � 1.
5. go to Step 1.

• Stop.

The final partition is selected from the n�1 partitions f˘2; : : : ; ˘ng as the one that
minimizes Q.

396 M. Barouti et al.

Note that node constraints ı do not have to be equal (see Algorithm 12.4.2, Step 2).
Taking into account the distribution of the data streams at each node can further
reduce communication. We illustrate this statement by a simple example involving
two nodes. If, for example, there is reason to believe that the inequality

2kv1.t/ � v1.ti /k � kv2.t/ � v2.ti /k (12.11)

always holds, then the number of node violations may be reduced by imposing node
dependent constraints

kv1.t/ � v1.ti /k < ı1 D 2

3
ı; and kv2.t/ � v2.ti /k < ı2 D 4

3
ı

so that the wider varying stream at the second node enjoys larger “freedom” of
change, while the inequality

ˇ̌
ˇ̌
ˇ̌
ˇ̌v1.t/C v2.t/

2
� v1.ti /C v2.ti /

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌ <

ı1 C ı2
2

D ı

holds true. Assigning “weighted” local constraints requires information provided
by (12.11). With no additional assumptions about the stream data distribution this
information is not available. Unlike [17] we refrain from making assumptions
regarding the underlying data distributions; instead, we estimate the weights through
past values vn.t/, n 2 N.

At the initial time t0 all nodes report their vectors vn.t0/ to the root, the root
computes the average, and the distance ı.r/ from the average to the boundary of
ZC.f /. At this point we define ı.n/ D ı.r/, for each n 2 N.

We now focus on a particular node n. Consider first m time instances
t 1; t 2; : : : ; tm and the vector set

V0n D fv0n.t1/; : : : ; v0n.tm/g;

where

v0n.tm/ D vn.t
m/; v0n.tm�1/ D

1

2
vn.t

m�1/; : : : ; v0n.t1/ D
1

2m�1
vn.t

1/:

The node constraint ı.n/ introduced below depends on the arithmetic mean
�.V0n/ and the central second moment

	2.V0n/ D
mX

iD0

�
v0n.ti / � �.V0n/

�T �
v0n.ti / � �.V0n/

�

12 Clustering for Monitoring Distributed Data Streams 397

of the node n. We denote �.V0n/ by �n, and 	2.V0n/ by 	2n . Since
ˇ̌ˇ̌

v0n.t i / � �n

ˇ̌ˇ̌ �r
m � 1
m

	2n , i D 1; : : : ; m (see Appendix 1) we define

Wn.t
m/ D Wn D jj�njj C

r
m � 1
m

	2n :

We note that although the bound

r
m � 1
m

	2n may be very conservative, the same

conservative criterion is applied uniformly to every node.
If at time tm the root constraint ı.r/ is updated, each node n broadcastsWn.t

m/ D
Wn to the root, the root computes W D

X

n2N

Wn, and transmits the updated ı.n/ D

wnı.r/ where wn D n� Wn

W
.so that

X

n2N

wn D n/ back to node n. For a coordinator

c of a node cluster � the constraint ı.c/ D 1

j�j
X

n2�
ı.n/.

Algorithm 12.4.2 Monitoring Threshold Function with Clustering

• A node is designated as a root r.
• The root sets i D 0.
• Until end of stream

1. The root sends a request to each node n for the vectors vn.ti /. The nodes
respond to the root. The root computes the distance ı between the mean
1

n

X

n2N

vn.ti / and the zero set Zf of the function f . The root transmits ı to

each node.
2. set t D ti

do
set violationD 0; t D t C 1
for each n 2 N

If jjvn.t/ � vn.ti /jj � ı
violation++

endif
while (violation=0)

3. set i D i C 1, and ti D t
4. violator node n notifies the root about the violation of its local constraint ı
5. The root requests vectors vn.ti / and weights Wn.ti /.

The root forms a partition˘ D f�1; : : : ; �kg and sends node and coordinator
constraints ı.n/ and ı.c/ to nodes and coordinators.

6. do for each � 2 ˘
do for each n 2 �

If ı.n/ � jjvn.t/ � vn.ti /jj

398 M. Barouti et al.

If ı.c/ � 1

j�j

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
X

n2�
vn.t/ �

X

n2�
vn.ti /

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

notify root about coordinator violation
goto Step 3

endif
endif

• Stop

Node constraints ı.n/ based on the first moment only are introduced in [2]. In the
next section we provide monitoring results for node constraints based on the first
and second moments, and compare the results with those reported in [2] as well as
monitoring with no clustering reported in [19].

12.5 Experimental Results

This section presents few experimental results of monitoring with clustering.
Monitoring algorithms are always applied to the data considered in [24] which is
described next.

12.5.1 Data

The data streams analyzed in this section are generated from the Reuters Corpus
RCV1-V2.1 The data consists of 781; 265 tokenized documents with document ID
ranging from 2651 to 810596. We simulate n streams by arranging the feature
vectors in ascending order with respect to document ID, and selecting feature
vectors for the stream in the round-robin fashion.

Each document in the Reuters Corpus RCV1-V2 is labeled as belonging to one
or more categories. We label a vector as “relevant” if it belongs to the “CORPO-
RATE/INDUSTRIAL” (“CCAT”) category, and “spam” otherwise. Following [24]
we focus on three features: “bosnia,” “ipo,” and “febru.” Each experiment was
performed with 10 nodes, where each node holds a sliding window containing the
last 6,700 documents it received.

First we use 67,000 documents to generate initial sliding windows. The remain-
ing 714,265 documents are used to generate datastreams, hence the selected feature
information gain is computed 714,265 times. Based on all the documents contained
in the sliding window at each one of the 714,266 time instances we compute and
graph 714,266 information gain values for the feature “bosnia” (see Fig. 12.1). For

1http://leon.bottou.org/projects/sgd.

http://leon.bottou.org/projects/sgd

12 Clustering for Monitoring Distributed Data Streams 399

Fig. 12.1 information gain
values for the feature “bosnia”

0 1 2 3 4 5 6 7 8

x 105

x 10−3

0

1

2

3

4

5

6

7

8
bosnia

iterations

IG

the experiments described below, the threshold value r is predefined, and the goal is
to monitor the inequality f .v/ � r > 0 while minimizing communication between
the nodes. We also assume that new texts arrive simultaneously at each node. We
define a broadcast as one time transmission of information between different nodes.

12.5.2 Monitoring with Incremental Clustering

The previous work [2] reported monitoring results obtained with the incremental
clustering algorithm (Algorithm 12.4.1) with weights Wn D k�nk only. We
shall call this implementation of the algorithm “first moment incremental cluster-

ing” (FMIC). The clustering algorithm with weights Wn D jj�njj C
q

m�1
m
	2n

introduced in this chapter will be referred to as the “second moment incremental
clustering” (SMIC). In this section we report and compare results generated by the
algorithms for the threshold r D 0:0025 and ˛ D 0:05; 0:10; : : : ; 0:95.

The best result with respect to ˛ obtained by an application of FMIC to the
feature “febru,” is presented in Table 12.2. The clustering approach in this case
is particularly successful—coordinators’ constraints are not violated, and the root
mean updates are decreased significantly as compares, for example, to results
reported in [19].

The corresponding results generated by SMIC are provided in Table 12.3. Results
in Table 12.3 show a significant decrease in the number of broadcasts as compared
to results in Table 12.2.

Next we turn to the features “ipo” and “bosnia.” In both cases we run monitoring
with FMIC and SMIC, allowing ˛ D 0:05; 0:10; : : : ; 0:95, and report results with

400 M. Barouti et al.

Table 12.2 Number of root and coordinator mean computa-
tions, and total broadcasts for feature “febru” with threshold
r D 0:0025 and the “first moment clustering”

Norm Best ˛
Root mean
update

Coordinator
mean update

Total
broadcasts

l1 0.70 1431 0 38665

l2 0.80 1317 0 35597

l
1

0.65 1409 0 38093

Table 12.3 Number of root and coordinator mean computations, and total broad-
casts for feature “febru” with threshold r D 0:0025 and the “second moment
clustering”

Norm Best ˛
Root mean
update

Coordinator
mean update

Total
broadcasts

l1 0.85 883 0 23859

l2 0.75 833 0 22509

l
1

0.75 854 0 23076

Table 12.4 Number of root and coordinator mean computations, and total broad-
casts for feature “ipo” with threshold r D 0:0025 and the “first moment clustering”

Norm Best ˛
Root mean
update

Coordinator
mean update

Total
broadcasts

l1 0.15 5455 829 217925

l2 0.10 7414 1782 296276

l
1

0.10 9768 2346 366300

Table 12.5 Number of mean
computations, and broadcasts,
for feature “bosnia” with
threshold r D 0:0025, no
clustering

Norm Mean updates Broadcasts

l1 3053 79378

l2 4006 104156

l
1

3801 98826

the lowest number of broadcasts. The results obtained for “ipo” with FMIC are
presented in Table 12.4. Application of SMIC leads to results provided in Table 12.4.
The tables demonstrates significant inside cluster activity, and a significant decrease
in broadcasts due to the second moment.

Finally we turn to the feature “bosnia.” Monitoring procedure presented in [19]
and involving no clustering produced results collected in Table 12.5. Application of
FMIC to monitoring this feature information gain reported in [2] was described as
the “less successful.” FMIC leads to a slight decrease in the number of broadcasts

12 Clustering for Monitoring Distributed Data Streams 401

Table 12.6 Number of root and coordinator mean computations, and total broad-
casts for feature “bosnia” with threshold r D 0:0025 and the “first moment
clustering”

Norm Best ˛
Root mean
update

Coordinator
mean update

Total
broadcasts

l1 0.65 3290 2 89128

l2 0.55 3502 7 97602

l
1

0.60 3338 2 91306

Table 12.7 Number of root and coordinator mean computations, and total broad-
casts for feature “bosnia” with threshold r D 0:0025 and the “second moment
clustering”

Norm Best ˛
Root mean
update

Coordinator
mean update

Total
broadcasts

l1 0.65 1749 8 47717

l2 0.75 1940 4 52510

l
1

0.65 1756 8 47958

Table 12.8 Number of root and coordinator mean computations, and total broad-
casts for feature “ipo” with threshold r D 0:0025 and the “second moment
clustering”

Norm Best ˛
Root mean
update

Coordinator
mean update

Total
broadcasts

l1 0.50 4585 121 127345

l2 0.35 6304 421 180536

l
1

0.30 8405 842 240455

in case of the l2 and l1 norms (see Table 12.6). In case of the l1 norm, the number
of broadcasts increases. The second moment clustering further significantly reduces
the number of broadcasts, see Table 12.7.

In the next section we briefly recall a number of well known clustering
algorithms, and indicate how those can be used for monitoring data streams.

12.6 Conventional Clustering Algorithms

This section briefly reviews a number of classical clustering algorithms we propose
to use for node clustering. The algorithms are:

1. Principal Direction Divisive Partitioning (PDDP), [3];
2. batch k-means (see e.g. [13, 28]),
3. incremental k-means (e.g. [12, 26]),
4. the combination of batch and incremental k-means [26], and [27].

402 M. Barouti et al.

An application of k-means requires an initial partition of the data. While a number
of initialization methods for the k-means clustering algorithm are available in
the literature (see e.g. recent survey [6]) we focus on PDDP which is briefly
described next.

12.6.1 PDDP

A good partitioning of a vector set into a number of subsets is a difficult problem
even in the case when the required number of subsets is only two. There is, however,
an exception. When the dimension of the vector space is one, i.e. one has to deal
with a scalar set, the problem is relatively easy. While real-life data is rarely one
dimensional, a least squares one dimensional approximation can be constructed
and used to cluster a multidimensional vector set. The Principal Direction Divisive
Partitioning algorithm briefly recalled below does just that. In the reminder of this
section we demote by kak the l2 norm of a vector a.

For a vector a and a line l in Rd denote by Pl.a/ the orthogonal projection of a
on l. For a set of vectors A D fa1; : : : ; amg and a line l in Rd denote by Pl.A / the
set of projections fPl.a1/; : : : ;Pl.am/g. For a fixed vector set A the quantity

mX

iD1
jjai � Pl.ai /jj2

depends on the line l. A line that minimizes this quantity (and provides the best
least squares fit for the set A) defines a principal direction. This line passes through
the arithmetic mean � D � .A / of the vector set A , and its direction vector is an
eigenvector of the matrix BBT that corresponds to the maximal eigenvalue. Here
B D Œa1; : : : ; am� � �eT , and e is a vector of ones (for details see e.g. [18]).

A basic step of the Principal Direction Divisive Partitioning algorithm (PDDP) is
the following:

1. Given a set of vectors A in Rd determine the one dimensional line l that provides
the “best” approximation to A .

2. Project A onto l, and denote the projection of the set A by P (note that P is
just a set of scalars). Denote the projection of a vector a by p.

3. Partition P into two subsets P1 and P2.
4. Generate the induced partition fA1;A2g of A as follows:

A1 D fa W p 2P1g ; and A2 D fa W p 2P2g (12.12)

The algorithm divides the entire collection into two clusters by using the principal
direction. Each of these two clusters will be divided into two sub-clusters using the

12 Clustering for Monitoring Distributed Data Streams 403

same process recursively. The subdivision of a cluster is stopped when the cluster
satisfies a certain “quality” criterion (such as, for example, cluster size, number of
clusters, or cluster quality).

Implementation of the algorithm requires computation of the largest eigenvalue
of the symmetric matrix BBT . In many cases this task may not be performed
analytically. While in the text mining application described in Sect. 12.2 the space
dimension d D 4 one of the coordinates is an affine function of three others (see
(12.4)). We now consider the case when each d dimensional data vector a can be
written as

a D

b
CbC d

�
;

where b 2 Rd1 , d 2 Rd2 , d1 C d2 D d , and C is an d2 � d1 matrix. For a vector set

B D fb1; : : : ;bmg one has � .A / D

� .B/

C� .B/C d

�
. We now turn to the matrix

BBT . Denoting bi � � .B/ by vi we obtain

B D

v1 : : : vm
Cv1 : : : Cvm

�
D

I

C

� �
v1 : : : vm

�
; where I is the d1 � d1 identity matrix:

Since rank B � d1 one has rank BBT � d1, and the number of nonzero eigenvalues
ofBBT does not exceed d1. For our text mining application d1 D 3, and the nonzero
eigenvalues can be obtained by solving a cubic equation, i.e., the eigenvalues for
BBT corresponding to the largest eigenvalue can be obtained just by solving a
system of linear equations.

PDDP by itself generates good clustering results. Those could be further
improved by applying k-means clustering to partitions generated by PDDP (see e.g.
[18]). Next we briefly recall a number of versions of k-means.

12.6.2 Batch k-Means

A work horse of clustering mentioned already in [28] and most often attributed
to [13] batch k-means is by far most popular clustering algorithm. The algorithm
is scalable, and easy to implement. The algorithm is centered around the concept
of “centroid”-the best vector representative for a vector set introduced below (see
[9, 10]).

For a set of vectors A D fa1; : : : ; amg
 Rn, and a “distance” function d.x; a/
define a centroid c D c .A / of the set A as a solution of the minimization problem

c D arg min

(
X

a2A
d.x; a/; x 2 C

)
; (12.13)

where C is a predefined subset of the space.

404 M. Barouti et al.

We call d a “distance” function because even in the classical implementation of
k-means d.x; a/ D kx � ak22, the square of the l2 norm, that fails to be a distance
function (the triangle inequality does not hold). Further, k-means works with a wide
class of functions called Bregman divergences and failing to be distances (Kullback–
Leibler divergence is one of them, see [1]).

The quality of the set A is denoted by q .A / and is defined by

q .A / D
X

a2A
d .c; a/ ; where c D c .A / (12.14)

(we set q.;/ D 0 for convenience). Let ˘ D f�1; : : : ; �kg be a partition of A , i.e.

[

i

�i D A ; and �i \ �j D ; if i 6D j:

We define the quality of the partition ˘ by

Q.˘/ D q.�1/C � � � C q.�k/: (12.15)

We aim to find a partition ˘min D f�min
1 ; : : : ; �min

k g that minimizes the value of the
objective function Q. The problem is known to be NP-hard, and we are looking for
algorithms that generate “reasonable” solutions. It is easy to see that centroids and
partitions are associated as follows:

1. Given a partition ˘ D f�1; : : : ; �kg of the set A one can define the correspond-
ing centroids fc .�1/ ; : : : ; c .�k/g by:

c .�i / D arg min

(
X

a2�i
d.x; a/; x 2 C

)
: (12.16)

2. For a set of k “centroids” fc1; : : : ; ckg one can define a partition ˘ D
f�1; : : : ; �kg of the set A by:

�i D fa W a 2 A ; d.ci ; a/ � d.cl ; a/ for each l D 1; : : : ; kg (12.17)

(we break ties arbitrarily). Note that, in general, c .�i / 6D ci .

The classical batch k-means algorithm is a procedure that iterates between the two
steps described above to generate a partition ˘ 0 from a partition ˘ .

While 0 � Q.˘ 0/ � Q.˘/ and the process described above converges, it rarely
converges to the global minimum. Even in a simple scalar case A D f0; 2; 3g, and

the initial partition ˘.0/ D
n
�
.0/
1 ; �

.0/
2

o
where �.0/1 D f0; 2g, and �.0/2 D f3g an

application of batch k-means to ˘.0/ does not change the partition, and misses a

better partition ˘.1/ D
n
�
.1/
1 ; �

.1/
2

o
with �.1/1 D f0g, and �.1/2 D f2; 3g. The reason

for this phenomenon along with a possible remedy is suggested in [7]. Before the

12 Clustering for Monitoring Distributed Data Streams 405

relevant material is briefly recalled in the next section we remark that an application
of PDDP to the scalar dataset A generates partition˘.1/. This observation suggests
to use PDDP to generate initial partitions to k-means like algorithms.

12.6.3 Incremental k-Means

The failure of batch k-means to discover a better partition˘.1/ stems from a simple
fact that Step 2 of the procedure ignores change of centroids due to data-vectors’
movement governed by (12.17). A way to accurately account for the centroid change
is to allow a single data-vector movement during one iteration of the algorithm. This
version of k-means is described, for example, in the classical manuscript [12].

While more accurate, incremental k-means changes cluster affiliation of only one
vector per iteration. As compared to batch k-means the algorithm requires many
more iterations to converge, hence is time consuming. We next discuss a “merger”
of two algorithms.

12.6.4 Batch k-Means Followed by Incremental k-Means

While more accurate incremental k-means is not as fast as the batch algorithm. To
benefit from speed of the batch algorithm and accuracy of the incremental k-means
a number of contributions suggested to “merge” both algorithms as follows:

1. run batch k-means until it stops.
2. run one iteration of incremental k-means
3. if the iteration incremental k-means changed the partition

goto Step 1
else

Stop.

All numerical computations associated with Step 2 of the algorithm have been
already performed in Step 1. The improvement over batch k-means comes, therefore,
at virtually no additional computational expense [8]. The possibility of the “merger”
was first indicated, perhaps, in [26], and formally introduced in [27]. Later the
“merger” was independently rediscovered by many other authors.2 Sequential
application

PDDP�!batch k-means�!incremental k-means

generates good tight clusters. Next we describe how these tight clusters can be used
for node clustering.

2Confirming the old adage that “success has many parents while failure is an orphan.”

406 M. Barouti et al.

12.6.5 Node Clustering with Classical Clustering Algorithms

To simplify the exposition we first consider a two cluster f�1; �2g partition problem
for a given set of n vectors A D fa1; : : : ; ang
 Rd . We are seeking a partition
˘ D f�1; �2g so that

A D �1
[
�2; �1

\
�2 D ;

and the partition ˘ quality Q.˘/ given by

Q.˘/ D max

(ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

j�1j
X

a2�1
a

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ ;

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

j�2j
X

a2�2
a

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

)

is minimized. Due to convexity of any norm one has

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

jA j
X

a2A
a

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
j�1j
jA j

1

j�1j
X

a2�1
aC j�2jjA j

1

j�2j
X

a2�2
a

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

� j�1jjA j

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

j�1j
X

a2�1
a

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇC
j�2j
jA j

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

j�2j
X

a2�2
a

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

� j�1jjA jQ.˘/C
j�2j
jA jQ.˘/ D Q.˘/:

This inequality shows that the norm of the mean is a lower bound for Q.˘/. We
next show how to build an optimal partition for a special particular case of the data
set.

Assume that n D 2m, and the vector set A consists of two identical copies of m
vectors, i.e.

A D fa1; : : : ; am; a1; : : : ; amg:

If �o1 D �o2 D fa1; : : : ; amg, then j�o1 j D j�o2 j D
1

2
jA j, and

max

8
<

:
1

j�o1 j

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
X

a2�o1
a

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌ ;

1

j�o2 j

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
X

a2�o2
a

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌

9
=

; D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

jA j
X

a2A
a

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ ;

i.e., f�o1 ; �o2 g is an optimal partition.
This observation motivates the following two cluster ˘ D f�1; �2g partition

strategy:

12 Clustering for Monitoring Distributed Data Streams 407

1. Apply any clustering algorithm to the dataset A to generate clusters of size 2.
2. Select one vector from each cluster generated and assign selected vectors to

cluster �1.
3. Assign remaining vectors to cluster �2.

Generalization of this strategy to a k cluster partition and full description of the
algorithm is beyond the scope of this chapter and will be provided elsewhere.

12.7 Conclusions

In this chapter we consider application of clustering to monitoring data streams in a
distributed system. Unlike standard clustering algorithms that aiming at collections
of similar data items into same clusters, monitoring requires clusters with dissimilar
vectors canceling each other as much as possible. A straightforward application of
a standard clustering algorithm is, therefore, not possible.

We devise a specific clustering strategy that yields a reduction in communication
load. The proposed clustering depends on a scalar parameter ˛, and may be too
slow for applications involving systems with large number of nodes. Dependence
of the number of broadcasts on ˛ is not understood at this point and should be
further investigated. Figure 12.2 shows the number of broadcasts for 18 values
˛ D 0:05; 0:10; : : : ; 0:95. The smallest number of broadcasts corresponds to
˛ D 0:30 (as reported in Table 12.8). Next we run monitoring for 98 values
of ˛ D 0:01; 0:02; : : : ; 0:99 (see Fig. 12.3). This time the smallest number of
broadcasts corresponds to ˛ D 0:16. Zooming in does not indicate any particularly
useful property of the function.

Fig. 12.2 l
1

norm,
˛ D 0:05; 0:10; : : : ; 0:95 vs.
broadcasts, for feature “ipo”

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.4

2.45

2.5

2.55

2.6

2.65
x 105 α vs. broadcasts

α

br
oa

dc
as

ts

408 M. Barouti et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 105 x 105α vs. broadcasts

α

br
oa

dc
as

ts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.38

2.4

2.42

2.44

2.46

2.48

2.5
α vs. broadcasts

α

br
oa

dc
as

ts

Fig. 12.3 feature “ipo”, l
1

norm, ˛ D 0:01; 0:02; : : : ; 0:99 vs. broadcasts, (left) and zoom in for
˛ D 0:14; 0:15; : : : ; 0:99 (right)

Each recomputation of ı (the distance from the mean
1

n

X

n2N

vn.ti / and the zero

set Zf of the function f) triggers recomputations of node constraints ı.n/. This
chapter uses the first and second moments to recompute node constraints. We plan
to consider additional statistical metrics such as, for example, median for node
constraints computations.

A possible applications of classical clustering algorithms is an additional
research direction that may lead to scalable clustering procedures. While the
experimental results demonstrate than communication savings may depend on
the choice of a norm or a “distance” function many of the proposed clustering
algorithms can be applied with Bregman divergences [29].

Appendix 1: First and Second Moments

In what follows we consider the auxiliary problem: “Let X be a vector set of size m
with mean � and variance � > 0. How far away from � a vector x 2 X can get?”
The answer to this question is provided below. To simplify the exposition we first
assume � D 0.

Let X .m; �/ be a family of sets X D fx1; : : : ; xmg
 Rd with �.X/ D 0, and

	2.X/ D
mX

iD1
.xi � �.X//T .xi � �.X// D � � 0. In this section jjxjj stands for

jjxjj2. For each X 2X .m; �/ define r.X/ and R.�/ as follows:

r.X/ D max
x2X
kxk; and R.�/ D sup

X2X .m;�/

r.X/:

12 Clustering for Monitoring Distributed Data Streams 409

In what follows we describe sets X� 2 X .m; �/ that maximize r , and the
function R.�/.

Lemma 12.1. The function R.�/ is a homogeneous function of degree
1

2
. For each

positive scalar c one has R.c�/ D c 12 R.�/.
Proof. Note that for a positive scalars t and s one has

tR.�/ D t r
�

X�

�
D r

�
tX�

�
� r

�
X� t2

�
D R.�t2/;

and

sR.� t2/ D sr.X� t2 / D r.sX� t2 / � r.X� t2s2 / D R.�t2s2/:

In particular when ts D 1 one has

R.�/ � t�1R.� t2/; and R.�t2/ � s�1R.�/:

This shows that for positive t one has tR.�/ D R.�t2/ and completes the proof. ut
Lemma 12.2. Let u 2 X� be such that kuk D r.X� / D R.�/. For each x 2 X�

there is a scalar c such that x D cu.

Proof. We assume now that the claim is false. Without any loss of generality
we assume that kuk D 1. Let fx1; : : : ; xkg be all nonzero vectors in X� so that

u.uT xi / 6D xi , i D 1; : : : ; k. The vectors xi�u.uT xi / 6D 0,
kX

iD1

�
xi � u.uT xi /

� D 0,

and
mX

iD1
u.uT xi / D 0. Consider now the vector set X0 D fx01; : : : ; x0mg where

x0i D
1

2
Œxi � u.uT xi /�C u.uT xi /; i D 1; : : : ; k; and x0i D xi ; i D k C 1; : : : ; m:

We note that �.X0/ D 0, and 	2.X0/ D � 0 < � . Due to Lemma 12.1 one has

1 D r.X0/ � R.� 0/ < R.�/ D 1:

This contradiction completes the proof.

Lemma 12.3. Let u 2 X� be such that kuk D r.X� / D R.�/. For each x 2 X� ,
x 6D u there is a scalar c � 0 such that x D cu.

Proof. First note that there is at least one x 2 X� such that x D cu with c < 0. We
denote this c by c�. Assume that the statement of the lemma is false. Then there
is 0 < cC � 1 such that cCu 2 X� . Let � > 0 be so small that cC � � > 0, and

410 M. Barouti et al.

c� C � > 0. Define X0 by substituting the vectors cCu and c�u by .cC � �/u and
.c�C�/u correspondingly, and keeping the otherm�2 vectors unchanged. We note
that �.X0/ D 0, and 	2.X0/ D � 0 < � . Due to Lemma 12.1 one has

kuk D r.X0/ � R.� 0/ < R.�/ D kuk:
This contradiction completes the proof.

Lemma 12.4. Let u 2 X� be such that kuk D r.X� / D R.�/. If x 2 X� and x 6D u,

then x D � 1

m � 1u.

Proof. Assume the opposite, i.e., there are x1 D c1u, and x2 D c2u such that c1 <
c2 � 0. Let X0 be a vector set obtained from X� by substituting c1u by .c1��/u, c2u
by .c2 C �/u, and keeping the other vectors unchanged. Note that �.X0/ D 0, and

	2.X� / � 	2.X0/ D 2�.c2 � c1 � �/:
We note that for a small positive � one has 	2.X� / > 	2.X0/. Due to Lemma 12.1
one has

kuk D r.X0/ � R.� 0/ < R.�/ D kuk:
This contradiction completes the proof.

The next statement summarizes the above results.

Theorem 12.1. If X D fx1; : : : ; xmg 2 Rd with �.X/ D �, and 	2.X/ D � � 0,
then

kxi � �k2 � m � 1
m

�:

Further, kxm � �k2 D m � 1
m

� if and only if

x1 D � � � D xm�1 D � � 1

m � 1 Œxm � ��:

We now establish connection between first and second moments for two sets of d
dimensional vectors X D fx1; : : : ; xmg and X0 D fx01; : : : ; x0m; x0mC1g where 2x0i D
xi , i D 1; : : : ; m.

�.X0/ D m

mC 1
�
1

2
�.X/

�
C 1

mC 1x0mC1

	2
�
X0
� D 1

4
	2 .X/C m

mC 1
�

x0mC1 �
1

2
�.X/

�T �
x0mC1 �

1

2
�.X/

�
:

12 Clustering for Monitoring Distributed Data Streams 411

Appendix 2: Broadcast Count

Transmission of a double precision real number is defined as a message in
[19]. In this chapter, in addition to real numbers typically representing vector
coordinates, integer values such as node ID and node “reporting order” should
also be transmitted. Transmission of node IDs is needed, for example, to allow the
root to cluster nodes. To minimize communication load nodes in smaller clusters
report violations of node constraints first, and the reporting order is assigned and
communicated to nodes by the root that knows all cluster sizes.

Since every vector v associated with a node belongs to a simplex, it is represented
by a real number not exceeding 1. We may use the integer part of these real
numbers for transmission of integers. There is a variety of coding and compression
techniques that can be used to transmit a set of real numbers as a single real.
The discussion of these methods is beyond the scope of this chapter. In order to
be able to compare different monitoring techniques we shall count a number of
broadcasts, where by a broadcast we mean a single communication between two
nodes. As an illustration, below we compute the number of broadcasts needed
for one iteration of Algorithm 12.3.1 triggered by violation of a node constraint
(note that the communication scheme below is different from the one suggested in
Algorithm 12.3.1). We first assume that the violator node n is different from the
root.

1. The violator node n notifies all other nodes (except the root) about the violation
(n � 2 broadcasts).

2. Each node n broadcasts its vector vn to the root (n � 1 broadcasts).
3. The root recomputes ı.r/ and sends it to each node (n � 1 broadcasts).

This leads to 3.n � 1/ � 1 broadcasts. If the violator node n is the root itself, the
number of broadcasts becomes 3.n� 1/ (at step 1 above the root has to make n� 1
broadcasts).

Next we turn to monitoring with clustering. The monitoring procedure starts with
each node n sending its initial vector vn.t0/ to the root r (that requires n � 1 broad-

casts). The root computes the mean
1

n

X

n

vn.t0/ of the initial vectors, computes

ı.r/, and broadcasts ı.r/ to each node (n � 1 broadcasts). After exchanging

2.n � 1/ (12.18)

broadcasts the monitoring proceeds with each node being a singleton cluster.

1. As long as the inequality

jvn.t/ � vn.t0/j < ı.r/ holds true for each node n

412 M. Barouti et al.

the nodes are silent. At the first time instance t when the inequality is violated
for at least one node n, the following actions are triggered:

a. the node n (if the node itself is not the root) broadcasts its ID and vector vn.t/

to the root (1 broadcast),
b. the root issues n � 2 requests for ID and vn.t/ to the other nodes (n � 2

broadcasts),
c. n � 2 nodes report their IDs and vn.t/ vectors to the root (n � 2/ broadcasts),

This brings the number of broadcasts to 2n � 3. If the violating node is the root,
then this number is 2n � 2. To simplify the computations we select the largest
number 2n � 2.

At this step, and keeping in mind (12.18), the total number of broadcasts
needed to be exchanged is

2.n � 1/C 2n � 2 D 4.n � 1/: (12.19)

2. Next the root recomputes ı.r/, clusters nodes, and broadcasts to each node (n �
1 broadcasts) its updated local constraint ı.n/, the ID of its coordinator, and
the reporting order. If a node is also a coordinator, then IDs of its nodes, and
coordinator reporting order are provided to the coordinator by the root. Keeping
in mind (12.19), the total number of broadcasts right after the first root mean
update and first clustering is

5.n � 1/: (12.20)

Clusters are now formed, and we shall count the number of broadcasts needed to be
exchanged for each of the three types of possible violations at time t assuming that
clusters are formed last time at time tk , k D 0; 1; : : : .
1. A node constraint is violated in a singleton cluster.

a. the violating node n reports its ID, vn.t/, Wn, and the history vector hn to the
root (1 broadcasts),

b. the root requests all other n�2 nodes to provide their input (ID’s, vn.t/ vectors,
Wn weights, and history vectors h, total of n � 2 broadcasts),

c. the n � 2 nodes report ID’s, vn.t/ vectors, Wn weights, and history vectors h
to the root (.n � 2/ broadcasts),

d. the root recomputes the constraint ı.r/, node constraints ı.n/, and reports to
each node its coordinator ID, ı.n/, and the node “reporting order.” Cluster
coordinators also receive IDs of the nodes in their respective clusters (n � 1
broadcasts).

This leads to 3.n � 1/ � 1 broadcasts if the violating node is not the root, and
3.n � 1/ broadcasts if the violation is at the root. To compute the broadcasts we
use the larger number

3.n � 1/: (12.21)

12 Clustering for Monitoring Distributed Data Streams 413

2. A node constraint is violated in a non singleton cluster � with coordinator c.

a. the violator n reports its ID, �n D vn.t/ � vn.tk/, and ın to the coordinator c
(1 broadcast),

b. the coordinator c sends request for �n vectors and node constraints ın for all
nodes in its cluster � other then n and itself (j�j � 2 broadcasts)

c. the nodes broadcast their vectors � and constraints ı to the coordinator (total
of .j�j � 2/ broadcasts). The total comes to 2j�j � 3, and this number is
2j�j � 2 when the violating node is the coordinator.

The total of broadcasts needed is:

2j�j � 2: (12.22)

3. A coordinator constraint is violated. First we assume the coordinator c is not
the root:

a. the coordinator c of cluster � broadcasts requests to all nodes (except itself
and the root) to provide the root with their IDs, vectors vn.t/, weightsW , and
history vectors h (n � 2 broadcasts).

b. n � 1 nodes (n � 2 nodes requested by the coordinator and the coordinator
itself) send the requested information to the root (n � 1 broadcasts).

c. the root recomputes ı.r/, clusters nodes and provides each node with updated
local constraint ı.n/, the new cluster affiliation (i.e. ID of a new coordinator),
and the node “reporting order.” Coordinators are also provided with the IDs
of their nodes (total of n � 1 broadcasts).

This brings the number of broadcasts to 3.n � 1/ � 1. If c is the root, then this
number is 3.n � 1/, and this is the number we use to compute broadcasts

3.n � 1/: (12.23)

Acknowledgements The authors thank the editor for bringing a number of significant relevant
references to their attention. The research of the second author was supported by Grant No.
2008405 from the United States-Israel Binational Science Foundation (BSF). The work of the
fourth author was partially supported by a 2013 UMBC Summer Faculty Fellowship grant.

References

1. Banerjee A, Merugu S, Dhillon IS, Ghosh J (2004) Clustering with Bregman divergences. In:
Proceedings of the 2004 SIAM international conference on data mining, pp 234–245

2. Barouti M, Keren D, Kogan J, Malinovsky Y (2014) Monitoring distributed data streams
through node clustering. In: Proceedings of the international conference on machine learning
(MLDM’2014), July 21–24. St. Petersburg, Russia, Springer-Verlag Lecture Notes in Com-
puter Science (LNAI), pp. 149–162

3. Boley DL (1998) Principal direction divisive partitioning. Data Min Knowl Discov 2:325–344

414 M. Barouti et al.

4. Brucker P (1978) On the complexity of clustering problems. In: Lecture notes in economics
and mathematical systems, vol 157. Springer, Berlin, pp 45–54

5. Burdakis S, Deligiannakis A (2012) Detecting outliers in sensor networks using the geometric
approach. In: ICDE, pp 1108–1119

6. Celebi ME, Kingravi H, Vela PA (2013) A comparative study of efficient initialization methods
for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

7. Dhillon IS, Guan Y, Kogan J (2002) Iterative clustering of high dimensional text data
augmented by local search. In: Proceedings of the 2002 IEEE international conference on data
mining, pp 131–138

8. Dhillon IS, Kogan J, Nicholas C (2003) Feature selection and document clustering. In: Berry
MW (ed) Survey of text mining. Springer, New York, pp 73–100

9. Diday E (1973) The dynamic cluster method in non–hierarhical clustering. J Comput Inf Sci
2:62–88

10. Diday E (1987) Some recent advances in clustering. Recent developments in clustering and
data analysis. In: Proceedings of the Japanise–French scientific seminar, pp 119–136

11. Dilman M, Raz D (2001) Efficient reactive monitoring. In: Proceedings of the twentieth annual
joint conference of the IEEE computer and communication societies, pp 1012–1019

12. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, New York
13. Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of classifi-

cations. Biometrics 21:768
14. Gabel M, Schuster A, Keren D (2013) Communication-efficient outlier detection for scale-out

systems. In: BD3@VLDB, pp 19–24
15. Garofalakis M, Keren D, Samoladas V (2013) Sketch-based geometric monitoring of dis-

tributed stream queries. In: PVLDB
16. Gray RM (1990) Entropy and information theory. Springer, New York
17. Keren D, Sharfman I, Schuster A, Livne A (2012) Shape sensitive geometric monitoring. IEEE

Trans Knowl Data Eng 24:1520–1535
18. Kogan J (2007) Introduction to clustering large and high-dimensional data. Cambridge

University Press, New York
19. Kogan J (2012) Feature selection over distributed data streams through convex optimization. In:

Proceedings of the twelfth SIAM international conference on data mining (SDM 2012). SIAM,
Anaheim, pp 475–484

20. Kogan J, Malinovsky Y (2013) Monitoring threshold functions over distributed data streams
with clustering. In: Proceedings of the workshop on data mining for service and maintenance
(held in conjunction with the 2013 SIAM international conference on data mining), pp 5–13

21. Madden S, Franklin MJ (2002) An architecture for queries over streaming sensor data. In:
ICDE 02, p 555

22. Manjhi A, Shkapenyuk V, Dhamdhere K, Olston C (2005) Finding (recently) frequent items in
distributed data streams. In: ICDE 05, pp 767–778

23. Mirkin B (2005) Clustering for data mining: a data recovery approach. Chapman & Hall/CRC,
Boca Raton

24. Sharfman I, Schuster A, Keren D (2007) A geometric approach to monitoring threshold
functions over distributed data streams, ACM Trans Database Syst 32:23:1–23:29

25. Sharfman I, Schuster A, Keren D (2010) A geometric approach to monitoring threshold
functions over distributed data streams. In: May M, Saitta L (eds) Ubiquitous knowledge
discovery. Springer, New York, pp 163–186

26. Späth H (1980) Cluster analysis algorithms for data reduction and classification of objects.
Ellis Horwood, Chichester

27. Späth H (1985) Cluster dissection and analysis: theory, FORTRAN programs, examples. Ellis
Horwood, Chichester

28. Steinhaus H (1956) Sur la division des corps matèriels en parties. Bull De L’Acadēmie
Polonaise Des Sci Classe III Math Astronomie Physique Chimie Geologie et Geographie
4:801–804

12 Clustering for Monitoring Distributed Data Streams 415

29. Teboulle M, Berkhin P, Dhillon I, Guan Y, Kogan J (2006) Clustering with entropy-like
k-means algorithms. In: Kogan J, Nicholas C, Teboulle M (eds) Grouping multidimensional
data: recent advances in clustering. Springer, New York, pp 127–160

30. Yi B-K, Sidiropoulos N, Johnson T, Jagadish HV, Faloutsos C, Biliris A (2000) Online
datamining for co-evolving time sequences. In: ICDE 00, p 13

31. Zhu Y, Shasha D (2002) Statestream: atatistical monitoring of thousands of data streams in real
time. In: VLDB, pp 358–369

	Preface
	Contents
	1 Recent Developments in Model-Based Clusteringwith Applications
	1.1 Introduction
	1.2 Methodological Developments
	1.2.1 Initialization
	1.2.2 Spurious Solutions
	1.2.3 Merging Mixture Components for Clustering
	1.2.4 Nonparametric Clustering
	1.2.5 Variable Selection for Clustering
	1.2.6 Semi-Supervised Clustering
	1.2.7 Diagnostics and Assessment of Partition Variability
	1.2.8 Miscellaneous Topics

	1.3 Modern Applications of Model-Based Clustering
	1.3.1 Clustering Tree Ring Sequences
	1.3.2 Identification of Differentially Expressed Genes
	1.3.3 Analysis of Customer Navigation Patterns
	1.3.4 Data Clustering on Unit-Hypersphere
	1.3.5 Analysis of Mass Spectrometry Data
	1.3.6 Network Clustering

	References

	2 Accelerating Lloyd's Algorithm for k-Means Clustering
	2.1 Introduction
	2.1.1 Popularity of the k-Means Algorithm
	2.1.2 The Standard k-Means Algorithm does a Lot of Unnecessary Work
	2.1.3 Previous Work on k-Means Acceleration
	2.1.3.1 Algorithmic Improvements
	2.1.3.2 Parallelization
	2.1.3.3 Alternative Heuristic Methods

	2.2 Cluster Distortion and Lloyd's Algorithm
	2.2.1 Analysis of Lloyd's Algorithm
	2.2.2 MacQueen's Algorithm

	2.3 Tree Structured Approaches
	2.3.1 Blacklisting and Filtering Centers with k-d Trees
	2.3.2 Anchors Hierarchy

	2.4 Triangle Inequality Approaches
	2.4.1 Using the Triangle Inequality for Center-Center and Center-Point Distances
	2.4.2 Maintaining Distance Bounds with the Triangle Inequality
	2.4.3 Elkan's Algorithm: k Lower Bounds, k2 Center-Center Distances
	2.4.4 Hamerly's Algorithm: 1 Lower Bound
	2.4.5 Drake's Algorithm: 1 < b < k Lower Bounds
	2.4.6 Annular Algorithm: Sorting the Centers by Norm
	2.4.7 Kernelized k-Means with Distance Bounds

	2.5 Heap-Ordered k-Means: Inverting the Innermost Loops
	2.5.1 Reducing the Number of Bounds Kept
	2.5.2 Cost of Combining Distance Bounds
	2.5.3 Inverting the Loops Over n and k
	2.5.4 Heap-Structured Bounds
	2.5.5 Analysis of Heap-Structured k-Means

	2.6 Parallelization
	2.7 Experiments and Discussion
	2.7.1 Testing Platforms
	2.7.2 Speedup Relative to the Naive Algorithm
	2.7.3 Parallelism
	2.7.4 Number of Distance Calculations
	2.7.5 Memory Use

	2.8 Conclusion
	References

	3 Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm
	3.1 Introduction
	3.2 Linear, Deterministic, and Order-Invariant K-Means Initialization Methods
	3.3 Experimental Setup
	3.3.1 Data Set Descriptions
	3.3.2 Attribute Normalization
	3.3.3 Performance Criteria

	3.4 Experimental Results and Discussion
	3.5 Conclusions
	References

	4 Nonsmooth Optimization Based Algorithms in Cluster Analysis
	4.1 Introduction
	4.2 Optimization Formulations of Clustering Problems
	4.2.1 Combinatorial Formulation of the Clustering Problem
	4.2.2 Mixed Integer Nonlinear Programming Formulation of the Clustering Problem
	4.2.3 Nonsmooth Nonconvex Optimization Formulation of the Clustering Problem
	4.2.4 Comparison of Different Formulations of Clustering Problem

	4.3 The Auxiliary Cluster Problem
	4.4 An Incremental Clustering Algorithm
	4.5 Computation of Starting Points for Cluster Centers
	4.6 The Modified Incremental Clustering Algorithm
	4.7 Solving Optimization Problems
	4.7.1 k-Means Type Heuristic Algorithm
	4.7.2 The Discrete Gradient Method
	4.7.3 An Algorithm Based on Smoothing Techniques
	4.7.3.1 Hyperbolic Smoothing of the Cluster Function
	4.7.3.2 Hyperbolic Smoothing of the Auxiliary Cluster Function
	4.7.3.3 Hyperbolic Smoothing of L1-Norm
	4.7.3.4 Hyperbolic Smoothing of L∞-Norm
	4.7.3.5 Smooth Clustering Problems

	4.8 Implementation of Incremental Clustering Algorithm
	4.9 Computational Results: Evaluation of the Incremental Algorithm
	4.9.1 Results for the Similarity Measure Based on the Squared L2-Norm
	4.9.2 Results for the Similarity Measure Based on the L1-Norm
	4.9.3 Results for the Similarity Measure Based on the L∞-Norm
	4.9.4 Dependence of Number of Distance Function Evaluations and CPU Time on Number of Clusters
	4.9.5 Results for Purity in Data Sets with Class Labels
	4.9.6 Visualization of Results

	4.10 Computational Results: Comparison with Other Clustering Algorithms
	4.10.1 Comparison of Algorithms Using the Similarity Measure Based on the Squared L2-Norm
	4.10.2 Comparison of Algorithms Using the Similarity Measure Based on the L1-Norm
	4.10.3 Comparison of Algorithms Using the Similarity Measure Based on the L∞-Norm

	4.11 Conclusions
	References

	5 Fuzzy Clustering Algorithms and Validity Indicesfor Distributed Data
	5.1 Introduction
	5.2 Fuzzy Clustering Algorithms
	5.2.1 FCM: Fuzzy c-Means
	5.2.2 GK: Gustafson Kessel
	5.2.3 Other Fuzzy Clustering Algorithms
	5.2.4 Complexity Analysis: Summary

	5.3 Clustering Validation
	5.3.1 XB: Xie-Beni
	5.3.2 FSS: Fuzzy Simplified Silhouette
	5.3.3 K: Kwon
	5.3.4 TSS: Tang-Sun-Sun
	5.3.5 FS: Fukuyama-Sugeno
	5.3.6 FHV: Fuzzy Hypervolume
	5.3.7 APD: Average Partition Density
	5.3.8 PD: Partition Density
	5.3.9 SCG
	5.3.10 PBMF
	5.3.11 Complexity Analysis: Summary
	5.3.12 OMR: Ordered Multiple Runs

	5.4 Distributed Fuzzy Clustering Algorithms
	5.4.1 DFCM: Distributed Fuzzy c-Means
	5.4.2 Framework for Distributed Data
	5.4.3 Other Distributed Fuzzy Clustering Algorithms
	5.4.4 Complexity Analysis: Communication

	5.5 Distributed Clustering Validation
	5.5.1 DXB: Distributed Xie-Beni
	5.5.2 DFSS: Distributed Fuzzy Simplified Silhouette
	5.5.3 DK: Distributed Kwon
	5.5.4 DTSS: Distributed Tang-Sun-Sun
	5.5.5 DFS: Distributed Fukuyama-Sugeno
	5.5.6 DFHV: Distributed Fuzzy Hypervolume
	5.5.7 DAPD: Distributed Average Partition Density
	5.5.8 DPD: Distributed Partition Density
	5.5.9 DSCG: Distributed SCG
	5.5.10 DPBMF: Distributed PBMF
	5.5.11 Complexity Analysis: Communication
	5.5.12 DOMR: Distributed Ordered Multiple Runs

	5.6 Summary of Results
	5.7 Experimental Evaluation
	5.8 Final Remarks
	Appendix: Additional Fuzzy Clustering Algorithms
	GG: Gath and Geva
	FCV: Fuzzy c-Varieties
	FCE: Fuzzy c-Elliptotypes
	PCM: Possibilistic c-Means
	PGK: Possibilistic Gustafson-Kessel
	FPCM: Fuzzy-Possibilistic c-Means
	PFCM: Possibilistic-Fuzzy c-Means

	References

	6 Density Based Clustering: Alternatives to DBSCAN
	6.1 Introduction
	6.2 Related Work
	6.2.1 DBSCAN

	6.3 Clustering with a Different Notion of Density
	6.3.1 Black Hole Clustering
	6.3.2 Protoclustering

	6.4 Evaluation
	6.4.1 Black Hole Clustering Evaluation
	6.4.2 Protoclustering

	6.5 Conclusion
	References

	7 Nonnegative Matrix Factorization for Interactive Topic Modeling and Document Clustering
	7.1 Introduction to Nonnegative Matrix Factorization
	7.2 Nonnegative Matrix Factorization for Clustering
	7.3 Optimization Framework for Nonnegative Matrix Factorization
	7.3.1 Block Coordinate Descent Framework
	7.3.1.1 Convergence Property
	7.3.1.2 Stopping Criterion

	7.3.2 Extension 1: Sparse NMF
	7.3.3 Extension 2: Weakly-Supervised NMF

	7.4 Choosing the Number of Clusters
	7.5 Experimental Results
	7.5.1 Data Sets and Algorithms
	7.5.2 Clustering Quality
	7.5.3 Convergence Behavior
	7.5.4 Sparseness
	7.5.5 Consistency from Multiple Runs

	7.6 UTOPIAN: User-driven Topic Modeling via Interactive NMF
	7.6.1 Usage Scenarios

	7.7 Conclusions and Future Directions
	References

	8 Overview of Overlapping Partitional Clustering Methods
	8.1 Introduction
	8.2 Classification of Exiting Approaches for Overlapping Clustering
	8.3 Overlapping Partitional Clustering Methods
	8.3.1 Uncertain Memberships Based-Methods
	8.3.1.1 Fuzzy c-Means (FCM) and Possibilistic c-Means (PCM)
	8.3.1.2 Evidential c-Means (ECM) and Belief c-Means (BCM)

	8.3.2 Hard Memberships Based-Methods
	8.3.2.1 Additive Methods
	8.3.2.2 Geometrical Methods

	8.3.3 Summary of Overlapping Partitional Methods

	8.4 Evaluation of Overlapping Clustering
	8.4.1 Label Based Evaluation
	8.4.2 Pair Based Evaluation
	8.4.3 BCubed Evaluation
	8.4.4 Synthesis of Evaluation Methods for Overlapping Clustering

	8.5 Empirical Evaluation of Overlapping Partitional Clustering Methods
	8.6 Conclusion
	References

	9 On Semi-Supervised Clustering
	9.1 Introduction
	9.2 Overview and Taxonomy of Algorithms
	9.2.1 Types of Supervision (Side-Knowledge)
	9.2.2 Partitional SSC Algorithms
	9.2.3 Hierarchical SSC Algorithms

	9.3 Main Issues and Key Points
	9.3.1 Evaluation of Clustering Quality: Internal/External Measures
	9.3.2 Relevant Questions on Supervision
	9.3.2.1 Equivalence Between Constraint-Based and Label-Based Supervision
	9.3.2.2 Selecting the Best Query in Active Learning
	9.3.2.3 Uncertain Supervision

	9.4 Algorithms for SSC
	9.4.1 COP-COBWEB and COP-kMeans
	9.4.2 A Probabilistic Framework for SSC: The HMRF k-Means Method
	9.4.3 Semi-Supervised Learning of the Distance Measure
	9.4.4 Seeded k-Means and Constrained k-Means
	9.4.5 The Zheng-Li Algorithm
	9.4.6 Active Fuzzy Constrained Clustering
	9.4.7 Semi-Supervised Graph Clustering: A Kernel Approach

	9.5 A Glimpse of the Future: Some Research Directions
	9.6 Conclusions
	References

	10 Consensus of Clusterings Based on High-Order Dissimilarities
	10.1 Introduction
	10.2 High-Order Dissimilarity: The Dissimilarity Increments Principle
	10.2.1 Dissimilarity Increments: Definition and Properties
	10.2.2 Dissimilarity Increments Distribution (DID)
	10.2.2.1 DID for High-Dimensional Data
	10.2.2.2 DID for Two-Dimensional Data
	10.2.2.3 Characterization and Properties of 2-DID

	10.2.3 DID Models and Data Fitting
	10.2.3.1 Best Approximation to DID for High-Dimensional Data
	10.2.3.2 Fitting DID to Non-Gaussian Data

	10.3 Partitional Clustering
	10.3.1 Initial Data Partition
	10.3.2 Merge Criterion

	10.4 Consensus Clustering with DID
	10.5 Validation with DID
	10.6 Experimental Results and Discussion
	10.6.1 Partitional Clustering
	10.6.1.1 Known Number of Clusters
	10.6.1.2 Unknown Number of Clusters

	10.6.2 Consensus Clustering

	10.7 Conclusions
	Appendix
	References

	11 Hubness-Based Clustering of High-Dimensional Data
	11.1 Introduction
	11.2 High-Dimensional Data Clustering
	11.3 The Hubness Phenomenon
	11.3.1 The Emergence of Hubs
	11.3.2 Relation of Hubs to Data Clusters

	11.4 Effects of Hubness on Clustering
	11.5 Interaction Between Kernels and Hubness
	11.6 Clustering Algorithms Based on Hubness
	11.6.1 Deterministic Approach
	11.6.2 Probabilistic Approach
	11.6.3 A Hybrid Approach: Extending K-Means
	11.6.4 Using Kernels in Hubness-Based Clustering
	11.6.5 Scalability of Hubness-Based Approaches

	11.7 Experimental Comparisons
	11.8 Application Domains and Other Types of Hubness-Aware Methods
	11.9 Possible Future Directions
	References

	12 Clustering for Monitoring Distributed Data Streams
	12.1 Introduction
	12.2 Text Mining Application
	12.3 Monitoring Threshold Functions Through Clustering: Motivation
	12.4 Monitoring Threshold Functions Through Clustering: Implementation
	12.5 Experimental Results
	12.5.1 Data
	12.5.2 Monitoring with Incremental Clustering

	12.6 Conventional Clustering Algorithms
	12.6.1 PDDP
	12.6.2 Batch k-Means
	12.6.3 Incremental k-Means
	12.6.4 Batch k-Means Followed by Incremental k-Means
	12.6.5 Node Clustering with Classical Clustering Algorithms

	12.7 Conclusions
	Appendix 1: First and Second Moments
	Appendix 2: Broadcast Count
	References

