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Abstract. We address some of the limitations for extending and validat-
ing MDE-based implementations of NFP analysis tools by presenting a
modular, model-based partial reimplementation of one well-known anal-
ysis framework, namely the Palladio Architecture Simulator. We specify
the key DSLs from Palladio in the e-Motions system, describing the ba-
sic simulation semantics as a set of graph transformation rules. Different
properties to be analysed are then encoded as separate, parametrised
DSLs, independent of the definition of Palladio. These can then be com-
posed with the base Palladio DSL to generate specific simulation envi-
ronments. Models created in the Palladio IDE can be fed directly into
this simulation environment for analysis. We demonstrate two main ben-
efits of our approach: 1) The semantics of the simulation and the non-
functional properties to be analysed are made explicit in the respective
DSL specifications, and 2) because of the compositional definition, we
can add definitions of new non-functional properties and their analyses.

1 Introduction

It has been generally recognised that the non-functional properties (NFPs)—for
example, performance or reliability—of a system are central to the success of
a software development project. The later in the process an error in NFPs is
discovered, the more costly will it be to repair. There is, therefore, a need for
early predictive analysis of NFPs.

Model-driven engineering (MDE) advocates the use of models as the primary
artefacts in software development. It has been recognised that this provides
opportunities for very early analysis of NFPs based on early design models.
These models can often be transformed into analysis models (e.g., in the form of
Petri nets or queuing networks) that can be analysed or simulated by standard
tooling [1,2,3,7,8,9].

Typically, in these approaches a design model is translated into an analy-
sis model which is then evaluated by a dedicated analysis tool. Alternatively,
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the design model is translated into a simulation of the system to be built. In
both cases, however, the semantics of the non-functional property to be analysed
and of the analysis technique are only represented implicitly as encoded in the
transformations or analysis tools. This causes two problems:

1. Validation of analysis. As there is no explicit specification of the analysis
nor a high-level representation of the NFPs to be analysed, it is difficult for
users to be sure that they are analysing the correct property of their system
(see, e.g., [12] for a discussion of some of the subtleties that might need to be
considered). Conversely, it is also very difficult for tool providers to validate
the correctness of their tooling, which has a direct impact on the correctness
of their predictions.

2. Maintainability and extensibility of analyses. The tool implementations, es-
pecially in the transformations producing simulations, often tangle code con-
cerned with different NFPs. For example, the transformations used in the
Palladio Architecture Simulator [9] tangle code for performance and relia-
bility simulations. This makes the code very difficult to maintain and, in
particular, extend to support new NFPs.

In previous work [6,10,17], we have explored the modular definition of non-
functional properties as parametrised domain specific languages (DSLs) in the
e-Motions framework [11]. In the present paper, we demonstrate how these ideas
can be integrated with predictive analysis of architectural software models by
providing a modular reimplementation of a substantive part of the Palladio
Architecture Simulator [9]. In particular, we have re-implemented the Palladio
Component Model [3], its workload model, and parts of its stochastic expressions
model. However, instead of implementing transformations to analysis models or
simulators as done in Palladio, we have explicitly modelled the simulations as
graph transformations in the e-Motions framework. Each NFP to be analysed is
then modelled as an independent, parametrised DSL ready to be composed with
the base Palladio model. This addresses the above two problems in the following
ways:

1. There is an explicit specification of both the simulation mechanism and the
NFPs to be analysed. These models can be inspected and reasoned about
separately giving more assurance of correctness of the simulation results.

2. Modular definition of NFPs as separate, parametrized DSLs allows its reuse,
but also makes it easy to define additional NFPs to be analysed. For a
particular analysis problem, the relevant NFP DSLs can then be selected
from a library and composed as required. Our previous work in [5] provides
guarantees for preservation of semantics under composition, that is, the con-
sideration of additional NFPs (satisfying certain restrictions) do not change
the behaviour of the system being modeled.

While our approach may not be as performant for large models as the native
Palladio implementation, its modular and model-based nature mean that new
analyses can be prototyped very effectively. These might then still be translated
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into native implementations tightly integrated with Palladio where efficiency of
analysis is a concern over full validation of analysis. We present in this paper
the specification of the NFPs response time and throughput, but new types of
analysis could be easily added. One such analysis that could be easily prototyped
in our approach is support for dynamic systems — this possibility has already
been explored in [17]. In e-Motions, this effectively amounts to a number of
additional rewrite rules for the base model.

The remainder of this paper is structured as follows. Section 2 provides some
background on the two MDE frameworks our work relies on, namely Palladio
and e-Motions. Section 3 explains how the Palladio DSL has been defined in the
e-Motions system. Section 4 describes the way observers are defined and how
they are woven with the Palladio system to enrich the definition of its behavior
for the observation of NFPs. Section 5 illustrates our approach on a concrete
example and compares the results obtained by Palladio and by its e-Motions
counterpart. We wrap up with some conclusions and future work in Section 6.

2 Preliminaries

Our work is based on two MDE frameworks: We use Palladio [9], and in particular
the Palladio Component Model (PCM) [3], to allow modelling of component-
based systems and their performance-relevant properties; and we use e-Motions
to implement simulations of these systems’ performance properties (as well as
of other non-functional properties). In this section, we provide some background
on both frameworks to ground the discussion that will follow.

2.1 Palladio

The Palladio Architecture Simulator [9] is a predictive software analysis tool
developed by the group around Ralf Reussner at KIT in Karlsruhe, Germany.
It consists of a number of metamodels, foremost the Palladio Component Model
(PCM) [3], that allow the high-level modelling of component-based architectures
and their properties relevant for performance and reliability analysis. Instances
of these metamodels are then transformed in preparation for analysis. Palladio
supports two kinds of predictive analyses: 1) by transformation into a program
that runs a simulation of the architecture’s behaviour and 2) by transforming to
a formalism more amenable to analysis—for example, Queuing Petri Nets [14]. In
both cases, the semantics of the models, and in particular of the non-functional
properties being analysed, is encapsulated in the transformations. This makes
it very difficult to understand and validate these semantics. This is particularly
problematic as more non-functional properties are supported: the current trans-
formations support performance and reliability, but already are quite complex.
Palladio consists of over 4 million lines of code written in 12 languages.!

Fig. 1 shows a very simple example of a component specification in Palladio.
It shows a so-called resource-demanding service-effect specification (RDSEFF)

! Based on data obtained from http://www.ohloh.net/p/palladio on Feb. 4, 2014.
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describing the key performance-relevant elements of a component’s behaviour. In
particular, Fig. 1 shows that the control flow in our component may branch into
either of three flows, with different CPU demands for each flow. Each branch
is associated with a particular branch probability to indicate the likelihood of
a particular branch being taken. This is the kind of information required to
perform execution-time analysis on the component’s behaviour as is standard in
software performance engineering (see, e.g., [13]). In addition, we could model
failure information to support reliability analysis.

Fig. 1 is only half the story. We also need to provide information about how
the component is used to be able to provide useful predictions of performance.
In Fig. 2, we see an example usage model specifying a particular workload for
our component. This part of the model uses standard workload terminology to
specify an open workload with an inter-arrival time of 2 time units. When a
request arrives, there is a delay of 5 units loading the application, after which
a call to our component is executed. With these models we now have enough
information to run a first basic simulation of our system.

The Palladio Simulator offers the results of the analysis of performance and
reliability of the system being analysed in different formats. For example, for
the above model, it gives the mean response time and confidence intervals in
Table 1. The chart in Fig. 3 represents the cumulative distribution function of
the system’s response time. Since the CPU resource gets saturated, the response
time keeps increasing along time. For 1,000 runs, tasks take up to 90 time units.



136 A. Moreno-Delgado et al.

Table 1. Palladio: results of Plain Batch Means Algorithm

Mean value: 41.97139713971397
Confidence value alpha: 0.9
Upper bound: 52.17187782288832
Lower bound: 31.770916456539624
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Fig. 3. Cumulative distribution function of the system’s response time

2.2 The e-Motions System

e-Motions [11] is a graphical framework that supports the specification, simula-
tion, and formal analysis of real-time systems. It provides a way to graphically
specify the dynamic behaviour of DSLs using their concrete syntax, making this
task very intuitive. The abstract syntax of a DSL is specified as an Ecore meta-
model, which defines all relevant concepts—and their relations—in the language.
Tts concrete syntax is given by a GCS (Graphical Concrete Syntax) model, which
attaches an image to each language concept. Then, its behaviour is specified with
(graphical) in-place model transformations.

e-Motions provides a model of time, supporting features like duration, peri-
odicity, etc., and mechanisms to state action properties. From a DSL definition
e-Motions generates an executable Maude [4] specification which can be used for
simulation and analysis. Other tools in the Maude formal environment, as its
model checker or its reachability analysis tool, can also be used on this specifi-
cation.

In-place transformations are defined by rules, each of which represents a pos-
sible action of the system. These rules are of the form [NAC]* x LHS — RHS,
where LHS (left-hand side), RHS (right-hand side) and NAC (negative appli-
cation conditions) are model patterns that represent certain (sub-)states of the
system. The LHS and NAC patterns express the conditions for the rule to be ap-
plied, whereas the RHS represents the effect of the corresponding action. A LHS
may also have positive conditions, which are expressed, as any expression in the
RHS, using OCL. Thus, a rule can be applied, i.e., triggered, if a match of the
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LHS is found in the model, its conditions are satisfied, and none of its NAC pat-
terns occurs. If several matches are found, one of them is non-deterministically
chosen and applied, giving place to a new model where the matching objects
are substituted by the appropriate instantiation of its RHS pattern. The trans-
formation of the model proceeds by applying the rules on sub-models of it in a
non-deterministic order, until no further transformation rule is applicable.

In e-Motions, there are two types of rules to specify time-dependent behaviour,
namely, atomic and ongoing rules. Atomic rules represent atomic actions with
a duration, which is specified by an interval of time. Atomic rules with dura-
tion zero are called instantaneous rules. Ongoing rules represent actions that
progress continuously over time while the rule’s preconditions (LHS and not
NACs) hold. Both atomic and ongoing rules can be scheduled, or be given an
execution interval.

3 Palladio into e-Motions

The PCM is a DSL [3], and therefore we may define it in e-Motions. As for any
DSL, the definition of the PCM includes its abstract syntax, its concrete syntax
and its behavior.

Since the Palladio system has been developed following MDE principles, and
specifically it is implemented using the Eclipse Modeling Framework (EMF),
its metamodel may be directly used as abstract syntax definition of Palladio in
e-Motions. Palladio models consist of several views, namely UsageModel, System,
etc., corresponding to the different developer roles. These models are conformant
to metamodels Core PCM, StoEx, Units, ... used by the different Eclipse plug-ins
in the PCM Bench.?

The concrete syntax is provided by a GCS model in which each concept in
the abstract syntax of the DSL being defined is linked to an image. Since these
images are used to graphically represent Palladio models in e-Motions, we have
used the same images that the PCM Bench uses to represent these concepts.
This way, we maintain the PCM’s look in the e-Motions definition.

The PCM Bench supports the design of the models corresponding to the dif-
ferent views that each developer role has to fill. However, these models define the
architecture of a system. Transformations of PCM models into queueing network
models or stochastic process algebra provide the necessary predictive analysis for
the PCM models. Thus, the semantics of the properties to be analysed as well as
of the analysis methods themselves are implicitly encoded in the transformations
and support tooling.

In e-Motions, we describe how systems evolve by describing all possible changes
of the models by corresponding visual rewrite rules, that is, time-aware in-place
transformation rules. Since the PCM metamodel only specifies those concepts rel-
evant for the PCM language and the models obtained from the PCM Bench cannot

2 The metamodel provided to e-Motions must have a single package in a single file.
Since the PCM metamodel is defined in several packages in several files, we have
developed a higher-order transformation to prepare the input models.
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Fig. 4. Token metamodel

be directly simulated or analyzed, we have conservatively enriched the PCM meta-
model with new concepts to handle the control flow. We call this new metamodel
Palladio*. Specifically, Palladio* has an additional metamodel Token, which in-
cludes two classes SToken and CToken. The former is specified at the system model
(UsageModel) level, and the latter at the component model (RDSEFF) level. Both
SToken and CToken classes have a Bool attribute completed, which states whether
an action with this token is accomplished. References—with cardinality *— to
classes SToken and CToken have been added to AbstractUserAction
and AbstractAction, respectively. An ordered reference queue from
ProcessingResourceSpecificationto CToken, with multiplicity *, is used as a
queue in which actions wait until resources of the corresponding type are avail-
able. Fig. 4 shows the Token metamodel and the references from classes of PCM to
SToken and CToken.

We may visualize that the execution of a Palladio model has a token “mov-
ing around” such model. An action with a token has the control of execution
— the completed attribute of a Token object becomes true once the action is
completed, then it can be moved to its successor action. In fact, there might be
several concurrent executions, since new tasks may keep arriving to the system,
depending on its work load. The execution of each of these tasks proceeds inde-
pendently, as far as the required resources are available — modelled by the rule
in Fig. 6.

Since the extension of the metamodel has been done in a conservative way,
every model conforming to the Palladio metamodel is also conforming to the
Palladio* metamodel. As we will see in Section 5, this will allow us to take
models generated in the PCM bench directly into e-Motions, and use them to
perform simulations in the e-Motions definition of Palladio.

In Palladio, an open workload specifies system usage intensity with an inter-
arrival time, i.e., the time between two user arrivals at the system, as a random
variable with some probability distribution. It models an infinite stream of users
arriving at a system, which execute their scenario, and then leave the system.
Fig. 5(a) shows the OpenWorkloadSpec rule, which specifies the behaviour of
a UsageScenario usSc with an OpenWorkload ow. When the rule is triggered,
a new system token is added to the first action of the system, i.e., the start
action. Moreover, the rule is fired every owRate, which is a local variable whose
value is given by ow’s random variable.

A ScenarioBehaviour, which is included in a UsageScenario, is composed of
a set of actions, which can be Start, Stop, EntryLevelSystemCall, Branch, and
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Loop. These actions are modelled in e-Motions, since they are used to describe
the behaviour of system components. Components are independently specified
in Palladio, and can be instantiated from a ScenarioBehaviour by Signatures.
The EntryLevelSystemCall action represents the invocation of a component.

The rule in Fig. 5(b) shows our definition of an EntryLevelSystemCall in
e-Motions. If a (sub)-state matches its LHS, the SToken object associated to
the EntryLevelSystemCall action remains in this action, while a new CToken
is created and linked to the start action of the invoked component (effectively
building up a call stack). As the rule’s header shows, this rule is instantaneous
(it takes zero time).

The rule in Fig. 6 shows the behaviour of an InternalAction, which rep-
resents the execution of an internal activity by a component service, possibly
using some resources, like HDD or CPU. In Palladio, these executions present
a high-level abstraction, and the resource demands are expressed as a single
stochastic expression. The duration of the action depends on the parameters
of the demanded resources. Resources are limited by the available number of
resources of that type (PRS.numberOfReplicas). Tokens are served following
an FCFS strategy by using a queue associated to each resource type. Only
the first PRS.number0fReplicas tokens in the queue PRS.queue get to be exe-
cuted. Once an internal action is executed, its token is removed from the queue
(PRS.queue->excluding(t)).

The complete e-Motions definition of the Palladio DSL is available at
http://atenea.lcc.uma.es/Palladio.

Once the whole DSL has been defined, and given a model as initial state,
it may be simulated by applying the rules describing its behaviour. This model
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does not collect information on NFPs, and therefore is not ready for performance
analysis. We enrich them later, as explained in the following section.

4 NFPs by Observation

In previous work, we have proposed an approach for the specification and moni-
toring of non-functional properties using observers [15,16]. They are objects with
which we extend the e-Motions definition of systems for the analysis of NFPs by
simulation, such as mean and max cycle times, busy and idle cycles of operation
units, throughput, mean-time between failures, etc. We also explored in [6,17]
how to define observers generically and independently from any system, so that
they can afterwards be woven and merged with different systems. Given systems
described as DSLs and generic DSLs defining the different observers, we can use
these composition mechanisms to combine them. The result is that we can use
the combined enriched system DSL to monitor NFPs of our systems.

We proved in [5] that, given very natural requirements on the observers and
the instantiating mappings, the system thus obtained was a conservative enrich-
ment of the original system, in the sense that the observers added do not change
the behaviour of the system.

Given an e-Motions definition of Palladio as the one presented in Section 3,
we can then enrich it with the definition of the observers we wish, which can
be selected from a library of generically specified observers. Specifically, we can
select both those observers that monitor non-functional properties available in
the Palladio Simulator as well as those that monitor other properties. The NFPs
chosen can then be analysed by simulation.
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4.1 Generic Observers

We present in the first place a generic DSL for monitoring the response time,
which is a property included in the analysis made by Palladio. Response time
can be defined as the time that elapses since a request arrives to a system until it
is served. Hence, the same generic notion allows us to measure the response time
of information packets being delivered through a network, the number of cars
being manufactured in a production line, the number of passengers checking-in
in an airport, etcetera. Given the description of a system, in order to measure
response time, we basically need to register the time at which requests appear
in the system, and the time at which they are completed. With this data and a
simple calculation, we can easily get the response time.

A generic DSL achieving this is shown in Fig. 7. Its abstract syntax (the
metamodel in Fig. 7(a)) contains three generic and two concrete classes — generic
classes are shown with a shaded background. System, Serve and Request are
parameter classes to be instantiated by specific classes, as explained in Sec-
tion 4.2. The System class represents the whole system, which is composed of
a set of Servers. These, in turn, can have Requests to be processed. The class
RespTime0b represents the observer for measuring the response time mean. Its
three attributes represent the number of requests already processed (counter),
the accumulated time by them (tAcc), and the current average response time
(respT). Note that there is yet another observer in this metamodel, TimeStamp0Ob,
used to store the times of incoming Requests.

The behaviour of this DSL is defined by the in-place transformation rules
in Fig. 7, in which parametric concepts have no concrete syntax, they are de-
picted as boxes with a shaded background. Observer objects have a concrete
syntax, that will also be used to depict them in the woven rules (see below).
Rule CreateRespT0Ob deals with the creation of the response time observer. Its
LHS includes a condition that avoids the creation of new observer objects if
there is one, ensuring that only one of these observers is created per instantiated
object. We see in its RHS that the observer is associated to the system. Rule
RequestArrives generates a time stamp observer whenever a new Request ap-
pears. The observer gets associated to the Request and keeps the time at which it
appears in the system — note the presence of the system class Clock, which pro-
vides the current time. Finally, rule CompletedRequest computes the response
time every time a Request is consumed — the Request and its associated ob-
server have disappeared in the RHS. Attribute counter of RespTime0Ob keeps
the number of completed Requests, while tAcc contains the addition of cycle
times of all Requests, i.e., the time they have spent in the system. Finally, at-
tribute respT uses the former two attributes to calculate the response time of
the System.

Fig. 8 shows a DSL for the throughput observer.Throughput can be defined
as the average rate of requests processed by a system. Given the description
of a system, in order to measure this property, we basically need to be able to
count the number of processed requests, and calculate its quotient with time.
The abstract syntax (metamodel in Fig. 8(a)) contains the same parametric



142 A. Moreno-Delgado et al.

H RespTimeOb

= counter : EInt
B System rob = tAcc : EInt

0.1 | = respT : EDouble

1..*% Servers
H server reqgsts H Request| ts0p HTimeStampOb|
o tStamp : Eint
IE 0.1
(a) Abstract syntax
2 RequestArrives
[Ees | s 1 RHS
HS =1 CreateRespTOb I RHS O Tin M)

([ TinfyM _— r: Request
& )

5 : System A A
[:l s System rt || <l
rtOb
[:’ — RT tsOb
i s.rt0b. ocllsUndefined) @?5

t5tamp = clk.time

(b) Behavior: CreateRespTOb (c) Behavior: RequestArrives
LHS &2 CompletedReqest ‘ k3] RHS
D Tin (M) |
s : System s : Server " ok s : System 512 Server
|:| SErvers D [\T’I [:l servers D

regsts

rtob
ri0b r: Request

ts
e
oo | =ge o
RT S B
counter = rt.counter +1

tAce = rt.tAcc + clk.time - ts.tStamp
respT = (rt.tAcc + dk.time - ts.tStamp) / (rt.counter + 1)

(d) Behavior: CompletedRequest

Fig. 7. Response Time observer DSL definition

classes as the one for response time and the ThroughputOb class that represents
the observer. The counter attribute stores the number of Requests that are
completed, while thp is used to keep the actual throughput.

Its behaviour is also defined by three transformation rules. The CreateThpOb
rule creates the observer, as the corresponding rule for the response time ob-
server. Rule UpdateCounter increases the counter attribute of the observer
every time a Request is served. Finally, we have an ongoing rule where the value
of throughput is computed, which keeps the value thp updated as time evolves.

4.2 Adding Observers to System Specifications

In order to introduce observers in our specifications in e-Motions, we need to
weave both the metamodel and the behaviour specifications of a specific system
and the generic observer DSL. In other words, the parametric components of the
observers DSLs get instantiated with specific components. This is done by defin-
ing a correspondences model [6,10]. For example, for weaving the metamodel of
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response time (Fig. 7(a)) with the metamodel of our Palladio implementation in
e-Motions, the System class is mapped to the ScenarioBehaviour class, Server
to Start and Request to SToken. The weaving of metamodels is quite straight-
forward, and we do not show the resulting metamodel due to space limitations.
Let us focus here on the weaving of rules.

Regarding rules, we basically need to map each rule in the source DSL to a rule
in the target one. The mapping defined for the metamodel does most of the rest.
Rule RequestArrives (Fig. 7(c)) is woven with the OpenWorkloadSpec rule of
our Palladio system (Fig. 5(a)), that represents the arrival of a new SToken into
the system. Rule CreateRespTOb of the observer DSL is woven with an identity
rule, triggering the creation of observer objects if they were not already created.
Finally, rule CompletedRequest (Fig. 7(d)) is woven with the StopUsageModel
rule, which models the elimination of a token upon its arrival to a stop action.

A similar mapping is provided for the throughput observer: rules CreateThpQOb
and UpdateTHP are woven to the identity rule, as CreateRespTOb, and rule
UpdateCounter is mapped to StopUsageModel.

The result of weaving the response time and throughput observer DSLs and
the Palladio™ DSL results in a DSL whose metamodel is the Palladio metamodel
enriched with the additional classes as indicated in the mappings, and the rules
defining its behaviour enriched with the observer objects. Figs. 9(a) and 9(b)
show the rules OpenWorkLoad (Fig. 5(a)) and stop as resulting from the weaving
process.
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Fig. 9. Woven rules

Using the same mechanisms these observers may be attached to other elements
of the model. For instance, we can in this way measure the response time of each
of the components in the system. Additional observers for other NFPs may be
considered similarly.

5 Evaluation

Once the e-Motions definition of the Palladio DSL has been enriched with the
desired observers, we may use it for analysing its performance by simulation.
More specifically, since the Palladio* metamodel is a conservative enrichment,
we may take models designed in the Palladio Bench and load them into e-Motions
for simulation using the e-Motions definition of Palladio. The information in the
observers can be accessed when the simulation has completed.

Following this procedure, we have simulated the Palladio model presented
in Section 2 in the e-Motions definitions of Palladio, whose results are summa-
rized in Table 2 (for a simulation of 1000 tasks). We can observe that the value
obtained for response time is coherent with the one obtained in Palladio (cf. Ta-
ble 1), since the e-Motions’ value fits within the confidence interval returned by
Palladio. Fig. 10 shows the cumulative distribution function for the simulation
in e-Motions, while Fig. 11 shows the response time as a function of the time
when a request entries the system, based on the e-Motions output. Since the
queues get saturated, response times keep increasing.
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Table 2. Case study’s e-Motions results

Mean System Response Time 43.6626 seconds
Throughput 0.4804 seconds

Cumulative Distribution Function

‘Probability
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1
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0 20 40 60 80
Response Time (in seconds)

Fig. 10. Cumulative distribution function for the simulation in e-Motions.

6 Conclusions and Future Work

Non-functional properties of software, such as performance, reliability, or secu-
rity, can determine success or failure of software systems. It is therefore impor-
tant to be able to provide estimates of these properties as early as possible in the
development process. Model-driven engineering has been viewed as a promising
technology for addressing this problem because of its ability to transform early
design models into analysis models. However, the semantics of the properties to
be analysed as well as of the analysis methods themselves are typically encoded
implicitly in the transformations and support tooling. Often, these encodings
tangle semantics for multiple properties to be analysed. As a result, it becomes
difficult a) to add new properties and analyses and b) to validate the transfor-
mation and analysis implementations themselves.

We have addressed this problem by presenting a modular, model-based par-
tial reimplementation of one well-known analysis framework—the Palladio Ar-
chitecture Simulator. We have specified key DSLs from Palladio in e-Motions,
describing the basic simulation semantics as a set of graph-transformation rules.
Different properties to be analysed have been encoded as separate, parametrised
DSLs, independent of the definition of Palladio. We have then composed these
DSLs with the base Palladio DSL to generate specific simulation environments.
Models created in the Palladio IDE can be fed directly into our simulation en-
vironment for analysis.

We currently provide support for key Palladio features for the definition of
usage models (start, stop, delay, and entry level system call) and component
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Response Time with respect to Entrance Time
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Fig. 11. Response Time obtained from e-Motions output

models (start, stop, branch with any number of probabilistic branches, inter-
nal action, and CPU specifications). Currently, we only have partial support of
stochastic variables. Their full support is left as future work.

We have demonstrated two main benefits of our approach: 1) The semantics
of the simulation and the non-functional properties to be analysed are made
explicit in the respective DSL specifications, and 2) because of the composi-
tional definition, it is easy to add definitions of new non-functional properties
and their analyses. More importantly, our proposal provides a place were to ex-
periment with new features and tailor solutions for specific problems at a very
low development cost.

As future work, we plan to incorporate additional features to our definition
of Palladio, as, e.g., full resource models, and failures and reliability analysis.
Indeed, we foresee generic definitions of selectable features, such as resource
handling and deployment strategies, etc. We also plan to experiment with other
NFPs, such as reliability or security, and to use our flexible setting for the analy-
sis of dynamic systems, where components and resources are dynamically added
to or removed from the system under study. For instance, in [17], we showed how
to maintain the value of cycle time around a specific goal. The dynamic system
consisted of a production line where machines had two modes of processing parts:
fast and slow. In this case, when the cycle time of parts was higher than the goal,
the speed of the machines was increased. The opposite occurred when the parts
were produced too fast. This self-adaptive behaviour was achieved by consulting
the value of the cycle time observer during simulation.
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