
Experiences with Business Process Model

and Notation for Modeling Integration Patterns

Daniel Ritter

HANA Platform, SAP AG
Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

daniel.ritter@sap.com

Abstract. Enterprise Integration Patterns (EIP) are a collection of
widely used best practices for integrating enterprise applications. How-
ever, a formal integration model is missing, such as Business Process
Model and Notation (BPMN) from the workflow domain. There, BPMN
is a “de-facto” standard for modeling business process semantics and
their runtime behavior.

In this work we present the mapping of integration semantics repre-
sented by EIPs to the BPMN syntax and execution semantics. We show
that the resulting runtime independent, BPMN-based integration model
can be applied to a real-world integration scenario through compilation
to an open source middleware system. Based on that system, we report
on our practical experiences with BPMN applied to the integration do-
main.

Keywords: Business Process Model and Notation (BPMN), Enterprise
Integration Patterns, Message-based Integration, Middleware.

1 Introduction

Integration middleware systems address the fundamental need for application
integration by acting as the messaging hub between applications. As such, they
have become ubiquitous in service-oriented enterprise computing environments
in the last years. These systems control the message handling during service
invocations and are at the core of each Service-Oriented Architecture (SOA) [8].
Since their implementation and operation remains challenging, best practices
for building those systems, called Enterprise Integration Patterns (EIP), were
collected by [7]. Later other practitioners (e. g., [18,1]) and researchers (e. g.,
[17]) added further patterns. Although these patterns describe typical concepts in
designing a messaging system, they cannot be considered a modeling language. A
modeling language would allow for the formal, runtime independent specification
of integration scenarios and verification.

More precisely, the requirements that are important for developing integration
systems, however, not covered by current approaches like the EIPs are collected
subsequently. The EIPs propose a visual notation, which allows composition of
patterns, while the notation does not specify a semantic model for integration
(REQ-1 : Define a semantic model for message-based integration as foundation

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 254–266, 2014.
c© Springer International Publishing Switzerland 2014

Experiences with BPMN for Modeling Integration Patterns 255

of a Domain-specific Language (DSL) for integration). A semantic model for
integration shall cover a human and computer readable, syntactical notation
(REQ-2 : Specify the syntax) as well as a behavioral runtime specification, which
shall be independent of the specific runtime platform implementations (REQ-
3 : Define a platform independent behavioral semantics). The integration DSL
shall consider the control flow (REQ-4 : Support control flow modeling), similar
to previous work on Coloured Petri Nets [4] that is used for verification of the
EIPs’ control flow [6], as well as the data flow for message exchange (REQ-5 :
Allow for data flow modeling for message exchange). The formal integration
model shall allow for validation of integration programs and the verification of
runtime systems (REQ-6 : Validate programs and verify the runtime systems).

In this paper, these shortcomings (cf. REQ) are addressed by proposing a
language for message-based integration grounded on a standard from the related
workflow domain, called Business Process Model and Notation (BPMN) [15]. For
instance, Figure 1 shows an asynchronous integration scenario of a corporate with
its bank and business monitoring via SAP Cloud to Cash1 (CTC), syntactically
expressed in BPMN according to the definition proposed in this paper. The
incoming message is of type “FSN” (short for Financial Services Network2),
which has to be translated to its canonical data model incarnation “FSN:CDM”
for further processing, using a Message Translator pattern. Through an adapted
Claim Check pattern, the message is stored for later use and handed over to the
External Service pattern as request to the bank (no further translation required).
On successful execution, the original message is restored from the claim check,
translated to an ISO format “FSN-ISO” and sent to the CTC application, which
tracks the message exchange from a business perspective.

Fig. 1. Business Monitoring: Messages sent from Corporate to Bank are routed to SAP
Cloud to Cash (CTC) for monitoring purpose (cf. [16])

The contribution of this paper is the syntactic and semantic formalization of
common integration patterns using BPMN (cf. REQs-1–3). Due to the manifold
collection of patterns, we focus on some hand-picked, core patterns. The complete
list of pattern to BPMN mapping can be found in supplementary material [16]

1 http://www.sap.com/pc/tech/cloud/software/cloud-applications/index.html
2 http://scn.sap.com/docs/DOC-40696

http://www.sap.com/pc/tech/cloud/software/cloud-applications/index.html
http://scn.sap.com/docs/DOC-40696

256 D. Ritter

(not mandatory). With the EIPs as business process building blocks, integration
semantics can be expressed as implementation independent BPMN syntax. From
this formal model, we show the realization of the sample integration scenario
in Figure 1 to Apache Camel [1], which is a widely used, open-source system
for message-based integration and event processing [5] (cf. REQs-4–5). Based
on the interaction with customers and integration domain experts, we report
on experiences with our modeling approach and discuss advanced integration
modeling techniques.

Section 2 discusses the contribution of the paper in the context of related
work. Section 3 introduces general integration semantics and defines the syntactic
and semantic mapping from selected EIPs to BPMN. In Section 4 we apply
our approach to an open-source ESB for the “business monitoring” scenario. In
Section 5 we share our experiences, before concluding in Section 6.

2 Related Work

The patterns described by [7,17,18,1] are not building blocks of a modeling lan-
guage, however, they describe typical concepts in designing a messaging system;
thus they are an informal specification language. For that, there are elaborated
modeling techniques like the Business Process Model and Notation (BPMN) [15],
the Workflow Patterns defined by [20] or Service Integration Patterns [2]. Enter-
prise Integration Patterns (EIPs) complement these notations by a set of typical
designs found in a messaging infrastructure.

Processes and Data. The approach stresses on the control flow, data flow
and modeling capabilities of BPMN as well as its execution semantics. Recent
work on “Data in Business Processes” [10] shows that besides Configuration-
based Release Processes (COREPRO) [14,12,13], which mainly deals with data-
driven process modeling and (business) object status management, and UML
activity diagrams, BPMN achieves the highest coverage in the categories relevant
for our approach. Compared to BPMN and apart from the topic of “object
state” representation, neither Workflow Nets [19] nor Petri nets do support
data modeling at all [10]. For example, the work on the EIPs’ control flow uses
Coloured Petri Nets [4], which are used for verification of composed EIPs [6].
Based on the work on control and data flow, BPMN was further evaluated by
[9,11] with respect to data dependencies within BPMN processes, however, not
towards a combined control and data flow as in our approach.

Process Languages for Integration. The work builds on this foundation
and combines it with executable integration patterns, their configuration and
mapping to the Web Services Business Process Execution Language (WSBPEL)
proposed by [17] and leverages the work of [18] that started to map the EIPs to
the BPMN syntax and some semantics by example. In this document, we provide
a systematic continuation of this work by defining a comprehensive syntax and
model for widely-used patterns.

Experiences with BPMN for Modeling Integration Patterns 257

3 The BPMN Integration Pattern Language

Before defining the mapping of some selected EIPs to BPMN, we discuss the
relevant BPMN syntax (mainly taken from the BPMN Collaboration Diagram
[15]) directly in the context of core integration concepts.

3.1 Core Integration Concepts and BPMN

The main syntactical artifacts in BPMN denote process steps, sequences and the
representation of messages that are exchanged between processes during runtime.
The core concepts of message-based integration are Message, Message Channel
and Integration Adapters (cf. Message Endpoint) [7].

A message is informally defined as a piece of information to be exchanged
between sender and receiver. This information can be a piece of data (i. e., EIP
Document Message), a command for execution (i. e., EIP Command Message),
or an event for logging (i. e., EIP Event Message). This notion is shared by
BPMN, in which the sender and receiver applications are Participant elements.
In BPMN a participant may have internal details, in the form of an executable
process.

The connection between sender and receiver participants is called message
channel, which is the fundamental infrastructure of a messaging system. For
example, there are EIP Point-to-Point Channels, connecting exactly one sender
with one receiver, and one-to-many channels like EIP Publish-Subscribe or Broad-
cast/Multicast. A message sent to such a channel can be received by multiple
receivers, while for n receivers, n copies of the original message have to be pro-
vided. In general, channels specify non-functional qualities like the Quality of
Service (QoS; best-effort, exactly once), Message Exchange Pattern (MEP: In-
Only or InOut), and Capacity (e. g., maximum message size). For instance, a file
poller acts one-way (InOnly), since it cannot handle response messages and can
be configured to ensure the delivery of messages (exactly once).

On the other hand, most document message exchange works according to
the Request-reply Pattern, which specifies a two way communication (InOut).
This corresponds to the Process flow in BPMN, which is controlled by a com-
bination of flow objects (e. g., events, activities, gateways) and connections. We
consider BPMN Start Event and End Event that initiate the process flow with a
“message-receive” semantic or terminate the flow, thus terminates a process or
part of a process, after having sent the message. The BPMN throwing/catching
Intermediate Event is used to express message events, errors, and timed mes-
sage processing. The BPMN Activity/Task represents process steps that allow
to manipulate a message within the channel and has to be executed, before the
flow can proceed. BPMN Gateway elements are able to handle multiple pro-
cess flows, where they route or fork the flow. For that, BPMN Sequence Flow
definitions connect flow elements within a channel. Besides the control flow, the
message channel requires a data flow, which is expressed as a sequence of BPMN
Data Object and BPMN Data Store definitions that are associated to the flow
elements. More formally, these BPMN execution semantics for messaging are

258 D. Ritter

defined as process model in Definition 1. In a nutshell, a process is initiated by
a start event, i. e., a message that contains data according to a specified format
(e. g., XML Schema). Then a sequence flow is fired that moves the control in
form of a Token to the next flow element in the process (e. g., activity, gateway,
event) and puts it into ready state. The data flow is handled by associated data
objects from one element to the next one. More precisely, a flow element in the
ready state gets activated, if all associated data is supplied, and executes its in-
herent behavioral semantics on the data (e. g., script, service call). The process
ends through the invocation of a message end event firing the outgoing message
before the process context stops.

Definition 1 (Process model). A process model M = (N,SF,DO,DF) con-
sists of a finite non-empty set N ⊆ A ∪ G ∪ E of nodes being activities A of
types ServiceTask, ScriptTask and MessageTask, gateways G of types Exclusive-
Gateway and ParallelGateway, and events E of types StartEvent, EndEvent and
Intermediate Event, where A, G, E are pairwise disjunct.

The finite non-empty set of SequenceFlow relations SF ⊆ (N \EndEvent)×
(N \ StartEvent) represents the control flow. The finite, non-empty set of data
objects DO represents data associated to N and DF ⊆ (N ∪DO) × (DO ∪N)
is the data flow relation.

For the Process and Sub-Process instantiation, a Message Start Event or Re-
ceiving Message Task is required comparable to a constructor. The instances
can be terminated by (Message) End Events, the destructor. An already instan-
tiated process can be re-invoked using the BPMN correlation mechanism, similar
to a factory pattern.

Finally, a message endpoint connects an application to a messaging system. In
BPMN, the Message Flow specifies message exchange (e. g., process status infor-
mation, error messages, data) between participants or participants and process
elements. When mapped to messaging systems, the message flow represents a
message endpoint by specifying the message with its structure, operation and in-
terface (e. g., WSDL) that can be routed to the message channel. The model that
describes the complete system for an integration flow is specified in Definition 2.

Definition 2 (Integration Flow). An integration flow IF lw=(CO,PO,MF)
consists of a Collaboration CO containing a finite non-empty set of Pool PO ⊆
P ∪M of Participant P and process model M (cf. Definition 1), where M ⊆ Pint

and Pint is the participant referencing the (integration) process steps, and the
Message Flow relation for the sender MFS ⊆ Ps × (Pint ∪ Es) and the receiver
MFr ⊆ Ps× (Pint∪Ee), where Ps denotes an arbitrary amount of sender partic-
ipants, Es and Ee represent sets of start and end events of an integration process
Pint and Pr denotes the set of receiving participants. The message MS is part
of the message exchange from sender to receiver via the MF relation.

3.2 Mapping Enterprise Integration Patterns to BPMN

The definitions of a Process Model and an Integration Flow (IFlow) are used to
map some selected EIPs to BPMN. We have selected basic integration patterns

Experiences with BPMN for Modeling Integration Patterns 259

like Request-Reply, Content Enricher, the two antipodes Splitter and Aggregator,
and the Message Translator. The other patterns from the literature we covered
in [16] as non-mandatory supplementary reading.

The basic message exchange patterns are one-way or two-way communication
on an end-to-end IFlow level. These patterns are fundamental, since they let
the sender participant communicate synchronously (InOut) or asynchronously
(InOnly). Figure 2 (a) shows a two-way integration flow in BPMN using a syn-
chronously “waiting” Service Task. Definition 3 specifies the pattern’s runtime
behaviour. The definitions of the subsequently discussed patterns and the “busi-
ness monitoring” integration scenario can be expressed in the same way, however,
is informally described due to brevity.

Definition 3 (Request-Reply (synchronous)). The control flow CF is de-
fined asCF = Es×ServiceTask×MFreq×Pr×MsgF lowres×ServiceTask×Ee,
where the set of ServiceTask of type A, while the process instantiation constructor,
Es and termination destructor = Ee ∪ Eerr, where Eerr denote error events.
The data flow DF is Es × DOin × ServiceTask × MFreq × Pr × MFresp ×
ServiceTask×DOout ×Ee, where MFreq and MFresp denote message flows for
request, response, respectively. If an exceptional situation occurs during the execu-
tion of the ServiceTask, a separate channel Exc is instantiated to handle the error:
Exc = ServiceTask × Ee.

(a) Request-Reply (b) Content Enricher

Fig. 2. Request-Reply Pattern synchronous (a), Content Enricher Pattern (b) (cf. [16])

A pattern that adheres to Definition 3 is the content enricher. The content en-
richer consumes messages from the channel and merges additional information
into the header or body of the original message according to anAggreg. Algorithm,
shown in Figure 2 (b). The data can come from local tables or remote services (not
shown). The content enricher is non-persistent by default: if any operation during
or after the enrichment operation fails, intermediate results of the operation are
lost and the operation has to be re-processed from the latest persistence state on-
wards. The enricher uses a Service Task to map the incoming message (Input) to
a request understandable to the external participant, waits for the response and
aggregates it to the original message resulting to the output message (Output)
according to an aggregation algorithm denoted by a Data Object.

260 D. Ritter

(a) Message Splitter (b) Multiple Formats

Fig. 3. Message Splitter Pattern (a), with differing output messages (b) (cf. [16])

An interesting pair of patterns are the antagonists Splitter and Aggregator.
Both patterns have a channel cardinality of 1:1, however, the splitter is message
creating (1:n message cardinality) and the aggregator is also message creating,
while the new message is an aggregate of multiple incoming messages (message
cardinality n:1) The splitter breaks one original message into multiple (smaller)
messages. For that, the splitter creates as many new messages as the split func-
tion (Script Task) results to. Figure 3 (a) denotes a splitter, whose split results
are of the same format. The split function could result to multiple messages of
different format. However, in BPMN a Message End Event can only handle a
single message definition. Hence, for each message with differing format a new
control and data flow with dedicated end events is required. Figure 3 (b) shows
the usage of a Parallel Gateway for that purpose. In contrast, an aggregator
receives a stream of messages and correlates them according to a correlation
condition Message Receive Task (Figure 6). When a complete set of correlated
messages has been received, the aggregator applies an aggregation function Ser-
vice Task and publishes a single, new message containing the aggregated result
correlated message identifiers for lineage. The aggregator is persistent, because it
stores list of aggregates. Completion conditions like Timer Event and Escalation
Event are used to end the aggregation, e. g., with the following strategies: wait
for all, wait for first best, timeout. The outer workings of the aggregator are
shown in Figure 4 (a). The first message instantiates a stateful aggregator that
can only be ended through its completion conditions or an exceptional situation.
The inner workings and the instantiation mechanics are shown in Figure 6 and
discussed in detail later.

The message translator, shown in Figure 4 (b), converts an incoming message
(format) into a data format expected by its corresponding receiver. Therefore it
does not create new messages, but changes the original message. The translator
is stateless and has a channel cardinality of 1:1. The message translator is struc-
turally similar to the enricher, while the translator calls an internal mapping
program (not shown), instead of an external one.

Experiences with BPMN for Modeling Integration Patterns 261

(a) Aggregator (b) Message Translator

Fig. 4. Aggregator Pattern (collapsed) (a), Message Translator Pattern (b) (cf. [16])

4 Case Study: BPMN Integration Patterns in Action

We demonstrate the practicability of our integration modeling approach through
the application to the “business monitoring” scenario from the Financial Ser-
vice Network domain (cf. Figure 1). The scenario features messages sent from a
corporate to one or multiple banks, while all messages are passed to the “Cloud
to Cash” application, which correlates the technical messages to their business
contexts and provides an overview.

The technical implementation uses a well-known open source integration mid-
dleware system called Apache Camel [1], to which we “compile” our BPMN-
based IFlow definitions. In Apache Camel the basic concepts are implemented
in a proprietary way. A message consists of a set of name-value pair headers,
a variable body or payload and a set of attachments. The addressable message
endpoints are defined within Component runtime artifacts, which represent a
factory for endpoint objects. The inbound and outbound message adapters are
part of the component as Consumer (camel:from) and Producer (camel:to)
objects. A Camel Route realizes a concrete implementation of a channel. The
Camel Context is the container for runtime services (e. g., mapping program,
aggregation algorithm) and (multiple) routes.

Figure 5 illustrates the compilation from an IFlow model to Apache Camel
artifacts. For better understanding, we used BPMN Group elements, which we
annotated with the Camel syntax, to overlay the BPMN integration scenario.
Hereby, the integration flow is represented by a camel:context with exactly
one assigned camel:route. Between the camel:from inbound the two outbound
calls camel:to uri="cfx:", several Camel components camel:to are executed.
The compilation of this definition results in an executable runtime, if all runtime
services are attached to the Camel context.

The execution semantics of Camel differ from Definition 2, since Camel has no
separation of data and control flow during the execution of a route and behaves
rather like a call stack, i. e., the Camel components remain active during the
complete route processing. The BPMN workings involve a token-based state
model including associated data that lets activities finish after processing. In
this case study we mapped the BPMN to the Camel execution semantics by
synthesising the control and data semantics to Camel route processing.

262 D. Ritter

Fig. 5. Translating Business Monitoring: Messages IFlow to Apache Camel. The Camel
representation is shown as Group overlay for better understanding only. Message Flow
elements denote Message Endpoint definitions.

Listing 1.1. Message Processing Log for “Business Monitoring (anonymized)”

1 Enter ing CXF Inbound Request {
2 contextName = bus ine s s mon i to r ing , MessageGuid =

iXGKWlUtoQPl0xg . . . , Ove ra l l S ta tus = COMPLETED,
Rece iver Id = ctc , SenderId = corporate , . . .

3 Enter ing Camel route route27 {
4 Proce s s ing exchange ID−0001 in

To [map:FSN to CDM] { . . . } , To [data−s t o r e
?op=put] { . . . } , To [cx f : toBank] { . . . } ,
To [data−s t o r e ?op=get&de l e t e=true] { . . . } ,
To [map:CDM to ISO] { . . . } , To [cxf:bean:ODC]
{ . . . }

5 }
6 }
When instrumenting the camel runtime with a technical “Message Processing

Log” (MPL) monitoring capabilities, we can follow the message during the route
processing. Listing 1.1 shows a shortened and anonymized MPL for our scenario,
marking the most relevant steps during the processing of the Camel route. As
discussed, the log illustrates the slightly different execution semantics of Camel.

5 Experiences and Limitations

During customer user studies and extensive, hands-on sessions with integra-
tion domain experts, we gained practical insight in the usage of our modelling
approach. Subsequently, we discuss some technical aspects of the usage of the
proposed syntax and semantics and list practical and conceptual limitations, for
which we give solutions in the context of BPMN.

Experiences with BPMN for Modeling Integration Patterns 263

Business vs. Technical View. The Business Process Model and Notation was
originally defined for business users (e. g., business analysts, business experts):
the technical developers implement and use the processes and the business ex-
perts monitor and manage the processes [15]. However, the more complex exam-
ples within this document (e. g., Fig. 6) show that bridging the gap between the
business process design and process implementation in the domain of EIPs with
BPMN can become difficult, if not impossible. For complex integration prob-
lems, the composition of EIPs quickly leads to technical BPMN syntax, which
becomes intractable for business users.

(Sub-) Process Instantiation, Instance Handling. The instantiation of
processes and sub-processes in BPMN is statically defined. This is sufficient for
stateless, short-running processes. However, there are cases of stateful patterns
(e. g., resequencer (not shown), aggregator), for which a more dynamic, condi-
tional instance handling would be required.

Fig. 6. Aggregator with timeout on sequence sub-process instance and conditional start
mechanism for instance correlation per sequence

For instance, if for different messages sequences (i. e., consisting of correlation,
sequence identifiers and a sequence termination information) separate aggrega-
tion sub-processes shall be started and independently interrupted by a Timer
during an aggregation, the resulting BPMN syntax becomes tricky and the in-
stantiation semantic seems violated. Figure 6 shows one possible syntactic ap-
proach to sequence-based timeouts in BPMN. An aggregator is a complex pattern
and requires an embedded sub-process to define its tasks. Using a mechanism
known as “Conditional Start” [3] combined with the BPMN correlation makes
the instantiation tractable. When a message arrives, to which no aggregate is
assigned, a new instance of an aggregator sub-process is created and the mes-
sage is dispatched to this new instance. The subsequent messages for an existing,
active aggregate are dispatched to the respective sub-process instance. For each
correlated message sequence, an active sub-process instance exists and can be
terminated through time out or if the aggregate is complete. The aggregated

264 D. Ritter

message is sent and the sub-process is closed for further messages. In case new
messages arrive for a closed sequence, a new sub-process is created.

Although the combination of BPMN correlation and conditional start makes
the dynamic instantiation of sub-processes tractable, the mechanism comes with
the implication of “redundant” syntax. Let’s assume before the messages are
aggregated (in Figure 6), a message translator has to transform them to a specific
format (preprocessing) and the aggregated message has to be mapped to the
target format (post-processing). The latter can be clearly added between the
aggregator sub-process and the message end event. However, the preprocessing
would be either executed in the parent process before the sub-process execution
for the first message and copied to the aggregator sub-process for subsequent
messages, or directly “in-lined” into the sub-process.

The topic of (sub-) process instantiation applies to all other complex patterns
with sub-processes (e. g., inline synch/asynch bridge, resequencer).

Message Flow as Integration Adapter. The BPMN Message Flow is used
to model message-consuming and producing adapters that are capable of han-
dling various technical protocols (e. g., HTTP, SOAP, FTP). From an integra-
tion semantic point-of-view, adapters define the message interface/service and
behaviour of the message channels, e. g., with respect to its quality of service or
the message exchange pattern. That leads to advanced concepts like the retry
handling for failed messages from a persistence. The standard message flow,
however, does only allow to reference a Message specification, which does not
even cover the required interface/service definition. The mentioned behavioural
concepts cannot be covered and require an extension to the message flow beyond
its specification.

6 Concluding Remarks

The Enterprise Integration Patterns are a set of widely used patterns denoting
the building blocks for a structured implementation of a messaging system. In
this work we proposed a syntactic mapping to the Business Process Model and
Notation (BPMN) (cf. REQ-2); thus each pattern is a set of elements in a BPMN
Process, which can be composed to sets of message channels from the senders
to the receivers of a message. In contrast to [18] we showed that an extension of
BPMN for the integration domain with specific EIP constructs is not necessary.

Together with the syntax we defined corresponding execution semantics (cf.
REQ-3). We developed the concept of composed patterns further to a complete
definition of an Integration Flow (REQ-1). Although the syntax is compliant to
BPMN, the BPMN execution semantics had to be slightly changed for Message
Endpoint represented as Message Flow. The result is an integration domain spe-
cific language, with which integration aspects of messaging systems and their
execution semantics can be expressed independent of the runtime implementa-
tion (cf. REQs-5–6). The approach allows for validation of integration programs
and runtime systems (cf. REQ-6).

Experiences with BPMN for Modeling Integration Patterns 265

The “Business Monitoring” case study shows that our runtime independent
modelling approach can be successfully compiled to the well-known, open source
integration middleware Apache Camel and lets us assume that the application
to other runtime systems is possible.

Acknowledgments. We thank Volker Stiehl and Ivana Trickovic for their sup-
port on BPMN and the formalization of integration semantics.

References

1. Anstey, J., Zbarcea, H.: Camel in Action. Manning (2011)
2. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In: van

der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

3. Bihari, S., Fischer, R., Loos, C., Reddy, P., Stiehl, V.: Sap netweaver process
orchestration–build a complete integration scenario (sap teched 2013). Technical
report. SAP AG (2013)

4. Gierds, C., Fahland, D.: Using petri nets for modeling enterprise integration pat-
terns. Technical Report BPM Center Report BPM-12-18. BPMcenter.org. (2012)

5. Emmersberger, C., Springer, F.: Tutorial: Open source enterprise application inte-
gration - introducing the event processing capabilities of apache camel. In: DEBS,
pp. 259–268 (2013)

6. Fahland, D., Gierds, C.: Analyzing and completing middleware designs for enter-
prise integration using coloured petri nets. In: Salinesi, C., Norrie, M.C., Pastor,
Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 400–416. Springer, Heidelberg (2013)

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2003)

8. Josuttis, N.M.: SOA in Practice. O’Reilly Media (2007)
9. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex

data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013)

10. Meyer, A., Smirnov, S., Weske, M.: Data in business processes. EMISA Fo-
rum 31(3), 5–31 (2011)

11. Meyer, A., Weske, M.: Data support in process model abstraction. In: Atzeni, P.,
Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 292–306. Springer,
Heidelberg (2012)

12. Müller, D.: Management datengetriebener Prozessstrukturen. PhD thesis (2009)
13. Müller, D., Reichert, M., Herbst, J.: Flexibility of data-driven process structures. In:

Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 181–192.
Springer, Heidelberg (2006)

14. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007)

15. O.M.G. (OMG). Business process model and notation (bpmn) version 2.0. Tech-
nical report (January 2011)

266 D. Ritter

16. Ritter, D.: Using the business process model and notation for modeling enterprise
integration patterns. CoRR, abs/1403.4053 (2014)

17. Scheibler, T.: Ausführbare Integrationsmuster. PhD thesis (2010)
18. Stiehl, V.: Prozessgesteuerte Anwendungen entwickeln und ausführen mit

BPMN: Wie flexible Anwendungsarchitekturen wirklich erreicht werden können.
dpunkt.verlag GmbH (2012)

19. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

20. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

	Experiences with Business Process Model
and Notation for Modeling Integration Patterns

	1 Introduction
	2 Related Work
	3 The BPMN Integration Pattern Language
	3.1 Core Integration Concepts and BPMN
	3.2 Mapping Enterprise Integration Patterns to BPMN

	4 Case Study: BPMN Integration Patterns in Action
	5 Experiences and Limitations
	6 Concluding Remarks
	References

