
Towards an Infrastructure for Domain-Specific

Languages in a Multi-domain Cloud Platform

Thomas Goldschmidt

ABB Corporate Research Germany
thomas.goldschmidt@de.abb.com

Abstract. Recently, cloud computing gained more and more traction,
not only in fast moving domains such as private and enterprise software,
but also in more traditional domains like industrial automation. How-
ever, for rolling out automation software as a service solutions to low-end,
long-tail markets with thousands of small customers important aspects
for cloud scalability such as easy self service for the customer are still
missing. There exists a large gap between the engineering efforts required
to configure an automation system and the effort automation companies
and their customers can afford. At the same time, tools for implement-
ing Domain-Specific Languages (DSLs) have recently become more and
more efficient and easy to use. Tailored DSLs that make use of abstrac-
tions for the particular (sub-)domains and omitting other complexities
would allow customers to handle their applications in a SaaS-oriented,
self-service manner. In this paper, we present an approach towards a
model-based infrastructure for engineering languages for a multi-domain
automation cloud platform that make use of modern DSL frameworks.
This will allow automation SaaS providers to rapidly design sub-domain
specific engineering tools based on a common platform. End-customers
can then use these tailored languages to engineer their specific applica-
tions in an efficient manner.

1 Introduction

Recently, cloud computing gained more and more traction not only in fast mov-
ing domains such as private and enterprise software but also in more traditional
domains like industrial automation. For example, offering automation software
as Software-as-a-Service (SaaS) allows companies to reach customers that could
not afford to maintain a complete on-premise system automation. The type of au-
tomation software which this targets is level 3 (defines the activities of the work
flow to produce the desired end-products) and selected areas of level 2 (defines
the activities of monitoring and controlling the physical processes) of the ISA-95
standard [7], i.e., activities of manufacturing execution systems (MES). Typical
sub-domains for this low end automation are building automation or different ar-
eas in the smart grid domain such as renewable power generation and electronic
vehicle charging. Furthermore, with the advent of the Internet of Things (IoT)
traditional automation tasks such as monitoring and control also broaden their
scope to more and more smaller and privately deployed applications.

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 242–253, 2014.
c© Springer International Publishing Switzerland 2014

Towards an Infrastructure for Domain-Specific Languages 243

However, in these low-end markets there exists a large gap between the en-
gineering efforts required to configure an automation system and the effort au-
tomation companies and their customers can afford. On one hand, automation
companies cannot offer engineering to tens of thousands of customers which are
the target for their automation SaaS. Therefore, a prerequisite for SaaS to work
on a large scale is that customers can do self-service on their applications, i.e.,
do engineering tasks on their own. On the other hand such customers do not
have the expertise and cannot afford the expenses for engineering the automa-
tion system themselves based on the current complexity of engineering. Current
generic engineering languages such as the languages defined by the IEC 61131-3
standard are designed for expert automation engineers and are thus often too
complex for non-experts. Furthermore, for most of the tasks in these low-end
domains, where an automation SaaS solution is a good fit, such complex capabil-
ities are not needed. A tailored Domain-Specific Language (DSL) [4] that makes
use of abstractions for the particular (sub-)domain and omitting other com-
plexities would allow customers to handle their applications in a SaaS-oriented,
self-service manner.

At the same time, tools for implementing domain-specific languages have re-
cently become more and more efficient and easy to use. For example, for the
embedded systems domain an extensible platform called mbeddr [15] was cre-
ated that allows for extensibility and modularity [13] based on an underlying
base language, which is based on C. Such platforms allow to tailor languages
to specific needs in sub-domains or even individual projects. A main advantage
of modern DSL systems such as MPS [8](on which mbeddr is based) is that
the DSL development environment and the runtime environment for the created
languages are based on common IDE. This allows for rapid prototyping and
development of the DSLs and the editors for the DSLs. Created languages can
be tested and used on the spot and do not require an extensive generation and
compilation procedure. Additionally, the coupling between the metamodel and
views on that metamodel becomes more and more loose. For example, MPS now
allows to have multiple textual, graphical or tabular view types on the same
metamodel. Using these mechanisms, a DSL for the specific sub-domain can be
produced based on the needs of the intended users.

In this paper, we present an approach towards a model-based infrastructure
for engineering languages for a multi-domain automation cloud platform. A cen-
tral model repository based on an industry standard information model (OPC
UA [10]) serves as storage for all metamodels, language definitions and engi-
neering models. A web-enabled DSL framework (MPS [8]) provides language
engineering functionality on top of these models. Finally, the platform sup-
ports different roles in a domain’s ecosystem: domain expert, language engineer,
domain-specific engineer and operator. Hence, the complete life-cycle of a DSL
ands its corresponding engineering system is supported in the platform, starting
from the definition of the domain’s metamodel, the language definition, up to the
use of the language by engineers and its runtime environment. We implemented
a proof of concept prototype showing the technical feasibility of the system.

244 T. Goldschmidt

The contribution of this paper is twofold. First, by presenting our envisioned
approach we give practitioners a basis on how domain-specific engineering on
scalable, multi-domain cloud platform can be realized. Second, we raise concep-
tual and technical challenges that we identified to the attention researchers to
provide indications for future research.

This paper is structured as follows. Section 2 gives a background on OPC
UA [10] which is one of the main concept/technology used in our platform.
In Section 3 we present the conceptual architecture of the platform. We give
an overview of the proof-of-concept prototype we implemented in Section 4.
Conceptual and technical challenges encountered are presented in Section 5.
Finally, Section 6 summarizes related work and Section 7 concludes and presents
future work.

2 OPC Unified Architecture

OPC UA is a well established industrial standard in the automation domain
for communication as well as for making information models accessible. As it
already provides basic building blocks for describing runtime systems as well as
the domain-specific engineering artifacts (e.g., control programs, device config-
urations, etc.) it is a good candidate to serve as technical foundation for the
common information model within our platform. This section explains the tech-
nical features of OPC UA and tries to highlight parts that might still be missing
to work in our platform.

OPC UA provides a secure, reliable, high-performance communication in-
frastructure to exchange different types of data in industrial automation. That
includes current data like measurements (e.g. from a temperature sensor) and
setpoints (e.g. for defining the desired level in a tank), events (e.g. device lost
connection) and alarms for abnormal conditions (e.g. a boiler reached a critical
level). In addition, it provides the history of current data (e.g. the temperature
trend for the previous day or the last ten years) and of events (what events of a
certain type occurred the last five days). In order to provide semantic with the
data, also meta data is exchanged in terms of an information model. In Figure
1 depicts an example of an OPC UA address space using the standard graphical
representation defined by the OPC UA specification [11].

On the right hand side in Figure 1 the type system is shown, with object
types in a type hierarchy. For example, the DeviceType is an abstract object
type representing all kinds of devices. It defines a variable called SerialNumber.
A subtype TemperatureSensorType adds the Temperature variable, including
the EngineeringUnits. Variables are typed as well, like the Temperature of type
AnalogItemType defined by the OPC Foundation. This type adds a property to
the variable containing the EngineeringUnits. On the left hand side in Figure 1 an
instance of the TemperatureSensorType, TempSensor1, is shown. The instances
contain the concrete values, like the temperature measured by TempSensor1.

OPC UA is based on a client server model where the client asks for data and
the server delivers the data. The client has the option to read and write the data,

Towards an Infrastructure for Domain-Specific Languages 245

AC800MType

Object

Variable

HasComponent

HasProperty

HasSubtype

HasTypeDefinition

ObjectType

VariableType

BaseObjectType

TempSensor1

SerialNumber

Temperature

AnalogItemType

Notation

DeviceType

TemperatureSensorType

Temperature

PropertyType

SerialNumber

EngineeringUnits

EngineeringUnits

EngineeringUnits

Controls
(ControllerType ->

FieldBusType)

ControllerType

ConnectedTo
(FieldBusType ->

DeviceType)

References:
Controls

FieldBusType

TypeName

ReferenceType (from -> to)

References:
ConnectedTo

Fig. 1. Example of an Address Space in OPC UA

but also to subscribe to data changes or event notifications. In addition, the client
can browse the address space of the server and read the meta data information.
For large and complex address spaces the client also has the capability to query
the address space for information, for example asking for all temperature sensors
that are currently measuring a temperature larger than 25 ◦C.

The most prominent set of engineering languages, namely the 5 languages
defined by the IEC 61131-3 standard, has an official OPC UA representation
defined by PLCOpen [12]. The standard defines different domain-specific lan-
guages, i.e., Structured Text, Instruction Lists, Function Block Diagrams, Lad-
der Diagrams and Sequential Function Charts. The languages are partially in-
terchangeable and overlap to a certain extent. For example, the Function Block
Diagrams language can be used to connect and orchestrate existing executable
code blocks which, in turn, can be implemented by the Structured Text language.

Based on the function block (CTU INT) and program code (MyTestProgram)
in Listings 1.1 and 1.2 the corresponding OPC UA representation is given in
Figure 2. Using this kind of information model the programs running in a PLC
can be monitored just as any other variable. Generic, OPC UA based program
visualizations can then be used to monitor the state of programs using the same
way as for their primary variables. This eases the maintenance of the programs
and helps engineers, for example, during debugging.

However, the current specification of the PLCopen OPC UA representation
does not include the executable parts of the function blocks and programs. For
example, the OPC UA representation in Figure 2 shows that it only includes
the variables (e.g., CU, R, PV) specified in Listings 1.1 and 1.2 but not the
dynamic code parts such as if-then-else blocks. For a complete representation of
the control programs in OPC UA this would be required.

3 Conceptual Architecture

The proposed common platform can provide basic automation functionality such
as acquiring data from the field as well as storing, analyzing and visualizing it.

246 T. Goldschmidt

Domain-specific extensions can then focus on special protocols for communica-
tion, algorithms for data analysis for the particular semantics of the data, or
approaches for doing control or solving optimization problems within that do-
main. Targeting each of the many automation sub-domains with a specific SaaS
solution would cause massive development and maintenance efforts within au-
tomation companies. Therefore, a common automation cloud platform helps to
focus development on domain-specific engineering tools and applications on top
of a common infrastructure.

The main requirements that motivate the architecture of our platform are
(a) easy and fast creation of languages for new sub-domains, (b) scalability to
hundreds and thousands of parallel users, (c) compatibility with existing com-
munication technologies in the automation domain, (d) 3rd party extensibility
for the creation of new languages.

1 FUNCTION_BLOCK CTU_INT

2 VAR_INPUT

3 CU: BOOL;

4 R: BOOL;

5 PV: INT;

6 END_VAR

7 VAR

8 PVmax: INT := 32767;

9 CU_OLD: BOOL;

10 END_VAR

11 VAR_OUTPUT

12 CU: BOOL;

13 Q: BOOL;

14 CV: INT;

15 END_VAR

16 IF R THEN

17 CV := 0;

18 ELSEIF ((NOT CU_OLD)

19 AND CU

20 AND (CV < PVmax)) THEN

21 CV := CV + 1;

22 END_IF;

23 Q := (CV >= PV);

24 CU_OLD := CU;

25 END_FUNCTION_BLOCK

Listing 1.1. Example func-
tion block implementation.

1 PROGRAM MyTestProgram

2 VAR_INPUT

3 Signal: BOOL;

4 END_VAR

5 VAR

6 MyCounter: CTU_INT;

7 END_VAR

8 VAR_TEMP

9 QTemp: BOOL;

10 CVTemp: INT;

11 END_VAR

12 MyCounter(CU := Signal,

13 R:= FALSE, PV := 24);

14 QTemp := MyCounter.Q;

15 CVTemp := MyCounter.CV;

16 END_PROGRAM

Listing 1.2. Example
61131-3 program.

CtrlFunctionBlockType

CTU_INT

CU
DataType = Boolean
Value = False

R
DataType = Boolean
Value = False

PV
DataType = Int16
Value = 0

Q
DataType = Boolean
Value = False

CV
DataType = Int16
Value = 0

PVmax
DataType = Int16
Value = 32767

CU_OLD
DataType = Boolean
Value = False

HasInputVars HasOutputVars

HasLocalVars

MyCounter

Types

Instances

CU
Value = True

R
Value = False

PV
Value = 24

Q
Value = False

CV
Value = 11

PVmax
Value = 32767

CU_OLD
Value = False

HasInputVars HasOutputVars

HasLocalVars

Fig. 2. Example model representation in OPC UA

By providing customizable domain-specific engineering languages as a build-
ing block we facilitate self-service engineering and enable the platform to scale
to a large number of customers. A DSL infrastructure that has a common way of

Towards an Infrastructure for Domain-Specific Languages 247

creating and using languages as well as engineering, accessing the artifacts cre-
ated with the language can form this building block. To achieve this we propose
a model-based approach based on a common model repository that is deployed
in the automation cloud platform. Figure 3 gives an overview on how we envi-
sion our model-based DSL infrastructure for a multi-domain automation cloud
platform could look like.

Domain Expert Language Engineer Operator

Multi-Domain Automation Cloud Platform

Domain-Specific Engineer

Model Repository

Domain-Specific Meta-Model

OPC UA Meta-Meta-Model

Language Definition

DSL
Development

View

Meta-Modelling
View

Operations View

Runtime Information
Model

Automated Site/Plant/DeviceAutomated Site/Plant/DeviceAutomated Site/Plant/Device

Cloud
Connector

populates

references

Instance of
Instance of

Domain-Specific
Extensions

Generic Engineering View

DSL Engineering
View

Generates/Defines

Engineering
Information Model extends

Generates/
Defines

Instance of

Configuration

Legend:

Component

Storage / Model

Comm. Channel

Data Read/Write

Variation Point

Actor

Dependency

Fig. 3. Architecture of the language and modeling environment of a multi-domain
automation cloud platform

Model Repository: A main component of the infrastructure is the com-
mon model repository that hold, metamodels, language definitions, engineering
models as well as runtime information models. As introduced in Section 2, OPC
UA provides a meta-metamodel tailored for the automation domain, as well as
a common way of accessing all models on all meta levels. Furthermore, OPC
UA is prepared to serve as a basis for building DSLs on top of it [5]. These
capabilities make OPC UA a good foundation for the common model repository.
Additionally, OPC UA does not imply a storage format for the models but rather
defines the way on how models are exposed. Therefore, we combine an OPC UA
information model access layer with a scalable cloud database (such as NoSQL
databases). This combination provides a scalable, multi-tenant model repository
for our system.

Furthermore, OPC UA specifies a query interface for browsing and finding
nodes within the information model but does not prescribe the underlying query
implementation. Thus, it is possible to map model queries to the underlying
persistence technology and its efficient query mechanisms.

As all models are then available in the OPC UA address space and have the
corresponding links between each other a cross-model navigation can easily be

248 T. Goldschmidt

implemented. Furthermore, OPCUA allows platform developers to store, browse,
and manage all models the same way. Thus, making it easy to add generic services
for all the above phases. For example, versioning services or social/community
sharing services can be built that work for all created languages at once.

Web-based Editors: Modern web-based editors1 can be used as an efficient
way to interact with an online development system. Therefore, all user inter-
action with our system (domain meta-modeling, language engineering, domain-
specific engineering, operations) can be implemented as a web-based editor di-
rectly working on the online model repository.

A fundamental principle that we follow for our editors is that they present
views on a common model. Thus, it is possible to use different types of views
on the same model. Different types of users can then use specifically tailored
views to interact with their models. A prerequisite for the use of this view-based
approach is a clear separation between the languages and their editors which
represent the different views types and the underlying model.

Domain Meta-Modeling:As depicted in Figure 3, using the meta-modeling
view domain experts can then define the metamodel of their domain. The meta-
modeling view can be implemented in different ways. For domain experts familiar
with OPC UA a generic graphical OPC UA editor can be used. However, being
a view-based approach we also plan to integrate other views that suite different
domains, such as a UML-like view for experts that are nearer to software engi-
neering. An informal mapping from UML to OPC UA is already defined in the
OPC UA specification [11]. Furthermore, textual views for defining metamodels
can be added.

FunctionBlockDeclaration

InputVariables

LocalVariables

OutputVariables

Body

VariableDeclaration

Statement*

*

*

*

Identifier
DataType = String

Identifier
DataType = String

DataType
HasType

HasType
(VariableDeclaration ->

DataType)

IfThenElsIfStatement

AssignmentStatement

IfExpression ElsIfExpression

Expression

AssignmentExpression

VariableRef
(VariableReference ->
VariableDeclaration)

VariableRef
VariableRef

Body*

Fig. 4. Excerpt from a metamodel defined using OPC UA for the IEC 61131-3 lan-
guages

Figure 4 depicts an example metamodel defined using OPC UA. It shows an
excerpt of different concepts of the IEC 61131-3 specification, such as a function
block that has input and output variables but also the actual control algorithm
(body having statements) can be represented in that way.

Language Engineering: Based on the domain-specific metamodel, language
engineers use the DSL development view to define one or more languages that

1 E.g., Cloud9 IDE (https://c9.io/)

https://c9.io/

Towards an Infrastructure for Domain-Specific Languages 249

implement the views that are tailored for the targeted domain-specific engineers’
needs. The resulting editor can then be plugged into the engineering view ex-
tending it with domain-specific capabilities.

To achieve a representation of languages on top of our common model repos-
itory we require a DSL framework that has an interchangeable storage layer.
Furthermore, the language specification metamodel (having constructs like lan-
guage specifications, view type definitions, templates, etc.) needs to be mappable
to our OPC UA based information model. Finally, the generated editors have to
be web-enabled so that we can run them on our cloud platform.

Additionally, we envision the DSL infrastructure to support extensible views
so that tailored domain-specific languages can be created on top of base lan-
guages that are executable (such as Java or a 61131-3 language where we have
a cloud based interpreter). An example extension language, a simple cause and
effect matrix editor for the building automation domain could be created as a
tabular view on the domain-specific metamodel. E.g., associating light switches
with room lights can be easily mapped by selecting the appropriate cells in the
matrix. A mapping of such matrices to 61131-3 was introduced in [1] and could
be implemented for this editor as well.

Domain-Specific Engineering: The role of the domain-specific engineer
can now be taken over in self-service by the SaaS customer. Such engineers will
then develop and configure the customer specific applications which in turn is
also stored as an instance (engineering information model) of the domain-specific
metamodel. This engineering model is also input to the cloud connector com-
ponent which is responsible for handling the data coming from or going to the
automated site, plant or device(s). This data then populates the runtime in-
formation model which is the basis for functionality such as history, analysis,
control and visualization. Finally, operators can use the operations view, includ-
ing domain specific extensions also coming from the DSL to interact with the
system. Figure 5 shows an editor that we created based on the OPC UA meta-
model given in Figure 4. It defines a textual view type for the function blocks
based on the syntax definition given in the IEC 61131-3 specification.

Runtime System: Other components, for history, analysis and execution
control algorithms are also part of the automation cloud system but are out of
scope of this paper. However, it is important to note that all real-time critical
control software will have to remain local to the plant. Only higher level control
and optimization task with longer cycle times (e.g., greater than a second) will
be part of the automation SaaS.

4 Prototype

Based on a survey we executed earlier2, which was based on a tool-oriented
taxonomy of view-based modeling [6], we analyzed different technologies for im-
plementing a proof-of-concept prototype for our platform. We needed a tool that

2 An earlier but published version of this is available here:
http://sdqweb.ipd.kit.edu/burger/mod2012/

http://sdqweb.ipd.kit.edu/burger/mod2012/

250 T. Goldschmidt

Fig. 5. Editor created for the example metamodel defined in Figure 4

supports both textual as well as graphical syntaxes in a projectional, view-based
manner. Furthermore, we selected projectional partiality (allowing different view
types to work on different parts of a metamodel), view overlap as well as intra/in-
ter view type overlap (allowing different views at the same time on the model
as well as different view types on the same model) as main required features. In
addition to the selection properties from the taxonomy, the tool shall support
web-based views and have an exchangeable storage layer.

The JetBrains Meta Programming System (MPS) [8] is an approach for the
creation of textual modeling languages. MPS provides the possibility to inter-
nally map the language to Java where it can then be executed just like an internal
DSL. However, MPS also allows to define a mapping to other base languages.
The biggest difference to most other textual modeling language approaches is
that MPS persists a kind of Abstract Syntax Tree (AST) of the language’s in-
stances instead of persisting the concrete syntax representation as text file. The
editors manipulating the AST are projectional editors that create the textual
representation on the fly. For upcoming versions (3.1) also graphical represen-
tations are be supported. The use of the AST as the main underlying model
allows for the use of multiple, alternative concrete representations of a model.
These representations may also project only a certain part of the underlying
model to the concrete syntax. The projections created based on the AST are not
persisted, thus MPS does not support custom formatting.

Currently, to the best of our knowledgeMPS [8] fulfills or will eventually fulfills
our previously posed requirements. It supports textual and tabular views already
and is on the way of supporting graphical views 3. Furthermore, web-based views
are also supported4. Therefore, our current proof-of-concept prototype is based
on this technology. Another important feature which we require for our platform,

3 MPS [3] roadmap: Q1 2014: MPS 3.1 Support for diagrams in editor
4 Early version availablehere:https://github.com/JetBrains/jetpad-projectional;
Roadmap Q2 2014: MPS 3.5 Web-based projectional editor

https://github.com/JetBrains/jetpad-projectional

Towards an Infrastructure for Domain-Specific Languages 251

i.e., the exchangeable storage layer, is also supported by MPS as it supports
custom persistence.

As mentioned earlier we envision our platform to be based on a common OPC
UA based model repository. We implemented a prototypical MPS persistence
provider for OPC UA. Additionally, we created an implementation that allows
us to store OPC UA models in a cloud based database. Furthermore, we started
implementing a set of editors for the 61131-3 languages based on MPS. The
example editor presented in Figure 5 is one of these editors.

5 Conceptual and Technical Challenges

We currently see a several conceptual and technical challenges on our way to-
wards the envisioned platform. Some of them are specific technical questions
where we aim to extend our proof-of-concept prototype to evaluate them. Oth-
ers, are on a conceptual level where more and broader research would be required.
The challenges we see so far are given in the list below. We do not deem this list
as being a complete picture, new challenges might arise over time as we further
develop the platform.

(1) The mapping between the abstract syntax tree (AST) as defined by MPS
and OPC UA has to be validated more extensively. Can all constructs used in
the DLS tool be represented in OPC UA. Is reference handling done in a consis-
tent way? (2) A great advantage of online editors is concurrent model editing.
Meaning, multiple users can work in parallel on the same content and receive
immediate updates from one another. For collaborative engineering this might
give real benefits regarding the engineering efficiency. Cloud applications such as
Google Drive already nicely support this feature for office documents. However,
it remains to be evaluated how big these benefits really are and how good the
combination of an MPS-based web-editor and the underlying OPC UA-based
persistency support this kind of feature. (3) The usability of the web-editors
may be a crucial point for the acceptance of the platform to a large number
of customers. Therefore, we plan to employ metrics that assess the usability
of the editors for different types of users. (4) Another challenge we see is the
validation of the created languages. How can we ensure that the languages and
abstract view types that are developed, also by 3rd parties can be mapped to
the underlying execution engines correctly. We would need to do verification on
the language definitions and the transformations to ensure this. However, there
exists limited related work in this area which could serve as a basis for this task.

6 Related Work

A multitude of approaches for the creation of domain-specific languages exists.
To mention a few of them: The Graphical Modelling Framework (GMF) [2],
which is part of the Eclipse Modelling Project provides means for creating graph-
ical modeling languages based on Ecore metamodels. Language engineers may
specify which elements of a metamodel should be editable through a specific

252 T. Goldschmidt

diagram. This allows for projectional view types. MetaEdit+ [14] is a commer-
cial tool for creating graphical domain specific modeling languages. Support for
the integration of multiple languages has also been investigated using this ap-
proach. This also enables the approach for multi view type modeling, as different
languages may cover different parts of an interconnected, common metamodel.

Spoofax [9] is a language workbench based on scannerless parser generator
Stratego/SDF. Due to the scannerless parsing mechanism it features extensive
support for modularization of languages. However, explicit support for view-
based modeling, is not given in this approach. There will be still one main view
type, i.e., the textual one that needs to be complete. Other, additional view
types then may be partial and also have a different representation.Xtext [3],
is the official textual modeling approach of the Eclipse Modelling Project. Its
primary use case is the integrated definition of concrete and abstract syntax
based on a grammar-like specification. Additionally existing metamodels may
be imported and and enriched with a view type definition. A language engineer
may define different syntax elements for the same class allowing for intra view
type overlaps.

However, none of the above mentioned tools provide support for textual as
well as graphical projectional views and web-based editors at the same time.
Only this would allow for a deployment on a cloud platform. For us this justifies
the choice of MPS as a core technology in our platform. Regarding a cloud-based
DSL platform very little related work exists. Cloud based editors, such as Cloud9
IDE (https://c9.io) or WriteLatex (http://writelatex.com) provide online
editors for specific languages. However, they do not allow their tenants to define
own languages and can therefore not be considered a complete cloud-based DSL
infrastructure.

7 Conclusions and Future Work

In this paper, we presented a conceptual architecture for a multi-domain engi-
neering cloud platform for the automation domain. The platform is based on a
central model repository implemented on top of the OPC UA meta-metamodel
and supports the entire life-cycle of a domain-specific language from metamodel
definition to operations of the engineered system. Furthermore, we raised con-
ceptual and technical challenges we encountered that give researchers hints for
future research.

Based on the proposed architecture we aim to complete our proof-of-concept
implementation that facilitates a combination of an OPC UA based model repos-
itory, MPS [8] as language engineering workbench and web-based views for the
different roles. We plan to use the building automation domain as case study to
implement domain-specific languages and the corresponding protocol connectors
(e.g., KNX and EnOcean) for the cloud connector. Furthermore, we intend to
build a full-fledged IEC 61131-3 web-based editor based on our existing proof-
of-concept prototype to evaluate if and how a complex system of languages can
be built on top of the proposed infrastructure.

https://c9.io
http://writelatex.com

Towards an Infrastructure for Domain-Specific Languages 253

References

1. Drath, R., Fay, A., Schmidberger, T.: Computer-aided design and implementation
of interlock control code. In: 2006 IEEE Computer Aided Control System Design,
2006 IEEE International Conference on Control Applications, 2006 IEEE Interna-
tional Symposium on Intelligent Control, pp. 2653–2658 (October 2006)

2. Eclipse Foundation. Graphical Modeling Project (GMP) Homepage,
http://www.eclipse.org/modeling/gmp/ (last retrieved December 17, 2013)

3. Eclipse Foundation. Xtext Homepage, http://www.eclipse.org/Xtext/ (last
retrieved January 08, 2014)

4. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010) ISBN
0321712943

5. Goldschmidt, T., Mahnke, W.: Evaluating domain-specific languages for the devel-
opment of OPC UA based applications. In: 7th Vienna International Conference
on Mathematical Modelling, Special Session Modelling and Model Transformation
in Automation Technologies, MATHMOD (2012)

6. Goldschmidt, T., Becker, S., Burger, E.: Towards a tool-oriented taxonomy of view-
based modelling. In: Modellierung, pp. 59–74 (2012)

7. ISA. International standard for the integration of enterprise and control systems,
http://www.isa-95.com/

8. JetBrains. Meta programming system - DSL development environment (2013),
http://www.jetbrains.com/mps/

9. Kats, L.C., Visser, E.: The spoofax language workbench: Rules for declarative
specification of languages and ides. In: ACM Sigplan Notices, vol. 45, pp. 444–463.
ACM (2010)

10. Mahnke, W., Leitner, S.H., Damm, M.: OPC Unified Architecture. Springer Press
(2009)

11. OPC Foundation. OPC UA Specification: Part 3 - Address Space Model,
http://opcfoundation.org/UA/Part3 (2010)

12. PLCopen and OPC Foundation. Explanation of the combined technologies of
plcopen and opc foundation (2009)

13. Ratiu, D., Voelter, M., Molotnikov, Z., Schaetz, B.: Implementing modular do-
main specific languages and analyses. In: Proceedings of the Workshop on Model-
Driven Engineering, Verification and Validation, MoDeVVa 2012, pp. 35–40. ACM,
New York (2012) ISBN 978-1-4503-1801-3

14. Tolvanen, J.-P., Kelly, S.: Metaedit+: Defining and using integrated domain-
specific modeling languages. In: Proceeding of OOPSLA 2009, pp. 819–820 (2009)
ISBN 978-1-60558-768-4

15. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: Instantiating a language
workbench in the embedded software domain. Automated Software Engineer-
ing 20(3), 339–390 (2013)

http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/Xtext/
http://www.isa-95.com/
http://www.jetbrains.com/mps/
http://opcfoundation.org/UA/Part3

	Towards an Infrastructure for Domain-SpecificLanguages in a Multi-domain Cloud Platform
	1 Introduction
	2 OPC Unified Architecture
	3 Conceptual Architecture
	4 Prototype
	5 Conceptual and Technical Challenges
	6 Related Work
	7 Conclusions and Future Work
	References

