
Normalizing Heterogeneous Service Description

Models with Generated QVT Transformations�

Simon Schwichtenberg, Christian Gerth, Zille Huma, and Gregor Engels

s-lab - Software Quality Lab, University of Paderborn, Germany
{simon.schwichtenberg,gerth,zille.huma,engels}@upb.de

Abstract. Service-Oriented Architectures (SOAs) enable the reuse and
substitution of software services to develop highly flexible software sys-
tems. To benefit from the growing plethora of available services, sophisti-
cated service discovery approaches are needed that bring service requests
and offers together. Such approaches rely on rich service descriptions,
which specify also the behavior of provided/requested services, e.g., by
pre- and postconditions of operations. As a base for the specification
a data schema is used, which specifies the used data types and their
relations. However, data schemas are typically heterogeneous wrt. their
structure and terminology, since they are created individually in their di-
verse application contexts. As a consequence the behavioral models that
are typed over the heterogeneous data schemas, cannot be compared di-
rectly. In this paper, we present an holistic approach to normalize rich
service description models to enable behavior-aware service discovery.
The approach consists of a matching algorithm that helps to resolve
structural and terminological heterogeneity in data schemas by exploiting
domain-specific background ontologies. The resulting data schema map-
pings are represented in terms of Query View Transformation (QVT) re-
lations that even reflect complex n:m correspondences. By executing the
transformation, behavioral models are automatically normalized, which
is a prerequisite for a behavior-aware operation matching.

Keywords: SOA, Service Description, Ontologies, Behavioral Models,
Matching.

1 Introduction

Due to their modularity, reusability, and flexibility, SOAs allow to realize
software projects faster and may reduce development costs drastically. In
such service-oriented scenarios, service providers offer services and service re-
questers request for services. The process to match service offers (SOs) with
service requests (SRs) is called service discovery.

A service discovery that is performed manually is time-consuming and error-
prone, since a user has to understand and compare all SOs and SRs individually.
In addition, misinterpretations and misunderstandings of the services lead to

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 180–195, 2014.
c© Springer International Publishing Switzerland 2014

Normalizing Heterogeneous Service Description Models 181

inaccurate matching results. For this reason and to benefit from the plethora
of existing services, an automatic service discovery is required that is based on
comprehensive specifications of the services.

Existing service specification languages like Web Ontology Language for Web
Services [15], Web Service Modeling Language [5], Semantic Annotations for
WSDL and XML Schema [18], and the Rich Service Description Language [10,9]
allow to create such comprehensive specifications. Typically, such a service speci-
fication includes a structural data schema and behavioral models, e.g., in form of
visual contracts (VCs) [6]. VCs describe the behavior of SRs or SOs in terms of
pre- and postconditions for their respective operations. The data schema speci-
fies the used data types of the service and their relations. The behavioral models
in turn are typed over the data schema. For the remainder, we assume that such
a data schema is specified in terms of a Unified Modeling Language (UML) class
model and describes the relevant concepts of a certain domain, e.g., tourism or
banking. Consequently, complex data types are referred to as classes, primitive
types as attributes, and instances of types as objects.

Since SOs and SRs are created independently, the structure and terminology
of their class models are most likely heterogeneous, even if they specify services in
the same domain of interest. As a consequence, the behavioral models typed over
the class models cannot be compared directly and a behavior-aware operation
matching of service requests and offers is not possible. The heterogeneity of the
class models arises from different terminologies, granularity levels, and logical
structuring. For example, two classes of the SR’s and the SO’s class models might
have different but synonymous identifiers, since both denote the same concept.
Analogously, homonyms must be addressed separately.

Matching classes and attributes is an important aspect to overcome the het-
erogeneity, e.g., to determine whether parameters and return values of provided
and requested operations correspond to each other. Thereby, a single class does
not necessarily have to correspond to a single other class. It is rather likely that
sets of classes correspond to each other, resulting in complex 1:n, n:1, or even n:m
mappings. However, complex mappings have received little attention in ontology
matching approaches [19,16].

In this paper, we present an holistic approach to resolve the structural and ter-
minological heterogeneity of rich service description models to enable a behavior-
aware service discovery and composition. Our approach includes a class model
matching algorithm that leverages domain-specific background ontologies, e.g.,
linguistic resources and the Semantic Web to establish semantic relations be-
tween similar classes across different models. From the obtained class model
mappings, a QVT [1] script is generated automatically, whose particular rela-
tions reflect identified correspondences between classes of any cardinality. Using
these QVT relations, we normalize behavioral models in rich service descrip-
tions and make them directly comparable in order to enable a behavior-aware
operation matching.

The remainder is structured as follows: In Sect. 2, we describe a scenario that
illustrates the problem statement. Our approach for class model matching and

182 S. Schwichtenberg et al.

VC normalization is presented in Sect. 3 and Sect. 4. Tool support is introduced
in Sect. 5. We discuss related work regarding class model and web service match-
ing in Sect. 6. Finally, in Sect. 7 we conclude and give an outlook on future work.

2 Scenario

For the following, we assume that a service requester wants to create a service
that allows its users to search and book hotel rooms. Therefore, the requester is
interested in SOs of hotel chains that provide access to their room availability
data or functionality to make bookings through a service interface. For that
purpose, the requester specifies a SR, which is then compared with available
SOs of hotel chains. We assume that SRs and SOs are specified using a service
specification language, which consists at least of the following parts: (1) a UML
class model specifying the data schema and (2) visual contracts, which specify
pre- and postconditions for every requested and provided operation.

Service Request Service Offer

(a
) T

yp
e

le
ve

l
(b

) I
n

st
an

ce
 le

ve
l (

V
C

s)

Fig. 1. Heterogeneous Class Models and Visual Contracts

Normalizing Heterogeneous Service Description Models 183

Fig. 1 gives an example of such a SR and SO with their respective class models
and two behavioral models in terms of visual contracts.

Obviously, both class models have some concepts in common. However, both
use partially different terminologies for these concepts, e.g., the classes Debt

and Liability. Further, classes do not necessarily correspond only to a single
other class. For instance, Single Room and Double Room are specializations of
Room in the SR, while there are no further specializations of Cabin in the SO. In
addition, some attributes are widespread differently over several classes in both
class models, resulting in complex 1:n, n:1, and n:m correspondences between
classes. For instance, the attributes of Address in the SR are represented by
Address and Coordinates in the SO.

The behavioral aspects of a service are described using VCs. A VC is a graph
grammar rule, whose left-hand side (LHS) describes a precondition that must be
fulfilled before a certain operation can be executed. The right-hand side (RHS)
of the rule describes the effects of the operation execution. The graphs of the
rule’s LHS and RHS are instances of the SR or SO class model.

Fig. 1 (b) shows the VCs of the requested operation checkoutPayment and
the provided operation makeReservation. The VC of checkoutPayment specifies
the following behavior:

After Guest g has paid the Debt d for his Order o of Hotel h’s Room r,
Debt d is deleted and a new Payment p is created instead.

This operation is similar to makeReservation that uses synonymous identifiers
and additionally creates a Reservation after the payment. However, in order to
match these models to decide whether the behavior of the operations is equiva-
lent, the behavioral models need to be normalized. For that purpose, we propose
the approach shown in Fig. 2.

Fig. 2. Normalization Approach

Our approach consists of three steps: (1) First, we determine class and
attribute mappings during Class Model Matching by considering background
ontologies in order to overcome structural and terminological heterogeneity.
(2) From the set of mappings, we generate a relational QVT script. By exe-
cuting the Transformation, all VCs of the requester are retyped according to
the class model of the SO. (3) After the normalization, the operations can be
matched, e.g., by using the approach introduced in [10].

184 S. Schwichtenberg et al.

After the computation of a mapping between the class models of a SR and
SO, we assume that the result is inspected by a user, since it may happen that
manual intervention is required. For instance, in case of attributes with the same
name but different types it is necessary to parse their values properly, e.g., by
converting a float to an integer or by integrating an adapter. In such cases, the
QVT script must be adjusted manually. To give an example: The registry might
return a list of the ten best matching offers to the requester. The requester selects
one of them and refines the QVT script if needed.

In the following sections, we describe the class model matching and the nor-
malization in detail.

3 Class Model Matching

The following section introduces our approach for an automatic
service discovery (SD). At first, the architecture and the process of the
SD are defined. The rest of this section focuses on the class model matching
and exemplifies the matching algorithm.

3.1 Automatic Service Discovery Process

In our approach, there are three parties that take part in the SD: service
providers, service requesters, and a service registry. The registry is a central
point to convey SRs to SOs. Providers publish specifications of their SOs at the
service registry. Requesters inquiry the registry by SRs that are also specified
as described in the previous section. The registry resolves the class model het-
erogeneity on-the-fly, retrieves matching SOs for the SR, and returns them to
the requester. The requester can bind its SR to one of the proper SOs. The SD
process is described in the following section.

Fig. 3 illustrates the matching process that is executed at the registry. The
single process steps are described in the following.

Fig. 3. Automatized Matching Process

Normalizing Heterogeneous Service Description Models 185

Match Class Models: In the first step, the class models of all registered SOs
and the currently inquired SR are matched. The class models are enriched with
additional information from several background ontologies (BOs) to establish
mappings between classes and attributes. The output of this step is a set of
disjoint mappings that may have any kind of cardinality. Complex mappings
enable a relation between n classes of the SO’s class model and m classes of the
SR’s class model, with n,m ≤ 1.

Generate QVT script: In the next step, a relational QVT script is generated from
the set of mappings. Each QVT relation corresponds to a class mapping. If the
classes of a particular mapping have attributes that were also mapped for their
part, these attribute mappings are likewise considered in these relations. However,
class and attributemappings are considered in isolation, i.e. themapped attributes
do not necessarily have to be contained in classes of the same class mapping.

There are still some aspects of heterogeneity our class model matcher does not
cover yet. In fact, more complex than 1:1 attribute mappings, association map-
pings, and correspondences between attributes and classes are not considered.
Nevertheless, our class model matcher helps to resolve heterogeneity across class
models, but we assume that the identified mappings are inspected by a user and
adjusted if necessary before the script is executed to normalize visual contracts.

Normalize Visual Contracts: To normalize the requester’s VCs, the QVT script
is executed with these VCs as input. After the transformation, the SR’s VCs
conform to the class model of the SO. The normalization transforms the LHS
and RHS of each VC separately and composes the results to a single normalized
VC. It should be noticed, that it is also possible to normalize the VCs accord-
ing to the class model of the SO, because relational QVT allows bidirectional
transformations. As a useful by-product, the transformation can be used for a
mediation service: Parameters of the SR as well as return values of the SO can
be translated on-the-fly, when the SR and SO interact.

Match Operations and Protocols: Until now, only structural aspects of the SD
have been addressed. On the contrary, operation matching takes the behavioral
models of SRs and SOs into account. Our approach integrates the operation
matching approach proposed by Huma et al. [10], which relies on VCs. The ap-
proach considers n-ary correspondences between operations. For example, a 1:1
operation mapping is established when the precondition of the requested opera-
tion covers at least the preserved and deleted objects of the provided operation
and the postcondition of the provided operation covers at least the preserved and
created objects of the requested operation. More complex matching strategies
consider whole sequences of operations.

The approach of Huma et al. also comes with a protocol matching, which is out
of scope in this paper. The following section concentrates on the service discov-
ery step Match Class Models. The algorithm and its interplay with background
ontologies is explained in detail.

186 S. Schwichtenberg et al.

3.2 Matching Algorithm

The following section exemplifies the class model matching algorithm which is
a prerequisite for the normalization of the VCs. Fig. 4 shows the single steps of
the algorithm that are explained in detail in the remainder.

Fig. 4. Class Model Matching Algorithm

Anchor Attribute Pairs in Background Ontology: Class models of service descrip-
tions are compact, because they focus on the implementation, abstract from irrel-
evant details, and ideally do not contain redundant information. Consequently,
the information class models contain is typically not sufficient to establish se-
mantic relations across different class models. Additional knowledge is required
to establish these relations. In our approach, the class models are embedded in
BOs (c.f. [3]), which model particular domains of interest more holistically than
class models and hopefully builds bridges between the different class models.

Our approach is not limited to a certain ontology language or to a certain
domain of interest. Rather any kind of ontologies can be used as long as they
classify their concepts in a taxonomy. In particular, the algorithm can access
common knowledge ontologies like the linguistic resource WordNet [14], the DB-
pedia ontology [13], and further Web Ontology Language (OWL) ontologies like
Schema.org1 or Umbel2. Furthermore, we included some domain-specific OWL
ontologies with regard to the previously described scenario, e.g. OnTour3 and
the Travel Guide4. In order to support a certain ontology language, a respec-
tive programming interface must be implemented that returns the hypernyms
for a given term. In addition, the ontologies can be imported into a database
that maps terms to their hypernyms, which avoids to keep the whole ontology
in memory and accelerates the anchoring step by leveraging database indexes.

During the anchoring, a BO is selected that contains two concepts with the
same identifiers as the two attributes to be matched. This means a BO is se-
lected for each individual attribute pair. The identifiers of the concepts and the
attributes need not to be exactly the same: Different naming conventions like

1 http://schema.org/
2 http://umbel.org/
3 http://e-tourism.deri.at/ont/
4 https://sites.google.com/site/ontotravelguides

http://schema.org/
http://umbel.org/
http://e-tourism.deri.at/ont/
https://sites.google.com/site/ontotravelguides

Normalizing Heterogeneous Service Description Models 187

due date and dueDate are also considered. For this purpose we use tokenization
and elimation of stopwords like of, the, a, etc. [7]. Fig. 5 shows an anchoring
of the attributes price and rate within the taxonomy of WordNet. By using
different BOs for matching, it may happen that homonyms are misinterpreted
if their semantics differs between the BOs. Although, in practice the number of
homonyms shared between different domains of interest is minimal, homonyms
may be inspected manually after the matching process.

Fig. 5. Anchoring of rate and price in WordNet

Compute Dissimilarity Values for Attributes: It is a common technique to ex-
press the dissimilarity of two concepts as a number. The lower the value of the
number, the less dissimilar the concepts are. The normalized dissimilarity is a
function from a pair of model elements to a number that ranges over the unit
interval of real numbers (c.f. [7]).

In thecurrent step, all dissimilarityvalues for attributesaredeterminedpairwise.
Once two attributes have been anchored, their degree of dissimilarity is determined
by the upward cotopic dissimilarity [12], which is defined in Def. 1 (c.f. [7]).

Definition 1. Upward cotopic dissimilarity. The upward cotopic dissimilar-
ity δ : o× o → [0, 1] is a dissimilarity over a hierarchy H = 〈o,≤〉, such that:

δ(c, c′) = 1− |UC(c,H) ∩ UC(c′, H)|
|UC(c,H) ∪ UC(c′, H)|

whereUC(c,H) = {c′ | ∀c, c′ ∈ H∧c ≤ c′} and c ≤ c′ means that c′ is more general
than c.

The upward cotopic dissimilarity relates the number of shared hypernyms
to the total number of hypernyms of two concepts to be matched according to
the BO. The shared hypernyms of price and rate according to WordNet are
highlighted in Fig. 5, which yields a dissimilarity value of δ = 1− 5/10 = 0.5.

The primitive type compatibility of the attributes is also taken into account
when their dissimilarity is assessed. Accordingly, two attributes with numerical
types are less dissimilar than a numerical and an alphabetical type. The dis-
similarity of the types is encoded in a static look-up table. The upward cotopic
dissimilarity and the type compatibility are aggregated into a single dissimilarity
value according to Equation 1, which aggregates N different dissimilarity values
δi, where each of them is weighted by ωi. Fig. 6 shows the dissimilarity values
of city to all the attributes of the other class model.

δ̂ =

N∑

i=1

δiωi,

N∑

i=1

ωi = 1, ∀ωi : ωi > 0 (1)

188 S. Schwichtenberg et al.

Fig. 6. Dissimilarity values for city

Compute Min. Weighted Attribute Assignment: After the dissimilarity values
have been computed for all attribute pairs, proper attribute mappings are cre-
ated. We assume that most of the attributes represent atomic information, which
is why only 1:1 attribute mappings are considered in our approach. The mapping
of attributes is considered as an optimization problem with the aim to assign as
many attributes as possible while minimizing the sum of the dissimilarity val-
ues. The matching algorithm uses an existing algorithm for the minimum cost
flow problem [20] as a subroutine to find this minimal weighted assignment. A
solution for the assignment referring to the scenario is shown in Fig. 7.

Fig. 7. Min. Weighted Attribute Assignment

Anchor Class Pairs in Background Ontology: This step is analogous to the an-
choring of attributes.

Compute Dissimilarity Values for Classes: The dissimilarity of the class pairs is
assessed by using the upward cotopic dissimilarity. In addition, the attribute map-
pings are also taken into account. The intuition is that classes that share many

Normalizing Heterogeneous Service Description Models 189

Fig. 8. Shared Attribute Dissimilarity Fig. 9. Class Mappings

dissimilar attributes are also dissimilar for their part. The shared attributes dis-
similarity relates the number of shared attributes to the maximal number of at-
tributes. Fig. 8 shows the attribute mappings between Room and Cabin that are
part of the optimal attribute assignment. Thus, the shared attribute dissimilarity
is δ = 0.6+0.24+0.788+3

6 ≈ 0.771. The upward cotopic and the shared attributes
dissimilarity are aggregated into a single dissimilarity value in accordance with
Equation 1.

MatchClassesGreedy: Contrary to the attributematching, the classes arematched
witha greedy strategy insteadof calculating anoptimal assignment.The classmap-
pings are created in a ascending order according to the dissimilarity of the class
pairs. At the same time, mappings are only created as long as the dissimilarity is
below a threshold. If one of a pair’s classes is already part of amapping, the other is
added to that mapping. That way 1:1 mappings can be expanded to complex 1:n,
n:1, or n:m mappings. Fig. 9 shows the resulting set of complex class mappings.
Consequently, the set of resulting class mappings is disjoint.

The set of attribute and class mappings that link the SR’s and the SO’s class
models is the input for the VC normalization, which is the subject of the next
section.

4 Visual Contract Normalization

As a preparation for the normalization of the VCs, a QVT [1] script is generated
from the mappings obtained by the class model matching. Because of its rela-
tional character, the QVT script can be executed in both directions. Thereby the
transformation direction is determined implicitly by selecting the target model.
In our approach, we transform the VCs that conform to the class model of the
SR into VCs that conform to the SO’s class model. The LHS and the RHS of
a VC are transformed separately and recomposed into a newly created, normal-
ized VC. This section describe how the transformation script is generated. The
generation process consists of three steps: Relations are (1) created for the class
mappings, (2) enriched by attribute mappings, (3) connected with respect to
associations.

190 S. Schwichtenberg et al.

Class Mappings: Fig. 10 shows the QVT relation that was generated from the 1:2
classmapping between the classes Reservationand Order of the SO’s classmodel
and the class Order of the SR’s class model. Each class mapping corresponds to a
top relation. The top keyword indicates that the relation is an entry point of a
transformation, which means that object bindings from other relations are not re-
quired. For each of the classes of themapping, a correspondingdomain is added to
the relation.A relationdomainhas a domain pattern that describes a specificmodel
graph consisting of objects, their attributes, and association links. A relation holds,
when all its domain pattern match in the source and target model respectively. In
case a relation holds, the root variables of the domains are bound to concrete ob-
jects. The enforce keyword ensures that a relation holds when the domains of the
source model can be bound. If necessary, new objects of the target model are cre-
ated or existing objects are deleted. As a result, the source and target model are
consistent in regard to that relation.

Fig. 10. Excerpt of the Generated QVT Script

Attribute Mappings: After the generation of relations, we add appropriate QVT
statements to the relations that take the attribute mappings into account. Each
1:1 attribute mapping corresponds to a Property Template Item (PTI) that is
added to the respective domain pattern. In our approach, we use PTIs to instruct
the transformation where to read attributes values from the source model and
where to assign these values to attributes of the target model. Since classes and
attributes were matched independently, it may happen that it is not possible to
reflect class and attribute mappings at the same time. We identified two cases
where we added PTIs to relations: (1) Both mapped attributes are owned by two
classes that were mapped for their part. As shown in Fig. 10, the classes Order

Normalizing Heterogeneous Service Description Models 191

were mapped and are part of the same relation. Their attributes totalPrice and
total charge were also mapped. Hence, respective PTIs are added that bind
these attributes to the same value over variable var totalPrice (line 9 and
14). (2) Both mapped attributes are owned by two classes that have not been
mapped for their part. For example, the attributes dueDate and due date were
mapped. Their owning classes Order and Debt have not been mapped for their
part. However, due date can be accessed over dom order2 because Order has an
association to Debt. Hence, a PTI is added to the respective domain pattern that
binds the value of due date to the variable var dueDate (line 10). Furthermore,
var dueDate is bound to an Object Constraint Language (OCL) [2] expression
in the when clause of the relation. The expression represents the navigation
path that accesses due date (line 18). It should be noticed, that the navigation
path depends on the transformation direction and that such a path may only
exist in one direction. The transformation direction can be determined by calling
the OCL function call dom order1.oclIsUndefined(). Thus, var dueDate is only
bound to due date if transforming from the SR’s to the SO’s class model. The
else branch has no effect and is just for syntactical validity.

Associations: Until now, we considered classes in isolation during the QVT
script generation. Here we examine associations between classes, i.e. association
instances from the source model are transformed to links of the target model.
During the class model matching (Sect. 3) no association mappings were estab-
lished that could be translated to QVT statements. Instead, the link creation is
exclusively derived from the class mappings. To simplify, we assume that classes
have at most one unidirectional, single-valued association to another certain
class. Links between objects are established by either referencing already bound
variables that are available in the scope of a relation or by binding variables with
relation calls. Similar to the attribute mappings, we distinguish two cases when
and how to create links: (1) A complex class mapping maps n classes of a class
models to m other classes. One of the n has an association to one of the other
n−1 classes. For example, Address has an association to Coordinates and both
classes are part of the same mapping. Hence, a PTI is added to the respective
Address domain pattern, that binds the association coordinates and the root
variable dom coordinates (line 26). (2) A class has an association to another
class and both classes were not mapped. For example, Reservation has an asso-
ciation to Client and both classes were not mapped. Hence, a PTI is added to
the Reservation domain pattern that binds the association client to an object
template expression which describes the characteristics of a specific Client ob-
ject (line 5). The object template is empty, because its characteristics are already
defined in the Client domain pattern, that occurs in another relation. Thus, the
binding of the variable is delegated to the other relation by a relation call ex-
pression in the when statement (line 21). The parameter types of a relation call
must conform to the types of the domains of the called relation. If conforming
variables are available in the scope of the calling relation, they are also used
as parameters in relation calls. Otherwise, any arbitrary instance of a required

192 S. Schwichtenberg et al.

parameter type is used as a parameter. Exemplary, such arbitrary objects are
determined by calling the OCL function Guest.allInstances()->any(true).

To summarize, we have shown how a QVT transformation script can be gen-
erated automatically from the set of mappings. The next section introduces our
implementation for the class model matcher and the QVT script generator.

5 Tool Support

We integrated our service description model normalization into the Rich Service
Description Language (RSDL) Workbench, which allows to create, publish, and
discover Rich Service Description Language (RSDL) specifications. The RSDL
workbench is realized as a plug-in for the integrated development environment
Eclipse and is under development at the University of Paderborn in the Col-
laborative Research Centre 901 On-the-Fly Computing. Our workbench uses
the following third-party plug-ins: Papyrus5 that provides a graphical editor
for the UML parts of the specifications and Henshin6 that provides a graph-
ical editor that is used to model the VCs. The service discovery was real-
ized as a Java API for RESTful Web Services (JAX-RS) by means of the Jersey
framework7.

Fig. 11. Graphical User Interface (EMF Compare)

Further, our class
model matcher uses the
Eclipse plug-in EMF
Compare8. The indexing
mechanism is based on
the Jena framework9 to
read background ontolo-
gies, which are stored
in a normalized form
in a database. For the
QVT script generation,
the metamodel of the
QVTd10 project has
been used. The trans-
formation execution
engine mediniQVT11

is leveraged to run the
transformation in order to normalize the VCs. Fig. 11 shows the identified
mappings between two class models of a service request and a service offer in
the graphical user interface provided by EMF Compare.

5 http://www.eclipse.org/papyrus/
6 http://www.eclipse.org/henshin/
7 https://jersey.java.net/
8 http://www.eclipse.org/emf/compare/
9 http://jena.apache.org/

10 http://www.eclipse.org/mmt/qvtd
11 http://projects.ikv.de/qvt

http://www.eclipse.org/papyrus/
http://www.eclipse.org/henshin/
https://jersey.java.net/
http://www.eclipse.org/emf/compare/
http://jena.apache.org/
http://www.eclipse.org/mmt/qvtd
http://projects.ikv.de/qvt

Normalizing Heterogeneous Service Description Models 193

6 Related Work

Several research areas are related to the normalization of service description
models: ontology and model matching, coupled model evolution, and service dis-
covery. Concerning ontology matching, many approaches and systems have been
(and still are) developed that allow to create mappings between heterogeneous
ontologies or schemas. A nice overview of various approaches and the current
state of research is provided by the survey [19].

A classification of matching approaches is provided by [11], which distinguishes
between: static identity-based, signature-based, similarity-based, and language-
specific matching approaches. According to this classification, our class model
matching approach is a similarity-based matching approach, which additionally
leverages background ontologies to identify synonyms, homonyms, as well as
correspondences between classes with a similar ontological semantic.

In the following, we want to highlight three matching systems exemplary:
EMF Compare identifies differences between different versions of the same
Eclipse Modeling Framework (EMF) model and is therefore suited for an in-
tegration in version control systems to keep track of the model’s evolution. The
matching algorithm behind EMF Compare is related to [21]. However, without
adaptations EMF Compare is not suited to match heterogeneous class models,
because it does not recognize synonyms for example. The matching process of
Scarlet [17] anchors the concepts to be matched in one or more background on-
tologies that were determined by external Semantic Web search engines. Next,
a semantic relation between the matched concepts is inferred from the anchor
concepts. However, similarity values are not computed. Furthermore, most of
the matching systems consider only 1:1 mappings. An exception is e.g., Agree-
mentMaker [4], which first computes all similarity values and afterwards a user
selects the desired metrics and mapping cardinalities. Then, an algorithm is exe-
cuted to compute an optimal solution on the weighted assignment problem. This
algorithm is iteratively executed to obtain n:m mappings.

In the case of class models, Coupled Model Evolution (CME) addresses the
problem, that object models become inconsistent when their class model evolves.
In this regard, CME is related to the VCs normalization except that CME con-
siders different versions of the class model, whereas VCs normalization considers
heterogeneous class models. COPE [8] is an approach that keeps track of class
model modifications and creates a history of changes. A migrator that is gener-
ated from this history applies the changes to the object models. COPE is not
suited to normalize VCs, because typically no such change history is available
for heterogeneous class models.

The service discovery approach that was introduced in this thesis relies on
the approach of Huma et al. [10] that uses RSDL specifications [9]. Huma et al.
also address heterogeneous data schemas: As a preparation for an automation of
the heterogeneity resolution, the approach requires that local class models are
manually mapped to a common global class model. Our approach aims to close
this gap and automate this process as far as possible.

194 S. Schwichtenberg et al.

7 Conclusion and Future Work

In this paper, we introduced an holistic approach to overcome structural as well
as terminological heterogeneity of service description models. Thereby, we enable
the behavior-aware matching of service requests and services offers.

The main contributions of our work are as follows: In contrast to yet an-
other structural model matcher, our class model matcher exploits domain-specific
background ontologies that offer the opportunity to identify semantic relations
between different class models. While the majority of existing matchers only con-
sider 1:1 class correspondences, our matcher identifies also complex 1:n, n:1, and
n:m correspondences that arise from different logical structuring or from differ-
ent degrees of granularity. By representing identified class mappings in terms of
QVT relations, we enable an automatic normalization of the behavioral model,
which are typed over the class models.

In future work, we will conduct an extensive evaluation of our class
model matcher in the course of the CRC 901 and by participating in the
Ontology Alignment Evaluation Initiative (OAEI)12 that aims for a systematic
evaluation of matching systems.

Furthermore, we intent to address current limitations of our approach. Con-
cerning the class model matcher these are the identification of mappings between
attributes and classes as well as associations mappings. In the former case, an at-
tribute in one class model does not necessarily correspond to another attribute,
because the same information an attribute represents may be derived from a
class. An example of the latter case is represented by a class that has more than
one association to another class, where each represents a different role. In such
situations association mappings are necessary.

Concerning the transformation script generation, multi-valued associations
are not considered yet. The transformation allows to establish links to at most
one object, whatever cardinality the respective association has. Furthermore,
the class model matcher allows in fact to map attributes with different types.
However, manual intervention is required to reasonably translate, e.g., an alpha-
betic to a numeric value. Finally, complex QVT relations appeared as a problem,
because the more domains a relation has, the less likely it is that the domain
patterns will match and the relation will hold. Further research is required to
determine a proper number of maximal domains.

References

1. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Ver-
sion 1.1 (January 2011),
http://www.omg.org/spec/QVT/1.1/PDF/

2. OMG Object Constraint Language (OCL) Version 2.3.1 (January 2012),
http://www.omg.org/spec/OCL/2.3.1/PDF

12 http://oaei.ontologymatching.org/

http://www.omg.org/spec/QVT/1.1/PDF/
http://www.omg.org/spec/OCL/2.3.1/PDF
http://oaei.ontologymatching.org/

Normalizing Heterogeneous Service Description Models 195

3. Aleksovski, Z., Klein, M., ten Kate, W., van Harmelen, F.: Matching Unstructured
Vocabularies using a Background Ontology. In: Staab, S., Svátek, V. (eds.) EKAW
2006. LNCS (LNAI), vol. 4248, pp. 182–197. Springer, Heidelberg (2006)

4. Cruz, I.F., Antonelli, F.P., Stroe, C.: AgreementMaker: Efficient Matching for
Large Real-World Schemas and Ontologies. Proc. of the VLDB Endowment 2(2),
1586–1589 (2009)

5. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling
Language WSML: An Overview. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 590–604. Springer, Heidelberg (2006)

6. Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring Consistency of
Business Process Models and Web Services Using Visual Contracts. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 17–31. Springer,
Heidelberg (2008)

7. Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 18. Springer, Heidelberg (2007)
8. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - Automating Coupled Evo-

lution of Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 52–76. Springer, Heidelberg (2009)

9. Huma, Z., Gerth, C., Engels, G., Juwig, O.: A UML-based Rich Service Description
Language for Automatic Service Discovery of Heterogeneous Service Partners. In:
CAiSE Forum, pp. 90–97 (2012)

10. Huma, Z., Gerth, C., Engels, G., Juwig, O.: Towards an Automatic Service Discov-
ery for UML-based Rich Service Descriptions. In: France, R.B., Kazmeier, J., Breu,
R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 709–725. Springer,
Heidelberg (2012)

11. Kolovos, D.S., Ruscio, D.D., Pierantonio, A., Paige, R.F.: Different Models for
Model Matching: An analysis of approaches to support model differencing. In:
Proceedings of CVSM 2009 @ ICSE 2009, pp. 1–6. IEEE Computer Society (2009)

12. Maedche, A., Zacharias, V.: Clustering Ontology-based Metadata in the Semantic
Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI),
vol. 2431, pp. 348–360. Springer, Heidelberg (2002)

13. Mendes, P.N., Jakob, M., Bizer, C.: DBpedia for NLP: A Multilingual Cross-
domain Knowledge Base. In: Proc. of the 8th International Conference on Language
Resources and Evaluation, LREC 2012 (2012)

14. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

15. OWL-S Coalition. OWL-based Web Service Ontology (2006),
http://www.ai.sri.com/daml/services/owl-s/1.2/

16. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

17. Sabou, M., d’Aquin, M., Motta, E.: SCARLET: SemantiC RelAtion DiscoveRy
by Harvesting OnLinE OnTologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 854–858. Springer,
Heidelberg (2008)

18. SAWSDL Working Group. Semantic Annotations for WSDL and XML Schema,
SAWSDL (2007), http://www.w3.org/TR/2007/REC-sawsdl-20070828/

19. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges
(2012)

20. Tarjan, R.E.: Data Structures and Network Algorithms, vol. 14. SIAM (1983)
21. Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-Oriented Design Differ-

encing. In: Proc. of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 54–65. ACM (2005)

http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.w3.org/TR/2007/REC-sawsdl-20070828/

	Normalizing Heterogeneous Service DescriptionModels with Generated QVT Transformations
	1 Introduction
	2 Scenario
	3 Class Model Matching
	3.1 Automatic Service Discovery Process
	3.2 Matching Algorithm

	4 Visual Contract Normalization
	5 Tool Support
	6 Related Work
	7 Conclusion and Future Work
	References

