
Efficient Model Synchronization

with View Triple Graph Grammars

Anthony Anjorin�, Sebastian Rose, Frederik Deckwerth, and Andy Schürr

Technische Universität Darmstadt
Real-Time Systems Lab.

Merckstr. 25
64283 Darmstadt, Germany

name.surname@es.tu-darmstadt.de

Abstract. Model synchronization is a crucial task in the context of
Model Driven Engineering. Especially when creating and maintaining
multiple suitable abstractions or views of a complex system, a bidirec-
tional transformation is required to keep all views and the corresponding
system synchronized by automatically propagating changes in both direc-
tions. Triple Graph Grammars (TGGs) are a declarative, rule-based bidi-
rectional transformation language, which can be used to support model
synchronization. In practice, most TGG tools restrict the supported class
of TGGs for efficiency reasons. These restrictions are, however, seldom
intuitive and are often difficult to understand and adhere to, especially
for non-experts. View Triple Graph Grammars (VTGGs) are a restricted
form of TGGs, which can be highly optimized for efficient view update
propagation. We argue that the restrictions posed by VTGGs are explicit
and intuitive for users, as they can be adequately motivated based on
the main application scenarios for VTGGs. In this paper, we present for
the first time a formalization of VTGGs, stating precisely the advan-
tages and limitations of VTGGs as compared to TGGs, and backing our
claims with initial runtime measurements from a practical case study.

Keywords: model driven engineering, bidirectional model transforma-
tion, triple graph grammars, view triple graph grammars.

1 Introduction and Motivation

It is usually impossible to invest the time required to gain a deep understanding
of a complete system and, therefore, a crucial task is focusing on relevant aspects
with task-specific views. Although views are crucial for productivity, maintaining
a view manually is infeasible for most practical applications. Generated, read-
only views are also unsatisfactory as an important requirement is being able to
apply changes to the underlying system at the level of abstraction provided by

� The project on which this paper is based was funded by the German Federal Ministry
of Education and Research, funding code 01IS12054. The authors are responsible for
all contents.

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 1–17, 2014.
c© Springer International Publishing Switzerland 2014

2 A. Anjorin et al.

the view. In general, a bidirectional transformation is required to keep all views
synchronized by automatically propagating updates in both directions.

In a Model-Driven Engineering (MDE) context, Triple Graph Grammars
(TGGs) are a rule-based, formally founded bidirectional model transformation
language [8], which can be used to keep two different but related models synchro-
nized [8]. TGGs can be used to specify views, but supporting lightweight, i.e.,
simple but very efficient, view update propagation is challenging as no restric-
tions are made and arbitrary source and target (i.e., view) structures are allowed.
In application scenarios where the target model is, however, clearly a view of the
source, i.e., a true abstraction/simplification, certain restrictions apply naturally
to the structure of the view and can be exploited to enable efficient view update
propagation. Examples include (i) reducing the complexity of a transformation
by applying suitable views, and (ii) using (a chain of) views to provide a com-
mon abstraction on different structures, so that the same transformations can be
applied to them. In both cases, the subsequent transformations must be able to
treat views exactly as normal models, leading naturally to a set of restrictions,
e.g., that nodes in the view can be created in any order. In cases where these
restrictions apply, View Triple Graph Grammars (VTGGs), first introduced by
[7], can be used as a restricted form of TGGs to realize truly lightweight views of
source structures, which are specially optimized for efficient update propagation.

In practice, all TGG tools we are aware of pose certain restrictions on the class
of supported TGGs to guarantee efficient synchronization (depending on the size
of changes and not on the size of models). These restrictions are, however, seldom
intuitive for users, i.e., are typically technical and cannot be directly motivated
from the supported application scenarios. In this paper, we (i) argue that the
restrictions for VTGGs are intuitive for users as they are directly connected to
their intended usage, (ii) present for the first time a formalization of VTGGs as
a restricted form of TGGs, giving straightforward proofs for the expected formal
properties according to [8]. Furthermore, we clarify the exact difference between
TGGs and VTGGs with a qualitative and quantitative comparison.

Section 2 presents our running example, explaining intuitively how VTGGs
can be used for view specification and synchronization. Section 3 compares our
approach to related work, Sect. 4 formalizes VTGGs as a restricted form of
TGGs, and Sect. 5 provides runtime measurements from our case study. Section 6
concludes with a summary and an overview of future work.

2 Running Example

Our running example is inspired by a real-world project in which a client-server
application is developed using the Eclipse Rich Client Platform (RCP) as a basis
for the client. An Eclipse RCP ecosystem consists of multiple plugin projects
(folders in the filesystem) in a workspace (the root folder). Figure 1 depicts such
a project (Reservation) to the left. Every project contains a source folder src with
Java code and other resources (e.g., icons), and a plugin.xml file. All concepts
described so far are supported by the standard Java Package Browser.

Efficient Model Synchronization with View Triple Graph Grammars 3

<action>
 class="EnterDate.java"
 id = "EnterDate"
 icon="Calendar.jpg"
</action>

Reservation

src

plugin.xml
core ui

booking

icons

Calendar.jpg

<<module>>

Reservation

<<Action>>
EnterDate

<<UIPart>>
Booking

<<Icon>>
Calendar

Fig. 1. Example for source and view models in the running example

Some high-level concepts used by developers are depicted to the right of Fig. 1:
Modules represent business related containers such as the Reservation module,
which provides all functionality related to the domain concept “reservation”. A
module consists of UI parts, i.e., aspects relevant for the user interface such as
icons and dialogues. Modules also contain units of functionality referred to as ac-
tions, which can be related with an icon in the user interface, e.g., the EnterDate
action, which is visualized with the Calendar icon in the UI part Booking. Note
the depicted action fragment in the plugin.xml file and the folder structure, which
correspond to the action and the UI part in the Reservation module, respectively.
Representing projects using these high-level concepts not only supports commu-
nication amongst domain experts, but also provides a compact representation
and enforces conventions that hold for all projects/modules.

2.1 Models, Metamodels, and Model Transformation

A model is a graph, i.e., a structure consisting of objects and links, with source
and target functions connecting links to their source and target objects, respec-
tively. Relationships between models are formalized as graph morphisms, which
are structure preserving maps between graphs, i.e., maps that preserve how links
are connected to objects. The conformance relationship between a model and its
metamodel is a graph morphism “type” between one graph (the model) and an-
other graph (the metamodel). Objects and links in metamodels are referred to
as classes and associations, respectively. This algebraic formalization of MDE
concepts can be extended to include further details such as type preserving mor-
phisms, attributes (which are also typed), inheritance and abstract classes [6].

The metamodels for our running example are depicted in Fig. 2. The source
metamodel on the left represents a simple tree structure, which can be extracted
from an Eclipse project using standard parsers to produce trees from the folder
structure and the different files. Concepts include, therefore, Folders, Files, and
labelled Nodes with Attributes. On the right, the view metamodel represents the
high-level concepts: Modules and Actions that reference Icons in a UIPart. The
metamodel in the middle is referred to as the correspondence metamodel as it

4 A. Anjorin et al.

Module

name :EString

UIPart

description :EString

Action

id :EString

Icon

name :EString

Folder

FolderToModule

File FileToIcon

FolderToUIPart

Node NodeToAction

TreeElement

index :EInt
name :EString

Text

Attribute

value :EString
source

1

uiparts 0..*

source

1

target

1

actions 0..*

icon
0..1

icons 0..*

source

1

target

1

references 0..*target

1

target

1

parentNode

1

children 0..*

parentFolder 1

subFolder *

folder 1

file *

file 1

rootNode 1

source

1

node

1

attribute

*

Fig. 2. Triple of metamodels for the running example

states which source and target elements correspond to each other. Note that
correspondence types are depicted as hexagons only to improve readability.

A model transformation takes an input model MI and produces an output
model MO. In a rule-based approach, this is formalized as applying a trans-
formation rule r to the input model MI . The rule r = (L,R) consists of a
precondition L and a postcondition R, which are both patterns that have to be
mapped to actual model elements when applying the rule. The result of this
mapping is referred to as a match. If a match m(L) ⊆ MI can be determined for
the precondition L in the input model MI , the rule r can be applied by replacing
the precondition by the postcondition to yield the output model MO.

2.2 View Specification with VTGG Rules

The formalization of rule-based model transformation mentioned above can be
extended to triples of models, i.e., the precondition L and postcondition R of
rules are triples of source, correspondence and target patterns. Such triple rules
are referred to as VTGG rules, which specify a view by describing how the view
model evolves together with related correspondence and source models.

The first step in specifying a view with a VTGG is to describe what it means
to instantiate all concrete classes in the view metamodel, i.e., to create objects
in the view. Such rules are referred to as class rules and exactly one class rule is
required for every concrete (non-abstract) class in the view metamodel. Let us
refer to this requirement as Restriction 1. Figure 3 depicts the class rules for the
running example using a compact notation that combines L and R in the follow-
ing manner: Created elements (green with a ++ stereotype) are created by the
rule to fulfil the postcondition, i.e., are in R \ L, while context elements (black
without any stereotype) constitute the precondition L. Regard the rule Mod-
uleRule, which states that creating a module in the view corresponds to creating
a root folder (folder) with an XML file (plugin, root) and a source folder structure
(srcFolder, core, ui). Simple attribute conditions can be in-lined in nodes such

Efficient Model Synchronization with View Triple Graph Grammars 5

module : Module
++

folder : Folder
++

folderToModule :
FolderToModule

++

{eq(folder.name,module.name)}

srcFolder : Folder
name := "src"

++

core : Folder
name := "core"

++
ui : Folder

name := "ui"

++

plugin : File
name := "plugin.xml"

++

root : Node
name := "plugin"

++

action : Action
++node : Node

name := "action"

++

nodeToAction :
NodeToAction

++

classAtr : Attribute
name := "class"

++

idAtr : Attribute
name := "id"

++

{eq(action.id,idAtr.value)
addSuffix(action.id,".java",classAtr.value)}ui : UIPart

++
container : Folder
++

iconFolder : Folder
name := icons

++

folderToUIPart :
FolderToUIPart

++

{eq(folder.name,ui.description)}

icon : Icon
++

file : File
++ fileToIcon :

FileToIcon

++

{eq(file.name,icon.name)}

r1: ModuleRule

r3: UIPartRule

r2: IconRule

r4: ActionRule

parentFolder
++subFolder

++

source

++

target

file
++

folder

subFolder ++

parentFolder

parentFolder

++ subFolder
parentFolder

++subFolder

++

target

node

++

attribute

++

source

++

target

file
++rootNode

++

target

++

source

node

++attribute

++

source

Fig. 3. VTGG class rules for the running example

as name:=“plugin” in root, or specified with a separate, bidirectional constraint
language such as for eq(folder.name, module.name), which can be extended to
include complex user-defined constraints [1]. VTGG class rules only create ele-
ments without demanding any context, meaning that view objects can always
be created in any order. Let us refer to this requirement as Restriction 2.

After defining how view objects can be created, the next step in the process
is to describe what it means to connect existing view objects, i.e., to create links
in the view by instantiating associations in the view metamodel. Such rules are
referred to as association rules and exactly one association rule is required for
every association in the view metamodel. This is an extension of Restriction 1.

Figure 4 depicts the association rules for the running example. In contrast
to class rules, association rules contain context elements (black without any
stereotype), which must have already been created with other rules before the
association rule can be applied (precondition must be fulfilled). Association rules
are only allowed to augment the view by creating a link between two existing
view objects. For example, ModuleUIPartRule connects a Module with a UIPart.
In the source model, association rules can create an arbitrary structure as long
as the required context follows from the existence of the view objects. For Mod-
uleUIPartRule, this means that the required folder structure (folder, srcFolder,
uiFolder) and container folder are guaranteed to exist as they are created to-
gether with module and ui by the corresponding class rules. This is an extension
of Restriction 2. The complete specification comprises two further association
rules, r7 and r8, for the remaining two associations in the view metamodel.

As the view is typically an abstraction of the source, the final step is to
specify in exactly what ways the source can evolve without affecting the view.
These rules are referred to as idle rules and can either be class idle or association
idle, depending on the required context. Figure 5 depicts two idle rules for the
running example. IdleModuleRule is an idle class rule and allows the addition of

6 A. Anjorin et al.

r5: ModuleUIPartRule

r6: UIPartIconRule
parentFolder

++subFolder

++

uiparts

++

icons

targetsource

targetsource

parentFolder subFolder

parentFolder
subFolder

source

folder
++

file

targetsource

parentFolder subFolder

target

Fig. 4. VTGG association rules for the running example

module : Modulefolder : Folder folderToModule :
FolderToModule

srcFolder : Folder
name == "src"

core : Folder
name == "core"

impl : File
++

module : Module

ui : UIPart

folder : Folder

srcFolder : Folder
name == "src"

ui : Folder
name == "ui"

container : Folder

folderToModule :
FolderToModule

folderToUIPart :
FolderToUIPart

impl : File
++

r9: IdleModuleRule r10: IdleUIImplRule

folder
++

file

uiparts

parentFolder
subFolder

parentFolder

subFolder

parentFolder

subFolder

targetsource

targetsourcefile
++
folder

targetsource

parentFolder

subFolder

subFolder
parentFolder

Fig. 5. VTGG idle rules for the running example

arbitrarily many implementation files to the core source folder without affecting
the view in any way. Idle class rules can only require context provided by a class
rule, implying that the created elements (impl in the case of IdleModuleRule)
must be deleted together with the required view object (module). IdleUIImplRule
is an idle association rule, which allows the addition of implementation files for a
UIPart. Idle association rules can require context provided by an association rule,
and in this way, IdleUIImpRule enforces that a UIPart can only be implemented
if it is already part of a module. This has consequences that should be discussed
with domain experts, e.g., the implementation of a UIPart must be deleted as
soon as it is detached from its Module in the view to retain consistency.

2.3 Model Synchronization with VTGGs

To explain intuitively how VTGGs can be used for synchronization, Fig. 6(a)
depicts a source model with a corresponding view model, both annotated with
labels to denote VTGG rule applications. Fig. 6(b) depicts the corresponding
rule application dependency graph, which is used to explain the synchronization
algorithm. The following concrete scenario could have led to this triple: A user
started with a source model consisting of a root folder Reservation with a plu-
gin.xml file and src, src/core and src/ui subfolders. The user now decides to create

Efficient Model Synchronization with View Triple Graph Grammars 7

(a) Consistent Source and View Models (b) Dependency Graph

Fig. 6. Exemplary transformation sequence for the running example

a view model via a forward transformation, i.e., a source-to-view transformation,
which parses the source structure and creates a Reservation module in the view.
This first step (S1) is consistent with the application of the VTGG rule r1 in
the simultaneous build-up and the result is labelled with S1@r1 in Fig. 6(a). The
user now adds an implementation file to the core folder and updates the view by
repeating the forward transformation. The source structure is parsed as S1@r1,
S2@r9, meaning that the view remains unchanged (S2@r9 is an application of
an idle class rule and does not change the view). The user now creates a UIPart
in the view named Booking and adds it to the Reservation module. These view
updates are reflected in the source model via a backward transformation, i.e., a
view-to-source transformation, which creates the corresponding source structure
resulting in a triple now consistent with the rule application sequence S1@r1,
S2@r9, S3@r3, S4@r5. Finally, the user deletes the Reservation module from the
view. This view update is propagated using the rule application dependency
graph (Fig. 6(b)). To “reverse” S1@r1 (i.e., to delete the Reservation module),
all dependent rule applications have to be recursively reversed first. This means
that S2@r9 (all implementation files in the core folder), as well as S4@r5 (all
incident links in the view) must be reversed first, resulting in a triple consistent
with S3@r3. Due to the restricted structure of VTGG rules, the dependency
graph always consists of three levels as depicted in Fig. 6(b). Changes in the
view are thus guaranteed by construction to have a “local” influence (to only
affect dependent rule applications on lower levels).

2.4 VTGG as Restricted TGGs

Based on our example, we can now list and discuss (for now informally, cf.
Sect. 4.2 for the formalization) the main restrictions posed by VTGGs. Theo-
retically, TGGs can be used directly (without any restrictions) to specify views.

8 A. Anjorin et al.

In practice, however, due to efficiency requirements of real-world applications,
all TGG tools we are aware of impose some set of restrictions (typically re-
lated to confluence [6]) on the class of supported TGGs. These restrictions are
typically technical and have nothing to do with a focussed application domain.
With VTGGs this is different, as the set of restrictions are directly connected to
the intended usage of VTGGs, namely establishing a new view metamodel. In-
stances of this view metamodel are to be indistinguishable from normal models,
and are typically used as a suitable high-level interface for further transforma-
tions. This has two implications: (i) it must be possible to create single view
objects in an arbitrary order, and (ii) view links can be created as soon as the
view objects to be connected are present.

Remarkably, these core requirements coincide perfectly with the main VTGG
restrictions we have explained with our running example so far: (i) there must
be a class/association rule for every concrete class/association in the view meta-
model (Restriction 1), and (ii) class rules do not require context elements, while
association rules only demand context guaranteed by the class rules for the corre-
sponding source and target classes of the association in the view. A consequence
is that association rules cannot depend on other association rules (Restriction 2).
Both restrictions are exploited to control ripple effects of update propagation,
i.e., VTGG rule dependency graphs always consist of three levels with depen-
dencies allowed only to lower levels. The corresponding limitation of VTGGs,
compared to TGGs, is that every instance of the view metamodel can be gener-
ated by the VTGG, i.e., the user has no means of constraining the induced view
language in any way. VTGGs are, therefore, not suitable when this is required.

A further optimization employed by VTGGs follows from the fact that the
view language is being newly specified and that it is thus allowed to add ex-
tra technical references as required to the view metamodel. In stark contrast,
TGGs aim to be non-invasive and can be used for existing and unchangeable
metamodels. Being able to manipulate the view metamodel means that the ex-
tra correspondence model can be reduced to a set of references leading directly
from view to source elements. This is a technical point and has no effect on the
formalization but is still an important VTGG restriction/optimization with a
substantial effect on efficiency. Finally, as there are no idle view rules, the view
can always be created from the source. This indicates a clear focus on optimizing
the backward propagation (propagating changes to the view), which is greatly
simplified and can be efficiently implemented as the structure of all rules on
the view side is kept very simple. Forward propagation can be realized with a
standard TGG algorithm either in batch (the view is re-created completely from
scratch) or incremental mode (the old view is updated). We do not aim to replace
TGGs and an ideal combination would be to use VTGGs as a preprocessing step
for TGGs, i.e., to retrieve high-level views of low-level source and target models,
before using TGGs to synchronize the views, leading to clearer, more concise
TGG rules. In general, although VTGGs limit expressiveness (the language of
allowed view models cannot be restricted, e.g., the running example would not
be a VTGG if the roles of view and source were swapped), they provide an

Efficient Model Synchronization with View Triple Graph Grammars 9

efficient means of simplifying (modularizing) TGG or standard graph transfor-
mation rules that can operate on these views exactly as if they were normal,
stand-alone models.

3 Related Work

In this section, we classify related approaches into three main groups correspond-
ing to the following questions:(1) How is our approach to VTGGs different from
that of [7]? (2) What connections and parallels exist to the Asymmetric Delta
Lens (ADL) framework? (3) How does the alternative definition of views in the
algebraic graph transformation framework compare to ours?, and (4) What other
view specification approaches, less related to VTGGs, exist?

(1) Materialized vs. Non-materialized Views: The basic idea of VTGGs
for the specification of views is introduced in [7]. The class adapter pattern, em-
ployed by [7], alters the source metamodel, introducing inheritance relationships
so that certain source elements can additionally take on the role of view ele-
ments. Although this enables efficient memory usage via non-materialized views,
i.e., views that do not exist as separate models but are rather represented as an
additional role taken on by certain elements in the source model, it complicates
view composition as it is unclear how to successively adjust the inheritance rela-
tionships appropriately. In contrast to [7], our approach uses the object adapter
pattern, maintaining our view as a lightweight wrapper for the source model.
Our approach results in materialized views, i.e., a separate view model, and is
a good compromise as the views can still be kept lightweight, e.g., by keeping
all attribute values in the source model and computing attribute values for the
view on demand. Furthermore, in contrast to [7], we provide a constructive for-
malization of VTGGs in the context of TGGs [8], which is useful as a basis for
concrete VTGG implementations.

(2) Connections to the ADL Framework: Compared to (V)TGGs, the
Asymmetric Data Lens (ADL) framework [4] is a more generic and abstract
formalization of bidirectional transformations. The framework captures the in-
tuitively expected behaviour of views with a set of lens laws. Due to its generality,
it offers a formal foundation that can be used to draw parallels between very
different approaches. This higher level of abstraction is, however, not only an
advantage as it is impossible to formulate, e.g., a precise notion of efficiency
such as in the TGG framework. For the reader versed in both frameworks, the
following points give a brief overview of connections and differences:
1. The “sanity” laws from the ADL framework (incidence and identity preser-

vation) are fulfilled for (V)TGGs by exploiting the correspondence model
and do not have to be demanded explicitly.

2. Correctness for (V)TGGs corresponds to PutGet (correctness of backward
propagation) in the ADL framework and is also used to fulfil the composi-
tional laws. (V)TGG are, however, potentially more flexible (non-functional)
and get is allowed to be a relation and not a function (there can be multiple
consistent triples for the same source model).

10 A. Anjorin et al.

3. Completeness for (V)TGGs is implicitly demanded in the ADL framework
by requiring totality for get and put on the source and view model spaces.

4. Further (V)TGG properties such as efficiency or expressiveness are irrelevant
in the abstract ADL setting.

(3) Views in the Algebraic Graph Transformation Framework: The al-
gebraic graph transformation framework of [6] is extended and generalized in
[5], defining typed graph morphisms between different type graphs and differ-
ent data signatures, used to specify the direct connection between a view and
its corresponding source. In contrast, our TGG-based formalization uses corre-
spondence elements, i.e., a separate model, to formally specify the connection
between view and source. A view itself is, therefore, not the direct result of a
transformation rule, but is defined by the rules of the VTGG and the induced
consistency relation. Although [5] provides the basis for a potentially simpler
formalization of view specification frameworks, our TGG-based approach can
make use of the substantial existing TGG formalization, and can be realized as
an extension/adaptation of our existing TGG implementation.

(4) Other Approaches to View Specification: The need for views in an
MDE context has led to an Eclipse project EMF Facet1 that allows the specifi-
cation of queries on models using Java or XPath. Compared to our rule-based,
declarative VTGG approach, such queries in Java / XPath are often rather low-
level and the derived EMF facet views are read-only. With a clear focus on
modularity, views are used in [11] to hide details and to establish interfaces be-
tween modules. The main motivation is the modelling of large and distributed
systems, where dependencies are to be reduced as much as possible. Although
VTGGs can also be used for modularization and defining interfaces, our main
motivation is rather to provide an efficient suitable abstraction for further manip-
ulation with TGGs or normal graph transformations. Compared to [11], views
with VTGGs are specified with an explicit set of declarative rules, while [11]
uses a high-level mapping from which required transformations for the view are
automatically derived. The latter is, consequently, on a more abstract level but
is less expressive. In the domain of database engineering, specifying a view as a
set of queries is a mature and established practice with a solid formal founda-
tion [3]. In other domains, bidirectional programming languages [12], as well as
lens implementations for strings [2] are used to support view specification. As a
realization of the viewpoint framework presented in [10], Xlinkit [9] provides a
declarative, rule-based means of specifying views on XML files. In an MDE con-
text, however, where typed graph structures are used as models, approaches such
as TGGs/VTGGs, which directly support graph patterns in rules are probably
more natural/intuitive for view specification.

4 Formalization of VTGGs as Restricted TGGs

A V TGG consists of a triple of metamodels (e.g., Fig. 2) and a set of triple rules
(e.g., Fig. 3, Fig. 4, and Fig. 5), which describe the simultaneous evolution of

1 http://www.eclipse.org/proposals/emf-facet/

http://www.eclipse.org/proposals/emf-facet/

Efficient Model Synchronization with View Triple Graph Grammars 11

triples of source, correspondence and view models. This induces a consistency
relation in the following manner: A pair of source and view models are consistent,
if and only if a triple consisting of the source and view models connected with a
correspondence model can be created using rules in the VTGG.

This consistency relation is used to automatically derive operational trans-
formations that support incrementally propagating changes to the view back to
the source and vice-versa. As VTGGs are designed to optimize the incremental
backward transformation (view to source), we shall concentrate on this in the
following. All other operational transformations can be derived as for standard
TGGs and we refer to [8] for arguments concerning formal properties that also
apply to VTGGs, which are TGGs with additional restrictions.

After introducing necessary fundamentals on TGGs, we shall first formulate
precisely the set of structural restrictions on VTGG rules, and then use these
restrictions to argue formal properties of incremental view updates with VTGGs.

4.1 Preliminaries

In the following, we consider VTGGs as TGGs with a set of restrictions on the
set of rules. There exists a rich formal foundation for TGGs based on algebraic
graph transformation [6] and we refer to, e.g., [8] for further details.

Triple Graph Grammar: A TGG = (M,R) consists of a triple of meta-
models (source, correspondence and target) M, and a set R of rules. Each rule
r = (L,R) ∈ R, L ⊆ R consists of a precondition L and postcondition R,
both being triples of source, correspondence and target patterns. As explained
in Sect. 2, a rule is applied by mapping the precondition to elements in an input
model, i.e., determining a match, which is replaced with the postcondition.

Formal Properties of TGGs: TGG rules describe the simultaneous evolution
of triples of models but can be operationalized and used to derive unidirectional
forward (source to target) and backward (target to source) transformations. The
TGG is also used as a contract that stipulates the expected behaviour of the
bidirectional transformation realized with the forward and backward transfor-
mations derived from the TGG [8]. In the following we only formulate the laws
for the incremental backward transformation as this is what is optimized for
VTGGs and must thus be shown to be sound:

Correctness: Correctness demands that the derived backward transformation
only creates consistent triples, i.e., triples that can be generated by the TGG.

Given a TGG = (M,R), where M = MS ← MC → MT , let L(TGG)
denote the set of all models that can be derived using rules in R, and L(M) the
set of all model triples that conform to the metamodel triple M.

LetΔT denote the set of all supported changes δT = MT ← M−
T → M+

T ∈ ΔT ,
which can be applied to a source model MT by deleting all elements in MT \M−

T

and adding all elements in M+
T \M−

T .
Let BT : L(TGG) × ΔT → L(M) denote the incremental backward trans-

formation derived from the TGG, a partial function which maps a model triple

12 A. Anjorin et al.

s : S
++

v : V
++

c : C
++

s : S

s' : S'
++

lS : E

s : S

s' : S'

lS : E

s : S v : Vc : C

s' : S' v' : V'c' : C'

lV : E'

mr1

mr3mr2

mr4

++

+target+source

+target+source

++++

++

+target

++

+source

Fig. 7. Meta-rules used to specify the allowed structure of VTGG rules

MS ← MC → MT ∈ L(TGG), and a change to the target model δT = MT ←
M−

T → M+
T ∈ ΔT , to an updated triple M ′

S ← M ′
C → M+

T ∈ L(M).
BT is correct iff it produces model triples in L(TGG), i.e., range(BT) ⊆

L(TGG).

Completeness: As a backward transformation can be trivially correct by rejecting
all input, it is important to demand completeness, i.e., that the derived backward
transformation be able to handle every input for which there exists a consistent
output, i.e, an appropriate triple in L(TGG).
BT is complete iff ∀ MS ← MC → MT ∈ L(TGG), ∀ MT ← M−

T → M+
T ∈ ΔT ,

∃ M ′
S ← M ′

C → M+
T ∈ L(TGG) ⇒ BT (M, δT) ∈ L(M) is defined.

Efficiency: An incremental transformation BT that propagates a source model
change by changing the target model incrementally, is efficient if its runtime is
independent of the size of the models and depends only on the scope of influence
of the change, i.e., all elements that must be re-translated due to the change.

4.2 VTGGs as Restricted TGGs

Given a TGG = (M = MS ← MC → MT ,R), let the target metamodel
MT be referred to in the following as the view metamodel, denoted as MV . To
define the allowed structure of VTGG rules, Fig. 7 depicts four meta-rules mr1
– mr4. These meta-rules will be used as building blocks to construct the allowed
patterns that comprise VTGG rules, substituting the types S, S′ with types from
the source metamodel, V, V ′ with types from the view metamodel, and C,C′ with
types from the correspondence metamodel as required. Meta-rules are depicted
using the compact notation (merging L and R), while the actual rules generated
by applying meta-rules are built up explicitly by specifying L and R separately.

For a meta-rule mr, let L(mr) denote the set of triples that can be gener-
ated by applying mr on the empty triple (denoted as ∅) with types from M,

i.e.: L(mr) = {M ∈ L(M) | ∅ mr⇒ M}. Given a model M that conforms to a
metamodel M, i.e., M ∈ L(M), let M
 mr mean that M is syntactically de-
fined by mr, i.e., that M ∈ L(mr). Furthermore, for meta-rules mr and mr′, let

Efficient Model Synchronization with View Triple Graph Grammars 13

mr ·mr′ : L(mr ·mr′) = {M ′ ∈ L(M) | ∅ mr⇒ M
mr′⇒ M ′} denote their composi-

tion. Finally, let mr∗ denote an arbitrary composition of mr, i.e., mr · . . . ·mr.
We now use this notation to define VTGG rules in the following.
r = (LC , RC) is a class rule2 iff LC = ∅, RC
 crR, where:

crR := mr1 ·mr∗2 ·mr∗3 (1)

r = (LA, RA) is an association rule iff LA
 arL, RA
 arR, where:

arL := crR · crR, arR := arL ·mr4 ·mr∗2 ·mr∗3 (2)

The dashed arrow in mr4 is used to demand that s and s′ must be connected
by some path in the view model for mr4 to be applicable.

r = (LIC , RIC) is an idle class rule iff LIC
 icrL, RIC
 icrR, where:

icrL := crR, icrR := icrL ·mr∗2 ·mr∗3 (3)

r = (LIA, RIA) is an idle association rule iff LIA
 iarL, RIA
 iarR, where:

iarL := arR, iarR := iarL ·mr∗2 ·mr∗3 (4)

A V TGG = (MS ← MC → MV ,R) is a TGG with the following restrictions:

1. Every rule r ∈ R is either a class rule, an association rule, or is idle.
2. There is exactly one class rule for every non-abstract view class.
3. There is exactly one association rule for every association in the view meta-

model and the context required by the association rule must be guaranteed
by the class rules of the source and target classes of the association. Formally,
with rA = (LA, RA) an association rule as defined above, and � denoting
the disjoint union of graphs:

∀(LA, RA) ∈ R, ∃(LC , RC) ∈ R, ∃(L′
C , R

′
C) ∈ R : LA ⊆ RC �R′

C (5)

4. The context required by every idle class rule must be guaranteed by the
corresponding class rule:

∀(LIC , RIC) ∈ R, ∃(LC , RC) ∈ R : LIC ⊆ RC (6)

5. The context required by every idle association rule must be guaranteed by
the corresponding association rule:

∀(LIA, RIA) ∈ R, ∃(LA, RA) ∈ R : LIA ⊆ RA (7)

6. When actually applying association and idle rules in a transformation se-
quence, only the context guaranteed by (5), (6) and (7) can be used.

Example: After defining the set of VTGG restrictions, we can consider our
running example and check if the restrictions hold. The rules depicted in Fig. 3
are indeed class rules as they can be constructed according to (1). For instance,
for r1 = (Lr1 , Rr1), Lr1 = ∅ and Rr1
 mr1 ·mr2 ·mr2
 crR. Similarly, the rules
depicted in Fig. 4 are association rules as they can be constructed according to
(2). For instance, for r6 = (Lr6 , Rr6), Lr6
 (mr1 ·mr2) ·mr1
 crR · crR
 arL
and Rr6
 arL · mr4 · mr3
 arR. Furthermore, Lr6 ⊆ Rr3 � Rr2 as required

2 Note that LC ⊆ RC must hold as a class rule is a rule.

14 A. Anjorin et al.

by (5). Finally, the rules in Fig. 5 are idle as they can be constructed according
to (3) and (4). For instance, for r9 = (Lr9 , Rr9), Lr9
 crR
 icrL and Rr9

icrR ·mr2
 icrR. Furthermore, Lr9 ⊆ Rr1 as required by (6).

VTGGs Are Correct: To show correctness for VTGGs, we have to prove
that incremental view updates (view to source) via BTV TGG, denoting the op-
timized incremental backward transformation for VTGGs, are consistent with
the VTGG. For a given model triple M = MS ← MC → MV ∈ L(V TGG) and
a change to the view δV ∈ ΔV , we do this constructively by stating how the
following cases (corresponding to the four types of supported changes) must be
handled:

(1) Object Creation: As there must exist exactly one class rule rV for every
class V in the view metamodel, creating an object oV of type V in the view
corresponds to applying rV to create oV and the corresponding source structure
as defined in the rule. As the given model triple M is in L(V TGG), there exists a
sequence of VTGG rule applications r1, r2, . . . , rk that can be used to create M .
As the class rule rV , according to (1), is of the form (∅, RV) it is independent of all
other rules and can be applied to extend the sequence to M ′ = r1, r2, . . . , rk, rV .
The resulting model triple M ′ is, therefore, in L(V TGG) and is consistent.

(2) Link Creation: As there must exist exactly one association rule rA for ev-
ery association A in the view metamodel, creating a link lA of type A in the
view model between two objects oV and oV ′ of type V and V ′, respectively,
corresponds to applying the association rule rA. As oV and oV ′ already ex-
ist in the view, they can only have been created by applying the correspond-
ing class rules rV and rV ′ , respectively. As the VTGG restriction (2) guaran-
tees that the required context (which must be used!) for applying rA is im-
plied by the applications of rV and rV ′ , the sequence of rule applications M =
r1, . . . , rV , . . . , rV ′ , . . . , rk is extended toM ′ = r1, . . . , rV , . . . , rV ′ , . . . , rk, rA, im-
plying correctness. Note that rA is only allowed to depend on rV and rV ′ .

(3) Link Deletion: To correctly propagate deletion of a link lA in the view model,
the scope of influence of the change must be determined. In the case of link dele-
tion, only idle association rule applications rIA can depend on source elements
created by the corresponding association rule rA according to (4). As no other
rule applications can depend on idle association rule applications, the latter can
be safely reverted by deleting all created elements in the source. After reverting
all dependent idle association rule applications, the link deletion can be propa-
gated by reverting the application of the association rule rA, deleting the link
in the view and the corresponding source structure. The remaining sequence of
rule applications is valid (a possible sequence of VTGG rule applications).

(4) Object Deletion: The scope of influence of deleting an object in the view
comprises all association rule applications that created incident links to the
deleted object and all idle class rule applications that require the deleted object
as context. To delete an object in the view, therefore, all incident links must
be deleted and appropriately propagated to the source model according to Link

Efficient Model Synchronization with View Triple Graph Grammars 15

Deletion, then all dependent idle class rule applications are reverted, before
finally reverting the class rule application used to create the object to be deleted.
As all dependent rule applications are thus reverted, the remaining sequence of
rule applications is valid and propagation of object deletion is correct.

VTGGs Are Complete:The four cases distinguished above also defineΔT , the
set of supported changes to the view. As the arguments for correctness describe
constructively how the allowed changes are to be propagated for an arbitrary
model triple, it follows that every allowed change can be propagated successfully
in this manner. BTV TGG is, therefore, complete.

VTGGs Are Efficient: BTV TGG is efficient, as the VTGG restrictions guaran-
tee a local scope of influence (defined above for correctness of BTV TGG). Propa-
gating changes, therefore, depends only on elements in the scope of influence of
the change, which is, by construction, independent of the size of the models.

5 Runtime Measurements

Our runtime results, depicted in Fig. 8, were obtained by measuring the time
required to create and add a UIPart to randomly generated view models of in-
creasing size (1000 – 30,000 elements). The VTGG rules for our running example
were used to generate a TGG batch transformation (blue curve), a TGG-based
synchronizer (red curve), and a VTGG-based implementation, all with the same
model transformation tool eMoflon (www.emoflon.org). The exact same update
was executed 11 times (the median is shown in the plot) for each model size on
a PC with an Intel(R) Core(TM)2 Duo 2.53GHz CPU, and 8GB RAM, running
Windows 7 (64 Bit), Oracle JDK 1.7.007 and Eclipse 4.3.1. Although this is only
one rather simple example with only a handful of rules, our results nonetheless

0 001

0 010

0 100

1

10

100

1000

10000

100000

ru
nt
im

e
[m

s]

Batch with TGG Sync with TGG Sync with VTGG

model size [# of elements]

Fig. 8. Runtime measurements for running example

www.emoflon.org

16 A. Anjorin et al.

indicate that VTGGs have the potential of being magnitudes (μs as compared
to ms for 30,000 elements) faster than the current standard TGG synchroniza-
tion implemented according to [8]. Even more importantly, VTGGs are truly
efficient in the sense of [8], meaning that the time required for synchronization
is completely independent of the actual models size.

6 Conclusion and Future Work

In this paper we have formalized a view specification framework based on VTGGs.
Motivated with a simplified but real-world application, we explained the neces-
sary restrictions that enable an efficient implementation. Implementation details
of our current VTGG implementation concerning, e.g., auxiliary data required
to track rule dependencies and revert rule applications correctly and efficiently,
detecting changes to the view via an appropriate notification framework, and the
operationalization of attribute conditions in VTGG rules were out-of-scope for
this paper and are currently being investigated and evaluated in detail. Possible
extensions for VTGGs include: (i) reducing restrictions on class and association
rules as a trade-off between expressiveness and formal guarantees, (ii) integrating
ideas from [7] to support non-materialized views in cases where this is required,
and (iii) extending our concept of views to other aspects such as methods.

References

1. Anjorin, A., Varró, G., Schürr, A.: Complex Attribute Manipulation in TGGs
with Constraint-Based Programming Techniques. In: BX 2012. ECEASST, vol. 49,
pp. 1–15. EASST (2012)

2. Bohannon, A., Foster, J., Pierce, B., Pilkiewicz, A., Schmitt, A.: Boomerang: Re-
sourceful Lenses for String Data. ACM SIGPLAN Notices 43(1), 407–419 (2008)

3. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational Lenses: A Language for
Updatable Views. In: PODS 2006, pp. 338–347. ACM (2006)

4. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: The Asymmetric Case. JOT 10, 1–25 (2011)

5. Ehrig, H., Ehrig, K., Ermel, C., Prange, U.: Consistent Integration of Models based
on Views of Meta Models. Formal Aspects of Computing 22(3-4), 327–344 (2010)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation, 1st edn. Springer (2006)

7. Jakob, J., Königs, A., Schürr, A.: Non-Materialized Model View Specification with
Triple Graph Grammars. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 321–335. Springer,
Heidelberg (2006)

8. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient Model Synchronization
with Precedence Triple Graph Grammars. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer,
Heidelberg (2012)

9. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: Xlinkit: A Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet Tech-
nology 2(2), 151–185 (2002)

Efficient Model Synchronization with View Triple Graph Grammars 17

10. Nuseibeh, B., Kramer, J., Finkelstein, A.: ViewPoints: Meaningful Relationships are
Difficult!. In: Clarke, L.A., Dillon, L., Tichy, F.W. (eds.) ICSE 2003, pp. 676–683.
IEEE (2003)

11. Ranger, U., Gruber, K., Holze, M.: Defining Abstract Graph Views as Module
Interfaces. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088, pp. 120–135. Springer, Heidelberg (2008)

12. Yokoyama, T., Axelsen, H., Glück, R.: Principles of a Reversible Programming
Language. In: Ramı́rez, A., Bilardi, G., Gschwind, M. (eds.) CF 2008, pp. 43–54.
ACM (2008)

	Efficient Model Synchronization
with View Triple Graph Grammars

	1 Introduction and Motivation
	2 Running Example
	2.1 Models, Metamodels, and Model Transformation
	2.2 View Specification with VTGG Rules
	2.3 Model Synchronization with VTGGs
	2.4 VTGG as Restricted TGGs

	3 Related Work
	4 Formalization of VTGGs as Restricted TGGs
	4.1 Preliminaries
	4.2 VTGGs as Restricted TGGs

	5 Runtime Measurements
	6 Conclusion and Future Work
	References

