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Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
a number of leading conferences on software technologies. It was formed after the
end of the successful TOOLS federated event (http://tools.ethz.ch) in 2012, aim-
ing to provide a loose umbrella organization for practical software technologies
conferences, supported by a Steering Committee that provides continuity. The
STAF federated event runs annually; the conferences that participate can vary
from year to year, but all focus on practical and foundational advances in soft-
ware technology. The conferences address all aspects of software technology, from
object-oriented design, testing, mathematical approaches to modelling and veri-
fication, model transformation, graph transformation, model-driven engineering,
aspect-oriented development, and tools.

STAF 2014 was held at the University of York, UK, during July 21–25, 2014,
and hosted four conferences (ICMT 2014, ECMFA 2014, ICGT 2014 and TAP
2014), a long-running transformation tools contest (TTC 2014), eight workshops
affiliated with the conferences, and (for the first time) a doctoral symposium.
The event featured six internationally renowned keynote speakers, and welcomed
participants from around the globe.

The STAF Organizing Committee thanks all participants for submitting and
attending, the program chairs and Steering Committee members for the indi-
vidual conferences, the keynote speakers for their thoughtful, insightful, and
engaging talks, the University of York and IBM UK for their support, and the
many ducks who helped to make the event a memorable one.

July 2014 Richard F. Paige



Preface

The European Conference on Modelling Foundations and Applications (ECMFA)
is a premier conference dedicated to advancing the state of knowledge in the area
of Model-Driven Engineering (MDE) – a paradigm based on the use of models
for the specification, design, analysis, synthesis, deployment, testing, and main-
tenance of complex systems. MDE relies on exploiting models and automation
to achieve significant boosts in development productivity and quality.

In the past 9 years, ECMFA has provided a venue for interaction among
researchers and practitioners interested in MDE. The conference engages the
key figures from industry and academia in a dialog which results in stronger
and more effective practical application of MDE, hence producing more robust
software based on state-of-the-art research results.

The 10th edition of the conference was held during July 21–25, 2014, as part
of the STAF federated event organized by the University of York, United King-
dom. The Program Committee received 58 full paper submissions – 49 for the
Foundations Track and 9 for the Applications Track. Each paper was reviewed
by 3 or 4 Program Committee members and papers with controversial rankings
were discussed online. As the result, 14 Foundations Track papers and 3 Ap-
plications Track papers were accepted for presentation at the conference and
publication in the proceedings, resulting in an acceptance rate of 29% for the
Foundations Track, 33% for the Application Track.

Papers were received from authors in 16 countries and covered a large spec-
trum of MDE topics including model provenance, model transformations and
code generation, model synthesis, model-driven testing, formal modeling ap-
proaches, business process modeling, usability of models and more. We thank
the authors for contributing to the conferences and allowing us to shape an
interesting and inspiring program this year.

We are also grateful to the ECMFA 2014 keynote speakers, Marsha Chechik
from the University of Toronto and Darren Buttle from ETAS for accepting our
invitation and for their enlightening talks.

We thank the STAF 2014 and ECMFA 2014 organizers, as well as the spon-
sors of the conference, for their support. In particular, we appreciate the help
of Richard Paige – the STAF 2014 general chair, Abel Gómez – the publicity
chair, and Jérémie Tatibouët’s – the web chair. Last but not least, we thank the
Program Committee members for providing their expertise and timely reviews
to ensure the scientific quality of the programme. Their helpful and constructive
feedback to all authors is most appreciated.

July 2014 Jordi Cabot
Julia Rubin
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Explicating and Reasoning with Model

Uncertainty

Marsha Chechik

University of Toronto
Toronto, Canada

chechik@cs.toronto.edu

Abstract. “The reality of today’s software systems requires us to con-
sider uncertainty as a first-class concern in the design, implementation,
and deployment of those systems”
David Garlan [4].

Uncertainty has been studied in many software engineering contexts, such as self-
adaptive systems [3], probabilistic systems [5], requirements engineering [10], risk
management [6] and others. In this talk, I focus on the problem of uncertainty
that the modeler has about the different aspects of software. Such uncertainty is
(a) reducible, i.e., it concerns things that are not inherently unknowable, and (b)
epistemic, i.e., it is caused by a particular stakeholder’s lack of knowledge, as
opposed to being a property of the world.

Model uncertainty can be introduced into the modeling process in many ways:
alternative ways to fix model inconsistencies [9, 2, 12], different design alterna-
tives [13, 8], modeler’s knowledge about the problem domain [14], multiple stake-
holder opinions [11], etc. Instead of waiting until uncertainty is resolved or forcing
premature design decisions, we propose to defer the resolution of uncertainty for
as long as necessary, while supporting a variety of transformation and reason-
ing operations that allow modelers to “live” with this uncertainty. In this talk,
I survey some of our recent work on creating, transforming, and reasoning with
models containing uncertainty. I also discuss the relationship between our treat-
ment of model uncertainty and the popular alternatives: underspecification and
non-determinism (and their close relatives, “I don’t know” and “I don’t care”).

Our specification of models with uncertainty implicitly encodes a set of al-
ternative possible models, where we are not sure which is the correct one. This
notion has been introduced in behavioural modeling [7], but we expanded it
to arbitrary modeling languages. Thus, such models with uncertainty can be
thought of as “plural”. Interestingly, plural models can capture a variety of other
SE concepts: products in a product line, models adhering to a metamodel, mem-
ber models in a megamodel [1]. I further describe how this analogy enables us
to lift our uncertainty results to these domains.
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Under the Hood: Model-Based Development in

the Automotive Industry

Darren Buttle

ETAS GmbH

Stuttgart, Germany

Abstract. It is over 30 years since the first car with a programmable
microcontroller rolled off the production line and onto the highway. To-
day’s vehicles include an astonishing amount of software. Everything
from seemingly trivial applications, such as turning on the trunk light,
to more obviously complex applications, such as adaptive cruise control,
deliver significant parts of their functionality through software.
The automotive industry was an early convert to model-based software
development - it enabled engineers in classical engineering domains to
leverage the flexibility and cost reductions that software control promised.
By the late 1990’s, code generated from physical system models could
be found in series production vehicles. Increasing application complex-
ity, coupled with reduced time to market demands, have continued to
drive adoption of model-based development. In some vehicle domains,
notably power train and chassis control, model-based development is the
dominant software development paradigm.
In this talk, we’ll look “under the hood” at model-based software devel-
opment in the automotive industry and consider:

– Where is model-based development used?
– What specific challenges are presented by the domain?
– Which technologies have proven successful?
– What are the current trends and tomorrow’s challenges?

We’ll draw on our experience as one of the early providers of model-based
software development tools and offer our perspective gained from over
20 years or involvement in vehicle projects. Join us for the ride!
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Efficient Model Synchronization

with View Triple Graph Grammars

Anthony Anjorin�, Sebastian Rose, Frederik Deckwerth, and Andy Schürr

Technische Universität Darmstadt
Real-Time Systems Lab.

Merckstr. 25
64283 Darmstadt, Germany

name.surname@es.tu-darmstadt.de

Abstract. Model synchronization is a crucial task in the context of
Model Driven Engineering. Especially when creating and maintaining
multiple suitable abstractions or views of a complex system, a bidirec-
tional transformation is required to keep all views and the corresponding
system synchronized by automatically propagating changes in both direc-
tions. Triple Graph Grammars (TGGs) are a declarative, rule-based bidi-
rectional transformation language, which can be used to support model
synchronization. In practice, most TGG tools restrict the supported class
of TGGs for efficiency reasons. These restrictions are, however, seldom
intuitive and are often difficult to understand and adhere to, especially
for non-experts. View Triple Graph Grammars (VTGGs) are a restricted
form of TGGs, which can be highly optimized for efficient view update
propagation. We argue that the restrictions posed by VTGGs are explicit
and intuitive for users, as they can be adequately motivated based on
the main application scenarios for VTGGs. In this paper, we present for
the first time a formalization of VTGGs, stating precisely the advan-
tages and limitations of VTGGs as compared to TGGs, and backing our
claims with initial runtime measurements from a practical case study.

Keywords: model driven engineering, bidirectional model transforma-
tion, triple graph grammars, view triple graph grammars.

1 Introduction and Motivation

It is usually impossible to invest the time required to gain a deep understanding
of a complete system and, therefore, a crucial task is focusing on relevant aspects
with task-specific views. Although views are crucial for productivity, maintaining
a view manually is infeasible for most practical applications. Generated, read-
only views are also unsatisfactory as an important requirement is being able to
apply changes to the underlying system at the level of abstraction provided by

� The project on which this paper is based was funded by the German Federal Ministry
of Education and Research, funding code 01IS12054. The authors are responsible for
all contents.

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 1–17, 2014.
c© Springer International Publishing Switzerland 2014



2 A. Anjorin et al.

the view. In general, a bidirectional transformation is required to keep all views
synchronized by automatically propagating updates in both directions.

In a Model-Driven Engineering (MDE) context, Triple Graph Grammars
(TGGs) are a rule-based, formally founded bidirectional model transformation
language [8], which can be used to keep two different but related models synchro-
nized [8]. TGGs can be used to specify views, but supporting lightweight, i.e.,
simple but very efficient, view update propagation is challenging as no restric-
tions are made and arbitrary source and target (i.e., view) structures are allowed.
In application scenarios where the target model is, however, clearly a view of the
source, i.e., a true abstraction/simplification, certain restrictions apply naturally
to the structure of the view and can be exploited to enable efficient view update
propagation. Examples include (i) reducing the complexity of a transformation
by applying suitable views, and (ii) using (a chain of) views to provide a com-
mon abstraction on different structures, so that the same transformations can be
applied to them. In both cases, the subsequent transformations must be able to
treat views exactly as normal models, leading naturally to a set of restrictions,
e.g., that nodes in the view can be created in any order. In cases where these
restrictions apply, View Triple Graph Grammars (VTGGs), first introduced by
[7], can be used as a restricted form of TGGs to realize truly lightweight views of
source structures, which are specially optimized for efficient update propagation.

In practice, all TGG tools we are aware of pose certain restrictions on the class
of supported TGGs to guarantee efficient synchronization (depending on the size
of changes and not on the size of models). These restrictions are, however, seldom
intuitive for users, i.e., are typically technical and cannot be directly motivated
from the supported application scenarios. In this paper, we (i) argue that the
restrictions for VTGGs are intuitive for users as they are directly connected to
their intended usage, (ii) present for the first time a formalization of VTGGs as
a restricted form of TGGs, giving straightforward proofs for the expected formal
properties according to [8]. Furthermore, we clarify the exact difference between
TGGs and VTGGs with a qualitative and quantitative comparison.

Section 2 presents our running example, explaining intuitively how VTGGs
can be used for view specification and synchronization. Section 3 compares our
approach to related work, Sect. 4 formalizes VTGGs as a restricted form of
TGGs, and Sect. 5 provides runtime measurements from our case study. Section 6
concludes with a summary and an overview of future work.

2 Running Example

Our running example is inspired by a real-world project in which a client-server
application is developed using the Eclipse Rich Client Platform (RCP) as a basis
for the client. An Eclipse RCP ecosystem consists of multiple plugin projects
(folders in the filesystem) in a workspace (the root folder). Figure 1 depicts such
a project (Reservation) to the left. Every project contains a source folder src with
Java code and other resources (e.g., icons), and a plugin.xml file. All concepts
described so far are supported by the standard Java Package Browser.
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<action>
  class="EnterDate.java"
  id = "EnterDate"
  icon="Calendar.jpg"
</action>

Reservation

src

plugin.xml
core ui

booking

icons

Calendar.jpg

<<module>>

Reservation

<<Action>>
EnterDate

<<UIPart>>
Booking

<<Icon>>
Calendar

Fig. 1. Example for source and view models in the running example

Some high-level concepts used by developers are depicted to the right of Fig. 1:
Modules represent business related containers such as the Reservation module,
which provides all functionality related to the domain concept “reservation”. A
module consists of UI parts, i.e., aspects relevant for the user interface such as
icons and dialogues. Modules also contain units of functionality referred to as ac-
tions, which can be related with an icon in the user interface, e.g., the EnterDate
action, which is visualized with the Calendar icon in the UI part Booking. Note
the depicted action fragment in the plugin.xml file and the folder structure, which
correspond to the action and the UI part in the Reservation module, respectively.
Representing projects using these high-level concepts not only supports commu-
nication amongst domain experts, but also provides a compact representation
and enforces conventions that hold for all projects/modules.

2.1 Models, Metamodels, and Model Transformation

A model is a graph, i.e., a structure consisting of objects and links, with source
and target functions connecting links to their source and target objects, respec-
tively. Relationships between models are formalized as graph morphisms, which
are structure preserving maps between graphs, i.e., maps that preserve how links
are connected to objects. The conformance relationship between a model and its
metamodel is a graph morphism “type” between one graph (the model) and an-
other graph (the metamodel). Objects and links in metamodels are referred to
as classes and associations, respectively. This algebraic formalization of MDE
concepts can be extended to include further details such as type preserving mor-
phisms, attributes (which are also typed), inheritance and abstract classes [6].

The metamodels for our running example are depicted in Fig. 2. The source
metamodel on the left represents a simple tree structure, which can be extracted
from an Eclipse project using standard parsers to produce trees from the folder
structure and the different files. Concepts include, therefore, Folders, Files, and
labelled Nodes with Attributes. On the right, the view metamodel represents the
high-level concepts: Modules and Actions that reference Icons in a UIPart. The
metamodel in the middle is referred to as the correspondence metamodel as it
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Module

name  :EString

UIPart

description  :EString

Action

id  :EString

Icon

name  :EString

Folder

FolderToModule

File FileToIcon

FolderToUIPart

Node NodeToAction

TreeElement

index  :EInt
name  :EString

Text

Attribute

value  :EString
source

1

uiparts 0..*

source

1

target

1

actions 0..*

icon
0..1

icons 0..*

source

1

target

1

references 0..*target

1

target

1

parentNode

1

children 0..*

parentFolder 1

subFolder *

folder 1

file *

file 1

rootNode 1

source

1

node

1

attribute

*

Fig. 2. Triple of metamodels for the running example

states which source and target elements correspond to each other. Note that
correspondence types are depicted as hexagons only to improve readability.

A model transformation takes an input model MI and produces an output
model MO. In a rule-based approach, this is formalized as applying a trans-
formation rule r to the input model MI . The rule r = (L,R) consists of a
precondition L and a postcondition R, which are both patterns that have to be
mapped to actual model elements when applying the rule. The result of this
mapping is referred to as a match. If a match m(L) ⊆ MI can be determined for
the precondition L in the input model MI , the rule r can be applied by replacing
the precondition by the postcondition to yield the output model MO.

2.2 View Specification with VTGG Rules

The formalization of rule-based model transformation mentioned above can be
extended to triples of models, i.e., the precondition L and postcondition R of
rules are triples of source, correspondence and target patterns. Such triple rules
are referred to as VTGG rules, which specify a view by describing how the view
model evolves together with related correspondence and source models.

The first step in specifying a view with a VTGG is to describe what it means
to instantiate all concrete classes in the view metamodel, i.e., to create objects
in the view. Such rules are referred to as class rules and exactly one class rule is
required for every concrete (non-abstract) class in the view metamodel. Let us
refer to this requirement as Restriction 1. Figure 3 depicts the class rules for the
running example using a compact notation that combines L and R in the follow-
ing manner: Created elements (green with a ++ stereotype) are created by the
rule to fulfil the postcondition, i.e., are in R \ L, while context elements (black
without any stereotype) constitute the precondition L. Regard the rule Mod-
uleRule, which states that creating a module in the view corresponds to creating
a root folder (folder) with an XML file (plugin, root) and a source folder structure
(srcFolder, core, ui). Simple attribute conditions can be in-lined in nodes such
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module : Module
++

folder : Folder
++

folderToModule :
FolderToModule

++

{eq(folder.name,module.name)}

srcFolder : Folder
name := "src"

++

core : Folder
name := "core"

++
ui : Folder

name := "ui"

++

plugin : File
name := "plugin.xml"

++

root : Node
name := "plugin"

++

action : Action
++node : Node

name := "action"

++

nodeToAction :
NodeToAction

++

classAtr : Attribute
name := "class"

++

idAtr : Attribute
name := "id"

++

{eq(action.id,idAtr.value)
addSuffix(action.id,".java",classAtr.value)}ui : UIPart

++
container : Folder
++

iconFolder : Folder
name := icons

++

folderToUIPart :
FolderToUIPart

++

{eq(folder.name,ui.description)}

icon : Icon
++

file : File
++ fileToIcon :

FileToIcon

++

{eq(file.name,icon.name)}

r1:  ModuleRule

r3:  UIPartRule

r2:  IconRule

r4:  ActionRule

parentFolder
++subFolder

++

source

++

target

file
++

folder

subFolder ++

parentFolder

parentFolder

++ subFolder
parentFolder

++subFolder

++

target

node

++

attribute

++

source

++

target

file
++rootNode

++

target

++

source

node

++attribute

++

source

Fig. 3. VTGG class rules for the running example

as name:=“plugin” in root, or specified with a separate, bidirectional constraint
language such as for eq(folder.name, module.name), which can be extended to
include complex user-defined constraints [1]. VTGG class rules only create ele-
ments without demanding any context, meaning that view objects can always
be created in any order. Let us refer to this requirement as Restriction 2.

After defining how view objects can be created, the next step in the process
is to describe what it means to connect existing view objects, i.e., to create links
in the view by instantiating associations in the view metamodel. Such rules are
referred to as association rules and exactly one association rule is required for
every association in the view metamodel. This is an extension of Restriction 1.

Figure 4 depicts the association rules for the running example. In contrast
to class rules, association rules contain context elements (black without any
stereotype), which must have already been created with other rules before the
association rule can be applied (precondition must be fulfilled). Association rules
are only allowed to augment the view by creating a link between two existing
view objects. For example, ModuleUIPartRule connects a Module with a UIPart.
In the source model, association rules can create an arbitrary structure as long
as the required context follows from the existence of the view objects. For Mod-
uleUIPartRule, this means that the required folder structure (folder, srcFolder,
uiFolder) and container folder are guaranteed to exist as they are created to-
gether with module and ui by the corresponding class rules. This is an extension
of Restriction 2. The complete specification comprises two further association
rules, r7 and r8, for the remaining two associations in the view metamodel.

As the view is typically an abstraction of the source, the final step is to
specify in exactly what ways the source can evolve without affecting the view.
These rules are referred to as idle rules and can either be class idle or association
idle, depending on the required context. Figure 5 depicts two idle rules for the
running example. IdleModuleRule is an idle class rule and allows the addition of
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r5: ModuleUIPartRule

r6: UIPartIconRule
parentFolder

++subFolder

++

uiparts

++

icons

targetsource

targetsource

parentFolder subFolder

parentFolder
subFolder

source

folder
++

file

targetsource

parentFolder subFolder

target

Fig. 4. VTGG association rules for the running example

module : Modulefolder : Folder folderToModule :
FolderToModule

srcFolder : Folder
name == "src"

core : Folder
name == "core"

impl : File
++

module : Module

ui : UIPart

folder : Folder

srcFolder : Folder
name == "src"

ui : Folder
name == "ui"

container : Folder

folderToModule :
FolderToModule

folderToUIPart :
FolderToUIPart

impl : File
++

r9: IdleModuleRule r10: IdleUIImplRule

folder
++

file

uiparts

parentFolder
subFolder

parentFolder

subFolder

parentFolder

subFolder

targetsource

targetsourcefile
++
folder

targetsource

parentFolder

subFolder

subFolder
parentFolder

Fig. 5. VTGG idle rules for the running example

arbitrarily many implementation files to the core source folder without affecting
the view in any way. Idle class rules can only require context provided by a class
rule, implying that the created elements (impl in the case of IdleModuleRule)
must be deleted together with the required view object (module). IdleUIImplRule
is an idle association rule, which allows the addition of implementation files for a
UIPart. Idle association rules can require context provided by an association rule,
and in this way, IdleUIImpRule enforces that a UIPart can only be implemented
if it is already part of a module. This has consequences that should be discussed
with domain experts, e.g., the implementation of a UIPart must be deleted as
soon as it is detached from its Module in the view to retain consistency.

2.3 Model Synchronization with VTGGs

To explain intuitively how VTGGs can be used for synchronization, Fig. 6(a)
depicts a source model with a corresponding view model, both annotated with
labels to denote VTGG rule applications. Fig. 6(b) depicts the corresponding
rule application dependency graph, which is used to explain the synchronization
algorithm. The following concrete scenario could have led to this triple: A user
started with a source model consisting of a root folder Reservation with a plu-
gin.xml file and src, src/core and src/ui subfolders. The user now decides to create
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(a) Consistent Source and View Models (b) Dependency Graph

Fig. 6. Exemplary transformation sequence for the running example

a view model via a forward transformation, i.e., a source-to-view transformation,
which parses the source structure and creates a Reservation module in the view.
This first step (S1) is consistent with the application of the VTGG rule r1 in
the simultaneous build-up and the result is labelled with S1@r1 in Fig. 6(a). The
user now adds an implementation file to the core folder and updates the view by
repeating the forward transformation. The source structure is parsed as S1@r1,
S2@r9, meaning that the view remains unchanged (S2@r9 is an application of
an idle class rule and does not change the view). The user now creates a UIPart
in the view named Booking and adds it to the Reservation module. These view
updates are reflected in the source model via a backward transformation, i.e., a
view-to-source transformation, which creates the corresponding source structure
resulting in a triple now consistent with the rule application sequence S1@r1,
S2@r9, S3@r3, S4@r5. Finally, the user deletes the Reservation module from the
view. This view update is propagated using the rule application dependency
graph (Fig. 6(b)). To “reverse” S1@r1 (i.e., to delete the Reservation module),
all dependent rule applications have to be recursively reversed first. This means
that S2@r9 (all implementation files in the core folder), as well as S4@r5 (all
incident links in the view) must be reversed first, resulting in a triple consistent
with S3@r3. Due to the restricted structure of VTGG rules, the dependency
graph always consists of three levels as depicted in Fig. 6(b). Changes in the
view are thus guaranteed by construction to have a “local” influence (to only
affect dependent rule applications on lower levels).

2.4 VTGG as Restricted TGGs

Based on our example, we can now list and discuss (for now informally, cf.
Sect. 4.2 for the formalization) the main restrictions posed by VTGGs. Theo-
retically, TGGs can be used directly (without any restrictions) to specify views.
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In practice, however, due to efficiency requirements of real-world applications,
all TGG tools we are aware of impose some set of restrictions (typically re-
lated to confluence [6]) on the class of supported TGGs. These restrictions are
typically technical and have nothing to do with a focussed application domain.
With VTGGs this is different, as the set of restrictions are directly connected to
the intended usage of VTGGs, namely establishing a new view metamodel. In-
stances of this view metamodel are to be indistinguishable from normal models,
and are typically used as a suitable high-level interface for further transforma-
tions. This has two implications: (i) it must be possible to create single view
objects in an arbitrary order, and (ii) view links can be created as soon as the
view objects to be connected are present.

Remarkably, these core requirements coincide perfectly with the main VTGG
restrictions we have explained with our running example so far: (i) there must
be a class/association rule for every concrete class/association in the view meta-
model (Restriction 1), and (ii) class rules do not require context elements, while
association rules only demand context guaranteed by the class rules for the corre-
sponding source and target classes of the association in the view. A consequence
is that association rules cannot depend on other association rules (Restriction 2).
Both restrictions are exploited to control ripple effects of update propagation,
i.e., VTGG rule dependency graphs always consist of three levels with depen-
dencies allowed only to lower levels. The corresponding limitation of VTGGs,
compared to TGGs, is that every instance of the view metamodel can be gener-
ated by the VTGG, i.e., the user has no means of constraining the induced view
language in any way. VTGGs are, therefore, not suitable when this is required.

A further optimization employed by VTGGs follows from the fact that the
view language is being newly specified and that it is thus allowed to add ex-
tra technical references as required to the view metamodel. In stark contrast,
TGGs aim to be non-invasive and can be used for existing and unchangeable
metamodels. Being able to manipulate the view metamodel means that the ex-
tra correspondence model can be reduced to a set of references leading directly
from view to source elements. This is a technical point and has no effect on the
formalization but is still an important VTGG restriction/optimization with a
substantial effect on efficiency. Finally, as there are no idle view rules, the view
can always be created from the source. This indicates a clear focus on optimizing
the backward propagation (propagating changes to the view), which is greatly
simplified and can be efficiently implemented as the structure of all rules on
the view side is kept very simple. Forward propagation can be realized with a
standard TGG algorithm either in batch (the view is re-created completely from
scratch) or incremental mode (the old view is updated). We do not aim to replace
TGGs and an ideal combination would be to use VTGGs as a preprocessing step
for TGGs, i.e., to retrieve high-level views of low-level source and target models,
before using TGGs to synchronize the views, leading to clearer, more concise
TGG rules. In general, although VTGGs limit expressiveness (the language of
allowed view models cannot be restricted, e.g., the running example would not
be a VTGG if the roles of view and source were swapped), they provide an



Efficient Model Synchronization with View Triple Graph Grammars 9

efficient means of simplifying (modularizing) TGG or standard graph transfor-
mation rules that can operate on these views exactly as if they were normal,
stand-alone models.

3 Related Work

In this section, we classify related approaches into three main groups correspond-
ing to the following questions:(1) How is our approach to VTGGs different from
that of [7]? (2) What connections and parallels exist to the Asymmetric Delta
Lens (ADL) framework? (3) How does the alternative definition of views in the
algebraic graph transformation framework compare to ours?, and (4) What other
view specification approaches, less related to VTGGs, exist?

(1) Materialized vs. Non-materialized Views: The basic idea of VTGGs
for the specification of views is introduced in [7]. The class adapter pattern, em-
ployed by [7], alters the source metamodel, introducing inheritance relationships
so that certain source elements can additionally take on the role of view ele-
ments. Although this enables efficient memory usage via non-materialized views,
i.e., views that do not exist as separate models but are rather represented as an
additional role taken on by certain elements in the source model, it complicates
view composition as it is unclear how to successively adjust the inheritance rela-
tionships appropriately. In contrast to [7], our approach uses the object adapter
pattern, maintaining our view as a lightweight wrapper for the source model.
Our approach results in materialized views, i.e., a separate view model, and is
a good compromise as the views can still be kept lightweight, e.g., by keeping
all attribute values in the source model and computing attribute values for the
view on demand. Furthermore, in contrast to [7], we provide a constructive for-
malization of VTGGs in the context of TGGs [8], which is useful as a basis for
concrete VTGG implementations.

(2) Connections to the ADL Framework: Compared to (V)TGGs, the
Asymmetric Data Lens (ADL) framework [4] is a more generic and abstract
formalization of bidirectional transformations. The framework captures the in-
tuitively expected behaviour of views with a set of lens laws. Due to its generality,
it offers a formal foundation that can be used to draw parallels between very
different approaches. This higher level of abstraction is, however, not only an
advantage as it is impossible to formulate, e.g., a precise notion of efficiency
such as in the TGG framework. For the reader versed in both frameworks, the
following points give a brief overview of connections and differences:
1. The “sanity” laws from the ADL framework (incidence and identity preser-

vation) are fulfilled for (V)TGGs by exploiting the correspondence model
and do not have to be demanded explicitly.

2. Correctness for (V)TGGs corresponds to PutGet (correctness of backward
propagation) in the ADL framework and is also used to fulfil the composi-
tional laws. (V)TGG are, however, potentially more flexible (non-functional)
and get is allowed to be a relation and not a function (there can be multiple
consistent triples for the same source model).
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3. Completeness for (V)TGGs is implicitly demanded in the ADL framework
by requiring totality for get and put on the source and view model spaces.

4. Further (V)TGG properties such as efficiency or expressiveness are irrelevant
in the abstract ADL setting.

(3) Views in the Algebraic Graph Transformation Framework: The al-
gebraic graph transformation framework of [6] is extended and generalized in
[5], defining typed graph morphisms between different type graphs and differ-
ent data signatures, used to specify the direct connection between a view and
its corresponding source. In contrast, our TGG-based formalization uses corre-
spondence elements, i.e., a separate model, to formally specify the connection
between view and source. A view itself is, therefore, not the direct result of a
transformation rule, but is defined by the rules of the VTGG and the induced
consistency relation. Although [5] provides the basis for a potentially simpler
formalization of view specification frameworks, our TGG-based approach can
make use of the substantial existing TGG formalization, and can be realized as
an extension/adaptation of our existing TGG implementation.

(4) Other Approaches to View Specification: The need for views in an
MDE context has led to an Eclipse project EMF Facet1 that allows the specifi-
cation of queries on models using Java or XPath. Compared to our rule-based,
declarative VTGG approach, such queries in Java / XPath are often rather low-
level and the derived EMF facet views are read-only. With a clear focus on
modularity, views are used in [11] to hide details and to establish interfaces be-
tween modules. The main motivation is the modelling of large and distributed
systems, where dependencies are to be reduced as much as possible. Although
VTGGs can also be used for modularization and defining interfaces, our main
motivation is rather to provide an efficient suitable abstraction for further manip-
ulation with TGGs or normal graph transformations. Compared to [11], views
with VTGGs are specified with an explicit set of declarative rules, while [11]
uses a high-level mapping from which required transformations for the view are
automatically derived. The latter is, consequently, on a more abstract level but
is less expressive. In the domain of database engineering, specifying a view as a
set of queries is a mature and established practice with a solid formal founda-
tion [3]. In other domains, bidirectional programming languages [12], as well as
lens implementations for strings [2] are used to support view specification. As a
realization of the viewpoint framework presented in [10], Xlinkit [9] provides a
declarative, rule-based means of specifying views on XML files. In an MDE con-
text, however, where typed graph structures are used as models, approaches such
as TGGs/VTGGs, which directly support graph patterns in rules are probably
more natural/intuitive for view specification.

4 Formalization of VTGGs as Restricted TGGs

A V TGG consists of a triple of metamodels (e.g., Fig. 2) and a set of triple rules
(e.g., Fig. 3, Fig. 4, and Fig. 5), which describe the simultaneous evolution of

1 http://www.eclipse.org/proposals/emf-facet/

http://www.eclipse.org/proposals/emf-facet/
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triples of source, correspondence and view models. This induces a consistency
relation in the following manner: A pair of source and view models are consistent,
if and only if a triple consisting of the source and view models connected with a
correspondence model can be created using rules in the VTGG.

This consistency relation is used to automatically derive operational trans-
formations that support incrementally propagating changes to the view back to
the source and vice-versa. As VTGGs are designed to optimize the incremental
backward transformation (view to source), we shall concentrate on this in the
following. All other operational transformations can be derived as for standard
TGGs and we refer to [8] for arguments concerning formal properties that also
apply to VTGGs, which are TGGs with additional restrictions.

After introducing necessary fundamentals on TGGs, we shall first formulate
precisely the set of structural restrictions on VTGG rules, and then use these
restrictions to argue formal properties of incremental view updates with VTGGs.

4.1 Preliminaries

In the following, we consider VTGGs as TGGs with a set of restrictions on the
set of rules. There exists a rich formal foundation for TGGs based on algebraic
graph transformation [6] and we refer to, e.g., [8] for further details.

Triple Graph Grammar: A TGG = (M,R) consists of a triple of meta-
models (source, correspondence and target) M, and a set R of rules. Each rule
r = (L,R) ∈ R, L ⊆ R consists of a precondition L and postcondition R,
both being triples of source, correspondence and target patterns. As explained
in Sect. 2, a rule is applied by mapping the precondition to elements in an input
model, i.e., determining a match, which is replaced with the postcondition.

Formal Properties of TGGs: TGG rules describe the simultaneous evolution
of triples of models but can be operationalized and used to derive unidirectional
forward (source to target) and backward (target to source) transformations. The
TGG is also used as a contract that stipulates the expected behaviour of the
bidirectional transformation realized with the forward and backward transfor-
mations derived from the TGG [8]. In the following we only formulate the laws
for the incremental backward transformation as this is what is optimized for
VTGGs and must thus be shown to be sound:

Correctness: Correctness demands that the derived backward transformation
only creates consistent triples, i.e., triples that can be generated by the TGG.

Given a TGG = (M,R), where M = MS ← MC → MT , let L(TGG)
denote the set of all models that can be derived using rules in R, and L(M) the
set of all model triples that conform to the metamodel triple M.

LetΔT denote the set of all supported changes δT = MT ← M−
T → M+

T ∈ ΔT ,
which can be applied to a source model MT by deleting all elements in MT \M−

T

and adding all elements in M+
T \M−

T .
Let BT : L(TGG) × ΔT → L(M) denote the incremental backward trans-

formation derived from the TGG, a partial function which maps a model triple
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Fig. 7. Meta-rules used to specify the allowed structure of VTGG rules

MS ← MC → MT ∈ L(TGG), and a change to the target model δT = MT ←
M−

T → M+
T ∈ ΔT , to an updated triple M ′

S ← M ′
C → M+

T ∈ L(M).
BT is correct iff it produces model triples in L(TGG), i.e., range(BT ) ⊆

L(TGG).

Completeness: As a backward transformation can be trivially correct by rejecting
all input, it is important to demand completeness, i.e., that the derived backward
transformation be able to handle every input for which there exists a consistent
output, i.e, an appropriate triple in L(TGG).
BT is complete iff ∀ MS ← MC → MT ∈ L(TGG), ∀ MT ← M−

T → M+
T ∈ ΔT ,

∃ M ′
S ← M ′

C → M+
T ∈ L(TGG) ⇒ BT (M, δT ) ∈ L(M) is defined.

Efficiency: An incremental transformation BT that propagates a source model
change by changing the target model incrementally, is efficient if its runtime is
independent of the size of the models and depends only on the scope of influence
of the change, i.e., all elements that must be re-translated due to the change.

4.2 VTGGs as Restricted TGGs

Given a TGG = (M = MS ← MC → MT ,R), let the target metamodel
MT be referred to in the following as the view metamodel, denoted as MV . To
define the allowed structure of VTGG rules, Fig. 7 depicts four meta-rules mr1
– mr4. These meta-rules will be used as building blocks to construct the allowed
patterns that comprise VTGG rules, substituting the types S, S′ with types from
the source metamodel, V, V ′ with types from the view metamodel, and C,C′ with
types from the correspondence metamodel as required. Meta-rules are depicted
using the compact notation (merging L and R), while the actual rules generated
by applying meta-rules are built up explicitly by specifying L and R separately.

For a meta-rule mr, let L(mr) denote the set of triples that can be gener-
ated by applying mr on the empty triple (denoted as ∅) with types from M,

i.e.: L(mr) = {M ∈ L(M) | ∅ mr⇒ M}. Given a model M that conforms to a
metamodel M, i.e., M ∈ L(M), let M 
 mr mean that M is syntactically de-
fined by mr, i.e., that M ∈ L(mr). Furthermore, for meta-rules mr and mr′, let
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mr ·mr′ : L(mr ·mr′) = {M ′ ∈ L(M) | ∅ mr⇒ M
mr′⇒ M ′} denote their composi-

tion. Finally, let mr∗ denote an arbitrary composition of mr, i.e., mr · . . . ·mr.
We now use this notation to define VTGG rules in the following.
r = (LC , RC) is a class rule2 iff LC = ∅, RC 
 crR, where:

crR := mr1 ·mr∗2 ·mr∗3 (1)

r = (LA, RA) is an association rule iff LA 
 arL, RA 
 arR, where:

arL := crR · crR, arR := arL ·mr4 ·mr∗2 ·mr∗3 (2)

The dashed arrow in mr4 is used to demand that s and s′ must be connected
by some path in the view model for mr4 to be applicable.

r = (LIC , RIC) is an idle class rule iff LIC 
 icrL, RIC 
 icrR, where:

icrL := crR, icrR := icrL ·mr∗2 ·mr∗3 (3)

r = (LIA, RIA) is an idle association rule iff LIA 
 iarL, RIA 
 iarR, where:

iarL := arR, iarR := iarL ·mr∗2 ·mr∗3 (4)

A V TGG = (MS ← MC → MV ,R) is a TGG with the following restrictions:

1. Every rule r ∈ R is either a class rule, an association rule, or is idle.
2. There is exactly one class rule for every non-abstract view class.
3. There is exactly one association rule for every association in the view meta-

model and the context required by the association rule must be guaranteed
by the class rules of the source and target classes of the association. Formally,
with rA = (LA, RA) an association rule as defined above, and � denoting
the disjoint union of graphs:

∀(LA, RA) ∈ R, ∃(LC , RC) ∈ R, ∃(L′
C , R

′
C) ∈ R : LA ⊆ RC �R′

C (5)

4. The context required by every idle class rule must be guaranteed by the
corresponding class rule:

∀(LIC , RIC) ∈ R, ∃(LC , RC) ∈ R : LIC ⊆ RC (6)

5. The context required by every idle association rule must be guaranteed by
the corresponding association rule:

∀(LIA, RIA) ∈ R, ∃(LA, RA) ∈ R : LIA ⊆ RA (7)

6. When actually applying association and idle rules in a transformation se-
quence, only the context guaranteed by (5), (6) and (7) can be used.

Example: After defining the set of VTGG restrictions, we can consider our
running example and check if the restrictions hold. The rules depicted in Fig. 3
are indeed class rules as they can be constructed according to (1). For instance,
for r1 = (Lr1 , Rr1), Lr1 = ∅ and Rr1 
 mr1 ·mr2 ·mr2 
 crR. Similarly, the rules
depicted in Fig. 4 are association rules as they can be constructed according to
(2). For instance, for r6 = (Lr6 , Rr6), Lr6 
 (mr1 ·mr2) ·mr1 
 crR · crR 
 arL
and Rr6 
 arL · mr4 · mr3 
 arR. Furthermore, Lr6 ⊆ Rr3 � Rr2 as required

2 Note that LC ⊆ RC must hold as a class rule is a rule.
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by (5). Finally, the rules in Fig. 5 are idle as they can be constructed according
to (3) and (4). For instance, for r9 = (Lr9 , Rr9), Lr9 
 crR 
 icrL and Rr9 

icrR ·mr2 
 icrR. Furthermore, Lr9 ⊆ Rr1 as required by (6).

VTGGs Are Correct: To show correctness for VTGGs, we have to prove
that incremental view updates (view to source) via BTV TGG, denoting the op-
timized incremental backward transformation for VTGGs, are consistent with
the VTGG. For a given model triple M = MS ← MC → MV ∈ L(V TGG) and
a change to the view δV ∈ ΔV , we do this constructively by stating how the
following cases (corresponding to the four types of supported changes) must be
handled:

(1) Object Creation: As there must exist exactly one class rule rV for every
class V in the view metamodel, creating an object oV of type V in the view
corresponds to applying rV to create oV and the corresponding source structure
as defined in the rule. As the given model triple M is in L(V TGG), there exists a
sequence of VTGG rule applications r1, r2, . . . , rk that can be used to create M .
As the class rule rV , according to (1), is of the form (∅, RV ) it is independent of all
other rules and can be applied to extend the sequence to M ′ = r1, r2, . . . , rk, rV .
The resulting model triple M ′ is, therefore, in L(V TGG) and is consistent.

(2) Link Creation: As there must exist exactly one association rule rA for ev-
ery association A in the view metamodel, creating a link lA of type A in the
view model between two objects oV and oV ′ of type V and V ′, respectively,
corresponds to applying the association rule rA. As oV and oV ′ already ex-
ist in the view, they can only have been created by applying the correspond-
ing class rules rV and rV ′ , respectively. As the VTGG restriction (2) guaran-
tees that the required context (which must be used!) for applying rA is im-
plied by the applications of rV and rV ′ , the sequence of rule applications M =
r1, . . . , rV , . . . , rV ′ , . . . , rk is extended toM ′ = r1, . . . , rV , . . . , rV ′ , . . . , rk, rA, im-
plying correctness. Note that rA is only allowed to depend on rV and rV ′ .

(3) Link Deletion: To correctly propagate deletion of a link lA in the view model,
the scope of influence of the change must be determined. In the case of link dele-
tion, only idle association rule applications rIA can depend on source elements
created by the corresponding association rule rA according to (4). As no other
rule applications can depend on idle association rule applications, the latter can
be safely reverted by deleting all created elements in the source. After reverting
all dependent idle association rule applications, the link deletion can be propa-
gated by reverting the application of the association rule rA, deleting the link
in the view and the corresponding source structure. The remaining sequence of
rule applications is valid (a possible sequence of VTGG rule applications).

(4) Object Deletion: The scope of influence of deleting an object in the view
comprises all association rule applications that created incident links to the
deleted object and all idle class rule applications that require the deleted object
as context. To delete an object in the view, therefore, all incident links must
be deleted and appropriately propagated to the source model according to Link
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Deletion, then all dependent idle class rule applications are reverted, before
finally reverting the class rule application used to create the object to be deleted.
As all dependent rule applications are thus reverted, the remaining sequence of
rule applications is valid and propagation of object deletion is correct.

VTGGs Are Complete:The four cases distinguished above also defineΔT , the
set of supported changes to the view. As the arguments for correctness describe
constructively how the allowed changes are to be propagated for an arbitrary
model triple, it follows that every allowed change can be propagated successfully
in this manner. BTV TGG is, therefore, complete.

VTGGs Are Efficient: BTV TGG is efficient, as the VTGG restrictions guaran-
tee a local scope of influence (defined above for correctness of BTV TGG). Propa-
gating changes, therefore, depends only on elements in the scope of influence of
the change, which is, by construction, independent of the size of the models.

5 Runtime Measurements

Our runtime results, depicted in Fig. 8, were obtained by measuring the time
required to create and add a UIPart to randomly generated view models of in-
creasing size (1000 – 30,000 elements). The VTGG rules for our running example
were used to generate a TGG batch transformation (blue curve), a TGG-based
synchronizer (red curve), and a VTGG-based implementation, all with the same
model transformation tool eMoflon (www.emoflon.org). The exact same update
was executed 11 times (the median is shown in the plot) for each model size on
a PC with an Intel(R) Core(TM)2 Duo 2.53GHz CPU, and 8GB RAM, running
Windows 7 (64 Bit), Oracle JDK 1.7.007 and Eclipse 4.3.1. Although this is only
one rather simple example with only a handful of rules, our results nonetheless
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indicate that VTGGs have the potential of being magnitudes (μs as compared
to ms for 30,000 elements) faster than the current standard TGG synchroniza-
tion implemented according to [8]. Even more importantly, VTGGs are truly
efficient in the sense of [8], meaning that the time required for synchronization
is completely independent of the actual models size.

6 Conclusion and Future Work

In this paper we have formalized a view specification framework based on VTGGs.
Motivated with a simplified but real-world application, we explained the neces-
sary restrictions that enable an efficient implementation. Implementation details
of our current VTGG implementation concerning, e.g., auxiliary data required
to track rule dependencies and revert rule applications correctly and efficiently,
detecting changes to the view via an appropriate notification framework, and the
operationalization of attribute conditions in VTGG rules were out-of-scope for
this paper and are currently being investigated and evaluated in detail. Possible
extensions for VTGGs include: (i) reducing restrictions on class and association
rules as a trade-off between expressiveness and formal guarantees, (ii) integrating
ideas from [7] to support non-materialized views in cases where this is required,
and (iii) extending our concept of views to other aspects such as methods.
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Abstract. A large proportion of the domain information conveyed in
models is contained in the model element “designators” — the charac-
terizing and identifying textual expressions appearing in the headers of
model element visualizations. However, the notational support for repre-
senting such designators is usually non-uniform, incomplete and sensitive
to the classification level at which a model element resides. Moreover, the
relationship between the “names” in a model element’s designator and the
values of its linguistic and ontological attributes is often unclear. In the
paper we present a simple but powerful Element Designation Notation
(EDN) which allows the key information characterizing model elements
to be expressed in a compact, uniform and level-agnostic way for the
purposes of deep modeling. This not only simplifies and enriches the
designation possibilities in traditional modeling scenarios, it paves the
way for more expressive models of big data in which the location of data
elements within the three key hierarchies — classification, containment
and specialization — can be clearly and concisely expressed.

Keywords: Deep modeling, designation, level-agnostic modeling lan-
guage, linguistic classification, ontological classification.

1 Introduction

The expressiveness of the textual information contained in the “headers” of model
elements has a major impact on the overall quality of graphical models and
their ability to convey domain information effectively. In general, the header of
a model element is the dominant compartment that characterizes or “designates”
it in a particular diagram. Often it is the only compartment appearing in a model
element’s visualization. The most common piece of information used to designate
a model element is its local “name”, but often other information is also included
such as the element’s type or Fully Qualified Name (FQN) — the local name
prefixed by the element’s location in the containment hierarchy.

Despite the importance of designation, the approaches used to designate model
elements in today’s visual modeling languages have three significant weaknesses.
The first is their limited support for representing certain important kinds of char-
acterizing information. More specifically, although today’s modeling languages
often allow a model element’s type and/or FQN to be represented, none pro-
vides support for describing a model element’s heritage (i.e. what it inherits
from). The second weakness is that even when languages do provide support for
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expressing characterizing information beyond a model element’s name, they do
so in a non-uniform and level-dependent way. For example, the UML uses the
“:” notation to label the type of a model element representing an “instance spec-
ification” but uses the guillemet notation to label the types of classes and meta
classes (i.e. using stereotypes). The third weakness is that even though model
element “names” are the most common and fundamental component of designa-
tors, it is often not clear exactly what the name of a model element actually is.
For example, does the “name” of a model element given in its designator have
to be the same as its linguistic name attribute, or can information from other
“characterizing” attributes be used?

As long as models are fairly small and simple, these weaknesses do not cause
a big problem because modelers are able to maintain a mental picture of the
overall structure of a model and interpret each model element in terms of the
memorized context. However, as soon as models start to become larger and more
complex, and the information within them no longer fits within reasonably sized
diagrams and/or packages, the lack of an effective designation approach signifi-
cantly reduces a modeling language’s ability to communicate information. This
problem is evident when reading the UML 2.0 specification [13], for example,
where it is notoriously difficult for modelers to keep a mental track of a meta
model element’s position in the inheritance and containment (i.e. package nest-
ing) hierarchies, and thus of the cumulative set of properties it possesses. With
the growing trend towards larger and more complex models in the context of
big and linked data, the need to concisely and precisely characterize model el-
ements will grow, and powerful designation notations will become increasingly
important for the effective visualization of information.

In this paper we present a small notation, known as the Element Designation
Notation (EDN), specially designed to support the presentation of designation
information in the headers of model element visualizations. The notation is not
limited to, or dependent on, one particular host modeling language, but delib-
erately aims to be compatible with the designation conventions of established
mainstream languages such as UML, ORM [9] or ER Models [9]. Moreover, the
notation is “level-agnostic” in that it is uniform across all ontological classification
levels. In other words, the same notation is used to express classification, inher-
itance and containment information regardless of whether the model element
represents an instance, a class or a meta class. This property is most advanta-
geous when designating model elements in a level-agnostic modeling language
such as the LML [3], but also simplifies designation in traditional languages such
as the UML which squeeze multiple ontological levels into one linguistic level [5].

The remainder of this paper is structured as follows. In the next section we
motivate the need for improved designation using extracts from the UML spec-
ification and introduce a small example to illustrate the UML’s weaknesses. We
then proceed in section 3 to describe our proposed designation approach in terms
of the examples introduced previously. In the section following that, section 4,
we show how the notation can be used in a deep modeling scenario. Finally we
close with future work and conclusions in section 5.
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2 Model Element Designation

Generally speaking, the designator appearing in the header compartment of a
model element visualization serves to “name” the model element and distin-
guish it from others. However, these names are usually not just arbitrary unique
strings. In the real world, the names used to designate objects often contain
information characterizing their contextual relationship to other objects. For ex-
ample, in most natural languages, human surnames often describe the nature of
the work performed by the person, e.g. Smith (heritage) and in some languages
it is common for surnames to describe where a person is from, e.g. “von Bremen”
(containment). Moreover the convention of assigning given names and surnames
to individuals essentially indicates that they are an instance of a particular kind
of person e.g. “John Smith”, (classification). For the same reason, the “names”
used to designate model elements need to be able to convey rich contextual infor-
mation characterizing elements based on their type, heritage and container. In
this section we motivate the need for model element designation and show how
it is currently supported in mainstream modeling languages. We use selected
examples from the UML specification since this language currently provides the
richest support for designation.

2.1 Identification

Figure 1 contains extracts from two figures in the UML specification which
illustrate the basic identification role played by designators in the UML, and the
issues surrounding their contents. The left hand side of Figure 1, (a), is a snippet
of Figure 7.4 from the UML specification that shows the “Namespaces diagram of
the kernel package”, while the right hand side of Figure 1, (b), shows Figure 7.53
of the UML specification that illustrates how slots and values are represented
in an instance specification. All the model elements in Figure 1 show the basic
identification function of designators. The designators of the meta classes in
Figure 1(a) basically contain just the “name” of the meta classes, while the
designator of the instance specification in Figure 1(b) gives the object’s name as
well as its type.

Element

NamedElement

name:String [0..1]
visibility:VisibilityKind [0..1]
/qualifiedName:String [0..1]

(a)

streetName = 'S. Crown Ct.'
myAddress:Address

streetNumber : Integer = 381

(b)

Fig. 1. Named element and instance specification example

The meta model fragment in Figure 1(a) was chosen because it shows that all
instances of all meta classes that inherit from NamedElement (which includes
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classes and instance specifications) have a name attribute, which stores the
“name” of a model element. This applies to M2 classes as well as to M1 classes
since the MOF also has the same structure. A question that arises as a result is
whether the value of the name string appearing in a model element’s designator
has to be the same as the value of its linguistic name attribute (i.e. the name
attribute a model element possesses by being classified as a NamedElement). The
obvious answer would be that they do have to be the same, but this significantly
reduces a modeler’s options when designing a model element’s designator. In
particular, it means that if the designator is to contain an identification string
the model element’s linguistic name attribute must have a value. If it does not, no
identification information can be given in the designator. It also means that the
designator cannot contain information from any of the ontological (i.e domain)
attributes of the model element. For example, according to the UML specification
it would not be possible to construct a designator for the instance specification
in Figure 1(b) from its two ontological attributes (e.g. “381-S-Crown-Ct”), unless
its name attribute had exactly this value, even though this would be a perfectly
good identifier for the object.

2.2 Classification

The myAdddress instance specification in Figure 1(b) shows one of the main ways
of defining classification information in UML designators — the usage of the “:”
symbol to separate the name of the model element from its type. In fact, since it
is often desirable to represent “any” instance of a type rather than one specifically
named instance, the UML allows the name of an instance to be omitted and just
the type to be given, prepended by “:”. An instance with such a designator is
said to be “anonymous”. In the latest version of the UML it is even possible to
omit both the instance name and the type of an instance specification and only
designate it by the string “:”.

OrderEntry

OrderEntry Person

Person

Account

Store
<<component>>

Account

:Order
<<component>>

:Customer
<<component>>

Fig. 2. Component types and instances example

Another notation for identifying the type of a model element in its header is
shown in Figure 2 which is a snippet of Figure 8.2 from the UML specification.
This uses the UML stereotype notation to “brand” a model element as being of a
particular type. For example the model element Store is a class which is branded
by the stereotype component, signifying that it is a component, as defined in the
UML meta model. Essentially, the application of the stereotype classifies Store
as being of type Component.
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This example shows the redundancy and lack of uniformity in the UML ap-
proach for expressing classification information within model element designators
— if a model element represents an instance specification at the lowest ontologi-
cal level the “:” notation must be used, whereas if it represents a classifier at any
other ontological level the stereotype notation must be used. This is not only
confusing but adds complexity to the language. Figure 2 even contains model
elements where two different notations are used in the same designator. The
designators of the two model elements located within Store indicate that they
are “anonymous” instances of the component types Order and Customer respec-
tively, and that these in turn are instances of the type Component. This lack of
a uniform notation for classification is what leads us to characterize the UML
designation approach as being level-sensitive rather than level-agnostic.

2.3 Containment

Another important piece of characterizing information that can be included in a
model element’s designator is its containment — that is, the path of containers
it is located (i.e. nested) within, up to the root container of the model. The
UML’s notation for representing containment in a model element’s designator
is shown in Figure 3 which is Figure 8.4 of the UML specification. The purpose
of this figure is to illustrate the packaging capabilities of the meta class Com-
ponent which it gains by virtue of inheriting from the meta class Class, located
in the package StructuredClasses. This, in turn, is located in the package Com-
positeStructures, which in turn is located within the package UML. This gives it
the ability to contain an unlimited number of PackageableElements. Since both
of these classes reside in (are located in) other packages, their precise location
within the containment hierarchy is given using the double colon notation “::”.

Class
UML::CompositeStructure::StructuredClasses::

Component PackageableElement
UML::Classes::Kernel::

{subsets ownedMember}
+packagedElement

0..1 *

Fig. 3. Component packaging capabilities

When the full containment hierarchy of a model element is prefixed to its
local name using this “::” notation, the resulting string is referred to as the model
element’s Fully Qualified Name (FQN). These are frequently used in conjunction
with the package “importing“, “merging” and “combining” mechanisms which
determine what model elements are included from other packages and how (i.e.
whether they are copied or referenced, and whether or not they are visible to
third parties). If a model element is included from another package without
importing, merging or combining that package, the full, hierarchical name of the
model element has to be shown in the designator.
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2.4 Heritage

Since the properties of a class are determined by what it inherits from, as well
as by what it is an instance of, a class’s heritage is also an important piece
of characterizing information. A powerful designation notation should therefore
support the expression of such information. Unfortunately this is not possible
in the UML or other existing modeling languages, with the result that diagrams
are often more complex than necessary. This is illustrated by Figure 4 which
shows a snippet of Figure 8.2 from the UML Specification. The main purpose
of this figure is to show heritage information about the meta classes Component
and ComponentRealization whose instances can “realize” instances of Component.

(from Dependencies)
NamedElement

ComponentRealization
+abstraction
0..1

(from StructuredClasses)
Class

(from Kernel)
Class

Component
isIndirectlyInstantiated:Boolean +realization

*

(from Dependencies)
Realization

(from Dependencies)
Abstraction

(from Dependencies)
Dependency

*
+supplierDependency1..*

+supplier

A_realization_abstraction_component

Fig. 4. Basic components package

Because the UML does not allow heritage information to be included in the
designators of model elements the only way to do this is to include each superclass
(direct or indirect) in the diagram and show explicit inheritance relationships
between them. This not only clutters diagrams such as this one, it is also the
basic reason why classes have to be visualized in packages where they do not
belong simply to allow inheritance relationships to be displayed. This, in turn is
one of the main reasons why the FQNs of classes have to be used when they are
visualized “out of place”. Related to this, Figure 4 illustrates another redundant,
non-uniform practice often used to designate model elements in the UML —
the use of the text “from PackageName” in parentheses under the class name
to indicate where a class is “from”. This is not official UML notation, but is
commonly used, even in the UML specification. Note that in Figure 3 the class
UML::CompositeStructures::StructuredClasses::Class is designated by its FQN but in
Figure 4 it is designated using the “(from StructuredClasses)” notation.

2.5 Domain Example

Figure 5 shows an example of the use of the previously presented notations
within a single model. The example contains two linguistic classification levels,
labeled M1 and M2 according to the UML infrastructure conventions, but three
ontological classification levels which are not explicitly labeled. The figure uses
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UML instance specifications to squeeze the two bottom ontological classifica-
tion levels into a single linguistic layer (M1). In the top level of the figure the
stereotype mechanism is used to define a domain meta class, Breed, with two
attributes, BreedName and FCINo. Additionally a meta class Product is defined
with the attribute price. In the level below resides an instance of Breed and Prod-
uct, namely Collie, located in a package called Breeds which, in turn, is located
in the DogTaxonomy package. In the UML designation notation, therefore, the
fully qualified name of Collie is DogTaxonomy::Breeds::Collie. To characterize it as
a Breed and a Product the stereotype notation “«Breed, Product»” is used. The
model uses comments to assign the two meta attributes of Collie, BreedName and
FCINo, the values SheepDog (a colloquial name for Collie) and 297 (the catalog
number for Collie). Collie is also a subclass of Dog , which in turn is a subclass
of Animal , which in turn is a subclass of Thing . At the bottom ontological level
(within the same linguistic level — M1), there is an anonymous instance of Collie
with the same values for its corresponding attribute instances adding a value for
Collie’s third meta attribute price of 12345 . This instance also has a value for the
attribute, DogName, which its ontological type, Collie, inherits from Dog .

BreedName

M2

FCINo

M1

DogTaxonomy

Breeds

Animal

Dog

Class
<<Metaclass>> Breed

<<stereotype>>

BreedName = 'SheepDog'
FCINo = 297

<<instance-of>>

DogName

Thing

<<Breed>>

Price
Product

<<stereotype>>

DogTaxonomy::Breeds::Collie
<<Breed, Product>>

BreedName = 'SheepDog'
FICNo = 297
Price

:Collie
DogName = 'Lassie'
BreedName = 'SheepDog'
FCINo = 297
Price = 1234

Fig. 5. Concrete example of the UML designation notation

This model highlights some of the weaknesses of the traditional UML notation
mentioned above. In particular, it once again illustrates the different notations
used to define the types of classes (e.g. the types of Collie) and instance spec-
ifications (e.g. the types of the anonymous instance of Collie), and highlights
the motivation for including heritage information within designators as well as
classification and containment information. For example, it is not possible to
show in Collie’s designator that it is a subclass of Dog . Although not directly
related to designation, the figure also highlights two fundamental weaknesses of
“two-level” concrete syntaxes such as that of the UML — the artificial flatting
of three ontological levels into two linguistic ones [5], and the lack of support for



Level-Agnostic Designation of Model Elements 25

defining attributes, such as BreedName, that endure over more than one instan-
tiation step. This forces modelers to redundantly redefine attributes for the sole
purpose of passing them down to the next level.

3 The Element Designation Notation

The aim of the Element Designation Notation (EDN) proposed in this paper
is to address the previously identified weaknesses and allow model elements
to be designated in a uniform way across all ontological classification levels.
In this section we first define the syntactic structure of the notation and then
demonstrate the designation approach in the context of the examples introduced
in the previous section. Wherever possible the concrete syntax used in the EDN is
based on well-established notational conventions in existing modeling languages.
The formalism used to describe the allowed syntactic structure of model element
designators is syntax diagrams [6]. In this notation we use rounded rectangles
for terminals and rectangles for non-terminals.

3.1 Basic Designator Structure

The designator of a model element consists of four basic parts, the heritage
indicator (heritage), containment indicator (containment), identification indicator
(identification) and classification indicator (classification) as shown in Definition
1. All of these parts are optional except the identification indicator. This is a
mandatory part of a designator which defines the string by which the model
element can be identified in constraints, transformations and domain-specific
language (DSL) definitions etc. The identification indicator is therefore always
the core part of a designator. It can optionally be highlighted using bold letters
in long and complex designators.

Definition 1 (Designator Syntax)

heritage containment identification classification

The two other parts closest to the identification indicator are the classifica-
tion indicator and containment indicator. The classification indicator is placed as
close as possible to the identification indicator, on its right hand side, separated
by the well known colon notation popularized by the UML. The containment
indicator, on the other hand, appears on the left hand side of the identifica-
tion indicator using the well known dot notation popularized by programing
languages such as Java. The heritage indicator appears furthest away from the
identification indicator, at the very left of the designator. To indicate heritage
the “>” notation is used as in Ruby [14] or in the EMF tree editor for meta
models where it appears in the form “->”. This ordering of the designator sub-
sections is motivated by the fact that in popular programming languages like
Java, fully qualified names are always specified by the containment information
(i.e. package structure) followed by the identification indicator (i.e. class name).
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A user can choose to display whole hierarchies by chaining the operators.
If a user wants to reduce the complexity of a designator or is only interested
in certain parts of a hierarchy (e.g. the root of the classification hierarchy) he
can use the elision symbol in a designator. Elision is indicated by repeating the
operator two times, which means that information is omitted between the left
and right side of the designation operator. For simplicity, an elision symbol does
not convey how much information is elided in an hierarchy. Also, in the case
of inheritance and classification it is possible to indicate that more than one
element exists at a particular point in the hierarchy by including those elements
in a comma-separated list, optionally enclosed in square brackets. This allows
multiple inheritance and multiple classification to be represented in designators.

EDN also allows designators to be nested recursively. A nested designator can
appear wherever a simple identifier appears, surrounded by parentheses. They
make it possible to provide more detailed information about the model elements
participating in a designator. For example, the container of each model element
participating in a heritage hierarchy can easily be shown in this way.

An example of a designator containing all four parts, based on the example in
Figure 5, is Animal>Dog>DogTaxonomy.Breeds.Collie:[Breed,Product] (square brack-
ets optional). This shows that Collie is located in the packages DogTaxonomy
and Breeds and that it is a subclass of Dog which is a subclass of Animal. A
comma separated list is used to indicate that Collie is classified by two types,
namely Breed and Product. On the other hand, the designator Thing>>Collie
can be employed to indicate that Collie is an indirect subclass of Thing . In
(M1.Animal)>(DogTaxonomy.Dog)>Breeds.Collie nested designators are used to dis-
play containment information for each element in the heritage hierarchy. The
syntax used in these examples is elaborated in the following subsections.

3.2 Identification Indicator

The identification indicator of a model element is the component of the desig-
nator that identifies it in a visual rendering of the model (i.e. a diagram), and
thus should ideally be unique. It can be created from a combination of the model
element’s ontological attributes or linguistic name attribute.

Definition 2 (Identifier Syntax)

indentifierString

( designator )

The syntactical form of an identification indicator is shown in Definition 2. The
identifierString either starts with an alphabetic character or underscore followed
by multiple alphabetic characters, digits and underscores, or can be an arbitrary
string enclosed in quotation marks. Anonymous model elements are represented
through the “∼” symbol to indicate where the identifier would appear in complex
designators. It is also possible to replace the identifier by a nested designator.
This is not used in designators just showing the identifier of a single model
element but can be helpful to more precisely describe an inheritance hierarchy by
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describing the containment of each superclass. Nested designator are surrounded
by rounded brackets.

A search algorithm similar to the one employed in EMF [8] can be used to
automatically determine the identifier of a model element. First the algorithm
searches a model element for an expression which defines how the identifier for
the model element is calculated. Second the algorithm searches for an ontological
attribute called name, and if this is unsuccessful, for one called id. If no such
attribute is found the algorithm searches for other attributes containing these
two keywords (with the priority given to name). Finally, if still no identifier for
a model element is found, the linguistic name of the model element is used as
backup.

Fig. 6. Instance specification using EDN

The simplest example of a designator is a name such as Collie in Figure 5. An
example of a designator using the nesting feature is (M1.Animal)>(DogTaxonomy
.Dog)>Collie. In this designator the identifiers of each model element of the in-
heritance hierarchy are enriched with containment information. An example of
an identifier, 381 S. Crown Ct., composed of ontological attributes is shown in
Figure 6 which is a variant of Figure 1(b). This identifier is composed from the
ontological attributes streetName and streetNumber .

3.3 Classification Indicator

The exact grammar of the classification indicator in a designator is displayed in
Definition 3. It shows the classification information for a model element using
the familiar colon notation from the UML (:) followed by the identifier or a
nested designator of the classifying model element. To use elision, the colon
symbol is repeated twice (::). This collides with the UML notation for displaying
containment, which must be taken into account when interpreting designators in
the form proposed here. The model elements close to the root of the classification
hierarchy are placed on the right and model elements close to the leaves are
placed on the left. If an element has more than one classifier these can be shown
in a comma-separated list optionally surrounded by rectangular brackets.

Definition 3 (Classification Indicator Syntax)

: identifier , identifier
:: identifier , identifier[ ]

An example of a designator including classification information from the ex-
ample in Figure 5 is Collie:Breed,Product indicating that Collie is classified by Breed
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and Product. An example of single classification is Dog:Class. Another example
is ∼:Collie:Breed,Product showing the whole classification hierarchy of the anony-
mous instance of Collie. One can observe here that only one notation was chosen
to display classification crossing multiple ontological levels instead of two (i.e.
stereotype notation and colon notation). To show the elements at the top of the
classification hierarchy only ∼::[Breed,Product] is needed.

OrderEntry

OrderEntry Person

Person

Account

Store:component

Account

~:Order:component ~:Customer:component

Fig. 7. Component types and instances using EDN

The classification information in Figure 2 is represented in Figure 7 as follows
— ∼:Order:component and ∼:Customer:component. This corresponds exactly
to the information shown in the header for the instance of Order in Figure 2. Using
the nesting capability of EDN it would also be possible to, for example, directly
represent the container of Order — (Store:Component).∼:Order: Component.

3.4 Containment Indicator

A containment indicator displays a model element’s location in the containment
tree which can be composed of various model elements including classification
levels. The syntax is shown in Definition 4. The model element that is closest to
the containment root is placed on the left and the model element which is closest
to the containment tree leaves is placed on the right. The visual metaphor for
representing containment is a dot (.) motivated by the notation used in many
programming languages such as Java or C#. One of the motivations for not using
the UML’s double-colon notation is that this would collide with the notation
used for elided classification. To elide an unspecified number of containers in
a containment indicator, the dot notation is repeated twice (..). In contrast to
heritage and classification, it is not possible to display two containers at a given
point in the containment hierarchy, because the containment hierarchy is always
a tree, and model elements can only have one container.

Definition 4 (Containment Indicator Syntax)

identifier .
..

An example in the context of Figure 5 is DogTaxonomy.Dog stating that Dog is
located in DogTaxonomy . An example of a more complex containment indicator
is M1.DogTaxonomy.Breeds.Collie. If only the containment root is of interest the
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Class
UML.CompositeStructure.StructuredClasses.

Component PackageableElement
UML..Kernel.

{subsets ownedMember}
+packagedElement

0..1 *

Fig. 8. Basic components package using EDN

designator could be M1..Collie. It would also be possible to show the root and
immediate container in the following way M1..Breeds.Collie.

Using this notation for the containment of the model element Class in Figure
3 would result in a designator of the form shown in Figure 8. The UML’s double
colon notation that collides with the EDN’s elided classification notation is trans-
formed into the dot notation (UML.CompositeStructures.StructuredClasses.Class). In
the case of PackageableElement the elision notation is used to indicate that it is
contained in the Kernel package which itself is indirectly contained in the UML
package.

3.5 Heritage Indicator
The heritage indicator expresses information about a model element’s inheri-
tance hierarchy (i.e. about its direct and indirect superclasses). The heritage
indicator syntax is shown in Definition 5. Model elements at the root of the
inheritance hierarchy are located on the left hand side of a heritage indicator
whereas model elements which are close to the leaves are located on the right
hand side. Building on a proposal first put forward in [4] we use the “greater
than” symbol (>) to show that the model element on the right is a subclass of
the model element on the left. Elision is supported by repeating the heritage
symbol twice (>>). This notation is similar to that used in other languages such
as Ruby. EMF’s tree based meta model editor also uses a similar notation to
indicate heritage — “->”. Multiple supertypes at the same heritage level are
displayed as a comma-separated list, optionally surrounded by square brackets.

Definition 5 (Heritage Indicator Syntax)

>identifier , identifier
>>identifier , identifier[ ]

Applying the heritage indicator to show the direct supertype of Collie in Fig-
ure 5 results in Dog>Collie. The whole inheritance hierarchy can be shown by
Thing>Animal>Dog>Collie, whereas the first and last supertypes in the hierarchy
can be shown by Thing>>Dog>Collie.

The ability to represent heritage information in model element designators al-
lows relationships between model elements in different packages to be shown in a
greatly simplified way. For example, it would be possible to avoid the need to in-
clude the Class model element in Figure 3 by designating the Component model
element in the following way — (UML.CompositeStructures.StructuredClasses.
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Dependencies.NamedElement

+abstraction
0..1

*

(StructuredClasses.Class),(Kernel.Class)

isIndirectlyInstantiated:Boolean

<Component
+realization

*

Dependencies.Rependeni z+supplierDependency1..*
+supplier

sAbealrcatronAaDytbai tronAi omponent
(Dependencies.Dependency)<(Dependencies.Abstraction)
<(Dependencies.Realization)<Component_ealrcatron

Fig. 9. Component types and instances

Class)>Component. Similarly, superclasses of Component and ComponentReal-
ization in Figure 4 can be avoided by changing their designators to the ones
shown in Figure 9 — (StructuredClass.Class),(Kernel.Class)>Component and
(Dependencies.Dependency)>(Dependencies.Abstraction)>(Dependencies.Real-
ization)>ComponentRealization, respectively. If the goal of the diagram is
to show that ComponentRealization is the descendent of one particular model el-
ement, such as Dependency , for example, the intermediate model elements can
be omitted using the elision notation — (Dependencies.Dependency)>..>Com-
ponentRealization.

4 Level-Agnostic Designation Example

Up to this point all the examples of EDN statements have been in the context
of the UML modeling framework which squeezes multiple ontological levels into
two linguistic levels (the M2 and M1 levels of the UML infrastructure). However,
as mentioned above, the real power of the EDN becomes evident when it is used
in deep (i.e. multi-level) models where ontological classification levels are strictly
separated from linguistic ones, and multiple ontological classification levels can
be modeled. In this section we present an example of how the EDN could be
used to designate model elements in a deep version of the domain example shown
in section 2. The host language that we use to visualize this example is the
Level-agnostic Modeling Language [3], but the approach is compatible with any
deep modeling language such as Nivel [1], Metadepth [11], DPF [10], Cross-layer
modeler [7] or OMME [15].

Figure 10 shows a deep (multi-level) version of the example from Figure 5, in
which the EDN is used to designate the model elements. In this model the three
ontological classification levels, formerly squeezed into M2 and M1, are cleanly
represented in three distinct ontological levels. The meta types Class, Product
and Breed are at the most abstract level — O0. The stereotype definitions are
translated into specializations in which the stereotypes Product and Breed are
transformed into subtypes of Class.

The middle level, O1, contains the class level of the UML example without
the instance specifications. Thus, Animal , Dog and Collie are located at this level.
The UML packages have been translated into clabject’s (DogTaxonomy , Breeds)
containing other clabjects. Classification is no longer indicated by using the
stereotype guillemet notation but using the EDN designation syntax for clas-
sification. Additionally no extra notation is needed to assign values to meta
attributes defined in a meta model extension in contrast to the UML version
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O0

O1

BreedName
FCINo

Price

O2

DogName

BreedName = 'SheepDog'
FCINo = 297
Price = 10000

BreedName = 'SheepDog'
FCINo = 297
Price = 12345
DogName = Lassie

Thing0 Class2

Breed2Product2

Thing0

Animal:Class1
Dog:Class1

DogTaxonomy1

Breeds1

DogTaxonomy.Breeds.Collie:Breed,Product1

~:DogTaxonomy0

~:Breeds0

~:Collie:[Product,Breed]0

Fig. 10. Deep model using advanced EDN

where comments are used to assign values to classifying stereotypes. Another
difference to the UML version is that containment information is presented us-
ing the EDN’s dot notation. The instance specification, the anonymous instance
of Collie, now appears at the lowest ontological level, disentangling the classifica-
tion information which was originally squeezed into one level, (M1), but should
naturally occupy two levels. Here, again, the uniform designation syntax is used
to indicate classification across two levels (i.e. ∼:Collie:[Breed,Product]). Also the
name of the instance is not underlined since the notation is uniform across all
classification levels (i.e. is level-agnostic). Comparing the UML version against
the LML version with EDN designators, it can be observed that: 1. classification
is clearly expressed across multiple classification levels, 2. attributes are handled
uniformly regardless of whether they originate from a stereotype, meta class or
class and 3. classification designation is expressed in a uniform way regardless
of whether a classifier is a meta class, meta model extension or a class.

The example in Figure 10 can be further refined to highlight certain properties
of the model. Figure 11 shows a version which might be useful in a specifica-
tion focusing only on Collie. This figure leaves out the meta level O0 since all
information conveyed in it is present in O1. The designator of Collie shows that
it is an instance of Breed and Product which are themselves subclasses of Class.
The attribute of Collie defined by the classifiers of the instance are present in its
attributes compartment. The packages have been omitted to save space. They
are indicated by the designators of Dog , Collie and the anonymous instance of
Collie. Dog is contained by DogTaxonomy and Collie is contained by Breeds which
is contained by DogTaxonomy . The anonymous instance of Collie is nested within
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Fig. 11. Shortened version of Figure 10

an unspecified number of containers, whose names are not given. Additionally
the supertype of Dog has been elided to save space. It appears as Animal in the
designator of Dog .

This example of deep, level-agnostic modeling demonstrates that complexity
can be reduced by lowering the number of notational constructs that need to be
used. This is particularly useful when the majority of diagrams are intended to
show small parts of a larger underlying model such as the UML specification. The
key advantage of the EDN designation approach is that it allows designators to be
scaled to best fit the problem in hand. In some situations the exact containment,
classification or heritage of a model element is not important or relevant. In
general it is possible to include the optimal amount of designation information
needed reducing the information overload of modelers.

5 Conclusion

In this paper we have presented a simple yet powerful approach for constructing
information-rich designators for model elements in any host modeling language.
A comparison of a model expressed in the UML to a model expressed in LML
using EDN reveals several advantatges of the appraoch including: 1. full com-
patibility with established conventions, i.e. all information conveyable in UML
designators can be shown in a familiar notation, 2. complete level-agnosticness
with respect to ontological classification levels, 3. the ability to support heritage
information as well as containment and classification information and 4. support
for fine control of precisely what information is shown about a model element’s
location in the containment, inheritance and classification hierarchies (i.e. full
list of parents, elided list of parents, etc.). Of these features, items 2 , 3 and 4 are
new to the state-of-the-art and to our knowledge are not currently supported in
any other language.

While the enhanced simplicity and symmetry will be helpful in all kinds of
models, the enhanced expressiveness is likely to be of most use to advanced mod-
elers especially when working with large scale models. One of the big obstacles
to the use of visual modeling languages is that graphical diagrams quickly be-
come cluttered and complex as the amount of information they convey grows,
especially when it comes to information that is typically conveyed using edges
(e.g. inheritance). By providing a more powerful and concise way of capturing
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this kind of information in model element designators, models can convey the
same information in a much simpler, less cluttered and visually clearer form.

Although this work focuses on graphical languages we are confident that tex-
tual languages can also benefit from the form of designation presented in this
paper. For instance the Human-Usable Textual Notation (HUTN) [12] or textual
multi-level modeling frameworks such as MetaDepth could be enriched with the
designation approach suggested here. The approach can also be used to enhance
DSLs created with a multi-level modeling environment such as Melanee [2]. In
such a scenario designation could be employed to enrich naming in graphical
and textual DSLs. Designation can also be used to identify model elements in
constraint and transformation languages.

The designation approach described in this paper is implemented in our deep
modeling tool Melanee. Each model element’s designation is controllable via a
small Designation Query Language. We are currently working on improving this
query language and build a console which can be used to dynamically query
model elements for designation information. We are also planning to build the
designation syntax into the transformation capabilities provided with Melanee
and the deep OCL dialect which is currently under development.

Acknowledgments. We are grateful to Thomas Kühne for contributing to-
wards the work described in this paper through his co-authorship of [4] which
first suggested the idea of a level-agnostic designation notation that includes
heritage information.
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Abstract. Hawk is a modular and scalable framework that supports
monitoring and indexing large collections of models stored in diverse
version control repositories. Due to the aggregate size of indexed mod-
els, providing a reliable, usable, and fast mechanism for querying Hawk’s
index is essential. This paper presents the integration of Hawk with an ex-
isting model querying language, discusses the efficiency challenges faced,
and presents an approach based on the use of derived features and indexes
as a means of improving the performance of particular classes of queries.
The paper also reports on the evaluation of a prototype that implements
the proposed approach against the Grabats benchmark query, focusing
on the observed efficiency benefits in terms of query execution time. It
also compares the size and resource use of the model index against one
created without using such optimizations.

Keywords: Scalability, model querying, model-driven engineering.

1 Introduction

The popularity and adoption of MDE in industry has increased substantially
in the past decade as it provides several benefits compared to traditional soft-
ware engineering practices, such as improved productivity and reuse [1], which
allow for systems to be built faster and cheaper. However, certain limitations
of supporting tools such as poor scalability which prevent wider use of MDE
in industry [2,3] will need to be overcome. Scalability issues arise when large
models (of the order of millions of model elements) are used in MDE processes.

When referring to scalability issues in MDE they can be split into the following
categories [4]:

1. Model persistence: storage of large models; ability to access and update such
models with low memory footprint and fast execution time.

2. Model querying and transformation: ability to perform intensive and complex
queries and transformations on large models with fast execution time.

3. Collaborative work: multiple developers being able to query, modify and
version control large-scale shared models in a non-invasive manner.

This paper contributes to the study of scalable techniques for large-scale model
persistence and querying by presenting the use of derived attributes to substan-
tially improve the efficiency of certain types of model queries, and reporting on
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the results obtained by exploring the integration of the Hawk [5] and Epsilon
[6] frameworks that have been used to implement this. This paper builds upon
[5] by discussing the implementation of the query layer the tool provides. In
this work we assume that the reader is familiar with the organization of 3-level
metamodeling architectures such as MOF/EMF.

The remainder of the paper is organized as follows. Section 2, introduces
model version control, Hawk and model indexing. Section 3 presents Hawk’s
query layer and discusses how it can be optimized by use of derived attributes in
the store. Section 4 presents the prototype implementation of the integration of
Hawk with the Epsilon platform for providing a general-purpose query layer. In
Section 5 this prototype integration is evaluated using variations of the Grabats
benchmark, in order to test its performance. Finally, Section 6 discusses the
application of these results and identifies interesting directions for further work
in this area.

2 Background

This section briefly introduces version control in the context of MDE, provides
an overview of Hawk and discusses querying, providing an overview of the various
forms available today that have motivated the work presented here.

2.1 Model Version Control

To tackle the challenge of collaborative development and version control of large
models, model-specific repositories and version control systems (such as CDO1

and ModelCVS) have been proposed. The main advantages of such systems
is that they provide support for synchronous collaboration, on-demand loading
and locking of model fragments, and global server-side queries on models. On the
downside, such repositories are typically proprietary, re-implement similar func-
tionality (user management, model fragment locking/unlocking, check-in/out),
and lack in features such as branching and tagging. Moreover, such repositories
need to be administered (e.g. backed up) separately, and there is limited tool
support for them outside the environment for which they were initially developed
for (e.g. integration with other IDEs, continuous integration systems, and other
3rd-party model measurement and analysis tools). Finally, they arguably lack
in robustness compared to file-based version control systems such as Subversion
and Git.

As such, switching from a file-based to a model-specific version control system
can require a significant leap of faith, which can become even more challenging
if the models in question are of significant business value. On the other hand,
in order to perform meaningful queries on models stored in a file-based version
control system (e.g. to identify cross-references between model files or to search
for model elements with particular properties across the entire repository), these
models need to be first checked out in the developer’s workspace and loaded into
memory. This can be tedious, or even impossible, for large-scale models.

1 http://www.eclipse.org/emf/cdo

http://www.eclipse.org/emf/cdo
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2.2 Hawk

The limitations identified on both sides of the spectrum have motivated us to
design and implement a framework (Hawk) that enables developers to perform
queries on models stored in established file-based version control systems, with-
out needing to maintain a complete copy of them in their local workspace. To
achieve this, Hawk acts as a middle-man that creates and maintains indexes of
models stored in remote file-based version control repositories; a model index 2

is a persisted form of a collection of (potentially interconnected) models, and
its aim is to provide support for efficient querying of these models at a model
element granularity. As discussed in [5], in our view, this provides an orthogonal
approach for addressing the scalability concern that does not interfere with the
current state of practice.

This section briefly describes the architecture, design, and prototype imple-
mentation of Hawk to provide context for how it is used for indexing large models
and consequently to efficiently query such model indexes.

System Architecture and Design. Hawk aims at delivering a system capa-
ble of working with diverse file-based version control systems (VCS) and model
persistence formats whilst providing a comprehensive API through which mod-
eling and model management tools can query it. It needs to be scalable so that
it can accommodate large sets of models, and non-invasive (the VCS repositories
should not need to be modified or configured).

Hawk comprises components which monitor a set of version control systems,
parse and index relevant models stored in them. For details on supported version
control systems, model formats, index persistence back-ends as well as additional
components of Hawk readers can refer to [5].

Overview of a Hawk Model Index. Based on results obtained through
extensive benchmarking [4], we have decided to use a NoSQL graph database
(Neo4J3) for persisting model indexes. An example of such an index, containing
a simple library metamodel and a model that conforms to it, is illustrated in
Figure 1. In general, a model index typically contains the following entities:
– Repository Nodes. These represent a VCS repository and contain its URL

and last revision. They are linked with relationships to the Files they contain.
– File Nodes. These represent files in a repository and contain information

on the file such as the path, current revision and type. They are linked with
relationships to the Elements or Metamodels they contain.

– Metamodel Nodes. These represent metamodels and contain their names
and their unique namespace URIs (in EMF, these would be EPackages4).
They are linked with relationships to the (metamodel) Types they contain.

2 This should not to be confused with a database index provided by many SQL and
NoSQL databases.

3 http://neo4j.org/
4 We choose to draw parallels with concepts from EMF as they are well-understood
and unambiguous.

http://neo4j.org/
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Fig. 1. High-level overview of the contents of a library model index (persisted in a
NoSQL graph database)

– Type Nodes. These represent metamodel types (EClasses in EMF termi-
nology) and contain their name. They are linked with relationships to their
(model) Element instances.

– Element Nodes. These represent model elements (EObjects in EMF termi-
nology) and can contain their attributes (as properties) and their references
(to other model elements) as relationships to them.

– Indexes. Metamodel nodes and File nodes are indexed5 in the store, so
that their nodes can be efficiently accessed for querying (commonly used as
starting points for complex graph traversal queries).

It is worth noting that a model index such as the one presented above may end
up being a fully copy of the actual models found on the relevant version control
system but it does not have to be. In principle, if some contents of the model
are not deemed useful they can be omitted in order to gain an improvement in
injection and possibly query time.

2.3 Querying of Model Indexes

To be of practical value, a model indexing framework such as Hawk needs to be
able to provide correct and efficient responses to queries made on its indexes.
There are two principal ways of querying a model index:

Native Querying. The most straightforward, and often the most performant,
way of querying an index is using the native API of its persistence back-end. In
a model stored in a database the API provided by the tool providing the driver

5 http://components.neo4j.org/neo4j-lucene-index/snapshot/

http://components.neo4j.org/neo4j-lucene-index/snapshot/
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used to persist said model would be used with a relevant query language (such
as SQL statements if a relational database is used or Cypher if a Neo4J NoSQL
database is used), or using direct API calls in a programing language such as
Java. Nevertheless, it also demonstrates certain shortcomings which should be
considered:
– Query Conciseness. Native queries can be particularly verbose and, conse-

quently, difficult to write, understand and maintain. An example of this can
be found in Section 6.1 of [4].

– Query Abstraction Level. Native queries are bound to the specific technology
used; they have to be engineered for that technology and cannot be used for
a different back-end without substantial alteration in most cases.

Back-End Independent Navigation and Querying. An alternative way
to access and query models is through higher-level query languages that are
independent of the persistence mechanism. Examples of such languages include
the Object Constraint Language (OCL), the Epsilon Object Language (EOL) [7]
(from the Epsilon [8] platform) and the Atlas Transformation Language (ATL),
which abstract over concrete model representation and persistence technologies
using intermediate layers such as the OCL pivot metamodel [9] and Epsilon
Model Connectivity [6] layer.

In terms of execution, queries expressed in such high-level languages can be ex-
ecuted on an in-memory representation of the model, or translated into queries
expressed in persistence-level query languages such as SQL and XQuery6, at
compile-time or at run-time. Full translation is only feasible in cases where the
high-level and the lower-level query languages are isomorphic in terms of capabil-
ities. This is not always the case: for example, EOL supports dynamic dispatch
which is not supported in SQL. Even when full compile-time translation is not
feasible, partial translation at run-time has been shown to deliver significant
performance improvements as seen in [10].

3 Scalable Model Index Querying

This section will use the library example seen in Figure 1 as a running example
and will discuss how derived attributes can be used to improve the performance
of queries made on Hawk model indexes. The principal aim of this work is to
present how using such derived attributes can greatly improve performance of
relevant queries made on such model indexes and to provide incentive for building
a complete framework for supporting them in Hawk.

3.1 Querying a Model Index

Regardless of the use of native or back-end independent querying, in order to
respond to a query (from now on referred to as the library query) requesting the
authors that have more than N books in the example index, the following steps
would have to occur:
6 http://journal.ub.tu-berlin.de/eceasst/article/viewFile/108/103

http://journal.ub.tu-berlin.de/eceasst/article/viewFile/108/103
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1. The starting point of the query would have to be found. In this case, the
collection of all instances of Author in the model would have to be retrieved.

2. For each author node, the number of the “books” relationships of the node
identified in step 2 would need to be counted and compared against N.

Step 1 is easy to perform in Hawk as an index ofMetamodels is kept which can
be used to rapidly provide a starting point for a query which requires elements of
a specific type (such as Author instances for example). If a query uses the whole
model index as a starting point then there is no optimization to be performed
as the entire model index would have to be traversed in order to find the Node
representing the Author type. Step 2 where we can begin optimizing to improve
the execution time of queries which have to iterate (possibly on multiple levels)
to find a result.

Fig. 2. Pre-computing the number of books of each author

An effective way to increase query efficiency is to pre-compute and cache – at
indexing time – information that can be used to speed up particular queries of
interest. Using the library example, we can store the total number of books of
each author under a new, derived, ‘numberOfBooks’ attribute attached to each
author, as shown in Figure 2. By pre-computing and caching this information,
the query above can be rewritten so that it does not have to iterate though all
the books of each author, but instead it can directly compare N against the
value of its (derived) ‘numberOfBooks’ property.

3.2 Adding Derived Attributes

Our aim in this work is to explore the impact that such derived attributes can
have on the performance of queries on large model indexes. As such, we have
opted for a minimal approach for defining derived attributes and their derivation
logic. In our current prototype, we need to create a derived attribute on the
relevant EClass (i.e. a derived integer attribute ‘numberOfBooks’ on the EClass
Author) and annotate it as ‘HawkDerivedFeature’. As illustrated in Figure 3, the
derivation logic is specified using an OCL-like (EOL in our prototype) expression
in the details of the annotation. Such attributes are currently created manually
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Fig. 3. Defining the numberOfBooks derived attribute

by the user and if they cannot be resolved a simple error value is produced in
the index.

Since our focus is only on evaluating the performance improvements delivered,
several interesting engineering problems that would have to be addressed by a
usable system have been intentionally ignored:

– How to enable the declaration of derived attributes when using an immutable
metamodel (e.g. UML);

– How to efficiently handle non-parsable expressions (on the expression lan-
guage level) or expressions failing on a model element basis (but parsable);

– How to allow parsers from other expression languages to be easily integrated
with the framework;

– How to efficiently deal with metamodel evolution, specifically how to handle
types of changes such as only evolving the annotations, evolving some of the
metamodel elements themselves but retaining the same annotations, evolving
both the metamodel elements and the annotations at the same time.

The following section discusses how we evaluate the derived attribute value
computation expressions and how we then use the computed values to enhance
the performance of queries in our prototype.

4 Implementation

Before discussing the derived attribute computation and caching process, this
section introduces Epsilon and its Model Connectivity Layer (EMC). It then
discusses implementation details of Hawk’s query layer integration with Epsilon.
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4.1 Epsilon

The Epsilon platform [8] is an extensible family of languages for common model
management tasks and includes tailored languages for tasks such as model-to-
text transformation (EGL), model-to-model transformation (ETL), model refac-
toring (EWL), comparison (ECL), validation (EVL), migration (Flock), merging
(EML) and pattern matching (EPL). All task-specific languages in Epsilon build
on top of a core expression language – the Epsilon Object Language (EOL) – to
eliminate duplication and enhance consistency.

Fig. 4. The Epsilon Model Connectivity Layer

As seen in Figure 4, EOL – and as such all languages that build on top of it
– is not bound to a particular metamodeling architecture or model persistence
technology. Instead, an intermediate layer – the Epsilon Model Connectivity layer
– was introduced to allow for seamless integration of any modeling back-end.

The Epsilon Model Connectivity Layer (EMC). This layer of Epsilon
uses a driver-based approach where integration with a particular modeling tech-
nology is achieved by implementing a driver that conforms to a Java interface
(IModel) provided by EMC. For a more detailed discussion on EMC and the
IModel interface, the reader can refer to Chapter 3 of [6].

4.2 Querying a Hawk Model Index Using the Epsilon Object
Language

Below, we summarize the implementation of the important methods needed by
an EMC driver to enable integration with Epsilon, as well as that of the derived
attributes used by Hawk’s driver to improve its query performance.
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Table 1. Interesting methods in the IModel interface

Method Return Type Description

allContents() Collection<?> Returns a collection containing all of the nodes
contained in the index in the form of NeoId-
Wrappers

hasType(String
type)

boolean Returns whether the type type exists in the in-
dex by trying to find it through the Metamodel
index of the store.

getAllOfType(
String type)

Collection<?> Returns a collection containing all of the ob-
jects of type type in the index by first invok-
ing hasType(type) and, if successful, finding the
type using the Metamodel index and then cre-
ating a collection of NeoIdWrappers containing
every element which has an ofType relationship
to type.

getTypeOf(Object
instance)

Object Returns the type node of the element instance
in the index by directly accessing the node in-
stance (as this method is always passed a NeoId-
Wrapper as the instance) and navigating its
ofType relationship to get the type node. The
returned object is a NeoIdWrapper.

isOfType(Object
instance, String
type)

boolean Returns whether the node instance in this model
is of type type by first invoking hasType(type)
and, if successful, invoking getTypeOf(instance)
and performing a String comparison on the re-
sulting names.

knowsAboutProperty(
Object instance,
String property)

boolean Returns whether the element instance in this
index can have the structural feature property
by first invoking getTypeOf(instance) and then
invoking the EMF method getEStructuralFea-
ture(type, property).

IModel Interface Method Implementations. In order to use Epsilon’s EOL
to query model indexes stored in Hawk, an implementation of the IModel in-
terface is required. In Table 1 we present a description of various methods of
interest in the IModel interface and a summary of their implementation details
in Hawk. Note that any model element loaded into memory is of Java class
NeoIdWrapper. This is a lightweight object which contains only the location of
the relevant model element in the store (its ‘id’ value for example in a Neo4J
NoSQL Graph database) as well as a reference to the Epsilon model it is part
of; this object can be used to load the element’s attributes and relationships on
demand.
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Derived Attribute Value Computation. As discussed above, in the current
prototype, we use EOL expressions to describe the derived attributes to be
computed. For example, to derive the feature ‘numberOfBooks’ on an Author
node, we use the ‘self.books.size()’ expression, as shown in Figure 3. The keyword
‘self’ denotes the element itself and since in this case the element is an Author
instance (as the code was in an EAnnotation placed on the EClass Author) it will
successfully evaluate the expression, returning the value 1 in this case. Such EOL
expressions are actually executed, after the model insertion has been completed,
using Hawk’s EMC driver to query the database. Empirical data on the impact
this has on total insertion time can be found in Section 5.

Reverse Reference Navigation. In the spirit of EMF’s eContainer() method
which allows an EObject to get access to its container object, Hawk provides a
mechanism for reverse-navigating a containment reference in order to access the
container. This feature is embedded into the parser by means of prefixing the
relevant reference with “revRefNav ”. For example, say one has an object ‘A’
with a containment reference called ‘contain’ to an object ‘B’. Then, by typing
“B.revRefNav contain” in EOL, we get as a result object A.

5 Evaluation

In this section, the Grabats metamodel and models are used to perform various
performance tests on the query layer of Hawk.

5.1 The Grabats 2009 Case Study

For evaluating query execution performance in Hawk we use large-scale models
extracted by reverse engineering existing Java code. The updated version of the
JDTAST metamodel used in the SharenGo Java Legacy Reverse-Engineering
MoDisco use case7, presented in the Grabats 2009 contest [11] described below,
as well as the five models provided in the contest, are used for this purpose.

In this metamodel, there are TypeDeclarations that are used to define Java
classes and interfaces, MethodDeclarations that are used to define Java methods
(in classes or interfaces, for example) and Modifiers that are used to define Java
modifiers (like static or synchronized) for Java classes or Java methods. Figures
of the relevant subset of the JDTAST metamodel are found in works like [4,12].

The Grabats 2009 contest comprised several tasks, including the case study
used in this paper for benchmarking different model querying and pattern detec-
tion technologies. More specifically, task 1 of this case study is performed, using
all of the case studies’ models, set0 – set4 (which represent progressively larger
models, from one with 70447 model elements (set0) to one with 4961779 model
elements (set4)), all of which conform to the JDTAST metamodel.

These models are injected into Hawk for the insertion benchmark and then
queried using the Grabats 2009 task 1 query (from now on referred to as the

7 http://www.eclipse.org/gmt/MoDisco/useCases/JavaLegacyRE/

http://www.eclipse.org/gmt/MoDisco/useCases/JavaLegacyRE/
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Grabats query) [13]. This query requests all instances of TypeDeclaration ele-
ments which declare at least one MethodDeclaration that has static and public
modifiers and has the declared type being its returning type.

In the following sections we use this case study as a running example to illus-
trate the Hawk implementation and evaluate the results of using this JDTAST
metamodel (and models).

5.2 Execution Environment

Performance figures that have been measured on a PC with Intel(R) Core(TM)
i5-2300 CPU @ 2.80GHz, with 8GB of physical memory, and running the Win-
dows 7 (64 bits) operating system are presented. The Java Virtual Machine
(JVM) version 1.7.0 45-b18 has been restarted for each measure as well as for
each repetition of each measure. In each case, 6GB of RAM has been allocated
to the JVM (which includes any virtual memory used by the embedded Neo4J
database server running the tests). Results are in seconds and Megabytes,
where appropriate.

5.3 Model Insertion

Tables 2 and 3 show the results for the insertion of the various Grabats XMI
models into Neo4J using three variants of the metamodel (derivation strategies):

Table 2. Model Insertion, Size Results

Model
Size (in Mb)

Original DerivedMethodDeclaration DerivedTypeDeclaration

Set0 20.474 20.542 20.533

Set1 61.193 61.388 61.226

Set2 534.448 547.339 535.156

Set3 1184.09 1219.15 1186.28

Set4 1279.42 1317.68 1281.88

– Original. This is the unaltered version of the JDTAST metamodel provided
by the Grabats contest.

– DerivedMethodDeclaration. This version of the JDTAST metamodel in-
cludes three EAnnotation attributes (named isPublic, isStatic and isSameRe-
turnType) in the MethodDeclaration class which contain the EOL code to
derive (as a boolean) whether:
– The current instance of this MethodDeclaration (self) has as return type
the TypeDeclaration it is contained in. The EOL code reads as follows:
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self.returnType.isTypeOf(SimpleType) and self.

revRefNav_bodyDeclarations.isTypeOf(TypeDeclaration) and

self.returnType.name.fullyQualifiedName == self.

revRefNav_bodyDeclarations.name.fullyQualifiedName

– The current instance of this MethodDeclaration (self) is public. The EOL
code reads as follows:

self.modifiers.exists(mod:Modifier|mod.public=="true"))

– The current instance of this MethodDeclaration (self) is static. The EOL
code reads as follows:

self.modifiers.exists(mod:Modifier|mod.static=="true"))

Where the attribute revRefNav bodyDeclarations allows reverse-navigation
of the containment reference (bodyDeclarations) and retrieves the instance
of the containing class (this is necessary as the JDTAST metamodel does
not specify an opposite reference to the containment bodyDeclarations).

– DerivedTypeDeclaration. This version of the JDTAST metamodel in-
cludes a single EAnnotation attribute (named isGrabats) in the TypeDecla-
ration class which contains the EOL code to derive (as a boolean) whether
the this instance (self) fulfills the Grabats query requirements. The EOL
code reads as follows:

self.bodyDeclarations.exists(md:MethodDeclaration|md.modifiers

.exists(mod:Modifier|mod.public=="true") and md.modifiers.

exists(mod:Modifier|mod.static=="true") and md.returnType.

isTypeOf(SimpleType) and md.returnType.name.

fullyQualifiedName == self.name.fullyQualifiedName)

From table 2 we note that the increase in size when deriving attributes is
very small (0.288% – 2.99%) so the only performance concern would be the
increase in insertion time. In table 3 the numbers in brackets represent the time
taken for the derivation of the attributes to be computed (which happens after
the full model insertion). From table 3 we calculate the insertion time increases
(using: derivationtime

totaltime−derivationtime × 100%) and present them in table 4. Table 4
demonstrates how there is a substantial (but reasonable) increase in insertion
time for both derivation strategies presented. What is interesting is that even
though DerivedTypeDeclaration computes a much heavier expression, due to
the fact that it is performed sparsely, it requires comparable (and even slightly
lower) insertion time to the DerivedMethodDeclaration strategy.

These results demonstrate that even though it is reasonable to add derived
attributes even for quite complex derivations, careful consideration is needed so
only important attributes are derived, otherwise it can result in unacceptable
insertion times.
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Table 3. Model Insertion, Execution time Results

Model
Execution Time (in seconds)

Original DerivedMethodDeclaration DerivedTypeDeclaration

Set0 16 16 (0.12) 16 (0.10)

Set1 34 36 (1.46) 37 (1.16)

Set2 553 658 (73) 625 (19)

Set3 2287 2650 (404) 2486 (347)

Set4 2502 2947 (493) 2893 (477)

Table 4. Model Insertion, Execution time Increase Percentage

Model
Execution Time Increase (in %)

DerivedMethodDeclaration DerivedTypeDeclaration

Set0 0.756 0.629

Set1 4.23 3.237

Set2 12.48 3.135

Set3 17.99 16.22

Set4 20.09 19.74

5.4 Query Execution Time

Table 5 shows the results for performing the first Grabats 2009 [11,13] query on
the various persisted models. As previously mentioned, the Grabats query finds
all occurrences of TypeDeclaration elements that declare at least one public static
method with the declared type as its returning type. For these tests three queries
have been created in EOL (Q1 – Q3):
– Q1 reads:

TypeDeclaration.all.collect(

td|td.bodyDeclarations.select(

md:MethodDeclaration|md.modifiers.exists(mod:Modifier|mod.

public=="true")

and md.modifiers.exists(mod:Modifier|mod.static=="true")

and md.returnType.isTypeOf(SimpleType)

and md.returnType.name.fullyQualifiedName == td.name.

fullyQualifiedName ) )

This query (Q1) is the basic Grabats query using the original metamodel to
insert the relevant models into Hawk. As such it only uses attributes found
in the unaltered JDTAST metamodel.
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– Q2 reads:

TypeDeclaration.all.collect(

td|td.bodyDeclarations.select(

md:MethodDeclaration|md.isPublic == "true"

and md.isStatic == "true"

and md.isSameReturnType == "true" ) )

This query (Q2) contains the annotations described above for the Derived-
MethodDeclaration insertion. As it uses attributes found in the unaltered
JDTAST metamodel as well as the derived attributes ‘isPublic’, ‘isStatic’
and ‘isSameReturnType’.

– Q3 reads:

TypeDeclaration.all.select( td|td.isGrabats == "true" )

This query (Q3) contains the annotations described above for the Derived-
TypeDeclaration insertion. As it uses attributes found in the unaltered JD-
TAST metamodel as well as the derived attribute ‘isGrabats’.

Table 5. Grabats Query Execution Time Results

Model
Execution Time (in seconds)

Original DerivedMethodDeclaration DerivedTypeDeclaration
Q1 Q1 Q2 Q1 Q3

Set0 0.391 0.391 0.281 0.391 0.172

Set1 0.797 0.794 0.651 0.750 0.516

Set2 5.398 5.583 3.893 5.521 1.890

Set3 11.358 14.979 8.427 13.916 3.543

Set4 13.333 15.962 9.198 15.363 3.776

Query Q1 is run on all three types of inserted models as it does not contain
any new constructs. Q2 is run on models which have used the DerivedMethod-
Declaration annotations as it contains constructs using features derived by virtue
of that annotated metamodel. Q3 is similarly run on models which have used
the DerivedTypeDeclaration annotations.

It should be noted that the querying of the original models (using the original
query – Q1) in Epsilon, which was presented in [4] has slightly worst execution
times as it uses an older version of the EMC driver implemented for Hawk (and
also ran Java 1.6).

The first interesting thing to note here is that running Q1 on the models with
derived attributes is slightly less performant on the larger models (set2 – set4)
than running it on the unaltered model. This is to be expected as the driver
has to navigate through a larger database in these cases (as it is augmented
with the derived attributes). As such, any operation which requires iteration on
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attributes of an object will possibly be slower than originally. Running Q1 on
DerivedMethodDeclaration is slightly slower than Q1 on DerivedTypeDeclara-
tion as DerivedTypeDeclaration only introduces one new attribute (isGrabats)
for each TypeDeclaration while DerivedMethodDeclaration introduces three new
attributes for each MethodDeclaration (and there are more MethodDeclaration
instances than TypeDeclaration ones).

Looking at Q2, we see that it offers a significant performance increase to the
original tests with mean improvement of 26.23% and maximum improvement of
31.01% (on the largest model, set4). Similarly for Q3 we note an even larger
improvement in performance with mean 59.35% and maximum 71.68% (again,
on the largest model, set4).

These results support the idea that for both small and large model sizes
the targeted use of derived attributes can greatly benefit the resulting queries.
What’s more, these results seem to indicate that the larger the model size
the more effective using derived attributes is in improving performance. Tak-
ing the larger models (set2 – set4) we note that the improvement percentage
stays roughly the same or even tends to increase with the size of the model.

6 Conclusions and Further Work

From the empirical data collected we can conclude that using derived attributes
in Hawk greatly improves the performance of queries performed that make use
of them. There seems to be a steady (almost entirely positively correlated) re-
lationship between the percentage increase in the performance gain (in terms
of execution time) on queries performed and model size. Nevertheless there are
two compromises to be made when considering the use of such attributes. The
first is that the insertion time of models containing derived attributes is slower
than the original models due to the overhead of deriving them. The second is
that using several broad derived attributes, while less performant than using
one single targeted derived attribute (while taking the same if not more time
to insert), enables their possible use for different queries on the model while
the targeted attribute can only be used in a much narrower scope. Finally, we
note that general queries performed on models using derived attributes seem to
be slightly less performant than ones using the original model; as such, derived
attributes should only be used when there is reasonable confidence that they
will be required (for example when needing to perform a known heavyweight
transformation or query on the model).

Obtaining these encouraging results motivates us for implementing a fully en-
gineered solution of using derived attributes in Hawk, while taking into account
the concerns mentioned at the end of Section 3.1, in the future. Firstly, restrict-
ing the types of expressions allowed for derived attributes to be computed, so
that model evolution can be performed in reasonable time, is planned. Next,
a way to persist the expressions for derived attributes outside the metamodel,
when the metamodel is immutable for example, will be looked at. Finally, use
of embedded indexes found in Graph NoSQL databases in order to index spe-
cific attributes of interest, with the goal of further increasing query performance
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when such attributes are required for much of the computation of the query, will
be investigated.
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Abstract. Modern enterprise information systems often require to spec-
ify their functional and non-functional (e.g., Quality of Service) require-
ments using expressions that contain temporal constraints. Specification
approaches based on temporal logics demand a certain knowledge of
mathematical logic, which is difficult to find among practitioners; more-
over, tool support for temporal logics is limited. On the other hand,
a standard language such as the Object Constraint Language (OCL),
which benefits from the availability of several industrial-strength tools,
does not support temporal expressions.

In this paper we propose OCLR, an extension of OCL with support
for temporal constraints based on well-known property specification pat-
terns. With respect to previous extensions, we add support for referring
to a specific occurrence of an event as well as for indicating a time dis-
tance between events and/or from scope boundaries. The proposed ex-
tension defines a new syntax, very close to natural language, paving the
way for a rapid adoption by practitioners. We show the application of
the language in a case study in the domain of eGovernment, developed
in collaboration with a public service partner.

1 Introduction

Complex software systems, such as modern enterprise information systems, call
for the definition of requirements specifications that include both functional
and non-functional aspects (such as QoS, Quality of Service). In both cases,
the specifications might characterize (quantitative) aspects of the system that
involve temporal constraints. Examples of these constraints are bounds on the
sequence and/or number of occurrences of system events, possibly conjuncted
with constraints on the temporal distance of events.

These types of specifications have been catalogued in various collections of
property specification patterns, to help analysts and developers in expressing
typical, recurrent properties of a system, using a generalized yet structured and
precise form. The majority of property specification patterns have emerged in
the context of concurrent, real-time critical systems [7,13,10], though there have
been recent proposals of specification patterns for specific domains, like service-
based applications [1]. In all cases, the patterns have been formalized in terms
of some temporal logic, either the classic ones like LTL and CTL or a more spe-
cialized version like SOLOIST [2]. One problem in using a specification language
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based on a temporal logic is that it requires a strong theoretical background,
which is rarely found in practitioners. Moreover, tool support for the verification
of properties expressed in temporal logic is prototypal and limited, at least if
considered in the context of applying this kind of formal method at a scalable,
industrial-grade level.

One of the specification languages that has found a significant consensus and
adoption in industry is the Object Constraint Language (OCL) [11], used to
specify constraints on models, and now a standard in the context of model-
driven engineering practice. However, OCL does not support the specification
of temporal requirements. There have been several research proposals to extend
OCL with temporal constructs. Nevertheless, in the scope of a collaboration
with a public service partner active in the domain of eGovernment, we found
that the available temporal extensions of OCL do not meet the expressiveness
requirements as determined in our field study, based on realistic specifications
extracted from a collection of eGovernment business process descriptions.

In this paper we propose a new language, called OCLR, to fill the expressive-
ness gap that we found on the field. OCLR is an extension of OCL that supports
temporal constraints based on some of the well-known property specification pat-
terns. More specifically, we advance the state of the art by introducing support
for referring to a specific occurrence of an event in scope boundaries as well as for
indicating a time distance between events and/or from scope boundaries. Our
language extends OCL in a minimal fashion while maximizing the expressiveness
of temporal properties; moreover, the syntax is very close to natural language,
to encourage practitioners to use it. To show the feasibility of using OCLR in
realistic scenarios, we include a case study in the context of an eGovernment
application developed by our public service partner.

In the future, our intent is to adopt OCLR in the context of a larger project on
model-driven run-time verification1 of business processes. Since in this project
we plan to leverage existing industrial-strength OCL tools, such as constraint
verification engines, we decided to minimize, by design, the differences between
the models underlying OCLR and OCL. We believe that making OCLR a min-
imal extension of OCL will make the translation2 of OCLR expressions into
regular OCL ones much easier than performing the same translation starting
from expressions written in a language much more distant from OCL, such as a
temporal logic.

The rest of this paper is structured as follows. In Sect. 2 We discuss the
motivations for which and the context in which this work has been developed.
Section 3 introduces OCLR, its syntax and the (informal) semantics3. In Sect. 4
we show the application of OCLR in a case study in the domain of eGovernment.
We survey related work in Sect. 5. Section 6 concludes the paper, providing
directions for future work.

1 In fact OCLR stands for “OCL for Run-time verification”.
2 The translation from OCLR to OCL is out of the scope of this paper.
3 The complete definition of the formal semantics of OCLR is available in [6].
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2 Motivations

This work has been developed as part of an ongoing collaboration with CTIE
(Centre des technologies de l’information de l’Etat), the Luxembourg national
center for information technology. The main role of CTIE is to lead the devel-
opment of electronic government (eGovernment) initiatives within Luxembourg,
with the ultimate goal of delivering digital public services to citizens and enter-
prises, as well as improving the processes followed by the public administration.

The business processes designed for public administrations are usually highly
complex and require the interaction of different stakeholders. In particular, they
act as the “glue” to orchestrate different information systems, possibly by many
different organizations, in an effort to foster cooperation of various administra-
tions. Given the complexity and the many interactions foreseen for eGovernment
business processes, designing effective and efficient processes to drive e-service
delivery is one of the most challenging tasks for public administrations. For these
reasons, their development is gradually moving towards model-driven techniques.
This is the case for CTIE, which has developed in-house a model-driven method-
ology for designing eGovernment business processes.

Usually these processes are designed as compositions of services provided
by different organizations, administrations, or third-party suppliers. A service
integrator has to monitor the execution of the third-party services it uses to
check whether they fulfill their obligations (both in terms of functional and
non-functional properties), so that the business process itself can meet its re-
quirements. Furthermore, it is also important to verify at run time whether the
business process execution complies with the constraints specified during the
modeling phase, to detect when a failure occurs and to possibly determine cor-
rective actions. In this context, we are involved in a project on model-driven,
run-time verification of (eGovernment) business processes.

One of the first steps of this project consisted in identifying the type of con-
straints to check at run time. We analyzed several applications developed by
CTIE and scrutinized the requirements specifications associated with all use
cases and business process descriptions. We were able to recast the majority of
specifications written in natural language using the system of property specifica-
tion patterns (and scopes) proposed by Dwyer et al. [7]. However, in some cases
the original definitions proposed in [7] had to be extended to match the system
specifications. For example, the definitions of property specification scopes, used
to refer to the extent of a program execution over which a pattern must hold,
had to be extended to support references to a specific occurrence of an event
(not only the first one as in [7]), as in the requirement “event A shall occur
before the second occurrence of event X”. Another variant of this type of scope
boundary that we found is the one with requirements on the distance between
events, such as “event A shall occur five time units before the second occurrence
of event X”. In some cases, the requirements specifications had to be expressed
in terms of some real-time specification patterns [13,10], which quantitatively
define distance among events and durations of events.
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Based on the results of this phase, we pondered over the definition of a high-
level specification language for expressing this type of constraints. The intrinsic
temporal nature of the requirements specifications we found, including also real-
time constraints, could have suggested to follow the direction of building on some
temporal logic. However, specification languages based on temporal logic require
a certain mathematical knowledge that is not easy and common to find among
practitioners, such as business analysts or software engineers. Moreover, the ar-
ray of tools available for the verification of temporal logic is limited, especially
if one considers the additional requirement of applying them in realistic indus-
trial contexts. Based on these limitations, given the model-driven engineering
practice already in place at our public service partner, we decided to define our
specification language as an extension of OCL. In this way, we can build on a
language that is standardized, is known among practitioners, and has a wide set
of well-established, industrial-strength tools, like constraints verification engines.

3 OCLR

The design of OCLR is based on Dwyer et al.’s property specification patterns
system [7]. This system defines five scopes (globally, before, after, between-and,
and after-until) and eight patterns (universality, absence, existence, bounded ex-
istence, precedence, response, precedence chain, and response chain).

In the definition of OCLR we decided to support all these scopes and patterns,
with the following extensions:

– The possibility, in the definition of a scope boundary, to refer to a specific
occurrence of an event, as in “before the second occurrence of event X . . . ”.
In the original definition of the pattern systems, boundaries of scopes refer
implicitly to the first occurrence of an event.

– The possibility to indicate a time distance with respect to a scope boundary,
as in “at least (at most) two time units before the n-th occurrence of event
X . . . ”.

– Support for expressing time distance between events occurrences, to express
properties like a bounded response, such as “event B should occur in response
to event A within 2 time units”.

These design choices have been motivated by the type of properties that we
have found while analyzing the requirement specifications of our public service
partner, as well as by the lack of support for them in the current temporal
extensions of OCL (see Sect. 5).

OCLR has been inspired by the design of Temporal OCL [12], another pattern-
based temporal extension of OCL. As we will discuss in more detail in Sect. 5,
Temporal OCL lacks the language features described above. Nevertheless, we
borrow from it the notion of event, i.e., a predicate that specifies a set of instants
within the time line; the specific types of events supported in the language are
described in the following subsection.
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3.1 Syntax

The syntax of OCLR (also inspired by the one of Temporal OCL [12]) is shown
in Fig. 1: non-terminals are enclosed in angle brackets, terminals are enclosed in
single quotes, and underlined italic words are non-terminals defined in the OCL
grammar [11]. An 〈OCLR block〉 comprises a set of conjuncted 〈TemporalClauses〉
beginning with the keyword ‘temporal’. Each temporal clause contains a tempo-
ral expression that consists of a 〈scope〉 and a 〈pattern〉; the scope specifies the
time slot(s) during which the property described by the pattern should hold.

〈OCLRBlock〉 ::= ‘temporal’ 〈TemporalClause〉+
〈TemporalClause〉 ::= [〈simpleNameCS〉] ‘:’ [〈Quantif 〉] 〈TemporalExp〉
〈Quantif 〉 ::= ‘let’ 〈VariableDeclarationCS〉 ‘in’
〈TemporalExp〉 ::= 〈Scope〉 〈Pattern〉
〈Scope〉 ::= ‘globally’

| ‘before’ 〈Boundary1 〉
| ‘after’ 〈Boundary1 〉
| ‘between’ 〈Boundary2 〉 ‘and’ 〈Boundary2 〉
| ‘after’ 〈Boundary2 〉 ‘until’ 〈Boundary2 〉

〈Pattern〉 ::= ‘always’ 〈Event〉
| ‘eventually’ 〈RepeatableEventExp〉
| ‘never’ [‘exactly’ 〈IntegerLiteratureExpCS〉] 〈Event〉
| 〈EventChainExp〉 ‘preceding’ [〈TimeDistanceExp〉]

〈EventChainExp〉
| 〈EventChainExp〉 ‘responding’ [〈TimeDistanceExp〉]

〈EventChainExp〉
〈Boundary1 〉 ::= [〈IntegerLiteratureExpCS〉] 〈SimpleEvent〉

[〈TimeDistanceExp〉]
〈Boundary2 〉 ::= [〈IntegerLiteratureExpCS〉] 〈SimpleEvent〉

[‘at least’ IntegerLiteratureExpCS ‘tu’]
〈EventChainExp〉 ::= 〈Event〉 (‘,’ [‘#’ 〈TimeDistanceExp〉] 〈Event〉)*
〈TimeDistanceExp〉 ::= 〈ComparingOp〉 〈IntegerLiteratureExpCS〉 ‘tu’
〈RepeatableEventExp〉 ::= [〈ComparingOp〉 〈IntegerLiteratureExpCS〉] 〈Event〉
〈ComparingOp〉 ::= ‘at least’ | ‘at most’ | ‘exactly’
〈Event〉 ::= (〈SimpleEvent〉 | 〈ComplexEvent〉) [‘|’ Event]
〈ComplexEvent〉 ::= ‘isCalled’ ‘(’ ‘anyOp’

[‘,’ ‘pre:’ 〈OCLExpressionCS〉]
[‘,’ ‘post:’ 〈OCLExpressionCS〉] ‘)’ [‘\’ 〈Event〉]

〈SimpleEvent〉 ::= 〈SimpleCallEvent〉 | 〈SimpleChangeEvent〉
〈SimpleChangeEvent〉 ::= ‘becomesTrue’ ‘(’ 〈OCLExpressionCS〉 ‘)’
〈SimpleCallEvent〉 ::= ‘isCalled’ ‘(’ 〈OperationCallExpCS〉

[‘,’ ‘pre:’ 〈OCLExpressionCS〉]
[‘,’ ‘post:’ 〈OCLExpressionCS〉] ‘)’

Fig. 1. Grammar of OCLR
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The definitions of 〈Event〉s that can be used in a temporal expression are
adapted from [12]. The keyword ‘isCalled’ represents a call event, which corre-
sponds to a call to an operation. Under the hypothesis of atomicity of operations,
we merge into a single call event, the events corresponding to the call, the start,
and the end of an operation. A call event has three parameters: the called opera-
tion; the precondition (optional, in the form of an OCL expression) that acts as
guard over the system pre-state and the operation parameters for the actual call
execution; the postcondition (optional, in the form of an OCL expression) that
acts as guard over the system post-state and the return value of the call invoca-
tion. Notice that a call event is raised only if the operation is invoked and both
the precondition and the postcondition are satisfied. The keyword ‘anyOp’ is used
if no operation is specified; in this case the call event becomes a state change
event, from the state determined by the precondition to the state determined
by the postcondition. The keyword ‘becomesTrue’ denotes a state change event
parameterized with the OCL expression provided as parameter: it corresponds
to the state in which the input expression becomes true (which implies that in
the previous state it evaluated to false). We also support the disjunction ‘|’ and
the exclusion ‘\’ operations on events.

3.2 OCLR at Work

We now present some examples of properties that can be expressed with OCLR,
in order to provide the reader with a high-level, intuitive understanding of the
language. We consider the history trace shown in Fig. 2 and for each property
indicate whether it is violated or not by the trace. First, we define the properties
in English:

1. “Event C shall happen 8 time units after the second occurrence of event X .”
(satisfied)

2. “Event A shall happen within 30 time units after the first occurrence of event
X .” (satisfied)

3. “Event C shall eventually happen after at least 3 time units since the first
occurrence of event X ; and it shall happen before event Y if the latter
happens.” (violated)

4. “After the second occurrence of event X , event C shall eventually happen
exactly twice.” (satisfied)

5. “Event C shall happen at least once between every first occurrence of event
X and the next event Y ; the time interval between event X and the first
occurrence of event C shall be at least 5 time units.” (violated)

X A B Y Y X X C C Y X

4 tu 4 tu 6 tu 8 tu

Fig. 2. Sample events traces
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6. “Event B shall happen at least 3 time units before the first occurrence of
event Y .” (satisfied)

7. “Before the first occurrence of event Y , once event X occurs, event A shall
happen followed by event B; the time interval between X and A shall be at
least 3 time units.” (satisfied)

The corresponding OCLR expressions are shown below:

1. temporal: after 2 X exactly 8 tu eventually C
2. temporal: after X at most 30 tu eventually A
3. temporal: after 1 X at least 3 tu until Y eventually C
4. temporal: after 2 X eventually exactly 2 C
5. temporal: between X at least 5 tu and Y eventually at least 1 C
6. temporal: before Y at least 3 tu eventually B
7. temporal: before Y A, B responding at least 3 tu X

3.3 Informal Semantics

In this section we present the informal semantics of the scopes and the patterns
supported in OCLR expressions; they correspond to non-terminals 〈Scope〉 and
〈Pattern〉, respectively. The full definition of the formal semantics is available in
the extended version of this paper [6].

Scopes. For the description of scopes, we refer to the trace of events depicted
in Fig. 3. We use symbols X and Y as shorthands for events that can be derived
from the non-terminal 〈SimpleEvent〉.

X Y Y X X Y X

Fig. 3. A sample trace for the description of scopes

Before. This scope identifies a portion of a trace up to a certain boundary.
The general template for this scope in OCLR is “before [m] X [〈ComparingOp〉
n tu]”, where elements between brackets are optional, ‘m’ and ‘n’ are integers de-
rived from the non-terminal 〈IntegerLiteratureExpCS〉, and ‘tu’ stands for “time
unit(s)”. This template can be expanded in four forms: 1) “before X”, 2) “before
X 〈ComparingOp〉 n tu”, 3) “before m X”, 4) “before m X 〈ComparingOp〉 n

tu”. The first two forms are convenient shorthands for the third and fourth ones,
respectively, with m = 1. The form “before m X” selects the portion of the trace
up to the m-th occurrence of event X ; see, for example, the top row in Fig. 4,
where the interval from the origin of the trace up to the third occurrence of
X is highlighted with a thick line. The form “before m X 〈ComparingOp〉 n

tu” has three variants, depending on the possible expansions of non-terminal
〈ComparingOp〉:
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– “before m X at least n tu” identifies the scope from the origin of the trace
up to n time units before the m-th occurrence of X ;

– “before m X at most n tu” identifies the scope starting at n time units be-
fore the m-th occurrence of X and bounded to the right by the m-th occur-
rence of X ;

– “before m X exactly n tu” pinpoints the time instant at n time units before
the m-th occurrence of X .

Examples of these three variants of scopes are shown with thick segments in
Fig. 4, with m = 3 and with n = 2.

After. This scope identifies a portion of a trace starting from a certain bound-
ary. It has a dual semantics with respect to the before scope. We provide an
intuition of its semantics using Fig. 5, where the possible variants of this scope
are represented as thick segments.

Between-And. This scope identifies portion(s) of a trace delimited by two
boundaries. The general template for this scope in OCLR is “between [m1] X
[at least n1 tu] and [m2] Y [at least n2 tu]”, where elements between brack-
ets are optional, ‘m1’, ‘m2’, ‘n1’, ‘n2’ are integers derived from the non-terminal
〈IntegerLiteratureExpCS〉, and ‘tu’ stands for “time unit(s)”. This template can
be expanded in four forms:
– “between m1 X [at least n1 tu] and m2 Y [at least n2 tu]”;
– “between X [at least n1 tu] and m2 Y [at least n2 tu]”;
– “between m1 X [at least n1 tu] and Y [at least n2 tu]”;
– “between X [at least n1 tu] and Y [at least n2 tu]”.

The first form is the most general: it selects the single segment of the trace
delimited by the m1-th occurrence of event X and the m2-th occurrence of
event Y happening after the m1-th occurrence of X . The second and third forms
are shorthands for the first one, with m1 = 1 and m2 = 1, respectively. The
fourth form is the closest to the original definition in [7], since it selects all the
segments in the trace delimited by the boundaries. In this regard, notice the
difference with respect to the expression “between 1 X and 1 Y ”, which selects
the segment delimited by the first occurrence of X and the first occurrence of
Y after X . In all forms it is possible to use the expression at least n tu when
defining boundaries, with the same meaning described for the scope before. Four
examples of the Between-and scope are shown in Fig. 6.

After-Until. This scope is similar to Between-and, with the difference that
each identified segment extends to the right in case the event defined by the
second boundary does not occur; this peculiarity can be noticed in the first two
rows of Fig. 7, and compared with those in Fig. 6.

Globally. This scope corresponds to the entire trace shown in Fig. 3.
Note that all scopes but those using the ‘exactly’ keyword do not include the
events occurring at the boundaries of the scope itself.

Patterns. OCLR supports the eight patterns defined in [7].
Universality. It states that a certain event should always happen within the

given scope.
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X Y Y X X Y X

before 3 X

before 3 X at least 2 tu

before 3 X at most 2 tu

before 3 X exactly 2 tu

2 tu

Fig. 4. Scope: before

X Y Y X X Y X

after 3 X

after 3 X at least 2 tu

after 3 X at most 2 tu

after 3 X exactly 2 tu

2 tu

Fig. 5. Scope: after

Existence. It indicates that the given scope contains some occurrence(s) of
a certain event. This pattern comes in four forms:
– “eventually A” means that the event A happens at least once;
– “eventually at least m A” means that A happens at least m times;
– “eventually at most m A” means that A happens at most m times;
– “eventually exactly m A” means that A happens exactly m times.

The last three forms are variants of the bounded existence pattern, a subclass of
the existence one.

Absence. It states that a certain event never occurs in the given scope. It is
also possible to specify that a specific number of occurrences of the same event
should not happen, as in “never exactly 2 X”, which says that X should never
occur exactly twice.

Precedence. This pattern (also available in the variant called precedence
chain) indicates the precondition relationship between a pair of events (respec-
tively, the two blocks of a chain) in which the occurrence of the second event

X Y Y X X Y X

between X and Y

between X and Y at least

2 tu

between 1 X at least 2 tu

and 2 Y

between 2 X at least 2 tu

and 1 Y at least 2 tu

2 tu 2 tu

2 tu

2 tu

Fig. 6. Scope: between-and
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X Y Y X X Y X

after X until Y

after X until Y at

least 2 tu

after 1 X at least 2 tu

until 2 Y

after 2 X at least 2 tu

until 1 Y at least 2 tu

2 tu 2 tu

2 tu

2 tu

Fig. 7. Scope: after-until

(respectively, block) depends on the occurrence of the first event (respectively,
block). Based on this original definition, we added support for timing informa-
tion to enable expressing the time distance between two adjacent events. The
semantics can be explained using the following example and the event trace in
Fig. 8; the expression “A preceding at most 10 tu B, #at least 5 tu C” in-
dicates that the event A is the precondition of the block “B followed by C”,
that the time distance between A and B is at most 10 time units, and the time
distance (expressed using the # operator) between events B and C is at least 5
time units. Here, A (at the left of ‘preceding’) represents the first block of the
chain, while the expression “B, #at least 5 tu C” represents the second block
(at the right of ‘preceding’).

Response. This pattern (also available in the variant called response chain)
specifies the cause-effect relationship between a pair of events (respectively, the
two blocks of a chain) in which the occurrence of the first event (respectively, first
block) leads to the occurrence of the second event (respectively, second block).
The property “C, D responding at most 10 tu A, #at least 5 tu B” specifies
that two successive events A and B stimulate the sequential occurrence of C and
D, and the time interval between A and B should be at least 5 time units; the
time interval between B (second element of the first block) and C (first element
of the second block) should be at most 10 time units. This property is violated
by the example in Fig. 8, because the time distance between A and B is only 4
time units.

A B C D

4 tu 6 tu 4 tu

Fig. 8. Example trace for illustrating the precedence and response patterns

4 Applying OCLR in an eGovernment Scenario

In this section we present a case study where we show the use of OCLR in the
context of an eGovernment application developed by our public service partner.
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Fig. 9. Conceptual model of the ICM process

We illustrate some properties (selected from the 47 we analyzed) of a business
process model related to three use cases. The goal is to investigate whether OCLR
can precisely capture all temporal and timed properties of a real eGovernment
system. The case study description has been sanitized for the purpose of not
disclosing confidential information and also to obtain a model at the minimum
level of detail required to illustrate and express the properties.

The scenario describes the Identity Card Management (ICM) business pro-
cess, which is in charge of issuing and managing the ID cards of the diplomatic
personnel of the country. A sanitized version of the conceptual model correspond-
ing to this scenario is shown in Fig. 9. The ICM business process deals with the
card requests, the production of the cards, and the returns of the cards once
expired. The ICM process also keeps track of the state of a card (CardState),
which can be, for example, InCirculation or Expired. A card Request can be in
different states, such as Approved, Denied, and InProgress. Once a request for a
card is submitted to the ICM system, it is evaluated and then either approved
or denied. After the approval, the ICM system asks the production system to
issue a physical card. The card will then be delivered to the applicant. The ICM
also deals with events such as the damage, loss, or expiration of cards.

Sample Properties. We now list the requirements specifications associated
with three uses cases of the ICM system, and show how the corresponding
properties can be expressed in OCLR.

Card Request. The following requirements are associated with the use case
related to the card request:
R1 Once a card request is approved, the applicant is notified within three days;

this notification has to occur before the production of the card is started.
R2 The applicant has to show up within five days from the notification to get

her personal data collected.
R3 If the applicant does not show up within five days after the second notifica-

tion, the request will be denied and the applicant notified about the refusal.
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1 context ICM

2 temporal R1: let r : Request in

3 before becomesTrue(r.card.state = CardState::InProduction)

4 isCalled(notifyApproved(r.applicant)) responding at most 3*24*3600 tu

5 becomesTrue(r.state = RequestState::Approved)

6 temporal R2: let r : Request in

7 after isCalled(notifyApproved(r.applicant)) at most 5*24*3600 tu

8 eventually isCalled(registerPhysicalInfo(r.applicant))

9 temporal R3: let r : Request in

10 after 2 isCalled(notifyApproved(r.applicant)) at least 5*24*3600 tu

11 eventually isCalled(notifyRefused(r.applicant))

Property R1 is expressed in lines 2–5. The before scope is delimited by the event
that corresponds to a change in the state of the card (c.state=CardState::InPro-
duction). The response pattern is bounded (time units are expressed in seconds)
and requires the notification to the applicant (notifyApproved) to happen in re-
sponse to a change in the state of the request (r.state=RequestCard::Approved).
Property R2 (lines 6–8) combines an after scope with an existence pattern. A
similar structure is used in R3 (lines 9–11), where the after scope uses the second
occurrence of notifyApproved as the boundary.

Card Loss. The following requirements are associated with the use case re-
lated to the loss of a card:
L1 If a card is reported as lost to the ICM and has not been found yet, a

temporary card will be sent to the card holder within 1 day.
L2 If the card has not been found yet, a new card will be delivered to the holder

within five days after the report of the loss.
L3 After the card loss is reported, if the card is found, within at most three days

the delivery of the new card will be canceled and a notification to return the
temporary card will be sent.

1 context ICM

2 temporal L1: let c: Card in

3 after becomeTrue(c.state = CardState::Lost) at most 24*3600 tu

4 eventually isCalled(deliverTempCard(c.tempCard,

5 pre: c.state=CardState::Lost))

6 temporal L2: let c : Card in

7 after becomeTrue(c.state = CardState::Lost) at most 5*24*3600 tu

8 eventually isCalled(deliverNewCard(c.newCard),

9 pre: c.state=CardState::Lost)

10 temporal L3: let c: Card in

11 after becomeTrue(c.state = CardState::Lost)

12 isCalled(c.isFound(), pre: c.state=CardState::Lost)

13 preceding at most 3*24*3600 tu

14 isCalled(cancelCardDelivery(c.newCard),

15 pre: c.newCard.state <> CardState::InCirculation),

16 isCalled(notifyReturnCard(c.cardHolder))
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Both properties L1 and L2 use an after scope combined with an existence pat-
tern. Notice that in both cases the additional condition “card not found yet” is
expressed as a precondition of the operation which is the argument of isCalled

in the existence pattern (deliverTempCard and deliverNewCard). Property L3
combines an after scope with a precedence chain pattern, where the first block
corresponds to finding the card (isFound) and the second block is the chain of
cancelCardDelivery and notifyReturnCard.

Card Expiration. The following requirements are associated with the use
case related to the expiration of a card:
E1 Once a card expires, the holder is notified to return the card at most twice.
E2 After five days from the second notification to the holder about the expiration

of the card, if the card has not been returned yet, the police is notified.
E3 Once a card is returned, the holder will receive a confirmation within one

day.

1 context ICM

2 temporal E1: let c:Card in

3 after becomesTrue(c.state = CardState::Expired)

4 until becomesTrue(c.state = CardState::Returned)

5 eventually at most 2 isCalled(notifyReturnCard(c.cardHolder),

6 pre:c.state <> CardState::Returned)

7 temporal E2: let c:Card in

8 after 2 isCalled(notifyReturnCard(c.cardHolder),

9 pre: c.state <> CardState::Returned)

10 exactly 5*24*3600 tu

11 eventually isCalled(notifyPolice(c.cardHolder),

12 pre: c.state <> CardState::Returned)

13 temporal E3: let c:Card in

14 globally isCalled(notifyCardReturned(c.cardHolder),

15 pre: c.state = CardState::Returned)

16 responding at most 24*3600 tu

17 becomesTrue(c.state = CardState::Returned)

Property E1 uses an after-until scope, delimited by the events corresponding
to the expiration of the card (c.state=CardState::Expired) and the return of
the card (c.state=CardState::Returned). A bounded existence pattern is used to
specify the maximum amount of notifications (notifyReturnCard) that can hap-
pen. In property E2 we use an after scope combined with the keyword ‘exactly’
to pinpoint the exact time instant in which the police is notified (notifyPolice).
Property E3 states an invariant of the system (using the globally scope) for the re-
sponse pattern correlating the return of the card (c.state=CardState::Returned)
to the notification to the holder (notifyCardReturned).

5 Related Work

There have been several proposals for extending OCL with support for temporal
constraints. In the rest of this section we summarize them and discuss their
differences and limitations with respect to OCLR.



64 W. Dou, D. Bianculli, and L. Briand

One of the first proposals is OCL/RT [4], which extends OCL with the notion
of timestamped events (based on the original UML abstract meta-class Event)
and two temporal modalities, “always” and “sometimes”. Events are associated
with instances of classifiers and, by means of a special satisfaction operator, it
is possible to evaluate an expression at the time instant when a certain event
occurred. The OCL/RT extension allows for expressing real-time deadline and
timeout constraints but requires to reason explicitly at the lowest-level of ab-
straction, in terms of time instants.

Cabot et al. [3] extend UML to use UML/OCL as a temporal conceptual
modeling language, introducing the concepts of durability and frequency for the
definition of temporal features of UML classifiers and associations. They define
temporal operations in OCL through which it is possible to refer to any past
state of the system. These operations are mapped into standard OCL by relying
on the mapping of the temporally-extended conceptual schema into a conven-
tional UML one, which explicitly instantiates the concepts of time interval and
instant. However, the temporal operations are geared to express temporal in-
tegrity constraints on the model, rather than temporal properties correlating
events of the system.

The majority of the proposals regarding temporal extensions of OCL are re-
alized by extending the language with temporal operators/modalities borrowed
from standard temporal logic, such as “always”, “until”, “eventually”, “next”. A
preliminary work in this direction appeared in [5]. Lavazza et al. [14] define the
Object Temporal Logic (OTL), which allows users to write temporal constraints
on Real-time UML (UML-RT) models. In particular, it supports the concepts
Time, Duration and Interval to specify the time distance between events. Nev-
ertheless, the language is modeled after the TRIO temporal logic [15], and the
properties are written using a low level of abstraction. Ziemann and Gogolla [18]
proposes TOCL, an extension of OCL with elements of a linear temporal logic,
to specify constraints on the temporal evolution of the system states. Being
based on linear temporal logic, TOCL does not support real-time constraints.
The work on Flake and Mueller [8] goes in a similar direction, proposing an
extension of OCL that allows for the specification of past- and future-oriented
time-bounded constraints. They do not support event-based specifications; more-
over, the proposed mapping into Clocked LTL does not allow to rely on standard
OCL tools. Kuester-Filipe and Anderson propose a liveness template for future-
oriented time-bounded constraints, as those than can be captured with a response
or existence pattern. This template is defined in terms of the real-time temporal
logic of knowledge, interpreted over timed automata, to allow for formal reason-
ing. The expressiveness of this extension is very limited, since it supports only
one template. Soden and Eichler [17] propose Linear Temporal OCL (LT-OCL)
for languages defined over MOF meta-models in conjunction with operational
semantics. LT-OCL contains the standard modalities of Linear Temporal Logic.
The interpretation of LT-OCL formulae is defined in the context of a MOF
meta-model and its dynamic behavior specified by action semantics using the
M3Actions framework.
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The approaches that are most similar to OCLR are those that extend OCL with
support for Dwyer et al.’s property specification patterns [7]. Flake and Mueller [9]
propose a state-oriented temporal extension of OCL for user-defined classes that
have an associated Statechart. The pattern-based temporal expressions refer to
configurations of Statecharts. With respect to OCLR, they do not support the
specification in terms of events. Moreover, the expressions corresponding to the
patterns are not first-class entities of the language, hence they are more verbose
and less close to natural language. Robinson [16] presents a temporal extension
of OCL called OCLTM, developed in the context of a framework for monitoring
of requirements expressed using a goal model. OCLTM includes all the operators
corresponding to standard LTL modalities, and supports Dwyer et al.’s patterns
and timeouts in patterns. In this regard, it is very close to the expressiveness of
OCLR, though it supports neither the reference to a specific occurrence of an event
in scope boundaries nor the association of time shifts to boundaries (as OCLR
does with the keywords ‘at least’, ‘at most’, ‘exactly’). Kanso and Taha [12] in-
troduce Temporal OCL, a pattern-based temporal extension of OCL. As discussed
in Sect. 3, OCLR borrows some language entities from Temporal OCL. Although
the support for temporal patterns is very similar between the two languages, Tem-
poral OCL does not allow references to specific event occurrences in scope bound-
aries and it lacks support for timing information, such as the distance between
events and the distance from a scope boundary.

6 Conclusion and Future Work

A broad class of requirements for modern complex software systems involves
temporal constraints, possibly enriched with timing information. Current ap-
proaches for specifying requirements either lack the expressiveness (as in the
case of OCL) required for this new class of properties or require mathematical
expertise (e.g., temporal logic). In this paper we presented OCLR, a novel tem-
poral extension of OCL based on common property specification patterns, and
extended with support for referring to a specific occurrence of an event in scope
boundaries, and for specifying the distance between events and/or from bound-
aries of the scope of a pattern. We presented the semantics of the language and
its application to a case study in the domain of eGovernment.

This work has been developed as part of a broader collaboration with our
public service partner CTIE, the Luxembourg state center for information tech-
nology, in the context of a project on model-based run-time verification of eGov-
ernment business processes. We are currently working on defining the mapping
between OCLR and OCL, in order to take advantage of the industrial-strength
tools available to check OCL constraints. Our next steps will focus on defining a
model-based run-time verification technique for properties written with OCLR,
and integrating it in the business process run-time platform of our partner. We
also plan to conduct an empirical study to assess the improvements provided
by OCLR when adopted as specification language in the development life cy-
cle of our partner, and also to improve the language, integrating feedback from
practitioners and adding support for other specification patterns [1].
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Abstract. The megamodeling language MegaL is designed to model
the linguistic architecture of software systems: the relationships between
software artifacts (e.g., files), software languages (e.g., programming lan-
guages), and software technologies (e.g., code generators) used in a sys-
tem. The present paper delivers a form of interpretation for such meg-
amodels: resolution of megamodel elements to resources (e.g., system ar-
tifacts) and evaluation of relationships, subject to designated programs
(such as pluggable ‘tools’ for checking). Interpretation reduces concerns
about the adequacy and meaning of megamodels, as it helps to apply
the megamodels to actual systems. We leverage Linked Data principles
for surfacing resolved megamodels by linking, for example, artifacts to
GitHub repositories or concepts to DBpedia resources. We provide an
executable specification (i.e., semantics) of interpreted megamodels and
we discuss an implementation in terms of an object-oriented framework
with dynamically loaded plugins.

Keywords: megamodel, interpretation, technological space, software lan-
guage, software technology, ontology, Linked Data.

1 Introduction

The notion of megamodeling has seen much recent interest specifically in the
MDE community with diverse application areas such as model management [2],
software architecture [12], and models at runtime [18]. Different definitions of
‘megamodel’ are in use, see, for example, [4] for a more recent proposal. Usually,
it is assumed that a megamodel is a model whose model elements are again
models by themselves while the term ‘model’ is interpreted in a broad sense to
include metamodels, conformant models, and transformation models.

In our recent work [7], we have introduced a megamodeling approach that
it is not tailored to MDE; it is, in fact, meant to be applicable to arbitrary
technological spaces [16]. To this end, we have introduced the megamodeling
language MegaL for modeling the linguistic architecture of software systems,
i.e., a system’s architecture in terms of relationships between conceptual entities
such as languages and technologies as well as actual entities (‘artifacts’) such
as files. Until now, MegaL models lacked a proper interpretation which should
define how to link megamodel nodes to actual resources (such as system artifacts
or documentation) and edges to functionality for checking relationships.

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 67–82, 2014.
c© Springer International Publishing Switzerland 2014
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http://dbpedia.org/page/Java_(programming_language)http://dbpedia.org/page/Java_(programming_language) https://code.google.com/p/javaparser/https://code.google.com/p/javaparser/

 Java : Language 
 ?javaProgram : File 
 javaProgram  elementOf Java 

http://introcs.cs.princeton.edu/java/11hello/HelloWorld.javahttp://introcs.cs.princeton.edu/java/11hello/HelloWorld.java

public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, World");
    }
}

evaluated
byresolved 

to

resolved
to

https://github.com/avaranovich/megal

MegaL

https://github.com/avaranovich/megal

interpreted
by

plugged
into

Fig. 1. Interpretation of a megamodel

The present paper1 fills in the notion of interpretation of megamodels. In this
manner, we provide a general facility to apply megamodels to actual systems
and to validate the claims that are made by megamodels.

Consider Figure 1 for an illustration. The megamodel in the center of the
figure declares a language Entity ‘Java’, a file entity parameter ‘javaProgram’,
and a relationship between these entities such that the latter is an element of the
former. Thus, the megamodel essentially describes a trivial Java-based system.
The MegaL model can be interpreted as indicated in the figure, subject to a
configuration and suitable plugins not shown here in detail. The interpretation
entails these aspects:

� The language ‘Java’ is resolved in terms of the corresponding resource (page)
according to the ontology provided by DBpedia.

� The parameter ‘javaProgram’ is resolved to the on-line version of a ‘hello
world’ program on a web server at the Princeton University.

� The ‘elementOf’ relationship is evaluated by the Java parser of the javaparser
project hosted on Google Code.

Characteristics of the Approach. We begin with characteristics of the basic
MegaL approach, essentially inherited from [7].

� Extra models on top of systems : A megamodel is seen as an abstraction over
an existing system, added ’after the fact’, as opposed to forming a part of a
system or expressing its composition, as in the case of model management.

1
The paper’s website: http://softlang.uni-koblenz.de/megal-interpretation/

http://softlang.uni-koblenz.de/megal-interpretation/
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� Flexibility in terms of technological spaces : Software technologies and sys-
tems may involve different technological spaces (such as grammarware or
Javaware) without preference for a specific one such as MDE.

� Decreased relevance of metamodels: Metamodels or metamodel-like artifacts
(e.g., schemas) are often unavailable or of limited relevance outside clean-
room MDE. That is, we often refer to languages instead of metamodels, i.e.,
to conceptual entities rather than artifacts.

We continue with characteristics of interpretation. These are the contributions
of the present paper.

� Resource-based resolution of entities : The entities in a megamodel may be
resolved to resources that can be addressed with URIs, thereby enabling
transparent reuse of existing ontologies (e.g., DBpedia) and repositories (e.g.,
GitHub repos). We leverage Linked Data principles.

� Flexibility in terms of ontologies : There does not exist a comprehensive on-
tology for software engineering. Thus, different ontologies, subject to a plugin
infrastructure, may be combined to assign meaning to the entity types and
the conceptual entities in a megamodel.

� Tool-based interpretation of relationships : Relationships may be interpreted
by designated programs (’tools’), e.g., a program implementing the member-
ship test for a given language. This is supported by a plugin infrastructure,
without favoring any particular semantics formalism.

� Traceability recovery: The actual semantics of transformation relationships
is often unaccessible, as it is buried in software technologies. Thus, it may
be preferable to construct a simplified and accessible variant of the actual
semantics which provides insight due to its simplicity and through recovered
traceability links for the involved artifacts.

Road-Map of This Paper. §2 describes MegaL without interpretation; it
also develops a relatively simple, illustrative megamodel, which will serve as
the running example of the paper. §3 develops the central notion of megamodel
interpretation including its implementation as an object-oriented framework. §4
provides an executable specification (semantics) of interpreted megamodels. §5
discusses related work. §6 concludes the paper.

2 Megamodeling with MegaL

This section describes the language elements of MegaL. We develop a relatively
simple, illustrative megamodel, which will serve as the running example of the
paper. All original aspects of interpretation are deferred to the next two sections.

2.1 MegaL Entities

All entities in a megamodel must get assigned an entity type. These types are
also defined in MegaL. Entity types are declared as subtypes of the root entity
type Entity or subtypes thereof. In this manner, a classification hierarchy (i.e.,
a taxonomy or ontology of entity types) is described. Here are some reusable
entity types, as declared in actual MegaL syntax:
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Set < Entity // Sets such as languages; see below
Language < Set // Languages as sets, e.g., sets of strings
Technology < Entity // Technologies in the sense of conceptual entities
Artifact < Entity // Artifacts as entities with a physical manifestation
File < Artifact // Files as a common kind of artifact
Function < Set // A function such as the meaning of a program
FunctionApplication < Entity // A particular application of a function

Entity types are exercised in entity declarations as those of Figure 1:

Java : Language // Entity Java is of type Language
?javaProgram : File // Entity (parameter) javaProgram is of type File

We defer the discussion of the exact difference between entities and entity pa-
rameters (see the prefix ‘?’) until we deal with resolution in §3.

2.2 MegaL Relationships

All relationships between entities are instances of appropriate relationship types.
Again, these types are defined in MegaL. Here are some reusable relationship
types, as declared in actual MegaL syntax:

elementOf < Entity ∗ Set // Membership in the set−theoretic sense
conformsTo < Artifact ∗ Artifact // Conformance in the sense of metamodeling
defines < Artifact ∗ Entity // Such as a grammar defining a language
domainOf < Set ∗ Function // The domain of a function
rangeOf < Set ∗ Function // The range of a function
inputOf < Entity ∗ FunctionApplication // The input of a function application
outputOf < Entity ∗ FunctionApplication // The output of a function application
partOf < Entity ∗ Entity // A physical or conceptual containment relationship

Relationship types are exercised in declarations as this one of Figure 1:

javaProgram elementOf Java

2.3 An Illustrative Megamodel

Let us capture key aspects of ANTLR usage in a software system. ANTLR2 is
(among other things) a parser generator that targets, for example, Java. Thus,
ANTLR can be used to generate Java code for a parser for some language from
a grammar given in ANTLR’s grammar notation.

Entities. We declare the essential entities of ANTLR usage for parser genera-
tion:

ANTLR : Technology // The technology as a conceptual entity
Java : Language // The language targeted by the parser generator
ANTLR.Notation : Language // The language of parser specifications
ANTLR.Generator : Function ( ANTLR.Notation → Java )
?aLanguage : Language // Some language being modeled with ANTLR

2 http://www.antlr.org/
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?aGrammar : File // Some grammar defining the language at hand
?aParser : File // The generated parser for the language at hand
?anInput : File // Some sample input for the parser at hand

We leverage a notation for compound entities; see the names ANTLR.Notation

and ANTLR.Generator. That is, ANTLR’s notation for grammars is a conceptual
constituent of the ANTLR technology as such. ANTLR’s generation
semantics is also such a constituent. The dot notation implies part-of relation-
ships as follows:

ANTLR.Notation partOf ANTLR // Notation is conceptual part of technology
ANTLR.Generator partOf ANTLR // Generator semantics as well

We also leverage special notation for function entities; see the declaration of
ANTLR.Generator. The arrow notation is desugared as follows:

ANTLR.Notation domainOf ANTLR.Generator
Java rangeOf ANTLR.Generator

Relationships. The previously declared entities engage in relationships as fol-
lows:

aGrammar elementOf ANTLR.Notation // The grammar is given in ANTLR notation
aGrammar defines aLanguage // The grammar defines some language
aParser elementOf Java // Java is used for the generated parser
ANTLR.Generator(aGrammar) �→ aParser // Generate parser from grammar
anInput elementOf aLanguage // Wanted! An element of the language
anInput conformsTo aGrammar // Conform also to the grammar

The declaration of the ‘ �→’ relationship is actually a shorthand. We need a des-
ignated entity for the function application. Thus, desugaring yields this:

ANTLR.GeneratorApp1 : FunctionApplication
ANTLR.GeneratorApp1 elementOf ANTLR.Generator
aGrammar inputOf ANTLR.GeneratorApp1
aParser outputOf ANTLR.GeneratorApp1

3 Interpretation of Megamodels

Interpretation entails resolutionofmegamodel entities andevaluationofmegamodel
relationships. Resolution of entity parameters commences in a ‘pointwise’ man-
ner in that the parameters are mapped to specific URIs. Resolution of entities (as
opposed to parameters) commences in a schematic manner, subject to ‘resolvers’
(i.e., programs) formapping entity names toURIs.Evaluation relies on ‘evaluators’
(again, programs) for checking the relevant relationships and possibly producing
traceability evidence. Pointwise mappings, resolvers, and evaluators are identified
in a configuration that goes with a megamodel.
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Fig. 2. MegaL processing pipeline

3.1 Megamodel Processing

The MegaL processor is a Java-based object-oriented framework. Given a meg-
amodel and a configuration, the MegaL processor performs the steps summarized
in Figure 2.

That is, the megamodel is parsed into an abstract syntax tree based on a suit-
able object model. In the next step, the configuration file is processed and the
corresponding plugins are dynamically loaded and associated with the appropri-
ate AST nodes for entity and relationship types. In the next step, the megamodel
and the plugins are analyzed for well-formedness and mutual compliance; see §4
for a precise, formal account. Eventually, resolvers and evaluators are invoked.
Resolution determines entity URIs and pings them for availability. Evaluation
applies evaluators to the resources (the underlying content) of entities.

Along this pipeline, events are triggered and reported, making the process fully
transparent. Any resolution and evaluation problems would also be reported
along the way. For instance, the resolution of the ‘Java’ entity of Figure 1 is
reported as follows:

> Looking up entity type Language.
< Looked up entity type Language successfully.
> Linking entity Java.

� URI located via configuration.
< Linked entity Java successfully.

Ideally, all entities of a megamodel should be resolved (successfully) and rela-
tionships should be evaluated (successfully). However, this is not always feasible.
That is, one may be missing resolvers or evaluators for some of the exercised en-
tities and relationships. In this sense, interpretation may be incomplete, but this
would be evident from the event report generated by megamodel processing.

3.2 Configuration of the Interpretation

Configuration relies on a simple JSON-based DSL with language elements for
URI mapping and registration of mapping resolvers as well as evaluators.
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{
”links” : [ {

”name”: ”javaProgram”,
”resource” : ”http://introcs.cs.princeton.edu/java/11hello/HelloWorld.java”

} ],
”resolvers” : [ { ”plugin” : ”megal.resolvers.dbpedia” } ],
”evaluators” : [ {

”plugin” : ”megal.evaluators.FileElementOfLanguage”
”checkers” : [ { ”plugin” : ”megal.checkers.languages.Java” } ]

} ]
}

Fig. 3. The configuration for the megamodel in Figure 1

Figure 3 shows the configuration for the introductory Java example. In the
‘links’ section, the parameter ‘javaProgram’ is resolved in a pointwise manner so
that it links to the ‘hello world’ program on Princeton University’s web server.
In the ‘resolvers’ section, we register a DBpedia resolver which is prepared to
resolve entity names of the language type to resource URIs on DBpedia. In partic-
ular, this resolver handles the ‘Java’ entity of the megamodel. In the ‘evaluators’
section, we register an evaluator ‘....FileElementOfLanguage’, which can evalu-
ate ‘elementOf’ relationships when the left operand is a file resource and the right
operand is a language. The
‘elementOf’ plugin relies on second-level plugins, ‘checkers’, for individual lan-
guages. In the configuration file, we register indeed a checker (i.e., a member-
ship test) for ‘Java’. This checker is a wrapper around the Java parser of the
javaparser project. In the MegaL project, we aim at collecting all such plugins
as consolidated and reusable interpretations of well-defined resources identified
through Linked Data principles.

3.3 Application to the Running Example

Let us consider the interpretation of the megamodel for ANTLR, as introduced
in §2.3. To begin with, we should pick some software system which exercises
ANTLR. Clearly, there is no shortage of such systems. As it happens, the MegaL
implementation itself also uses ANTLR. Thus, let us apply the MegaL model for
ANTLR to MegaL’s parser.

Entity Parameters. They are resolved as follows:

aLanguage The language at hand is fixed to be MegaL. A link is needed. We choose
to link to the language’s GitHub project.3

aGrammar The grammar at hand is the ANTLR-based parser specification of MegaL.
Thus, we need to link to a specific file .../MegaL.g4 in said repository.

aParser The parser at hand is a Java source-code file .../MegaLParser.java that was
generated by ANTLR—again, a file in said repository.

anInput AnyMegaL source could be linked here. We choose to link toMegaL’s prelude
with the predefined types, as discuss in §2—again, a file in said repository.

3 https://github.com/avaranovich/megal/

https://github.com/avaranovich/megal/
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Entities. They are resolved as follows:

Java A DBpedia resolver is used as explained in §3.2.
ANTLR The DBpedia resolver may not be used here because we rely on the fact that

ANTLR is a compound entity with constituents, as listed below. In the 101compa-
nies project [6], software technologies, languages, and concepts are organized in an
ontological manner. There is a suitable composition-aware ‘101companies’ resolver
for technologies, which links ANTLR to a resource.4

ANTLR.Notation Use the same resolver as for ANTLR.
ANTLR.Generator Use the same resolver as for ANTLR.
ANTLR.GeneratorApp1 An application is a pair of the input and output entities.

Thus, an application entity is resolved, at a basic level, once input and output
are resolved. A more advanced resolution entails the identification of a system
artifact’s fragment that expresses the application. More specifically, the application
of ANTLR’s generator could be pinpointed in a build script.

Relationships. They are evaluated as follows:

elementOf The evaluator ....FileElementOfLanguage of §3.2 is enriched by addi-
tional second-level plugins (i.e., ‘checkers’) to serve aLanguage (thus, MegaL) and
ANTLR.Notation—in addition to just Java previously.

conformsTo Another evaluator ....FileConformsToFile is needed. It is the language of
the right operand which defines the applicable conformance semantics. The result
of a conformance test can be richer than just a Boolean value; it may be a set of
traceability links between the operands; see §3.4.

defines An evaluator ....Triangle is used which simply checks that a megamodel with
the relationship ‘x defines y’ also contains the relationships ‘z elementOf y’ and
‘z conformsTo x’. This is Favre’s triangle [5].

‘ �→’ In fact, we evaluate ANTLR.GeneratorApp1 elementOf ANTLR.Generator af-
ter desugaring. That is, we need to check that aParser is the output generated by
ANTLR.Generator from aGrammar. There are several options for checking func-
tion applications. As suggested earlier, we may pinpoint the actual application,
e.g., in a build script. We could also pinpoint traces of the application, e.g., the
Java comment included by ANTLR into the generated source file. We could also
apply the function (i.e., run the generator) and compare the result with the ex-
isting output artifact. Ultimately, we may analyze input and output and establish
problem-specific traceability links based on our understanding of the mapping,
thereby also sharing our understanding with others. This is illustrated below.

3.4 Traceability Recovery

Traceability links may be recovered, for example, for conformance relationships
and function application relationships (i.e., ‘transformations’). This is illustrated
for the application of ANTLR.Generator. The input, aGrammar, is essentially a list
of ANTLR rules with unique nonterminals on the left-hand sides. The output,
aParser, is essentially a Java file exercising certain code patterns. In particular,
for each nonterminal n, there is a corresponding method that implements the
rule:

public final nContext n() throws RecognitionException { ... }
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// Get methods of interest
val methods = aParser.getMembers()

.filter(x => x.isInstanceOf[MethodDeclaration])

.filter(x => ((x.getThrows().map(y => y.getName()).
contains(”RecognitionException”))))

// Get grammar rules
val rules = aGrammar.rules
// Check 1:1 correspondence of names including the same order
val isAlligned = methods.zip(rules).forall(x => x. 1.getName().equals(x. 2))

Fig. 4. Scala-based traceability check for ANTLR’s generator

Thus, a suitable approach to traceability recovery is to retrieve nonterminals
from the grammar and all relevant methods from the generated Java source and
to check for a 1-1 correspondence; see Figure 4 for illustration. For brevity, we
show simplified evaluator code that only checks for correspondence, while the
actual evaluator collects traceability links (i.e., pairs of URIs) of the following
form:

〈 ”http://.../MegaLParser.java/class/MegaLParser/method/megamodel/1” ,

”http://.../MegaL.g4/grammar/megal/rule/megamodel/1” 〉
The URIs describe the relevant fragments in a language-parametric manner.
That is, the URIs start with the actual resource URI for the underlying artifact.
The rest of the URI, which is underlined for clarity, describes the access path
to the relevant fragment. To this end, syntactical categories of the artifact’s
language (see ‘class’ and ‘method’ versus ‘rule’) and names of abstractions (see
‘megamodel’) are used. (We note that ‘megamodel’ is the first nonterminal, in
fact, the startsymbol of the grammar for MegaL.)

4 Executable Specification of MegaL

The following specification ofMegaL clarifies the meaning of entity resolution and
relationship evaluation. The specification assumes an abstract MegaL syntax—
without convenience notation for functions and function applications and with-
out consideration of compound entities. The specification does also not cover
traceability recovery (§3.4).

4.1 Specification Style

The specification is a deductive system, as commonplace for type systems and op-
erational semantics. The specification is executable—directly as a logic program
in Prolog.5 MegaL is not a regular programming language. Thus, it requires some

4 http://101companies.org/resources/technologies/ANTLR
5 The specification is available from the paper’s website. Basic logic programming is
used, except for higher-order predicates [17] for list processing: map (for applying a
predicate to the elements of a list), filter (for returning the elements that satisfy a
predicate), and zip (for building a list of pairs from two lists).

http://101companies.org/resources/technologies/ANTLR
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insight to identify counterparts for what is usually referred to as static versus
dynamic semantics.

We assume that interpreted megamodels consist of two parts: the actual meg-
amodel and (the description of) the interpretation—the latter as an abstraction
of the configuration, resolvers, and evaluators used in the actual implementation
of §3. Given a megamodelMM and an interpretation Interp, the informal process
of Figure 2 is formally described as follows:

process(MM, Interp) =⇒
megamodel(MM), % Inductive syntax definition of megamodels
okMegamodel(MM), % Well−formedness relation for megamodels
interp(Interp), % Inductive syntax definition of interpretations
okInterp(Interp), % (Trivial) well−formedness of interpretations
correct(MM, Interp), % Correctness of interpretation w.r.t megamodel
complete(MM, Interp), % Completeness of interpretation w.r.t. megamodel
evaluate(MM, Interp). % Evaluation of relationships

We discuss the contributing judgments in turn.

4.2 Abstract Syntax of Megamodels

A megamodel is a list of declarations. There are declarations for entity-types
(etdecls), relationship types (rtdecls), entities (edecls), entity parameters (pdecls),
and relationships (rdecls). The declared names are atoms (’ids’) and so are all
the references to the names. Thus:

megamodel(MM) =⇒map(decl, MM).
decl(etdecl(SubT, SuperT)) =⇒ atom(SubT), atom(SuperT).
decl(rtdecl(R, T1, T2)) =⇒ atom(R), atom(T1), atom(T2).
decl(edecl(E, T)) =⇒ atom(E), atom(T).
decl(pdecl(E, T)) =⇒ atom(E), atom(T).
decl(rdecl(R, E1, E2)) =⇒ atom(R), atom(E1), atom(E2).

4.3 Well-Formedness of Megamodels

Well-formedness is defined as a family of relations, as usual, on the syntactical
domains. Well-formedness ensures that all referenced names of entity types, re-
lationship types, and entities (or parameters) are actually declared. (This is part
of what we call ‘Analyze’ in Figure 2.) We omit most of these routine definitions;
a more insightful detail is well-formedness of relationship declarations:

okRDecl(MM, rdecl(R, E1, E2)) =⇒
member(rtdecl(R, Tl1, Tr1), MM), % RType exists
getEntityType(MM, E1, Tl2), % Type of left entity
getEntityType(MM, E2, Tr2), % Type of right entity
subtypeOf(MM, Tl2, Tl1), % Left type Ok
subtypeOf(MM, Tr2, Tr1). % Right type Ok

That is, any declared relationship between two entities E1 and E2 must be based
on a relationship-type declaration for the same relationship symbol R with entity
types T l1 and Tr1 such that the actual entity types T l2 and Tr2 are subtypes
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of the declared types T l1 and Tr1. Subtyping is defined in terms of the type
hierarchy defined by entity-type declarations. This is subtyping like in a single-
inheritance OO programming language.

4.4 Abstract Syntax of Interpretations

We invent a representation of interpretations (say, definitions) of parameters
(pdefs), entity types (etdefs), and relationship types (rtdefs). In this manner,
we abstract from the plugins of the OO framework and the configuration as
discussed in §3. Thus:
interp(Interp) =⇒map(def, Interp).
def(pdef(E, U)) =⇒ atom(E), uri(U).
def(etdef(T, F)) =⇒ atom(T), function(F, [atom], [uri]).
def(rtdef(R, T1, T2, P)) =⇒ atom(R), atom(T1), atom(T2), predicate(P, [uri, uri]).

That is, a parameter definition (pdef) associates an entity parameter E with
a URI U ; an entity-type definition (etdef) associates an entity type T with a
function F mapping entity names to URIs; a relationship-type definition (rtdef)
associates a relationship type 〈R, T1, T2〉 with a predicate P on entity URIs.
Thus, etdefs and rtdefs model resolvers and evaluators, respectively. We view
the aforementioned predicates and functions here as being defined by their ex-
tension, i.e., a suitable set of tuples. Thus:

predicate(Tuples, Types) =⇒ set(Tuples), map(tuple(Types), Tuples).
function(Tuples, Domain, Range) =⇒ ... % likewise for functions
tuple(Types, Tuple) =⇒ zip(Types, Tuple, TT), map(apply, TT).

In the actual implementation, resolvers and evaluators are of course programs
that may retrieve resources via the URIs over the internet.

4.5 Correctness and Completeness

We present correctness and completeness as two aspects of well-formedness of
the megamodel-interpretation couple. (We do not discuss well-formedness of in-
terpretations by themselves, as there are only a few trivial constraints.)

Correctness means that an interpretation does not provide any definitions that
are not possibly needed by the associated megamodel. Provision of superficial
definitions may be acceptable, though, in practice.

Completeness means that an interpretation suffices to resolve all entities or
parameters and to evaluate all relationships for a given megamodel. As discussed,
in practice, we do not necessarily require completeness, as we may be unable to
resolve certain entities or to evaluate certain relationships, at a given point.
However, ambiguities regarding resolution or interpretation should be reported.

Correctness and completeness are again specified as families of relations. For
example, here is the judgment for establishing correctness of relationship-type
definitions w.r.t. a megamodel.

correctRTDef(MM, rtdef(R, Tl1, Tr1, )) =⇒
okT(MM, Tl1), % Left entity type exists
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okT(MM, Tr1), % Right entity type exists
member(rtdecl(R, Tl2, Tr2), MM), % Relationship type exists
subtypeOf(MM, Tl1, Tl2), % Definition vs. declaration (left)
subtypeOf(MM, Tr1, Tr2). % Definition vs. declaration (right)

That is, for each relationship-type definition of the interpretation, we can find
a corresponding declaration of the megamodel which uses the same or more
general entity types.

Let us also consider the counterpart from the family of relations for complete-
ness, i.e., the relation for establishing that a given relationship can be evaluated
unambiguously by a definition. This judgement is involved—it is comparable to
resolution of names in a non-trivial programming language.

% Relationship−type definition unambiguous
completeDecl(MM, Interp, rdecl(R, El, Er)) =⇒
getRTDef(MM, Interp, R, El, Er, ).

% Determine suitable relationship−type definition
getRTDef(MM, Interp, R, El, Er, RTDef) =⇒
getEntityType(MM, El, Tl), % Look up left entity type
getEntityType(MM, Er, Tr), % Look up right entity type
filter(applicableRTDef(MM, R, Tl, Tr), Interp, RTDefs),
reduceRTDefs(MM, RTDefs, RTDef).

% Applicability of a relationship−type definition
applicableRTDef(MM, R, Tl1, Tr1, rtdef(R, Tl2, Tr2)) =⇒
subtypeOf(MM, Tl1, Tl2),
subtypeOf(MM, Tr1, Tr2).

% Eliminate more general relationship−type definition
reduceRTDefs( , [RTDef], RTDef). % One rtdef left
reduceRTDefs(MM, RTDefs1, RTDef) =⇒
member(RTDef1, RTDefs1), % Pick some rtdef
member(RTDef2, RTDefs1), % Pick some rtdef
RTDef1 
=RTDef2, % Two different rtdefs
RTDef1 = rtdef(R, Tl1, Tr1, ),
RTDef2 = rtdef(R, Tl2, Tr2, ),
subtypeOf(MM, Tl1, Tl2),
subtypeOf(MM, Tr1, Tr2),
delete(RTDefs1, RTDef2, RTDefs2), % Remove the more general rtdef
reduceRTDefs(MM, RTDefs2, RTDef).

This approach is similar to instance resolution in Haskell [11], the one for multi-
parameter type classes with overlapping instances specifically [19]. That
is, definitions (‘instances’ in Haskell terms) are not proactively rejected by
themselves—just because they are overlapping in some sense. Instead, any given
relationship is considered as to whether it can be associated uniquely with a defi-
nition that is more specific than all other applicable definitions.
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4.6 Evaluation of Relationships

Evaluation is straightforward at this stage, as all preconditions have been es-
tablished. That is, entities or parameters thereof can be replaced by URIs and
relationships can be evaluated on the URIs for the arguments. Thus:

evaluateDecl(MM, Config, rdecl(R, El, Er)) =⇒
getRTDef(MM, Config, R, El, Er, rtdef( , , , P)),
getEUri(MM, Config, El, Ul),
getEUri(MM, Config, Er, Ur),
applyPredicate(P, [Ul, Ur]).

% Get URI for entity via definition
getEUri(MM, Config, E, U) =⇒
getEntityType(MM, E, T), % Look up entity type
member(etdef(T, F), Config), % Look up definition
applyFunction(F, [E], [U]). % ’Resolve’

% Application of extension−based predicates and functions
applyPredicate(Tuples, X) =⇒member(X, Tuples).
applyFunction(Tuples, Arg, Res) =⇒ append(Arg, Res, X), member(X, Tuples).

Soundness (i.e., alignment between ‘type system’ and ‘semantics’) follows triv-
ially in this approach—as the completeness judgment immediately ensures that
all instances of entity resolution and relationship evaluation can be attempted.
Thus, the only remaining option for evaluateDecl to fail is that a resolution was
not successful or a specific relationship failed.

5 Related Work

We compare MegaL with several approaches to megamodeling. The Atlas Meg-
aModel Management approach (AM3) conveys the idea of modeling in the large,
establishing and using general relationships, such as conformance, and metadata
on basic macroscopic entities (mainly models and metamodels) [2]. Based on the
assumption that all managed artifacts are models conforming to precise meta-
models, a solution for typing megamodeling artifacts is proposed in [20]. Model
typing is based on the conformance relationship; metamodels are used as types.
MegaL is clearly not restricted to modeling resources and does not require an
existence of metamodels. Also, MegaL’s approach to megamodel interpretation
provides an open, heterogenous type system.

A formal, graph-oriented view on megamodels is considered in [4]; entities are
vertices and relations are edges between them. It is argued, that the semantics
of relations are hidden in the type name and are not presented in the meg-
amodel. To fill this gap, the authors zoom into nodes and edges and disassemble
them into more elementary building blocks. In the case of MegaL, such a formal
analysis of the relationships is less relevant, as it is not directly applicable to
actual software projects and technologies. Instead, as shown in §3.4, we lever-
age tool-based relationship evaluators with optional traceability recovery.MegaL
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is also influenced by existing megamodeling patterns and idioms, discovered in
theoretical work [8,5,4].

In a comprehensive survey [21] of traceability in MDE, the authors conclude,
that traceability practices are still emerging, specifically in the MDE context.
MegaL’s interpreted megamodels may associate entities in relationships with
traceability links, as it was shown in §3.4. This approach is again heterogenous
in terms of the technological spaces; it assumes a language-parametric approach
to fragment location. Traceability is also used in megamodeling for models at
runtime [18], where high-level relationships between models are derived from
observable low-level traceability between model elements.

A type system and a type inference algorithm for declarative languages with
constraints for MDE are presented in [13]. Elsewhere [1], OCL [10] constraints
and ATL rules [14] are used to implement consistency and conformance checking.

Megamodels of metamodels and model transformations are organized into an
architectural framework [9], which promotes re-usability of architectural elements
and realizes architectural descriptions [12]. We plan to re-implement such descrip-
tions inMegaL, thereby providing evidence of its usefulness as an architecture de-
scription language.

MegaL relies on the resources to be exposed via HTTP and uniquely
identifiable. Such resources can be directly exposed via web servers and
web-accessible source control systems. Another promising direction is to ap-
ply Linked Data [3] principles, which allows attaching rich metadata. Me-
gaL already applies such principles, e.g., in the sense of the DBpedia and
101companies resolvers. Linked Data principles are also leveraged in [15] in a
related manner for the purpose of exposing facts about artifacts in software repos-
itories.

6 Conclusion

We have equipped the megamodeling notion for the linguistic architecture of soft-
ware systems with a language mechanism for resolving entities, capturing trace-
ability between them, and evaluating relationships. Our approach is not tailored
toMDE.We applied the approach to amegamodeling scenario that indeed involves
elements of Javaware and grammarware.We formalized the key ideas of interpreted
MegaL models in a deductive system and described an open-source implementa-
tion.Without this enhancement,megamodeling does not provide enoughvalidated
insight into actual systems.

The types ofmegamodeling relationshipswith the underlying entity types repre-
sent patterns of the linguistic architecture of software systems.MegaL has already
been applied to some typical scenarios of technology usage, as they are demon-
strated by software systems in the 101companies chrestomathy [6], thereby captur-
ing important entity and relationship types. It remains to develop a comprehensive
megamodeling ontology in a systematic and transparent manner.

Additional topics for futurework include these: i) raise the level of abstraction for
traceability recovery by establishing a language-independent DSL layer standard-
izing fact extraction and link composition; ii) support of the evolution of entities
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and linked resources by including timestamp and version information; iii) search-
based instantiation of megamodels for a given software system; iv) ‘megamodeling
in the large’ support in the sense of refinement and composition expressiveness; v)
‘megamodeling as a service’ to simplify the setup of the interpreter with its diverse
plugins providing support for different technological spaces and relying on different
platforms.
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82 R. Lämmel and A. Varanovich
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Abstract. In this paper we present a framework for software process
verification called Alloy4SPV which uses a subset of UML2 Activity
Diagrams as a process modeling language. In order to achieve software
process verification, we i) define a formal model of our process modeling
language using first-order logic, ii) we give it a formal semantics based
on the fUML standard, and iii) we implement this formalization using
the Alloy language [1]. In order to ease its adoption by process mod-
elers, our framework comes with a graphical tool and a ready to use
and customizable set of software process properties. We categorize these
properties into two categories, syntactical and behavioral. We extend the
set of behavioral properties we identified from the literature with two new
categories that we defined, namely, organizational properties which re-
late to resource management and planning during process execution and
business properties which are project/process specific properties.

1 Introduction

In the current state of practice, process model defects are discovered too late,
usually at realization time, after the process has proved to be inefficient or having
some behavioral issues such as deadlocks, unreachable activities, inefficient use
of resources and timing problems. This could have been avoided with adequate
process verification tools that would have formally verified the process model be-
fore its deployment in real projects. By process verification we mean determining
in advance that the process model exhibits a certain desirable behavior.

In the field of business processes many approaches have been proposed for pro-
cess verification [2,3,4,5,6,7]. These approaches address mainly the verification
of some well-known behavioral properties that must be guaranteed by all pro-
cess’s executions. The literature addresses essentially what it is called soundness
properties [7]. These properties guarantee the absence of deadlocks, unreachable
activities, and other anomalies that can be detected without domain knowledge.

Software processes are concerned with additional and critical constraints re-
lated to their human-oriented nature. They imply many creative tasks that rely
on many factors such as time, human agents and resource management. The
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success of a software process depends then also on the preservation of many best
practices and organizational constraints. We call these constraints organizational
properties and we consider them as a subcategory of behavioral properties since a
state space exploration is required to guarantee their preservation for all possible
process’s executions. Examples of such properties are to make sure, for instance,
that the process or an activity will terminate before a given deadline whatever
the execution path, make sure that there will be enough agents to perform the
activities of the process, etc.

Another point with current process verification approaches is about the for-
malism and tools they rely on for performing the verification. Whatever the
process modeling language, a formal semantics is given to the language by map-
ping its constructs to either variants of automata [2,8], Petri Nets [9,10,7,6,5]
or process algebra [3,4]. However this means that we are relying on the seman-
tics and concepts of the targeted formal language in terms of expressiveness,
e.g. Petri Nets, instead of the modeling language itself. Even if Petri Nets (with
their different variants) can represent anything defined in terms of an algorithm,
this does not imply that the modeling effort is acceptable. Van der Aalst’s paper
[11] gives concrete examples of some Workflow Patterns that need very complex
Petri Nets extensions and tricks to represent them while this is expressed very
naturally in UML Activity diagrams (AD) [12].

The approach we promote in this paper through our framework Alloy4SPV

is different in the sense that we define the formal semantics of the process model-
ing language using Alloy instead of relying on the semantics of any of the above-
mentioned formal languages. Alloy is a declarative modeling language based on
first-order logic and relational calculus for expressing complex structural and
behavioral constraints [1]. Alloy’s logic is quite generic and does not commit to
a particular specification style [13]. We believe that this is more natural and
allows to preserve the expressiveness of the process modeling language.

As a software process modeling language (SPML), Alloy4SPV uses UML2
Activity Diagrams (AD) which have been given recently a precise execution
semantics through the new OMG’s fUML standard (Foundational UML) [14].
The choice of UML AD is motivated by the fact that AD are part of a standard
widely used in the industry, it has been identified as a good SPML candidate
[15,16], a good tooling support is provided, and it supports most of the workflow
patterns as identified by [17]. However, it is worth noticing that our approach
is applicable to other languages such as the BMPN which is more used in the
business process community.

Finally, Alloy4SPV comes with a graphical tool that includes a ready to use
and configurable set of process properties in order to ease its adoption by process
modelers. Our main goal is to gather under the same umbrella a graphical tool for
software process modeling, execution and verification which supports all kinds of
properties and most of all which preserves the semantics of the process modeling
language. We hope that this would encourage a larger adoption of the process
verification discipline and thus, a better management of software projects costs
and quality.
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The next section starts by introducing the set of properties we identified for
software process verification. Section 3 and 4 give the different steps we followed
for building Alloy4SPV. An evaluation of our framework is given in Section 5.
Related work is given in Section 6. Conclusion and some promising perspectives
are sketched in Section 7.

2 Properties for Software Process Verification

In this section we present a categorization of the different properties that can be
expressed on software process models. It represents the outcome of a literature
review in the business process domain and in software methods and practices.

Over the last decade, many kinds of process properties have been studied [7,5].
They mainly fall into two categories: syntactical properties and behavioral prop-
erties . They are used respectively either to enforce some structural constraints,
viewed as invariants, that cannot be expressed with the process modeling lan-
guage itself or to determine in advance whether a process model exhibits certain
(un)desirable behaviors. Even if syntactical errors seem quite obvious to detect
by process modelers and enforced by process editors, some constraints may es-
cape the modeler’s attention which leads to incorrect process models. This has
been confirmed by the study in [18], where 34 process models among 600 of the
SAP company process referential were incorrect after analysis.

While the verification of syntactical properties is well supported by many
approaches [19], they neither guarantee the soundness of process models nor
that organizational constraints will be respected. To this aim, in the following
we introduce behavioral properties. We will give the definition of soundness and
focus on the two subcategories of behavioral properties that we introduce, namely
organizational and business properties.

2.1 Behavioral Properties

They express constraints that must be guaranteed by all possible executions of
the process. The literature addresses essentially a subcategory of such prop-
erties called soundness properties. As introduced in [7], soundness tends to
check three desirable properties: (i) a started process can always complete (op-
tion to complete); (ii) it should not have any other activity running when the
process ends (proper completion); and (iii) the process should not contain ac-
tivities that will never be executed (no dead transition). For instance, to an-
swer the question “will the process terminate?” on the process from Figure 1,
a property is expressed to check that whatever the process execution, at the

Fig. 1. Example of deadlock in a UML AD due to the control flow
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Fig. 2. Example of a UML AD with duration associated to actions

end, the ActivityFinalNode is executed. Here, a counter-example is exhibited:
{Initial, A,Decision,B,Merge}, when the DecisionNode chooses to execute
action B, then action D can never be executed (since action C is not) leading to
a deadlock situation.

In the literature, we also find references that relate to soundness focusing on
data-flow analysis rather than on control-flow [5]. The goal is to validate the work-
flow against different data problems such asmissing data, i.e., when a data element
needs to be accessed, but either it has never been created or it has been deleted
without having been created again, inconsistent data, i.e., if an activity is using
this data while another one is writing to it or is destroying it in parallel, and so on.

Existing approaches for process verification focus either on control-flow or
data-flow, and only few of them ensure both [20]. However, as stated in the
introduction, none of them takes into account the particularity of software pro-
cesses. They treat the process as a simple workflow without covering the range of
properties related to the organizational or business constraints which can highly
influence the execution of the process. We introduce these kinds of properties
through two new subcategories.

Organizational Properties. They cover organizational constraints about the time
to perform the activities of the process, and different kinds of resources (agents,
equipment...) problems like missing resource, i.e., when an activity requires a
resource which may not be available and inefficient resource use, i.e., when the
resource is inefficiently utilized during the process execution. The goal is to
answer questions like: “is it possible to finish the process on time whatever the
path taken?” “Is the agent always busy?” “Would the process be at activity X
before a given deadline?” All these questions are important since they directly
influence the decisions taken by the project manager. Figure 2 shows a process
on which each activity is associated with a duration and a table displaying the
3 execution paths. Assuming that the process manager plans to do the process
in 3 hours, there is 2 cases on which the process will not finish on time: (i)
when the DecisionNode chooses to execute B2 and (ii) when the DecisionNode

chooses to execute B3 and the decision continue is chosen more than once after
the execution of B3.

Business Properties. While the other categories specify properties that must
hold for all processes, business properties represent specific properties tailored
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Fig. 3. Example of a correct UML AD

to a given process. They play an important role since a process could be syn-
tactically correct and valid against some soundness properties but still violates
some business constraints. Therefore, business properties can be used to high-
light the importance of a given activity in the process, the fact that one activity
should be executed, before, after or between other activities, and so on. Fig-
ure 3 shows a simple process considered correct against all the properties from
the precedent categories (i.e., syntactical, soundness, organizational). However,
ImportantAction activity is considered critical in the sense that the process
modeler wants it to be executed at least one time during the process enactment.
“Is ImportantAction executed whatever the choice made during the process
execution?” On this example, it is not always the case since the execution path
{Initial, A,Decision,B,Merge,D, F inal} finishes the process without execut-
ing ImportantAction. Another question here could be: “is ImportantArtefact
(i.e., the goal of the process) always available at the end of the process? ” The
other execution path {Initial, A,Decision, ImportantAction,Merge,D, F inal}
shows that it exists a path on which the artefact is not created.

Table 1 summarizes the set of properties we identified. Due to space restric-
tions we cannot detail all of them. Some of them were already introduced to
illustrate the examples while others will be used in Section 5. It is worth noting

Table 1. Overview of the software properties we identified

Category Definition

(1) Syntactical

SynWorkflow Syntactical errors on the workflow of the process (e.g. the source and target of an edge are different)
SynOrganizational Syntactical errors on the organizational part of the process (e.g. the same agent cannot be assigned more

than one time to the same activity)

(2) Soundness

OptionToComplete A started process can always complete
ProperCompletion No other activity should be running when the process terminates
NoDeadTransition All the activities must be reachable

Soundness with data

MissingData The data are always present when they need to be accessed (e.g. no data missing to start an activity)
UselessData The data created are always used (e.g. no data created but never used before the process ends)
InconsistentData The data can never be in an inconsistent state (e.g. no data modified by multiple activities in parallel)

(3) Organizational

InTime There is enough time to perform the activities (e.g. the process will terminate before X hours/days)
MissingResource No missing resource to start an activity (e.g. there are enough agents to do the process)
InefficientResourceUse No resources that are inefficiently used (e.g. the agents have always activity to do)

(4) Business

ExistenceActivity A is executed more/less/(between) X (and Y) times
ExistenceTimeActivity A is executed before/after/(between) X (and Y) time unit
ExistenceTimeData ArtefactA is available before/after/(between) X (and Y) time unit
ExistenceTimeResource ResourceA is used before/after/(between) X (and Y) time unit

Relation A is executed before/after/in-parallel/in-exclusion/(between) B (and C)
RelationData ArtefactA is available before/after/in-exclusion of ArtefactB
RelationActivityData ArtefactA is available before/after/in-parallel/in-exclusion/(between) the execution of B (and C)
... ...

LogicBased e.g. Existence(A) implies Existence(B) else Existence(C)
e.g. Existence(A) implies (ExistenceData(ArtefactA) and ExistenceData(ArtefactB))

... ...
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that the properties distinguish two versions: weak and strong. The strong one
ensures that whatever the execution, the property holds while the weak one is
more permissible and ensures that the property holds for at least one execu-
tion. An example of the weak and strong concepts are given in the case study
presented in Section 5.1. Now that we have introduced the set of properties to
be integrated into our framework Alloy4SPV, the next section presents the
required steps for the formal software process verification.

3 Formal Verification of Software Processes

The classical approach to achieve the verification of a model (a process model in
our case) with respect to a given property, consists beforehand in defining the two
entities formally. Then, these entities are submitted to a so-called model-checker
tool, which will answer to the question of (un)satisfaction of the property by the
process model.

In a previous work, we proposed a first-order formalization of fUML for pro-
cess verification [21]. We have formally reduced the representation of a software
process to a vertex-labeled graph. Each graph’s node corresponds to a UML
Activity node according to its type (i.e. Control, Executable or Object Node).
Each graph’s arc corresponds to a UML Activity edge (i.e. Control or Object
Flow). The execution semantics of this formalism is based on the notions of
states, enabling and firing of transitions, similar to those used in the Colored
Petri Nets [22]. Figure 4 shows an excerpt of the UML class diagram handled
by our formalization. The formalization addresses a subset of fUML encompass-
ing only the concepts required for process modeling as identified in [15]. To be
able to reason about each dimension of the process, the formalization covers
both control and data-flow of the process through the use of the AD notations,
and takes into account the associated organizational data such as resources and
timing constraints.

3.1 Alloy: A Language and Tool for Relational Models

Using our formalization [21], the next step is to choose an implementation lan-
guage. Alloy [1] was chosen for this purpose. Alloy is a formal language, which has

Fig. 4. Excerpt of the fUML Activity meta-model handled by our formalization
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been applied to modelling of systems in a wide range of application domains.
It is supported by the Alloy Analyzer, a tool, which allows fully automated
analysis through SAT solving. Hereunder, we highlight the valuable points that
motivated our choice for Alloy:

– It supports a wide variety of properties such as invariants, user-defined as-
sertions, LTL [13] and CTL formulas with fairness constraints [23].

– It is expressive enough to represent a UML-based model associated with
OCL constraints [24].

– Alloy’s logic is quite generic and does not enforce the user to a particular
specification style for modeling and verifying reactive systems.

– It allows one to choose the on-the-shelf SAT-solvers (MiniSat, ZChaff,...).
– It owns a graphical tool as well as an API to integrate seamlessly the verifi-

cation into a process environment.

The Alloy language provides a set of concepts allowing to specify elements
and constraints using the notions of signatures, relations, facts and predicates.
A signature (sig) defines a set of idioms and relationships between them. They
are similar to type declarations in an object-oriented language, and represent
the basic entities. Facts (fact) are statements that specify constraints about
idioms and relationships. These statements must always hold; they are close to
the concept of invariants in other specification languages. Predicates (pred), as
opposed to facts, define constraints which can evaluate to true or false. Alloy
provides two commands to run the Alloy Analyzer: run and check. Command
run instructs the analyzer to search for an instance satisfying a given formula,
and check attempts to contradict a formula by searching for a counter-example.

4 Alloy4SPV: A Framework for Software Process
Verification

This section presents our framework based on the concepts presented so far. We
present the high-level overview of our approach and introduce how to represent
the different concepts of the software process using the Alloy language in order
to enable their automatic verification. Then, we introduce the tool built on top
of our framework.

4.1 High-level Overview

Alloy4SPV is the name of our framework enabling software process verifica-
tion. This framework is based on our fUML formalization and is implemented
using different Alloy modules. Figure 5 shows an overview of the workflow to
achieve the process verification using Alloy4SPV within a Process-centered
Software Engineering Environments (PSEE). It takes a Process Model in the
form of UML2 AD as input. The Properties View allows the process model-
ers to select and express properties through a graphical interface. The Process

View displays the results about the verification.
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Fig. 5. High-level overview of Alloy4SPV

Alloy4SPV is composed of four modules, i.e., Semantic.als, Syntax.als,
ProcessModel.als and Properties.als. In the following, we detail the con-
tent of these static and dynamic Alloy4SPV modules required by the Alloy

Analyzer to check a process model. The goal here is to give an overview of the
way Alloy4SPV is implemented using the Alloy language rather than giving
an exhaustive definition.

4.2 Static Modules

Syntax.als represents the syntax of the software process modeling language
(SPML). It contains signatures and relations that represent meta-classes and
attributes from a subset of the UML AD meta-model (see Figure 4). Listing of
Figure 6 shows a sample focusing on the ActivityEdge. The signatures follow
the hierarchy of the UML AD metamodel.

1 abstract sig FumlObject {···}
2 abstract sig Element extends FumlObject {···}
3 abstract sig NamedElement extends Element {···}
4 abstract sig RedefinableElement extends NamedElement {···}
5 abstract sig ActivityEdge extends RedefinableElement {
6 source : ActivityNode,
7 target : ActivityNode
8 }
9 abstract sig ControlFlow extends ActivityEdge {}

10 abstract sig ObjectFlow extends ActivityEdge {}

Fig. 6. Focus on ActivityEdge from Syntax.als

Semantic.als corresponds to the behavioral part of the SPML. It represents
the notions of states, enabling and firing of transitions defined in the formaliza-
tion. Since Alloy does not commit to a particular specification style, there is no
standard way to model and verify reactive systems. However, several patterns
have been proposed to address this issue. We adopt the traces pattern [1] to
model the sequences of executions of an abstract machine. This pattern imposes
a total ordering over the State signature and forces that every pair of consec-
utive states satisfy the given predicate. Listing 1.1 shows a simplified excerpt
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of this module. The State signature represents the configuration on which the
process is at a given time of its execution. Therefore, a set of States represent
a complete execution.

1 open util/ordering[State]
2 // a State carries the execution information (e·g·, tokens, offers, timing and so on)·
3 sig State {
4 heldTokens : ActivityNode →one Int,
5 offers : ActivityEdge →one Int,
6 localClock : ExecutableNode →one Int,
7 globalClock : Int,
8 running : Status
9 }

10 // traces pattern, the regular way to model reactive systems using Alloy
11 fact traces {
12 // constrains all the State to abide from the transition predicate
13 all s: State - last | let s’ = s·next | {
14 s·running = Running implies {
15 transition[s,s’] // use ‘‘enabling’’ and ‘‘firing’’ predicates, defined in

the formalization
16 } else {
17 endLoop[s,s’]
18 } } }

Listing 1.1. Excerpt of Semantic.als

4.3 Dynamic Modules

ProcessModel.als represents the instance of the process to analyze. Listing of
Figure 7 shows a basic process represented using signatures declared in
Syntax.als. This module is generated from the Process Model using a sim-
ple model transformation routine, the ProcessToAlloy routine, we developed
using Java Emitter template (JET); it is basically the Alloy representation of
the input Process Model [24].

1 // Process - Workflow
2 one sig Initial extends InitialNode {} {···}
3 one sig Code extends CallBehaviorAction {} {···}
4 one sig Final extends ActivityFinalNode {} {···}
5 one sig InitialToA extends ControlFlow {} {
6 source = Initial
7 target = Code }
8 one sig AToFinal extends ControlFlow {} {
9 source = Code

10 target = Final }
11 // Process - Organizational
12 one sig Coder extends Role {}
13 one sig John extends Agent {}
14 fun role : Agent →set Role { John →Coder }
15 fun reqRole : ExecutableNode →set Role { Code →Coder }
16 fun reqNbAgent : ExecutableNode →Int { Code →1 }
17 fun reqTiming : ExecutableNode →Int { Code →1 }

Fig. 7. ProcessModel.als represented in the Alloy4SPV framework

Properties.als contains the commands to runtheAlloyAnalyzeroveragiven
set of properties to be checked. Listing 1.2 shows an example of Properties.als
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generated using the PropertiesToAlloy routine. The checkFinal predicate
states that there is some State on which the Final node is active. Then, the check
command tries to contradict this predicate by finding a model execution on which
there is no State with this last property. If the Alloy Analyzer finds a counter-
example, thismeans that the Process Model is subject to a deadlock.The problems
given to the Alloy Analyzer are solved within a user-specified scope that bounds
the size of the domains making it finite and reducible to a boolean formula to be
checked by the SAT solver. All the scope of the Alloy signatures are straightfor-
wardlydeterminedby the inputprocessmodel, e.g. 3ActivityNodes on theprocess
imply a scope of 3 for the ActivityNode signature.The only exception concerns the
scope of the State signature, i.e. the trace length on which the process is analyzed,
which is determined using incremental-scoping technique.

1 pred checkFinal {some s : State | s·getTokens[Final] = 1}
2 check {checkFinal} for 0 but 5 State, 5 FumlObject, 1 Role, 1 Agent

Listing 1.2. Example of verification from Properties.als

4.4 Analysis of the Results

When satisfying solutions and/or counter-examples are computed by the
Alloy Analyzer, the results are displayed back to the Process View using the
AlloyToProcess routine. This routine analyzes the results returned by the Alloy
Analyzer (e.g., extracting the path leading to the deadlock) and displays it on
the Process View. Figure 8 shows a model found by the Alloy Analyzer. In
this figure, the model is an instance satisfying the checkFinal predicate (run
command) on the (simple) process from Figure 7. The simple and double stroke
circle represent respectively the ActivityFinalNode and the InitialNode. The
hexagons correspond to the ActivityEdge while the ActivityNode corresponds
to the yellow inversed house. Thus, the AlloyToProcess routine simply consists
in looking through the set of relations of the found model.

4.5 Graphical Tool Associated to Alloy4SPV

On top of Alloy4SPV, we have developed a prototype currently provided as
an Eclipse EMF plugin. It comes with a library of predefined properties ready
to be checked and also allows to add some common business properties through

(a) (b)

Fig. 8. (a) Model satisfying the checkFinal predicate found by the Alloy Analyzer,
(b) projected over the first State signature
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Fig. 9. Process Analyzer using the Alloy4SPV framework

a graphical interface. The user only has to check in the interface the desired
properties, and fill the parameter if required (e.g., maximum time to terminate
the process). The business properties can be added through pre-defined tem-
plates, e.g. select the ActionA which must always be executed before ActionB.
Figure 9 shows a screenshot of our tooling for process modeling and enactment
emphasizing the process view and its analyzer. The prototype relies on Obeo
UML Designer for modeling and displaying graphically the process. When the
verification is performed, the path leading to the counter-example (if any) is
highlighted in green for “run” properties, and in red for “check” properties.
Moreover, CommentNodes are directly inserted into the model displaying the er-
rors which must be corrected on the model. It is worth noting that the prototype
does not require any formal background by the process agent. Everything is au-
tomated through the use of the graphical interface to ease tool’s adoption.

5 Evaluation

This section presents the evaluation of Alloy4SPV, by checking some of the
properties on a sample of the OpenUP process [25] and on randomly generated
processes [26].

5.1 OpenUP Case Study

We use the software process model illustrated in Figure 10 as a motivating exam-
ple. It is the DevelopSolutionIncrement activity from the OpenUP process [25]
represented using UML2 AD. In OpenUP, when a requirement needs to be de-
veloped in an iteration, a new DevelopSolutionIncrement activity is assigned
to a developer and a tester. The responsability of the developer is to create a
design and an implementation for that requirement while the tester writes and
runs developer tests against the implementation to make sure that it works as
designed. This activity contains 15 ActivityNode and 18 ActivityEdge. Note
that ObjectNodes are excluded for sake of readability.

In the following, some properties from each category of Table 1 are presented.
The goal here is to show how the properties are expressed with Alloy4SPV

rather than presenting every single one exhaustively.

(1) Syntactical Properties: Testing that each edge has a different source and
target is expressed such as:
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Fig. 10. DevelopSolutionIncrement activity from OpenUP

1 pred edgeDifferentTargetSource {
2 all n : ActivityEdge | { not n·source = n·target }
3 }
4 check {edgeDifferentTargetSource} for ···

(2) Soundness Properties: The option-to-complete property is expressed by
declaring that at the end, there must be some State in which the Final node
is active:

1 pred OptionToComplete {
2 some s : State | s·hasTokens[Final]
3 }
4 run {OptionToComplete} for ···
5 check {OptionToComplete} for ···

The run command asks the Alloy Analyzer to find a model on which the pro-
cess terminates. If a result is found, it means that there is at least an execution
on which the process terminates (weak option-to-complete). The check com-
mand ensures the strong option-to-complete by checking for a counter-example
on which the execution will not lead to the Final node. It is worth noting that
the OptionToComplete property will always find a counter-example due to the
loops inside the workflow. This is because no fairness constraints is applied. We
eliminate this problem by adding a fact constraint inside the Semantic.als

module that forces fairness (i.e., the same outgoing edge cannot be taken in-
finitely often).

(3) Organizational Properties: To check that it is possible to finish the
process in less than x hours, the OptionToComplete predicate is augmented
such that the execution time value at the last State is below a given value:

1 pred finalAndTiming[t:Int] {
2 OptionToComplete and last·globalClock < t
3 }
4 run {finalAndTiming[5]} for ···

To check that, at any time during the process execution, there are enough agents
to perform the running activities (assuming that all agents are identical) is ex-
pressed such as:

1 pred enoughAgent {
2 all s:State | #{ node : ExecutableNode | s·hasTokens[node] } < = #Agent
3 }
4 check {enoughAgent} for ···
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Table 2. Metrics from the Alloy Analyser executed on the DevelopSolutionIncrement
activity

Property Vars Clauses CNF Gen. SAT Solving Model found?

check edgeDifferentTargetSource 7k 20k 1s 9ms no
run OptionToComplete 663k 1842k 57s 2s yes
check OptionToComplete 658k 1840k 56s 15s no
check enoughAgent 664k 1848k 51s 48s no
check enoughAgentFor[Developer] 664k 1845k 45s 38s no
check after[I.S., R.D.T.] 664k 1843k 49s 16s no
run finalAndTiming[5] 1470k 4612k 125s 23s yes

In this case, the enoughAgent predicate states that at each State of the process
execution, the number of executing activities is less or equal to the total number
of performers.

There is also the possibility to have a finer grained property which takes into
account different roles (e.g., coder, designer...) of the agents. The first check

verifies only for the Developer role while the latter verifies all the roles of the
process:

1 pred enoughAgentFor[r : Role] {
2 all s:State | #{ node : ExecutableNode | s·hasTokens[node] and r in node·reqRole}

< = #{ a : Agent | a·role = r}
3 }
4 check {enoughAgentFor[Developer]} for ···
5 check {all r:Role | enoughAgentFor[r]} for ···

(4) Business Properties: The process modeler may want to check that when
the ImplementSolution activity is performed, the developed solution is always
tested with the RunDeveloperTests activity afterward. To express this business
property, the process modeler does not have to manipulate the Alloy language but
just to select the two actions ImplementalSolutionand RunDeveloperTestsand
apply the after constraint through theAlloy4SPV graphical interface. Thus, the
property checks that anytime the ImplementSolution is executed, there is some
State in the future (s.^next is the transitive closure of next and corresponds to
all the following State of s such as s.next+s.next.next+s.next...) on which
RunDeveloperTests is executed:

1 pred after[a,b:ExecutableNode] { // defined in the Semantics·als module
2 all s:State | s·hasTokens[a] implies
3 some ss : s·̂next | ss·hasTokens[b]
4 }
5 check {after[ImplementSolution, RunDeveloperTests]} for ···

In order to perform the verification of the aforementioned properties with re-
spect to the part of the OpenUP process in Figure 10, Alloy Analyzer reduces
the verification to a SAT problem. It is presented to a SAT solver (MiniSat
among others) in a Conjunctive Normal Form (CNF) format. A CNF is a con-
junction of clauses. Each clause represents a disjunction of variables. A satisfying
assignement to a SAT problem consists of a boolean affectation to the variables
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such that all clauses are satisfied. Usually, the complexity of a SAT problem is
measured by the numbers of clauses and variables.

All analyses were performed on a MacBook Air 2011 with Intel Core i5 pro-
cessor and 4GB of RAM with Mavericks as OS. Table 2 summarizes the obtained
results where column 1 represents the analyzed property. Columns 2 and 3 rep-
resent, respectively, the number of generated variables and clauses. Columns 4
and 5 represent, respectively, the time to generate the CNF and to solve the
SAT problem. Finally, column 6 indicates if a model is found (i.e. satisfiability
for a run command, and counter-example for a check command).

Besides, these results highlight the effectiveness of our tool w.r.t. a concrete
example [25]. Actually, even if the whole generated SAT problems present a
relatively high complexity (almost 2 million clauses and over 600 thousand vari-
ables), the solving time is less than one minute for untimed properties. The
timed-related properties (run finalAndTiming[5]) have a similar ratio in terms
of clauses and variables but require more time due to the presence of extra states
introduced by the clocks to handle the time elapsing. The full details with ex-
amples of the Alloy4SPV modules can be found on our website1.

5.2 Randomly Generated Processes

One of the challenges we face to validate our approach is the inability to find
realistic data and models. The small set of samples and “toy” models publically
available in the literature is insufficient to conduct a serious empirical study to
validate works around software process analysis and verification. Moreover, due
to privacy reasons, partner companies are reluctant to share their models repre-
senting the result of years of best practices and the capitalization of developers
and project managers know-how which took time to design.

This problem led us to develop our own process generator [26]. We used it to
randomly generate processes ranging from 10 to 100 UML elements. These pro-
cesses have only control-flow nodes without loops and contain sequential rout-
ing (ControlFlow edges), action to perform (OpaqueAction), parallel routing
(ForkNode), synchronizer (JoinNode), conditional routing (DecisionNode) and
merging structure (MergeNode). Even if our processes are artificial, they present
a high-level of realism. The model generator reproduces how a modeler could
have developed a process in a real situation. It generates the process through
a sequence of Change Patterns [27]. Each process is then checked w.r.t. the
OptionToCompleteproperty and only models without counter-examples are kept
(only the largest verification time is of interest).

Figure 11 shows the solving-times to check this property. These results show
that the solving times are reasonable w.r.t. the complexity of the generated
models (in terms of number of UML elements). Actually, the generated SAT
problem of the model with 100 UML elements contains almost 18 billion clauses
and 8 million variables and is resolved in 31 minutes which highlights the fact
that our SAT problems belong to a relatively easy-to-solve SAT category. Once
again, this emphasizes the effectiveness of our approach.

1 http://pagesperso-systeme.lip6.fr/Yoann.Laurent/

http://pagesperso-systeme.lip6.fr/Yoann.Laurent/
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Fig. 11. Total time to check the OptionToComplete property depending on the process
size

6 Related Work

There is an extensive literature on verifying process models. Since a lot of the
work has been done in the business process community, we do not restrict our-
selves to the verification of software processes. Generally, the verification is based
on mapping the process model into mathematical formalisms used to model sys-
tems such as automata, Petri Nets or process algebra.

Many approaches have origins in the Petri Nets formalism, either because the
modeling language is based on it (e.g.,WorkflowNets [9]) or through amapping to
it [10]. In [9], Van der Aalst et al. introduce theWorkflowNets, a particular class of
Petri Nets dedicated to themodeling of workflowwith an augmented graphical no-
tation (e.g., AND-splits, AND-joins and so on). In [6] a large number of industrial
business processes have been successfully checked on the soundness properties us-
ing the LoLamodel checker. In [10], the processmodeled in UML AD is mapped to
Colored Petri Nets [22] in order to enable automatic verification. Due to the fact
that Petri Nets enjoy an easily understandable and graphical notation as well as a
plethora of mature tools enabling efficient analysis, they have been widely applied
in the process analysis field. However, even if the verification of Petri Nets based
process is efficient to check properties such as reachability, liveness and bound-
ness, they fail when the system needs to handle a wide variety of data. The use
of data on the system multiplies the number of places and introduces some state
space explosion problems making the analysis difficult (sometimes impossible).
Moreover, these approaches focus only on the soundness properties.

Other approaches use process algebra [3,4], a strict and well-established the-
ory that support the automatic verification of properties of systems behavior
as well as Petri Nets. In [3], the authors show how the Communicating Sequen-
tial Processes (CSP) algebra can be applied to model complex workflow systems.
They use the FDR (Failures-Divergences Refinement) model-checker to automat-
ically check behavioural properties. Liu et al. [4] transforms models expressed in
Business Process Execution Language (BPEL) into π-calculus. They also cap-
ture compliance rules in the graphical Business Property Specification Language
(BPSS) and automatically translate them into temporal logic. This approach is
able to handle the verification of both soundness and business properties. How-
ever, process algebra such as π-calculus is limited in the ability to support most
of the workflow patterns [17] used in processes.
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Further approaches are based on domain-specific language. Eshuis et al. [2]
check UML AD in the context of workflow modeling by translating the activity
into the input language of NuSMV, a symbolic model checker. The work was
done before the finalisation of the UML 2.0 specification, thus the semantics
used remains unclear and many assumptions have been made about it. Guelfi
et al. [8] propose a translation of UML AD into Promela (Process or Protocol
Meta Language) in order to check behavioral properties with the model-checker
SPIN. However, no implementation is provided and the set of properties which
may be checked are not precise.

In the case of UML AD verification, all these formalisms have been investi-
gated: (1) process algebra using π-calculus [28] and CSP (Communicating Se-
quential Processes) [29], (2) automaton using NuSMV formalism [2] and Promela
(Process or Protocol Meta Language) [8], and (3) Petri Nets formalism through
transformation [10]. However, only the work of Abdelhalim et al. [29] is based
on the fUML semantics, but lacks by focusing the verification only on deadlocks.

To sum up, most of the approaches focus on verifying control-flow related
properties and only a few treat the data on the process. Despite the numerous
approaches to check behavioral properties on a process, none of them proposes to
check the organizational properties. To our knowledge, no approach proposes to
check syntactical and all the behavioral properties in a unified way as promoted
by Alloy4SPV.

7 Conclusion and Future Work

While verification is a critical and an important endeavor in software develop-
ment, it still remains the Achilles heel of software processes and a main source
of their low adoption. Indeed, with the increasing complexity and size of pro-
cesses, process modelers need adequate tooling support to simulate and to verify
their processes before their use in real projects. Some critical processes may reach
more than 250 activities, with very complex workflows, dependencies, loops, syn-
chronizations, and without an automated and exhaustive verification, possible
sources of inconsistencies and problems may persist. The formalization on which
Alloy4SPV is based is able to deal with control- and data-flow, resources,
and timing aspects of the process in a unified way. Therefore, Alloy4SPV and
its associated interface is able to verify automatically a wide range of prop-
erties without the user’s intervention and allows one to verify some business
properties. Currently, the tool is under evaluation within the European MERgE
project, whose main goal is to develop and demonstrate innovative concepts and
design tools addressing both “safety” and “security” concerns in development
processes.

The case study and the tool proved the feasibility of our approach, however some
improvements to our approach are alreadyunder realization.Even if our evaluation
shows relatively good performance, we believe that there is still room for improve-
ment. Many optimization techniques can be explored: (1) using slicing technique,
i.e. partially generates the Semantic.als to cope only with the need of the prop-
erties; (2) using graph reduction techniques to reduce the size of the process [30];
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and (3) treat the properties related to time in a more efficient way based on the
expertise of well-known approaches such as timed automata [31].

Acknowledgments.The authors’ work is funded by the MERgE project (ITEA
2 Call 6 11011).
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Abstract. In the context of the Internet of Things, sensors are sur-
rounding our environment. These small pieces of electronics are inserted
in everyday life’s elements (e.g., cars, doors, radiators, smartphones) and
continuously collect information about their environment. One of the
biggest challenges is to support the development of accurate monitoring
dashboard to visualise such data. The one-size-fits-all paradigm does
not apply in this context, as user’s roles are variable and impact the way
data should be visualised: a building manager does not need to work
on the same data as classical users. This paper presents an approach
based on model composition techniques to support the development of
such monitoring dashboards, taking into account the domain variabil-
ity. This variability is supported at both implementation and modelling
levels. The results are validated on a case study named SmartCampus,
involving sensors deployed in a real academic campus.

Keywords: Variability, Data visualisation, Sensors, Model composition.

1 Introduction

Sensors are everywhere. The Internet of Things (IoT) paradigm relies on a world
of interconnected objects, able to communicate between each others and collect
data about their context. Day after day cars, smartphones and buildings collect
information about our living environment, generating zettabytes of sensed data.
The Gartner group predicts up to 26 billions of things connected to the Internet
by 2020. Intechno Consulting estimates that this market will generate up to
180 billions of euros worldwide. Being able to exploit and interpret these data
means to keep control of this mass of information. Considering data obtained
from sensors, there is a need to ease the design of monitoring dashboards as raw
data remain useless for a user [1]. Aggregating the correlated data into accurate
visualisation interfaces allows humans to interpret them, transforming raw values
into meaningful information.

Such dashboards support users while interpreting these data, allowing one to
take decisions based on the sensed data. The main challenge to tackle is then
to support the intrinsic variability of this domain. This variability is twofold
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and thus triggers two concurrent challenges: (i) each user wants to use a dash-
board dedicated to her very own needs, and (ii) visualisation libraries used at
runtime provide different visualisation widgets to be used to implement such
dashboards. In this context, model-driven engineering approaches can support
the first challenge by capturing concepts used by the dashboard designers and
providing appropriate tool support. To tackle the second challenge, Software
Product Lines (SPLs) are defined as “a set of software-intensive systems that
share a common, managed set of features and that are developed from a common
set of core assets in a prescribed way” [2]. SPL engineering is based on the idea
that the reusable artefacts encapsulate common and variable aspects of a family
of software systems [3,2]. As a consequence, SPLs provide a way to model widget
variability, relying on strong logical foundations and configuration support.

The contribution of this paper is to describe a tool-supported approach en-
abling the mass customisation of dashboards. The approach relies on a dedicated
meta-model that captures the concepts used to design a dashboard. The vari-
ability of the different visualisation libraries is captured using feature models,
expressed according to the concepts defined in the meta-model. The tool support
implements the link between the meta-model and the feature models, supporting
users while designing dashboards and ensuring code generation to reach runtime
environments.

We describe in Sec. 2 the SmartCampus project, which relies on sensors
deployment in a real academic campus. This project serves both as motivation
and application for our work. Sec. 3 describes the Ptah meta-model, used to
support a user while designing a monitoring dashboard. Sec. 4 describes the
method used to capture the variability of a given visualisation library, and how
visualisation libraries are composed. Sec. 5 describes the benefits of the ap-
proach based on a scenario extracted from the SmartCampus use case. Finally,
Sec. 6 discusses related work, and Sec. 7 concludes this paper by exposing some
perspectives for further researches.

2 Motivations and Running Example

This section describes the SmartCampus project as a motivating example for
our contribution. It illustrates the two main challenges this paper addresses:
(i) how one can design a monitoring dashboard at the right level of abstraction
and (ii) how such a dashboard can be realised with respect to the existing
libraries at the implementation level.

2.1 The SmartCampus Project

The University of Nice-Sophia Antipolis is exploiting a new campus named
SophiaTech1, located in the Sophia Antipolis technology park. The ultimate
goal of this project is to consider sensors deployed in buildings as an open plat-
form to let final users (i.e., students, professors, administrative staff) build their

1 http://campus.sophiatech.fr/en/index.php

http://campus.sophiatech.fr/en/index.php
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own innovative services on top of the collected (open) data. This SmartCampus

project was started in September 2013 and involves a team of 18 persons. The
development effort is focused on data visualisation, data collection and scalabil-
ity issues. We consider here this project has a use case in order to bring actual
visualisation needs from a real world problem.

The objective of the project is to develop a middleware acting as a mediation
layer between sensors deployed in buildings and developers who want to develop
innovative services based on these data. The functional analysis phase (ended in
December 2013) relied on a survey and users interviews to identify prototypical
scenarios to be used as relevant validation test cases. As a result, the following
three scenarios were identified:

– Parking lot occupation. The campus contains five different parking lots, with
different occupation rates. Final users complained about the difficulty to
find an available parking place. With respect to environmental constraints,
the occupation rate of each lot is aggregated based on data collected from
sonar sensors (located on arbour overhanging the cars) and counters based
on infra-red rays located at the entry and exit portals of each lot. But if
users only want to know where to park their car on the morning, the estate
department of the University aims at aggregating statistics to analyse the
occupation rates of each parking and take decisions based on these data.

– Crowd monitoring. The food court of the campus is currently under-sized,
leading to long queues during rush hours. Students have identified the need
to estimate the waiting time in the cafeteria and the restaurant. The im-
plementation of such a crowd monitoring system is possible with a simple
image processing algorithm analysing the video stream of a webcam. Based
on the very same technological stack, additional counters can be deployed
to measure people traffic in different places, e.g., library, main corridors.

– Heating regulation. The heating system of the campus suffered from regu-
lation issues when initially started. As a consequence, data collected from
temperature sensors deployed in the buildings had to be aggregated and visu-
alised in dashboard, of which an example is depicted in Fig. 1, as a support
for the technical team fixing the steam stream throughput in the different
pipes. These sensors can now be used to assess the temperature in the build-
ings, identifying open doors or windows during winter and optimising the
heating effort distribution in the building by comparing the occupancy and
temperature of rooms.

2.2 Challenges

The implementation of these use cases in the SmartCampus context triggers
two major issues: (i) there were almost as many dashboards needed as inter-
viewed users and (ii) at the implementation level, developing such dashboards
is error-prone and time-consuming.
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(a) Sensors overview (b) Zoom on a specific floor

Fig. 1. Mockup of an heating regulation dashboard, designed by campus’ users

Designing Multiple Dashboards (C1). Based on the interviews conducted
during the analysis phase, we identified the tremendous variability of monitor-
ing dashboards. Actually, SmartCampus is a prototypical example of an open-
data platform: the availability of data about the environment empowers the end
users, allowing each one to design a dashboard based on her very own needs.
Unfortunately, if tools used to mockup dashboards are usable by end-users (e.g.,
Balsamiq2, see Fig. 1), they cannot be used to generate executable dashboards.
Moreover the implementation of such dashboards requires technological skills
(e.g., web programming knowledge) that slowed down or even stopped the de-
velopment effort. Users also experiment a gap between the expression of their
functional needs and the organisation of the corresponding data and visualisa-
tions into a well-formed dashboard. As a consequence, the first challenge is to
support the mass customisation of monitoring dashboards, at the appropriate
level of abstraction.

Handling the Technological Variability (C2). The implementation of such
dashboards is a complex task. Even if we have restricted the technological stack
to web-based interface (it is one of the assumptions made by the SmartCam-

pus Description of Work document), many widget libraries can be used to im-
plement these dashboards, e.g., AmCharts3, Highcharts4, D3.js5. These libraries
are heterogeneous, and offer different widgets with their own specificities. For
example, (i) AmChart offers 58 different widgets, (ii) Highchart offers 54 wid-
gets and 13 additional widgets dedicated to large datasets (named Highstock),
and (iii) D3.js offers 133 widgets. The effervescence around the big data and
open data paradigms fosters the frequent publication of new tools and widget
libraries to support data visualisation. Moreover, even if we consider a single li-
brary, the evolution of the widget referential must be handled. For example, the
D3.js library is based on a community of users, and new widgets are frequently
added to the library by external contributors. This proliferation of visualisation

2 http://balsamiq.com
3 http://www.amcharts.com
4 http://www.highcharts.com
5 http://d3js.org

http://balsamiq.com
http://www.amcharts.com
http://www.highcharts.com
http://d3js.org
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Fig. 2. Global overview of the approach

solutions has become an obstacle to efficient choices during the design of moni-
toring dashboards, thus our second challenge is to handle the variability of the
offered amount of solutions.

The contribution of this paper is to address these two challenges, as depicted
in Fig. 2. The user interacts with a model to describe what she wanted to
visualise (C1), and variability models are exploited to support the selection of
concrete widgets among the existing ones, including code generation (C2).

3 Supporting Dashboard Design Variability (C1)

This section describes a meta-model that tackles the first challenge identified
in Sec. 2: “How one can design a monitoring dashboard according to her very
own needs?”. To address this challenge, the key idea is to tame the complexity
of dashboard design using a dedicated meta-model. This meta-model allows a
user to focus on the way she wants to compose her data, and does not require
implementation knowledge. It focuses on the different visualisation concerns one
can apply to a given datasets, and is not bound to any concrete library imple-
mentation. Thus, at this level of abstraction, the user is completely free to work.
The binding with existing visualisation libraries, as well as the introduction of
new libraries with respect to this meta-model corresponds to C2 (see Sec. 4).

Restricting the domain to its essence, a designers works according to three
dimensions while designing a dashboard: (i) the data involved in the dashboard
according to her monitoring needs (i.e., “What am I visualising”), (ii) the dif-
ferent visualisation concerns applied to these data (i.e., “How do I visualise it?”)
and finally (iii) the spatial and temporal layout of the dashboard (i.e., “Where
and when do I visualise it?”).

We consider here a prototypical example extracted from the SmartCampus

analysis: heat regulation in corridors. For a given corridor, one wants to exploit a
temperature sensor to identify issues in the regulation of the heated air streams.
Nevertheless, the temperature is impacted by the presence of people: a group of
people chatting in the hallway increases the air temperature, and people exiting
or entering the hallway through the external doors lower it. Thus, one needs to
correlate the data collected from the air temperature sensor and the presence

Dashboard

url = "…"
d1 : Data

v1 : Visualisation
url = "…"
d2 : Data

c : Concern

...

C1

C2
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(a) Charts juxtaposition (120 LoC) (b) Charts intersection (80 LoC)

Fig. 3. Two alternative dashboards realising part of the “heat regulation” use case

counter one to properly analyse the data. This can be done in multiple ways with
respect to the user habits, as depicted in Fig. 3 using the AmCharts library.
These two datasets can be visualised as charts displayed side by side (Fig. 3a), or
the two datasets can be composed in the same chart (Fig. 3b). Considering that
working at the implementation level is not acceptable for the SmartCampus

users (due to a lack of programming knowledge), a dedicated meta-model is
provided to focus on the level of abstraction expected by the users. This meta-
model is named Ptah

6 and depicted in Fig. 3. We describe the concept it defines
according to the three dimensions identified at the beginning of this section.

“What am I visualising?”. At this level, the user focuses on the data sets
she wants to visualise. Based on the state of practice in the IoT domain, we con-
sider in Ptah that data collected from a given sensor are available as a resource
published at a dedicated URL, following the REST paradigm. The DataSet

concept allows one to refer to such an URL while modelling a dashboard. Meta-
data about the collected information are defined by the Field concept: a user
expresses that the temperature DataSet is indexed by a Field named ttemp

typed as a Date, and contains a value (another Field) named temp typed as a
Numerical value. If the underlying data format supports meta-data definition
(e.g., the SensorML standard published by the OGC [4]), it is possible to au-
tomatically infer from the dataset description the different Fields it contains.
Even if it does not happen in this example due to its simplicity, a user often needs
to adapt the data she wants to visualise, e.g., selecting only an excerpt or inter-
secting a given dataset with another one. To support this task, and considering
that the definition of datasets in Ptah is very close to relational algebra, we rei-
fied in the meta-model the six classical operators available in database querying
systems: (i) projection, (ii) selection, (iii) renaming, (iv) set difference, (v) set
union, and (vi) Cartesian product. Considering a mobile sensor (e.g., a smart-
phone) collecting both geographical location and Wi-Fi signal strength [5] in
the campus according to time, one can rely on the previous “classical” relation
operators to compose these data in order to bind the signal strength to a given

6 The Egyptian god of craftsmen and creation.
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Fig. 4. Excerpt of the Ptah meta-model, supporting dashboard design
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location. A domain-dedicated operator supports clock synchronisation between
datasets (i.e., the Offset operator is used to modify a time-based key). Thus,
to realise the heat regulation use case, a user have to model two datasets: one
linked to the presence counter resource, (pds) and a second one linked to the
temperature sensor resource (θds).

θk = (name : t, type : Date) pk = (name : t, type : Date)

θv = (name : temp, type : Num) pv = (name : count, type : Num)

θds = (key : {θk}, vals : {θv}, . . . ) pds = (key : {pk}, vals : {pv}, . . . )

“How do I visualise it?”. At this level, the user focuses on the different vi-
sualisation concerns she wants to compose to the previously modelled datasets.
From an abstract point of view, a visualisation is defined as a concern (i.e., an
intention) to be applied to given datasets. The vocabulary used for the con-
cerns is inspired by the Data Visualisation Catalogue7, a functional reference for
data journalism activities. One may notice that these concerns are not directly
linked to concrete elements such as Line Chart or Pie Chart. At this level of
abstraction, the user works on intentions instead of concrete representations.
An inference engine is used to bind user’s intentions to concrete widgets (see
Sec. 4). For example, a user expresses intentions such as Threshold to identify
special values (e.g., temperature exceeding 30◦C) in the datasets, 2D to work
on two-dimensional charts. When the user does not know exactly which con-
cern apply to the datasets, a Free concern is used to act as a free variable in
logical programming: the inference engine used to bind the concern sets to a
concrete widget will unify the Free intention with any concrete widget. In the
heating regulation use case, the user wants to visualise a 2D representation, as
she is interested by the detection of time-based patterns and more specifically
Extremum detection (visθ). As the presence counter collects discrete values, she
also specifies that she wants to visualise it as a Discrete dataset (visp).

visθ = (data : {θds}, concerns : {2D,Extremum})
visp = (data : {pds}, concerns : {2D,Extremum,Discrete})

Atomic visualisations can also be composed together to built value-added visu-
alisations. For example, the visualisation depicted in Fig. 3b is semantically the
Superposition of the two previously created visualisations, more specifically
an Intersection. Indeed, the Ptah meta-model contains several composition
operators that support the creation of CompositeVisualisation, e.g.,:

– Superposition (abstract). The visualisations are superposed, the left operand
being stacked under the right one.

– Union. This operator also performs a Superposition and keep the integrity
of the datasets to visualise both entirely.

– Intersection. This operator performs a Superposition and process the
datasets to only keep data within common time range.

7 http://datavizcatalogue.com/

http://datavizcatalogue.com/
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“Where and when do I visualise it?”. Finally, the different visualisation
must be composed together from a layout point of view. The Ptah meta-model
allows a user to compose visualisation spatially as Boxes (where, [6]), and to
arrange several Boxes together in a sequence of execution (when). Thus, the
dashboard depicted in Fig. 3a contains two Boxes (one for each visualisation),
composed in a CompositeBox that uses the Left spatial organiser. The dash-
board depicted in Fig. 3b contains only one box, bound to the intersection of
the two previously created visualisations.

Fig. 3a = BoxC(Left , {Box(visθ), Box(visp)})
Fig. 3b = Box(visθ ∩ visp)

Complex dashboards like the one depicted in Fig. 1 requires Transition from
one box to another one. For example, in the heating regulation use case, a tab
system is used to switch from the global overview dashboard to the floor-based
one. This is supported in Ptah through the definition of Transition that holds
a given Interactor, e.g., Next (replacing the current element by the targeted
one), Tabs (supporting the user while going back and forth).

4 Handling the Technological Variability (C2)

The Ptah meta-model was designed as flexible as possible: the concepts defined
in this meta-model are intrinsically freed from technical concerns such as concrete
widget implementations. As a consequence, there is no immediate link between
the meta-classes and concrete widgets. Thus, if one wants to generate concrete
visualisation code from a Ptah model, each concept from Ptah must be asso-
ciated to an implementation pattern that supports it. The challenge addressed
here is twofold: (i) there is a tremendous number of available visualisation li-
braries and (ii) the relationship between concrete widgets and Ptah concepts is
not a simple one-to-one mapping.

Actually, when the user builds a visualisation in Ptah, she is following a kind
of configuration process to obtain a visualisation product, just like in SPLs. Con-
sidering a variability model of a given domain, one can configure a product of
the SPL by selecting needed features [7]. The general idea is that the reusable
artefacts encapsulate common and variable aspects of a family of software sys-
tems in a manner that facilitates planned and systematic reuse. In our case
each Concern concept defined in Ptah is clearly a feature, and each concrete
product satisfies (or not) such features. Thus, it is possible to rely on variability
modelling techniques and existing configuration tools (formally based on propo-
sitional logic and SAT-solving algorithms) to support the realisation of a Ptah

model at the concrete level.
The main difficulty is now to build the associated variability model. To sup-

port this task, we used a tool-assisted methodology that relies on Feature Models
(FMs) [8,9] to model variability, and a merging operator (denoted as μ), depicted
in Fig. 5 on these feature models [10]. The key idea of this methodology is to
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Fig. 5. Merge process used to build the variability model

focus on the different products available, i.e., each widget provided by a given
library L, and to characterise it using the terms of the targeted meta-model,
ensuring by construction the consistency of features with the selected elements
in the meta-model. As a result, we obtain a variability matrix describing each
concrete widget {w1, . . . , wn} ∈ L using Ptah concepts. Each widget descriptor
wi is considered as an asset and is associated to a FM si that can only derive
a single product: wi. This technique is directly inspired from the construction
of feature models from product descriptions [11]. The set of FMs {s1, . . . , sn}
is then merged using the μ operator, which implements a “merge with strict
union” [10]. Being automatic, this operation facilitates the addition or edition of
a widget description.. Formally, this operator ensures that given two FMs s and
s′, the result of μ(s, s′) can be used to derive the products modelled by s and the
ones modelled by s′, without any additions or restrictions. As a consequence, the
result of μ(s1, μ(s2, ...)) = sL implements, together with the widget descriptors,
the product line that exactly models all the widgets available in L. To introduce
a new library L′ in the product line, the same process is applied to produce sL′ ,
and the resulting product line is eventually obtained as s = μ(sL, sL′).

We consider here the AmCharts visualisation library. According to its demon-
stration web page, it defines 58 concrete widgets8. Each widget was analysed
according to the Ptah concepts, and an excerpt of the resulting comparison
matrix is represented in Tab. 1. Based on this matrix exported as a CSV file,
each column is translated into a tool-ready representation of each descriptor,
using the Familiar language [12] (see Fig. 6).

The resulting feature model, based on a simplified version of the AmCharts
that only contains 12 widgets is depicted as a feature diagram in Fig. 7 (31
additional constraints not shown). This model is then exploited to support the
user while defining models conforms to the Ptah meta-model. For example, the

8 http://www.amcharts.com/demos/

http://www.amcharts.com/demos/
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Table 1. Excerpt of the AmChart variability matrix

Feature \ Product Pie Bubble Line ...

Comparison � �
Proportion � �
Relationship � �
Probability �
Distribution �
Patterns � �
Extremum � �

Feature \ Product Pie Bubble Line ...

Range
Discrete � �
Value � � �
Variations � �
TimedValue � �
Dimension(s) 1D 3D 2D

fm1 = FM(widget:Name Comparison Proportion Value Discrete Dimension;

Name:"Pie Chart"; Dimension:1D;)

//...

fm10 = FM(widget:Name Comparison Relationship Patterns DataOverTime Value

Discrete Variations Dimension; Name:"Step Chart"; Dimension:2D;)

// ...

amCharts = merge sunion fm_*

Fig. 6. Excerpt of the Familiar code used to model the AmChart library

visualisation visθ refers to the features 2D and Extremum. While configuring the
AmCharts feature model with the selection of these two features, the configu-
ration engine results in four potential candidates to realise this intention: Line
chart, Smoothed Line, Bar chart or a Column chart, i.e., 33% of the initial prod-
uct set. Considering that the second visualisation visp refers in addition to the
feature Discrete, leading to cut the widget dedicated to continuous data and
resulting to only offer a Bar chart or a Column chart, i.e., 13% of the initial
widget set. This example illustrates the reduction of possibilities induced by the
use of a feature model related to the Ptah meta model.

5 Validation

The validation of the contribution described in this paper relies on a prototype
implemented in Java. It provides a semi-automated support for the presented
approach, according to the following steps: (i) the user expresses a dashboard
composition using the Ptah meta-model, (ii) the tool search for an equivalent
solution handled by a library, interacting with the user to select concrete widgets
and finally the tool (iii) automatically generate the corresponding and executable
code in HTML/CSS and JavaScript.

The following example illustrates the benefits of our contribution in compar-
ison with the required manual manipulations needed while using the solutions
provided by the state of practice. Considering a fixed number of data set (here
three different temperature sensors), the user want to prototype several dash-
boards in order to chose the final one she is going to use to monitor her system.
We consider here only the AmCharts library, and more specifically only two
types of widgets among the 58 available in this library: (i) Line charts and (ii)
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Fig. 7. Feature diagram generated by Familiar tool

(a) Juxtaposition of line charts (b) Superposition on a column chart

(c) Juxtaposition of column charts (d) Superposition on a line chart

Fig. 8. Possible visualisation of three temperature data sets

Column charts. We represent in Fig. 8 four different prototype associated to
these three datasets.

We describe in Tab. 2 the cost of transforming one dashboard into another
one, in terms of code instructions. It illustrate the time-consuming aspect of
a prototyping process, even on this limited scenario. For example, in order to
prototype the figure Fig. 8a, giving that the code of Fig. 8b is already available,
one needs to remove 54,84% of the existing instructions and add 134,41% of new

Widget

Name

Relationship

Range Distribution

Comparison

Value

Probability

OHCL Pie

Key
Mandatory 

feature
Optional 
feature

XOR

OR

Discrete Pattern

Timed

Bar StepRadar Column Area
Angular 
Gauge

Smoothed 
Line

Line Bubble Funnel

Dimension

3D1D 2D

Proportion

Extremum
Variations
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Table 2. Cost of changing a given visualisation choice at the implementation level

Evolution LoC impact
From To dels adds

Fig. 8a
Fig. 8c 11% 11%
Fig. 8b 75% 31%
Fig. 8d 75% 31%

Fig. 8c
Fig. 8a 11% 11%
Fig. 8b 75% 31%
Fig. 8d 75% 31%

Evolution LoC impact
From To dels adds

Fig. 8b
Fig. 8c 55% 134%
Fig. 8a 55% 134%
Fig. 8d 18% 18%

Fig. 8d
Fig. 8c 55% 134%
Fig. 8a 55% 134%
Fig. 8b 18% 18%

code. Even between two representations that looks close to each other (e.g.,
Fig. 8a and Fig. 8c), up to 11% of the code needs to be changed.

The concrete dashboards depicted in Fig. 8 can be classified into two cate-
gories:(i) visualising three graphs at a time (Fig. 8a and Fig. 8c) or (ii) compar-
ing the three datasets on the very same graph (Fig. 8b andFig. 8d). Inside each
categories, the main difference between the two dashboards is the discrete rep-
resentation of the data sets, leading to a line-based representation (continuous)
or a column-based one (discrete). Thus, at the Ptah level, the only difference
between these elements are the layout and the visualisation concerns applied to
each data sets, which corresponds exactly to the semantics expected at the user
level. Then, one can represent and generate these different visualizations with a
14 elements model for Fig. 8a and Fig. 8c, and a 12 elements model for Fig. 8b
and Fig. 8d.9

6 Related Work

The Interaction Flow Modeling Language (IFML, [13]) is a standard of the OMG
dedicated to model and generate front-end applications and human-computer
interactions. IFML’s purpose is to model front-end of applications composed of
several layers, supporting the compositions required in such domain and the links
with other layers of the application. In comparison, Ptah is dedicated to the
design of monitoring dashboards thus our approach focuses on sensor data visual-
isations and related specific compositions. Both approaches are complementary,
as our composition model can reify the IFML concept of ViewComponent in
order to handle this specific type of visualisation, and we could use IFML ex-
pressiveness in terms of events and user actions to define dashboard transitions.
The CAMELEON Reference Framework (CRF, [14]) offers a methodology for
human-computer interfaces design and generation. Our meta-model can be seen
as a specialised implementation of the abstract visualisation layer described in
CRF, allowing one to design complex data visualisations that are not yet sup-
ported by UsiComp [15] (reference implementation of the CRF). Indeed, the
support in UsiXML is currently more focused on form-based interfaces, which

9 details available at http://www.i3s.unice.fr/~logre/ECMFA14.html

http://www.i3s.unice.fr/~logre/ECMFA14.html
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are not completely adapted to sensor data visualisation. The concept of mashups
as “composed applications” has reach the user interfaces domain [16]. This way
of composing User Interfaces (UIs) suffers from a lack of globalisation of their
composition process, mainly focused on spatial arrangement and connection be-
tween data and widgets, where the Ptah meta-model brings useful concepts
to handle the goal through visualisation concerns. Work on spatial composition
in mashups is nonetheless an inspiration for further work. COntext sensitive
Multi-target widgETs (COMETs, [17]) model abstract interactors that can be
composed to design UIs. The effort has been placed on the context adaptation of
those form interface elements. Such an approach complements ours, handling the
context awareness part as we focus on the proper design of resulting interfaces
and the link with real world solutions, provided that COMETs could represent
composite widgets.

Software product lines engineering techniques [2,3] have been used in many
domains, but only a few works considered them in the context of UIs. Blouin
et al. use aspect-oriented techniques coupled with feature selections based on
the context change at runtime so that dynamic adaptations of UIs can be re-
alised [18]. Variability modeling and SPL techniques are also used to cover the
whole development of Rich Internet Applications, including UIs components [19].
However, it only captures the UI relations to the rest of the web architectures,
not the fine-grained selection of widgets. As for the construction of the feature
models from the widgets description, the followed approach is directly inspired
from Acher et al. work where the authors automatically extract a feature model
from tabular data describing wiki engines [11]. This approach seems the best
suited to our needs as other extraction techniques deal with different software
artifacts such as source code [20], some models [21], or feature combinations [22].
Besides, the merge operation on feature models that we use in our approach is
itself based on the results of She et. al. on reverse engineering feature models [23].

7 Conclusions and Perspectives

In this paper, we described a tool-supported approach used to tame the com-
plexity of monitoring dashboard design. Based on a set of concrete scenarios ex-
tracted from a real deployment of sensors in an academic campus, we proposed
a meta-model to support the design of monitoring dashboard, so that one can
specify the what, how, when and where with no implementation knowledge.As
the meta-model has been defined to meet business requirements of dashboard
designers, it seems reusable for sensor data visualization in other contexts.We
also proposed a variability model to facilitate the configuration of user-specific
dashboard product from the obtained dashboard model. Then, code generation
mechanisms are used to obtain a concrete dashboard executed at runtime, based
on user’s intention expressed at the model level.

In order to complete this work, we aim at using goal models, such as task trees
employed in the Human-Computer Interaction community, as an entry point to
define the scenario the user wants to perform. From this representation of her
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intention, we plan to extract constraints and guidance about the design of a
model, conforming to our meta-model and adapted to her goals. This upstream
work seems necessary before choosing the final concrete syntax of Ptah and
integrating all parts in a tool, on which we plan to perform an empirical valida-
tion of the construction time using our approach.As perspectives, we also plan to
use feature models to represent the variability of possible customisation of each
widget, extracting this knowledge from the library API, and allowing the user
to choose a configuration from those models. These parameter requirements will
impact the design of the composition model, implying a bottom-up approach in
contrary to the contribution of this paper, which can be seen as top-down. In
conclusion, we aim at dealing at the same time with both capacities, leading
us to define bidirectional links between our models, and thus providing a better
support for tailored visualisation dashboard development.
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Fornarino, Cecile Camilieri, Adrien Casanova, Cyril Cecchinel, Joel Colinet,
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Oudot, Jérome Rancati, Marie-Catherine Turchini and Guillaume Zanotti.
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Abstract. Models, as any other software artifact, evolve over time dur-
ing the development life-cycle. Different versions of the same model are
thus existing at different times. Model comparison of different versions
has received a lot of attention in recent years. However, existing tech-
niques focus on comparing only two model versions at the same time to
identify model differences. Independently of model versioning context,
another dimension of variation, called variation in space, appears in mod-
els. Contrary to variation in time, variation in space means that a set
of model variants exists and should be maintained. Comparing all these
model variants to identify common and variable elements becomes thus a
major challenge. Current approaches for model variants comparison lack
of flexibility and appropriate visualisation paradigm. The contribution of
this paper is the Model Variants Comparison approach (MoVaC). This
approach compares a set of model variants and identifies both common-
ality and variability in the form of what is referred to as features. Each
feature consists in a set of atomic model-elements. MoVaC also visualizes
the identified features using a graphical representation where common
and variable features are explicitly presented to users. We validate the
approach on two use cases demonstrating the flexibility of MoVaC to be
applied to any kind of EMF-based model variants.

1 Introduction

One of major challenges in model-driven engineering is model comparison and
it has received a lot of attention in recent years. Indeed, models, as any other
software artifact, evolve over time during the development life-cycle. Different
versions of the same model are thus existing at different times. Moreover, since
different models may be capturing different viewpoints of a system, model com-
parison is becoming particularly relevant in industrial contexts where different
developers work on the same model [7]. In addition, model comparison is an
enabler for complex operations such as merging, model compositions and model
transformations.

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 117–131, 2014.
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The first generation of comparison techniques mainly focused on a single kind
of models such as UML models [1,10,13]. However, in recent years, and mo-
tivated by the success of the Eclipse Modeling Framework (EMF) [4], generic
approaches have been proposed to compare any kind of EMF-based models.
EMF Compare [3] and EMF DiffMerge [5] are examples of such platforms.

All these generic approaches are limited to a comparison between two versions
only. This limitation can be explained because, historically these approaches have
been inspired by classical software version control systems [8] where the main
issue is to manage variation in time. Two program versions are thus analysed
to identify differences and eventually merge them. However, with the emergence
of software product lines engineering [16], another dimension of variation, called
variation in space, appears in models. Contrary to variation in time, variation in
space means that a set of model variants exists and that all these variants should
be maintained. Model variants cohabit and evolve at the same time, each of them
addressing some new specific requirement of the system, some dedicated features
or functionality. Thus the models life-cycle is no longer linear, but it is a tree with
parallel variant branches. The problem is that no instrument exists to capture
this tree-like evolution of model variants. Comparing all these model variants to
identify common and variable elements become thus a major challenge as the
interest is to be able to compare more than two models. The objective of this
comparison is to eventually refactor these model variants to adopt a software
product line approach.

Another observation in existing model comparison platforms is that they only
focus on the identification of differences between two model versions but the
common part is not explicitly identified in the result of the models compari-
son. For instance, when we use EMF Compare to compare two model versions,
the displayed result only highlights the differences. Common elements can be
obtained implicitly by manipulating the result calculated by EMF Compare [3]
or the comparison result of EMF DiffMerge. However, this information is not
presented explicitly. This also can be justified by the fact that control version
systems only aim identifying differences to apply merge. In variation in space
it is of high relevance to present explicitly the commonality of the set of model
variants as this represents the core that is shared by all model variants.

This paper proposes a new approach for model comparison that can be applied
to a set of models variants instead of binary comparison of two models. The
approach is called Model Variants Comparison (MoVaC). Beyond offering a
systematic and semantically well founded comparison method, another interest
is to contribute a generic approach that can be applied for any EMF based
models and also to provide a visualisation paradigm of the obtained result.

The rest of paper is organized as follows: Section 2 discusses related work while
Section 3 presents an illustrative example. Section 4 presents our approach and
applies it on the example. Section 5 presents the validation of the approach and
Section 6 concludes this work and presents some perspectives.
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2 Related Work

Stephan et al. [19] and Kolovos et al. [14] present complete surveys on model
comparison and a classification of existing approaches. They showed that sev-
eral definitions for model comparison exist. In this paper, we consider model
comparison as presented by Brun et.al. [3]. In this context, model comparison is
decomposed in two main steps:

– Calculation: In this first step, a procedure, a method or an algorithm is
proposed to compare models.

– Representation and Visualisation: The outcome of the calculation can be
represented in some form and a visualisation is displayed to users.

Existing comparison approaches differ by the way they consider these two
steps. The approaches for managing model versions, such as EMF Compare [3]
and EMF DiffMerge [5], implement the two steps. EMF Compare uses various
statistics and metrics to calculate the match score in the calculation step and
the result of the comparison is presented by means of models. EMF DiffMerge
is based on customizable Match and Diff policies. However, and as mentioned
above, the main observation concerning these approaches is that they only com-
pare two model versions at the same time. If we consider the variation in space di-
mension where a set of model variants coexist at the same time, these approaches
do not allow comparing all these model variants together. EMF Compare and
EMF DiffMerge also lack in explicitly highlighting commonality.

Independently from model versioning, the problem of comparing model vari-
ants is well known in Software Product Line Re-engineering [9] where the main
issue is to analyse a set of model variants to identify commonality and variabil-
ity. Some of the approaches in this area are related to a specific kind of artifacts
and therefore are not generic. Ryssel et al [18] compare model variants that are
represented as function-blocks. Ziadi et al. [21] propose an approach to analyse
the source code through the use of UML class diagrams of a set of software vari-
ants and identify commonality and variability between them. These approaches
are not generic and they do not provide a visualisation paradigm.

Rubin et al. [17], study the problem of model variants comparison mainly in
the context of UML models (UML statecharts). They compare a set of UML
statecharts with the goal to refactor them as a product line. The authors use
XMI principles to represent model variants. They thus justify that their approach
can be applied for any kind of meta-models. However, no visualisation paradigm
is provided. Indeed, they are focusing on merging input product variants into
a generic model and not on highlighting commonality and variability between
model variants.

Existing approaches in the context of Software Product Line Re-engineering
compare a set of model variants at the same time. However, they only consider
the Calculation step. The Representation and Visualisation step is not consid-
ered. This is because their main objective concerns refactoring model variants
into a product line model without including a domain expert in the process.
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We claim that the domain expert must take part in the analysis of the mined
commonality and variability information for product line adoption.

In this paper we propose the MoVaC approach that allows comparing a set of
model variants at the same time to identify commonality and variability between
them. Beyond offering a meta-model independent calculation step, our approach
provides a graphical visualisation of the comparison result using the concepts of
Features. The approach will be presented in Sect. 4.

3 Illustrative Example

As a concrete example, we use throughout this paper a set of UML model vari-
ants representing a set of banking systems [21]. Each model variant represents
a simple banking application. The variation between these model variants is re-
lated to: limit on the account, consortium entity, and to the currency exchange,
which are only present in some variants. Figure 1 illustrates the eight model
variants that we consider for comparison. The differences between these model
variants concern the presence, or absence, of some classes, attributes and/or op-
erations. The first Product1BankUML model represents a full model. It contains
all model elements to support limit on account, consortium entity, and currency
exchange. On the contrary, in the Product2Bank model, the Account class is
defined without the limit and currency attributes. We also note the absence of
Converter and Consortium classes. The Product3Bankmodel is defined with in-
formation related to currency exchange and consortium but without all elements
related to the limit capacity.

In next section, we apply our comparison approach on these model variants
to identify commonality and variabilities.

4 Model Variants Comparison Approach

MoVaC1 is a meta-model independent approach which compares a set of model
variants to identify the commonality and the variability between them. To achieve
this comparison, our approach follows the general framework of model compar-
ison presented in Sect. 2. It thus consists in two main steps: The Calculation
and Representation and Visualisation steps. Next subsections present each step.

4.1 Step 1: Calculation

As mentioned above, the calculation step in model comparison approaches con-
sists in defining an algorithm that identifies commonality and variability between
the model variants. The main idea of MoVaC is to divide each model variant into
a Set of Atomic Model-Elements (SoAMEs). Model comparison between a set of
model variants is then defined as an equivalence relation between their SoAMEs.
1 The source-code of MoVaC could be found at
https://bitbucket.org/jabi/but4reuse

https://bitbucket.org/jabi/but4reuse
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Fig. 1. Eight UML model variants for the banking systems

This step starts by dividing each model variant into a SoAMEs. Each Atomic
Model-Element(AME) represents a model element in the model variant. Then,
we propose to reuse the algorithm proposed in [21] to identify commonality and
differences in what is called features. The following sections presents SoAMEs
and summarise the comparison algorithm.

Dividing a Model on a Set of Atomic Model-Elements: As shown by
Blanc et al. [2] models are artifacts that can be expressed as a sequence of
elementary construction operations and we have used a similar approach. By
using the Meta Object Facility (MOF) concepts [15] we are able to divide any
model compliant with the MOF specification. The AMEs in our approach are:

– Class : It consists of a "parent" Class and the class "object" itself.
– Attribute: It consists of an "owner" Class, an "attribute identifier" and a

"value".
– Reference: It consists of an "owner" Class, a "reference identifier" and a set

of "referenced" Classes.

We implemented this division of models using a pre-order tree traversal of
the model by following the containment references. After adding each Class
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we add its Attributes and References. Before adding any of these AMEs we
check that the structural feature (attribute or reference) is not derived, nor
volatile, nor transient. If this is the case we are not interested in adding it to the
SoAMEs. This check includes containment references as it could also happens.
The reflexion capability of EMF models allows providing a generic approach for
any meta-model to which MoVaC approach wants to be used.

By applying the presented method, Fig. 2 shows the division of the UML
model corresponding to Product1Bank of the banking systems UML model vari-
ants. This figure shows only an excerpt of the 1049 AMEs of this model that
contains 67 classes including UML classes, attributes, operations etc.

Model variants are thus represented as a SoAMEs. Formally, each model
variant is defined as a set Mi = {ame1, ame2, ..amen}, where each amei ∈
{Class,Attribute, Reference}. In the following, we consider
AllMV s = {M1,M2, ..MN} as the set of model variants that we want to com-
pare.

Feature Identification Algorithm: Once we are able to divide models as
SoAMEs, we reuse the algorithm proposed by Ziadi et al. [21] to calculate the
commonality and variability between the model variants. This algorithm takes
as input the SoAMEs of all model variants and identify differences and common-
alities in the form of features where each feature is also a SoAMEs.

The feature identification process is based on a formal definition of a feature
that uses the notion of interdependent AMEs. This notion is defined as follows.

Definition 1 (Interdependent AMEs). Given the set of model variants that
we want to compare AllMV s, two AMEs (of models of AllMV s) ame1 and
ame2 are interdependent if and only if they belong to exactly the same products of
AllMV s. In other words, ame1 and ame2 are interdependent if the two following
conditions are fulfilled.

1. ∃M ∈AllMV s ame1∈M ∧ ame2 ∈ M .
2. ∀M ∈AllMV s ame1∈M ⇔ ame2∈M .

Since interdependence is an equivalence relation on the set of AMEs of AllMV s,
it leads us to the following definition of a feature.

Definition 2 (Feature). Given AllMV s a set of products, a feature of AllMV s
is an equivalence class of the interdependence relation of the AMEs of AllMV s.

The application of the feature identification algorithm to the SoAMEs of the
banking models provides the features depicted by Fig. 3. In order to ease the
reading we only present representative AMEs from the full SoAME of each fea-
ture. The Feature 0 gathers all the AMEs that are present in all the product
variants. We have the bs package with the Bank, Account and Client classes
as well as the shared package of the used data-types. The Feature 1 concerns
the limit information. This feature contains the Attribute AME related to the
withdrawWithoutLimit operation in the Account class. A domain expert could
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Fig. 2. Excerpt of a Bank UML model atomic elements

be able to analyse this and conclude that this is the case when the Bank has
withdraw without limit. On the other hand, Feature 4 presents the other pos-
sible case when the Bank has withdraw with limit. This way in Feature 4 we
have the Attribute AME related to the withdrawWithLimit operation. It also
contains primitives to create the limit field, its getter and the method defin-
ing limit checking. Feature 2 consists in the Consortium class and the given
property and constructor operation of the Bank class. Feature 3 includes all the
needed classes and operations to manage currency exchange.

Comparing Atomic Model-Elements: The feature identification algorithm
presented in previous section requires the definition of equals operator between
AMEs. This section clarifies how this comparison between AMEs is performed.
We rely mainly on existing techniques of model comparison that are highly
extensible. These techniques enable to define when elements are equals or not
for a given specific purpose and to deal with meta-model peculiarities. MoVaC
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Fig. 3. Bank UML Models features

specifies a default comparison of AMEs that can be easily customized through
extension points. More precisely, using the classification by Kolovos et al. [14]
MoVaC default model comparison behaviour is static identity-based matching
but MoVaC implementation provides standard Eclipse extension mechanisms to
contribute signature based-matching if required.

We have implemented the equals boolean methods for each of the AMEs. We
extensively used EMF DiffMerge that enables to compare two Model Scopes
using Match and Diff policies.

– Class : Two Class AMEs are equals if we isolate each of the "objects" in
a scope that contains only these elements and the Diff Policy returns no
difference in the comparison. The Diff policy ignores all the attributes and
references. This way it will not return that an EObject is different if they have
different attributes or references. To check the "equals" for attributes and
references we rely on the Attribute and References AMEs. The Match policy
used by default consists in retrieving the ID attribute of the element and, if
not defined, it tries to infer it checking different serialization mechanisms as
XMI ids etc.

– Attribute: In EMF each defined attribute in the meta-model has an identi-
fier (for example Operation_Name for the attribute Name of the Operation
meta-object). Two Attribute AMEs will be the same if they deal with the
same attribute identifier and if the owner objects of the attribute are the
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same. Finally, the Diff policy is in charge of deciding whether the values of
the attributes should be considered equals for this attribute identifier. The
default implementation of the Diff policy just performs an equals operation
on the values.

– Reference: As well as with Attributes, two Reference AMEs are equals if they
share the same reference identifier and if the owner objects are the same.
Then we check that the referenced classes are the same. If it is an ordered
reference the objects must appear in the same positions. If not ordered then
it is only needed that all the elements are present in the other Reference
AME.

4.2 Step 2: Representation and Visualization

The visualization eases to show the different features and their presence and
relative position in the set of model variants. By selecting the eight models
that integrate the Banking systems UML Model variants we apply the MoVaC
approach and we obtain the visualization presented on Fig. 4. Each bar represents
one of the model variants and the stripes on each of the bars are the SoAMEs as
computed by the division algorithm. This way the length of the bar represents the
number of AMEs and consequently we will have bars with different lengths. As we
can see the height of Product1Bank is greater than the height of Product2Bank
as their SoAMEs sizes are 1049 and 567 respectively.

The MoVaC approach displays the list of identified features. Figure 4 shows
the feature list previously mentioned for the Banking systems. Each feature has
an assigned color. The stripes (AMEs) of the Model variants are colorized with
the color of the feature that the AME belongs to. As illustrated in the Fig. 4, a
specific feature could consist of AMEs that are scattered through the bar. This
is because MoVaC displays AMEs of each model variant in the order that these
AMEs are constructed in the first Calculation step. For example if we look at
Feature 2 of Product5Bank it has two parts. The first part will correspond to
the Property and Operations related to Consortium in the Bank class while the
second part will correspond to the Consortium UML class itself. The separation
between the two parts are AMEs from other features. This helps locating and
understanding the distribution of AMEs in model variants.

For the implementation of the visualisation we used the extensible visualiser
of the Eclipse project AspectJ Development Tools [6]. It was originally used for
visualising cross-cutting concerns in different modules. This visualisation method
was already used for source code clone visualisation [20].

Apart from the main visualization presented here, other functionalities of this
visualization are:

– Filtering: Using the checkboxes on the Feature list we can select which fea-
tures we want to visualize. Also by selecting one of the bars we have the
option to automatically show only the features that this bar contains.

– Analyze features : The visualization has functionality to show the content of
each Feature. That means that we can have the text representation of all
the atomic elements that compose each of the Features.
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Fig. 4. Bank UML Model variants comparison

– Analyze atomic elements: By clicking on a stripe of any bar we get the text
representation of the selected atomic element.

– Export : It is possible to export the relation of Models and Features in a
separated file that could be opened in a spreadsheet application for further
processing or visualisation. Table 1 presents this relation between existing
Banking systems and the Features.

Table 1. Relation of existing Bank models and identified features

P1Bank P2Bank P3Bank P4Bank P5Bank P6Bank P7Bank P8Bank
Feature 0 X X X X X X X X
Feature 1 X X X X
Feature 2 X X X X
Feature 3 X X X X
Feature 4 X X X X

5 Evaluation and Discussion

5.1 Case Studies

In the last section, we applied our approach on the illustrative example concern-
ing the Banking UML model variants. For the evaluation purposes, we present
here a second case study. This example concerns Vending Machine variants rep-
resented as statecharts. These vending machines statechart variants were intro-
duced in previous work [11]. The statecharts models are not UML based, the
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Fig. 5. Six SCT Vending machines model variants

meta-model used is the Yakindu Statechart Tools meta-model [12]. Figure 5
shows the six analysed variants. The objective of these Vending Machines is to
provide different kinds of drinks. For example, VendingMachine1 provides only
Soda while VendingMachine4 provides all types of drinks. There could be also
support for different payment methods for the customers. VendingMachine1 only
provides credit card payment while VendingMachine1 only accepts cash. Some
of the Vending machines, see VendingMachine2 and VendingMachine3, alert the
customer that the drink is ready through a ring tone. Apart from that, other
states and transitions are common such as the Idle, Select payment method,
Deliver drink and Display message states.

We applied the MoVaC approach to the six model variants for the Vending Ma-
chine. Figure 6 illustrates the obtained features. Feature 0 gathers the SoAMEs
shared by all the model variants. We have for example the main region and the
mentioned states Idle, Product price displayed, Select payment method, Deliver
drink and Display message. Feature 3, Feature 4 and Feature 5 contain re-
spectively the SoAMEs related to the state transitions of entering the code of
Soda, Coffee or Tea. Feature 1 corresponds to the cash payment method while
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Fig. 6. Vending Machine SCT Model variants features

Feature 6 corresponds to the credit card payment method. Finally, Feature 2
contains the states and transitions regarding the ring tone alert.

The visualisation of the obtained features is presented on Fig. 7. Table 2
illustrates the relation between Features and model variants.

5.2 Evaluation

In this section the MoVaC approach is assessed considering the following research
questions:

– RQ1: Soundness of the comparison. Is the approach able to identify correctly
the commonality and variability of a set of models?

– RQ2:Flexibility. Is the approach applicable to variousmodellingmeta-models?

Soundness of the Comparison (RQ1). The first research question amounts
to evaluate correctness of the commonality and variability identified and visu-
alised with our approach. As mentioned above, the case studies that we used
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Fig. 7. Vending Machine SCT Model variants comparison

Table 2. Relation of existing Vending machine models and identified features

SCT 1 SCT 2 SCT 3 SCT 4 SCT 5 SCT 6
Feature 0 X X X X X X
Feature 1 X X X X
Feature 2 X X X
Feature 3 X X X
Feature 4 X X X
Feature 5 X X X
Feature 6 X X

in this paper are inspired from papers [21](for the Banking UML model vari-
ants), and [11](for the vending machines). In addition to the model variants,
these papers also present the actual commonality and variability in terms of
features. We thus manually compared the obtained features with those initially
presented in these papers. The evaluation shows that that we get a full match-
ing between commonality and variability identified by our approach and those
initially presented in the mentioned papers.

Flexibility (RQ2). We validate our approach on two case studies that are
based on two different meta-models. The MoVaC approach successfully presents
to the user commonality and variability of model variants in terms of features.
This shows that it is a generic approach and that it can be used for any EMF
based meta-model. However, and as presented in Sect. 4.1, our approach de-
pends on the AME’s comparison method. In our implementation of the MoVaC
approach we used EMF DiffMerge default policies but we are aware that current
complex modeling tools require this AMEs comparison method to be extended
to other policies. It is the case for SCT model variants that are based on the
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Yakindu Statechart Tool. We used MoVaC extensibility to implement two spe-
cial cases to cope with the statechart tool’s model serialization peculiarities.
For instance, to improve performance, they include redundancy about the in-
formations related to transitions in the serialized statecharts when it should be
derived/calculated references. Also we found the usage of String Attributes as a
mechanism to store text based domain specific languages. This ends up with is-
sues while using the default EMF DiffMerge policies and this is way the extension
mechanism of MoVaC was a requirement to cope with complex scenarios.

6 Conclusion

We presented the Model Variants Comparison approach as an enabler to identify
and analyse commonality and variability in a set of models. As illustrated in this
paper, MoVaC is a generic and customizable approach to analyse variability in
space among different variants. MoVaC also implements the visualisation step
where commonality and variability between model variants are presented to users
in the form of what is referred to as features. We validated our approach on two
case studies. As further work we aim to apply it in an industrial scenario dealing
with huge model variants.
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Abstract. We address some of the limitations for extending and validat-
ing MDE-based implementations of NFP analysis tools by presenting a
modular, model-based partial reimplementation of one well-known anal-
ysis framework, namely the Palladio Architecture Simulator. We specify
the key DSLs from Palladio in the e-Motions system, describing the ba-
sic simulation semantics as a set of graph transformation rules. Different
properties to be analysed are then encoded as separate, parametrised
DSLs, independent of the definition of Palladio. These can then be com-
posed with the base Palladio DSL to generate specific simulation envi-
ronments. Models created in the Palladio IDE can be fed directly into
this simulation environment for analysis. We demonstrate two main ben-
efits of our approach: 1) The semantics of the simulation and the non-
functional properties to be analysed are made explicit in the respective
DSL specifications, and 2) because of the compositional definition, we
can add definitions of new non-functional properties and their analyses.

1 Introduction

It has been generally recognised that the non-functional properties (NFPs)—for
example, performance or reliability—of a system are central to the success of
a software development project. The later in the process an error in NFPs is
discovered, the more costly will it be to repair. There is, therefore, a need for
early predictive analysis of NFPs.

Model-driven engineering (MDE) advocates the use of models as the primary
artefacts in software development. It has been recognised that this provides
opportunities for very early analysis of NFPs based on early design models.
These models can often be transformed into analysis models (e.g., in the form of
Petri nets or queuing networks) that can be analysed or simulated by standard
tooling [1,2,3,7,8,9].

Typically, in these approaches a design model is translated into an analy-
sis model which is then evaluated by a dedicated analysis tool. Alternatively,

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 132–147, 2014.
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the design model is translated into a simulation of the system to be built. In
both cases, however, the semantics of the non-functional property to be analysed
and of the analysis technique are only represented implicitly as encoded in the
transformations or analysis tools. This causes two problems:

1. Validation of analysis. As there is no explicit specification of the analysis
nor a high-level representation of the NFPs to be analysed, it is difficult for
users to be sure that they are analysing the correct property of their system
(see, e.g., [12] for a discussion of some of the subtleties that might need to be
considered). Conversely, it is also very difficult for tool providers to validate
the correctness of their tooling, which has a direct impact on the correctness
of their predictions.

2. Maintainability and extensibility of analyses. The tool implementations, es-
pecially in the transformations producing simulations, often tangle code con-
cerned with different NFPs. For example, the transformations used in the
Palladio Architecture Simulator [9] tangle code for performance and relia-
bility simulations. This makes the code very difficult to maintain and, in
particular, extend to support new NFPs.

In previous work [6,10,17], we have explored the modular definition of non-
functional properties as parametrised domain specific languages (DSLs) in the
e-Motions framework [11]. In the present paper, we demonstrate how these ideas
can be integrated with predictive analysis of architectural software models by
providing a modular reimplementation of a substantive part of the Palladio
Architecture Simulator [9]. In particular, we have re-implemented the Palladio
Component Model [3], its workload model, and parts of its stochastic expressions
model. However, instead of implementing transformations to analysis models or
simulators as done in Palladio, we have explicitly modelled the simulations as
graph transformations in the e-Motions framework. Each NFP to be analysed is
then modelled as an independent, parametrised DSL ready to be composed with
the base Palladio model. This addresses the above two problems in the following
ways:

1. There is an explicit specification of both the simulation mechanism and the
NFPs to be analysed. These models can be inspected and reasoned about
separately giving more assurance of correctness of the simulation results.

2. Modular definition of NFPs as separate, parametrized DSLs allows its reuse,
but also makes it easy to define additional NFPs to be analysed. For a
particular analysis problem, the relevant NFP DSLs can then be selected
from a library and composed as required. Our previous work in [5] provides
guarantees for preservation of semantics under composition, that is, the con-
sideration of additional NFPs (satisfying certain restrictions) do not change
the behaviour of the system being modeled.

While our approach may not be as performant for large models as the native
Palladio implementation, its modular and model-based nature mean that new
analyses can be prototyped very effectively. These might then still be translated
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into native implementations tightly integrated with Palladio where efficiency of
analysis is a concern over full validation of analysis. We present in this paper
the specification of the NFPs response time and throughput, but new types of
analysis could be easily added. One such analysis that could be easily prototyped
in our approach is support for dynamic systems — this possibility has already
been explored in [17]. In e-Motions, this effectively amounts to a number of
additional rewrite rules for the base model.

The remainder of this paper is structured as follows. Section 2 provides some
background on the two MDE frameworks our work relies on, namely Palladio
and e-Motions. Section 3 explains how the Palladio DSL has been defined in the
e-Motions system. Section 4 describes the way observers are defined and how
they are woven with the Palladio system to enrich the definition of its behavior
for the observation of NFPs. Section 5 illustrates our approach on a concrete
example and compares the results obtained by Palladio and by its e-Motions
counterpart. We wrap up with some conclusions and future work in Section 6.

2 Preliminaries

Our work is based on two MDE frameworks:We use Palladio [9], and in particular
the Palladio Component Model (PCM) [3], to allow modelling of component-
based systems and their performance-relevant properties; and we use e-Motions
to implement simulations of these systems’ performance properties (as well as
of other non-functional properties). In this section, we provide some background
on both frameworks to ground the discussion that will follow.

2.1 Palladio

The Palladio Architecture Simulator [9] is a predictive software analysis tool
developed by the group around Ralf Reussner at KIT in Karlsruhe, Germany.
It consists of a number of metamodels, foremost the Palladio Component Model
(PCM) [3], that allow the high-level modelling of component-based architectures
and their properties relevant for performance and reliability analysis. Instances
of these metamodels are then transformed in preparation for analysis. Palladio
supports two kinds of predictive analyses: 1) by transformation into a program
that runs a simulation of the architecture’s behaviour and 2) by transforming to
a formalism more amenable to analysis—for example, Queuing Petri Nets [14]. In
both cases, the semantics of the models, and in particular of the non-functional
properties being analysed, is encapsulated in the transformations. This makes
it very difficult to understand and validate these semantics. This is particularly
problematic as more non-functional properties are supported: the current trans-
formations support performance and reliability, but already are quite complex.
Palladio consists of over 4 million lines of code written in 12 languages.1

Fig. 1 shows a very simple example of a component specification in Palladio.
It shows a so-called resource-demanding service-effect specification (RDSEFF)

1 Based on data obtained from http://www.ohloh.net/p/palladio on Feb. 4, 2014.

http://www.ohloh.net/p/palladio
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Fig. 1. Component model

Fig. 2. Usage model

describing the key performance-relevant elements of a component’s behaviour. In
particular, Fig. 1 shows that the control flow in our component may branch into
either of three flows, with different CPU demands for each flow. Each branch
is associated with a particular branch probability to indicate the likelihood of
a particular branch being taken. This is the kind of information required to
perform execution-time analysis on the component’s behaviour as is standard in
software performance engineering (see, e.g., [13]). In addition, we could model
failure information to support reliability analysis.

Fig. 1 is only half the story. We also need to provide information about how
the component is used to be able to provide useful predictions of performance.
In Fig. 2, we see an example usage model specifying a particular workload for
our component. This part of the model uses standard workload terminology to
specify an open workload with an inter-arrival time of 2 time units. When a
request arrives, there is a delay of 5 units loading the application, after which
a call to our component is executed. With these models we now have enough
information to run a first basic simulation of our system.

The Palladio Simulator offers the results of the analysis of performance and
reliability of the system being analysed in different formats. For example, for
the above model, it gives the mean response time and confidence intervals in
Table 1. The chart in Fig. 3 represents the cumulative distribution function of
the system’s response time. Since the CPU resource gets saturated, the response
time keeps increasing along time. For 1,000 runs, tasks take up to 90 time units.
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Table 1. Palladio: results of Plain Batch Means Algorithm

Mean value: 41.97139713971397
Confidence value alpha: 0.9
Upper bound: 52.17187782288832
Lower bound: 31.770916456539624

Fig. 3. Cumulative distribution function of the system’s response time

2.2 The e-Motions System

e-Motions [11] is a graphical framework that supports the specification, simula-
tion, and formal analysis of real-time systems. It provides a way to graphically
specify the dynamic behaviour of DSLs using their concrete syntax, making this
task very intuitive. The abstract syntax of a DSL is specified as an Ecore meta-
model, which defines all relevant concepts—and their relations—in the language.
Its concrete syntax is given by a GCS (Graphical Concrete Syntax) model, which
attaches an image to each language concept. Then, its behaviour is specified with
(graphical) in-place model transformations.

e-Motions provides a model of time, supporting features like duration, peri-
odicity, etc., and mechanisms to state action properties. From a DSL definition
e-Motions generates an executable Maude [4] specification which can be used for
simulation and analysis. Other tools in the Maude formal environment, as its
model checker or its reachability analysis tool, can also be used on this specifi-
cation.

In-place transformations are defined by rules, each of which represents a pos-
sible action of the system. These rules are of the form [NAC]∗ × LHS → RHS,
where LHS (left-hand side), RHS (right-hand side) and NAC (negative appli-
cation conditions) are model patterns that represent certain (sub-)states of the
system. The LHS and NAC patterns express the conditions for the rule to be ap-
plied, whereas the RHS represents the effect of the corresponding action. A LHS
may also have positive conditions, which are expressed, as any expression in the
RHS, using OCL. Thus, a rule can be applied, i.e., triggered, if a match of the
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LHS is found in the model, its conditions are satisfied, and none of its NAC pat-
terns occurs. If several matches are found, one of them is non-deterministically
chosen and applied, giving place to a new model where the matching objects
are substituted by the appropriate instantiation of its RHS pattern. The trans-
formation of the model proceeds by applying the rules on sub-models of it in a
non-deterministic order, until no further transformation rule is applicable.

In e-Motions, there are two types of rules to specify time-dependent behaviour,
namely, atomic and ongoing rules. Atomic rules represent atomic actions with
a duration, which is specified by an interval of time. Atomic rules with dura-
tion zero are called instantaneous rules. Ongoing rules represent actions that
progress continuously over time while the rule’s preconditions (LHS and not
NACs) hold. Both atomic and ongoing rules can be scheduled, or be given an
execution interval.

3 Palladio into e-Motions

The PCM is a DSL [3], and therefore we may define it in e-Motions. As for any
DSL, the definition of the PCM includes its abstract syntax, its concrete syntax
and its behavior.

Since the Palladio system has been developed following MDE principles, and
specifically it is implemented using the Eclipse Modeling Framework (EMF),
its metamodel may be directly used as abstract syntax definition of Palladio in
e-Motions. Palladio models consist of several views, namely UsageModel, System,
etc., corresponding to the different developer roles. These models are conformant
to metamodels Core PCM, StoEx, Units, ... used by the different Eclipse plug-ins
in the PCM Bench.2

The concrete syntax is provided by a GCS model in which each concept in
the abstract syntax of the DSL being defined is linked to an image. Since these
images are used to graphically represent Palladio models in e-Motions, we have
used the same images that the PCM Bench uses to represent these concepts.
This way, we maintain the PCM’s look in the e-Motions definition.

The PCM Bench supports the design of the models corresponding to the dif-
ferent views that each developer role has to fill. However, these models define the
architecture of a system. Transformations of PCM models into queueing network
models or stochastic process algebra provide the necessary predictive analysis for
the PCM models. Thus, the semantics of the properties to be analysed as well as
of the analysis methods themselves are implicitly encoded in the transformations
and support tooling.

In e-Motions, we describe how systems evolve by describing all possible changes
of the models by corresponding visual rewrite rules, that is, time-aware in-place
transformation rules. Since the PCMmetamodel only specifies those concepts rel-
evant for the PCM language and themodels obtained from the PCMBench cannot

2 The metamodel provided to e-Motions must have a single package in a single file.
Since the PCM metamodel is defined in several packages in several files, we have
developed a higher-order transformation to prepare the input models.
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Fig. 4. Token metamodel

be directly simulated or analyzed, we have conservatively enriched the PCMmeta-
model with new concepts to handle the control flow. We call this new metamodel
Palladio*. Specifically, Palladio* has an additional metamodel Token, which in-
cludes two classes SToken and CToken. The former is specified at the systemmodel
(UsageModel) level, and the latter at the component model (RDSEFF) level. Both
SToken and CToken classes have aBool attribute completed,which states whether
an action with this token is accomplished. References—with cardinality *— to
classes SToken and CToken have been added to AbstractUserAction

and AbstractAction, respectively. An ordered reference queue from
ProcessingResourceSpecification to CToken, with multiplicity *, is used as a
queue in which actions wait until resources of the corresponding type are avail-
able. Fig. 4 shows the Tokenmetamodel and the references from classes of PCM to
SToken and CToken.

We may visualize that the execution of a Palladio model has a token “mov-
ing around” such model. An action with a token has the control of execution
— the completed attribute of a Token object becomes true once the action is
completed, then it can be moved to its successor action. In fact, there might be
several concurrent executions, since new tasks may keep arriving to the system,
depending on its work load. The execution of each of these tasks proceeds inde-
pendently, as far as the required resources are available — modelled by the rule
in Fig. 6.

Since the extension of the metamodel has been done in a conservative way,
every model conforming to the Palladio metamodel is also conforming to the
Palladio* metamodel. As we will see in Section 5, this will allow us to take
models generated in the PCM bench directly into e-Motions, and use them to
perform simulations in the e-Motions definition of Palladio.

In Palladio, an open workload specifies system usage intensity with an inter-
arrival time, i.e., the time between two user arrivals at the system, as a random
variable with some probability distribution. It models an infinite stream of users
arriving at a system, which execute their scenario, and then leave the system.
Fig. 5(a) shows the OpenWorkloadSpec rule, which specifies the behaviour of
a UsageScenario usSc with an OpenWorkload ow. When the rule is triggered,
a new system token is added to the first action of the system, i.e., the start

action. Moreover, the rule is fired every owRate, which is a local variable whose
value is given by ow’s random variable.

A ScenarioBehaviour, which is included in a UsageScenario, is composed of
a set of actions, which can be Start, Stop, EntryLevelSystemCall, Branch, and
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(a) OpenWorkloadSpec rule (b) Component call

Fig. 5. New request rule specification

Loop. These actions are modelled in e-Motions, since they are used to describe
the behaviour of system components. Components are independently specified
in Palladio, and can be instantiated from a ScenarioBehaviour by Signatures.
The EntryLevelSystemCall action represents the invocation of a component.

The rule in Fig. 5(b) shows our definition of an EntryLevelSystemCall in
e-Motions. If a (sub)-state matches its LHS, the SToken object associated to
the EntryLevelSystemCall action remains in this action, while a new CToken

is created and linked to the start action of the invoked component (effectively
building up a call stack). As the rule’s header shows, this rule is instantaneous
(it takes zero time).

The rule in Fig. 6 shows the behaviour of an InternalAction, which rep-
resents the execution of an internal activity by a component service, possibly
using some resources, like HDD or CPU. In Palladio, these executions present
a high-level abstraction, and the resource demands are expressed as a single
stochastic expression. The duration of the action depends on the parameters
of the demanded resources. Resources are limited by the available number of
resources of that type (PRS.numberOfReplicas). Tokens are served following
an FCFS strategy by using a queue associated to each resource type. Only
the first PRS.numberOfReplicas tokens in the queue PRS.queue get to be exe-
cuted. Once an internal action is executed, its token is removed from the queue
(PRS.queue->excluding(t)).

The complete e-Motions definition of the Palladio DSL is available at
http://atenea.lcc.uma.es/Palladio.

Once the whole DSL has been defined, and given a model as initial state,
it may be simulated by applying the rules describing its behaviour. This model

http://atenea.lcc.uma.es/Palladio
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Fig. 6. Internal Action specification

does not collect information on NFPs, and therefore is not ready for performance
analysis. We enrich them later, as explained in the following section.

4 NFPs by Observation

In previous work, we have proposed an approach for the specification and moni-
toring of non-functional properties using observers [15,16]. They are objects with
which we extend the e-Motions definition of systems for the analysis of NFPs by
simulation, such as mean and max cycle times, busy and idle cycles of operation
units, throughput, mean-time between failures, etc. We also explored in [6,17]
how to define observers generically and independently from any system, so that
they can afterwards be woven and merged with different systems. Given systems
described as DSLs and generic DSLs defining the different observers, we can use
these composition mechanisms to combine them. The result is that we can use
the combined enriched system DSL to monitor NFPs of our systems.

We proved in [5] that, given very natural requirements on the observers and
the instantiating mappings, the system thus obtained was a conservative enrich-
ment of the original system, in the sense that the observers added do not change
the behaviour of the system.

Given an e-Motions definition of Palladio as the one presented in Section 3,
we can then enrich it with the definition of the observers we wish, which can
be selected from a library of generically specified observers. Specifically, we can
select both those observers that monitor non-functional properties available in
the Palladio Simulator as well as those that monitor other properties. The NFPs
chosen can then be analysed by simulation.
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4.1 Generic Observers

We present in the first place a generic DSL for monitoring the response time,
which is a property included in the analysis made by Palladio. Response time
can be defined as the time that elapses since a request arrives to a system until it
is served. Hence, the same generic notion allows us to measure the response time
of information packets being delivered through a network, the number of cars
being manufactured in a production line, the number of passengers checking-in
in an airport, etcetera. Given the description of a system, in order to measure
response time, we basically need to register the time at which requests appear
in the system, and the time at which they are completed. With this data and a
simple calculation, we can easily get the response time.

A generic DSL achieving this is shown in Fig. 7. Its abstract syntax (the
metamodel in Fig. 7(a)) contains three generic and two concrete classes – generic
classes are shown with a shaded background. System, Serve and Request are
parameter classes to be instantiated by specific classes, as explained in Sec-
tion 4.2. The System class represents the whole system, which is composed of
a set of Servers. These, in turn, can have Requests to be processed. The class
RespTimeOb represents the observer for measuring the response time mean. Its
three attributes represent the number of requests already processed (counter),
the accumulated time by them (tAcc), and the current average response time
(respT). Note that there is yet another observer in this metamodel, TimeStampOb,
used to store the times of incoming Requests.

The behaviour of this DSL is defined by the in-place transformation rules
in Fig. 7, in which parametric concepts have no concrete syntax, they are de-
picted as boxes with a shaded background. Observer objects have a concrete
syntax, that will also be used to depict them in the woven rules (see below).
Rule CreateRespTOb deals with the creation of the response time observer. Its
LHS includes a condition that avoids the creation of new observer objects if
there is one, ensuring that only one of these observers is created per instantiated
object. We see in its RHS that the observer is associated to the system. Rule
RequestArrives generates a time stamp observer whenever a new Request ap-
pears. The observer gets associated to the Request and keeps the time at which it
appears in the system — note the presence of the system class Clock, which pro-
vides the current time. Finally, rule CompletedRequest computes the response
time every time a Request is consumed — the Request and its associated ob-
server have disappeared in the RHS. Attribute counter of RespTimeOb keeps
the number of completed Requests, while tAcc contains the addition of cycle
times of all Requests, i.e., the time they have spent in the system. Finally, at-
tribute respT uses the former two attributes to calculate the response time of
the System.

Fig. 8 shows a DSL for the throughput observer.Throughput can be defined
as the average rate of requests processed by a system. Given the description
of a system, in order to measure this property, we basically need to be able to
count the number of processed requests, and calculate its quotient with time.
The abstract syntax (metamodel in Fig. 8(a)) contains the same parametric
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(a) Abstract syntax

(b) Behavior: CreateRespTOb (c) Behavior: RequestArrives

(d) Behavior: CompletedRequest

Fig. 7. Response Time observer DSL definition

classes as the one for response time and the ThroughputOb class that represents
the observer. The counter attribute stores the number of Requests that are
completed, while thp is used to keep the actual throughput.

Its behaviour is also defined by three transformation rules. The CreateThpOb
rule creates the observer, as the corresponding rule for the response time ob-
server. Rule UpdateCounter increases the counter attribute of the observer
every time a Request is served. Finally, we have an ongoing rule where the value
of throughput is computed, which keeps the value thp updated as time evolves.

4.2 Adding Observers to System Specifications

In order to introduce observers in our specifications in e-Motions, we need to
weave both the metamodel and the behaviour specifications of a specific system
and the generic observer DSL. In other words, the parametric components of the
observers DSLs get instantiated with specific components. This is done by defin-
ing a correspondences model [6,10]. For example, for weaving the metamodel of
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(a) Abstract syntax (b) Behavior: CreateThpOb

(c) Behavior: UpdateCounter (d) Behavior: UpdateTHP

Fig. 8. Throughput observer DSL definition

response time (Fig. 7(a)) with the metamodel of our Palladio implementation in
e-Motions, the System class is mapped to the ScenarioBehaviour class, Server
to Start and Request to SToken. The weaving of metamodels is quite straight-
forward, and we do not show the resulting metamodel due to space limitations.
Let us focus here on the weaving of rules.

Regarding rules, we basically need to map each rule in the source DSL to a rule
in the target one. The mapping defined for the metamodel does most of the rest.
Rule RequestArrives (Fig. 7(c)) is woven with the OpenWorkloadSpec rule of
our Palladio system (Fig. 5(a)), that represents the arrival of a new SToken into
the system. Rule CreateRespTOb of the observer DSL is woven with an identity
rule, triggering the creation of observer objects if they were not already created.
Finally, rule CompletedRequest (Fig. 7(d)) is woven with the StopUsageModel

rule, which models the elimination of a token upon its arrival to a stop action.
A similar mapping is provided for the throughput observer: rules CreateThpOb

and UpdateTHP are woven to the identity rule, as CreateRespTOb, and rule
UpdateCounter is mapped to StopUsageModel.

The result of weaving the response time and throughput observer DSLs and
the Palladio* DSL results in a DSL whose metamodel is the Palladio metamodel
enriched with the additional classes as indicated in the mappings, and the rules
defining its behaviour enriched with the observer objects. Figs. 9(a) and 9(b)
show the rules OpenWorkLoad (Fig. 5(a)) and stop as resulting from the weaving
process.
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(a) Enriched OpenWorkloadSpec rule (b) Ennriched StopUsageModel rule

Fig. 9. Woven rules

Using the same mechanisms these observers may be attached to other elements
of the model. For instance, we can in this way measure the response time of each
of the components in the system. Additional observers for other NFPs may be
considered similarly.

5 Evaluation

Once the e-Motions definition of the Palladio DSL has been enriched with the
desired observers, we may use it for analysing its performance by simulation.
More specifically, since the Palladio* metamodel is a conservative enrichment,
we may take models designed in the Palladio Bench and load them into e-Motions
for simulation using the e-Motions definition of Palladio. The information in the
observers can be accessed when the simulation has completed.

Following this procedure, we have simulated the Palladio model presented
in Section 2 in the e-Motions definitions of Palladio, whose results are summa-
rized in Table 2 (for a simulation of 1000 tasks). We can observe that the value
obtained for response time is coherent with the one obtained in Palladio (cf. Ta-
ble 1), since the e-Motions’ value fits within the confidence interval returned by
Palladio. Fig. 10 shows the cumulative distribution function for the simulation
in e-Motions, while Fig. 11 shows the response time as a function of the time
when a request entries the system, based on the e-Motions output. Since the
queues get saturated, response times keep increasing.
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Table 2. Case study’s e-Motions results

Mean System Response Time 43.6626 seconds
Throughput 0.4804 seconds

Fig. 10. Cumulative distribution function for the simulation in e-Motions.

6 Conclusions and Future Work

Non-functional properties of software, such as performance, reliability, or secu-
rity, can determine success or failure of software systems. It is therefore impor-
tant to be able to provide estimates of these properties as early as possible in the
development process. Model-driven engineering has been viewed as a promising
technology for addressing this problem because of its ability to transform early
design models into analysis models. However, the semantics of the properties to
be analysed as well as of the analysis methods themselves are typically encoded
implicitly in the transformations and support tooling. Often, these encodings
tangle semantics for multiple properties to be analysed. As a result, it becomes
difficult a) to add new properties and analyses and b) to validate the transfor-
mation and analysis implementations themselves.

We have addressed this problem by presenting a modular, model-based par-
tial reimplementation of one well-known analysis framework—the Palladio Ar-
chitecture Simulator. We have specified key DSLs from Palladio in e-Motions,
describing the basic simulation semantics as a set of graph-transformation rules.
Different properties to be analysed have been encoded as separate, parametrised
DSLs, independent of the definition of Palladio. We have then composed these
DSLs with the base Palladio DSL to generate specific simulation environments.
Models created in the Palladio IDE can be fed directly into our simulation en-
vironment for analysis.

We currently provide support for key Palladio features for the definition of
usage models (start, stop, delay, and entry level system call) and component
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Fig. 11. Response Time obtained from e-Motions output

models (start, stop, branch with any number of probabilistic branches, inter-
nal action, and CPU specifications). Currently, we only have partial support of
stochastic variables. Their full support is left as future work.

We have demonstrated two main benefits of our approach: 1) The semantics
of the simulation and the non-functional properties to be analysed are made
explicit in the respective DSL specifications, and 2) because of the composi-
tional definition, it is easy to add definitions of new non-functional properties
and their analyses. More importantly, our proposal provides a place were to ex-
periment with new features and tailor solutions for specific problems at a very
low development cost.

As future work, we plan to incorporate additional features to our definition
of Palladio, as, e.g., full resource models, and failures and reliability analysis.
Indeed, we foresee generic definitions of selectable features, such as resource
handling and deployment strategies, etc. We also plan to experiment with other
NFPs, such as reliability or security, and to use our flexible setting for the analy-
sis of dynamic systems, where components and resources are dynamically added
to or removed from the system under study. For instance, in [17], we showed how
to maintain the value of cycle time around a specific goal. The dynamic system
consisted of a production line where machines had two modes of processing parts:
fast and slow. In this case, when the cycle time of parts was higher than the goal,
the speed of the machines was increased. The opposite occurred when the parts
were produced too fast. This self-adaptive behaviour was achieved by consulting
the value of the cycle time observer during simulation.
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Abstract. Typical programming languages, including model transfor-
mation languages, do not support traceability. Applications requiring
inter-object traceability implement traceability support repeatedly for
different domains. In this paper we introduce a solution for generic trace-
ability which enables the generation of trace models for all programming
languages compiling to Virtual Machine (VM) bytecode by leveraging
automatically generated observer aspects.

We implement our solution in a tool called Lässig adding traceability
support to all programming languages compiling to the Java Virtual
Machine (JVM). We evaluate and discuss general feasibility, correctness,
and the performance overhead of our solution by applying it to three
model-to-model transformations.

Our generic traceability solution is capable of automatically establish-
ing complete sets of trace links for transformation programs in various
languages and at a minimum cost. Lässig is available as an open-source
project for integration into modeling frameworks.

1 Introduction

Model-driven Software Development (MDSD) relies on use of models to design,
construct and maintain software systems. Many models in this process are re-
lated by various semantic relations. For example, in generative setups, model
transformations automatically convert models into other models.

Strict quality management processes usually require that a project can identify
and retrieve these relations. This ability is known as traceability and the stored
relations are known as trace links, which chronologically interrelate uniquely
identifiable entities along a set of chained operations [15].

Co-evolution of related artifacts is a major challenge, especially for systems
containing related models expressed in multiple languages [16]. If a model is
modified, other related models need to be adapted accordingly. It is hard for
developers to identify the affected artifacts. Trace links keep this information.
Thus, automatic tracing of object relations via corresponding transformations,
would allow us to dramatically improve tool support for co-evolution of multi-
language software systems. In this paper we take a first step to support co-
evolution of related artifacts by automatic tracing of object relations caused by
transformations.
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Fig. 1. Transformation of a class model attribute into a database model column

1 def Column create c: factory.createColumn() attribute2Column(Attribute a) {
2 if(!a.isMany) {
3 c.name = a.name
4 c.table = a.owner.class2Table()
5 c.type = a.type.name.toDbType()
6 }
7 }

Listing 1. A model transformation rule in Xtend transforming Attributes to Columns
and causing a trace link between such instances

Strictly speaking, traceability concerns not only the links between models,
but also relations between other artifacts, so for example between models and
code, or between documentation and code. In this paper, we follow the unifying
assumption of Bézivin that everything is a model [3], which includes code and
documentation.

Consider an example transformation converting a class model into a database
model; more precisely, the transformation of a class attribute to a database table
column. Figure 1 shows the input and output languages of this transformation,
while Listing 1 presents the transformation rule expressed in the popular Xtend
language1, which does not maintain explicit links between input and output.

A similar problem appears for transformations implemented in Java. Listing 2
shows an excerpt of org.eclipse.emf.ecore.impl.EClassImpl from the Eclipse
Modeling Framework (EMF) [20], which locates EObjects based on fragments of
unified resource identifiers. Here, no trace link is kept between the input instance
of a String and the output instance of an EObject.

Trace links between objects are usually not maintained automatically by trans-
formation programs, since traceability is not a first class concern in most lan-
guages used for implementing transformations. However, in the realm of object-
orientation, where all development artifacts and their contents are objects, rela-
tions between development artifacts are described explicitly by transformation
programs, but the traces between artifacts and their transformed contents cannot
1 http://xtend-lang.org/
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1 public EObject eObjectForURIFragmentSegment(String uriFragmentSegment) {
2 EObject result = eAllStructuralFeaturesData == null || eOperations != null && !

eOperations.isEmpty() ? null : getEStructuralFeature(uriFragmentSegment);
3 return result != null ? result : super.eObjectForURIFragmentSegment(uriFragmentSegment);
4 }

Listing 2. A Java method causing a trace link between String and EObject instances

be utilized by other tools. Only few languages, such as the Atlas Transforma-
tion Language (ATL) [5] or the Epsilon Transformation Language (ETL) [12],
automatically establish traces between the source objects and target objects of
a transformation. So far, adding traceability to a transformation language has
required deep insight into language design and advanced language implementa-
tion skills. It could not be done orthogonally, in a language independent manner,
and clearly not by language users (as opposed to language designers and imple-
menters). Today, if traceability support is required either the system needs to
be implemented in a programming language with built-in traceability support
or tracing has to be added to relevant methods or transformation rules. The
former is not suitable for legacy systems, as it would require reimplementation.
The latter misses the opportunity to reuse application independent functionality,
and pollutes business logics with it.

To overcome the aforementioned problem we contribute the following: 1) A
generic aspect-based model-driven solution to support traceability for all pro-
gramming languages compiling to bytecode of a VM; 2) Lässig, a prototypical
implementation2 for programming languages compiling to JVM bytecode; 3)
Identification of heuristics, which determine program structures creating trace
links and discussion of extensions and alternative heuristics; 4) Evaluation of our
solution by applying Lässig to three model transformations, each implemented
in Xtend, Java, and Groovy.

The evaluation shows that the automatically established trace links are correct
and complete. The obtained set of traces is similar to the one registered for
ETL transformations, a language with dedicated traceability support. Finally,
the additional runtime overhead for using the generic traceability approach is
rather moderate. We hope that Lässig is of interest for tool builders and vendors
allowing lightweight integration of traceability into modeling frameworks.

We proceed as follows. Section 2 presents the architecture of our generic trace-
ability solution. We discuss the prototype implementation (Sect. 3), evaluate the
idea (Sect. 4) and discuss the evaluation results (Sect. 5). Finally, we survey the
related work (Sect. 6) and conclude with a sketch of future work (Sect. 7).

2 The Solution

2.1 Architecture

Previous work [8,24] argues to support traceability generically in existing trans-
formation languages or frameworks by abstraction over particular transformation
2 http://svn-st.inf.tu-dresden.de/websvn/wsvn/refactory/trunk/Lässig/

http://svn-st.inf.tu-dresden.de/websvn/wsvn/refactory/trunk/L%C3%A4ssig/
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Fig. 2. Architecture for generic traceability

languages. With the help of such an abstraction trace links can be established
generically for different transformation languages. We generalize this claim and
argue that traceability can be generically added to arbitrary programming lan-
guages by relying on a common representation. Bytecode executed on VMs can
serve as such a common denominator. Adding traceability to the common repre-
sentation, uniformly integrates this orthogonal language feature to all program-
ming languages compiling to the same VM.

Figure 2 illustrates the architecture of our solution for generic traceability.
We use two metamodels to parametrize a code generator creating traceability
code. The metamodels contain all classes for whose instances trace links should
be established. In a model transformation scenario the metamodels are readily
available as model transformations are specified on top of them.

We use aspect weaving to instrument the transformation code with the trace-
ability code. Recall the transformation rule in Listing 1. The rule causes a trace
link between an object a of type Attribute (the rule’s argument) and an object
c of type Column (return value) as properties of a are, with some modifications,
assigned to properties of c. The concern of traceability could be introduced by
inserting directives, such as tracemodel.addLink(a,c) to the end of every trans-
formation rule.

Obviously, the concern of traceability is a cross-cutting concern [10,11,21] as
it requires similar directives to be introduced in every transformation rule in
any language in any domain that should support traceability. Such cross-cutting
concerns are effectively handled by aspect-oriented programming, encapsulating
recurring code in aspects. Aspects can be woven anywhere the concern is re-
quired, which is the reason for the aspect-oriented architecture of our solution.
A traceability aspect is generated once, for each pairwise combination of meta-
models. The traceability code within the aspects is conceptually similar to the
previous example. The aspects and the aspect generation is detailed in Sect. 2.2.

Whenever programs transforming model elements of the types specified in the
parametrization phase are executed on the VM, the traceability aspect is woven
into the transformation’s bytecode. There, trace links between transformed ob-
jects are automatically established and maintained in a trace model. We can
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say, that a traceability aspect observes the VM for transformations interrelat-
ing objects. Obviously, the created trace models maintain trace links created by
programs of arbitrary domains implemented in arbitrary languages.

2.2 Heuristics for Traceability Aspects

In the realm of object-orientation, all development artifacts and their contents
are objects, since these entities are uniquely identifiable entities. Thus, in MDSD,
all models and model elements are objects again. In this paper, we use the terms
object and model element synonymously. Our solution provides traceability at
object level. Consequently, all abstract metaclasses in the parametrizing meta-
models are not considered as traceable. Therefore, no traceability code is gener-
ated for them. Furthermore, our solution relies on the following two heuristics
to automatically establish trace links when observing transformations.

(i) Related objects are an argument and a return value of a transformation (a
method). Additionally, both objects are not null after method execution.

(ii) Related objects are both arguments of a transformation (a method) and at
least one of them is modified during method execution.

The rationale for (i) is, that a method parametrized with an object and re-
turning a non-null object likely reads the argument to return the corresponding
result. Thereby, both objects are in relation and should be linked. The rationale
for (ii) is similar. A method parametrized with two arguments, where after exe-
cution at least one argument is modified, likely reads one object to modify the
other one. The simplicity of the two heuristics is their main power—it means
that establishing trace links between objects can be done based on types of
these objects and a simple check of input and output parameters of a method. It
remains completely independent of the complexity of the transformation itself.

These heuristics are the basis for aspect generation. They are implemented
in the traceability aspect generator (Fig. 2). A generated aspect contains four
pointcuts for each combination of metaclasses in the parametrization metamod-
els. Recall the example of transforming a class’ attributes to table columns (see
Listing 1). Listing 3 illustrates the generated pointcut definitions for Attribute
and Column types. The pointcuts findMethodC and findMethodD (lines 3 and 4),
implement heuristic (i) where objects of types Attribute or Column are returned
or are an argument respectively. For example, the pattern execution(Attribute
*(.. , Column, ..)) matches the execution of all methods with arbitrary name
(*) returning an Attribute and a Column as argument. Pointcuts findMethodA and
findMethodB (lines 1 and 2), implement heuristic (ii) where objects of Attribute
and Column are both arguments. The pattern execution(* *(.., Column, ..,
Attribute, ..)) matches the execution of all methods with arbitrary name and
arbitrary return type (leading *) with two arguments of the respective types.
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1 private pointcut findMethodA(Column t1, Attribute t2) : !within(Tracer) && execution(*
*(.., Column, .., Attribute, ..)) && args(t1,t2,..);

2 private pointcut findMethodB(Attribute t1, Column t2) : !within(Tracer) && execution(*
*(.., Attribute, .., Column, ..)) && args(t1,t2,..);

3 private pointcut findMethodC(Attribute t1) : !within(Tracer) && execution(Column *(..,
Attribute, ..)) && args(t1,..);

4 private pointcut findMethodD(Column t1) : !within(Tracer) && execution(Attribute *(.. ,
Column, ..)) && args(t1,..);

Listing 3. Generated traceability aspect for transformations between class models and
relational schema

The aspect contains also advise blocks, which are not shown here, due to their
size.3 The advise blocks implement the checks of heuristics (i) and (ii) for non-
null objects or for modified objects. Whenever the conditions of a heuristic hold
in an executed transformation, a trace link is established.

Our experiments (Sect. 4) show that the two heuristics described above are
quite powerful and generate correct trace models for our evaluation cases. In the
design process we have considered two alternative heuristics, which we eventually
discarded. We discuss them briefly below.

Transformation Rules with Multiple Arguments of the Same Type. As described,
our solution establishes links for transformation rules with two arguments or
with an argument and a return value which are combinations of two types (meta-
classes). An extended heuristic would allow establishing trace links for transfor-
mation rules with either many arguments of the same type or with collections
of types. Referring to the metaclasses used in Listing 3 the pointcuts realizing
this heuristic could be implemented as shown in Listing 4. However, we do not
to apply this heuristic as we consider such transformation rules “bad style” of
programming. Transformations of collections should call transformations of sin-
gle instances. The latter transformations are matched by heuristics (i) or (ii). A
larger study applying Lässig to industrial model transformations could give an
incentive to implement this heuristic.

Transformation Rules Containing Transformation Code. As discussed previ-
ously, our heuristics establish trace links based on execution of transformation
rules, simply by inspecting the top activation frame on the call stack. A complex
transformation encoded in a single rule results in a single trace link between the
top most objects. Potentially, one could obtain more information, by inspecting
the entire call stack, not just the top-most environment. An aspect observing tem-
porally related accessor calls (get and set methods) of distinct objects within the
control flow of a common transformation method could identify potential trace
links between the accessed objects. However, such a heuristic would limit the
generality of the solution, as not all JVM languages implement attribute access
via accessor methods.
3 http://svn-st.inf.tu-dresden.de/websvn/wsvn/refactory/trunk/Lässig/
dk.itu.sdg.aspect.tracemodel.generator/output/Tracer.aj shows the entire
generated aspect.

http://svn-st.inf.tu-dresden.de/websvn/wsvn/refactory/trunk/L%C3%A4ssig/dk.itu.sdg.aspect.tracemodel.generator/output/Tracer.aj
http://svn-st.inf.tu-dresden.de/websvn/wsvn/refactory/trunk/L%C3%A4ssig/dk.itu.sdg.aspect.tracemodel.generator/output/Tracer.aj
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1 private pointcut findMethod(Column t1, Attribute t2, Attribute t3, Attribute t4) : &&
execution(* *(.., Column, .., Attribute, Attribute, Attribute, ..)) && args(t1,t2,t3,
t4,..);

2
3 private pointcut findMethod(Collection t1, Attribute t2) : && execution(* *(.., Collection

<Column>, .., Attribute, ..)) && args(t1,t2,..);

Listing 4. Generated traceability aspect for transformations between class models and
relational schema

Note, our solution supports object-level granularity for trace links, where the
level of granularity depends only on the method granularity a developer uses to
implement transformations. The more methods implemented for different object
metaclasses the more fine-grained the trace links. Attribute-level granularity is
therefore supported if an attribute is a metaclass itself.

3 Lässig: An Implementation

We implement our solution in a tool called Lässig , which provides traceabil-
ity support for all compiled programming languages executed on the Java Vir-
tual Machine. Lässig is implemented as a set of Eclipse bundles: one bundle for
the aspect generator, one bundle containing the traceability aspects, and one
bundle containing the trace model itself. Lässig requires that the metamodels
parametrizing the traceability aspect generator are available as EMF models.
Such metamodels are most often readily available for model transformations.
When adding traceability to programs in general, the metamodels need to be
created. They should contain a metaclass for each traceable JVM type.

Lässig relies on Equinox Weaving4 for aspect weaving. The traceability aspect
resides in an OSGi bundle specifying which other bundles are observed, i.e., in
which classes of other bundles the aspect is woven into. We use load-time weaving,
which is triggered whenever the JVM loads a class for the first time.

When a transformation from an observed bundle is executed the woven trace-
ability code is invoked and trace links are automatically recorded in an in-
memory trace model. It can be used as a knowledge-base for tools supporting
developers in coding and co-evolution, or it can be serialized and directly in-
spected by developers.

4 Evaluation

In order to evaluate the quality of generically established trace links of JVM
programs we investigate the following research questions:

RQ1 What is the precision and recall of automatically established trace links
with respect to the definition of trace link presented in Sect. 1?

4 http://eclipse.org/equinox/weaving

http://eclipse.org/equinox/weaving
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RQ2 What is the precision and recall of automatically established trace links
in comparison to those established by a transformation language with
dedicated traceability support?

RQ3 What is the performance overhead, in terms of time, of the generic trace-
ability solution applied to model transformations in different JVM lan-
guages?

Note that the precision and recall are always defined with respect to a ref-
erence set. To avoid bias, we compare recovered trace links to two different
reference sets, instead of to idealized links. Thus, the precision and recall with
respect to the reference sets are evaluated for answering RQ1 and RQ2.

4.1 Experiment Setup

To evaluate our solution we rely on three model transformations as experiment
subjects: (i) from tree models to graph models (tree2graph), (ii) from class
models to relational schema (class2db), and (iii) from family models to person
models (family2person). All three model transformations are well known canoni-
cal examples in the modeling community. We rely on independent specifications
of these transformations from other projects. The specifications of tree2graph5

and class2db6 are taken from resources of the ETL community. The specification
of family2person7 is taken from the ATL transformation zoo.

These transformations are often used in teaching transformation languages,
so they cover all major concepts used in transformations: rules transforming
model elements, their properties, containment relations, and references. Thus,
we believe that they are relevant evaluation subjects, with reasonable coverage
of constructs.

We implement each of the transformations in three languages: Xtend, Groovy,
and Java. Xtend is often used for model transformation implementations. It
compiles to Java source code. Groovy is a dynamic programming language for
the JVM. Each of them compiles to JVM bytecode. Xtend, Groovy, and Java
are among the most popular languages used in practice for implementing model
transformations. For this reason we believe they are interesting targets for eval-
uation of a language-independent traceability mechanism.

The transformation implementations in Xtend, Groovy, and Java follow a rule-
based style. For each combination of metaclasses whose instances are transformed
we implement a separate method (Groovy, Java) or rule (Xtend).

As input models we use a tree, family, and class model for the respective
transformation. The models contain 6, 11, and 19 model elements respectively,
see Table 1.
5 http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.
examples.tree2graph

6 http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.
examples.oo2db

7 http://www.eclipse.org/atl/atlTransformations/#Families2Persons

http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.tree2graph
http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.tree2graph
http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db
http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db
http://www.eclipse.org/atl/atlTransformations/#Families2Persons
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Table 1. Number of trace links established for transformations in different languages

Number of Trace Links Model Sizes
Java Groovy Xtend Input Output

tree2graph 7 13 14 6 11
family2person 9 9 27 11 9
class2db 14 14 38 19 35

The experiment is conducted on a 2.9GHz Intel i7 Mac Book with 8GB of
RAM, of which 4GB are assigned to the Java 6 virtual machine. We use AspectJ
(1.7.2), Xtend (2.3.1), and Groovy (2.0.0).

4.2 Absolute Quality of Generic Traceability

RQ1. What is the precision and recall of automatically established trace links
with respect to the definition of trace link presented in Sect. 1?

For each transformation we serialize a trace model after completion. To answer
this question, we manually compare the input models and output models to-
gether with the automatically established trace models. Then, we investigate if
the established trace links are correct (precision) with respect to the definition of
trace, and if we missed some traces (recall). Correctness criteria are (i) that the
linked objects exist in the input and output models, and (ii) that the associated
transformation rules establishing a trace link exist and actually transform an
object or parts of it into another object of the appropriate type.

Results. The numbers of established trace links are presented in Table 1. For
example, for the tree2graph transformation Lässig establishes 7, 13, and 14 trace
links for the Java, Groovy, and Xtend transformations respectively.

Recall the definition of a trace link. A trace links objects over a set of chained
operations. Thus, a trace model for a language in which transformation rules
are compiled to multiple methods in bytecode is incorrect if it does not contain
multiple trace links for each method on bytecode level. In our experiment we
found no incorrect links in this sense (100% precision and recall).

Discussion. The reason for the differing amount of established trace links for the
three transformation languages is, that compilation of transformation rules to
bytecode methods is language specific. For example, closures in Groovy methods
(as in tree2graph) are compiled to separate unfolded methods in bytecode. Sim-
ilarly, Xtend transformation rules creating model elements, are compiled to two
consecutive methods. One for caching and one for the actual transformation.

We conclude that Lässig does not neglect trace links but establishes trace
links correctly with respect to the programming language used.
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Table 2. Number of conceptual trace links established for transformations in different
languages compared to ETL trace links

No. of Conceptual Trace Links Model Sizes
ETL Java Groovy Xtend Input Output

tree2graph 6 7 7 7 6 11
family2person 9 9 9 9 11 9
class2db 14 14 14 14 19 35

4.3 Relative Quality of Generic Traceability

RQ2. What is the precision and recall of automatically established trace links
in comparison to those established by a transformation language with dedicated
traceability support?
So far, we have established experimentally that trace links are correct with re-
spect to our trace definition. Now, we investigate if the trace links are correct
in comparison to those established by a language with first class traceability
support. We implement and execute all three transformations in ETL. Since
tree2graph and class2db were originally implemented in ETL we reuse these
transformations. We manually convert family2person from ATL to ETL. Sub-
sequently, we manually compare the ETL trace links with those established by
Lässig. The trace link sets obtained with ETL serve as the baseline when inves-
tigating the research question.

Besides the correctness criteria explained in Sect. 4.2, the following criteria
must be satisfied: The set of established trace links must not be smaller than
the the one from ETL, i.e., there must be an injective mapping from the set of
trace links generated by ETL to the set of trace links generated by Lässig.

Results. The results of this experiment are presented in Table 2. The first column
contains the number of trace links established by ETL. For example, tree2graph
in ETL results in 6 trace links. On the other hand Lässig establishes 7 trace links
for Java, Groovy and Xtend respectively. Some languages produce more trace
links than others for the same transformation due to the way they are compiled.
To allow for a comparison we collapse multiple trace links from consecutively
executed caching and transformation methods into conceptual trace links. Con-
ceptual trace links relate to objects (disregarding JVM operations linking them)

— so several links between the same objects are collapsed into a single one, if
they only differ by consecutive operations on bytecode level causing the link, but
all belong to the same transformation rule.

All links established by ETL are matched by links generated by Lässig (100%
recall). In some cases Lässig establishes more trace links than a corresponding
ETL transformation. For example the tree2graph transformation results in a pre-
cision of approximately 86%. For this transformation in Java, Groovy, and Xtend
one false positive with respect to ETL is established respectively. For the other
two transformations Lässig establishes a corresponding trace link for any ETL
trace link. Thus, both precision and recall are 100% for these transformations.
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Discussion. The disparity between the numbers of recovered traces by Lässig
and ETL is caused by ETL implicitly transforming root model elements without
an explicit transformation rule. For example, tree2graph in ETL consists of one
transformation rule converting model elements of type Tree to model elements of
type Node. The graph model’s root element of type Graph is generated automat-
ically without an explicit transformation rule. That is, ETL’s trace model does
not contain a trace link between two model elements of respective types Tree
to Graph. On the other hand, all the Java, Groovy, and Xtend transformations
consist of two transformation rules. One from model elements Tree to Node and
one for model elements Tree to Graph.

Since our solution integrates traceability on bytecode level, Lässig’s trace mod-
els for Xtend transformations are always larger than trace models from ETL
transformations. For Java and Groovy they might be larger, depending on the
chosen transformation rules and the chosen programming style. However, the
larger trace models are still correct because they contain a corresponding trace
link for each trace link in an ETL trace model.

4.4 Performance Overhead of Generic Traceability

RQ3. What is the performance overhead, in terms of time, of the generic trace-
ability solution applied to model transformations in different JVM languages?
Introducing a new concern into a software system is always associated with a
cost. To determine the performance overhead of generic traceability, we run a
controlled experiment with two factors on the same experimental subjects as
before: with Lässig enabled or disabled. For each factor, each transformation in
Xtend, Groovy, and Java is run in five separate test suites. A test suite means
that the transformation classes are reloaded in a new Eclipse instance because the
first execution of a transformation is more costly due to weaving the traceability
aspect (load-time weaving). After the initial transformation, it is re-run five
times in each test suite. That is, each transformation is run 30 times in total,
which allows for comparison of average runtimes.

Results. Table 3 provides an overview of results of time measures. For each of the
three model transformations we provide the execution time in milliseconds. The
speed ratio in the rightmost columns shows how much longer a transformation
runs with traceability enabled compared to the same transformation without
traceability. Effectively the cost of generic traceability (with respect to no trace-
ability at all) ranges from 4% to 400%.

The only outlier in this experiment are the transformations implemented in
Groovy. They are generally slower than those in Java and Xtend. Somewhat sur-
prisingly, class2db in Groovy on the very first class load with enabled traceability
is 2% faster than without traceability.

Discussion. It is obvious that all transformations take considerably longer on
class load than in subsequent runs. Also obvious is that different languages are
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Table 3. Average execution times of the model transformations

Avg. Runtime [ms] Speed Ratio
Java Groovy Xtend Java Groovy Xtend

tree2graph
with tracing on 1st class load 32.80 869.20 12.00 1.62 1.18 3.53

after 1st class load 0.16 1.36 0.56 2.00 1.31 2.33
without tracing on 1st class load 20.20 736.60 3.40

after 1st class load 0.08 1.04 0.24

family2person
with tracing on 1st class load 62.60 602.20 59.00 4.89 1.51 5.18

after 1st class load 0.16 1.20 0.32 4.00 1.11 4.00
without tracing on 1st class load 12.80 399.60 11.40

after 1st class load 0.04 1.08 0.08

class2db
with tracing on 1st class load 48.80 913.60 28.20 2.05 0.98 3.92

after 1st class load 0.92 3.84 1.64 1.35 1.04 2.93
without tracing on 1st class load 23.80 931.80 7.20

after 1st class load 0.68 3.68 0.56

more or less efficient in their JVM implementation. However, the large slow-
downs can be observed in the time efficient implementations of Java and Xtend,
where the average runtimes for each transformation with traceability enabled
is always below two milliseconds. So, still with Lässig’s traceability enabled,
the transformations run fast. Performance of transformations is usually more
important in high volume processing, and here it is beneficial that after the
initial class loading, the performance usually improves.

For the measurement of Lässig’s timing properties we may not have chosen
a sufficiently large number of iterations, but we think that our results, after ig-
noring the outlier, give an indication of how much resources Lässig’s traceability
mechanism consumes on top of the plain transformations.

5 Threats to Validity

Threats to Internal Validity. First, the three subject model transformations might
not be representative. They are all small, ranging from one rule in tree2graph to
eight rules in class2db. However, other transformations, even if they consist of more
rules, would not encode different transformation patterns. More importantly, Läs-
sig’s aspects consist of two Cartesian products of the sets of metaclasses from both
metamodels A and B and creates four pointcuts for each metaclass tuple—one
Cartesian product for A×B and one for B ×A. Thus, it is not relevant how com-
plex the transformations are as Lässig only depends on matching metaclass tuples
in the pointcuts. Thus, all executed transformation rules are traced independently
of their complexity or their amount.

Second, the size and complexity of the chosen models and metamodels may be
too small. However, even though the models may be small (six to 35 model ele-
ments), they contain all typical model structures, such as containment relations,
references between model classes, etc. Again, the internal complexity of models
and metamodels has no influence on the solution as the generated traceability
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code only relies on the Cartesian products of the metaclasses involved. Other
structures in the transformed models are irrelevant for identification of executed
transformation rules.

Third, when implementing the model transformations in Java, Groovy and
Xtend we might be biased to implement method or rule signatures which are
certainly matched by the pointcuts in the generated observing aspect. We tried to
minimize this risk by converting the ETL and ATL transformations consistently
to the other languages, just adjusting the syntax.

Lastly, the reliability for the performance overhead measurements could have
been improved, first by larger input models as they result in longer runtimes per
transformation decreasing the effects startup time delays caused by Just-In-Time
compilations and the garbage collector. These effects could be further decreased
by executing more iterations of each transformation. Running an extensive study
for performance overhead of generic traceability will be addressed in future work.

Threats to External Validity. The choice of the experiment computer and the
choice of concrete language versions, may produce particularly fast results when
establishing the trace models. For reproducibility we will gladly share our exper-
iment Eclipse setup if requested.

6 Related Work

As already mentioned, some model transformation languages provide built-in
traceability support. For example, Tefkat [13] automatically generates a generic
trace model for each transformation rule and traces can be customized within
rules. Similarly, ETL [12] and ATL [25] automatically generate trace models via
a post condition guarding a model transformation. Also QVT [14] has built-in
traceability support. Similar to Lässig the three languages establish trace links
between objects serving as arguments or as arguments and return values of
transformation rules [1]. The main difference between Lässig and the previous
languages is, that they implement traceability support for a particular language
only. In contrast, Lässig is language independent. It applies the same traceability
support to any JVM language as traceability is realized on bytecode level.

Currently, Lässig is applicable to languages compiling to Java bytecode. Inter-
preted languages cannot be supported generically as interpreters often obfuscate
the relation between the program objects and JVM objects at the bytecode.
Implementing interpreted languages via language workbenches, such as EMF-
Text [2] or Xtext [6] and mapping them to Java is likely the least expensive
manner to let Lässig provide traceability support to such languages.

Grammel et al. [9] categorize generation of trace models into two major groups.
First, by utilizing the transformation program or second, independently of the
transformation program. Clearly, Lässig utilizes the transformation program by
observing its execution and establishing trace links as soon as objects of inter-
est are modified. ETL’s, ATL’s, and QVT’s traceability mechanisms fall into
the same category. The second category is well researched as model match-
ing [4,9,22,23] in the modeling community or as schema matching [17,19] in the
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database community. The former matches models and metamodels, in general
object graphs, to each other and whenever a certain similarity measure between
sub-graphs is fulfilled trace links are automatically created. The latter is simi-
lar to model-matching, although it often incorporates semantic analysis of the
schemas in addition to their structural information.

Also other works [8,24] propose a solution for generic traceability support.
Both solutions rely on a generic traceability interface abstracting from concrete
transformation languages. In both solutions, this interface needs to be imple-
mented repeatedly for any language which should support traceability, which is
not required by Lässig.

Jouault [10] applies a model transformation to merge traceability rules into exist-
ing ATL transformation rules. This can be seen as an aspect-oriented programing-
like technique for ATL, where ATL’s metamodel is the join-point model for static
weaving. This is similar to Lässig, which also requires a joinpoint model for as-
pect weaving. But thanks to relying purely on the JVM bytecode to provide the
joinpoint model, Lässig is significantly more generic than Jouault’s solution. Fur-
thermore, Lässig automatically generates the traceability code out of metamodels.
That is, Lässig provides traceability with no programming effort.

Fabro and Valduriez [7] utilize metamodels to generate model transformations
semi-automatically. The goal is to relieve developers of manual implementation
of recurring code patterns. Lässig can be considered a domain-specific refinement
of the described solution, where the restriction to generation of traceability code
allows for complete automation.

7 Future Work and Conclusion

We have introduced a solution for generic traceability for languages compiling
to a VM. We provide Lässig, a prototype implementing our solution for all
programming languages compiling to Java bytecode. We have demonstrated that
Lässig is a practical and feasible solution. It automatically establishes correct and
complete trace models.

Lässig has one limitation, the granularity of the trace model, i.e., the number
of automatically established trace links depends on the quality of the observed
transformation code. A transformation rule implementing a complex transforma-
tion of many objects of different types results in a trace model containing only
a single trace link. We do not think that this limitation is very serious. First,
implementing such a “bad style” transformation in, for example, ETL results
in a similarly sparse trace model and second, such a sparse model still contains
correct trace links maintaining more information than available without Lässig.

We demonstrate the capability of Lässig. We show that Lässig provides trace-
ability at very low additional cost. It is neither necessary to manually implement
traceability support for different domains in different languages nor is it neces-
sary to learn aspect-oriented programming. Instead developers just parametrize a
code generator with metamodels and thereby generate traceability aspects. We
have experienced that Lässig generates 100% correct trace models. Currently,
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the only requirement is to follow good style of writing transformations, i.e.,
one method or transformation rule per combination of transformed metaclasses.
Hence, transformation developers get traceability with very little effort. If they
use EMF models there is no effort.

In the paper, we have used one step transformations to evaluate the tools.
But Lässig can handle chains of transformations as well. If all the development
artifacts are projected as models, it is possible to establish sequences of trace
links that span larger parts of development process (end-to-end traceability), as
long as all the steps are executed in a JVM.

In future we plan to evaluate Lässig in combination with code generators, i.e.,
model-to-text transformations. We assume that Lässig can be applied effectively
since many generators use method signatures matching pointcut findGenMethod
(Type t1): execution(String *(.., Type, ..))&& args(t1,..) pointcuts. Such
a heuristics is likely to work with Xpand generator templates in Xtend. However
verifying this requires extending Lässig to keep track of locations in the generated
text file.

Furthermore, we investigate the feasibility of Lässig to foster co-refactoring
capabilities of the generic model refactoring framework Refactory [18]. Lässig is
used to determine traces from evolving to dependent models in case they relate
to each other by transformation. Then Refactory can apply co-refactorings to
dependent models.
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Abstract. One of the main goals of Model-Driven Engineering (MDE)
is the manipulation of models as software artifacts. Model execution is in
particular a means to substitute models for code. Precisely, if models of a
dedicated Domain-Specific Modeling Language (DSML) are interpreted
through an execution engine, then this DSML is called interpreted-DSML
(i-DSML for short). The possibility of extending i-DSML to adapt models
directly during their execution, allows the building of adaptable i-DSML.
In this article, we demonstrate that specializing adaptable i-DSML leads
to the potential definition of accurate adaptation policies. Domain-speci-
ficities are the key factors to identify adaptations that really make sense.
In effect, we introduce the concept of family as a mean to encapsulate
adaptation operations that are attached to a particular domain. Families
can be specialized with the special purpose of defining a hierarchy of
adaptation contexts.

Keywords: Model execution, adaptation, i-DSML, models at runtime.

1 Introduction

The main goal of Model-Driven Engineering (MDE) is to cope with productive
models to build software. This can be commonly achieved by generating the
code of the software from the models. On another hand, it is also possible to
directly execute a model. In this case, the software system is an execution engine
implementing an execution semantics and interpreting a model. Such a model
is written in an interpreted Domain-Specific Modeling Language or i-DSML for
short [8]. With i-DSML, the ability to run a model prior to its implementation is
a time-saving and henceforth cost-saving approach for at least two reasons: (a) it
becomes possible to detect and fix problems in the early stages of the software
development cycle and (b) ultimately the implementation stage may be skipped.
One slogan associated to i-DSML could be “what you model is what you get”
(WYMIWYG).

Meanwhile, software adaptation and self-adaptive software [15] have gained
more and more interest. The runtime adaptation problem is commonly tackled as
a two-stage adaptation loop (analyze–modify). In the MDE field, one of the most
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Fig. 1. Adaptation loops

prominent way to implement this loop is models@run.time [2], where models are
embedded within the system during its execution and acting primarily as a
reasoning support (case (a) in Fig. 1). The model is representing the current
state of the system and the necessity of adaptation is checked through it. The
required adaptation actions are then processed on the system. For adapting
a model execution, these models@run.time principles can of course be applied
(case (b) in Fig. 1). One can notice that in this particular case, there are two
models at runtime. The first one is the executed model and the second one is
the model representing its state in an adaptation purpose. As the content of the
latter is based on the content of the former, this introduces a kind of redundancy
between the two models which are hence containing similar or derived elements.
In this case, why not directly integrating elements dedicated to the adaptation
in the executed model? Even if it leads to complexify the model, it avoids the
main disadvantage of models@run.time which is to maintain a consistent and
causal connection between the system and the model for the model being a valid
representation of the system at runtime. Now (case (c) in Fig. 1), the model is
directly self-interrogating for managing its own adaptation. Such adaptable and
executable models are written in an adaptable i-DSML [5, 6].

In this paper, we focus on the direct adaptation of an executed model (case (c)
in Fig. 1) with the definition of adaptable i-DSML. To that extent, we propose an
example about a homemade process modeling language. Through this example,
we show that specializing the i-DSML leads to enabling automatic and relevant
adaptation policies. Indeed, with general-purpose models (and without strong
link to any particular business content), it is often difficult, even impossible, to
define automatic adaptation actions. Adding new elements on the metamodel
or restricting the space of possible models through additional constraints can
unlock this situation. The concept of adaptation family is proposed for man-
aging adaptable i-DSML specialization. A family is composed of a specialized
metamodel and associated adaptation policies. Families may inherit from each
other allowing the definition of hierarchies of families. Inheritance naturally of-
fers the reuse, factorization and specialization of adaptation policies as for code
in object-oriented programming.

The rest of this paper is organized as follows. The next section presents an
i-DSML defining timed processes and shows that, in case of delay in the process
execution, no adaptation action can be established. Sect. 3 defines the concept of
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families for managing adaptation. Sect. 4 presents some families for the i-DSML
of timed processes and concrete adaptation policies. Finally, related work is
discussed before concluding.

2 i-DSML Adaptation: A Working Example

Let us consider the i-DSML named Process Description Language (PDL), that
is intended to model any kind of processes as an ordered list of activities. It is
freely inspired from standard process languages like SPEM [13] or BPMN [1],
which are typically coupled with workflow engines for their execution. Here, this
is a simple version that supports parallel activities and includes time concerns.
The metamodel and the execution semantics of such an i-DSML are described
prior to an illustration of the latter in action is provided. Then, questions about
its possible adaptations are raised.

2.1 Definition of the PDL Metamodel

Model execution and i-DSML have been widely studied, for instance in [3,4,6,8,
9,12]. All these works establish a consensus on model execution. Accordingly, in
this section, the PDL i-DSML is described following the characterization of [6].
Fig. 2 defines its metamodel. A metamodel of an i-DSML first contains a static
part. This part is simply a metamodel commonly defined for design purposes.
Here, the goal of this static part is to define the elements which aim at forming
the structure of a process. These elements are manifold and abstracted through
the ProcessElement meta-element. The main concrete process element is a se-
quence containing a set of activities. Activities within a sequence are ordered as

Gateway PseudoActivity

Join Fork End Start

name: String

<<execution>> runProcess()

name: String
currentProcessElements
0..*

processElements
0..*

firstProcessElement
1

end

start

1
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Fig. 2. Definition of the PDL i-DSML
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each activity (except the last activity) has a next one. Each activity has an ex-
pected duration, which is the ideal time lapsing to complete the task. Sequence
of activities can be parallelized through gateways. A fork aims at making several
sequences parallel whereas a join is a synchronization point of several sequences.
Finally, each process contains two pseudo-activities defining the beginning and
the ending of the process.

Additionally, an i-DSML metamodel contains a dynamic part. Its goal is to
be able to specify the current state of the model during its execution. Here, the
dynamic part consists of two meta-associations in Fig. 2. The first one expresses
for a process which process elements are currently active. The second one refers,
for a sequence, to its current active activity, if any. The combination of the two
gives the global state of the model under execution which is modified after each
execution step.

The static and dynamic parts of the metamodel are augmented with OCL
invariants expressing the well-formedness rules, for instance, there is no cycle
between activities. Due to lack of place, they are not presented.

Finally, the metamodel of an i-DSML is associated with an execution seman-
tics. Its goal is to express how the elements of the model are evolving during
the execution. Concretely, the execution semantics only modifies the dynamic
elements of the model and is implemented through a set of execution operations
that can be attached to meta-elements. Here, the execution semantics is embed-
ded within the runProcess() operation of Process and the next() operation
of Sequence. For the sake of clarity, these special operations are prefixed by an
<<execution>> conceptual stereotype. The runProcess() operation launches
the process execution. Its first action consists in executing the start element
of the process. Then, after the end of its execution, it executes its successor
elements and so on, until reaching the last element of the process. Executing
a sequence consists in executing its next() operation. If the sequence is just
launched, it executes its first activity. Otherwise, it executes the next activity
of the current one. Once an activity is finished, the next() operation is recalled
and so on until reaching the end of the sequence. Executing a fork consists in
executing each of its successor sequences. Executing a join consists in waiting
for each of its predecessor sequences to be finished before executing its successor
one.

2.2 A Software Development Process Defined Using PDL

As a familiar example, we choose to model a typical software development process
(Fig. 3, top part). This process contains four sequences (represented as dashed
rectangles): specification (Specify), implementation (Implement), documenta-
tion (Document) and distribution of the software (Distribute). The specifica-
tion is the first task of the process whereas the distribution is the last one once
everything else is finished. Between the two, the implementation and the docu-
mentation are realized in parallel. This is achieved through the fork named FID

(Fork for Implement and Document) and the join JID (Join for Implement and
Document). The specification contains two activities (represented by ellipses):
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Fig. 3. A model conforming to the PDL i-DSML and its execution

analysis followed by design. The number beneath the activity name, here 150
for both, is the expected duration of the activity. The documentation contains
user documentation and developer documentation activities. The implementa-
tion is the longest sequence: it begins with the core implementation, that is
business logic and services implementation (CoreImpl) and its associated test
activity (CoreTest). Next, the user interface is implemented (UIImpl) and tested
(UITest). Finally, all implementations are integrated.

When the execution engine takes the model as input, the execution trace is
formed by a collection of snapshots that correspond to every state of the model
after an execution step. We start by the first activity of the first sequence (the
Analyze activity). Then we continue with the next activity of this sequence
(the Design activity). This situation is represented at the top of Fig. 3 where
the current activity is filled with the gray color. After this, we encounter the
fork, so, the first activity of each successor is activated (the CoreImpl and the
UserDoc activities). This situation corresponds to the bottom of Fig. 3. Once
each activity of these two sequences has been executed, we are able to cross the
join. The last activity executed is then Distribute.

2.3 Toward the Adaptation of a Process

Still following the characterization of [6], an i-DSML is extended following two
ways for becoming adaptable. First, the metamodel is extended with elements
dedicated to the adaptation and second, an adaptation semantics is associated
with the metamodel and implemented by the execution engine so that it is turned
into an adaptation engine. The adaptation semantics aims at acting on the model
for adapting it. This adaptation may have impacts on the whole model, including
the modification, creation or deletion of static, dynamic or adaptation elements.
Concretely, the adaptation semantics is implemented through two kinds of oper-
ations. The first kind is query operations returning a boolean and expressing if
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an adaptation is required or not. They are called adaptation checks. The second
kind is adaptation actions that apply the adaptation on the model.

Concerning the PDL i-DSML, at first glance, a situation requiring adaptation
is when the process has been delayed. However, this necessitates to evaluat-
ing the laps between the expected duration and the real elapsed time. So, an
adaptation element has to be added on the metamodel: an elapsedTime at-
tribute in the Process meta-element. This basic extension of the metamodel is
intuitively evident since having an elapsed time is a logical complement of an ex-
pected duration for an effective process execution. It is now easier to implement
a check operation that determines if we are late during the process execution.
It concretely requires comparing the expected durations of all already finished
activities to the real elapsed time.

Now the question is: “If we are late, what must we do?”. The answer is:
“In the current definition of the i-DSML, we do not know!”. Indeed, there is no
obvious adaptation action that can be processed without additional information.
We may imagine removing unnecessary activities in the rest of the process.
Which ones? An arbitrary erasure is clearly not a good idea. In the example, the
documentation and testing activities may be bypassed. We know that because
we have business knowledge on, in general, what a software development process
really is. Documentation is never at the core production of the subject software
and testing, in the worst case, can possibly be skipped if really required. The
problem is that the execution engine has no business vision and then, has not
this business knowledge. The engine agnostically processes the adaptation for
any kind of model, being a software development process or a cooking recipe.
Another idea would be to parallelize some activities to reduce the time of the
process execution. Typically, from a business knowledge viewpoint, we know that
the development of the business part can be potentially done in parallel with
the user interface development. Again, the engine does not have this business
knowledge.

As a conclusion, with the basic definition of the i-DSML (including a small
and evident extension), it is not possible to know how to adapt a PDL model.
In other words, it is not possible to define an adaptation semantics. The model
is too general. However, we foresee that with additional information, adapta-
tion actions can be defined and make sense. The metamodel then needs to be
specialized to embed this additional information. More generally, the most spe-
cialized and constrained a metamodel is, the most automatic manipulation of
the model is possible. Besides, the most defining relevant adaptation semantics
is made possible. In the next section, we define the concept of family which is an
i-DSML specialization associated with a dedicated adaptation semantics. Then,
in Sect. 4, we define concrete adaptation families for the PDL i-DSML.

3 Family-Based Framework for i-DSML Adaptation

Assuming the fact that from a minimal i-DSML one can create various exten-
sions, each providing a foundation for dedicated adaptations, it becomes highly
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desirable to organize all these software pieces. That is why we propose in this
paper the adaptation families and the specialization relationship between them.

3.1 Definition of a Family

Each metamodel of an i-DSML, with the definition of its meta-elements, leads
to define a set of operations that make sense and are implementable based on
these meta-elements and their associated constraints. These operations are those
defining an execution or an adaptation semantics. Then, as these operations are
tied with a given metamodel, we propose to logically group them under the form
of a family. Here is the definition of a family:

Definition 1. A family brings together a metamodel and a set of associated
operations (execution operations, adaptation checks and adaptation actions). It
provides guidance to a software designer that can glue together operations avail-
able in this context.

Hence, a family is like a frame in which an engineer can dip into extant
elements of solutions with confidence. Afterwards, she/he is responsible for their
correct orchestration. A family is identified by an unique name referencing its
metamodel and contains three kinds of elements:

1. Execution operations: operations that control the execution flow of the model.
2. Adaptation checks: boolean operations expressing if the current model is

aligned with the execution environment or is respecting specific constraints.
If not, adaptation must be undertaken.

3. Adaptation actions: operations that modify the content of the model in an
adaptation purpose.

We call “attributes” all these elements within a family.

3.2 Family Specialization

The conclusion of the discussion of Sect. 2.3 was that specializing a metamodel
is relevant for defining adaptation: the PDL i-DSML has first been extended and
then, the discussion concluded on the necessity of extending it one step further
to have the ability to define concrete adaptation semantics. As a consequence, we
propose the specialization of families and thereby to build a hierarchy of families
for defining adaptation semantics.

Specializing a family is based on specializing metamodels. Model typing and
subtyping, that is specialization relationships between metamodels or metamodel
parts, have been defined in [11, 18, 19]. The metamodel specialization we use in
this paper is based on their definition. A metamodel defines a structure (a set
of associated meta-elements) and is augmented with a set of invariants, typ-
ically written in OCL, for specifying the well-formedness rules. Following the
UML profile spirit, a specialized metamodel strictly extends these two parts of
a metamodel:



A Family-Based Framework for i-DSML Adaptation 171

Definition 2. A metamodel MM’ is a specialization of a metamodel MM if MM’
extends the structure and/or the invariants of MM. MM’ is built by adding to
MM, new meta-elements, new attributes in meta-elements, new operations in
meta-elements and/or new associations between meta-elements without remov-
ing any existing elements of MM. MM’ defines additional invariants without
removing the existing ones of MM.

The specialization of a family, that is the definition of a subfamily from a
superfamily, is simply made by first specializing its metamodel. As this special-
ization is a strict extension and does not remove anything, all statements that
are made about a superfamily also apply to all subfamilies. We lay down that
subfamilies “inherit” execution operations, adaptation checks and adaptation
actions from the superfamily. Anything that can be done (from an execution or
adaptation viewpoint) with a model of the superfamily can also be done with a
model of the subfamily.

Second, in addition to new elements (structural or invariants) in the meta-
model, new attributes can be defined for a subfamily, that is, new execution
operations, adaptation checks and adaptation actions. Concisely, a family spe-
cialization is defined as follows:

Definition 3. A family F’ is a specialization of a family F if the metamodel of
F’ is specializing the metamodel of F. F’ inherits from all the attributes (execu-
tion operations, adaptation checks and adaptation actions) of F and can define
additional ones.

Multiple inheritance between metamodels and families is allowed. However
conflicts are supposed to be avoided through a careful design.

As families can inherit from each other, it is then possible to define hierarchies
of families. The root of a hierarchy is an i-DSML; dealing only with executable
models without any adaptation concern. The root i-DSML family can be special-
ized to define either others i-DSML (without adaptation) or adaptable i-DSML
(including adaptation). The more a family is placed at the bottom of the hier-
archy, the more its metamodel is specialized and allows the definition of spe-
cific adaptation policies. Reaching a certain level of specialization, some adapt-
able i-DSML can even be based on specific business content as explained in the
following subsection.

3.3 Domain versus Business Level Adaptation Policies

Another notion emerges from the previous ideas although it can be tricky to
formalize it. Along with the generalization/specialization, a family may repre-
sent a set of business-neutral models or not. A business-neutral or domain-level
scope expresses that an adaptation policy can be applied on any model conform-
ing to the metamodel of the family, independently of its content (it is said to
be “domain” because it is based only on the constructs of the Domain-Specific
Modeling Language). Conversely, a business-level adaptation policy is based on
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specific business elements contained in the model. Domain-level families are gen-
erally placed on top of the hierarchy while business-level ones are placed in the
bottom.

For example, constraining a process to have at least one fork is business-
neutral and then situated at the domain level. Indeed, any process may poten-
tially satisfy this fork constraint, regardless of its business content (a cooking
recipe, a software development method, etc.), so that the associated adaptations
can be reused across a large variety of models. Conversely, constraining a process
to have an activity named “beat eggs” breaks the neutrality in the sense that it
now presupposes that the process falls within the cooking domain. In that case,
the adaptation written for such a family can be very accurate, but far from being
reusable.

Technically speaking, the fringe between business-level and domain-level is
somewhat fuzzy. However, we can say that if an adaptation semantics, within an
adaptation check or an adaptation action, is based on literal values (such as the
string value “beat eggs”), then the adaptation will be considered as business-
level.

4 Putting PDL into the Framework

To give a better understanding of the ideas developed in the previous section, we
reconsider the illustration of the PDL i-DSML from a family-based framework
point of view. Fig. 4 defines a possible family hierarchy for our i-DSML. Each
family is graphically described by a box with four compartments. They contain,
from top to bottom: the name of the family that references the eponymous meta-
model, the execution operations, the adaptation checks and the adaptation ac-
tions associated with the family. The hierarchy defines six families: one dedicated
to execution only (PDL), one business-level family (ManagedSkipAdaptPDL) and
four domain-level families. In order to distinguish these three kinds of family, an
<<execution>>, <<business>> or <<domain>> conceptual stereotype has been
placed above each family name. In this paper, we show only the metamodel of
the family DependSkipAdaptPDL because, thanks to the inheritance, this meta-
model contains all the elements defined in its superfamilies. It can then be used
to describe the evolution of the metamodels along the hierarchy (excepting for
the business-level family). This metamodel is represented on Fig. 5.

All specializations for the PDL i-DSML presented in the rest of this section are
extending the structure of the metamodel. However, in many cases, restricting
the possible models solely by addition of OCL invariants is sufficient to define
adaptation policies. As an example, in [6], we study the adaptation of basic UML
state machines in case of unexpected events. With a general state machine, no
adaptation decision can be taken. However, imposing that a transition associated
with each expected event is starting from each state of the state machine leads
to be able to determine if an event is expected or not (there exists or not an
associated transition). Moreover, imposing that a given event always targets
the same state leads to be able to automatically know how to add a state and
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transitions associated with the unknown event. These two restrictions are only
defined through two OCL invariants without any modification of the metamodel,
while they have a huge impact on the adaptation policies. Here lies the power of
the concept of family.
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4.1 Description of the PDL Family

The root of the family is called PDL. It is the i-DSML presented in Sect. 2.1. As
this i-DSML is only dedicated to execution, no adaptation checks nor adaptation
actions are defined but only the execution operations (runProcess() of Process
and next() of Sequence).

4.2 Description of the AdaptPDL Family

Following the discussion of Sect. 2.3, a first basic extension of the PDL meta-
model consists in adding an elapsedTime integer attribute to the Processmeta-
element and indicating the real execution time of a process. This leads to define
the AdaptPDL family. Thanks to this attribute, it is now possible to determine
if the process execution is late by comparing the expected duration with the
real elapsed time since the beginning of the process. This checking is realized by
the cLate() operation added to the Process meta-element and prefixed by a
<<check>> conceptual stereotype as shown on Fig. 5. It also appears in the third
compartment of the AdaptPDL family box on Fig. 4. However, as explained in
the discussion of Sect. 2.3, there is no way to define adaptation actions with this
metamodel yet. This will be done with the subsequent specializations adding
new elements on the metamodel.

One may wonder why it is relevant to define a family for an adaptable i-DSML
that does not define any concrete adaptation actions. The reason is that the
attribute defined and the associated adaptation check, are shared by several
subfamilies. These elements are then directly inherited in all these subfamilies
without requiring to define them several times. Making an analogy with object-
oriented programming, the AdaptPDL family can be seen as an “abstract family”.
For this reason, this family name has been italicized in Fig. 4.

4.3 Description of the SkipAdaptPDL Family

As proposed in Sect. 2.3, in case of delay, an adaptation action can be to re-
move unnecessary activities in the rest of the process. In order to be able to
catch up activities that can be removed, we need to mark them. So, we add a
skippable boolean attribute to the Activity meta-element. This leads to de-
fine the SkipAdaptPDL family. The designer has now to express which are the
skippable activities in its process definition.

Thanks to this attribute, in addition to know that we are late with the
cLate() adaptation check, it is now also possible to determine if a next activity
is skippable. This checking is thus twofold and is realized by the cLateAnd-

Skippable() adaptation check added to the Processmeta-element as shown on
Fig. 5. Two adaptation actions have been defined. The first one removes skip-
pable activities (i.e., it modifies the static part of the i-DSML). This adaptation
action is drastic and maybe the designer would appreciate a softer solution.
Then, instead of statically removing skippable activities, we propose another
adaptation action that only skips them (i.e., it modifies the dynamic part of the
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i-DSML, updating the current activity to the benefit of a next activity). These
adaptation actions are respectively realized by the aRemove() and aSkip() oper-
ations added to the Processmeta-element. They are prefixed by an <<action>>

conceptual stereotype. As these operations are adaptation actions, they appear
in the fourth compartment of the SkipAdaptPDL family box on Fig. 4.

As an example, in the Fig. 3, bottom hand side, the current activity is Design.
If for the implementation sequence that follows this activity, the CoreTest and
UITest are marked as skippable, once the CoreImpl activity finished and if we
are late, the CoreTest activity will be skipped and the next executed activity
will be UIImpl.

4.4 Description of the DependAdaptPDL Family

In Sect. 2.3, instead of removing unnecessary activities we suggest to parallelize
some activities in order to decrease the time of the process. Obviously, we can-
not select randomly activities that will be parallelized because an activity may
depend on another. Consequently, this adaptation could be achieved only if we
are aware of the dependencies between activities. In order to state these de-
pendencies, we add a dependencies reference to the Activity meta-element.
This leads to define the DependAdaptPDL family. From this reference, in ad-
dition to know that we are late with the cLate() adaptation check, it is now
also possible to determine if a following activity is movable (taking into account
its dependencies). This double checking is realized by the cLateAndMovable()

adaptation check added to the Process meta-element as shown on Fig. 5. The
corresponding adaptation action is to transform unique sequences into multiple
sequences in parallel. This adaptation action is realized by the aParallelize()

operation added to the Process meta-element as shown on Fig. 5.
Fig. 6 gives an example of this kind of adaptation. At the top, there is the

model before adaptation. The dashed arrows represent the dependencies between
activities. These dependencies have been defined by the designer. The number
written between the parentheses after the process name indicates the elapsed
time. We are currently late (350 instead of the expected 300) and some activities
are movable (taking into account their dependencies). The bottom of Fig. 6 shows
the corresponding model after adaptation. For example, for the implementation
sequence, as CoreTest depends on CoreImpl, they must be part of the same
sequence. This is the same for UITest and UIImpl. However, “Core” activities
and “UI” activities have no dependencies between each other. This is why two
subsequences have been created.

4.5 Description of the DependSkipAdaptPDL Family

Another interesting adaptation could be to postpone an activity (i.e., to move an
activity toward the end of the process) in order to execute it only if we are not
anymore late. It is acceptable to postpone an activity if it is skippable (because it
will possibly not be done) but it cannot be postponed later than an activity which
depends on it. Consequently, we need at the same time the notion of skippable



176 S. Pierre et al.

Integrate
(50)

runProcess()

Analyze
(150)

Design
(150)

CoreImpl
(200)

CoreTest
(100)

SoftwareDevelopmentProcess (350)

J1

S1

S2

S3

FID

Distribute
(50)

JID

(50)
UserDoc

UIImpl
(200) (100)

UITest

DevDoc
(50)

Implement

Specify

Document

Distribute

Analyze
(150)

Design
(150)

CoreImpl
(200)

(50)
DevDoc

(50)

UIImpl
(200) (100)

Integrate
(50)

UITestCoreTest

Distribute
(50)

UserDoc

FID JID

(100)

SoftwareDevelopmentProcess (350)

Specify

Implement

Document

Distribute

Fig. 6. The model before and after adaptation, conforming to the DependAdaptPDL
family

activity and the idea of dependencies between these activities. In order to have
these pieces of information at runtime, we build the DependSkipAdaptPDL family
that inherits from two superfamilies: SkipAdaptPDL and DependAdaptPDL. It
means that the elements available in the i-DSML are the ones corresponding to
the i-DSML of these two families. In this way, a complex checking can be realized
by combining the cLateAndSkippable() and cLateAndMovable() adaptation
checks. The corresponding adaptation action is to shift an activity as far as
possible toward the end of the process. This adaptation action is realized by the
aPostpone() operation added to the Process meta-element as shown on Fig. 5.
Thanks to multiple inheritance, we are able to write an adaptation rule that is
based on the merging of two families.

So far, all the previous families were exclusively at a domain level. As ex-
plained in Sect. 3.3, it means that for processing the adaptation, there is no need
to have information about what is representing the instance of the Processmeta-
element in terms of business. It could be for example a software development
process or a cooking recipe, as well. To give a concrete example of business-level
adaptation, the next subsection presents a business-level family.
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4.6 Description of the ManagedSkipAdaptPDL Family

During the software development process, if we are really very late, a cause
might be the project manager who is not skilled enough. Being very late may
be defined by counting the skipped activities and specifying a maximum num-
ber of allowable skips. In this context, adaptation could be to fire the project
manager and to hire a new one. This leads to define the ManagedSkipAdapt-
PDL family that is extending the SkipAdaptPDL family. This family defines a
cTooManySkips() adaptation check that expresses if more than a given num-
ber (for instance three) of skips have already been done. The adaptation action
aChangeProjectManager() of this family consists in creating a particular ac-
tivity in the process: a Change Project Manager activity (this activity can be
added in parallel of the existing activities of the process) which is immediately
activated.

This family is at the business-level because we are aware that the instance of
the Processmeta-element will represent a project development with a manager.
Such an activity will not make sense for all the processes defined with PDL
i-DSML, such as a cooking recipe for example.

5 Related Work

In this article we highlighted some ideas coming from both the software architec-
ture field and the MDE community in order to apply them to the recent concept
of i-DSML.

Indeed, our inspiration is rooted in the works on architectural styles, a sem-
inal research theme during the late 90s [10, 16, 17]. An architectural style de-
fines a family of similar software architectures (e.g., client/server, pipe&filter,
blackboard, etc.) and basically provides specific elements of design and rules to
govern their arrangement. In [10] David Garlan highlighted a specialization rela-
tionship that may hold between styles (e.g., pipeline is a substyle of pipe&filter)
so that some Architecture Description Languages (ADL) have supported this
experimental feature, like ACME or ArchWare. Meanwhile, some authors have
investigated how the concept of style could ease (self)-reconfiguration of systems
at runtime [7, 14], based upon adaptation rules defined at the architecture-level
and an adaptation loop very close to case (a) in Fig. 1, retrospectively speaking.

Likewise, Jim Steel et al. [18] proposed the model typing where, while con-
forming to a metamodel of course, a model may adhere to one or more types
in the same way that an architecture described with an ADL may in addi-
tion satisfy to one or more styles. Logically, Clement Guy et al. [11] continued
the works through the study of the subtyping relationship and more generally
the influence of such a type-system at the model-level [19], but regardless to the
adaptation issue.

6 Conclusion and Perspectives

In this paper, we have proposed a framework that enables the implementation of
the direct adaptation of an executed model conforming to an adaptable i-DSML.
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An adaptable i-DSML defines models that are directly executable and adaptable.
The framework relies on the concept of family and aims at properly arranging a
number of elements of several natures that all serve the definition of adaptable
i-DSML. A family gathers a given metamodel of an i-DSML with operations
dedicated to its execution and adaptation. We have showed, through an example,
that specializing a metamodel of an i-DSML enables to define more relevant
and accurate adaptation policies. For this reason, families can inherit from each
other allowing us to defining hierarchies of families, from the most general to
the most specific. The inheritance offers conceptually the same advantages as in
object-oriented programming such as the reuse of existing adaptation policies,
the factorization of the same policies through a common superfamily or the
specialization of existing adaptation policies. A family can be defined at a domain
or business level depending on the fact that they are based on a particular
business content or not. We applied this approach on a concrete example of
a process model where several families have been built thanks to the family
specialization.

The engine executing and adapting a model must currently contain hard-
coded adaptation rules. Indeed, the execution operations, adaptation checks
and adaptation actions are orchestrated and weaved through the code of the
developer within the execution engine. However, it can be useful to modify this
orchestration during the execution of the model. If a family offers several adap-
tation actions, one can be more suitable than another, according to the current
context. To achieve this in a suitable way, as a short-term perspective of this
work, we plan to define an i-DSML dedicated to the orchestration of the avail-
able operations for a family. An orchestration model will be interpreted by the
execution engine in addition to the executed model. Concretely, this model will
define an adaptation semantics (combinations of adaptation checks and adapta-
tion actions) and its weaving with the execution operations. In addition, we can
reach meta-circularity if we turn the orchestration i-DSML into an adaptable
i-DSML as explained in this article. This unified approach can succeed because
this orchestration model ought to be modified during the execution. In other
words, as raised in [6], the adaptation semantics can be adapted at runtime and
thus leading to a true meta-adaptation.
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Abstract. Service-Oriented Architectures (SOAs) enable the reuse and
substitution of software services to develop highly flexible software sys-
tems. To benefit from the growing plethora of available services, sophisti-
cated service discovery approaches are needed that bring service requests
and offers together. Such approaches rely on rich service descriptions,
which specify also the behavior of provided/requested services, e.g., by
pre- and postconditions of operations. As a base for the specification
a data schema is used, which specifies the used data types and their
relations. However, data schemas are typically heterogeneous wrt. their
structure and terminology, since they are created individually in their di-
verse application contexts. As a consequence the behavioral models that
are typed over the heterogeneous data schemas, cannot be compared di-
rectly. In this paper, we present an holistic approach to normalize rich
service description models to enable behavior-aware service discovery.
The approach consists of a matching algorithm that helps to resolve
structural and terminological heterogeneity in data schemas by exploiting
domain-specific background ontologies. The resulting data schema map-
pings are represented in terms of Query View Transformation (QVT) re-
lations that even reflect complex n:m correspondences. By executing the
transformation, behavioral models are automatically normalized, which
is a prerequisite for a behavior-aware operation matching.

Keywords: SOA, Service Description, Ontologies, Behavioral Models,
Matching.

1 Introduction

Due to their modularity, reusability, and flexibility, SOAs allow to realize
software projects faster and may reduce development costs drastically. In
such service-oriented scenarios, service providers offer services and service re-
questers request for services. The process to match service offers (SOs) with
service requests (SRs) is called service discovery.

A service discovery that is performed manually is time-consuming and error-
prone, since a user has to understand and compare all SOs and SRs individually.
In addition, misinterpretations and misunderstandings of the services lead to
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inaccurate matching results. For this reason and to benefit from the plethora
of existing services, an automatic service discovery is required that is based on
comprehensive specifications of the services.

Existing service specification languages like Web Ontology Language for Web
Services [15], Web Service Modeling Language [5], Semantic Annotations for
WSDL and XML Schema [18], and the Rich Service Description Language [10,9]
allow to create such comprehensive specifications. Typically, such a service speci-
fication includes a structural data schema and behavioral models, e.g., in form of
visual contracts (VCs) [6]. VCs describe the behavior of SRs or SOs in terms of
pre- and postconditions for their respective operations. The data schema speci-
fies the used data types of the service and their relations. The behavioral models
in turn are typed over the data schema. For the remainder, we assume that such
a data schema is specified in terms of a Unified Modeling Language (UML) class
model and describes the relevant concepts of a certain domain, e.g., tourism or
banking. Consequently, complex data types are referred to as classes, primitive
types as attributes, and instances of types as objects.

Since SOs and SRs are created independently, the structure and terminology
of their class models are most likely heterogeneous, even if they specify services in
the same domain of interest. As a consequence, the behavioral models typed over
the class models cannot be compared directly and a behavior-aware operation
matching of service requests and offers is not possible. The heterogeneity of the
class models arises from different terminologies, granularity levels, and logical
structuring. For example, two classes of the SR’s and the SO’s class models might
have different but synonymous identifiers, since both denote the same concept.
Analogously, homonyms must be addressed separately.

Matching classes and attributes is an important aspect to overcome the het-
erogeneity, e.g., to determine whether parameters and return values of provided
and requested operations correspond to each other. Thereby, a single class does
not necessarily have to correspond to a single other class. It is rather likely that
sets of classes correspond to each other, resulting in complex 1:n, n:1, or even n:m
mappings. However, complex mappings have received little attention in ontology
matching approaches [19,16].

In this paper, we present an holistic approach to resolve the structural and ter-
minological heterogeneity of rich service description models to enable a behavior-
aware service discovery and composition. Our approach includes a class model
matching algorithm that leverages domain-specific background ontologies, e.g.,
linguistic resources and the Semantic Web to establish semantic relations be-
tween similar classes across different models. From the obtained class model
mappings, a QVT [1] script is generated automatically, whose particular rela-
tions reflect identified correspondences between classes of any cardinality. Using
these QVT relations, we normalize behavioral models in rich service descrip-
tions and make them directly comparable in order to enable a behavior-aware
operation matching.

The remainder is structured as follows: In Sect. 2, we describe a scenario that
illustrates the problem statement. Our approach for class model matching and
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VC normalization is presented in Sect. 3 and Sect. 4. Tool support is introduced
in Sect. 5. We discuss related work regarding class model and web service match-
ing in Sect. 6. Finally, in Sect. 7 we conclude and give an outlook on future work.

2 Scenario

For the following, we assume that a service requester wants to create a service
that allows its users to search and book hotel rooms. Therefore, the requester is
interested in SOs of hotel chains that provide access to their room availability
data or functionality to make bookings through a service interface. For that
purpose, the requester specifies a SR, which is then compared with available
SOs of hotel chains. We assume that SRs and SOs are specified using a service
specification language, which consists at least of the following parts: (1) a UML
class model specifying the data schema and (2) visual contracts, which specify
pre- and postconditions for every requested and provided operation.

Service Request Service Offer
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Fig. 1. Heterogeneous Class Models and Visual Contracts
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Fig. 1 gives an example of such a SR and SO with their respective class models
and two behavioral models in terms of visual contracts.

Obviously, both class models have some concepts in common. However, both
use partially different terminologies for these concepts, e.g., the classes Debt

and Liability. Further, classes do not necessarily correspond only to a single
other class. For instance, Single Room and Double Room are specializations of
Room in the SR, while there are no further specializations of Cabin in the SO. In
addition, some attributes are widespread differently over several classes in both
class models, resulting in complex 1:n, n:1, and n:m correspondences between
classes. For instance, the attributes of Address in the SR are represented by
Address and Coordinates in the SO.

The behavioral aspects of a service are described using VCs. A VC is a graph
grammar rule, whose left-hand side (LHS) describes a precondition that must be
fulfilled before a certain operation can be executed. The right-hand side (RHS)
of the rule describes the effects of the operation execution. The graphs of the
rule’s LHS and RHS are instances of the SR or SO class model.

Fig. 1 (b) shows the VCs of the requested operation checkoutPayment and
the provided operation makeReservation. The VC of checkoutPayment specifies
the following behavior:

After Guest g has paid the Debt d for his Order o of Hotel h’s Room r,
Debt d is deleted and a new Payment p is created instead.

This operation is similar to makeReservation that uses synonymous identifiers
and additionally creates a Reservation after the payment. However, in order to
match these models to decide whether the behavior of the operations is equiva-
lent, the behavioral models need to be normalized. For that purpose, we propose
the approach shown in Fig. 2.

Fig. 2. Normalization Approach

Our approach consists of three steps: (1) First, we determine class and
attribute mappings during Class Model Matching by considering background
ontologies in order to overcome structural and terminological heterogeneity.
(2) From the set of mappings, we generate a relational QVT script. By exe-
cuting the Transformation, all VCs of the requester are retyped according to
the class model of the SO. (3) After the normalization, the operations can be
matched, e.g., by using the approach introduced in [10].
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After the computation of a mapping between the class models of a SR and
SO, we assume that the result is inspected by a user, since it may happen that
manual intervention is required. For instance, in case of attributes with the same
name but different types it is necessary to parse their values properly, e.g., by
converting a float to an integer or by integrating an adapter. In such cases, the
QVT script must be adjusted manually. To give an example: The registry might
return a list of the ten best matching offers to the requester. The requester selects
one of them and refines the QVT script if needed.

In the following sections, we describe the class model matching and the nor-
malization in detail.

3 Class Model Matching

The following section introduces our approach for an automatic
service discovery (SD). At first, the architecture and the process of the
SD are defined. The rest of this section focuses on the class model matching
and exemplifies the matching algorithm.

3.1 Automatic Service Discovery Process

In our approach, there are three parties that take part in the SD: service
providers, service requesters, and a service registry. The registry is a central
point to convey SRs to SOs. Providers publish specifications of their SOs at the
service registry. Requesters inquiry the registry by SRs that are also specified
as described in the previous section. The registry resolves the class model het-
erogeneity on-the-fly, retrieves matching SOs for the SR, and returns them to
the requester. The requester can bind its SR to one of the proper SOs. The SD
process is described in the following section.

Fig. 3 illustrates the matching process that is executed at the registry. The
single process steps are described in the following.

Fig. 3. Automatized Matching Process
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Match Class Models: In the first step, the class models of all registered SOs
and the currently inquired SR are matched. The class models are enriched with
additional information from several background ontologies (BOs) to establish
mappings between classes and attributes. The output of this step is a set of
disjoint mappings that may have any kind of cardinality. Complex mappings
enable a relation between n classes of the SO’s class model and m classes of the
SR’s class model, with n,m ≤ 1.

Generate QVT script: In the next step, a relational QVT script is generated from
the set of mappings. Each QVT relation corresponds to a class mapping. If the
classes of a particular mapping have attributes that were also mapped for their
part, these attribute mappings are likewise considered in these relations. However,
class and attributemappings are considered in isolation, i.e. themapped attributes
do not necessarily have to be contained in classes of the same class mapping.

There are still some aspects of heterogeneity our class model matcher does not
cover yet. In fact, more complex than 1:1 attribute mappings, association map-
pings, and correspondences between attributes and classes are not considered.
Nevertheless, our class model matcher helps to resolve heterogeneity across class
models, but we assume that the identified mappings are inspected by a user and
adjusted if necessary before the script is executed to normalize visual contracts.

Normalize Visual Contracts: To normalize the requester’s VCs, the QVT script
is executed with these VCs as input. After the transformation, the SR’s VCs
conform to the class model of the SO. The normalization transforms the LHS
and RHS of each VC separately and composes the results to a single normalized
VC. It should be noticed, that it is also possible to normalize the VCs accord-
ing to the class model of the SO, because relational QVT allows bidirectional
transformations. As a useful by-product, the transformation can be used for a
mediation service: Parameters of the SR as well as return values of the SO can
be translated on-the-fly, when the SR and SO interact.

Match Operations and Protocols: Until now, only structural aspects of the SD
have been addressed. On the contrary, operation matching takes the behavioral
models of SRs and SOs into account. Our approach integrates the operation
matching approach proposed by Huma et al. [10], which relies on VCs. The ap-
proach considers n-ary correspondences between operations. For example, a 1:1
operation mapping is established when the precondition of the requested opera-
tion covers at least the preserved and deleted objects of the provided operation
and the postcondition of the provided operation covers at least the preserved and
created objects of the requested operation. More complex matching strategies
consider whole sequences of operations.

The approach of Huma et al. also comes with a protocol matching, which is out
of scope in this paper. The following section concentrates on the service discov-
ery step Match Class Models. The algorithm and its interplay with background
ontologies is explained in detail.
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3.2 Matching Algorithm

The following section exemplifies the class model matching algorithm which is
a prerequisite for the normalization of the VCs. Fig. 4 shows the single steps of
the algorithm that are explained in detail in the remainder.

Fig. 4. Class Model Matching Algorithm

Anchor Attribute Pairs in Background Ontology: Class models of service descrip-
tions are compact, because they focus on the implementation, abstract from irrel-
evant details, and ideally do not contain redundant information. Consequently,
the information class models contain is typically not sufficient to establish se-
mantic relations across different class models. Additional knowledge is required
to establish these relations. In our approach, the class models are embedded in
BOs (c.f. [3]), which model particular domains of interest more holistically than
class models and hopefully builds bridges between the different class models.

Our approach is not limited to a certain ontology language or to a certain
domain of interest. Rather any kind of ontologies can be used as long as they
classify their concepts in a taxonomy. In particular, the algorithm can access
common knowledge ontologies like the linguistic resource WordNet [14], the DB-
pedia ontology [13], and further Web Ontology Language (OWL) ontologies like
Schema.org1 or Umbel2. Furthermore, we included some domain-specific OWL
ontologies with regard to the previously described scenario, e.g. OnTour3 and
the Travel Guide4. In order to support a certain ontology language, a respec-
tive programming interface must be implemented that returns the hypernyms
for a given term. In addition, the ontologies can be imported into a database
that maps terms to their hypernyms, which avoids to keep the whole ontology
in memory and accelerates the anchoring step by leveraging database indexes.

During the anchoring, a BO is selected that contains two concepts with the
same identifiers as the two attributes to be matched. This means a BO is se-
lected for each individual attribute pair. The identifiers of the concepts and the
attributes need not to be exactly the same: Different naming conventions like

1 http://schema.org/
2 http://umbel.org/
3 http://e-tourism.deri.at/ont/
4 https://sites.google.com/site/ontotravelguides

http://schema.org/
http://umbel.org/
http://e-tourism.deri.at/ont/
https://sites.google.com/site/ontotravelguides
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due date and dueDate are also considered. For this purpose we use tokenization
and elimation of stopwords like of, the, a, etc. [7]. Fig. 5 shows an anchoring
of the attributes price and rate within the taxonomy of WordNet. By using
different BOs for matching, it may happen that homonyms are misinterpreted
if their semantics differs between the BOs. Although, in practice the number of
homonyms shared between different domains of interest is minimal, homonyms
may be inspected manually after the matching process.

Fig. 5. Anchoring of rate and price in WordNet

Compute Dissimilarity Values for Attributes: It is a common technique to ex-
press the dissimilarity of two concepts as a number. The lower the value of the
number, the less dissimilar the concepts are. The normalized dissimilarity is a
function from a pair of model elements to a number that ranges over the unit
interval of real numbers (c.f. [7]).

In thecurrent step, all dissimilarityvalues for attributesaredeterminedpairwise.
Once two attributes have been anchored, their degree of dissimilarity is determined
by the upward cotopic dissimilarity [12], which is defined in Def. 1 (c.f. [7]).

Definition 1. Upward cotopic dissimilarity. The upward cotopic dissimilar-
ity δ : o× o → [0, 1] is a dissimilarity over a hierarchy H = 〈o,≤〉, such that:

δ(c, c′) = 1− |UC(c,H) ∩ UC(c′, H)|
|UC(c,H) ∪ UC(c′, H)|

whereUC(c,H) = {c′ | ∀c, c′ ∈ H∧c ≤ c′} and c ≤ c′ means that c′ is more general
than c.

The upward cotopic dissimilarity relates the number of shared hypernyms
to the total number of hypernyms of two concepts to be matched according to
the BO. The shared hypernyms of price and rate according to WordNet are
highlighted in Fig. 5, which yields a dissimilarity value of δ = 1− 5/10 = 0.5.

The primitive type compatibility of the attributes is also taken into account
when their dissimilarity is assessed. Accordingly, two attributes with numerical
types are less dissimilar than a numerical and an alphabetical type. The dis-
similarity of the types is encoded in a static look-up table. The upward cotopic
dissimilarity and the type compatibility are aggregated into a single dissimilarity
value according to Equation 1, which aggregates N different dissimilarity values
δi, where each of them is weighted by ωi. Fig. 6 shows the dissimilarity values
of city to all the attributes of the other class model.

δ̂ =

N∑

i=1

δiωi,

N∑

i=1

ωi = 1, ∀ωi : ωi > 0 (1)
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Fig. 6. Dissimilarity values for city

Compute Min. Weighted Attribute Assignment: After the dissimilarity values
have been computed for all attribute pairs, proper attribute mappings are cre-
ated. We assume that most of the attributes represent atomic information, which
is why only 1:1 attribute mappings are considered in our approach. The mapping
of attributes is considered as an optimization problem with the aim to assign as
many attributes as possible while minimizing the sum of the dissimilarity val-
ues. The matching algorithm uses an existing algorithm for the minimum cost
flow problem [20] as a subroutine to find this minimal weighted assignment. A
solution for the assignment referring to the scenario is shown in Fig. 7.

Fig. 7. Min. Weighted Attribute Assignment

Anchor Class Pairs in Background Ontology: This step is analogous to the an-
choring of attributes.

Compute Dissimilarity Values for Classes: The dissimilarity of the class pairs is
assessed by using the upward cotopic dissimilarity. In addition, the attribute map-
pings are also taken into account. The intuition is that classes that share many
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Fig. 8. Shared Attribute Dissimilarity Fig. 9. Class Mappings

dissimilar attributes are also dissimilar for their part. The shared attributes dis-
similarity relates the number of shared attributes to the maximal number of at-
tributes. Fig. 8 shows the attribute mappings between Room and Cabin that are
part of the optimal attribute assignment. Thus, the shared attribute dissimilarity
is δ = 0.6+0.24+0.788+3

6 ≈ 0.771. The upward cotopic and the shared attributes
dissimilarity are aggregated into a single dissimilarity value in accordance with
Equation 1.

MatchClassesGreedy: Contrary to the attributematching, the classes arematched
witha greedy strategy insteadof calculating anoptimal assignment.The classmap-
pings are created in a ascending order according to the dissimilarity of the class
pairs. At the same time, mappings are only created as long as the dissimilarity is
below a threshold. If one of a pair’s classes is already part of amapping, the other is
added to that mapping. That way 1:1 mappings can be expanded to complex 1:n,
n:1, or n:m mappings. Fig. 9 shows the resulting set of complex class mappings.
Consequently, the set of resulting class mappings is disjoint.

The set of attribute and class mappings that link the SR’s and the SO’s class
models is the input for the VC normalization, which is the subject of the next
section.

4 Visual Contract Normalization

As a preparation for the normalization of the VCs, a QVT [1] script is generated
from the mappings obtained by the class model matching. Because of its rela-
tional character, the QVT script can be executed in both directions. Thereby the
transformation direction is determined implicitly by selecting the target model.
In our approach, we transform the VCs that conform to the class model of the
SR into VCs that conform to the SO’s class model. The LHS and the RHS of
a VC are transformed separately and recomposed into a newly created, normal-
ized VC. This section describe how the transformation script is generated. The
generation process consists of three steps: Relations are (1) created for the class
mappings, (2) enriched by attribute mappings, (3) connected with respect to
associations.
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Class Mappings: Fig. 10 shows the QVT relation that was generated from the 1:2
classmapping between the classes Reservationand Order of the SO’s classmodel
and the class Order of the SR’s class model. Each class mapping corresponds to a
top relation. The top keyword indicates that the relation is an entry point of a
transformation, which means that object bindings from other relations are not re-
quired. For each of the classes of themapping, a correspondingdomain is added to
the relation.A relationdomainhas a domain pattern that describes a specificmodel
graph consisting of objects, their attributes, and association links. A relation holds,
when all its domain pattern match in the source and target model respectively. In
case a relation holds, the root variables of the domains are bound to concrete ob-
jects. The enforce keyword ensures that a relation holds when the domains of the
source model can be bound. If necessary, new objects of the target model are cre-
ated or existing objects are deleted. As a result, the source and target model are
consistent in regard to that relation.

Fig. 10. Excerpt of the Generated QVT Script

Attribute Mappings: After the generation of relations, we add appropriate QVT
statements to the relations that take the attribute mappings into account. Each
1:1 attribute mapping corresponds to a Property Template Item (PTI) that is
added to the respective domain pattern. In our approach, we use PTIs to instruct
the transformation where to read attributes values from the source model and
where to assign these values to attributes of the target model. Since classes and
attributes were matched independently, it may happen that it is not possible to
reflect class and attribute mappings at the same time. We identified two cases
where we added PTIs to relations: (1) Both mapped attributes are owned by two
classes that were mapped for their part. As shown in Fig. 10, the classes Order



Normalizing Heterogeneous Service Description Models 191

were mapped and are part of the same relation. Their attributes totalPrice and
total charge were also mapped. Hence, respective PTIs are added that bind
these attributes to the same value over variable var totalPrice (line 9 and
14). (2) Both mapped attributes are owned by two classes that have not been
mapped for their part. For example, the attributes dueDate and due date were
mapped. Their owning classes Order and Debt have not been mapped for their
part. However, due date can be accessed over dom order2 because Order has an
association to Debt. Hence, a PTI is added to the respective domain pattern that
binds the value of due date to the variable var dueDate (line 10). Furthermore,
var dueDate is bound to an Object Constraint Language (OCL) [2] expression
in the when clause of the relation. The expression represents the navigation
path that accesses due date (line 18). It should be noticed, that the navigation
path depends on the transformation direction and that such a path may only
exist in one direction. The transformation direction can be determined by calling
the OCL function call dom order1.oclIsUndefined(). Thus, var dueDate is only
bound to due date if transforming from the SR’s to the SO’s class model. The
else branch has no effect and is just for syntactical validity.

Associations: Until now, we considered classes in isolation during the QVT
script generation. Here we examine associations between classes, i.e. association
instances from the source model are transformed to links of the target model.
During the class model matching (Sect. 3) no association mappings were estab-
lished that could be translated to QVT statements. Instead, the link creation is
exclusively derived from the class mappings. To simplify, we assume that classes
have at most one unidirectional, single-valued association to another certain
class. Links between objects are established by either referencing already bound
variables that are available in the scope of a relation or by binding variables with
relation calls. Similar to the attribute mappings, we distinguish two cases when
and how to create links: (1) A complex class mapping maps n classes of a class
models to m other classes. One of the n has an association to one of the other
n−1 classes. For example, Address has an association to Coordinates and both
classes are part of the same mapping. Hence, a PTI is added to the respective
Address domain pattern, that binds the association coordinates and the root
variable dom coordinates (line 26). (2) A class has an association to another
class and both classes were not mapped. For example, Reservation has an asso-
ciation to Client and both classes were not mapped. Hence, a PTI is added to
the Reservation domain pattern that binds the association client to an object
template expression which describes the characteristics of a specific Client ob-
ject (line 5). The object template is empty, because its characteristics are already
defined in the Client domain pattern, that occurs in another relation. Thus, the
binding of the variable is delegated to the other relation by a relation call ex-
pression in the when statement (line 21). The parameter types of a relation call
must conform to the types of the domains of the called relation. If conforming
variables are available in the scope of the calling relation, they are also used
as parameters in relation calls. Otherwise, any arbitrary instance of a required
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parameter type is used as a parameter. Exemplary, such arbitrary objects are
determined by calling the OCL function Guest.allInstances()->any(true).

To summarize, we have shown how a QVT transformation script can be gen-
erated automatically from the set of mappings. The next section introduces our
implementation for the class model matcher and the QVT script generator.

5 Tool Support

We integrated our service description model normalization into the Rich Service
Description Language (RSDL) Workbench, which allows to create, publish, and
discover Rich Service Description Language (RSDL) specifications. The RSDL
workbench is realized as a plug-in for the integrated development environment
Eclipse and is under development at the University of Paderborn in the Col-
laborative Research Centre 901 On-the-Fly Computing. Our workbench uses
the following third-party plug-ins: Papyrus5 that provides a graphical editor
for the UML parts of the specifications and Henshin6 that provides a graph-
ical editor that is used to model the VCs. The service discovery was real-
ized as a Java API for RESTful Web Services (JAX-RS) by means of the Jersey
framework7.

Fig. 11. Graphical User Interface (EMF Compare)

Further, our class
model matcher uses the
Eclipse plug-in EMF
Compare8. The indexing
mechanism is based on
the Jena framework9 to
read background ontolo-
gies, which are stored
in a normalized form
in a database. For the
QVT script generation,
the metamodel of the
QVTd10 project has
been used. The trans-
formation execution
engine mediniQVT11

is leveraged to run the
transformation in order to normalize the VCs. Fig. 11 shows the identified
mappings between two class models of a service request and a service offer in
the graphical user interface provided by EMF Compare.

5 http://www.eclipse.org/papyrus/
6 http://www.eclipse.org/henshin/
7 https://jersey.java.net/
8 http://www.eclipse.org/emf/compare/
9 http://jena.apache.org/

10 http://www.eclipse.org/mmt/qvtd
11 http://projects.ikv.de/qvt

http://www.eclipse.org/papyrus/
http://www.eclipse.org/henshin/
https://jersey.java.net/
http://www.eclipse.org/emf/compare/
http://jena.apache.org/
http://www.eclipse.org/mmt/qvtd
http://projects.ikv.de/qvt
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6 Related Work

Several research areas are related to the normalization of service description
models: ontology and model matching, coupled model evolution, and service dis-
covery. Concerning ontology matching, many approaches and systems have been
(and still are) developed that allow to create mappings between heterogeneous
ontologies or schemas. A nice overview of various approaches and the current
state of research is provided by the survey [19].

A classification of matching approaches is provided by [11], which distinguishes
between: static identity-based, signature-based, similarity-based, and language-
specific matching approaches. According to this classification, our class model
matching approach is a similarity-based matching approach, which additionally
leverages background ontologies to identify synonyms, homonyms, as well as
correspondences between classes with a similar ontological semantic.

In the following, we want to highlight three matching systems exemplary:
EMF Compare identifies differences between different versions of the same
Eclipse Modeling Framework (EMF) model and is therefore suited for an in-
tegration in version control systems to keep track of the model’s evolution. The
matching algorithm behind EMF Compare is related to [21]. However, without
adaptations EMF Compare is not suited to match heterogeneous class models,
because it does not recognize synonyms for example. The matching process of
Scarlet [17] anchors the concepts to be matched in one or more background on-
tologies that were determined by external Semantic Web search engines. Next,
a semantic relation between the matched concepts is inferred from the anchor
concepts. However, similarity values are not computed. Furthermore, most of
the matching systems consider only 1:1 mappings. An exception is e.g., Agree-
mentMaker [4], which first computes all similarity values and afterwards a user
selects the desired metrics and mapping cardinalities. Then, an algorithm is exe-
cuted to compute an optimal solution on the weighted assignment problem. This
algorithm is iteratively executed to obtain n:m mappings.

In the case of class models, Coupled Model Evolution (CME) addresses the
problem, that object models become inconsistent when their class model evolves.
In this regard, CME is related to the VCs normalization except that CME con-
siders different versions of the class model, whereas VCs normalization considers
heterogeneous class models. COPE [8] is an approach that keeps track of class
model modifications and creates a history of changes. A migrator that is gener-
ated from this history applies the changes to the object models. COPE is not
suited to normalize VCs, because typically no such change history is available
for heterogeneous class models.

The service discovery approach that was introduced in this thesis relies on
the approach of Huma et al. [10] that uses RSDL specifications [9]. Huma et al.
also address heterogeneous data schemas: As a preparation for an automation of
the heterogeneity resolution, the approach requires that local class models are
manually mapped to a common global class model. Our approach aims to close
this gap and automate this process as far as possible.
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7 Conclusion and Future Work

In this paper, we introduced an holistic approach to overcome structural as well
as terminological heterogeneity of service description models. Thereby, we enable
the behavior-aware matching of service requests and services offers.

The main contributions of our work are as follows: In contrast to yet an-
other structural model matcher, our class model matcher exploits domain-specific
background ontologies that offer the opportunity to identify semantic relations
between different class models. While the majority of existing matchers only con-
sider 1:1 class correspondences, our matcher identifies also complex 1:n, n:1, and
n:m correspondences that arise from different logical structuring or from differ-
ent degrees of granularity. By representing identified class mappings in terms of
QVT relations, we enable an automatic normalization of the behavioral model,
which are typed over the class models.

In future work, we will conduct an extensive evaluation of our class
model matcher in the course of the CRC 901 and by participating in the
Ontology Alignment Evaluation Initiative (OAEI)12 that aims for a systematic
evaluation of matching systems.

Furthermore, we intent to address current limitations of our approach. Con-
cerning the class model matcher these are the identification of mappings between
attributes and classes as well as associations mappings. In the former case, an at-
tribute in one class model does not necessarily correspond to another attribute,
because the same information an attribute represents may be derived from a
class. An example of the latter case is represented by a class that has more than
one association to another class, where each represents a different role. In such
situations association mappings are necessary.

Concerning the transformation script generation, multi-valued associations
are not considered yet. The transformation allows to establish links to at most
one object, whatever cardinality the respective association has. Furthermore,
the class model matcher allows in fact to map attributes with different types.
However, manual intervention is required to reasonably translate, e.g., an alpha-
betic to a numeric value. Finally, complex QVT relations appeared as a problem,
because the more domains a relation has, the less likely it is that the domain
patterns will match and the relation will hold. Further research is required to
determine a proper number of maximal domains.
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Abstract. General-purpose transformation languages, like ATL or
QVT, are the basis for model manipulation in Model-Driven Engineering
(MDE). However, as MDE moves to more complex scenarios, there is the
need for specialized transformation languages for activities like model
merging, migration or aspect weaving, or for specific domains of wide
use like UML. Such domain-specific transformation languages (DSTLs)
encapsulate transformation knowledge within a language, enabling the
reuse of recurrent solutions to transformation problems.

Nowadays, many DSTLs are built in an ad-hoc manner, which requires
a high development cost to achieve a full-featured implementation. Alter-
natively, they are realised by an embedding into general-purpose trans-
formation or programming languages like ATL or Java.

In this paper, we propose a framework for the systematic creation of
DSTLs. First, we look into the characteristics of domain-specific trans-
formation tools, deriving a categorization which is the basis of our frame-
work. Then, we propose a domain-specific language to describe DSTLs,
from which we derive a ready-to-run workbench which includes the ab-
stract syntax, concrete syntax and translational semantics of the DSTL.

1 Introduction

Model transformations are central to MDE. Many transformation languages have
been proposed and are widely used nowadays, e.g. ATL or QVT. We term these
languages General-Purpose Transformation Languages (GPTLs), because their
scope considers transformation of models, but they are not specific for particular
tasks (like migration or refactoring) or domains (like UML or Petri nets).

We can use GPTLs to tackle a wide variety of scenarios, but in our experience,
some transformation tasks become more natural and easier by using specialized
transformation languages offering primitives tailored to the task to be solved.
Examples of these tasks include model migration, promotion of models into
meta-models, and aspect weavers for domain-specific languages. Similar to the
benefits of using domain-specific languages over general-purpose ones in well-
known domains, we claim that these transformation scenarios would benefit from
Domain-Specific Transformation Languages (DSTLs). This is so as DSTLs make
explicit domain knowledge that otherwise needs to be repeatedly embedded in
transformations built with GPTLs or programming languages like Java.

Some works in the literature recognise the need for DSTLs [16,25,30]. However,
there is a lack of methods and tools for their systematic engineering, including
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the definition of their abstract syntax, concrete syntax and semantics. While the
design of domain-specific modelling languages is well understood and there is a
plethora of workbenches to speed up their construction, this support is lacking
for DSTLs. By offering such support, many transformation tasks can be recasted
as DSTLs instead of relying on ad-hoc solutions.

In this paper, we propose a design process and tool support for the system-
atic construction of DSTLs. First, we provide a suitable language to describe
the DSTL abstract syntax. This language includes transformation-specific con-
structs like Mapping, ImperativeRule and Guard. From the description of the DSTL
abstract syntax, we generate a MOF-based meta-model which is instantiated to
describe concrete transformations, and an initial concrete syntax for the DSTL,
tailored to the selected transformation constructs. Depending on the style of the
DSTL (e.g. mapping-based or imperative), we also generate a scaffolding of the
compilation into the Eclectic transformation virtual machine [7]. Eclectic is a
family of transformation languages with different styles (e.g. target-oriented or
mapping), and the languages to compile to are selected based on the primitives
used in the DSTL description. Instead of relying on code generation to produce
Eclectic code, we use model transformations, using a novel template-based tech-
nique. We illustrate our proposal with a DSTL for promotion transformations,
showing the benefits w.r.t. a hand-made implementation of the DSTL.

Altogether, the contributions of the paper are: (i) the identification of domains
and tasks where DSTLs make sense, based on a review of the literature, and (ii)
a systematic process for the integral definition of DSTLs.

The paper is organized as follows. Sec. 2 presents an overview of different
transformation tasks that would benefit from DSTLs, exposing useful features
in each scenario. Sec. 3 introduces our approach and a running example. Sec. 4
presents our way to define the abstract and concrete syntax of DSTLs, while
Sec. 5 explains how we specify their semantics. Sec. 6 shows tool support. Sec. 7
reviews related works and, finally, Sec. 8 concludes.

2 Domain Specific Transformation Languages

Fig. 1. DSTLs features

A DSTL is a transformation language de-
signed for a specific transformation task (e.g.
model merging), or restricted to work on spe-
cial kinds of models (e.g., UML models). Its
aim is not to be “universal”, applicable to any
transformation task, as languages like ATL or
QVT are. On the contrary, DSTLs contain
domain-specific primitives enabling a more
succinct and intensional expression of the task
to be performed, which frequently leads to
simpler transformation models. Fig. 1 shows a
scheme with the main features we require for
DSTLs: restricted application context (fixed
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source or target) or expressivity (e.g. model migration), and syntax tailored to
the specific task.

From the literature, we have identified two scenarios for DSTLs: a) transfor-
mation tools identified as DSTLs by their creators, built ad-hoc; and b) families
of transformation tasks developed using GPTLs, which can be seen as an appli-
cation area for creating a DSTL. In the first scenario, DSTLs are given semantics
by building an interpreter, or by compiling into a general-purpose programming
language (GPL), a GPTL or a virtual machine. Moreover, in either scenario, the
source or target meta-model of the DSTL may be fixed. For instance, many ap-
plications have the recurrent need to transform from a variety of languages into
a fixed one, like PROMELA or Petri nets [36] for verification purposes. The sec-
ond scenario typically arises due to the recurrent need to transform from widely
used languages, like UML or XML. These transformations are generally written
from scratch using GPTLs or GPLs; however, developers would benefit from
explicit linguistic support for the features and structure of the fixed language,
which could be provided by DSTLs, leading to simpler transformations.

Next, based on a review of the literature (22 articles), we identify some specific
transformation tasks where the availability of DSTLs and systematic means for
their construction would be beneficial, pointing out the main features expected
from such DSTLs. Table 1 shows a summary, gathering the two typical scenarios
for DSTLs (DSTLs built in an ad-hoc way, and families of similar transformation
tasks), whether the source or target meta-models of the DSTL should be fixed,
if the DSTL is in-place, the main DSTL primitives, the kind of concrete syntax,
and the language semantics given by the authors (i.e. the DSTL or tool has a
compiler or interpreter, or a GPTL or GPL is used for execution).

1. Promotion. This kind of transformations transforms a model into a meta-
model. When considering a particular meta-modelling technology, the target
meta-model is fixed (e.g. Ecore). Most works in the literature [4,12,31] encode
these transformations using textual GPTLs – like ATL or Tefkat [19] – or
directly in Java. Based on these works, useful primitives in these DSTLs
would be mappings, bindings and guards.

2. Migration. These transformations deal with the update of artefacts upon
meta-model changes [6,15,26,34]. The source and target meta-models, which
correspond to the original and evolved meta-models, are not fixed a pri-
ori. The community has identified the particularities and needs for this
scenario, proposing different textual DSTLs for migration. For instance,
EMFMigrate [34] is compiled into a transformation virtual machine, Epsilon
Flock [26] extends the EOL imperative language to add migration-specific
behaviour, and COPE [15] defines primitives for meta-model changes. Most
of these languages adopt a mapping-based style for migration rules.

3. Aspects. Several languages have been proposed to define aspects for a variety
of modelling languages, ranging from general-purpose like UML [17,35], to
domain-specific ones like Petri nets [22,37] and Building Information Models
(BIM) [18]. In most cases, aspects are defined using graphical patterns, thus
pointcuts require pattern matching while advices and introductions imply
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Table 1. Summary of features for DSTLs in different domains

fixed fixed in- main concrete
src tar place primitives syntax semantics

scenario a: domain specific transformation languages, built ad-hoc
Aspects

√ √ √
pointcut (match) graphical patterns interpreter

[17,18,22,37] advice (creation)
introduction (creation)

Bridges
√ √

mapping textual rules interpreter
[5,9] queries, expressions
BIM [30]

√ √
aggregation tabular interpreter

Merging compare graphical mappings / interpreter
[2,11] merge, compose textual rules
Migration migrate textual mappings interpreter /
[6,15,26,34] ∼a differencing with OCL expressions compilation

(default) copy to VM
guard

Model inst. CRUD on refs. tree-based editor compilation
[1] to VM
scenario b: families of recurring transformation tasks

Abstraction
√ √ ∼b pattern-search textual patterns / GPTL /

[28,29] merge, split graphical patterns / GPL
filter imperative language

HOT[33]
√ √ ∼ queries, creation textual rules GPTL

Promotion
√

mapping textual mappings GPTL /
[4,12,31] binding with OCL expressions GPL

guard
Refactoring

√ √ √
pattern-search graphical patterns / GPTL /

[20,21] merge, split imperative language GPL
pull, push

a
EMFMigrate uses a fixed source

b
Some are in-place, some are out-place

pattern creation. In these works, the support for the application of aspects
to models is ad-hoc or by compilation to graph transformation systems.

4. Abstractions and refactorings. Abstractions are model operations that pro-
duce simpler, higher-level views of a model. For example, [29] presents a
catalogue of abstractions for workflow languages, and [28] for modelling lan-
guages. Abstractions need to identify relevant patterns (like sequences of
nodes or connected components), and then filter, aggregate or merge those
patterns. Similar needs are found in approaches for model refactoring [21]
and model slicing [3]. While a few works use DSTLs [3], most approaches
use GPTLs, like graph transformation [20].

5. Model merging and composition. These transformations merge two models
through their common elements. There are specific DSTLs targeting this
scenario [2,11], with primitives such as compare, merge or compose.

6. Higher-order transformations (HOTs). These are transformations of trans-
formations, and they are developed using textual GPTLs or GPLs. HOT
development would benefit from a DSTL specialized for a fixed input/out-
put language (the meta-model of the transformation language, like ATL or
QVT), and with higher-order primitives for the manipulation of the specific
language (recurrent queries, concise creation of complex patterns, etc.). The
proposal in [33], which adds a template language and a library of HOT-
specific helpers to ATL, could be reified as a DSTL.
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7. Bridging technical spaces. These works bridge a technical space, like gram-
marware [5] or databases [9], with the modelling space. Some authors use
DSTLs [5,9] with specialised query languages for this purpose, but they are
built in an ad-hoc manner. Other approaches use injectors and GPTLs (as
in many examples of the ATL Transformation Zoo1).

8. Others. There are works describing DSTLs for other domains, like [30], which
proposes a DSTL to calculate the budget for constructing a building from
its model and its components’ price. Another example is [1], which describes
a DSTL for instantiating model templates using feature models. This DSTL
permits specifying instantiation rules, like selecting or deleting references,
and its semantics is given by a compilation into the ATC virtual machine.

In conclusion, many domain-specific transformations tasks are currently de-
veloped using GPTLs or programming languages, but may benefit from having
a more specialized transformation language at hand. In fact, as discussed above,
for some domains several DSTLs have already been built to facilitate developing
such transformation tasks. This indicates a trend, which can be clearly witnessed
in the domain-specific aspect languages area for which there is even an estab-
lished dedicated workshop [10]. These DSTL approaches typically rely on subsets
of the features of a GPTL (e.g. mappings, bindings), equipped with domain-
specific constructs (e.g. support for special queries or expressions). The imple-
mentations range from totally ad-hoc approaches developed from scratch [5,9]
to more systematic ones, e.g., based on compilation to a VM [34]. Most of the
approaches try to reuse well-known syntaxes, such as OCL for queries or graph
patterns for rewritings, but such syntaxes are normally encoded from scratch
(notable exceptions are [26,34]). Likewise, the tool support quality varies (not
shown in the table), but advanced features such as semantic autocompletion for
textual editors and debugging support are missing since their implementation
cost is high. Hence, we propose an approach to DSTL development in which the
DSTL designer can mix and match features found in GPTLs, as well as adding
special features of the domain. Then, our approach speeds up the development
of the DSTL tooling using a model-driven approach.

3 Overview and Running Example

Building a DSTL involves the definition of its abstract syntax, concrete syntax
(textual, graphical, tabular, or a mix of them), and execution semantics (typi-
cally, developing an interpreter or compiler). Additional elements may be needed,
such as a scoping mechanism for variables and a type checker to ensure that the
types used in a transformation belong to the meta-models being transformed.

These tasks are normally accomplished using an ad-hoc process without spe-
cialized tool support [16], which poses several inefficiencies. First, the abstract
syntax has to be devised in terms of MOF constructs instead of using native

1 http://www.eclipse.org/atl/atlTransformations/

http://www.eclipse.org/atl/atlTransformations/
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Fig. 2. Our proposal for the construction of domain-specific transformation languages

concepts of the transformation domain, like rule or mapping. Using these primi-
tives facilitates defining the semantics of the DSTL. Secondly, reusing of typical
transformation features, like the use of OCL to define navigation expressions
or the integration of a type checker for meta-models has to be done manually.
Finally, creating an efficient and stable execution infrastructure from scratch is
a time consuming and error prone task.

Our solution to these problems is a framework for the development of DSTLs
which provides automation for the generation of their abstract syntax, concrete
syntax and execution semantics, specialised for the peculiarities of the DSTL.
Fig. 2 shows the working scheme of our process. It illustrates the different steps in
the construction of a DSTL for promotion transformations in order to facilitate
the definition of this kind of transformations [4,12,31].

As a first step (label 1), the DSTL designer defines the primitives to be in-
cluded in the DSTL. For this purpose, we make available a domain-specific lan-
guage (DSL) which includes constructs close to the transformation domain. For
instance, in the figure, the DSTL specification includes the definition of a map-
ping type that will be used to identify which source elements will be promoted
into packages, and thus, the source of the mapping can be any element but the
target is fixed (EPackage). The complete DSTL specification includes additional
mapping types for the promotion of the other modelling elements.

Our DSL uses primitives of the transformation domain, facilitating the gener-
ation of several artefacts. In particular, from the DSTL specification, we generate
an Ecore meta-model for the abstract syntax of the DSTL, a default implemen-
tation of its concrete syntax (including a scope resolutor and a type checker for
the input/output meta-models), and an initial scaffolding of the compiler (label
2). The generated concrete syntax is tailored to the transformation primitives
selected in the DSTL. The compiler synthesizes Eclectic code from the DSTL
model, and this code is compiled into the Java Virtual Machine.

The designer can customize the default abstract syntax, concrete syntax and
compiler (label 3), e.g., to add domain-specific functionality. Then, an environ-
ment for the language (label 4) is automatically created. The figure shows a DSTL
user building a promotion transformation using the generated DSTL (label 5).
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Fig. 3. Rule types (left). Meta-model for specifying DSTLs (excerpt) (right).

In the following two sections we detail the different steps in our framework.

4 Designing the Syntax

This section presents our DSL to define DSTLs (sec. 4.1), and the subsequent
generation of the abstract and concrete syntax (secs. 4.2 and 4.3).

4.1 Describing the DSTL

As we have seen, DSTLs profit from native concepts of the transformation do-
main, and may combine features and operations found in GPTLs with domain-
specific ones. Thus, the first step is choosing the required constructs for the
language. For space reasons, in this paper, we focus on the selection and cus-
tomization of suitable rule types, since it is normally the main construct of a
DSTL, although in practice we have considered other aspects such as scheduling
and tracing.

The left of Fig. 3 shows a feature diagram describing the kind of rules that
could be constructed with our approach. All rule types have an application
condition and creation directives. Application conditions identify the elements
matched by the rule, which can be either a single element or a pattern, and
can include guards. If the DSTL has a fixed source or target meta-model (as
is the case in our running example for promotion transformations), then it is
possible to use concrete types of the fixed meta-model in the DSTL definition;
otherwise, the types are not fixed and should be specified in the transformation.
Rule types also need to define the style of the creation directives, which can be
either declarative or imperative. In the former case, the creation can be of a
single element or of a graph pattern, and it is possible to define bindings for the
attributes. For the elements marked with cardinality [0, *] in the feature diagram,
the designer can fine-tune the number of times they can be instantiated (any
number by default). The most common rule styles result from the combination of
the features in this diagram (see the table at the bottom of the figure): mappings
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(rules that create one target element from one source element), target-oriented
rules (creation of a target graph pattern from a source element), pattern-based
rules (patterns in the rule source and target), and imperative rules.

We have realized these design choices in the meta-model shown to the right of
Fig. 3. Its root class is DSTL, which defines if the transformation is in-place and
the source and target meta-models. To indicate that a meta-model is fixed in
the DSTL, we use the metaclass FixedMetaModel. A DSTL contains transforma-
tion primitives, which are instances of RuleType or its subclasses. A RuleType has
an application condition (subclasses of ApplicationCondition) and creates elements
(subclasses of CreationType). The application condition describes the conditions
needed to apply the rule. For instance, FixedSimpleElementCondition is used for rule
types having a single source element with a type from the fixed source meta-
model. In this case, the rule will be applied to each element of type element.
Conditions can also be of type SimpleElementCondition, and in this case, the rule
will be applied to each element of the type specified in the specific transforma-
tion. Application conditions can have in addition a number of GuardTypes.

The elements a RuleType creates are configured through subclasses of Creation-
Type, like ImperativeAction and DeclarativeCreation. The latter has subclasses for
the creation of one or several elements of a fixed or variable type, and can be
assigned BindingTypes for attribute computation. Two supported binding types
are GenericBinding, where the target feature is specified in the particular trans-
formation, and FixedBinding, which forces the binding of a particular feature of
the created element.

The subtypes of RuleType force the use of specific combinations of application
conditions, guards, creations and bindings, as shown in the feature diagram. For
example, a Mapping has a FixedSimpleElementCondition or SimpleElementCondition,
simple declarative creation, and any number of guards and bindings. It is possible
to instantiate RuleType if no more specific rule type suits the needs of the DSTL.

Fig. 4 shows part of the definition of the promotion DSTL example, using a
concrete syntax we have devised for the previous meta-model. Lines 1–3 declare
the DSTL with a fixed target meta-model (ecore). Lines 5–7 declare an abstract
mapping with a simple application condition (an element “src” of any available
type from the input meta-model). Then, two concrete mapping types are de-
clared that inherit from Common, and hence receive the same condition type.
The PackageMapping mapping creates and element with fixed type EPackage from
ecore, and has a fixed binding for the feature name and any number of arbitrary
OCL bindings. Thus, a transformation using the DSTL will require providing the
source type that will be transformed into an EPackage, a literal or an expression
for the fixed binding, and any number of additional bindings.

4.2 Generating the Abstract Syntax

From the description of the desired primitives of the DSTL, we automatically gen-
erate ameta-model. As an example, Fig. 5 shows an excerpt of the generatedmeta-
model for our promotion DSTL (package promotion). Each metaclass in this
meta-model inherits from some base class in package dstlInst. This package
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1 DSTL promotion
2 src: variable[name: ”src” ]
3 tar: fixed[name: ”ecore”, uri: ”http://www.ecl...”]
4

5 abstract mapping Common {
6 conditions { ”src”: any }
7 }
8 mapping PackageMapping[1] extends Common {
9 creates:

10 fixed−element EPackage[1] {
11 fixed−binding for ”name”

12 generic−OCL−binding[∗]
13 }
14 }
15 mapping ClassMapping[1..∗] extends Common {
16 creates:
17 fixed−element EClass[1] {
18 fixed−binding for ”name”
19 generic−OCL−binding[∗]
20 }
21 }
22 ...

Fig. 4. Describing the promotion DSTL (excerpt)

Fig. 5. Generated abstract syntax meta-model (excerpt)

contains infrastructure classes, like Mapping or Binding. For example, a root
metaclass Promotion is added to the DSTL meta-model, which inherits from the
infrastructure class Transformation. As the source meta-model is not fixed, the root
metaclass includes a reference to MetaModel, to allow the specification of a source
meta-model in the specific transformation. From the mapping PackageMapping in
the DSTL definition, a metaclass with the same name is added to the meta-model.
This metaclass inherits from FixedTargetMapping, which reflects the fact that it is
a mapping and its target is fixed. The metaclass also inherits from Common in the
same package, which defines the source application conditions for the mapping.
Please note that our generator is able to select the base classes to inherit frombased
on the chosen primitives (e.g. Mapping in Fig. 3), but also on the selected rule fea-
tures if themore generalRuleTypemetaclass is used instead.For instance, aRuleType
with one-element condition and one-element creation is automatically classified as
aMapping. Finally, we have a dedicated infrastructure package forOCL-like expres-
sions. This is used in our running example, since the description of the promotion
DSTL includes OCL-like bindings.

The rationale of this approach is that the simple description in Fig. 4 carries
semantic information (e.g., on desired rule types), which can be automatically
carried to a meta-model (see Fig. 5), and that is used to generate a default
textual syntax (see Section 4.3), and a compiler for the DSTL (see Section 5).

4.3 Generating the Concrete Syntax

From the DSTL description, we also generate a concrete syntax. We support
two styles: textual, and tabular for the case of DSTLs consisting of mappings
only. The concrete syntax is based on Xtext, and is customized according to the
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transformation primitives used (mapping, pattern-based, imperative, etc.). For
pattern-based rules, we generate a syntax for patterns similar to that of QVT-
Relations. For mappings, we support two styles: one with simple rules (like the
syntax of ATL) and another one with nested rules, available if the target meta-
model is fixed. Nested rules follow the structure of composite associations of
the target meta-model. Finally, if the DSTL uses an expression language (as in
Fig. 5), the syntax of the expression language is integrated in the DSTL syntax.

Listing 1 shows an excerpt of a promotion transformation in concrete syntax,
using the simple rules style generated by default. This syntax is more concise
than e.g., ATL, as we have a fixed target language. Lines 4 and 9 instantiate the
package and class mappings, where only the source of the mappings needs to be
given. Lines 6 and 11 correspond to the mandatory name bindings.

1 promotion MM2Ecore
2 src: MetaModel(”MetaModel”)
3

4 PackageMapping
5 from src: MetaModel {
6 name <− packName
7 }
8

9 ClassMapping
10 from src: MetaClass {
11 name <− className
12 }
13 ...

Listing 1. Excerpt of promotion
transformation in DSTL syntax.

1 eclectic promotion2ecore (src) −> (ecore)
2 navigation promotion navigation (src)
3 def src!MetaModel.reachClasses
4 src!MetaClass.all instances
5 end
6 end
7

8 mappings promotion ( src ) −> ( ecore )
9 from src : src!MetaModel to tgt : ecore!EPackage

10 tgt.eClassifiers <− src.reachClasses
11 tgt.name = src.packName
12 end
13

14 from src : src!MetaClass to tgt : ecore!EClass
15 tgt.name = src.className
16 end
17 end

Listing 2. Equivalent Eclectic transformation.

5 Designing the Semantics

To define the executable semantics of the DSTL, we establish a mapping to one
or more languages of the Eclectic model transformation family [7]. In Eclectic,
each language addresses a specific transformation concern, and can be combined
with the other languages through composition mechanisms. Eclectic currently
provides the following languages: i) a mapping language to define one-to-one and
one-to-many correspondences, ii) a target-oriented language with object nota-
tion and explicit rule calls, iii) an attribution language to compute inherited and
synthesized attributes, iv) a pattern matching language with object-notation,
and v) a lower-level imperative language, which also plays the role of schedul-
ing language and supports in-place transformation. Languages i-iv do not allow
complex expressions, but these need to be encoded in navigation libraries. The
combination of these languages covers many of the scenarios studied in Section 2.

Listing 2 shows the Eclectic transformation with equivalent semantics to the
promotion transformation in Listing 1. The mappings language is naturally used
to establish the correspondences declared in the promotion, where the target
type is implicitly given by the rule type. Thus, the Eclectic mapping in lines
9–12 corresponds to the PackageMapping rule, while the mapping in lines 14–16



206 J.S. Cuadrado, E. Guerra, and J. de Lara

corresponds to the ClassMapping rule. Bindings for the name property have a direct
correspondence in Eclectic. However, the promotion in Listing 1 does not specify
how to relate classes to packages, that is, a binding to fill the reference eClassifiers

in EPackage is missing. This is “domain knowledge” which gets inferred if no such
binding is given. In this case, the default behaviour is generating the binding in
line 10 (tgt.eClassifiers ← src.reachClasses), as well as the helper reachClasses within
a navigation module which extends the source meta-model (lines 2–6).

To automate the generation of Eclectic code, we need a compiler from the
abstract syntax of the promotion DSTL to Eclectic. The next subsection presents
a novel facility to support the development of such compilers.

5.1 Code Generation by Template-Based Transformations

In the simplest case, a DSTL has a direct mapping to a language in Eclectic. A
compiler would be conceptually straightforward to implement, but in practice, it
is complex because it requires knowledge of the abstract syntax of Eclectic. An
alternative is to generate plain-text (as in [16]), but this neither guarantees the
syntactic correctness of the language, leading to a brittle solution, with cumber-
some develop-generate-compile-test cycles, nor allows traceability between the
DSTL and Eclectic (which is needed for a debugger).

To address this issue, we propose a template language targeting Eclectic. This
is a model transformation language embedded into the Eclectic syntax, which
facilitates specifying model-to-model transformations into Eclectic. In this way,
transformation constructs are embedded in Eclectic syntax, like flow control
constructs (iteration and condition) and placeholders, in the style of the Model-
to-Text standard [23]. Most importantly, it is a safe template system, as the
generated Eclectic programs are guaranteed to be syntactically correct. Hence,
we obtain the benefits of model-to-text transformations (we use the concrete
syntax of the target), and those of model-to-model transformations (we generate
syntactically correct models).

Fig. 6 shows an excerpt of the compiler specification for the running example.
Lines 2-3 declare the input and output meta-models that the generated trans-
formation will use. The source meta-model in line 2 is obtained from the DSTL
model using the expression between “[” and “/]”. Line 5 defines a template to
map each PromotionProgram to one or more Eclectic modules, so that we can use
Eclectic syntax within the template to define a mappings transformation and
a navigation module. The compiler specification does not process a promotion
program, but it specifies the rules that the generated compiler will follow.

To create rules for packages, the specification iterates over the refPackageMap-

ping reference to obtain all instances of PackageMapping (line 8). The target type
EPackage is fixed (line 10), while the source type is given in the particular pro-
motion transformation, and hence an expression is used (line 9). Lines 11–12
navigate the binding for name and generate the corresponding Eclectic binding.
Lines 15-20 check whether a binding for reference eClassifiers has been provided
(as it is optional), and if not, they generate a default behaviour to add classes
(transformed by ClassMapping rules of the DSTL) to the package. This requires
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1 compiler spec promotion2ecore
2 input src : [ t.srcMeta.uri /]
3 output ecore : ’http://www.eclipse.org/emf/...’
4

5 [template createTransformation
6 (t : PromotionProgram) : EclecticModule]
7 mappings promotion(src) −> (ecore)
8 [ for m : t.refPackageMapping ]
9 from src : src![ m.src.elementType /]

10 to tgt : ecore!EPackage
11 [ b : m.CreatePackage.nameBinding /] −>
12 tgt.name = src.[ b.rightFeature /]
13

14 // Optional class binding
15 [if b : m.CreatePackage.classBinding ]
16 tgt.eClassifiers = src.[ b.rightFeature /]
17 [else]
18 // Fixed behaviour to resolve classes

19 tgt.eClassifiers <− src.reachClasses
20 [/if]
21 // Generate OCL bindings...
22 [/for]
23 // Similar rules for classes, attributes, etc...
24 end
25

26 navigation promotion navigation(src)
27 [ for m : t.refPackageMapping ]
28 def src![ m.src.elementType /].reachClasses
29 src![ t.refClassMapping.src.elementType /].
30 all instances
31 end
32 // Helpers for expressions, OCL bindings...
33 [/for]
34 end
35 [/template]

Fig. 6. Excerpt of the compiler specification for the promotion DSTL

generating a helper method, shown in lines 28-31, because Eclectic only allows
complex expressions in navigation modules. This shows that the DSTL designer
can provide sensitive defaults to simplify the common cases.

In our proposal, it is important to select the best suited Eclectic languages
for the concerns of the DSTL, as a wise choice will facilitate the compiler speci-
fication, like in the example of Fig. 6. To help in this process, we have analysed
how to map different DSTL features to Eclectic languages. Thus, given a DSTL
specification, we generate a scaffolding of the compiler with a selection of lan-
guages. For instance, we generate most of the code in Fig. 6, except lines 19 and
28–31, which depend on design decisions of the DSTL designer. Even though we
could generate the complete specification, we believe that the power of a DSTL
comes from providing domain-specific constructs and sensible default behaviour.
Such degree of generation coverage is possible because our DSL to specify DSTLs
provides richer semantic information than a plain MOF meta-model.

6 Tool Support

We have developed a prototype tool demonstrating our approach. The left of
Fig. 7 shows our workbench to build DSTLs, being used to define a more com-
plete version of the promotion DSTL which includes application conditions with
arbitrary patterns and guards. From this description, the workbench generates
a configuration model (with similar purpose as the genModel in EMF) to fine-
tune the generation process, e.g., giving names for packages, file extensions, and
the type of concrete syntax. Currently, we support three styles for the concrete
syntax: textual simple rules (like in ATL), textual nested rules, and tabular for
mapping-based DSTLs. The configuration model contains sensible defaults, so
that oftentimes there is no need for any adjustment.

Starting from the DSTL definition, an environment for it is generated using
the configuration model. Fig. 7 shows the generated artefacts: an ecore meta-
model, a compiler specification, and a fully functional Xtext project. The upper
right of the figure shows the DSTL environment in action. It offers a customized
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Fig. 7. DSTL workbench and generated environments

1 mappings promotion (src) −> (ecore)
2 uses promotion pm
3

4 from src : promotion pm!classMappingPM
5 to tgt : ecore!EClass
6 tgt.name = src.nameExpressionDelegate
7 end
8 ...
9 end

10 patterns promotion pm(src)
11 def classMappingPM() −> (c)
12 c : in!JavaClass {
13 annotations = a : Annotation {
14 tag = ”javax.persistence.Entity”
15 }
16 }
17 end
18 end

Fig. 8. Excerpt of the Eclectic transformation for the example in Fig. 7

editor for promotion models, together with a compiler to synthesize Eclectic
transformations from DSTL models.

In this example, the chosen rule types have patterns, guards and create fixed
target elements. For this reason, we compile into the pattern-matching and
mapping languages of Eclectic, which implies creating two transformation mod-
ules. To give an intuition of the composition style of Eclectic (detailed in [7]),
Fig. 8 shows how the mapping transformation is seamlessly enriched with pat-
tern matching. Line 2 imports the pattern matching module promotion pm, used
as a regular model where patterns are interpreted as types. In this way, the from

part of the rule matches the pattern called classMappingPM (line 4), defined in
the promotion pm module (lines 10–18). Patterns use object-diagram syntax.

The tabular syntax shown in the bottom right of Fig. 7 permits configuring
mappings by dragging types from the meta-model to the right to the appropriate
mapping, and filling the required bindings.

While we are still working on a comprehensive evaluation of our approach, the
preliminary results indicate that it can be used effectively to construct DSTL
workbenches. As an estimation, from the specification for the running example,
declaring 5 types of rules in 43 LOCs (without blank lines), we generate: a meta-
model (15 classes and 31 features), a customized Xtext grammar (166 LOCS, 29
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rules, and including an expression language), and a compiler specification (49
LOCS), which in turn becomes a compiler (250 LOCs). Thus, the advantage is
that from a single compact specification, many heterogeneous complex artefacts
are generated and integrated into a ready-to-run customized environment for the
DSTL. Moreover, the generated compiler is guaranteed to generate syntactically
correct transformations, as it is specified with a safe template system.

7 Related Work

Next, we review works targeting the construction of DSTLs. [16] proposes build-
ing a meta-model for the DSTL and its compilation into a GPTL (the Epsilon
languages) using a model-to-text transformation. However, this work does not
provide a systematic approach, or supports defining the abstract and concrete
syntax of the DSTL, and there is no traceability between the DSTL models and
the generated code. In [25], the authors propose a framework to generate Java-
based execution engines for DSTLs, starting from en EBNF grammar. However,
there is no description on how this can be achieved in practice.

The Epsilon languages can be seen as a set of DSTLs built atop the Epsilon
Object Language [24]. While they leverage from EOL’s concrete syntax and
semantics, defining a new language needs from a manual extension of the ANTLR
grammar and a manual Java encoding of the semantics. Instead, we provide
model-driven support for the definition of the abstract syntax, concrete syntax
and semantics, which does not restrict the DSTL to any specific concrete syntax,
and specialised semantics can be given via compilation.

T-Core [32] is a set of scheduling primitives for model transformation, based
on pattern-matching and rewriting. While T-Core’s goal is to define flexible rule
control languages, our approach describes DSTLs in an integral way. Nonethe-
less, T-Core’s primitives could complement the ones in Eclectic. [27] proposes
building DSTLs by mixing the concrete syntax of the involved DSLs (for the rule
patterns), together with a transformation language. While that proposal leaves
its realization to future work, it could be complemented with our approach,
which focusses more on designing the transformation language itself.

Regarding the generation of transformation code, the ACG language is de-
signed to generate bytecode for the ATL VM from a model. However, it is too
low-level to use it for implementing DSTLs. Thus, in [33], a template language
for ATL is proposed, with no implementation available. Even though still a pro-
totype, our template language for Eclectic is, to our knowledge, the first safe
template language to generate transformations (inspired by [13,14]).

Finally, [8] provided a feature-based survey of different transformation styles.
Our work is based on a subset of common features found in GPTLs, focusing
on those that are needed to implement DSTLs. Besides, we allow features to be
chosen and combined into a DSTL.

8 Conclusions and Future Work

In this paper, we have proposed a systematic process and support for the creation
of DSTLs. From a DSL-based description of the DSTL, several artefacts are
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generated: an abstract syntax, a (Xtext-based or tabular) concrete syntax and
a compiler specification for an Eclectic language, or a combination of them. The
proposal is supported by a prototype implementation.

This work opens a wide line of research, similar to the one initiated years
ago by works dealing with the automated creation of environments for domain-
specific modelling languages. In this respect, we plan to continue improving our
prototype, and explicitly consider important aspects of transformations like bidi-
rectionality or scheduling. We will also support other types of concrete syntax,
including graphical ones, and plan to extend our template approach.

Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).
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In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969,
pp. 224–243. Springer, Heidelberg (2010)

http://www.dsal.cl/


Domain-Specific Transformation Languages 211

15. Herrmannsdoerfer, M.: COPE – A workbench for the coupled evolution of meta-
models and models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, pp. 286–295. Springer, Heidelberg (2011)
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Abstract. Controlled experiments in model-based software engineering, especially 
those involving human subjects performing modeling tasks, often require compar-
ing models produced by experiment subjects with reference models, which are 
considered to be correct and complete. The purpose of such comparison is to assess 
the quality of models produced by experiment subjects so that experiment hypo-
theses can be accepted or rejected. The quality of models is typically measured 
quantitatively based on metrics. Manually defining such metrics for a rich mod-
eling language is often cumbersome and error-prone. It can also result in  
metrics that do not systematically consider relevant details and in turn may  
produce biased results. In this paper, we present a framework to automatically 
generate quality metrics for MOF-based metamodels, which in turn can be used 
to measure the quality of models (instances of the MOF-based metamodels). 
This framework was evaluated by comparing its results with manually derived 
quality metrics for UML class and sequence diagrams and it has been used  
to derive metrics for measuring the quality of UML state machine diagrams. 
Results show that it is more efficient and systematic to define quality metrics 
with the framework than doing it manually. 

Keywords: Quality Metrics, Controlled Experiments, Metamodel, and MOF. 

1 Introduction 

Empirical research in software engineering helps us understand how approaches, me-
thodologies, tools, and techniques work. A controlled experiment is performed in a 
controlled environment (typically in a laboratory setting), to observe cause-effect 
relationships, where one or more variables are manipulated, other variables are con-
trolled at fixed values and the effect is measured [1]. 

Controlled experiments in model-based software engineering often require the 
evaluation of models designed by human subjects (i.e., Models Under Evaluation 
(MUE)) by comparing them to models designed by experts (reference models). The 
comparison typically uses quality metrics that evaluate models from different quality 
aspects such as completeness and correctness. Based on the values of those metrics, 
calculated in those models, we determine how good the MUE is as compared to the 
reference model. A similar requirement arises when teachers of Software Engineering 
courses grade models designed by students. The assessment of those models is often 
done by comparing them to prepared solution models. 
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If the atomic element is a matched element, then the value of matching is 1, else 0. 
Attribute matching of CompositeCompleteness is calculated as the average of the 
completeness of all of the modeling elements contained by the composite element. 

Context AtomicCompleteness::matching:Integer 
init:   -1 
derive: if self.class.elementUnderMeasure.oclAsType(AtomicElement). 
               measurementProperty.oclIsType(MatchedElement) 

then 1 else 0 endif 
Context CompositeCompleteness::matching:Integer 
init:   -1 
derive: (self.class.elementUnderMeasure.oclAsType(CompositeElement). 
           containedElements->select(c|c.measurementProperty. 

oclIsType(MatchedElement))->collect(mElement|mElement-> 
oclAsType(Completeness).matching)->sum()) 

              /(self.class.composedElementCompleteness->size()) 

Fig. 5. Formalization of AtomicCompleteness and CompositeCompleteness 

Completeness has impact on Correctness. In other words, the calculation of cor-
rectness of a view relies on its completeness. This is because the measurement Cor-
rectness only makes sense when a model element under evaluation is a matched 
modeling element. Therefore, the overall correctness of a view is based on the propor-
tion of the correctness of the matched elements, which is however determined by the 
measurement of Completeness. The Correctness of a view is measured by the cor-
rectness of each matched model element in the view. AtomicCorrectness measures 
the correctness of an atomic element, while CompositeCorrectness measures the 
correctness of a composite element. The calculation of CompositeCorrectness of a 
composite element depends on the correctness of its contained model elements. The 
derivation of the attribute elementCorrectness of AtomicCorrectness is formally 
specified using the OCL expression as shown in Fig. 6: If the atomic element is a 
correct element, then the value elementCorrectness is 1, else 0. Attribute element-
Correctness of CompositeCorrectness is calculated as the average of the correct-
ness of all of its contained modeling elements. 

 
Context AtomicCorrectness::elementCorrectness:Integer 
init:   -1 
derive: if self.class.elementUnderMeasure.oclAsType(AtomicElement). 

measurementProperty.oclIsType(CorrectElement) and  
self.class.elementUnderMeasure.measurementProperty.oclIsType(MatchedElement) 

then 1 else 0 endif 
Context CompositeCorrectness::elementCorrectness:Integer 
init:   -1 
derive: (self.class.elementUnderMeasure.oclAsType(CompositeElement). 

    containedElements->select(c|c.elementUnderMeasure.measurementProperty. 
          oclIsType(MatchedElement) and c.elementUnderMeasure.measurementProperty. 

oclIsType(CorrectElement))->collect(mElement|mElement. 
oclAsType(Correctness).elementCorrectness)->sum()) 
/(self.class.composedElementCorrectness->size()) 

Fig. 6. Formalization of AtomicCorrectness and CompositeCorrectness 

Redundancy of a view is measured by the number of redundant model element in the 
view. AtomicRedundancy measures the redundancy of an atomic element while Compo-
siteRedundancy measures the redundancy of a composite element. The calculation  
of CompositeRedundancy of a composite element depends on the redundancy of its 
contained model elements. The derivation of attribute redundancy of AtomicRedun-
dancy and CompositeRedundancy is formally specified using the OCL expressions as 
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shown in Fig. 7. If the atomic element is redundant, the value of redundancy is 1, else 
0. Attribute redundancy of CompositeRedundancy is calculated as the average of the 
redundancy of all of the modeling elements contained by the composite element. 

 
Context AtomicRedundancy::redundancy:Integer 
init:   -1 
derive: if self.class.elmentUnderMeasure.oclAsType(AtomicElement). 

           measurementProperty.oclIsType(RedundantElement)  
    then 1 else 0 endif 

Context CompositeRedundancy::redundancy:Integer 
init:    -1 
derive: (self.class.elementUnderMeasure.oclAsType(CompositeElement).compositeElement 
          .containedElements->select(c|c.elementUnderMeasure.measurementProperty. 

  oclIsType(RedundantElement))->collect(mElement|mElement.redundancy)->sum() 
 )/(self.class.composedElementRedundancy->size()) 

Fig. 7. Formalization of AtomicRedundancy and CompositeRedundancy 

4 Quality Measurement Framework 

An overview of our framework is shown as a UML activity diagram in Fig. 8. The first 
activity (A1) is that experts define the QMM3 metrics on the MOF metamodel. In the 
second activity (A2), a user is asked to select a subset of the MOF-based metamodel 
(M2), whose model elements will be used to derive the QMM2 metrics. This step pro-
vides the user an opportunity to select only important model elements to evaluate and 
omit the others. If the 
user decides to keep all 
the model elements in 
the M2 level metamodel 
for evaluation, then this 
step can be skipped. 
Step A3 provides the 
user an opportunity to 
define weights for model 
elements of the selected 
subset of the MOF-based 
metamodel. For exam-
ple, if the user considers 
that Class is more im-
portant than Associa-

tion when UML class 
diagrams are evaluated, 
then more weight can be 
assigned to Class than to Association. Step A4 takes the user selected subset of the 
MOF-based metamodel and the user specified weights as input and automatically 
transforms the QMM3 metrics into QMM2 metrics. This step will be described in de-
tail in Section 4.2. In A5, the user takes input QMM2, a model under evaluation 
(MUE) and a reference model (REF), which are both instances of the MOF-based  
metamodel, measures the quality of MUE against REF, and generates values for the 
QMM2 metrics (Collected Data).  
 

 

Fig. 8. The measurement framework 
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In the rest of the section, we first define the QMM3 metrics (A1) (Section 4.1), fol-
lowed by detailed discussion of the transformation from QMM3 to QMM2 (activities 
A2, A3 and A4) (Section 4.2). 

4.1 Definition of QMM3 

The MOF level metrics, also called QMM3, are specified in Fig. 9, Fig. 10, and Fig. 
11 using UML class diagrams and OCL expressions. The definition of QMM3 is 
based on the Ecore metamodel (Fig. 1). An instance of EClass consists of a set of 
instances of EAttribute and/or EReference; therefore, the calculation of the formula 
for QMM3 metric EClassCompleteness (or EClassCorrectness) depends on the 
QMM3 metrics EAttributeCompleteness and EReferenceCompleteness (or EA-
tributeCorrectness, and EReferenceCorrectness). Each instance of EReference 
refers to an instance of EClass as its reference type; therefore the calculation of the 
formula of the QMM3 metric EReferenceCompleteness (or EReferenceCorrect-
ness) depends on EClassCompleteness (or EClassCorrectness). 

In Fig. 9, each Completeness metric has an attribute representing the formula used 
to calculate formula::Real. EAttributeCompleteness and EReferenceCompleteness 
have another attribute (value:Integer) representing the value of the completeness of 
an instance of EAttribute or EReference. If an instance of EAttribute matches to an 
instance of EAttribute of the reference model, the value of the attribute value of 
EAttributeCompleteness is assigned to be 1, otherwise 0. Metric EClassComplete-
ness has five operations, defined for the convenience of specifying the formulas of 
the metrics and they should be executed when transforming QMM3 to QMM2. These 
five operations are specified using OCL expressions below: 

 
context EClassCompleteness::getNumberOfEAttributes (): Integer 
pre   init: 0 
post    result: self.class.eAttributeCompleteness->size() 
context EClassCompleteness::getNumberOfEReferences (): Integer 
pre     init: 0 
post    result: self.class.eReferenceCompleteness->size() 
context EClassCompleteness::getAttributeCompleteness (): Integer 
pre     init: 0 
post    result: self.class.eAttributeCompleteness->collect().value->sum() 

/getNumberOfEAttributes() 
context EClassCompleteness::getReferenceCompleteness (): Integer 
pre     init: 0 
post    result: self.class.eReferenceCompleteness->collect().value->sum() 

/getNumberOfEReferences() 
context EClassCompleteness::caculateFormula() : Real 
pre     init: 0.0 
post    result: (getNumberOfEAttributes()*getAttributeCompleteness()+  
                +getNumberOfEReferences()*getReferenceCompleteness()) 
             /(getNumberOfEAttributes()+getNumberOfEReferences()) 

 

Fig. 9. Definition of Completeness (QMM3) 
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Fig. 11 shows the definition of redundancy of QMM3. EClassRedundancy is very 
similar to EClassCompleteness. The only difference is that we check redundancy in 
an EClass (contained elements that do not match to any model element in a reference 
model) based on the redundancy in its contained EAttribute and EReference. The 
specification of the five operations of EClassRedundancy is provided below: 

 
context EClassRedundancy::getNumberOfEAttributes (): Integer 
pre     init: 0 
post    result: self.class.eAttributeRedundancy->size() 
context EClassRedundancy::getNumberOfEReferences (): Integer 
pre     init: 0 
post    result: self.class.eReferenceRedundancy->size() 
context EClassRedundancy::getAttributeRedundancy (): Integer 
pre     init: 0 
post    result: self.class.eAttributeRedundancy->collect().value->sum() 

/getNumberOfEAttributes() 
context EClassRedundancy::getReferenceRedundancy (): Integer 
pre     init: 0 
post    result: self.class.eReferenceRedundancy->collect().value->sum() 

/getNumberOfEReferences() 
context EClassRedundancy::caculateFormula() : Real 
pre     init: 0.0 
post    result: (getNumberOfEAttributes()*getAttributeRedundancy()+  
                +getNumberOfEReferences()*getReferenceRedundancy()) 
             /(getNumberOfEAttributes()+getNumberOfEReferences()) 

4.2 Transformation of QMM3 to QMM2 

We use the UML state machine metamodel (Section 2) as a running example to illu-
strate the automated transformation of QMM3 to QMM2. The QMM2 metrics for 
evaluating the completeness of UML state machines (named as QMM2-SM) is par-
tially presented as the class diagram in Fig. 12. The class diagram is derived from the 
UML state machine metamodel (Fig. 2) and was extended with additional QMM3 
quality metric information through stereotypes: <<EClassCompleteness>>, <<EAttri-
buteCompleteness>> and <<EReferenceCompleteness>>.  

The transformation from the QMM3 metrics to M2 level metrics for MOF-based 
metamodels contains the following three steps: 1) Our tool automatically identifies 
instances of EClass and their relationships, 2) User manually selects model elements 
in the MOF-based metamodel to be measured and specifies their weights, and 3) Our 
tool automatically transforms the QMM3 metrics into M2 level metrics (QMM2) for 
the MOF-based metamodel. In the rest of the section, we discuss each of these steps. 

 

 

Fig. 12. QMM2 for UML State Machine (QMM2-SM) 
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Step1-Automated Identification of Instances of EClass and their Relationships. 
First, identify instances of EClass (SInstancesOfEClass) of the MOF-based metamodel. 
For example, as shown in Fig. 2, all the classes in the class diagram are instances of 
EClass (i.e., stereotyped with <<eClass>>). Second, for each instance I belonging to 
SInstancesOfEClass, identify the instances of EAttribute and EReference, either directly or 
indirectly contained by I. By ‘indirectly’, we mean the instances of EAttribute and 
EReference that are inherited from the direct and indirect superclasses of I if there are 
any. For example, if I is State then it indirectly inherits, for instance, the association 
between Region and Vertex which is a direct superclass of State. Direct model ele-
ments are the ones that are directly contained in an instance of EClass. For example, 
if I is State then it has a direct attribute called isComposite, which is an instance of 
EAttribute. One can see that these two steps can be easily automated by simply que-
rying the MOF-based metamodel. 

Step2-User Inputs. In this step, a user has an option to get involved in the transfor-
mation process by selecting model elements to be measured and assigning weights to 
them. For example, if the completeness of Transition is measured as the average 
completeness of Guard, Trigger, and Effect, then the weights assigned to each of the 
three model elements contained by Transition is 1. Otherwise, if this set of values 
{0.5, 1.5, 1} is assigned to Guard, Trigger, and Effect, respectively, then it means 
that Trigger (weight =1.5) is considered more important than Effect (weight = 1) 
and Guard (weight = 0.5). Notice that the sum of the weights should always be equal 
to the number of weighted model elements. If the user does not assign any weights, 
then all weights are automatically assigned to be 1. Notice that the containment rela-
tionship between Transition and all its contained elements (e.g., Guard, Trigger, 
and Effect) is automatically derived in Step1. Based on the instantiation algorithm 
specified in Step1, we can make sure that all the contained elements of a composite 
element are automatically derived and metrics can therefore be systematically de-
fined. No single element would be left out. The user can also select the model ele-
ments to be measured. For example, the user might think it is not important to take 
attribute isComposite of State into the account when calculating the completeness or 
correctness of State, then the user can unselect this attribute and therefore our algo-
rithm will not take it into the account when the metrics are generated (Step3). By 
default, all model elements are taken into the account. 

Step3-Automated Derivation of Metric Completeness for Each Instance of  
EClass belonging to SInstancesOfEClass. 

Execute operation getNumberOfEAttributes() of class EClassCompleteness of 
QMM3 to obtain the total number of instances of EAttribute, for instance I of EC-
lass belonging to SInstancesOfEClass. I_numberOfEAttributes = number of the 
instances of EAttribute directly and indirectly contained by I. Notice that this con-
tainment relationship is identified in Step1. For example, as shown in Fig. 12, State 
contains four direct attributes and therefore its I_numberOfEAttributes = 4.  

Execute operation getNumberOfEReferences()of class EClassCompleteness of 
QMM3 to obtain the total number of instances of EReference  for instance I. 
I_numberOfEReferences = number of the instances of EReference contained by I. For 



 A MOF-Based Framework for Defining Metrics to Measure the Quality of Models 223 

 

example, as shown in Fig. 12, Transition contains four instances of EReference 
(e.g., the association to Constraint), which are all stereotyped with <<EReference-
Completeness>>, then I_numberOfEReferences = 4. 

Execute operation getAttributeCompleteness() of class EClassCompleteness of 
QMM3 to obtain the completeness of all the instances of EAttribute for instance I. ܫ௘஺௧௧௥௜௕௨௧௘஼௢௠௣௟௘௧௘௡௘௦௦ ൌ  ∑ ௐೌ ஼௢௠௣௟௘௧௘௡௘௦௦ೌ಺೙ೠ೘್೐ೝೀ೑ಶಲ೟೟ೝ೔್ೠ೟೐ೞೌసభכ ூ೙ೠ೘್೐ೝೀ೑ಶಲ೟೟ೝ೔್ೠ೟೐ೞ , where Completenessa 

denotes the completeness of attribute a. Wa denotes the weight assigned to attribute a. 
As we discussed in the conceptual model (Section 3), an instance of EAttribute must 
be an atomic element; therefore its completeness is determined by AtomicComplete-
ness. For example, the completeness of State can be calculated as the average value 
of the completeness of all its contained attributes (e.g., isComposite), if the weight 
assigned to each of the attributes is 1. For example, the following formula can be 
generated for calculating the completeness of all the attributes of State (stereotyped 
with <<EAttributeCompleteness>>), based on the metamodel shown in Fig. 12. ܵ௔ ൌ  ௐ೔ೞ಴೚೘೛೚ೞ೔೟೐כ஼೔ೞ಴೚೘೛೚ೞ೔೟೐ାௐ೔ೞೀೝ೟೓೚೒೚೙ೌ೗כ஼೔ೞೀೝ೟೓೚೒೚೙ೌ೗ାڮସ , where WisComposite and 

WisOrthogonal are the weights assigned to attributes isComposite and isOrthogonal. 
CisComposite and CisOrthogonal are their completeness, respectively. The sum of the weights 
assigned to the four attributes should be equal to the number of the attributes. 

Execute operation getReferenceCompleteness()of class EClassCompleteness of 
QMM3 to obtain the completeness of all the instances of EReference for instance 

I. ܫ௘ோ௘௙௘௥௘௡௖௘஼௢௠௣௟௘௧௘௡௘௦௦ ൌ  ∑ ௐೝכ஼௢௠௣௟௘௧௘௡௘௦௦ೝ಺೙ೠ೘್೐ೝೀ೑ಶೃ೐೑೐ೝ೐೙೎೐ೞೝసభ ூ೙ೠ೘್೐ೝೀ೑ಶೃ೐೑೐ೝ೐೙೎೐ೞ , when the value of 

the attribute composition of the instance of EReference is true, then Completenessr 
denotes the completeness of the instances of the EClass (c) referred to by the refer-
ence r and Wr is the weight assigned to it. In other words, Completenessr is equal to 
the average value of EClassCompleteness of each instance of c. Otherwise, Com-
pletenessr denotes the completeness of the reference r and Wr is the weight assigned 
to it. For example, the following formula can be generated for the completeness of all 
the references of Transition, based on the metamodel in Fig. 

12.  ܵ௥ ൌ  ௐ೐೑೑೐೎೟כ஼೐೑೑೐೎೟ାௐ೟ೝ೔೒೒೐ೝכ஼೟ೝ೔೒೒೐ೝାௐ೒ೠೌೝ೏כ஼೒ೠೌೝ೏ାௐ೎೚೙೟ೌ೔೙೐ೝכ஼೎೚೙೟ೌ೔೙೐ೝସ , where 

Weffect, Wtrigger, Wguard and Wcontainer are the weights assigned to effect, trigger, guard 
and the reference to Region (with role name container), respectively. Ceffect, Ctrigger, 
Cguard and Ccontainer are the average values of the completeness of the effect, triggers, 
guard of a transition and its containment by a region. The sum of the weights assigned 
to the attributes should be equal to the number of the attributes.  

Execute operation getFormula()of class EClassCompleteness of QMM3 to obtain 
the completeness of the instance I.  ܫ௘஼௟௔௦௦஼௢௠௣௟௘௧௘௡௘௦௦ ൌ ௡௨௠௕௘௥ை௙ா஺௧௧௥௜௕௨௧௘௦ܫ  כ ௘஺௧௧௥௜௕௨௧௘஼௢௠௣௟௘௧௘௡௘௦௦ܫ ൅ ௡௨௠௕௘௥ை௙ாோ௘௙௘௥௘௡௖௘௦ܫ כ ௡௨௠௕௘௥ை௙ா஺௧௧௥௜௕௨௧௘௦ܫ௘ோ௘௙௘௥௘௡௖௘஼௢௠௣௟௘௧௘௡௘௦௦ܫ ൅ ௡௨௠௕௘௥ை௙ாோ௘௙௘௥௘௡௖௘௦ܫ  

Step4-Automated Derivation of Metric Correctness for Each Instance of EClass 

belonging to SInstancesOfEClass. This step is very similar to the step of deriving 
metric Completeness for instances of EClass, described previously. 



224 T. Yue and S. Ali 

 

Execute operation getNumberOfEAttibute()of class EClassCorrectness of QMM3 
to obtain the total number of instances of EAttribute for instance I of EClass belong-
ing to SInstancesOfEClass. I_numberOfEAttributes = number of the instances of 
EAttribute directly and indirectly contained by I. Notice that this containment rela-
tionship is identified in Step1.  

Execute operation getNumberOfEReferences()of class EClassCorrectness of 
QMM3 to obtain the total number of instances of EReference for instance I. 
I_numberOfEReferences = number of the instances of EReference contained by I.  

Execute operation getAttributeCorrectness() of class EClassCorrectness of 
QMM3 to obtain the correctness of all the instances of EAttribute for instance I. ܫ௘஺௧௧௥௜௕௨௧௘஼௢௥௥௘௖௧௡௘௦௦ ൌ  ∑ ௐೌ ஼௢௥௥௘௖௧௡௘௦௦ೌ಺೙ೠ೘್೐ೝೀ೑ಶಲ೟೟ೝ೔್ೠ೟೐ೞೌసభכ ூ೙ೠ೘್೐ೝೀ೑ಶಲ೟೟ೝ೔್ೠ೟೐ೞ , where Correctnessa de-

notes the correctness of attribute a. Wa denotes the weight assigned to a. Correctness 
of an instance of EAttribute is determined by AtomicCorrectness (Section 3). 

Execute operation getReferenceCorrectness()of class EClassCorrectness of 
QMM3 to obtain the completeness of all the instances of EReference for instance I. ܫ௘ோ௘௙௘௥௘௡௖௘஼௢௥௥௘௖௧௡௘௦௦ ൌ  ∑ ௐೝכ஼௢௥௥௘௖௧௡௘௦௦ೝ಺೙ೠ೘್೐ೝೀ೑ಶೃ೐೑೐ೝ೐೙೎೐ೞೝసభ ூ೙ೠ೘್೐ೝೀ೑ಶೃ೐೑೐ೝ೐೙೎೐ೞ ,  when the value of at-

tribute composition of the instance of EReference is true. Correctnessr denotes the 
correctness of the instance of the EClass (c) referred to by reference r, and Wr is the 
weight assigned to it. In other words, Correctnessr equals to the average value of 
EClassCorrectness of each instance of c. Otherwise, Correctnessr denotes the cor-
rectness of the reference r and Wr is the weight assigned to it.  

Execute operation getFormula()of class EClassCorrectness of QMM3 to obtain the 
correctness of for the instance I. IୣC୪ୟୱୱC୭୰୰ୣୡ୲୬ୣୱୱ ൌ  IୣC୪ୟୱୱC୭୫୮୪ୣ୲ୣ୬ୣୱୱ I౛R౛౜౛౨౛౤ౙ౛C౥౨౨౛ౙ౪౤౛౩౩I౤౫ౣౘ౛౨O౜EA౪౪౨౟ౘ౫౪౛౩ାI౤౫ౣౘ౛౨O౜ER౛౜౛౨౛౤ౙ౛౩כI౛A౪౪౨౟ౘ౫౪౛C౥౨౨౛ౙ౪౤౛౩౩ାI౤౫ౣౘ౛౨O౜ER౛౜౛౨౛౤ౙ౛౩כI౤౫ౣౘ౛౨O౜EA౪౪౨౟ౘ౫౪౛౩כ  

Step5-Automated Derivation of Redundancy for Each Instance of EClass belonging 
to SInstancesOfEClass. This step follows the similar procedure as we did for metric 
Completeness, except that metric Completeness is checked against matched elements 
while metric Redundancy is checked against redundant elements (Section 3). 

5 Evaluation 

Section 5.1 presents our evaluation, where we compare the metrics generated by our 
framework for UML class and sequence diagrams with the ones manually developed, 
followed by the application of the metrics generated by our framework for UML state 
machine diagrams in Section 5.2. 

5.1 Metrics for UML Class and Sequence Diagrams 

This work was motivated by the experience of our manual development of two sets of 
quality metrics for UML class and sequence diagrams (Section 1) for two controlled 
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experiments [2]. These experiments evaluated the applicability of a use case modeling 
approach, called RUCM [3], in terms of its impact on the quality of UML class and 
sequence diagrams, by comparing with a traditional use case modeling approach. The 
UML class and sequence diagrams designed by the experiment subjects (MUE) were 
evaluated against manually developed experts’ solutions (REF).  

Diagrams were evaluated from three aspects: completeness, correctness, and re-
dundancy. Three main types of model elements contribute to the measurement of 
class diagrams: Class, Association, and Generalization. The quality of classes in class 
diagrams is further measured based on three properties: stereotypes, attributes, and 
operations. Additionally three extra measuring aspects were introduced to evaluate 
classes, which are the metrics that were impossible to be automatically generated 
because they are not related to either the syntax or semantics of UML class diagrams, 
but are the indicators of a good object-oriented design. These extra metrics are: 1) A 
class does not represent one and only one logical concept, 2) A class does not give a 
cohesive set of responsibilities, and 3) A class does not represent the intended mean-
ing of the class. It is worth noticing that users are welcomed to introduce this type of 
metrics and it can be easily done. The users only need to indicate to which model 
elements these metrics should be applied and what are their weights.  

Messages, interaction uses, and combined fragments are the three main types of 
model elements of sequence diagrams and they contribute to the measurement of 
sequence diagrams in our controlled experiments. One measuring aspect Message 
Sequence Correctness was introduced to evaluate whether the sequence of messages 
along lifelines is correct according to the use case specification of the system under 
study. This metric contributes to the overall correctness of sequence diagrams. How-
ever it cannot be automatically generated due to the same reason we discussed earlier. 

We compared the generated metrics for UML class and sequence diagrams by our 
measurement framework with the manually developed metrics of the experiment de-
signers. Results show that most of the metrics are matched, except the ones we dis-
cussed above, which cannot be generated automatically as they are not related to the 
syntax and semantics of the modeling language. This type of metrics is usually related 
to the quality of a good object-oriented design.  

5.2 Metrics for UML State Machine Diagrams 

Our framework was applied to generate quality metrics for UML state machines to 
evaluate the “applicability” of state machines when modeling crosscutting behavior 
using AspectSM [9], a UML profile extending UML state machine to provide me-
chanisms to define and weave aspects into state machines. With AspectSM, crosscut-
ting behavior is modeled using “aspect state machines”. Their applicability was com-
pared with that of standard state machines directly modeling crosscutting and standard 
behavior. In other words, aspects combined with state machines modeling standard 
behavior are compared with state machines modeling the entire system behavior, 
including its crosscutting one. Applicability is defined based on the completeness, 
correctness, and redundancy of state machines when compared to their corresponding 
reference state machines. Metrics to measure aspect state machines and standard 
UML state machines were automatically generated using our framework. We applied 
these metrics to two controlled experiment [6, 7] to measure quality of subject-
derived state machines with the ones developed by experts (reference state machines).  
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Two main model elements (i.e., State and Transition) of state machine diagrams 
were measured by the experiment designers. A state was measured by its name only. 
A transition was measured by its contained triggers, guards, and effects. Each model 
element was assigned the same weight such that all model elements are considered 
equally important. According to experiment needs, users are encouraged to select only 
appropriate elements to evaluate. By doing so the resulted metrics derived from our 
framework can be significantly simplified and additionally these metrics would be 
more meaningful for experiments. For instance, in the experiment design, we decided 
not to include Region and any of its properties because in the experiment subjects 
were not required to model regions when they designed the state machine diagrams. 
Therefore, no region appeared in the state machine diagrams designed by the students. 

6 Related Work 

Many metrics for Object-Oriented (OO) design have been proposed to help evaluating 
and subsequently improving the quality of a design. For instance, SDMetrics [10] 
provides a set of measures to quantify the structural quality of OO code and design 
such as size, coupling, and complexity. SDMetrics also provides a tool support to 
automatically collect data for these measures. This tool implementation is based on a 
series of research results like [11, 12]. There also exist other works (e.g., [13, 14]) 
proposing similar kinds of software quality measures (e.g., size, cohesion). Such 
measures help in assessing individual software’s quality, instead of comparing soft-
ware designs with reference designs to conduct empirical studies, as we do here. In-
tensive empirical studies (e.g., [15-17]) have been conducted to investigate the con-
nections of OO quality metrics with software characteristics such as maintainability. 

There exist some works on quality measures of UML models. Xu et al. [18] pro-
posed a structural complexity measure for UML class. The proposed approach only 
considers the complexity of classes and relationships between them. Each model ele-
ment of a class diagram can be assigned a weight, which is taken in consideration 
while calculating complexity of class diagrams. Reißing [19] proposed a model, based 
on UML metamodel, for OO design measurement. This model defines structural me-
trics of a class diagram for the purpose of automating evaluation of UML class dia-
grams. The definitions of all the metrics are based on the UML metamodel, which 
makes the tool implementation for calculating metrics easy. Marchesi [20] proposed a 
set of metrics for UML use case and class diagrams. The objective is to allow early 
estimate of development efforts and implementation time, etc. Genero et al. [21] 
summarized and analyzed a set of existing OO metrics that can be applied for assess-
ing the complexity of class diagrams and based on the analysis results, they proposed 
some new metrics on relationships (e.g., number of associations of a class). The au-
thors also conducted an empirical evaluation on these class diagram metrics [22] to 
investigate whether these metrics are related to the maintainability of class diagrams. 
Notice that all these related works are mainly limited their scope to quality metrics of 
UML class diagrams. Kim and Boldyress [23] proposed a set of metrics for UML 
class and use case diagrams. They also proposed metrics for messages in UML se-
quence diagrams. A tool has been implemented to obtain data for their proposed me-
trics automatically. Similar tools (e.g., [24, 25]) have been developed to automatically 
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collect data based on metrics from different UML diagrams. A set of metrics are pro-
posed in [26] to measure the complexity of UML state machine diagrams based on 
measures such as ‘Number of Transitions’ and ‘Number of Guards’. 

To compare with the above existing works, our framework defines metrics at the 
MOF metamodel level, and automatically transforms them to obtain metrics for 
MOF-based metamodels (M2 level). The motivation of our work is not to derive qual-
ity metrics like what the related work does, but for evaluating a model by comparing 
it with a reference model, which is considered as an “Oracle” and usually designed by 
an expert. This kind of comparison is very important in the context of empirical stu-
dies (e.g., [2]) for assessing, for example, a model designed by an experiment subject 
by comparing it with an expert solution. Besides, as we define metrics in the M3 lev-
el, our proposed measurement framework can be used not only for UML models, but 
also other MOF-based modeling languages such as Knowledge Discovery Meta-
Model (KDM) [27] and Business Process Definition Metamodel (BPDM] [28]. 

7 Conclusion 

In this paper, we presented a quality measurement framework for defining quality 
metrics at the MOF metamodel (M3) and a (semi-automated) instantiation with a tool 
support to obtain quality metrics for MOF-based metamodels (e.g., UML metamodel). 
The motivation of this work arose from a series of controlled experiments we con-
ducted [3], where it was required to define quality metrics to measure quality of expe-
riment subjects’ solutions by comparing them with the reference solutions developed 
by experts. Manually developing such metrics is an error-prone task since the meta-
models at the M2 level can be extremely complex. Using our framework such metrics 
can be defined once at the MOF metamodel (e.g., Ecore metamodel) and a tool can 
automatically transform them into quality metrics for any M2 metamodel.  

We evaluated our automatically generated metrics for UML class and sequence di-
agrams by comparing them with the manually developed metrics for two controlled 
experiments. We found two sets of metrics consistent with each other. We further 
used the framework to generate metrics for UML state machines and used them in 
two controlled experiments to determine the applicability of an aspect-oriented state 
machine modeling approach. In the future, we plan to extend our tool to provide a use 
interface support for defining metrics that are independent of the syntax or semantics 
of any MOF-based language. Such examples include metrics that check whether a 
model meets a good object-oriented design. We also plan to use our framework to 
generate metrics for other MOF-based metamodels, besides for the UML metamodel. 
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Abstract. Several industrial contexts require software engineering
methods and tools able to handle large-size artifacts.The central idea of ab-
straction makesmodel-driven engineering (MDE) a promising approach in
such contexts, but current tools do not scale to very large models (VLMs):
already the task of storing and accessing VLMs from a persisting support
is currently inefficient. In this paper we propose a scalable persistence layer
for the de-facto standard MDE framework EMF. The layer exploits the ef-
ficiency of graph databases in storing and accessing graph structures, as
EMFmodels are.Apreliminary experimentation shows that typical queries
in reverse-engineering EMFmodels have good performance on such persis-
tence layer, compared to file-based backends.

1 Introduction

With large-scale software engineering becoming a compelling necessity in several
industrial contexts, companies need tools that are capable to scale efficiently. One
of such companies is MIA Software, part of the group Sodifrance, working in the
field of software modernization.

The emergence of new techniques and tools for building complex, adaptive and
distributed systems has raised a need for the modernization of existing software.
A software modernization process follows a systematic approach by first building
high level abstractions from source code through reverse engineering, and then
using these abstractions to understand, evaluate the quality, extract enterprise
architectures and finally, improve the system. A natural approach to reverse
engineering is to use Model-Driven Engineering (MDE) tools and in particular
those based on the Eclipse Modeling Framework (EMF).

Indeed, EMF has become a de facto standard for building MDE tools, pro-
viding a common base for different purposes: reverse engineering [6, 26], model
transformation [14,19], and code generation [5,18]. However, EMF was designed
to support modeling activities in the first place and has shown clear limits when
dealing with large models, which is often the case of automatically generated
models.

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 230–241, 2014.
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While several solutions to persist EMF models exist, they are limited for two
reasons. First, most of them do not allow partial model load and unload, and
hence, the size of the models they can handle is limited by the memory size;
and second, models are structurally graphs and most of the existing solutions
are based on relational databases, which are not fully adapted to store graphs.

In this paper we identify specific large-model requirements, discuss the limita-
tions of EMF with this respect, and present a scalable persistence layer for EMF
models thatmeets these requirements.Our persistence layer,Neo4EMF, is built on
top of the popular graph database Neo4j. Neo4EMF is open-source, publicly avail-
able at [3] and it can be immediately used by existing EMF-based tools, without
modifying them, to improve their applicability to complex industrial contexts.

Neo4EMF provides two main benefits to the state-of-the-art MDE tools: (i) a
scalable access to very large models – a. k. a. large-scale models – with on-demand
loading of model elements, (ii) the possibility to exploit the enterprise features
of Neo4j, like online backups, horizontal scalability and advanced monitoring.
To evaluate this aspect we perform a set of queries in the domain of software
modernization, and we compare the execution performance of these queries with
the de facto standard persistence layers for EMF: XMI and CDO [13].

The paper is organized as follows. Section 2 introduces the concept of per-
sistence layer and graph database, Section 3 describes our proposed persistence
layer, Section 4 experimentally evaluates the performance of our layer. Section 5
compares our proposal to existing related work, and finally Section 6 concludes
and draws the future perspectives of the tool.

2 Background

2.1 Persistence Layers

Software developers often need to persist the state of one or more objects using
an existing storage support: relational databases, XML files, etc. There are two
main approaches to achieve object persistence. The first one is to hard code
the persistence behavior in the class. This approach is efficient and adapted to
small applications, but increases the coupling between the class and the storage
support. The second approach is to use a persistence layer [2], i. e., a robust and
adaptable mechanism that hides storage details from developers and reduces cou-
pling between the storage support and classes. The adaptability of this approach
is ensured by a mapping that binds the object model, composed of classes, refer-
ences, and attributes to the storage model: tables, columns, etc. The object and
the storage models can evolve independently, provided a mapping between their
concepts is possible. The mapping reduces the development cost of persistent
classes, but has a significant impact on the performance.

The emergence of code generation techniques allows developers to adopt a
third approach that combines the advantages of the two others. It consists on
automatically generating an efficient code for persistence using the correspon-
dence mapping as a generation parameter. Contrary to a persistent layer, the
adaptability is not ensured at runtime, but at generation time.
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Persistence Layers for EMF. Since the publication of the XMI standard [20],
XML-based serialization has been the preferred format for storing and sharing
models and metamodels. Some tools, such as EMF [12], have even adopted it
as their canonical representation. However, XMI-based serialization in EMF re-
sults to be extremely inefficient: (i) XMI files sacrifice compactness in favor of
human-readability and (ii) XMI files need to be completely parsed to obtain a
navigational model of their contents. The first factor greatly reduces the effi-
ciency in I/O accesses, while the second greatly increases the memory required
to load and query models and limits the use of proxies and on-demand loading
to inter-document relationships. Moreover, XMI-based implementations do not
provide advanced features such as concurrent modifications, model versioning,
or access control out-of-the-box.

The design of CDO [13], built on top of EMF, solves most of these problems.
CDO was initially envisioned, among other things, as a framework to manage
large models in a collaborative environment with a low memory footprint. CDO
implements a client-server architecture with transactional and notification facil-
ities where model elements are loaded on demand. CDO servers (usually called
repositories) are built on top of different data storage solutions. However, in prac-
tice, only relational databases are commonly used. Indeed, only DB Store [8],
which uses a proprietary Object/Relational mapper, supports all the features of
CDO and is regularly released in the Eclipse Simultaneous Release [9–11].

2.2 Graph Databases

The volume of data that organizations gather has grown explosively in recent
years, showing a need for solutions that scale-out, as well as the limits of rela-
tional databases. To overcome these limits, new technologies for data manage-
ment have raised, the so-called NoSQL databases [25]. Despite their non-respect
of the ACID properties, these database are able to manage large-scale data on
highly distributed environments.

Among the different data models used on NoSQL databases (e. g.column, doc-
ument, or key-value), graph databases are particularly adapted to store EMF
models. The graph data model uses graph structures with nodes, edges, and
properties to store data and provides index-free adjacency. Although this data
model is not new—the research on graph databases was popular back in the
1990s—it became again a topic of interest due to the large amounts of graph
data introduced by social networks and the web in general.

3 Neo4EMF

Neo4EMF is our proposal for scalable model persistence built on top of the
EMF framework. Neo4EMF is an open source project that aims at providing a
compatibility layer between the EMF API and a graph-based storage subsystem.
Specifically, Neo4EMF is built on top of Neo4j [23], a NoSQL database which is
distributed under the terms of the (A)GPLv3.
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EMF-based models can easily be described in terms of graph concepts, since
there is a natural mapping between the two representations. This natural transla-
tion is the main motivation that lead us to choose a native graph database instead
of another NoSQL database. Since graph databases like Neo4j have shown good
performance for connected data operations, we argue that they are a promising
platform for model manipulation.

In this section we first briefly provide an overview of the underlying mapping
between EMF models and Neo4j artifacts through a running example, then we
describe the main design principles of Neo4EMF.

3.1 Mapping EMF Models and Neo4j Graphs

Figure 1 shows a small excerpt of the Java metamodel provided by MoDisco [26].
This metamodel describes Java programs in terms of Packages, ClassDeclara-
tions, BodyDeclarations and Modifiers. A Package is a named container that
groups a set of ClassDeclarations through the ownedElements composition. A
ClassDeclaration contains a name and a set of BodyDeclarations. Finally, a Body-
Declaration contains a name, and its visibility is described by a single Modifier.

Figure 2 shows a simple instance of this metamodel. This instance contains a
single Package (package1), containing only one ClassDeclaration (class1). The
Class contains only the bodyDecl1 BodyDeclaration, which is public. Figures 1,
2, and 3 show that:

– Model elements are represented as nodes. Nodes p1, c1, d1 and m1 are
examples of this, and correspond to the elements p1, c1, d1 and m1 shown
in Figure 2. A ROOT element denotes the model element(s) that directly or
indirectly references all the other elements in the model.

– Element attributes are represented as node properties – a pair of 〈property
name, property value〉 contained in the corresponding node. This can be ob-
served in nodes p1, c1, d1, and m1 again.

– Metamodel elements are also represented as nodes. Nodes representing
metamodel elements are indexed to ease their access. These kind of nodes also
contain two node properties. As it can be seen in nodes P, C, B, and M (which
correspond to Package, ClassDeclaration, BodyDeclaration, and Modifier on
Figure 1), the first property holds the name of the metamodel element, and
the second property the metamodel unique identifier (a. k. a. nsURI ).

Package

name : String

ClassDeclaration

name : String

BodyDeclaration

name : String

Modifier

visibility : VisibilityKind

VisibilityKind

none

public

private

protected

ownedElements

*

bodyDeclarations *

modifier

1

Fig. 1. Excerpt of the Java metamodel
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p1 : Package

name : ’package1’

c1 : ClassDeclaration

name : ’class1’

b1 : BodyDeclaration

name : ’bodyDecl1’

m1 : Modifier

visibility : public

ownedElements

bodyDeclarations

modifier

Fig. 2. Sample instance of the Java metamodel (nsURI: http://java)

– Conformance relationships are represented as an outgoing relationship
of type INSTANCE_OF pointing to the node representing the corresponding
metamodel element, as exemplified by the horizontal arrows of Figure 3.

– References are represented as relationships. To avoid naming conflicts in
relationships, we use the following convention for assigning names: CLASS_
NAME__REFERENCE_NAME. Vertical arrows in Figure 3 are examples of ref-
erences. Bidirectional references would be represented with two separate
directed graph relationships.

3.2 Neo4EMF Design Principles

Figure 3 shows the high-level architecture of Neo4EMF. In this section we in-
troduce the different design principles that we respected in the development of
Neo4EMF.

Compliance with Standard APIs. In order to keep compliance with EMF,
Neo4EMF provides a feature to generate an adapted Java code implementation

id = p1

name = ’package1’
ROOT

id = c1

name = ’class1’

id = d1

name = ’bodyDecl1’

id = m1

visibility = ’public’

id = P

name = ’Package’

nsURI = ’http://java’

id = C

name = ’Class’

nsURI = ’http://java’

id = B

name = ’BodyDeclaration’

nsURI = ’http://java’

id = M

name = ’Modifier’

nsURI = ’http://java’

IS_ROOT INSTANCE_OF

INSTANCE_OF

INSTANCE_OF

INSTANCE_OF

PACKAGE__OWNED_ELEMENTS

CLASS_DECLARATION__BODY_DECLARATIONS

BODY_DECLARATION__MODIFIER

Fig. 3. Representation of the sample instance of the Java metamodel in Neo4j
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allowing a refined on-demand loading. To allow for a fine-grained on-demand
load mechanism even when using the Java generated API, Neo4EMF provides
an adapted code generator supporting all the kinds of EMF generation (reflec-
tive, virtual, and dynamic). Neo4EMFObject extends the EMF EObject class
with additional metadata such as the id. In addition to the default package or-
ganization, we generate a Java class containing a map from the model references
to the Neo4j Relationships.

On Demand Loading. Neo4EMF uses an on-demand loading mechanism that
reduces memory footprint and allows programs to load and query large models
in systems with limited memory. This capabilities are provided for both the
Neo4EMF dynamic API and the Neo4EMF generated Java API. These APIs
are kept fully compliant with the standard EMF methods to load, navigate,
modify, and save models. When a resource is loaded, only the root elements
of the model are charged in memory, without any reference to their features.
Depending on the user’s query, the rest of the model is to be loaded. Thus, when
a feature is queried, Neo4EMF checks if the elements already exist in the cache
memory, if not they are loaded from the backend store.

Lightweight Model Change Tracking. Saving model changes in XMI is time
consuming, especially when dealing with in large models. The standard serial-
ization mechanisms must traverse the whole resource to save a file. Neo4EMF
uses an event-driven change notification approach to keep track of the model
changes. Every Neo4EMFObject contains an adapter that sends a notification
for each change to a shared listener. Notifications are stored in a ChangeLog
model, which is asynchronously analyzed to optimize persistence operations. In
this case, instead of traversing the whole resource to save the changes, Neo4EMF
queries a ChangeLog model, and saves only the modified elements. Here, a model
change can either be a creation of a new element, an edition of feature(s) of
an existing one, or a deletion. Figure 4 shows the metamodel of the ChangeLog
model.

ChangeLog

Entry

SetAttributeAddLinkCreateObject RemoveLink DeleteObject

* entries

Fig. 4. Neo4EMF ChangeLog
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Lightweight First Time Loading. Neo4EMF Java code generation separates
objects data from their objects, in the sense that, every generated class references
to an inner class holding all the class features. This allows a light-weight first
time loading of Neo4EMF Objects.

4 Experimental Evaluation

In this section, we evaluate how the access time of Neo4EMF scales in increas-
ingly large scenarios, and we compare it against CDO (with H2 as relational
database backend) and XMI. These experiments are performed over 3 EMF
models that conform to the Java Metamodel proposed in MoDisco [26] and
reverse-engineered from existing code using the MoDisco Java Discoverer. As
starting code we used 3 sets of Eclipse plugins, of increasing size. Table 1 details
how the experiments vary in size and thus in the number of elements:

4.1 Execution Environment

Experiments are executed in a laptop computer running Windows 7 Enter-
prise 64. The most significative hardware elements are: an Intel Core i7 pro-
cessor 3740QM (2.70GHz), 16 GB of DDR3 SDRAM (800MHz), and a Samsung
SM841 SATA3 SSD Hard Disk (6GB/s). Experiments are executed on Eclipse
version 4.3.1 running Java SE Runtime Environment version 1.7 (specifically,
build 1.7.0 40-b43).

In order to compare the three technologies, we generate three different EMF
access APIs, starting from the Java MoDisco Metamodel respectively with 1)
EMF standard parameters, 2) CDO parameters, and 3) Neo4EMF generator.
We import the 3 experimental models, originally in XMI format to CDO and
Neo4EMF, and we verify that all the imported models contain the same data.

Experiment I : Model Traversal. In a first experimentation we execute a
model visitor that starting from the root of the model traverses the full
containment tree in a depth-first order. At each step of the traversal the
visitor loads the element content from the backend, and modifies the element
(changing its name). Only the standard EMF interface methods are used by
the visitor, that is hence agnostic of which backend he is running on. During
the traversal we measure the execution times for covering 0.1%, 1%, 10%
50% and 100% of the model. Fig. 5 shows the results of this experimentation
over the two largest test models (org.eclipse.jdt.core and org.eclipse.jdt.*).
Markers in the graph curves refer respectively to the percentages previously
mentionned.

Table 1. Overview of the experimental sets

# Plugin Size Number of elements

1 org.eclipse.emf.ecore 24.2MB 121.295

2 org.eclipse.jdt.core 420.6MB 1.557.007

3 org.eclipse.jdt.* 984.7MB 3.609.454
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Neo4EMF CDO XMI

Fig. 5. Results for model traversal on test models 2 and 3

Experiment II : Java Reverse Engineering. In a second experimentation
– see results in Fig.6 – we execute a set of three simple queries on the
Java metamodel that originate from the domain of reverse-engineering Java
code. While the first of these queries is a well-known scenario in academic
literature, the other two have been selected to mimic typical model access
patterns in reverse engineering, according to the experience of our industrial
partner.

1. Grabats (GB): it returns the set of classes that holds static method
declarations having as return type the holding class (e. g., Singleton) [15].

2. Unused Method Declarations (UnM): it returns the set of method dec-
larations that are private and not internally called.

3. Class-Attribute Map (CA-M): it returns a map associating each Class
declaration to the set of its attribute declarations.
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Fig. 6. Results for scenario 2
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All these queries start their computation by accessing the list of all the
instances of a particular element type, then apply a filtering to this list to
select the starting points for navigating the model. In the experience of our
industrial partner this pattern covers the quasi-totality of computational-
demanding queries in the reverse-engineering domain. For this reason we
added a method getAllInstances to the EMF API and we implemented it in
all the three back-ends. In CDO we implemented this method by a native
SQL query, achieved through the union of the tables containing elements of
the given type and its subtypes. In Neo4EMF the same result is achieved
by a native Neo4j query traversing the graph nodes via the relationship
INSTANCE_OF, for the given type and all of its subtypes. The user-code of
each of the three queries uses this method to start the computation in all
implementation, hence remaining backend-agnostic.

4.2 Discussion

The results of the two experimentations are consistent with each other.
Fig. 5 shows that while in XMI the access time to each model element is neg-
ligible with respect to the initial model-loading time (since the whole model
is loaded in memory), the two backends with on-demand loading mechanisms
have a constant access time (giving linear complexity to the query). This shows
that the backends can scale well for even larger sizes. In both experiments in
Fig. 5 the backends with on-demand loading mechanisms outperform XMI when
the part of the model that needs to be accessed is lower than a certain ratio
of the full model. The graphs show that this ratio is approximately constant,
independently of the size of the model and it amounts to 14.12% and 12.46%
for Neo4EMF and 29.54% and 27.84%. for CDO. The CDO backend performs
better than Neo4EMF, by an approximately constant factor that in the two
experiments is respectively of 1.38 and 2.6.

The results from Fig. 6 show that both Neo4EMF and CDO outperform XMI.
The test also confirms the previous result, showing execution times from CDO
consistently lower than Neo4EMF.

Summarizing, while resulting a better solution than XMI for the industrial
use case under study, the current version of Neo4EMF does not exhibit the per-
formance optimizations in caching and prefetching of more mature solutions like
CDO. CDO has two complementary ways of caching, one of CDOObjects placed
on the client side, and two other caches maintaining CDORevisions (through
the revision manager). Moreover CDO supports partial collection loading that
gives the possibility to manage the number of elements to be loaded when an
elements is fetched for the first time. Likewise, CDO provides a mechanism to
decide how and when fetching the target objects asynchronously.

We also remark that the acceptable performances of XMI may be misleading
in a real-world scenario: the amount of memory we used allowed to load the whole
models in memory, avoiding any swapping in secondary memory that would have
made the XMI solution completely unusable for the scenario. Moreover the use
of an SSD hard disk significantly improved the loading & saving times from file.
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On-demand loading allows to use only the necessary amount of primary memory,
extending the applicability of MDE tools to these large scenarios.

We did not measure significant differences in memory occupation between
CDO and Neo4EMF, but we noticed several problems in importing large models
in CDO. For instance CDO failed to import the test model 3 from its initial
XMI serialization on a 8Go machine, as a TimeOutException was raised.

Finally, the comparison with relational databases backend should also take
into account several other features, besides execution time and memory in a
single processor configuration. Neo4EMF allows existing MDE tools to make
use from now of the characteristics of graph databases like Neo4j, including
clustering, online backups and advanced monitoring.

5 Related Work

The interest on scalable model persistence has grown significantly in recent years,
especially with the advent of new solutions for Model-Driven Reverse Engineer-
ing (MDRE) and Software Modernization (MDSM). Tools built on top of the
EMF, such as MoDisco [6,17,26] have shown that models obtained from reverse-
engineering processes can normally be composed of millions of elements [15].
Existing approaches are not suitable to manage this kind of artifacts both in
terms of processing and memory consumption requirements.

CDO is the de facto standard solution to handle large models in EMF by stor-
ing them in a relational database. However, different experiences have shown that
CDO does not scale well to very large models [21,22,24]. Barmpis and Kolovos [4]
suggest that NoSQL databases would provide better scalability and performance
than relational databases due to the interconnected nature of models.

Morsa [21] was one of the first approaches to provide persistence of large scale
EMF models using NoSQL databases. As Neo4EMF, Morsa is based on a NoSQL
database. Specifically, Morsa uses MongoDB, a document-oriented database, as
its persistence backend. Morsa can be used seamlessly to persist large models
using the standard EMF mechanisms. As CDO, it was built using a client-
server architecture. Morsa provides on-demand loading capabilities together with
incremental updates to maintain a low workload. Performance of the storage
backend and their own query language (MorsaQL) has been reported in [21]
and [22]. Neo4EMF is similar to Morsa in several aspects (notably in on-demand
loading) but it aims at exploiting the optimized navigation performance offered
by graph-databases w.r.t. document-oriented databases.

Mongo EMF [7] is another alternative to store EMF models in MongoDB
databases. Mongo EMF provides the same standard API than previous ap-
proaches. However, according to the documentation, the storage mechanism be-
haves slightly different than the standard persistence backend (for example, for
persisting collections of objects or saving bi-directional cross-document contain-
ment references). For this reason, Mongo EMF cannot be used without perform-
ing any modification to replace another backend in an existing system.

EMF fragments [16] is another NoSQL-based persistence layer for EMF aimed
at achieving fast storage of new data and fast navigation of persisted



240 A. Benelallam et al.

models. Supported backends are MongoDB, Apache Hbase and regular files on
the file system. EMF fragments principles are simpler than in other similar ap-
proaches and those principles are based on the proxy mechanism used by EMF
for inter-document relationships. In EMF fragments, models are automatically
partitioned in several chunks (fragments). Unlike Neo4EMF, CDO, and Morsa,
all data from a single fragment is loaded at a time, and only links to another
fragments are loaded on demand. Another difference with other approaches is
that artifacts should be specifically adapted: metamodels have to be modified to
indicate where the partitions should be made to get the partitioning capabili-
ties. While our approach has the advantage of not requiring metamodel-specific
user manipulation or tool adaptation, fragmentation may provide performance
benefits that we plan to investigate in future versions of Neo4EMF.

6 Conclusions and Future Work

In this paper we present the first version of Neo4EMF, a tool that can im-
prove the applicability of MDE to large-scale scenarios, where on-demand load-
ing, high-performance access and enterprise-level data-management features are
needed. Our preliminary experimentation shows that, while Neo4EMF is a bene-
ficial alternative to XMI for these scenarios, its raw performances do not surpass
a more mature solution like CDO.

In our future work we plan to improve the tool by implementing performance
optimization strategies, starting from a definition of model partitions, i.e., el-
ements that are loaded in a single transaction, to reduce the total number of
transactions during execution. We then plan to study the problem of memory
unloading, by deriving unloading strategy from a definition of the possible uses
of the persisted model. Finally we want to extend the applicability of Neo4EMF
to other graph databases by exploiting recent proposals of common APIs among
graph-databases [1], making of Neo4EMF a generic graph-database backend like
CDO is for relational databases.
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Abstract. Recently, cloud computing gained more and more traction,
not only in fast moving domains such as private and enterprise software,
but also in more traditional domains like industrial automation. How-
ever, for rolling out automation software as a service solutions to low-end,
long-tail markets with thousands of small customers important aspects
for cloud scalability such as easy self service for the customer are still
missing. There exists a large gap between the engineering efforts required
to configure an automation system and the effort automation companies
and their customers can afford. At the same time, tools for implement-
ing Domain-Specific Languages (DSLs) have recently become more and
more efficient and easy to use. Tailored DSLs that make use of abstrac-
tions for the particular (sub-)domains and omitting other complexities
would allow customers to handle their applications in a SaaS-oriented,
self-service manner. In this paper, we present an approach towards a
model-based infrastructure for engineering languages for a multi-domain
automation cloud platform that make use of modern DSL frameworks.
This will allow automation SaaS providers to rapidly design sub-domain
specific engineering tools based on a common platform. End-customers
can then use these tailored languages to engineer their specific applica-
tions in an efficient manner.

1 Introduction

Recently, cloud computing gained more and more traction not only in fast mov-
ing domains such as private and enterprise software but also in more traditional
domains like industrial automation. For example, offering automation software
as Software-as-a-Service (SaaS) allows companies to reach customers that could
not afford to maintain a complete on-premise system automation. The type of au-
tomation software which this targets is level 3 (defines the activities of the work
flow to produce the desired end-products) and selected areas of level 2 (defines
the activities of monitoring and controlling the physical processes) of the ISA-95
standard [7], i.e., activities of manufacturing execution systems (MES). Typical
sub-domains for this low end automation are building automation or different ar-
eas in the smart grid domain such as renewable power generation and electronic
vehicle charging. Furthermore, with the advent of the Internet of Things (IoT)
traditional automation tasks such as monitoring and control also broaden their
scope to more and more smaller and privately deployed applications.
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However, in these low-end markets there exists a large gap between the en-
gineering efforts required to configure an automation system and the effort au-
tomation companies and their customers can afford. On one hand, automation
companies cannot offer engineering to tens of thousands of customers which are
the target for their automation SaaS. Therefore, a prerequisite for SaaS to work
on a large scale is that customers can do self-service on their applications, i.e.,
do engineering tasks on their own. On the other hand such customers do not
have the expertise and cannot afford the expenses for engineering the automa-
tion system themselves based on the current complexity of engineering. Current
generic engineering languages such as the languages defined by the IEC 61131-3
standard are designed for expert automation engineers and are thus often too
complex for non-experts. Furthermore, for most of the tasks in these low-end
domains, where an automation SaaS solution is a good fit, such complex capabil-
ities are not needed. A tailored Domain-Specific Language (DSL) [4] that makes
use of abstractions for the particular (sub-)domain and omitting other com-
plexities would allow customers to handle their applications in a SaaS-oriented,
self-service manner.

At the same time, tools for implementing domain-specific languages have re-
cently become more and more efficient and easy to use. For example, for the
embedded systems domain an extensible platform called mbeddr [15] was cre-
ated that allows for extensibility and modularity [13] based on an underlying
base language, which is based on C. Such platforms allow to tailor languages
to specific needs in sub-domains or even individual projects. A main advantage
of modern DSL systems such as MPS [8](on which mbeddr is based) is that
the DSL development environment and the runtime environment for the created
languages are based on common IDE. This allows for rapid prototyping and
development of the DSLs and the editors for the DSLs. Created languages can
be tested and used on the spot and do not require an extensive generation and
compilation procedure. Additionally, the coupling between the metamodel and
views on that metamodel becomes more and more loose. For example, MPS now
allows to have multiple textual, graphical or tabular view types on the same
metamodel. Using these mechanisms, a DSL for the specific sub-domain can be
produced based on the needs of the intended users.

In this paper, we present an approach towards a model-based infrastructure
for engineering languages for a multi-domain automation cloud platform. A cen-
tral model repository based on an industry standard information model (OPC
UA [10]) serves as storage for all metamodels, language definitions and engi-
neering models. A web-enabled DSL framework (MPS [8]) provides language
engineering functionality on top of these models. Finally, the platform sup-
ports different roles in a domain’s ecosystem: domain expert, language engineer,
domain-specific engineer and operator. Hence, the complete life-cycle of a DSL
ands its corresponding engineering system is supported in the platform, starting
from the definition of the domain’s metamodel, the language definition, up to the
use of the language by engineers and its runtime environment. We implemented
a proof of concept prototype showing the technical feasibility of the system.
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The contribution of this paper is twofold. First, by presenting our envisioned
approach we give practitioners a basis on how domain-specific engineering on
scalable, multi-domain cloud platform can be realized. Second, we raise concep-
tual and technical challenges that we identified to the attention researchers to
provide indications for future research.

This paper is structured as follows. Section 2 gives a background on OPC
UA [10] which is one of the main concept/technology used in our platform.
In Section 3 we present the conceptual architecture of the platform. We give
an overview of the proof-of-concept prototype we implemented in Section 4.
Conceptual and technical challenges encountered are presented in Section 5.
Finally, Section 6 summarizes related work and Section 7 concludes and presents
future work.

2 OPC Unified Architecture

OPC UA is a well established industrial standard in the automation domain
for communication as well as for making information models accessible. As it
already provides basic building blocks for describing runtime systems as well as
the domain-specific engineering artifacts (e.g., control programs, device config-
urations, etc.) it is a good candidate to serve as technical foundation for the
common information model within our platform. This section explains the tech-
nical features of OPC UA and tries to highlight parts that might still be missing
to work in our platform.

OPC UA provides a secure, reliable, high-performance communication in-
frastructure to exchange different types of data in industrial automation. That
includes current data like measurements (e.g. from a temperature sensor) and
setpoints (e.g. for defining the desired level in a tank), events (e.g. device lost
connection) and alarms for abnormal conditions (e.g. a boiler reached a critical
level). In addition, it provides the history of current data (e.g. the temperature
trend for the previous day or the last ten years) and of events (what events of a
certain type occurred the last five days). In order to provide semantic with the
data, also meta data is exchanged in terms of an information model. In Figure
1 depicts an example of an OPC UA address space using the standard graphical
representation defined by the OPC UA specification [11].

On the right hand side in Figure 1 the type system is shown, with object
types in a type hierarchy. For example, the DeviceType is an abstract object
type representing all kinds of devices. It defines a variable called SerialNumber.
A subtype TemperatureSensorType adds the Temperature variable, including
the EngineeringUnits. Variables are typed as well, like the Temperature of type
AnalogItemType defined by the OPC Foundation. This type adds a property to
the variable containing the EngineeringUnits. On the left hand side in Figure 1 an
instance of the TemperatureSensorType, TempSensor1, is shown. The instances
contain the concrete values, like the temperature measured by TempSensor1.

OPC UA is based on a client server model where the client asks for data and
the server delivers the data. The client has the option to read and write the data,
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Fig. 1. Example of an Address Space in OPC UA

but also to subscribe to data changes or event notifications. In addition, the client
can browse the address space of the server and read the meta data information.
For large and complex address spaces the client also has the capability to query
the address space for information, for example asking for all temperature sensors
that are currently measuring a temperature larger than 25 ◦C.

The most prominent set of engineering languages, namely the 5 languages
defined by the IEC 61131-3 standard, has an official OPC UA representation
defined by PLCOpen [12]. The standard defines different domain-specific lan-
guages, i.e., Structured Text, Instruction Lists, Function Block Diagrams, Lad-
der Diagrams and Sequential Function Charts. The languages are partially in-
terchangeable and overlap to a certain extent. For example, the Function Block
Diagrams language can be used to connect and orchestrate existing executable
code blocks which, in turn, can be implemented by the Structured Text language.

Based on the function block (CTU INT) and program code (MyTestProgram)
in Listings 1.1 and 1.2 the corresponding OPC UA representation is given in
Figure 2. Using this kind of information model the programs running in a PLC
can be monitored just as any other variable. Generic, OPC UA based program
visualizations can then be used to monitor the state of programs using the same
way as for their primary variables. This eases the maintenance of the programs
and helps engineers, for example, during debugging.

However, the current specification of the PLCopen OPC UA representation
does not include the executable parts of the function blocks and programs. For
example, the OPC UA representation in Figure 2 shows that it only includes
the variables (e.g., CU, R, PV) specified in Listings 1.1 and 1.2 but not the
dynamic code parts such as if-then-else blocks. For a complete representation of
the control programs in OPC UA this would be required.

3 Conceptual Architecture

The proposed common platform can provide basic automation functionality such
as acquiring data from the field as well as storing, analyzing and visualizing it.
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Domain-specific extensions can then focus on special protocols for communica-
tion, algorithms for data analysis for the particular semantics of the data, or
approaches for doing control or solving optimization problems within that do-
main. Targeting each of the many automation sub-domains with a specific SaaS
solution would cause massive development and maintenance efforts within au-
tomation companies. Therefore, a common automation cloud platform helps to
focus development on domain-specific engineering tools and applications on top
of a common infrastructure.

The main requirements that motivate the architecture of our platform are
(a) easy and fast creation of languages for new sub-domains, (b) scalability to
hundreds and thousands of parallel users, (c) compatibility with existing com-
munication technologies in the automation domain, (d) 3rd party extensibility
for the creation of new languages.

1 FUNCTION_BLOCK CTU_INT

2 VAR_INPUT

3 CU: BOOL;

4 R: BOOL;

5 PV: INT;

6 END_VAR

7 VAR

8 PVmax: INT := 32767;

9 CU_OLD: BOOL;

10 END_VAR

11 VAR_OUTPUT

12 CU: BOOL;

13 Q: BOOL;

14 CV: INT;

15 END_VAR

16 IF R THEN

17 CV := 0;

18 ELSEIF ((NOT CU_OLD)

19 AND CU

20 AND (CV < PVmax)) THEN

21 CV := CV + 1;

22 END_IF;

23 Q := (CV >= PV);

24 CU_OLD := CU;

25 END_FUNCTION_BLOCK

Listing 1.1. Example func-
tion block implementation.

1 PROGRAM MyTestProgram

2 VAR_INPUT

3 Signal: BOOL;

4 END_VAR

5 VAR

6 MyCounter: CTU_INT;

7 END_VAR

8 VAR_TEMP

9 QTemp: BOOL;

10 CVTemp: INT;

11 END_VAR

12 MyCounter(CU := Signal,

13 R:= FALSE, PV := 24);

14 QTemp := MyCounter.Q;

15 CVTemp := MyCounter.CV;

16 END_PROGRAM

Listing 1.2. Example
61131-3 program.
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Fig. 2. Example model representation in OPC UA

By providing customizable domain-specific engineering languages as a build-
ing block we facilitate self-service engineering and enable the platform to scale
to a large number of customers. A DSL infrastructure that has a common way of
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creating and using languages as well as engineering, accessing the artifacts cre-
ated with the language can form this building block. To achieve this we propose
a model-based approach based on a common model repository that is deployed
in the automation cloud platform. Figure 3 gives an overview on how we envi-
sion our model-based DSL infrastructure for a multi-domain automation cloud
platform could look like.
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Fig. 3. Architecture of the language and modeling environment of a multi-domain
automation cloud platform

Model Repository: A main component of the infrastructure is the com-
mon model repository that hold, metamodels, language definitions, engineering
models as well as runtime information models. As introduced in Section 2, OPC
UA provides a meta-metamodel tailored for the automation domain, as well as
a common way of accessing all models on all meta levels. Furthermore, OPC
UA is prepared to serve as a basis for building DSLs on top of it [5]. These
capabilities make OPC UA a good foundation for the common model repository.
Additionally, OPC UA does not imply a storage format for the models but rather
defines the way on how models are exposed. Therefore, we combine an OPC UA
information model access layer with a scalable cloud database (such as NoSQL
databases). This combination provides a scalable, multi-tenant model repository
for our system.

Furthermore, OPC UA specifies a query interface for browsing and finding
nodes within the information model but does not prescribe the underlying query
implementation. Thus, it is possible to map model queries to the underlying
persistence technology and its efficient query mechanisms.

As all models are then available in the OPC UA address space and have the
corresponding links between each other a cross-model navigation can easily be
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implemented. Furthermore, OPCUA allows platform developers to store, browse,
and manage all models the same way. Thus, making it easy to add generic services
for all the above phases. For example, versioning services or social/community
sharing services can be built that work for all created languages at once.

Web-based Editors: Modern web-based editors1 can be used as an efficient
way to interact with an online development system. Therefore, all user inter-
action with our system (domain meta-modeling, language engineering, domain-
specific engineering, operations) can be implemented as a web-based editor di-
rectly working on the online model repository.

A fundamental principle that we follow for our editors is that they present
views on a common model. Thus, it is possible to use different types of views
on the same model. Different types of users can then use specifically tailored
views to interact with their models. A prerequisite for the use of this view-based
approach is a clear separation between the languages and their editors which
represent the different views types and the underlying model.

Domain Meta-Modeling:As depicted in Figure 3, using the meta-modeling
view domain experts can then define the metamodel of their domain. The meta-
modeling view can be implemented in different ways. For domain experts familiar
with OPC UA a generic graphical OPC UA editor can be used. However, being
a view-based approach we also plan to integrate other views that suite different
domains, such as a UML-like view for experts that are nearer to software engi-
neering. An informal mapping from UML to OPC UA is already defined in the
OPC UA specification [11]. Furthermore, textual views for defining metamodels
can be added.
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HasType
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Fig. 4. Excerpt from a metamodel defined using OPC UA for the IEC 61131-3 lan-
guages

Figure 4 depicts an example metamodel defined using OPC UA. It shows an
excerpt of different concepts of the IEC 61131-3 specification, such as a function
block that has input and output variables but also the actual control algorithm
(body having statements) can be represented in that way.

Language Engineering: Based on the domain-specific metamodel, language
engineers use the DSL development view to define one or more languages that

1 E.g., Cloud9 IDE (https://c9.io/)

https://c9.io/
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implement the views that are tailored for the targeted domain-specific engineers’
needs. The resulting editor can then be plugged into the engineering view ex-
tending it with domain-specific capabilities.

To achieve a representation of languages on top of our common model repos-
itory we require a DSL framework that has an interchangeable storage layer.
Furthermore, the language specification metamodel (having constructs like lan-
guage specifications, view type definitions, templates, etc.) needs to be mappable
to our OPC UA based information model. Finally, the generated editors have to
be web-enabled so that we can run them on our cloud platform.

Additionally, we envision the DSL infrastructure to support extensible views
so that tailored domain-specific languages can be created on top of base lan-
guages that are executable (such as Java or a 61131-3 language where we have
a cloud based interpreter). An example extension language, a simple cause and
effect matrix editor for the building automation domain could be created as a
tabular view on the domain-specific metamodel. E.g., associating light switches
with room lights can be easily mapped by selecting the appropriate cells in the
matrix. A mapping of such matrices to 61131-3 was introduced in [1] and could
be implemented for this editor as well.

Domain-Specific Engineering: The role of the domain-specific engineer
can now be taken over in self-service by the SaaS customer. Such engineers will
then develop and configure the customer specific applications which in turn is
also stored as an instance (engineering information model) of the domain-specific
metamodel. This engineering model is also input to the cloud connector com-
ponent which is responsible for handling the data coming from or going to the
automated site, plant or device(s). This data then populates the runtime in-
formation model which is the basis for functionality such as history, analysis,
control and visualization. Finally, operators can use the operations view, includ-
ing domain specific extensions also coming from the DSL to interact with the
system. Figure 5 shows an editor that we created based on the OPC UA meta-
model given in Figure 4. It defines a textual view type for the function blocks
based on the syntax definition given in the IEC 61131-3 specification.

Runtime System: Other components, for history, analysis and execution
control algorithms are also part of the automation cloud system but are out of
scope of this paper. However, it is important to note that all real-time critical
control software will have to remain local to the plant. Only higher level control
and optimization task with longer cycle times (e.g., greater than a second) will
be part of the automation SaaS.

4 Prototype

Based on a survey we executed earlier2, which was based on a tool-oriented
taxonomy of view-based modeling [6], we analyzed different technologies for im-
plementing a proof-of-concept prototype for our platform. We needed a tool that

2 An earlier but published version of this is available here:
http://sdqweb.ipd.kit.edu/burger/mod2012/

http://sdqweb.ipd.kit.edu/burger/mod2012/
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Fig. 5. Editor created for the example metamodel defined in Figure 4

supports both textual as well as graphical syntaxes in a projectional, view-based
manner. Furthermore, we selected projectional partiality (allowing different view
types to work on different parts of a metamodel), view overlap as well as intra/in-
ter view type overlap (allowing different views at the same time on the model
as well as different view types on the same model) as main required features. In
addition to the selection properties from the taxonomy, the tool shall support
web-based views and have an exchangeable storage layer.

The JetBrains Meta Programming System (MPS) [8] is an approach for the
creation of textual modeling languages. MPS provides the possibility to inter-
nally map the language to Java where it can then be executed just like an internal
DSL. However, MPS also allows to define a mapping to other base languages.
The biggest difference to most other textual modeling language approaches is
that MPS persists a kind of Abstract Syntax Tree (AST) of the language’s in-
stances instead of persisting the concrete syntax representation as text file. The
editors manipulating the AST are projectional editors that create the textual
representation on the fly. For upcoming versions (3.1) also graphical represen-
tations are be supported. The use of the AST as the main underlying model
allows for the use of multiple, alternative concrete representations of a model.
These representations may also project only a certain part of the underlying
model to the concrete syntax. The projections created based on the AST are not
persisted, thus MPS does not support custom formatting.

Currently, to the best of our knowledgeMPS [8] fulfills or will eventually fulfills
our previously posed requirements. It supports textual and tabular views already
and is on the way of supporting graphical views 3. Furthermore, web-based views
are also supported4. Therefore, our current proof-of-concept prototype is based
on this technology. Another important feature which we require for our platform,

3 MPS [3] roadmap: Q1 2014: MPS 3.1 Support for diagrams in editor
4 Early version availablehere:https://github.com/JetBrains/jetpad-projectional;
Roadmap Q2 2014: MPS 3.5 Web-based projectional editor

https://github.com/JetBrains/jetpad-projectional
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i.e., the exchangeable storage layer, is also supported by MPS as it supports
custom persistence.

As mentioned earlier we envision our platform to be based on a common OPC
UA based model repository. We implemented a prototypical MPS persistence
provider for OPC UA. Additionally, we created an implementation that allows
us to store OPC UA models in a cloud based database. Furthermore, we started
implementing a set of editors for the 61131-3 languages based on MPS. The
example editor presented in Figure 5 is one of these editors.

5 Conceptual and Technical Challenges

We currently see a several conceptual and technical challenges on our way to-
wards the envisioned platform. Some of them are specific technical questions
where we aim to extend our proof-of-concept prototype to evaluate them. Oth-
ers, are on a conceptual level where more and broader research would be required.
The challenges we see so far are given in the list below. We do not deem this list
as being a complete picture, new challenges might arise over time as we further
develop the platform.

(1) The mapping between the abstract syntax tree (AST) as defined by MPS
and OPC UA has to be validated more extensively. Can all constructs used in
the DLS tool be represented in OPC UA. Is reference handling done in a consis-
tent way? (2) A great advantage of online editors is concurrent model editing.
Meaning, multiple users can work in parallel on the same content and receive
immediate updates from one another. For collaborative engineering this might
give real benefits regarding the engineering efficiency. Cloud applications such as
Google Drive already nicely support this feature for office documents. However,
it remains to be evaluated how big these benefits really are and how good the
combination of an MPS-based web-editor and the underlying OPC UA-based
persistency support this kind of feature. (3) The usability of the web-editors
may be a crucial point for the acceptance of the platform to a large number
of customers. Therefore, we plan to employ metrics that assess the usability
of the editors for different types of users. (4) Another challenge we see is the
validation of the created languages. How can we ensure that the languages and
abstract view types that are developed, also by 3rd parties can be mapped to
the underlying execution engines correctly. We would need to do verification on
the language definitions and the transformations to ensure this. However, there
exists limited related work in this area which could serve as a basis for this task.

6 Related Work

A multitude of approaches for the creation of domain-specific languages exists.
To mention a few of them: The Graphical Modelling Framework (GMF) [2],
which is part of the Eclipse Modelling Project provides means for creating graph-
ical modeling languages based on Ecore metamodels. Language engineers may
specify which elements of a metamodel should be editable through a specific
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diagram. This allows for projectional view types. MetaEdit+ [14] is a commer-
cial tool for creating graphical domain specific modeling languages. Support for
the integration of multiple languages has also been investigated using this ap-
proach. This also enables the approach for multi view type modeling, as different
languages may cover different parts of an interconnected, common metamodel.

Spoofax [9] is a language workbench based on scannerless parser generator
Stratego/SDF. Due to the scannerless parsing mechanism it features extensive
support for modularization of languages. However, explicit support for view-
based modeling, is not given in this approach. There will be still one main view
type, i.e., the textual one that needs to be complete. Other, additional view
types then may be partial and also have a different representation.Xtext [3],
is the official textual modeling approach of the Eclipse Modelling Project. Its
primary use case is the integrated definition of concrete and abstract syntax
based on a grammar-like specification. Additionally existing metamodels may
be imported and and enriched with a view type definition. A language engineer
may define different syntax elements for the same class allowing for intra view
type overlaps.

However, none of the above mentioned tools provide support for textual as
well as graphical projectional views and web-based editors at the same time.
Only this would allow for a deployment on a cloud platform. For us this justifies
the choice of MPS as a core technology in our platform. Regarding a cloud-based
DSL platform very little related work exists. Cloud based editors, such as Cloud9
IDE (https://c9.io) or WriteLatex (http://writelatex.com) provide online
editors for specific languages. However, they do not allow their tenants to define
own languages and can therefore not be considered a complete cloud-based DSL
infrastructure.

7 Conclusions and Future Work

In this paper, we presented a conceptual architecture for a multi-domain engi-
neering cloud platform for the automation domain. The platform is based on a
central model repository implemented on top of the OPC UA meta-metamodel
and supports the entire life-cycle of a domain-specific language from metamodel
definition to operations of the engineered system. Furthermore, we raised con-
ceptual and technical challenges we encountered that give researchers hints for
future research.

Based on the proposed architecture we aim to complete our proof-of-concept
implementation that facilitates a combination of an OPC UA based model repos-
itory, MPS [8] as language engineering workbench and web-based views for the
different roles. We plan to use the building automation domain as case study to
implement domain-specific languages and the corresponding protocol connectors
(e.g., KNX and EnOcean) for the cloud connector. Furthermore, we intend to
build a full-fledged IEC 61131-3 web-based editor based on our existing proof-
of-concept prototype to evaluate if and how a complex system of languages can
be built on top of the proposed infrastructure.

https://c9.io
http://writelatex.com
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Abstract. Enterprise Integration Patterns (EIP) are a collection of
widely used best practices for integrating enterprise applications. How-
ever, a formal integration model is missing, such as Business Process
Model and Notation (BPMN) from the workflow domain. There, BPMN
is a “de-facto” standard for modeling business process semantics and
their runtime behavior.

In this work we present the mapping of integration semantics repre-
sented by EIPs to the BPMN syntax and execution semantics. We show
that the resulting runtime independent, BPMN-based integration model
can be applied to a real-world integration scenario through compilation
to an open source middleware system. Based on that system, we report
on our practical experiences with BPMN applied to the integration do-
main.

Keywords: Business Process Model and Notation (BPMN), Enterprise
Integration Patterns, Message-based Integration, Middleware.

1 Introduction

Integration middleware systems address the fundamental need for application
integration by acting as the messaging hub between applications. As such, they
have become ubiquitous in service-oriented enterprise computing environments
in the last years. These systems control the message handling during service
invocations and are at the core of each Service-Oriented Architecture (SOA) [8].
Since their implementation and operation remains challenging, best practices
for building those systems, called Enterprise Integration Patterns (EIP), were
collected by [7]. Later other practitioners (e. g., [18,1]) and researchers (e. g.,
[17]) added further patterns. Although these patterns describe typical concepts in
designing a messaging system, they cannot be considered a modeling language. A
modeling language would allow for the formal, runtime independent specification
of integration scenarios and verification.

More precisely, the requirements that are important for developing integration
systems, however, not covered by current approaches like the EIPs are collected
subsequently. The EIPs propose a visual notation, which allows composition of
patterns, while the notation does not specify a semantic model for integration
(REQ-1 : Define a semantic model for message-based integration as foundation

J. Cabot and J. Rubin (Eds.): ECMFA 2014, LNCS 8569, pp. 254–266, 2014.
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of a Domain-specific Language (DSL) for integration). A semantic model for
integration shall cover a human and computer readable, syntactical notation
(REQ-2 : Specify the syntax) as well as a behavioral runtime specification, which
shall be independent of the specific runtime platform implementations (REQ-
3 : Define a platform independent behavioral semantics). The integration DSL
shall consider the control flow (REQ-4 : Support control flow modeling), similar
to previous work on Coloured Petri Nets [4] that is used for verification of the
EIPs’ control flow [6], as well as the data flow for message exchange (REQ-5 :
Allow for data flow modeling for message exchange). The formal integration
model shall allow for validation of integration programs and the verification of
runtime systems (REQ-6 : Validate programs and verify the runtime systems).

In this paper, these shortcomings (cf. REQ) are addressed by proposing a
language for message-based integration grounded on a standard from the related
workflow domain, called Business Process Model and Notation (BPMN) [15]. For
instance, Figure 1 shows an asynchronous integration scenario of a corporate with
its bank and business monitoring via SAP Cloud to Cash1 (CTC), syntactically
expressed in BPMN according to the definition proposed in this paper. The
incoming message is of type “FSN” (short for Financial Services Network2),
which has to be translated to its canonical data model incarnation “FSN:CDM”
for further processing, using a Message Translator pattern. Through an adapted
Claim Check pattern, the message is stored for later use and handed over to the
External Service pattern as request to the bank (no further translation required).
On successful execution, the original message is restored from the claim check,
translated to an ISO format “FSN-ISO” and sent to the CTC application, which
tracks the message exchange from a business perspective.

Fig. 1. Business Monitoring: Messages sent from Corporate to Bank are routed to SAP
Cloud to Cash (CTC) for monitoring purpose (cf. [16])

The contribution of this paper is the syntactic and semantic formalization of
common integration patterns using BPMN (cf. REQs-1–3 ). Due to the manifold
collection of patterns, we focus on some hand-picked, core patterns. The complete
list of pattern to BPMN mapping can be found in supplementary material [16]

1 http://www.sap.com/pc/tech/cloud/software/cloud-applications/index.html
2 http://scn.sap.com/docs/DOC-40696

http://www.sap.com/pc/tech/cloud/software/cloud-applications/index.html
http://scn.sap.com/docs/DOC-40696
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(not mandatory). With the EIPs as business process building blocks, integration
semantics can be expressed as implementation independent BPMN syntax. From
this formal model, we show the realization of the sample integration scenario
in Figure 1 to Apache Camel [1], which is a widely used, open-source system
for message-based integration and event processing [5] (cf. REQs-4–5 ). Based
on the interaction with customers and integration domain experts, we report
on experiences with our modeling approach and discuss advanced integration
modeling techniques.

Section 2 discusses the contribution of the paper in the context of related
work. Section 3 introduces general integration semantics and defines the syntactic
and semantic mapping from selected EIPs to BPMN. In Section 4 we apply
our approach to an open-source ESB for the “business monitoring” scenario. In
Section 5 we share our experiences, before concluding in Section 6.

2 Related Work

The patterns described by [7,17,18,1] are not building blocks of a modeling lan-
guage, however, they describe typical concepts in designing a messaging system;
thus they are an informal specification language. For that, there are elaborated
modeling techniques like the Business Process Model and Notation (BPMN) [15],
the Workflow Patterns defined by [20] or Service Integration Patterns [2]. Enter-
prise Integration Patterns (EIPs) complement these notations by a set of typical
designs found in a messaging infrastructure.

Processes and Data. The approach stresses on the control flow, data flow
and modeling capabilities of BPMN as well as its execution semantics. Recent
work on “Data in Business Processes” [10] shows that besides Configuration-
based Release Processes (COREPRO) [14,12,13], which mainly deals with data-
driven process modeling and (business) object status management, and UML
activity diagrams, BPMN achieves the highest coverage in the categories relevant
for our approach. Compared to BPMN and apart from the topic of “object
state” representation, neither Workflow Nets [19] nor Petri nets do support
data modeling at all [10]. For example, the work on the EIPs’ control flow uses
Coloured Petri Nets [4], which are used for verification of composed EIPs [6].
Based on the work on control and data flow, BPMN was further evaluated by
[9,11] with respect to data dependencies within BPMN processes, however, not
towards a combined control and data flow as in our approach.

Process Languages for Integration. The work builds on this foundation
and combines it with executable integration patterns, their configuration and
mapping to the Web Services Business Process Execution Language (WSBPEL)
proposed by [17] and leverages the work of [18] that started to map the EIPs to
the BPMN syntax and some semantics by example. In this document, we provide
a systematic continuation of this work by defining a comprehensive syntax and
model for widely-used patterns.
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3 The BPMN Integration Pattern Language

Before defining the mapping of some selected EIPs to BPMN, we discuss the
relevant BPMN syntax (mainly taken from the BPMN Collaboration Diagram
[15]) directly in the context of core integration concepts.

3.1 Core Integration Concepts and BPMN

The main syntactical artifacts in BPMN denote process steps, sequences and the
representation of messages that are exchanged between processes during runtime.
The core concepts of message-based integration are Message, Message Channel
and Integration Adapters (cf. Message Endpoint) [7].

A message is informally defined as a piece of information to be exchanged
between sender and receiver. This information can be a piece of data (i. e., EIP
Document Message), a command for execution (i. e., EIP Command Message),
or an event for logging (i. e., EIP Event Message). This notion is shared by
BPMN, in which the sender and receiver applications are Participant elements.
In BPMN a participant may have internal details, in the form of an executable
process.

The connection between sender and receiver participants is called message
channel, which is the fundamental infrastructure of a messaging system. For
example, there are EIP Point-to-Point Channels, connecting exactly one sender
with one receiver, and one-to-many channels like EIP Publish-Subscribe or Broad-
cast/Multicast. A message sent to such a channel can be received by multiple
receivers, while for n receivers, n copies of the original message have to be pro-
vided. In general, channels specify non-functional qualities like the Quality of
Service (QoS; best-effort, exactly once), Message Exchange Pattern (MEP: In-
Only or InOut), and Capacity (e. g., maximum message size). For instance, a file
poller acts one-way (InOnly), since it cannot handle response messages and can
be configured to ensure the delivery of messages (exactly once).

On the other hand, most document message exchange works according to
the Request-reply Pattern, which specifies a two way communication (InOut).
This corresponds to the Process flow in BPMN, which is controlled by a com-
bination of flow objects (e. g., events, activities, gateways) and connections. We
consider BPMN Start Event and End Event that initiate the process flow with a
“message-receive” semantic or terminate the flow, thus terminates a process or
part of a process, after having sent the message. The BPMN throwing/catching
Intermediate Event is used to express message events, errors, and timed mes-
sage processing. The BPMN Activity/Task represents process steps that allow
to manipulate a message within the channel and has to be executed, before the
flow can proceed. BPMN Gateway elements are able to handle multiple pro-
cess flows, where they route or fork the flow. For that, BPMN Sequence Flow
definitions connect flow elements within a channel. Besides the control flow, the
message channel requires a data flow, which is expressed as a sequence of BPMN
Data Object and BPMN Data Store definitions that are associated to the flow
elements. More formally, these BPMN execution semantics for messaging are
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defined as process model in Definition 1. In a nutshell, a process is initiated by
a start event, i. e., a message that contains data according to a specified format
(e. g., XML Schema). Then a sequence flow is fired that moves the control in
form of a Token to the next flow element in the process (e. g., activity, gateway,
event) and puts it into ready state. The data flow is handled by associated data
objects from one element to the next one. More precisely, a flow element in the
ready state gets activated, if all associated data is supplied, and executes its in-
herent behavioral semantics on the data (e. g., script, service call). The process
ends through the invocation of a message end event firing the outgoing message
before the process context stops.

Definition 1 (Process model). A process model M = (N,SF,DO,DF ) con-
sists of a finite non-empty set N ⊆ A ∪ G ∪ E of nodes being activities A of
types ServiceTask, ScriptTask and MessageTask, gateways G of types Exclusive-
Gateway and ParallelGateway, and events E of types StartEvent, EndEvent and
Intermediate Event, where A, G, E are pairwise disjunct.

The finite non-empty set of SequenceFlow relations SF ⊆ (N \EndEvent)×
(N \ StartEvent) represents the control flow. The finite, non-empty set of data
objects DO represents data associated to N and DF ⊆ (N ∪DO) × (DO ∪N)
is the data flow relation.

For the Process and Sub-Process instantiation, a Message Start Event or Re-
ceiving Message Task is required comparable to a constructor. The instances
can be terminated by (Message) End Events, the destructor. An already instan-
tiated process can be re-invoked using the BPMN correlation mechanism, similar
to a factory pattern.

Finally, a message endpoint connects an application to a messaging system. In
BPMN, the Message Flow specifies message exchange (e. g., process status infor-
mation, error messages, data) between participants or participants and process
elements. When mapped to messaging systems, the message flow represents a
message endpoint by specifying the message with its structure, operation and in-
terface (e. g., WSDL) that can be routed to the message channel. The model that
describes the complete system for an integration flow is specified in Definition 2.

Definition 2 (Integration Flow). An integration flow IF lw=(CO,PO,MF )
consists of a Collaboration CO containing a finite non-empty set of Pool PO ⊆
P ∪M of Participant P and process model M (cf. Definition 1), where M ⊆ Pint

and Pint is the participant referencing the (integration) process steps, and the
Message Flow relation for the sender MFS ⊆ Ps × (Pint ∪ Es) and the receiver
MFr ⊆ Ps× (Pint∪Ee), where Ps denotes an arbitrary amount of sender partic-
ipants, Es and Ee represent sets of start and end events of an integration process
Pint and Pr denotes the set of receiving participants. The message MS is part
of the message exchange from sender to receiver via the MF relation.

3.2 Mapping Enterprise Integration Patterns to BPMN

The definitions of a Process Model and an Integration Flow (IFlow) are used to
map some selected EIPs to BPMN. We have selected basic integration patterns
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like Request-Reply, Content Enricher, the two antipodes Splitter and Aggregator,
and the Message Translator. The other patterns from the literature we covered
in [16] as non-mandatory supplementary reading.

The basic message exchange patterns are one-way or two-way communication
on an end-to-end IFlow level. These patterns are fundamental, since they let
the sender participant communicate synchronously (InOut) or asynchronously
(InOnly). Figure 2 (a) shows a two-way integration flow in BPMN using a syn-
chronously “waiting” Service Task. Definition 3 specifies the pattern’s runtime
behaviour. The definitions of the subsequently discussed patterns and the “busi-
ness monitoring” integration scenario can be expressed in the same way, however,
is informally described due to brevity.

Definition 3 (Request-Reply (synchronous)). The control flow CF is de-
fined asCF = Es×ServiceTask×MFreq×Pr×MsgF lowres×ServiceTask×Ee,
where the set of ServiceTask of type A, while the process instantiation constructor,
Es and termination destructor = Ee ∪ Eerr, where Eerr denote error events.
The data flow DF is Es × DOin × ServiceTask × MFreq × Pr × MFresp ×
ServiceTask×DOout ×Ee, where MFreq and MFresp denote message flows for
request, response, respectively. If an exceptional situation occurs during the execu-
tion of the ServiceTask, a separate channel Exc is instantiated to handle the error:
Exc = ServiceTask × Ee.

(a) Request-Reply (b) Content Enricher

Fig. 2. Request-Reply Pattern synchronous (a), Content Enricher Pattern (b) (cf. [16])

A pattern that adheres to Definition 3 is the content enricher. The content en-
richer consumes messages from the channel and merges additional information
into the header or body of the original message according to anAggreg. Algorithm,
shown in Figure 2 (b). The data can come from local tables or remote services (not
shown). The content enricher is non-persistent by default: if any operation during
or after the enrichment operation fails, intermediate results of the operation are
lost and the operation has to be re-processed from the latest persistence state on-
wards. The enricher uses a Service Task to map the incoming message (Input) to
a request understandable to the external participant, waits for the response and
aggregates it to the original message resulting to the output message (Output)
according to an aggregation algorithm denoted by a Data Object.
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(a) Message Splitter (b) Multiple Formats

Fig. 3. Message Splitter Pattern (a), with differing output messages (b) (cf. [16])

An interesting pair of patterns are the antagonists Splitter and Aggregator.
Both patterns have a channel cardinality of 1:1, however, the splitter is message
creating (1:n message cardinality) and the aggregator is also message creating,
while the new message is an aggregate of multiple incoming messages (message
cardinality n:1) The splitter breaks one original message into multiple (smaller)
messages. For that, the splitter creates as many new messages as the split func-
tion (Script Task) results to. Figure 3 (a) denotes a splitter, whose split results
are of the same format. The split function could result to multiple messages of
different format. However, in BPMN a Message End Event can only handle a
single message definition. Hence, for each message with differing format a new
control and data flow with dedicated end events is required. Figure 3 (b) shows
the usage of a Parallel Gateway for that purpose. In contrast, an aggregator
receives a stream of messages and correlates them according to a correlation
condition Message Receive Task (Figure 6). When a complete set of correlated
messages has been received, the aggregator applies an aggregation function Ser-
vice Task and publishes a single, new message containing the aggregated result
correlated message identifiers for lineage. The aggregator is persistent, because it
stores list of aggregates. Completion conditions like Timer Event and Escalation
Event are used to end the aggregation, e. g., with the following strategies: wait
for all, wait for first best, timeout. The outer workings of the aggregator are
shown in Figure 4 (a). The first message instantiates a stateful aggregator that
can only be ended through its completion conditions or an exceptional situation.
The inner workings and the instantiation mechanics are shown in Figure 6 and
discussed in detail later.

The message translator, shown in Figure 4 (b), converts an incoming message
(format) into a data format expected by its corresponding receiver. Therefore it
does not create new messages, but changes the original message. The translator
is stateless and has a channel cardinality of 1:1. The message translator is struc-
turally similar to the enricher, while the translator calls an internal mapping
program (not shown), instead of an external one.
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(a) Aggregator (b) Message Translator

Fig. 4. Aggregator Pattern (collapsed) (a), Message Translator Pattern (b) (cf. [16])

4 Case Study: BPMN Integration Patterns in Action

We demonstrate the practicability of our integration modeling approach through
the application to the “business monitoring” scenario from the Financial Ser-
vice Network domain (cf. Figure 1). The scenario features messages sent from a
corporate to one or multiple banks, while all messages are passed to the “Cloud
to Cash” application, which correlates the technical messages to their business
contexts and provides an overview.

The technical implementation uses a well-known open source integration mid-
dleware system called Apache Camel [1], to which we “compile” our BPMN-
based IFlow definitions. In Apache Camel the basic concepts are implemented
in a proprietary way. A message consists of a set of name-value pair headers,
a variable body or payload and a set of attachments. The addressable message
endpoints are defined within Component runtime artifacts, which represent a
factory for endpoint objects. The inbound and outbound message adapters are
part of the component as Consumer (camel:from) and Producer (camel:to)
objects. A Camel Route realizes a concrete implementation of a channel. The
Camel Context is the container for runtime services (e. g., mapping program,
aggregation algorithm) and (multiple) routes.

Figure 5 illustrates the compilation from an IFlow model to Apache Camel
artifacts. For better understanding, we used BPMN Group elements, which we
annotated with the Camel syntax, to overlay the BPMN integration scenario.
Hereby, the integration flow is represented by a camel:context with exactly
one assigned camel:route. Between the camel:from inbound the two outbound
calls camel:to uri="cfx:", several Camel components camel:to are executed.
The compilation of this definition results in an executable runtime, if all runtime
services are attached to the Camel context.

The execution semantics of Camel differ from Definition 2, since Camel has no
separation of data and control flow during the execution of a route and behaves
rather like a call stack, i. e., the Camel components remain active during the
complete route processing. The BPMN workings involve a token-based state
model including associated data that lets activities finish after processing. In
this case study we mapped the BPMN to the Camel execution semantics by
synthesising the control and data semantics to Camel route processing.
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Fig. 5. Translating Business Monitoring: Messages IFlow to Apache Camel. The Camel
representation is shown as Group overlay for better understanding only. Message Flow
elements denote Message Endpoint definitions.

Listing 1.1. Message Processing Log for “Business Monitoring (anonymized)”

1 Enter ing CXF Inbound Request {
2 contextName = bus ine s s mon i to r ing , MessageGuid =

iXGKWlUtoQPl0xg . . . , Ove ra l l S ta tus = COMPLETED,
Rece iver Id = ctc , SenderId = corporate , . . .

3 Enter ing Camel route route27 {
4 Proce s s ing exchange ID−0001 in

To [map:FSN to CDM ] { . . . } , To [ data−s t o r e
?op=put ] { . . . } , To [ cx f : toBank ] { . . . } ,
To [ data−s t o r e ?op=get&de l e t e=true ] { . . . } ,
To [ map:CDM to ISO ] { . . . } , To [ cxf:bean:ODC ]
{ . . . }

5 }
6 }
When instrumenting the camel runtime with a technical “Message Processing

Log” (MPL) monitoring capabilities, we can follow the message during the route
processing. Listing 1.1 shows a shortened and anonymized MPL for our scenario,
marking the most relevant steps during the processing of the Camel route. As
discussed, the log illustrates the slightly different execution semantics of Camel.

5 Experiences and Limitations

During customer user studies and extensive, hands-on sessions with integra-
tion domain experts, we gained practical insight in the usage of our modelling
approach. Subsequently, we discuss some technical aspects of the usage of the
proposed syntax and semantics and list practical and conceptual limitations, for
which we give solutions in the context of BPMN.



Experiences with BPMN for Modeling Integration Patterns 263

Business vs. Technical View. The Business Process Model and Notation was
originally defined for business users (e. g., business analysts, business experts):
the technical developers implement and use the processes and the business ex-
perts monitor and manage the processes [15]. However, the more complex exam-
ples within this document (e. g., Fig. 6) show that bridging the gap between the
business process design and process implementation in the domain of EIPs with
BPMN can become difficult, if not impossible. For complex integration prob-
lems, the composition of EIPs quickly leads to technical BPMN syntax, which
becomes intractable for business users.

(Sub-) Process Instantiation, Instance Handling. The instantiation of
processes and sub-processes in BPMN is statically defined. This is sufficient for
stateless, short-running processes. However, there are cases of stateful patterns
(e. g., resequencer (not shown), aggregator), for which a more dynamic, condi-
tional instance handling would be required.

Fig. 6. Aggregator with timeout on sequence sub-process instance and conditional start
mechanism for instance correlation per sequence

For instance, if for different messages sequences (i. e., consisting of correlation,
sequence identifiers and a sequence termination information) separate aggrega-
tion sub-processes shall be started and independently interrupted by a Timer
during an aggregation, the resulting BPMN syntax becomes tricky and the in-
stantiation semantic seems violated. Figure 6 shows one possible syntactic ap-
proach to sequence-based timeouts in BPMN. An aggregator is a complex pattern
and requires an embedded sub-process to define its tasks. Using a mechanism
known as “Conditional Start” [3] combined with the BPMN correlation makes
the instantiation tractable. When a message arrives, to which no aggregate is
assigned, a new instance of an aggregator sub-process is created and the mes-
sage is dispatched to this new instance. The subsequent messages for an existing,
active aggregate are dispatched to the respective sub-process instance. For each
correlated message sequence, an active sub-process instance exists and can be
terminated through time out or if the aggregate is complete. The aggregated
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message is sent and the sub-process is closed for further messages. In case new
messages arrive for a closed sequence, a new sub-process is created.

Although the combination of BPMN correlation and conditional start makes
the dynamic instantiation of sub-processes tractable, the mechanism comes with
the implication of “redundant” syntax. Let’s assume before the messages are
aggregated (in Figure 6), a message translator has to transform them to a specific
format (preprocessing) and the aggregated message has to be mapped to the
target format (post-processing). The latter can be clearly added between the
aggregator sub-process and the message end event. However, the preprocessing
would be either executed in the parent process before the sub-process execution
for the first message and copied to the aggregator sub-process for subsequent
messages, or directly “in-lined” into the sub-process.

The topic of (sub-) process instantiation applies to all other complex patterns
with sub-processes (e. g., inline synch/asynch bridge, resequencer).

Message Flow as Integration Adapter. The BPMN Message Flow is used
to model message-consuming and producing adapters that are capable of han-
dling various technical protocols (e. g., HTTP, SOAP, FTP). From an integra-
tion semantic point-of-view, adapters define the message interface/service and
behaviour of the message channels, e. g., with respect to its quality of service or
the message exchange pattern. That leads to advanced concepts like the retry
handling for failed messages from a persistence. The standard message flow,
however, does only allow to reference a Message specification, which does not
even cover the required interface/service definition. The mentioned behavioural
concepts cannot be covered and require an extension to the message flow beyond
its specification.

6 Concluding Remarks

The Enterprise Integration Patterns are a set of widely used patterns denoting
the building blocks for a structured implementation of a messaging system. In
this work we proposed a syntactic mapping to the Business Process Model and
Notation (BPMN) (cf. REQ-2 ); thus each pattern is a set of elements in a BPMN
Process, which can be composed to sets of message channels from the senders
to the receivers of a message. In contrast to [18] we showed that an extension of
BPMN for the integration domain with specific EIP constructs is not necessary.

Together with the syntax we defined corresponding execution semantics (cf.
REQ-3 ). We developed the concept of composed patterns further to a complete
definition of an Integration Flow (REQ-1 ). Although the syntax is compliant to
BPMN, the BPMN execution semantics had to be slightly changed for Message
Endpoint represented as Message Flow. The result is an integration domain spe-
cific language, with which integration aspects of messaging systems and their
execution semantics can be expressed independent of the runtime implementa-
tion (cf. REQs-5–6 ). The approach allows for validation of integration programs
and runtime systems (cf. REQ-6 ).
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The “Business Monitoring” case study shows that our runtime independent
modelling approach can be successfully compiled to the well-known, open source
integration middleware Apache Camel and lets us assume that the application
to other runtime systems is possible.

Acknowledgments. We thank Volker Stiehl and Ivana Trickovic for their sup-
port on BPMN and the formalization of integration semantics.
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