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Abstract. Microarray represents a recent multidisciplinary technology.
It measures the expression levels of several genes under different biolog-
ical conditions, which allows to generate multiple data. These data can
be analyzed through biclustering method to determinate groups of genes
presenting a similar behavior under specific groups of conditions.

This paper proposes a new evolutionary algorithm based on a new
crossover method, dedicated to the biclustering of gene expression data.
This proposed crossover method ensures the creation of new biclusters
with better quality. To evaluate its performance, an experimental study
was done on real microarray datasets. These experimentations show that
our algorithm extracts high quality biclusters with highly correlated
genes that are particularly involved in specific ontology structure.

Keywords: Biclustering, Evolutionary algorithm, Crossover method,
Microarray data, Data mining.

1 Introduction

During recent years, microarray technology has reached a main role in biological
and biomedical research [24]. This technology measures the expression levels of
thousands of genes in different biological conditions. It allows to generate large
amount of data [14]. The analysis of these data allows the extraction of biological
knowledge in order to understand diseases [4]. Given the huge masses of data to
be analyzed, the use of data mining techniques has become essential to extract
the knowledge embedded in these masses of information. Among the clustering
techniques, we can find the biclustering which has been used extensively to
analyse gene expression data.

The biclustering is a data mining technique to discover high quality biclusters.
These biclusters are illustrated by groups of genes presenting a similar behavior
under specific groups of conditions. Formally, the biclustering problem [26] is to
build a group of biclusters associated with a data matrix taking account a fitness
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function that measures the quality of a group of biclusters. Thus, it is highly
combinatorial problem [26] and known to be NP-Hard [5].

Given the robustness to dynamic changes of the evolutionary approach and
their ability to self-optimization, we adopt this approach to solve the biclus-
tering problem. Most of the biclustering algorithms based on the evolutionary
approach, like [1,8,9], use random crossover method. However, these methods
do not guarantee to obtain a better quality child biclusters, that prompt us to
seek a crossover method specific for the biclustering of gene expression data and
allowing to have better quality biclusters.

In this work, we propose an Evolutionary Biclustering Algorithm based on
a new Crossover method (EBACross). This new method is dedicated to the
biclustering of gene expression data. EBACross uses a fast local search algo-
rithm to generate an initial population with reasonable quality. A selection and
a mutation operator are used. After an experimental study, we notice that our
proposed algorithm can extract high quality biclusters with highly correlated
genes which are particularly involved in specific ontology structure.

2 Description of the Proposed Biclustering Algorithm

In order to extract high-quality biclusters, we propose a new biclustering algo-
rithm adopting the evolutionary approach. It can be summarized by 5 steps:

1. Generate the initial population Pinit. This step is based on the Cheng and
Church algorithm [5]. It is recognized for its reasonable results in a quick
time and its almost total coverage of genes and conditions. It allows to start
with reasonable quality biclusters covering almost all the data matrix.

2. Build the parent set P by selecting the best biclusters of the initial popu-
lation Pinit. The selection is based on four complementary fitness functions:
size (f1), MSR (f2), average correlation (f3) and coefficient of variation (f3).

3. Create children biclusters by our proposed crossover operator that is dedi-
cated for the biclustering of gene expression data. Based on a discretization
method and the standard deviation function, this crossover combines the
biclusters parents in pair giving priority to the biclusters that satisfy a max-
imum number of fitness functions.

4. In order to avoid overlapping biclusters and to increase the diversification
of biclusters a mutation operator is used. This operator is applied to the
biclusters resulting to the crossover. It is based on the average correlation
function which allows to improve the coherence of gene biclusters.

5. Replace bicluster parents by those resulting to the mutation and repeat from
step 2 until the reaching of the number of iterations.

2.1 Biclusters Encoding

To represent the biclusters, the majority of existing biclustering algorithms uses
a fixed size binary string [17,19]. This string is built by two bit strings. The first
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one represents the genes and the second represents the conditions. The string
position of a gene (respectively a condition) takes 1 if the gene (respectively the
condition) belongs to the bicluster, 0 otherwise. This method explores all genes
and conditions. It leads to high consumption of time and memory space.

To remedy, we represent biclusters as string composed by an ordered gene and
condition indices like in [7,22,1].

2.2 Selection

The selection method is applied on the initial population Pinit to build the
parent set P . This set includes the best biclusters of Pinit according the fitness
functions. To extract maximal high-quality biclusters of highly correlated genes,
we can consider four main complementary fitness functions:

Size: Most of biclustering algorithm defined the size of a bicluster by its number
of elements |G| ∗ |C| as in [11]. This function gives more chance to the number
of genes to be maximized since the total number of genes is higher than the
number of conditions. To be able to choose if we want to give more chance to
the number of genes or to the number of conditions to be maximized, we define
the size of biclusters by the following function where α and β are two constants.

f1(Bic) = α
|G′|
|G| + β

|C ′|
|C| (1)

Mean Squared Residue: Cheng and Church [5] proposed Mean Squared
Residue (MSR) which measures the correlation of a bicluster. A high value of
MSR indicates that the bicluster is weakly coherent while a low value of MSR
indicates that it is highly coherent. It is defined as follows:

f2(Bic) =
1

|G′| |C′|
∑

i∈G′,j∈C′
(mij −miC′ −mG′j +mG′C′)2 (2)

where miC′ (respectively mG′j) represents the expression level average of the
ith row (respectively the jth column), mG′C′ corresponds to the expression level
average of the bicluster Bic(G′, C′) and mij represents the expression level cor-
responding to the ith row and the jth column.

Average Correlation: Nepomuceno et al. [18] proposed the average correla-
tion function to evaluate the correlation between genes in each biclusters. They
indicate that the proposed function can find biclusters that cannot be found by
the algorithms based on MSR. Due to these, algorithms might not find scaling
patterns when the variance of gene value is high. The average correlation of the
bicluster Bic(G′, C′) is defined as follows:

f3(Bic) =
2

|G′|.(|G′| − 1)

G′∑

i=1

G′∑

j=i+1

∣∣∣∣
cov(gi, gj)

σgiσgj

∣∣∣∣ (3)
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where cov(gi, gj) represents the covariance of the rows corresponding to the
gene gi and the gene gj and σgi (respectively σgj ) corresponds to the standard
deviations of the rows corresponding to the gene gi (respectively the gene gj).

This measure varies between 0 and 1. If the genes are highly correlated,
f3(Bic) = 1, 0 otherwise.

Coefficient of Variation: Statistically, the Coefficient of Variation (CV) is
used to characterize the variability of the data in a sample by evaluating the
percentage of variation relative to its average. The higher the value of the coef-
ficient of variation is, the larger is the dispersion around the average. It allows
to compare the variability of several samples that have different average or even
which are not expressed in the same units.

By adopting it to the biclustering of microarray data, the coefficient of vari-
ation can be considered as a measure to evaluate the variability of genes of a
bicluster under all its conditions. This measure is calculated separately for each
bicluster and is defined as follows:

f4(Bic) =
σBic

mG′C′
(4)

where σBic represents the standard deviation of the bicluster Bic and mG′C′

corresponds to the average of all the expression levels of the bicluster Bic.
A bicluster with a high coefficient of variation is a bicluster whose the

dispersion of expression levels is high.When a bicluster have a coefficient of
variation equal to 0 then it has constant values.

So, the parent set P can be divided into four subsets:

• P1: biclusters from Pinit, with a value of f1 higher than the threshold Th1.
• P2: biclusters from Pinit \ P1, with a value of f2 lower than the threshold
Th2.

• P3: biclusters from Pinit \ (P1 ∪ P2), with a value of f3 higher than the
threshold Th3.

• P4: biclusters from Pinit \ (P1 ∪ P2 ∪P3), with a value of f4 higher than the
threshold Th4.

2.3 Crossover

In order to obtain children biclusters with a better quality than their parent bi-
clusters, we propose a new crossover method specific for the biclustering of gene
expression data. Unlike the random crossover method used for the biclustering
of gene expression data [1,22], our crossover considers the two parts of bicluster
(genes and conditions part) simultaneously. It is essentially based on five steps :

Selection of the Biclusters to Combine: It consists to select the biclusters
which satisfies more fitness functions to combine them together.

Let’s consider the four bicluster parents : Bic0, Bic1, Bic2 and Bic3. Table 1
represents the satisfaction of the four parent biclusters to the different fitness
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functions. Bic1 satisfies all the fitness functions, Bic2 satisfies three fitness func-
tions while Bic0 and Bic3 satisfy only two. So, we start by combining the bi-
clusters Bic1 and Bic2. Then, we combine the biclusters Bic0 and Bic3.

Table 1. Satisfaction of the biclusters to the different fitness functions

Biclusters f1 f2 f3 f4

Bic0 < Th1 < Th2 > Th3 < Th4

Bic1 = Th1 < Th2 > Th3 > Th4

Bic2 < Th1 < Th2 > Th3 > Th4

Bic3 < Th1 > Th2 < Th3 = Th4

Creation of the Total Bicluster: This step consists to merge the sets of
genes G1 and G2 (respectively the sets of conditions C1 and C2) of the two
parent biclusters Bic1 and Bic2 into a single set G (respectively C). This allows
to create a new bicluster BicTot.

Let’s consider the following bicluster parents :

Bic1 = ( |G1| × |C1| )
Bic2 = ( |G2| × |C2| )

where :
G1 = { g1, g2, . . . , gn } and G2 = { g′1, g

′
2, . . . , g

′
m } correspond respectively

to the sets of genes of the two parent biclusters Bic1 and Bic2.
C1 = { c1, c2, . . . , cp } and C2 = { c′1, c′2, . . . , c′q } correspond respectively to
the sets of conditions of the two parent biclusters Bic1 and Bic2.

The merge of these two biclusters gives a bicluster BicTot = ( |G| × |C| )
where G = G1 ∪ G2 corresponds to the set of genes and C = C1 ∪ C2 corre-
sponds to the set of conditions.

Discretization of the Total Bicluster: To cluster the conditions with similar
expression levels for each gene, a discretization method is applied independently
for each one. This requires the decomposition of the total bicluster into several
vectors. Each vector represents the expression levels of a specific gene under all
conditions of total bicluster. The discretization method is based on the Standard
Deviation (SD) to determine whether conditions can belong to the same cluster.
It is a statistical measure to evaluate the dispersion of a value around the average.
This measure is defined as follows:

SDC =

√√√√ 1

t− 1

t∑

i=1

(ai − C̄) (5)

where C = {c1, c2, ..., ct} represents a set of t conditions, ai represents the ex-
pression level of the ith condition and C̄ represents the average of the expression
levels of the set C, for a specific gene.
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The discretization method can be summarized by the following steps:

1. Sort the set C, according to their expression levels in ascending order, to
construct a new conditions set C′ = {c′1, c′2, ..., c′t}. This part is important.
It ensures a better clustering and optimal clusters for the next part.

2. Cluster the conditions of the set C′ based on the standard deviation. First,
calculate the standard deviation SDC of the vector. Then, check whether
the cluster Cl is empty and browse the conditions one by one.

3. If Cl = ∅, add the condition c′j to Cl and return to the previous step. Else,
add also the condition c′j to Cl and calculate its standard deviation SDCl.

4. If SDCl > SDC or SDCl > SDOld (SDOld standard deviation of Cl before
adding the last condition c′j), assign c′j to the next cluster and return to the
step 2. Otherwise, to be sure that the condition c′j is closer to the conditions
of Cl than the condition following c′j+1, calculate the standard deviation
SDNext of c

′
j and c′j+1.

5. If (SDCl <= SDNext), assign the condition c′j to the next cluster and repeat
all the steps. Otherwise, let the condition c′j in this cluster Cl, return to the
step 2 and repeat with the condition c′j+1.

These steps are repeated for each vector. Once complete, return vectors in
their original order. Then, bring them together to construct the discretized ma-
trix Disc. The cell of this matrix Dij indicates the index of the cluster to which
the jth condition belongs for the ith gene.

Construction of the Variation Matrix: Based on the discretized matrix, we
build a new matrix. This matrix shows the variation of genes between each pair
of conditions. Columns represent genes and rows represent the pair of conditions
{(c1-c2), (c1-c3), (c1-c3) ..., (ct−1-ct)}. The cells of the matrix Vij can take only
three values:

• If Dia > Dib : Vij = -1 with a ≤ t, b ≤ t and a < b
For the ith gene, the index of the cluster to which belongs the condition a is
higher than the cluster to which belongs condition b.

• If Dia = Dib : Vij = 0 with a ≤ t, b ≤ t and a < b
For the ith gene, both conditions a and b belong to the same cluster.

• If Dia < Dib : Vij = 1 with a ≤ t, b ≤ t and a < b
For the ith gene, the index of the cluster to which belongs the condition a is
lower than the cluster to which belongs condition b.

Search of Children Bicluster: The last step allows to extract the biclusters
by browsing variation matrix and selecting genes having the same index.

Let’s consider the example in Table 2. First, check if there are other genes
with the same index as the gene g0 for the pair of conditions (c0-c1). Only the
gene g3 is found. Now, check if these two genes g0 and g3 have the same index
for other pairs of conditions. In this example, the genes g0 and g3 have the same
index for all pairs of conditions. So, the first child bicluster contains the genes
g0, g3 and the conditions c0, c1, c2, c3 ( Child1 : 0 3 // 0 1 2 3 ).
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Then, do the same steps with the gene g1. The index of the gene is different
from all other genes for the conditions, as well as for the gene g2. Therefore,
back to the gene g0 for the pair of conditions (c0-c2) and check if there are any
other gene with the same index. Only the gene g3 is found. It is the case of
the first child. Thus, ignore it and go to the next gene. So on, until finding all
children biclusters. To avoid overlapping biclusters, we used the Jaccard index
[13]. This index measures the overlap between two biclusters in terms of genes
and conditions.

Table 2. Example of variation matrix

c0-c1 c0-c2 c0-c3 c0-c4 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4
g0 -1 -1 0 1 0 1 1 1 1 1
g1 1 0 0 1 -1 -1 0 0 1 1
g2 0 1 1 1 1 1 1 0 1 1
g3 -1 -1 0 1 0 1 1 1 1 1

This crossover method allows to create children biclusters with a better qual-
ity. The use of standard deviation to discretize parent biclusters allows to group
closest expression levels for each gene and to construct the variation matrix.
This matrix indicates the variation of the expression levels between each pair of
conditions, which allows to determinate the genes presenting a similar behavior
and to extract biclusters with highly correlated genes.

2.4 Mutation

In order to ensure the diversification of biclusters and to improve their quality, a
mutation method is applied. It tries to improve the coherence between the genes
of the biclusters obtained from the crossover, using a correlation matrix. This
genetic operator seeks the less coherent gene in the bicluster. Then, it replaces
this less coherent gene by the most coherent gene which does not belong to the
bicluster.

To construct the correlation matrix, we must calculate the correlation coeffi-
cient between each pair of genes. Then, depending on the value obtained, a value
is assigned to the cell Cij corresponding to the correlation between the gene gi
and the gene gj . The cell Cij can take only three values: Cij = -1, if i = j. Oth-
erwise, Cij = 0 when

∣∣ρ(gi,gj)
∣∣ < ThCorr and Cij = 1, when

∣∣ρ(gi,gj)
∣∣ ≥ ThCorr.

3 Experimental Results

In order to test the performance of our proposed algorithm and analyze its re-
sults, a series of experiments is performed on real gene expression datasets: Yeast
cell cycle [25] and Saccharomyces cerevisiae [10]. The evaluation of biclustering
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algorithms and its comparison are based on two complementary criteria: statis-
tical criteria and biological criteria. We compare the results of EBACross with
other sate-of-the-art biclustering algorithms ISA [3], BiMax [20], CC [5], OPSM
[2], X-Motif [16] and the evolutionary algorithm EvoBic [1], H-MOBI [22], SEBI
[8].

3.1 Statistical results

To measure the quality of resulting biclusters, we use the functions ”size”, ”av-
erage correlation”, ”MSR” like in [1,18,22]. We calculate the ”coverage” and we
proceed as in [9,11,15]. This criterion is defined as being the total number of
cells of the matrix M covered by the resulting biclusters.

Table 3. Comparing the fitness function values and the coverage of different biclus-
tering algorithms for the Yeast Cell Cycle and Saccharomyces cerevisiae datasets

Yeast Cell Cycle
EvoBic H-MOBI SEBI BiMax CC ISA OPSM X-Motif EBACross

Gene number 788,4 1610,8 — 24,0 39,62 76,3 437,94 1,2 38,08
Condition number 3,3 7,87 — 3 3,16 8,7 9,5 11,4 3,78
Average correlation 0,90 — — 0,66 0,84 0,50 0,91 0,71 0,82

MSR 291 297 205,18 209,5 10,94 248,25 288,04 203,14 167,62
Genes coverage 99,58 — 13,61 79,09 61,79 73,44 83,98 52,86 66,85

Conditions coverage 70,59 — 15,25 64,71 100 100 100 100 100
Total coverage 44,21 — — 46,48 10,75 38,94 18,67 25,36 49,53

Saccharomyces cerevisiae
EvoBic H-MOBI SEBI BiMax CC ISA OPSM X-Motif EBACross

Gene number 17,8 — — 32,8 81,11 76,27 95,58 1,12 41,46
Condition number 3 — — 3 19,64 8,71 12,5 34,52 4,20
Average correlation 0,90 — — 0,68 0,33 0,59 0,87 0,97 0,81

MSR 0,08 — — 0,18 0,36 0,22 0,08 10−17 0,25
Genes coverage 4,84 — — 29,54 96,06 34,08 13,79 10,89 85,77

Conditions coverage 7,51 — — 79,19 100 58,38 26,01 100 84,39
Total coverage 0,09 — — 0,99 49,09 2,25 0,96 2,62 10,12

Table 3 presents the average value of the gene number, the condition number,
the average correlation, the MSR and the coverage of the obtained biclusters for
the Yeast Cell Cycle and Saccharomyces cerevisiae datasets.

We can show that most algorithms have relatively close results. For the Yeast
Cell Cycle, the best MSR value is obtained by CC (MSR = 10,94) and the
best average correlation value is obtained by OPSM (ρ = 0,91) while for the
Saccharomyces cerevisiae dataset, the best MSR and average correlation value
are obtained by X-Motif (MSR = 10−17 and ρ = 0,97). Although the results
of our proposed algorithm are not the best, they have a satisfactory quality
and are consistent. Indeed, we note an average correlation value equal to 0,82
(respectively 0,81) and a MSR value equal to 167,62 (respectively 0,25) for the
Yeast Cell Cycle (respectively the Saccharomyces cerevisiae) dataset.

Concerning the percentage of cells in the initial matrix covered by the differ-
ent biclustering, we can show that most algorithms have relatively close results.
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However, our algorithm has the best percentage for the genes coverage, condi-
tions coverage and total coverage. Indeed, for the Yeast Cell Cycle (respectively
the Saccharomyces cerevisiae) dataset, the biclusters generated by our algorithm
cover 66,85% (respectively 85,77%) of the genes, 100% (respectively 84,39%) of
the conditions and 49,53% (respectively 10,12%) of the cells of the initial matrix.

3.2 Biological Results

The biological criteria allows to measure the quality of resulting biclusters, by
checking whether the genes of a bicluster have common biological characteristics.
For that, we calculate the p-value. The biclusters with a p-value p lower than
5% are considered as over-represented. The most obtained biclusters have a p-
value close to 0, i.e., the most genes of this bicluster have common biological
characteristics.

Given the large number of the obtained biclusters, We proceed as in [8,12,20]
and we test only on the one hundred best biclusters.

Fig. 1. P-value : Yeast Cell Cycle and (a) Saccharomyces cerevisiae dataset (b)

Figure 1 show the percentage of extracted biclusters for different adjusted
p-value (p = 5%; 1%; 0,5%; 0,1%; 0,001%; 10−10; 10−50 and 0), for the Yeast
Cell Cycle and the Saccharomyces cerevisiae datasets.

We can show that the majority of the algorithms have rather low percentage.
For the Saccharomyces cerevisiae dataset, 72%, 80% and 88% of the biclusters
respectively extracted by Bimax, ISA and OPSM are statistically significant with
a p-value p < 0,001%. Only EBACross reaches a value less than 10−10. Indeed,
100% of the biclusters extracted by our algorithm are statistically significant
with a p-value equal to 0. However, for the Yeast Cell Cycle dataset, we notice
a degradation in the results of the majority of algorithms while our algorithm
maintains the quality of its results. Only 62%, 31% and 22% of the biclusters
respectively extracted by Bimax, ISA and OPSM are statistically significant
with a p-value p < 0,001% and 100% of the biclusters extracted by EBACross
are statistically significant with a p-value equal to 0.
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We evaluate also qualitatively the capacity of the algorithms to extract sig-
nificant biclusters with a biological point of view. It requires the incorporation
of biological knowledge. The biological signification of the obtained biclusters
can be interpreted based on Gene Ontology (GO) [6] for the description of the
roles of genes and their products [21]. There are three ontology structures de-
scribing the gene products: biological process, molecular function and cellular
component.

Given the large number of the obtained biclusters, we proceed as in [19,23] and
we present the most significant GO shared of three random biclusters extracted
by our algorithm in Table 4 and Table 5, respectively for the Yeast Cell Cycle
and Saccharomyces cerevisiae datasets. These tables include the gene number,
condition number and the different shared GO terms for each ontology structures
of the biclusters.

Table 4. GO terms of biclusters extracted by EBACross for Yeast Cell Cycle dataset

Biclusters Cellular component Molecular function Biological process

3 genes; cellular process
9 conditions (66,7%; 0)
4 genes; transferase activity
7 conditions (75%; 0)
13 genes; nucleolus
5 conditions (86,7%; 9,4.10−32)

Table 5. GO terms of biclusters extracted by EBACross for Saccharomyces cerevisiae
dataset

Biclusters Cellular component Molecular function Biological process

13 genes; regulation of mitotic
cell cycle

4 conditions (38,4%; 0)
4 genes; binding
5 conditions (50%; 0)
60 genes; intracellular
7 conditions (31,67%; 5,2.10−6)

We can show that the extracted biclusters are biologically relevant according
to a single ontology structure and for this structure, we find only one GO term.
For example, in Table 4, the genes of the first bicluster are particularly involved
in the cellular process with a p-value p = 0, those of the second bicluster are
particularly involved in the transferase activity function with a p-value p = 0,
those of the third bicluster are particularly involved in the nucleolus component
with a p-value p = 9, 4.10−6.

We can note that EBACross is efficient to extract signicant biclusters with
specific GO term for all ontology structures (biological process, molecular func-
tion and cellular component).
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4 Conclusion

In this paper, we introduce a new evolutionary algorithm. The selection oper-
ator allows to keep the best quality biclusters, based on four complementary
functions. Then, a new crossover operator dedicated for the biclustering of gene
expression data is used. This proposed crossover ensures the creation of new
biclusters with better quality. Finally, based on the average correlation function
a mutation operator seeks the least coherent gene in each bicluster to replace it
with a more coherent gene.

To evaluate the performance of our algorithm, an experimental study was done
on the real microarray datasets. We compare the results to other existing biclus-
tering algorithms. These experimentations show that our algorithm EBACross
allows to extract high quality biclusters with highly correlated genes. These bi-
clusters are significant with specific GO term and their genes are particularly
involved in specific ontology structure.

To refine the search mechanisms and improve the quality of the extracted
biclusters in our future works, we plan to integrate biological knowledge in the
research process by benefiting from the help of biologists.
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