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Preface

In the post-genomic era, a holistic understanding of biological systems and
processes, in all their complexity, is critical in comprehending nature’s chore-
ography of life. As a result, bioinformatics involving its two main disciplines,
namely, the life sciences and the computational sciences, is fast becoming a very
promising multidisciplinary field of research. With the ever-increasing applica-
tion of large-scale high-throughput technologies, such as gene or protein micro-
arrays and mass spectrometry, and massive parallel sequencing the enormous
body of information is growing rapidly. Bioinformaticians are posed with a large
number of difficult problems to solve, arising not only due to the complexities in
acquiring the molecular information but also due to the size and nature of the
generated data sets and/or the limitations of the algorithms required for ana-
lyzing these data. The recent advancements in computational and information-
theoretic techniques are enabling us to conduct various in silico testing and
screening of many lab-based experiments before these are actually performed
in vitro or in vivo. These in silico investigations are providing new insights for
interpreting and establishing new directions for a deeper understanding. Among
the various advanced computational methods currently being applied to such
studies, the pattern recognition techniques are mostly found to be at the core of
the whole discovery process for apprehending the underlying biological knowl-
edge. Thus, we can safely surmise that the ongoing bioinformatics revolution
may, in future, inevitably play a major role in many aspects of medical prac-
tice and/or the discipline of life sciences. The aim of the conference on Pattern
Recognition in Bioinformatics (PRIB) is to provide an opportunity to academics,
researchers, scientists, and industry professionals to present their latest research
in pattern recognition and computational intelligence-based techniques applied
to problems in bioinformatics and computational biology. It also provides them
with an excellent forum to interact with each other and share experiences. The
conference is organized jointly by the Royal Institute of Technology - KTH,
and IAPR (International Association for Pattern Recognition) Bioinformatics
Technical Committee (TC-20). This volume presents the proceedings of the 9th
IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB
2014), held in Stockholm (Sweden), August 21–23, 2014. It includes 18 techni-
cal contributions that were selected by the international Program Committee.
Each of these rigorously reviewed papers was presented orally at PRIB 2014.
The proceedings consists of two parts: nine full papers and nine short abstracts.

Many have contributed directly or indirectly toward the organization and
success of the PRIB 2014 conference. We would like to thank all the individ-
uals and institutions, especially the authors for submitting the papers and the
sponsors for generously providing financial support for the conference. We are
very grateful to the Bioinformatics Infrastructure for Life Sciences (BILS) for the
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sponsorship. Our gratitude goes to the Royal Institute of Technology and IAPR
Bioinformatics Technical Committee (TC-20) for supporting the conference in
many ways. We would like to express our gratitude to all PRIB 2014 interna-
tional Program Committee members for their objective and thorough reviews of
the submitted papers. We fully appreciate the PRIB 2014 Organizing Commit-
tee for their time, efforts, and excellent work. We would also like to thank the
Science for Life Laboratory for hosting the symposium and providing technical
support. Last, but not least, we wish to convey our sincere thanks to Springer
for providing excellent professional support in preparing this volume.

August 2014 Matteo Comin
Lucas Käll

Elena Marchiori
Alioune Ngom

Jagath C. Rajapakse
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Abstract. Chemical carcinogenicity is an important safety issue for the
evaluation of drugs and environmental pollutants. The Ames test is use-
ful for detecting genotoxic hepatocarcinogens. However, the assessment
of Ames-negative hepatocarcinogens depends on 2-year rodent bioassays.
Alternative methods are desirable for the efficient identification of Ames-
negative hepatocarcinogens. This study proposed a decision tree-based
method using chemical-chemical interaction information for predicting
hepatocarcinogens. It performs much better than that using molecular
descriptors with accuracies of 86% and 76% for validation and inde-
pendent test, respectively. Four important interacting chemicals with
interpretable decision rules were identified and analyzed. With the high
prediction performances, the acquired decision rules based on chemical-
chemical interactions provide a useful prediction method and better un-
derstanding of Ames-negative hepatocarcinogens.

Keywords: Ames-NegativeHepatocarcinogens,DecisionTree,Chemical-
Chemical Interaction, Interpretable Rule, Toxicology.

1 Introduction

The assessment of carcinogenicity is crucial for drug development that is based
on 2-year rodent bioassays. The bioassays are labor-intensive, time-consuming
and expensive. Chemical carcinogens can be classified as either genotoxic (mu-
tagenic) or non-genotoxic (non-mutagenic) agents according to the mechanism
of action [1]. Several short-term in vitro and in vivo assays have been devel-
oped to assess genotoxic agents by measuring DNA damage, mutagenic effects,
and chromosomal aberrations [2]. Among the assays, the predictivity of Ames
test has been extensively studied for carcinogenicity. The Ames test is useful for
identifying mutagenic carcinogens with an accuracy of 80% [3,4]. However, 48%
of Ames-negative chemicals are carcinogens [5] and additional bioassays do not
help in detecting carcinogens from Ames-negative chemicals [6]. It is desirable

M. Comin et al. (Eds.): PRIB 2014, LNBI 8626, pp. 1–9, 2014.
c© Springer International Publishing Switzerland 2014



2 C.-W. Tung

to develop alternative methods for assessing carcinogenicity of Ames-negative
chemicals.

A quantitative structure-activity relationship (QSAR) model has been
evaluated for its prediction performance of non-genotoxic hepatocarcinogens.
However, the accuracy is only slightly better than random (55%) [7]. Recently,
toxicogenomics (TGx) correlating gene expression profiles and toxicity endpoints
has emerged as important alternative methods. The TGx methods performed
well in non-genotoxic hepatocarcinogenicity with a test accuracy of 80% [7,8].
However, gene expression profiles are only available for a small number of chem-
icals. It is highly expensive to conduct a large-scale TGx study for hepatocar-
cinogens.

Chemical-protein interaction (CPI) information has been proposed to predict
non-genotoxic hepatocarcinogens with a high accuracy of 86% using only one
protein biomarker [9]. Notably, both the aforementioned TGx and CPI meth-
ods were performed on a small dataset with less than 62 chemicals. Although
the CPI information is useful for analyzing and predicting hepatocarcinogens,
the information is incomplete that many chemical-protein pairs have not been
studied yet. The development of computational methods for a large number of
chemicals is desirable.

This study constructed a relatively large dataset consisting of 166 chemicals
by extracting information of Ames-negative chemicals and corresponding hep-
atocarcinogenicity from NCTRlcdb [10]. The more complete chemical-chemical
interaction (CCI) information from STITCH database [11] was proposed to pre-
dict hepatocarcinogens based on the assumption that interactive chemicals are
more likely to share similar toxicity. The CCI information has been successfully
applied to predict various chemical activities such as cancer drugs and chemical
toxicity [12,13].

In order to acquire rule-based knowledge, interpretable decision tree classifiers
were applied to predict hepatocarcinogenicity with accuracies of 85% and 76% for
validation and independent test, respectively. The CCI-based method performs
much better than a QSAR-based method with 12% and 6% improvements in
terms of accuracy for validation and independent test, respectively. The decision
rules were also analyzed to give insights into hepatocarcinogenicity.

2 Materials and Methods

2.1 Dataset

Ames-negative rodent hepatocarcinogens and noncarcinogens were extracted
from a liver cancer database NCTRlcdb [10]. The annotations of organ-specific
carcinogenicity and mutagenicity are available for 999 chemical compounds.
Mutagenic chemicals (Ames-positive) were firstly removed. Subsequently, hepa-
tocarcinogens and noncarcinogens were identified according to the field of OVER-
ALL. Six noncarcinogens without corresponding chemical-chemical interaction
data were also excluded. The final dataset consists of 73 hepatocarcinogens and
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93 noncarcinogens. The dataset was randomly divided into three datasets with
similar ratios between hepatocarcinogens and noncarcinogens for training (60%),
validation (20%) and independent test (20%). The three datasets are available
at http://cwtung.kmu.edu.tw/nghc.

2.2 Chemical Descriptors

The software of PaDEL-Descriptor [14] was utilized to generate chemical de-
scriptors from chemical 2D structures extracted from PubChem database. The
final feature vector is a 1610-dimensional vector consisting of 770 1D and 2D
descriptors and 840 PubChem fingerprints.

2.3 Chemical-Chemical Interactions

Chemical-chemical interaction (CCI) data are obtained from STITCH 3.1
database [11], an aggregated database of interactions connecting over 300,000
chemicals and 2.6 million proteins from 1,133 organisms. For each CCI, there
is a combined score calculated by combining four evidence sources of experi-
ments, databases, text-mining and similarity. In this study, the scores divided
by 1,000 are utilized to represent CCI features. The scores are ranging from 0
(low confident) to 1 (high confident).

2.4 Decision Tree Algorithm

Decision tree algorithms capable of generating interpretable rules are widely used
in various biological problems such as immunogenic peptides [15], ubiquitylation
sites [16] and esophageal squamous cell carcinoma [17]. In this study, the deci-
sion tree method C5.0 is applied to construct decision tree classifiers and derive
interpretable rules based on CCI features for predicting hepatocarcinogenicity.
C5.0 is an improved version of C4.5 with smaller trees and less computation time
[18]. The implementation of R package C50 is utilized in this study [19].

The construction of a decision tree is briefly described as follows. First, in-
formation gain is utilized to rank features. Second, the top-ranking features are
iteratively appended as nodes to split data into subsets. The tree growing pro-
cess stops when the data subset in each leaf node belongs to the same class. The
fully-grown tree is prone to over-fit the training data. Therefore, a pruning pro-
cess is applied to reduce the tree size by replacing a subtree with a leaf node to
avoid over-fitting problems. The pruning process is based on a default threshold
value of 25% confidence. The samples in the leaf node are the covered samples
of the rule. The class label of a leaf node is determined by using a majority rule.
The samples with a relative small size in the leaf node are regarded as misclas-
sified samples. The final decision tree can directly generate if-then rules where
one leaf node corresponds to one rule.
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2.5 Feature Selection

The selection of important features can provide better insights into the biological
problems and improve prediction performances [20,16,21,17]. This study utilized
a two-step feature selection method. First, features with near zero variances
were removed. Baseline models are constructed by using features whose vari-
ances are not near zero. Second, a wrapper-based feature selection method using
a minimum redundancy-maximum relevancy (mRMR) method [22] is utilized
to identify important CCI features for analyses and development of prediction
methods. The mRMR selection process is described as follows. First, mRMR
is utilized to rank the importance of CCI features. Subsequently, a sequential
backward feature elimination algorithm is applied to iteratively remove CCI fea-
tures with lowest ranks for selecting a subset of CCI features giving the highest
10-fold cross-validation (10-CV) accuracy. The selected feature subset is used to
construct a decision tree model for predicting hepatocarcinogens.

2.6 Performance Measurement

To evaluate classifiers for their prediction performance, the widely used 10-fold
cross-validation method is applied. Four measurements were used to evaluate
prediction performances including sensitivity, specificity, precision and accuracy,
defined as follows:

Sensitivity =
TP

TP + FN
, (1)

Specificity =
TN

TN + FP
, (2)

Precision =
TP

TP + FP
, (3)

Accuracy =
TP + TN

TP + FP + FN + TN
, (4)

where TP, FP, FN and TN are the numbers of true positives, false positives,
false negatives and true negatives, respectively. In this work, accuracy is used as
the major indicator for estimating the performance of classifiers.

3 Results and Discussion

3.1 Selection of Informative Features

A baseline model using all 223 CCI features whose variances are not near zero
is firstly evaluated for comparison. The accuracies of 10-CV and validation for
the baseline model are 64% and 72.73% using training and validation datasets,
respectively. To identify informative features for Ames-negative hepatocarcino-
gens, the sequential backward feature elimination algorithm was applied to the
training dataset consisting of 45 hepatocarcinogens and 55 noncarcinogens.
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Fig. 1. The cross-validation performance for various numbers of selected features

The feature selection process and corresponding 10-CV accuracies are shown
in Figure 1. Based on the training dataset, the algorithm selected a small subset
of 11 CCI features giving a highest 10-CV accuracy of 70% that is 6% higher than
the baseline model. The feature selected model performs well in training dataset
with an accuracy of 82%. To evaluate the validation performance of the feature
selected model, a decision tree model constructed by using the 11 CCI features
and training dataset was utilized to classify chemicals in the validation dataset
consisting of 14 hepatocarcinogens and 19 noncarcinogens. A high validation
accuracy of 84.85% is obtained from the feature selected model that is 12%
higher than the baseline model. Detailed performance is shown in Table 1. In
addition to the mRMR method, three additional methods of chi-square test,
variable importance of random forest, and relief were also evaluated with worse
validation accuracies of 72.73%, 69.70% and 69.70%, respectively. The mRMR
method aiming to select a feature subset of minimum redundancy and maximum
relevancy might be able to avoid overfitting problems.

3.2 Independent Test Performance

To further evaluate the prediction performance of the proposed method, the de-
cision tree model constructed by using the 11 selected CCI features was utilized
to predict the chemicals in the independent test dataset consisting of 14 hepato-
carcinogens and 19 noncarcinogens. The test performances are 75.76%, 50.00%,
94.74% and 87.50% for accuracy, sensitivity, specificity and precision, respec-
tively. Compared to the test accuracy of the baseline model (66.67%), the con-
structed decision tree model performs well with 9% improvement. The CCI-based
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Table 1. Prediction performance

Validation Test

Method CCI QSAR CCI QSAR
Accuracy 84.85% 72.73% 75.76% 69.70%
Sensitivity 78.57% 57.14% 50.00% 71.43%
Specificity 89.47% 84.21% 94.74% 68.42%
Precision 84.62% 72.73% 87.50% 62.50%
AUC 0.8421 0.7030 0.7180 0.6880

model with high performances of precision and specificity is expected to be a
useful tool for screening Ames-negative hepatocarcinogens. The detailed perfor-
mance of the constructed model is shown in Table 1.

3.3 Comparison to Quantitative Structure-Activity Relationship
(QSAR) Models

For comparison, a QSAR model was developed using the same feature selection
algorithm and decision tree classifier. After feature selection, the QSAR model
with a 10-CV accuracy of 69% is slightly worse than the CCI-based model (Fig-
ure 1). As shown in Table 1, the QSAR model with 27 selected features performs
much worse than the CCI-based model in both validation and test dataset. The
prediction accuracies of the CCI-based model are 12% and 6% higher than that
of the QSAR model for validation and independent test, respectively. Due to dif-
ferent specificity levels of CCI-based and QSAR models, it is hard to conclude the
superiority of the CCI-based model. An additional nonparametric measurement
of area under receiver operating characteristic (ROC) curve (AUC) is applied to
evaluate the CCI-based and QSAR models. As shown in Table 1, results show
that the CCI-based model is better than the QSAR model with 14% and 3%
improvement on validation and test datasets, respectively.

3.4 Decision Rules for Ames-Negative Hepatocarcinogenicity

To better understand the relationship between important CCI features andAmes-
Negative Hepatocarcinogenicity, the decision tree model constructed by using the
training dataset and 11 selected CCI features is shown in Figure 2. Five decision
rules corresponding to five leaf nodes can be derived from the decision tree. In
brief, a chemical interacting with one of the four chemicals is a hepatocarcinogen
that correctly predict 27 hepatocarcinogens. Otherwise, it is a noncarcinogen that
55 noncarcinogens are correctly predicted with 18 miss-classified hepatocarcino-
gens. The four compounds are di-(4-aminophenyl)ether (CID000007579), ethane
(CID000006324), 2-acetylaminofluorene (CID000005897), and deoxyguanosine
(CID000187790). Among the four compounds, the di-(4-aminophenyl)ether and
2-acetylaminofluorene are Ames-positive carcinogens.
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Fig. 2. Decision tree classifier for Ames-negative hepatocarcinogens

4 Conclusions

The development of computational methods for the assessment of hepatocarcino-
genicity is important for efficient drug development compared to the traditional
2-year rodent bioassays. Most of the non-mutagenic hepatocarcinogens could be
identified by the in vitro Ames test. However, it is desirable to develop alterna-
tive methods for assessing Ames-negative hepatocarcinogens. The acquisition of
rules for efficient recognition of Ames-negative hepatocarcinogens is especially
important for practical application. This study proposed a decision tree-based
method using the CCI information and mRMR feature selection method for
the acquisition of decision rules for predicting hepatocarcinogenicity of Ames-
negative chemicals. The prediction model performs well with validation and test
accuracies of 85% and 76%, respectively. The acquired simple decision rules are
useful for identifying Ames-negative hepatocarcinogens with high specificity and
precision. Future works can be the application and comparison of other ma-
chine learning methods to improve the prediction performance of Ames-negative
hepatocarcinogens.
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Abstract. The reconstruction of protein-protein interaction networks
is nowadays an important challenge in systems biology. Computational
approaches can address this problem by complementing high-throughput
technologies and by helping and guiding biologists in designing new labo-
ratory experiments. The proteins and the interactions between them form
a network, which has been shown to possess several topological proper-
ties. In addition to information about proteins and interactions between
them, knowledge about the topological properties of these networks can
be used to learn accurate models for predicting unknown protein-protein
interactions. This paper presents a principled way, based on Bayesian
inference, for combining network topology information jointly with infor-
mation about proteins and interactions between them. The goal of this
combination is to build accurate models for predicting protein-protein
interactions. We define a random graph model for generating networks
with topology similar to the ones observed in protein-protein interaction
networks. We define a probability model for protein features given the
absence/presence of an interaction and combine this with the random
graph model by using Bayes’ rule, to finally arrive at a model incorpo-
rating both topological and feature information.

Keywords: protein-protein interaction, Bayesian methods, network
analysis.

1 Introduction

Knowledge about protein-protein interactions (PPIs) is essential to the under-
standing of the cellular functions and biological processes inside a living cell.
Deciphering the entire network of PPIs of an organism is a very complex task
since these interactions can only be established by costly and tedious laboratory
experiments. Computational techniques for predicting PPIs have become stan-
dard tools to address this problem, complementing their experimental counter-
parts. Accurately predicting which proteins might interact can help in designing
and guiding future laboratory experiments. Therefore, developing computational

M. Comin et al. (Eds.): PRIB 2014, LNBI 8626, pp. 10–22, 2014.
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methods that can accurately predict PPIs is currently an active research area.
A number of computational approaches for PPI prediction have been developed
over the years. These methods differ in feature information used for PPI predic-
tion, for example genomic data, phylogenetic trees.

A recent trend in computational approaches for predicting PPIs is to frame
this problem in a supervised learning setting. That is, information about proteins
and labels for protein pairs as interacting or not, supervise the estimation of
a function that can predict whether an interaction exists or not between two
proteins. PPI prediction can thus be seen as a pattern recognition problem,
i.e., find patterns in the interacting protein pairs that do not exist in the non-
interacting pairs. This can be further framed as a binary classification problem
which takes as input a set of features for a protein pair and gives as output a
label: interact or non-interact. Binary classification has been studied extensively
in the machine learning community, and many algorithms designed to solve it
have been also applied for predicting PPIs, including Bayesian networks [9],
kernel-based methods [1,31], logistic regression [14,27], SVMs [26] decision trees
and random forest based methods [33,22,2], metric or kernel learning [31] and
[7,6,5]. Very recently, other machine learning paradigms, such as, active learning,
multi-task learning, and semi-supervised learning, have also been employed for
improving the prediction of PPIs [18,24,11].

In addition to information about proteins and interactions between them,
PPI networks are characterized by several topological properties [10,15,4,21,28].
Network topology can uncover important biological information that is indepen-
dent of other available biological information [25,13]. One of the most important
topological properties is the existence of a few nodes in the networks, called
hubs, which have many links with the other nodes, while most of the nodes have
just a few links. This characteristic is present in PPI networks and also in other
real-world networks, such as the internet and citation networks. Topology only
has been shown to be able to predict protein functions [17] and PPIs [12] and to
complement sequence information in various biological tasks, like for example,
homology detection [16]. Summarizing, we can distinguish two types of infor-
mation that can be used for predicting PPIs: first, information about proteins
and labels for protein pairs as interacting or not, and second, information about
topological properties of PPI networks. These two sources of information can
complement each other and are both valuable for constructing models which
can accurately predict interactions between proteins.

In this contribution, we present a principled way of combining topology and
feature information for constructing models for predicting PPIs. We combine
models that have been previously used for modeling each type of information
separately. We use a random graph generator for addressing the topology infor-
mation and a naive Bayes model for addressing the feature information. We show
that by making a few simplifying assumptions, both topological and protein in-
formation can be incorporated and we show experimentally that this improves
the prediction accuracy in two PPI networks.
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2 Models and Methods

The approach that we use to combine topology and feature information is graph-
ically summarized in Figure 1. It consists of a random graph generator model
and a naive Bayes model which are combined using Bayes’ rule to finally ar-
rive to a logistic regression model (we will ignore for the moment the details
of this figure but come back to it throughout the section). The random graph

e

di dj

ijgraph

  rule

Logistic regressionNaive Bayes

fij

m,σ w xij

e
ijRandom

generator

Fig. 1. Graphical representation of the model which combines topology and feature
information. Left box: random graph generator model. Center box: naive Bayes model.
Right box: the result of applying Bayes’ rule, the model which combines topology and
feature information.

generator gives rise to networks which based on topology can all be plausible
hypotheses for the PPI network that we want to reconstruct. Incorporating the
actual data will reduce this set of plausible hypotheses to just a few, out of which
we can pick the one which has the highest likelihood. We implement this in a
Bayesian framework by treating our random graph model as a prior and define
a probability model for the features given the absence/presence of an edge and
combine these two using Bayes’ rule, to finally arrive at a model incorporating
both topological and feature information. The way in which each of these models
is constructed and then combined is detailed in the rest of this section.

2.1 Topological Properties of PPI Networks

We will focus on one essential topological characteristics of PPI networks: the
node degree distribution. The degree of a node represents the number of con-
nections the node has with the other nodes in the network. The probability
distribution of these degrees over the whole network, p(k), is defined as the
fraction of nodes in the network with degree k,

p(k) =
Nk

N
,

where N is the total number of nodes in the network and Nk is the number of
nodes with degree k. The majority of real-world networks have a node degree
distribution that is highly right-skewed, which means that most of the nodes
have low degrees, while a small number of nodes, known as “hubs”, have high
degrees. The degree of hubs is typically several order of magnitudes larger than
the average degree of a node in the network.
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2.2 Random Graph Generator

The first step of our approach is to define a model for generating networks with
the node degree distribution similar to the one of PPI networks (the left-hand
side box of Figure 1). The random graph generator that we define here is inspired
by the general random graph method [3]. The general random graph method
assigns each node with its expected degree and edges are inserted according to
a probability proportional to the product of the degrees of the two endpoints,
i.e., the probability of an edge between two nodes i and j is proportional to the
product of the expected degrees of the nodes i and j. We introduce a latent
variable, di, related to the degree of node i, i.e., di is roughly proportional to
the degree of node i. Let eij be a random variable with two possible values:
eij = 1 if a link is present between nodes i and j, and eij = −1 if there is no
link. In Figure 1, the random variables di and dj are represented by white color
circles because they are unobserved while eij is represented by a gray color circle
because it is observed.

Our model generates links in the network as follows,

p(eij |di, dj) ∝ (
√
didj)

eij = exp

[
eij

1

2
(log di + log dj)

]
, (1)

p(eij = 1|di, dj) ∝
√
didj

p(eij = −1|di, dj) ∝ 1√
didj

p(eij = 1|di, dj) = p(eij=1|di,dj)
p(eij=1|di,dj)+p(eij=−1|di,dj)

=

√
didj√

didj+
1√
didj

=
didj

1+didj
,

p(eij = −1|di, dj) = p(eij=−1|di,dj)
p(eij=1|di,dj)+p(eij=−1|di,dj)

=
1√
didj√

didj+
1√
didj

= 1
1+didj

,

In order to generate networks with a desired topology and for computational
reasons which will become clear later, we consider a log-normal distribution for
di,

p(log di) = N (log di;m0, σ
2
0) , (2)

where m0 is a scaling parameter, and the parameter σ0 controls the shape of
the distribution. These parameters can be fit such that the networks randomly
generated with the model from Equation (1) have the desired topology. We have
defined di to be roughly proportional to the degree of node i, thus a log-normal
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distribution for di results in a distribution for the degree of node i which is
approximately log-normal, which is similar to what is observed in practice.

In summary, the random graph generator for a given topology performs the
following steps.

1. Choose m0 and σ0 the parameters of the log-normal distribution for di.
2. Draw from this distribution a random sample (d1, . . . , dN ) of size N the

number of nodes in the network.
3. Based on this sample construct the network by inserting edges with proba-

bility given in Equation (1).

2.3 Bayesian Framework for Combining Topology and Feature
Information

In order to combine the topology and feature information, we treat the random
graph model as a prior and define a probability model for the protein pairs fea-
tures given the absence/presence of an interaction. We make use of a a naive
Bayes model to express the likelihood of a protein pairs feature given the ab-
sence/presence of an interaction. The likelihood is thus computed as a product
of 1-dimensional Gaussian distributions, each Gaussian distribution expressing
the probability of a feature component fk

ij given the edge variable eij and the
parameters mean mk and variance σ,

p(fij |eij ,m, σ) =

D∏
k=1

N (fk
ij ;mkeij , σ) ∝

D∏
k=1

exp

(
− (fk

ij − eijmk)
2

2σ2

)
. (3)

We refer to the center box of Figure 1 for a graphical representation of this
model. The naive Bayes model defined above treats the features as independent,
which might not be the case in practice. Despite this simplifying assumption,
the naive Bayes model is known to be a competitive classification method, with
similar performance as the closely related logistic regression algorithm.

The posterior distribution for eij which combines topology and feature infor-
mation is computed using Bayes’ rule as the product between the prior defined
in Equation (1) and the likelihood terms defined in Equation (3), i.e.,

p(eij |fij , di, dj) ∝ p(eij |di, dj)p(fij |eij , di, dj)

∝ exp

(
eij

1

2
(log di + log dj)−

∑
k(f

k
ij − eijmk)

2

2σ2

)
(4)

∝ exp

(
eij

1

2
(log di + log dj) +

eij
∑

k f
k
ijmk

σ2

)
(5)

∝ exp

(
eij(

D∑
k=1

fk
ijmk

σ2
+

1

2
log di +

1

2
log dj)

)
(6)

where when going from (4) to (5) we discarded the square terms. In the above,
we can ignore any term that does not depend on eij , since it will only affect
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the normalization. This includes the term e2ijm
2
k/σ

2, since eij ∈ {−1, 1}. The
normalization term does play a role and, when incorporated, leads to Equa-
tion (8) below. The unknown quantities of our model are mk

σ2 , k = {1, . . . , D}
and log di, i = {1, . . . , N}, and these will be estimated based on the available
training data in a learning procedure that we describe below.

The first step is to adjoin the unknown quantities in a single random variable,
that is

w = [
m1

σ2
, . . . ,

mD

σ2
,
1

2
log d1, . . . ,

1

2
log dN ] , (7)

and the same for the information available, that is protein features and topolog-
ical information

xij = [fij , tij ] ,

where tij is the position vector having 1 on positions i and j and 0 everywhere
else. Then, the normalized probability that there is an interaction between the
proteins i and j from Equation (6) can be rewritten as

p(eij |xij ,w) =
1

1 + exp(−2eijwTxij)
. (8)

Note that in the sum

wTxij =
D∑

k=1

wkfk
ij +

N∑
k=1

wD+ktkij , (9)

the first term on the right-hand side originates from the protein features infor-
mation and the second term from the topological information.

The unknown parameter w is learned in a Bayesian framework which consists
in setting a prior distribution for it, and updating this prior based on observa-
tions. The update is performed using Bayes’ rule given below

p(w|observations) ∝
nobs∏
o=1

p(eoij |xo
ij ,w)p(w) . (10)

where nobs is the size of the training data, i.e., the number of known interacting/
non-interacting protein pairs, and p(eoij |xo

ij ,w) is given in Equation (8). p(w) is
the prior and we choose it to be a Gaussian distribution

p(w) = N (w;μ,Σ) .

The hyperparameters μ and Σ of the prior are chosen such that the topological
information is included in the model. This is implemented by making the cor-
respondence with the prior for the latent variables di. Recall from Equation (7)
that wi+D = 1

2 log di , i = 1, . . . , N and from Equation (2) that log di is normally
distributed, consequently wi+D will also be normally distributed, i.e.,

wi+D ∼ N
(
m0

2
,
σ2
0

4

)
, i = 1, . . . , N .
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The vectors xij are sparse because their components tij of dimension N contain
only two non-zero elements on positions i and j. This sparsity property can
be exploited for making the computations more efficient. Predictions can be
done for an unknown interaction between a pair of proteins i′, j′ characterized
by the feature vector xi′j′ . These predictions can be done either averaging the
posterior over w in Equation (8) or by using a point estimate of this posterior,
let w∗ be the mean of p(w|observations), and computing p(ei′j′ |xi′j′ ,w

∗) using
Equation (8).

We refer back to the graphical sketch of our model in Figure 1 at the beginning
of this section. The box on the left-hand side, corresponds to the random graph
generator model. The observation eij , which expresses the presence or absence of
an edge between nodes i and j, depends on the latent variables di and dj which
are related to the degrees of nodes i and j. The random graph generator model
incorporates feature information through the naive Bayes model with unknown
parameters m and σ, represented in the center box. The combination of the
two models is obtained using Bayes’ rule. The result is shown in the right-hand
side box. The unknown quantities di, dj , and m, σ are combined in the node w
which is unobserved, and fij together with tij which is implicitly expressed by
indices i and j form the observed quantity xij .

In the experimental evaluation from Section 3 we will compare four models.
All the models are based on Equation (10) with a Gaussian prior and likelihood
terms of the form given in Equation (8) and they vary in the way of computing
the dot product from Equation (9) and on the parameters of the Gaussian prior.

1. Model 1 (Features+Topology): is the model we propose in this work. It makes
use of the following dot product

wTxij =
D∑

k=1

wkfk
ij +

N∑
k=1

wD+ktkij , (11)

and a Gaussian prior with mean μ1:D = 0, μD+1:N = −1.5 and covariance
matrix equal to the identity matrix.

2. Model 2 (Features only): uses only information about proteins, and the dot
product is computed as

wTxij =

D∑
k=1

wkfk
ij + wD+1 . (12)

The second term on the right-hand side of Equation (12) is a bias term to
address the unbalancedness of the data. This bias term also corresponds to
the second term on the right-hand side of Equation (11); for an edge eij the
contributions in Equation (11) are wD+i +wD+j while in Equation (12) we
constraint wD+i = 1

2w
D+1, ∀i = 1, . . . , N . This observation also motivates

the choice of the prior for this model: mean μ1:D = 0 and μD+1 = −3 and
covariance equal to the identity matrix.
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3. Model 3 (Topology only): uses only topology information and the dot product
is computed as

wTxij =
N∑

k=1

wktkij .

The Gaussian prior is of dimension N with mean equal to the vector μ1:N =
−1.5 and covariance matrix equal to the identity matrix. The choice for
μ1:N = −1.5 corresponds to the log-normal distribution with m0 = −3, thus
to a network with a node degree distribution similar to the one observed in
PPI networks.

4. Model 4 (Topology-enriched features): uses the information about proteins
and about topology in the following form

wTxij =

D∑
k=1

wkfk
ij + wD+1 log(d̂i + 1) + wD+2 log(d̂j + 1) ,

where d̂i and d̂j are the estimated degrees of nodes i and j computed on the
training data. Basically, the features fij for a pair of proteins i and j are
being extended by adding two new columns corresponding to the degrees of
nodes i and j computed on the training set. For computational reasons we
considered the logarithms of node degrees to which we added 1. The idea
behind this model is similar to the one used in [29,24], i.e., the topological
features are added to protein features resulting in an enriched set of features.
The features are being standardized and the parameters of the Gaussian prior
are set to μ1:D+2 = 0 and covariance equal to the identity matrix.

3 Results

In this section we discuss the results of the experimental evaluation of the frame-
work proposed here. We compare the performance obtained using information
about proteins only, with the performance obtained using topology information
only and with the performance obtained with the combination of the two.

3.1 Data Sets

We used two data sets. Details for each of them are given below.

Yeast Data. This data set was borrowed from [5] and it consists of the high
confidence physical interactions between proteins highlighted in [30]. The PPI
network has 984 nodes (proteins) connected by 2438 links (interactions). We con-
sider all the protein pairs not present in the 2438 interactions as non-interacting.
The yeast PPI graph is very sparse, as a result the data is highly unbalanced,
with less than 1% from the total examples belonging to the positive class. Each
protein has associated a vector of dimension 157 representing gene expression
values in various experiments. We constructed the features for protein pairs by
summing the individual protein features.
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Human Data. This data set was created and made available by [23] and con-
sists of protein pairs with an associated label: interact or non-interact. Each pair
of proteins is characterized by a 27-dimensional feature vector. The features were
constructed based on Gene Ontology (GO) cell component (1), GO molecular
function (1), GO biological process (1), co-occurrence in tissue (1), gene expres-
sion (16), sequence similarity (1), homology based (5) and domain interaction
(1), where the numbers in brackets correspond to the number of elements con-
tributed by the feature type to the feature vector. Unlike positive interactions,
non-interacting pairs are not experimentally reported. Thus, a common strategy
is to consider as non-interacting pairs a randomly drawn fraction from the total
set of potential protein pairs excluding the pairs known to interact. The resulting
data set has 14,608 interacting pairs and 432,197 non-interacting pairs. The PPI
graph consists of 24, 380 nodes connected by 14, 608 edges. As in the case of the
yeast data set, the PPI graph of the human data is very sparse, the interacting
pairs represent less then 1% from the possible links in the graph.

Both data sets are highly unbalanced, with 1% and 5% positive pairs for yeast
data and human data, respectively. There are classification methods that were
designed to address the unbalancedness of data [19]. Specifically, for protein
interactions, there are some studies [32,20] that investigate how to construct
non-interacting protein pairs (negative samples).

3.2 Experimental Setup

The experimental setup considered a part of the data for training and the rest for
testing. The training data was used to learn the models and the testing data was
used to evaluate how good these models can predict PPIs. We randomly sampled
a training set containing 1%, 5%, 10% and 20% protein pairs and their labels
as interacting or not from the yeast and human data set. The PPI prediction
problem was thus transformed in a binary classification problem The training
features were standardized to have mean zero and standard deviation of one.
This data sample was used to train the classification model (i.e., learn the weight
parameter of the logistic regression). The remaining protein pairs were used for
testing the performance. These steps were repeated 10 times and average results
are reported (mean ± standard deviation).

3.3 Evaluation Measure

Area under the receiver operating characteristic curve (AUC) was used as a
measure for evaluating the performance. The receiver operator characteristic
(ROC) curve plots the true positive rate against the false positive rate for dif-
ferent thresholds. The AUC statistic can be interpreted as the probability that
a randomly chosen missing edge (a true positive) is given a higher score by the
method than a randomly chosen pair of proteins without an interaction (a true
negative).
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Table 1. AUC values (mean ± standard deviation) for the four models:
Model 1 represents the Bayesian framework for combining feature and topol-
ogy information, Model 2 uses only protein information, Model 3 uses only
topology information, Mode 4 uses protein features which are enriched by
node degrees. The ∗ indicates that the results obtained for Model 1 are
significantly better than the results obtained for Model 2. The four upper
rows correspond to the yeast data set while the four lower rows correspond
to the human data set.

% Train Model 1 Model 2 Model 3 Model 4
data Features+ Features Topology Topology

Topology only only features

1% 0.639 ± 0.014 0.639 ± 0.018 0.577 ± 0.016 0.582 ± 0.022
5% 0.708 ± 0.006 0.697 ± 0.009 0.688 ± 0.010 0.689 ± 0.009
10% 0.731 ± 0.005∗ 0.712 ± 0.005 0.720 ± 0.006 0.717 ± 0.007
20% 0.746 ± 0.009∗ 0.719 ± 0.006 0.742 ± 0.009 0.737 ± 0.010

1% 0.863 ± 0.006∗ 0.851 ± 0.006 0.608 ± 0.014 0.822 ± 0.012
5% 0.909 ± 0.002∗ 0.859 ± 0.001 0.793 ± 0.007 0.899 ± 0.003
10% 0.931 ± 0.002∗ 0.861 ± 0.001 0.864 ± 0.005 0.931 ± 0.002
20% 0.952 ± 0.002∗ 0.862 ± 0.001 0.917 ± 0.003 0.954 ± 0.002

3.4 Performance

Table 1 shows the comparison of the performance of the four models discussed.
Model 1 represents the Bayesian framework for combining feature and topology
information, Model 2 uses only protein information, Model 3 uses only topology
information and Model 4 uses protein features which are enriched with node
degrees. The comparison was performed for the yeast data (the four upper rows
in Table 1) and human data sets (the four lower rows in Table 1). The protocol
described in Section 3.2 was used and the averaged AUC scores with their stan-
dard deviations are reported. The statistical significance between Model 1 and
Model 2 was assessed by using a Mann-Whitney U-test [8] on the AUC values
obtained from the two models for 10 random splits of the data into training and
testing. A 5% significance level has been considered. The ∗ indicates that the
results obtained for Model 1 are significantly better than the results obtained
for Model 2.

The results show that the combination of the two sources of information,
protein features and topology, gives a better performance than using only one
type of information. In particular Model 1 (Features+Topology) performs sig-
nificantly better than Model 2 (Features only) in most of the cases. Model 1
and Model 4 have a similar performance for human data, and Model 1 performs
better than Model 4 for yeast data. An explanation for this is related to how the
protein features were constructed in the two cases; for yeast data the features for
a protein pair resulted from summing the feature vectors corresponding to the
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two proteins, while for human data the protein features are more related to the
protein pair than to individual proteins. Model 3 (Topology only) uses only the
information related to the topology, in particular the property of hub-proteins
to interact with many other proteins. Note that you can have the pair of protein
A and protein B in training set and the pair of protein A and protein C in the
test set, and in this way the algorithm learns which proteins are hubs (and other
topological information) and makes predictions based on topology.

The results vary also as a function of the size of the training data. For a small
training set the network is not well defined, and we can see that in this case the
improvement is smaller, but, as we increase the training set, meaning that the
knowledge about the network topology increases, the performance obtained by
adding the topology information improves more.

4 Conclusion

We introduced a framework for predicting PPI by considering the network struc-
ture information. This is a Bayesian framework consisting of a prior distribution
over the network topology and likelihood terms for observations about links in
the network. In the Bayesian framework in general, and in our case when trying
to add topological information, the computational complexity is an issue. In the
framework presented here, we managed to find some simplifying assumptions
which reduce the computational complexity and at the same time yield a good
performance.
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7. Geurts, P., Wehenkel, L., d’Alché Buc, F.: Kernelizing the output of tree-based
methods. In: Proceedings of the 23th International Conference on Machine Learn-
ing, pp. 345–352 (2006)

8. Hollander, M., Wolfe, D.: Nonparametric Statistical Methods. John Wiley & Sons
(1999)



Using Topology Information for Protein-Protein Interaction Prediction 21

9. Jansen, R., Yu, H., et al.: A Bayesian networks approach for predicting protein-
protein interactions from genomic data. Science 302(5644), 449–453 (2003)

10. Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality in
protein networks. Nature 411(6833), 41–42 (2001)

11. Kashima, H., Yamanishi, Y., Kato, T., Sugiyama, M., Tsuda, K.: Simultaneous
inference of biological networks of multiple species from genome-wide data and
evolutionary information. Bioinformatics 25(22), 2962–2968 (2009)

12. Kuchaiev, O., Rasajski, M., Higham, D.J., Przulj, N.: Geometric de-noising of
protein-protein interaction networks. PLOS Computational Biology 5(8) (2009)

13. Li, Z.C., Lai, Y.H., et al.: Identifying functions of protein complexes based on
topology similarity with random forest. Mol. Biosyst. (10), 514–525 (2014)

14. Lin, N., Wu, B., Jansen, R., Gerstein, M., Zhao, H.: Information assessment on
predicting protein-protein interactions. BMC Bioinformatics 5, 154 (2004)

15. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks.
Science 296, 910–913 (2002)

16. Memisevic, V., Milenkovic, T., Przulj, N.: Complementarity of network and se-
quence information in homologous proteins. Journal of Integrative Bioinformat-
ics 7(3), 135 (2010)

17. Milenkovic, T., Przulj, N.: Uncovering biological network function via graphlet
degree signatures. Cancer Informatics 6, 257–273 (2008)

18. Mohamed, T.P., Carbonell, J.G., Ganapathiraju, M.K.: Active learning for hu-
man protein-protein interaction prediction. BMC Bioinformatics 11(suppl. 1), S57
(2010)

19. Muntean, M., Valean, H., Ileana, I., Rotar, C.: Improving classification with sup-
port vector machine for unbalanced data. In: Proceedings of 2010 IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics, THETA, 17th
edn., pp. 234–239 (2010)

20. Park, Y., Marcotte, E.M.: Revisiting the negative example sampling problem for
predicting protein-protein interactions. Bioinformatics 27(21), 3024–3028 (2011)

21. Przulj, N., Corneil, D., Jurisica, I.: Modeling interactome: scale-free or geometric?
Bioinformatics 20(18), 3508–3515 (2004)

22. Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random forest similarity for
protein-protein interaction prediction from multiple sources. In: Altman, R.B.,
Jung, T.A., Klein, T.E., Dunker, A.K., Hunter, L. (eds.) Pacific Symposium on
Biocomputing. World Scientific (2005)

23. Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: A mixture of feature experts ap-
proach for protein-protein interaction prediction. BMC Bioinformatics 8(suppl. 10),
S6 (2007)

24. Qi, Y., Tastan, O., Carbonell, J.G., Klein-Seetharaman, J., Weston, J.: Semi-
supervised multi-task learning for predicting interactions between hiv-1 and human
proteins. Bioinformatics 26(18), i645–i652 (2010)

25. Sarajlic, A., Janjic, V., Stojkovic, N., Radak, D., Przulj, N.: Network topology
reveals key cardiovascular disease genes. PLoS One 8(8), e71537 (2013)

26. Shi, M.G., Xia, J.F., Li, X.L., Huang, D.S.: Predicting protein-protein interactions
from sequence using correlation coefficient and high-quality interaction dataset.
Amino Acids 38(3), 891–899 (2010)

27. Sprinzak, E., Altuvia, Y., Margalit, H.: Characterization and prediction of protein-
protein interactions within and between complexes. PNAS 103(40), 14718–14723
(2006)

28. Tanaka, R., Yi, T.M., Doyle, J.: Some protein interaction data do not exhibit power
law statistics. FEBS Letters 579, 5140–5144 (2005)



22 A. Birlutiu and T. Heskes

29. Tastan, O., Qi, Y., Carbonell, J.G., Klein-Seetharaman, J.: Prediction of interac-
tions between hiv-1 and human proteins by information integration. In: Proceedings
of the Pacific Symposium on Biocomputing, vol. 14, pp. 516–527 (2009)

30. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork,
P.: Comparative assessment of large-scale data sets of protein-protein interactions.
Nature 417(6887), 399–403 (2002)

31. Yamanishi, Y., Vert, J.-P., Kanehisa, M.: Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics 20(1), 363–370 (2004)

32. Yu, J., Guo, M., Needham, C.J., Huang, Y., Cai, L., Westhead, D.: Simple
sequence-based kernels do not predict protein-protein interactions. Bioinformat-
ics 26(20), 2610–2614 (2010)

33. Zhang, L.V., Wong, S., King, O., Roth, F.: Predicting co-complexed protein pairs
using genomic and proteomic data integration. BMC Bioinformatics 5, 38 (2004)



Biases of Drug–Target Interaction Network Data

Twan van Laarhoven and Elena Marchiori

Institute for Computing and Information Sciences, Radboud University Nijmegen,
The Netherlands

{tvanlaarhoven,elenam}@cs.ru.nl

Abstract. Network based prediction of interaction between drug com-
pounds and target proteins is a core step in the drug discovery process.
The availability of drug–target interaction data has boosted the devel-
opment of machine learning methods for the in silico prediction of drug–
target interactions. In this paper we focus on the crucial issue of data
bias.

We show that four popular datasets contain a bias because of the
way they have been constructed: all drug compounds and target pro-
teins have at least one interaction and some of them have only a single
interaction. We show that this bias can be exploited by prediction meth-
ods to achieve an optimistic generalization performance as estimated by
cross-validation procedures, in particular leave-one-out cross validation.
We discuss possible ways to mitigate the effect of this bias, in particular
by adapting the validation procedure. In general, results indicate that the
data bias should be taken into account when assessing the generalization
performance of machine learning methods for the in silico prediction of
drug–target interactions.

The datasets and source code for this article are available at
http://cs.ru.nl/~tvanlaarhoven/bias2014/

1 Introduction

An important problem in pharmacology is to find interactions between drug com-
pounds and target proteins in order to understand and study their effects. The
in silico prediction of such interactions is crucial for improving the efficiency of
the laborious and costly experimental determination of drug–target interaction,
see e.g. [5].

Drug-target interaction data are publicly available for various classes of phar-
maceutically useful target proteins including enzymes, ion channels, GPCRs
(G Protein-Coupled Receptors) and nuclear receptors [13]. Various databases
have been built and maintained, such as KEGG BRITE [16], DrugBank [29],
GLIDA [23], SuperTarget and Matador [12], BRENDA [26], and ChEMBL [24],
containing drug–target interaction and other related sources of information, like
chemical and genomic data.

The availability of these data stimulated the development of machine learning
methods for the in silico prediction of drug-target interactions [8]. The current
state-of-the-art for the in silico prediction of drug–target interaction involves
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c© Springer International Publishing Switzerland 2014

http://cs.ru.nl/~tvanlaarhoven/bias2014/


24 T. van Laarhoven and E. Marchiori

methods that employ similarity measures for drug compounds and for target
proteins in the form of kernel functions, e.g., Bleakley et al. [2], Chen et al.
[4], Gönen [11], vanLaarhoven et al. [21], Mei et al. [22], Wassermann et al.
[28], Yamanishi et al. [30, 31].

One can distinguish between prediction for ‘known’ drug compounds or tar-
gets, for which at least one interaction is present in the training set; and predic-
tion for ‘unseen’ drug compounds or targets, for which no interaction is available
in the training set. This results in four possible settings for predicting drug-
target interaction, depending on whether the drug compounds and/or targets
are known or unseen [30].

In our recent work on predicting drug–target interactions [20] we discovered
that a positive bias was implicity introduced in a published method. This moti-
vated the two main research questions we will address in this paper.

1. How does data bias affect the results of procedures used to estimate the
generalization performance of a method?

2. Can we quantify and avoid such bias?

Cross-validation (CV) [19] is typically used to assess the generalization per-
formance of methods in the above mentioned settings. The dataset is repeatedly
partitioned into two disjoint parts, a training set and a hold-out set. For each
partition, the training set is used to construct the predictor and the hold-out set
is used for testing. Popular variants are 10-fold CV, where the data is partitioned
into ten folds, and each fold is used once as the hold-out set, and leave-one-out
cross-validation (LOOCV), where each example constitutes one hold-out set. In
the context of drug–target interaction various cross-validation settings can be
defined, depending on what is considered an example (e.g. a single drug–target
pair or all interactions with a single drug compound) and on the selected CV
procedure.

We consider the four popular drug–target interaction datasets in humans
involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nu-
clear receptors from Yamanishi et al. [30]. These data have been used as bench-
mark datasets in recent works, e.g. Bleakley et al. [2], Chen et al. [4], Gönen
[11], vanLaarhoven et al. [21, 20], Mei et al. [22], Wassermann et al. [28].

In this paper we show experimentally that these datasets contain a bias which
may lead to optimistic CV generalization results. Furthermore, the extent to
which this bias affects the results can differ for different methods. As a result, it
is unclear whether a method with better CV results on these datasets will also
have better performance in real applications.

Specifically, these datasets have been constructed in such a way that each
drug compound and target protein has at least one interaction. Furthermore,
some drug compound and/or targets have only a single interaction.

We show how this bias can be incorporated into a baseline prediction method
in such a way that it significantly increases the LOOCV generalization per-
formance. We investigate how this bias can be reduced and quantified. We
show experimentally that 5- or 10-fold CV reduces (but does not eliminate)
the bias. Furthermore, the presence of this bias can be quantified by separating
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the performance metrics for drug compounds and targets with just one inter-
action from that for other drug–target interaction pairs. This provides an al-
ternative procedure to assess the generalization performance of a method by
highlighting the effect of the data bias.

In general, our results provide a contribution towards the understanding of CV
procedures in the presence of data bias in the context of drug-target interaction
networks.

1.1 Related Work

Dataset bias has been investigated in different domains, e.g. in ligand based
virtual screening [1], where local clustering and global spread of the considered
benchmark datasets were identified influencing validation results, and in object
recognition [27], where current state of recognition datasets have been compara-
tively analyzed and evaluated based on criteria including relative data bias and
cross-dataset generalization. To the best of our knowledge, this is the first time
that drug–target interaction network data bias is analyzed.

The dangers of CV have been studied by the machine learning community
in various contexts. For instance, in Isaksson et al. [14] CV and bootstrap-
ping in small sample classification are investigated. A fundamental problem is
that the uncertainty in a point estimate obtained with these procedures is un-
known and may be quite large. The authors therefore suggest that the final
classification performance should be reported in the form of a Bayesian confi-
dence interval or using some other method that yields conservative measures of
the uncertainty. Furthermore, in Rao et al. [25] it was empirically shown that
when the number of algorithms is large, LOOCV is not an effective estimate of
generalization performance for the algorithm that has the best cross-validation
performance. The authors showed that this behavior worsens as the sample size
decreases, and as the dimensionality and number of algorithms increase. The
phenomenon of under-estimating cross validation error was also demonstrated
on some benchmark data sets, and was shown to be worse for datasets with
higher dimensionality.

2 Materials

In Yamanishi et al. [30] datasets were introduced for the drug–target predic-
tion problem. These datasets are based on four different domains: enzymes, ion
channels, GPCRs and nuclear receptors. The datasets are constructed in such a
way that only the proteins that have an interacting drug are included, and for
each domain only the drugs that interact with at least one protein are included.
It turns out that this property introduces problems for validation.

In Table 1 we give an overview of the four datasets as they are used in recent
publications. As can be seen in the last column, a large fraction of the drug
compounds and target have just one interaction in the dataset. Or equivalently,
there are many interactions which are the only interaction for a drug–target. We
call such interacting pairs unique.
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The interactions in a dataset can be encoded in a matrix ydt, such that ydt = 1
if drug compound d interacts with target protein t, and ydt = 0 otherwise.
Besides this interaction information, there is also other information available on
the drugs and targets themselves. Usually this is encoded in kernel matrices that
give a similarity score between two drugs or two targets.

Table 1. The number of drug compounds, the number of target proteins, the number
of interactions and the number of unique interaction pairs (interactions which are the
only one for a drug or target) in the drug–target datasets from Yamanishi et al. [30]

Dataset Drugs Targets Interactions Unique

Enzyme 445 664 2926 451 (15%)
Ion Channel 210 204 1476 103 (7%)
GPCR 223 95 635 132 (21%)
Nuclear Receptor 54 26 90 44 (49%)

3 Methods

3.1 Validation Procedures

There are two main ways in which these datasets of interactions can be used by
machine learning methods:

1. To train a model to predict with which targets a previously unseen drug will
interact. We call this the ‘unseen drug’ setting.

2. To find new putative interactions between drugs and targets already in the
dataset. We call this the ‘pairs’ setting.

An overview of the prediction setting and type of CV used in state-of-the-art
methods applied to these datasets are shown in Table 2. In this work we focus
primarily on the ‘pairs’ setting, which is used by most of the methods listed in
the table.

Usually methods are compared by looking at the ranking of interactions they
produce in a cross-validation setting. That is, each drug–target pair is assigned
a score by each method, where only other interacting pairs are shown to the
method. Then the pairs are ranked based on these scores and the quality of the
ranking is compared using AUC, AUPR or other summary statistics. Specifically,
the ROC curve of true positives as a function of false positives is computed, and
the area under the ROC curve (AUC) is considered as quality measure, see for
instance [10]. Furthermore, the precision–recall curve is computed, that is, the
plot of the ratio of true positives among all positive predictions for each given
recall rate. The area under this curve (AUPR) is a more informative quality
measure than the AUC, as it punishes much more the existence of false positive
examples found among the top ranked prediction scores [6].
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Table 2. A list of papers that used the interaction data in Table 1, showing the type
of prediction setting (‘unseen drug’ or ‘pairs’) and type of CV procedure used

Unseen drug Pairs CV procedure

Yamanishi et al. [30] ✓ ✓ 10-fold CV
Bleakley et al. [2] ✓ ✓ LOOCV, 10-fold CV
vanLaarhoven et al. [21] - ✓ LOOCV, 10-fold CV
Chen et al. [4] - ✓ LOOCV
Gönen [11] ✓ - 5-fold CV
Mei et al. [22] - ✓ LOOCV, 10-fold CV
vanLaarhoven et al. [20] ✓ ✓ LOOCV, 5-fold CV

3.2 Biases

Suppose that a method is tested using LOOCV. Then if a unique interaction (d, t)
is left out, the method will see a row (or column) of zeros in the matrix. But we
know that the dataset does not have such rows or columns, since each drug and
target has at least one interaction. We can therefore know with certainty that
this pair interacts. This process is illustrated in Fig. 1.
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Fig. 1. In the LOOCV procedure, the task is to predict a single unknown drug–target
interaction, assuming all other interactions are known. This is indicated by x in the
matrix of drug–target interactions. Because of the construction of the dataset, we can
know with certainty that in the second matrix x = 1, otherwise this drug compound
would not be included in the dataset.

Consider a simple baseline method, that ranks drug–target pairs by the num-
ber of adjacent pairs that are known to interact, where two drug–target pairs are
adjacent if they share a drug or a target. This number of adjacent interacting
pairs for the pair (d, t) is

adt = adrugdt + atargdt , where adrugdt =
∑
d′ �=d

yd′t, atargdt =
∑
t′ �=t

ydt′ .

At first glance we would expect drugs or targets that already have many known
interactions to be more promiscuous, and therefore also more likely to interact
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with other drugs and targets. But as explained in the previous paragraph that
is not the case when LOOCV is used.
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Fig. 2. Probability of a drug–target pair interacting given the number of adjacent
interactions. The first plot shows this probability for LOOCV in the GPCR dataset,
the second plot for 10-fold cross validation. The shaded area indicate a 95% confidence
interval based on a uniform prior.

To test this effect, in Fig. 2 we have plotted the fraction of pairs that interact
against adt. This is an empirical estimate P̂ (ydt|adt) of the probability that d and
t interact given the number of adjacent pairs for (d, t). Overall there is indeed a
trend for larger adt to correspond to a higher probability of interacting. But for
very low adt we see the bias in action: the probability of such pairs interacting
is very high, since many of them are unique interactions.

A method can exploit this knowledge as follows. Consider the biased variant of
the baseline method, which is the same as the baseline, except that it ranks the
pairs with no observed adjacent pairs sharing a drug or with no pairs sharing a
target before all other drug–target pairs. More precisely, instead of ranking pairs
by adt, they are ranked by

aunique�→∞
dt =

{
∞ if adrugdt = 0 or atargdt = 0

adt otherwise.

In Table 3 we compare the LOOCV performance of this biased method to the
unbiased baseline.

To estimate the statistical significance of the AUC results we used the method
described in DeLong et al. [7]. To determine significance of the AUPR results
we used bootstrapping.

The difference between the unbiased and the biased methods is purely due
to the unique interactions. In Table 3 we also show the AUC and AUPR split
up for just the unique and non-unique interactions. With the unbiased baseline
method, the AUC for unique interactions is barely above random chance level,
while the biased baseline method achieves a perfect AUC. The overall AUC is
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Table 3. Performance of the unbiased baseline method and the biased variant when
tested with LOOCV. The best results for each dataset are indicated in bold.

AUC AUPR
Dataset Method overall unique other overall unique other

Enzyme
Baseline 0.880 0.668 0.919 0.101 0.006 0.102
Biased 0.931 1.000 0.919 0.301 1.000 0.102

Ion Channel
Baseline 0.850 0.528 0.874 0.244 0.003 0.254
Biased 0.883 1.000 0.874 0.355 1.000 0.254

GPCR
Baseline 0.796 0.542 0.863 0.157 0.009 0.168
Biased 0.891 1.000 0.863 0.420 1.000 0.168

Nuclear Receptor
Baseline 0.703 0.511 0.887 0.152 0.044 0.143
Biased 0.942 1.000 0.887 0.682 1.000 0.143

a weighted average of the AUCs for unique and non-unique interactions, where
the weight corresponds to the fraction of unique interactions. For example, for
the GPCR dataset, 79% · 0.863 + 21% · 1.000 = 0.891. Such a relation does not
hold for AUPR scores, but the overall picture is similar.

4 Avoiding the Bias

It seems that the biased results stem from the use of LOOCV. And so one would
hope to avoid this problem by using 10 fold CV instead. As the right part of
Fig. 2 shows, this indeed reduces the bias, but it does not completely eliminate
it.

We have repeated the experiment from the previous section with 10-fold CV
instead of LOOCV. This is the setting used by, for instance Yamanishi et al.
[30]. As seen in the Table 4, exploiting the data bias still improves the AUC
and AUPR scores for unique interactions, but this comes at the cost of the
performance for non-unique interactions. In general, with k-fold cross-validation
on a dataset with n drugs/targets, for each unique interacting pair, there are on
the order of n/k non-interacting pairs that will be excluded in the same fold.
These pairs will appear similar to the unique interaction ones. As the dataset
becomes larger, there will be more such pairs.

However, it is still possible to beat the baseline method by making a trade-
off between the increased performance on unique interactions and decreased
performance on other interactions. For example, one can introduce the ‘slight
bias’ method that ranks pairs which appear to be unique as if they have k
adjacent interactions. So it ranks pairs by aunique�→k

dt for some k < ∞. By tuning
this parameter k we can tune the trade-off. In our experiments we chose k with
cross validation. As shown in Table 4, this method achieves best AUC and AUPR
on all but the smallest dataset; and in all cases shows a significant improvement
over the baseline method.
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Table 4. Performance of the unbiased baseline method and the biased variants when
tested with 10 fold CV. The best results for each dataset are indicated in bold, results
in italic do not differ significantly from the best (at α = 0.05).

AUC AUPR
Dataset Method overall unique other overall unique other

Enzyme
Baseline 0.879 0.669 0.917 0.098 0.006 0.099
Slight bias 0.900 0.818 0.915 0.101 0.012 0.097
Biased 0.862 0.982 0.840 0.056 0.135 0.027

Ion Channel
Baseline 0.849 0.530 0.873 0.246 0.003 0.254
Slight bias 0.859 0.695 0.871 0.248 0.005 0.252
Biased 0.836 0.987 0.824 0.123 0.128 0.098

GPCR
Baseline 0.795 0.543 0.859 0.154 0.009 0.163
Slight bias 0.841 0.801 0.853 0.168 0.025 0.155
Biased 0.827 0.975 0.788 0.116 0.180 0.057

Nuclear Receptor
Baseline 0.697 0.533 0.885 0.154 0.047 0.155
Slight bias 0.857 0.884 0.846 0.247 0.177 0.124
Biased 0.878 0.967 0.781 0.351 0.473 0.070

So far we have considered the bias in the pairs setting. Results suggest that
perhaps this validation setting should not be used. An alternative is the unseen
drug setting, where one or more rows are left out in their entirety from the drug–
target interaction matrix. This means that it becomes impossible to see if a pair
is unique for a certain drug. But there are still interactions that are unique for
a target. As shown in Table 5, this bias can still be exploited for improving CV
performance, even when using 5- or 10-fold cross-validation.

Another option is to separate the unique interactions from the non-unique
interactions when doing validation. As shown in our experiments, the non-unique
interactions are not sensitive to the same bias. A good solution would be to
only consider the AUC and AUPR scores for the non-unique interactions when
comparing different methods. This still introduces a bias of a different kind,
however, since some drug compounds and targets will be unnecessarily excluded.

A different way to validate a method is to seek confirmation of the predic-
tions in other datasets. This is done by for instance Yamanishi et al. [31], van-
Laarhoven et al. [21], Gönen [11], where the 10 highest rank predictions are
looked up in the literature, and in newer versions of the KEGG BRITE, Drug-
Bank Chembl, SuperTarget and Matador databases. A problem with such valida-
tion is that it is hard to quantify the performance, because only a few interactions
are verified, and because these databases are extended between the publication
of different papers.

Perhaps the most principled way of avoiding biases in validation is to act on
the data and construct more realistic datasets. For this problem, that means that
the dataset should also include compounds that interact with none of the targets,
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Table 5. Performance of the baseline method and biased variants in the unseen drug
setting, when validated with 5-fold CV. The best results for each dataset are indicated
in bold, results in italic do not differ significantly from the best (at α = 0.05).

AUC AUPR
Dataset Method overall unique other overall unique other

Enzyme
Baseline 0.723 0.320 0.802 0.040 0.003 0.039
Slight bias 0.772 0.637 0.814 0.041 0.003 0.040
Biased 0.747 0.868 0.743 0.023 0.018 0.016

Ion Channel
Baseline 0.699 0.602 0.710 0.079 0.010 0.075
Slight bias 0.701 0.677 0.707 0.080 0.010 0.075
Biased 0.698 0.797 0.694 0.064 0.017 0.059

GPCR
Baseline 0.766 0.562 0.819 0.094 0.012 0.088
Slight bias 0.782 0.664 0.813 0.095 0.013 0.087
Biased 0.750 0.747 0.747 0.062 0.025 0.047

Nuclear Receptor
Baseline 0.616 0.585 0.650 0.140 0.067 0.109
Slight bias 0.647 0.633 0.653 0.144 0.070 0.109
Biased 0.670 0.699 0.626 0.126 0.084 0.059

or targets for which there is no known interacting compound. The question then
becomes which other drug compounds and proteins to include in the dataset.
This possibility remains to be explored.

5 Conclusions

We have shown that popular benchmark data for the drug–target interaction
problem are biased because they include only drug compounds and target pro-
teins with at least one interaction. This bias can be quantified by looking at
the CV performance on these unique interactions separately from non-unique
interactions. The bias is the largest with leave-one-out cross-validation in the
pairs setting. But even with 5- or 10-fold cross-validation and in the unseen
drugs setting there is still a significant bias. Our analysis indicates that results
of CV procedures to assess the predictive performance of methods for drug–
target interaction networks should be interpreted with care because they could
be possibly positively affected by bias contained in the considered datasets.

The baseline method discussed in this paper does not use the similarity in-
formation of drug compounds or target proteins at all. Hence, the performance
is far below the state of the art. However, the effects of the bias carry over to
other methods. For any ranking method rdt we can define a variant runique�→k

dt

that exploits the dataset bias and thereby boosts the performance on unique
interacting pairs.

We have not performed an empirical study of the prevalence of biases in
published methods. Of course none of the methods in Table 2 exploit the bias
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in quite such a blatant way as our ‘biased baseline’ method. Still, there could
be methods that inadvertently take more advantage of the bias than others, for
example in the choice of parameter values or in the way they handle specific
types of drug–target pairs.

In this work we have focused on a single group of datasets, with a specific type
of interaction, drug–target interaction. It remains to be investigated whether
other datasets for the drug–target interaction prediction problem and datasets
for other similar problems have the same bias. It would also be interesting to
consider other interaction datasets, such as the drug–target, enzyme–motabolite
and protein–ligand datasets from [17, 3, 9, 15, 18].
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Abstract. Most of the current practice of pattern matching tools is ori-
ented towards finding efficient ways to compare sequences. This is useful
but insufficient: as the knowledge and understanding of some functional
or structural aspects of living systems improve, analysts in molecular
biology progressively shift from mere classification tasks to modeling
tasks. People need to be able to express global sequence architectures
and check various hypotheses on the way their sequences are structured.
It appears necessary to offer generic tools for this task, allowing to build
more expressive models of biological sequence families, on the basis of
their content and structure.

This article introduces Logol, a new application designed to achieve
pattern matching in possibly large sequences with customized biological
patterns. Logol consists in both a language for describing patterns, and
the associated parser for effective pattern search in sequences (RNA,
DNA or protein) with such patterns. The Logol language, based on
an high level grammatical formalism, allows to express flexible patterns
(with mispairings and indels) composed of both sequential elements (such
as motifs) and structural elements (such as repeats or pseudoknots). Its
expressive power is presented through an application using the main com-
ponents of the language : the identification of -1 programmed ribosomal
frameshifting (PRF) events in messenger RNA sequences.

Logol allows the design of sophisticated patterns, and their search in
large nucleic or amino acid sequences. It is available on the GenOuest
bioinformatics platform at http://logol.genouest.org. The core applica-
tion is a command-line application, available for different operating
systems. The Logol suite also includes interfaces, e.g. an interface for
graphically drawing the pattern.

1 Background

During last decade, a number of pattern matching tools have been proposed,
and some of them are used extensively and helpful. Depending on systems under
study, modeling needs may vary from looking for all exact occurrences of a
given string in a protein bank, to looking for approximated occurrences of a
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given transposon in a full genome, or locating pseudoknots in a RNA sequence.
This section proposes a quick overview of the existing software diversity, which
shows there exists still room for a new pattern matching tool, both flexible
(high ”genericity”) and with the capacity to represent complex structures (high
expressive power).

1.1 General Purpose Pattern Matching

Some tools have been designed for the analysis of several types of sequences
(DNA, RNA, proteins) with an generic expressiveness, i.e. without targeting the
recognition of a particular motif family. Among these general tools, two tenden-
cies can be observed, efficiency-oriented and expressiveness-oriented software.

One of the most advanced software from the point of view of efficiency is the
Vmatch suite (http://www.vmatch.de) that offers a large variety of search facil-
ities in very large sequences. It is based on a careful implementation of enhanced
suffix trees for the computation of a sequence index that provides a fast access
to every substring in that sequence. If the search for a motif contains some rare
substrings, this technique is particularly efficient. The software Vmatch is the
core search engine used in a number of more specialized tools working on specific
sequence structures (e.g. “tandem-repeats” or LTR retrotransposons). Another
highly generic tool is Biogrep[11], designed with the objective of quickly recogniz-
ing a large set of simple motifs (typically more than 100) in biological sequence
banks. Biogrep allows queries in the POSIX language, a standard format of ex-
tended regular expressions, and can look for patterns in parallel on a set of
processors.

The other approach for the analysis of biological sequences is more concerned
with modeling the peculiarities of biological objects in the most relevant and
expressive way. A major contribution in this respect is the work of D. Searls
who laid the foundations for the research in this domain. He was the first to su-
pervise developments allowing users to design biological grammars and to apply
them for the large scale analysis of their genomic sequences [19,4,18]. D. Searls
has introduced a very practical object in algebraic grammars, the string variable,
which allows to elegantly express the notion of copy (either direct or reverse). He
has implemented the resulting logical formalism, called SVG -for String Variable
Grammars-, in the (no longer available) Genlang tool [4]. The direct copy (e.g.
X...X) allows to search for two occurrences of a same unknown string, using
optionally some indication on the string size. The reverse copy (e.g. X... ∼X)
introduces in addition the notion of reverse complement and allows thus the rep-
resentation of biological palindromes like stem-loops (Stem, Loop, ∼Stem) or
pseudo-knots (Stem1, Loop1,Stem2, Loop2, ∼Stem1, Loop3,∼Stem2). Gen-
lang, Stan[15] (developed in our research team), Patscan[5] and Patsearch[16]
are all tools belonging to this family. Thanks to string variables and other ad-
ditional components, these languages offer the possibility to combine easily in a
single model informations on the sequence and on the structure of a molecule.
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1.2 Dedicated Pattern Matching

It is not possible to provide here an exhaustive review of the profusion of spe-
cific tools that have been made available to bioanalysts. Some are specific to a
sequence family and others to a particular motif type. A famous one dedicated
to proteins is ScanProsite[3], where motifs are built upon regular expressions
that are searched either by a query in a precomputed database or with the
algorithm ps-scan[9]. A number of tools are dedicated to RNA sequences, in
response to the increasing needs of structure exploration in the complex RNA
world boosted by the recent importance of non coding RNA studies. For in-
stance, RNAmotif[13], RNAbob[6], Hypasearch[10,20] and Palingol[2] have been
designed for the description of patterns as a succession of stems and loops, usu-
ally offering the possibility of choosing either a standard Watson-Crick pairing
(A-U, G-C) or a pairing including Wobble (A-U, G-C, G-U). A more recent tool in
this category, Structator[14], significantly improves the parsing time by making
use of an index structure that is suited for the analysis of palindromic structures,
the affix arrays. Patterns may also contain some sequence information on words
that have to be present in particular places of the stems or the loops. RNAmotif
is probablly the most popular in this category.

2 Logol Language

In this landscape, we designed Logol, a new general grammatical pattern match-
ing tool, in order to greatly enhance the range of admissible patterns.

2.1 Basics: A Grammatical Model with Constraints

• String Variable Grammars: With the objective of being a general and ex-
pressive language allowing a natural expression of composite patterns, the Logol
language has been designed on the basis of String Variable Grammars (SVG)
introduced by D.Searls [19,4,18]. As already mentioned in the previous section,
while it is easy to express motifs and gaps by regular expressions (e.g. PROSITE
[3]), SVG allow to express structures beyond the capabilities of regular languages
such as palindromes (e.g. in stem-loops and pseudo-knots) and repeats (dupli-
cated substrings), which are recorded by string variables. In fact, SVG and Logol
grammars lay even beyond the possibilities of context-free grammars (XML-like),
in a class that A. Joshi called ”mildly context sensitive languages” [12]. Starting
from the sound basis of SVG grammars, the Logol language proposes several ex-
tensions -most notably by adopting a constraint approach- with the goal to allow
the expression of realistic biological motifs. The rest of the section introduces its
main constituents.

• First Steps in Logol: Let us first present a very simple Logol grammar:
mod1()==*> SEQ1

mod1()==>"aaa"
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The first line is the top level instruction (called ’rule’). The rule is identified
by the constant ’==*> SEQ1’ and it triggers the parsing of a sequence for a
particular grammatical model (here, mod1). The second line provides the model
(i.e. pattern) definition itself, here the string "aaa". It triggers the search for all
occurrences of ”aaa” in a genomic sequence.

The next grammar describes a slightly more interesting pattern made of two
distant copies of a same string. The size of the string (in range [5,8]) and the
distance between the two copies (in range[1,10]) are bounded but the content of
the string itself is kept free:

mod2()==*> SEQ1

mod2() ==> X1:#[5,8], .*:{#[1,10]}, X1

The model mod2() reads as follows: X1 denotes a string variable; any string
made of 5 to 8 letters can be an instance of X1. ’.*’ denotes a space (’gap’). It
is constrained to have a size between 1 and 10 characters. A second occurrence
of X1 is waited for after the gap. For example, acuggcccgacuggcacuggc is an
instance of this pattern on the input sequence uucagacuggcccgacuggcacuggccac,
with X1 = acuggc.

• All Matches: Logol returns all the instances of a model. For instance, when
launched on the sequence cagaaaacgccgaaacuggc with the model "aaa", it re-
turns the three possible matches: in position 3, 4 and 12.

• A Powerful Feature: Instance Saving. The Logol language supports an
alternative way to express the pattern mod2. That is:

mod2() ==> X1:{#[5,8],_IX1}, .*:{#[1,10]}, ?IX1.

In this case, the string corresponding to the occurrence value of X1 is saved
(using ’_’) in a new variable (named here IX1). After a gap of length 1 to 10,
the same string IX1 is required again and called back using ’?’.

This complicated version of mod2() is only shown for the purpose of introduc-
ing the notion of instance saving that will be fully used in the next paragraphs.
Actually, the various instances of a variable are not necessarily exact copies
and this explicit naming process (here _IX1) makes it possible to distinguish
one instance from another. Furthermore, such a mechanism allows to save some
instance in any part of a model and refer to it elsewhere in the model.

2.2 Constraints

Logol modeling is based on a constraint approach. The various constraint types
applicable to a model element may be split into two categories, string constraints
and structure constraints. String constraints delimit the start (@), the end (@@),
the content (?) and the length (#) of admissible strings. Structure constraints in-
clude cost constraints ($ for mismatch count, $$ for indel count) and composition
constraints (%). These two categories of constraints are written in two separated
sets, as in the following model: mod1() ==> X1:{#[6,7],@[3,11]}:{% "a":50}.
Here mod1 looks for a string whose size is in range [6,7], which starts at a
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position in range [3,11] and contains at least 50% of a. For example, the
instances of this pattern in the sequence ccaaaacgtacgtttttttcccccc are aaacgt,
aaacgta and aacgta (positions start at 0 in a sequence).

• Non Exact Copies: Mismatch and Indel Cost Constraints ($ and
$$) Genomic sequences evolve through a duplication process prone to errors
or mutations. Elementary variations (on one position) between a model and
its instances are taken into account through two dedicated cost counters: the
counter of mismatches (i.e. substitutions) and the counter of indels. A mismatch
cost constraint is defined by a $[m,n] expression, where m and n are integers.
This constraint allows from m to n substitutions. For example, aaaa, acaa and
aagt are all instances of the pattern "aaaa":{$[0,2]}.

A mismatch constraint can also take the form of a rate: p$[m,n]. Here, m
(resp. n) designates the minimum (resp. maximum) allowed percentage of sub-
stitutions. For example, aaaa, acaa and aagt are all instances of the pattern
"aaaa":{p$[0,50]}. Indels are defined similarly, by setting the indel cost con-
straints $$[m,n] and p$$[m,n]. Thus, "aaaa":{$$[0,1]} is accepting, among
others, the strings aaaa (no indel), aaa (one deletion) or aaaca (one insertion).
Here is a new example to further illustrate the concept of instance saving:

X1:{#[5,8],_I1},.*:{#[1,7]}, ?I1:{_I2}:{$[1,1]}, .*:{#[1,7]}, ?I2:{$[1,1]}

This model allows to look for 3 instances of a same string successively deriving
from each other (e.g I1 =aaaaa, I2 = aaaca and I3 = agaca). The second
pattern, ?I1: {_I2}:{$[1,1]}, reads as follow: the expected string must be
similar to the previous I1 string (aaaaa here), apart from 1 mismatch ($[1,1]).
The matched string (aaaca) is saved in I2 ({_I2}) for further use ({?I2}). This
individualization of instances allows to adjust fine notions of sequence evolution.

• Letter Frequencies: Composition Constraints (%): Some properties like
hydrophobic regions in proteins or GC content in RNA correspond to statis-
tical expectations on a particular segment composition rather than the search
of a well-defined element. Logol proposes the expression of composition con-
straints that check the relative frequency of given letters in a sequence. Thus
X1:{#[2,43]}:{% "gc":65} describes a segment of length 2 to 43 characters
with a GC rate of at least 65%.

2.3 Operators

• Negation: Also called negative content constraint, negation can be used in
order to exclude some values in a motif. It is denoted by the exclamation mark
symbol, !. Thus ("aaa"| "ttt"), !"ga":{#[2,2]} refers to a string made of
5 characters, the first three being 3 a or 3 t, and the next two being anything
but the word ga.

•Morphism:A morphism is a function that applies a transformation to a string
by substituting letters or substrings. It can be used in direct (+) or reverse
(-) direction. Each user can define its own morphisms, but some are already
defined. For instance, "wc" transforms a RNA sequence into its complement
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sequence, applying the Watson-Crick pairing (A-U, G-C). Thus, the pattern
+"wc" "acuggc" represents the string "ugaccg" and -"wc" "acuggc" repre-
sents the string "gccagu".

The morphism -"wc" produces the reverse complement of a string and can be
used to describe biological palindromes such as stem-loops. The next example
provides a pattern for the recognition of stem-loops whose stem length varies
between 5 and 11 and loop size between 1 and 9. Moreover, the Watson-Crick
pairing is not required to be perfect: up to 2 substitutions and 1 indel are allowed.
STEM1:{#[5,11],_IS1}, .*:{#[1,9]}, -"wc" ?IS1 :{$[0,2],$$[0,1]}

In this description, the content of STEM1 (first strand of the stem) is saved in IS1,
(_IS1). The second stem strand is then defined as the exact reverse complement
of the previous content (that is -"wc" ?IS1), except for 2 mismatch and 1 indel.

• Repeats: Tandem repeats are frequent genomic structures made of directly
adjacent copies of a same entity that may contain only a few letters (microsatel-
lites) or be longer and reach size over 100 nucleic acids (minisatellites). In Logol,
such structures can be handled by applying a special constructor, repeat, which
manages the characteristics of series of occurrences. Its standard format is:
repeat(<entity>,<distance>)+<occurrence number>. For instance,
repeat("acgt",[0,3])+[7,38] states that substring acgt is repeated from 7 to
38 times, using a spacing of at most 3 characters between 2 repeats.

• Views and Scope of Constraints: Constraints (on the content, the size...)
can be set on various parts of a model. They can be imposed to elementary
entities like strings or variables as it has been shown previously, or to a set of
entities that have themselves individually their own constraints.

If the set represents contiguous elements, it is called a view. In Logol syntax, a
view is delimited by parentheses. In the following example, the model considers
strings built from the concatenation of the instances of 3 variables X1, X2 and
X3, each one having length up to 10 characters. A supplementary constraint on
the view made of the whole string (X1,X2,X3) requires that its total length is
bounded between 8 and 20 characters.

(X1:{#[1,10]}, X2:{#[1,10]}, X3:{#[1,10]} ) : {#[8,20]}

It is also possible to set some constraints on a collection of non-contiguous ele-
ments (for instance on the two segments that form the stem of a stem-loop in a
RNA structure). Such constraints are set in this case in a specific global module,
the control panel. The following example details a stem-loop structure made of
two stem elements that have to contain globally at least 30% of C.

controls:{

% "c"[mod1.ISTEM1,mod1.ISTEM2]>=30

}

mod1()==> STEM1:{#[2,18],_ISTEM1},.*:{#[1,10]}, -"wc" ?ISTEM1:{_ISTEM2}

mod1()==*>SEQ1

•Multiple Analyses: The coexistence of alternative structures in a same region
is certainly amongst the important features of biological sequences. Gene over-
lapping for instance has been found in all kingdoms of life, including viruses and
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higher eukaryotes. Logol allows to model such situations by stating alternative
models in the grammar top rule (==*> SEQ1). Then, a sequence is accepted only
if it contains an instance of each possible alternative. For instance the grammar:

mod1().mod2()==*> SEQ1

mod1() ==> "yvcpfdgcnk"

mod2() ==> "nklkshil"

accepts the sequences containing both the strings yvcpfdgcnk and nklkshil,
independently of their positions, being overlapping or not. Parameter-passing
is possible between alternative models, e.g. to settle the respective positions of
alternative elements.

mod1(SAVE1).mod2(SAVE1)==*> SEQ1

mod1(SAVE1) ==> "aata":{_SAVE1},X1:{#[30,30]}:{% "gc":60}

mod2(SAVE1) ==> "gggcaa":{@[@SAVE1 - 20,@SAVE1 + 20]}

The above model is looking for an instance of string aata that is both followed by
a GC-reach area and contains a neighboring occurrence of string gggcaa. Indeed,
@[@SAVE1 - 20,@SAVE1 + 20] constrains the gggcaa string to be located 20 nt
before or after the aata string.

3 Logol Implementation

3.1 Input /Output Specifications

The Logol software is in charge of matching a Logol pattern against one or
more (DNA, RNA or protein) sequences, in order to point out all the pattern
occurrences within the sequences.

To this end, it needs two main inputs: a Fasta file with the sequences to be
analyzed, and a textual file with the grammatical rules of the pattern. The tool
accepts also a configuration file, setting some parsing parameters. This allows,
among other, to limit the scope of the search by limiting the maximum number
of matches, to choose the indexing tool (Vmatch or Cassiopee, see below), or to
detect and filter irrelevant match variants.

The application outputs a zip archive containing one XML file per input se-
quence. Output files record all the details of the matches, including the matching
rule, the location of the match, its length, and the number of substitutions and
indel. It also keeps the match information in a tree hierarchy. A repeat, for
example, will be decomposed in an array of matches. Thus, it is possible to an-
alyze the result of the global match, but also the details of any element of the
grammar. In addition to the XML output, with match details, the analyzer can
also output the results in Fasta or GFF3 format. Those formats ease exploiting
results within workflows using other tools.

The core application to launch a Logol analysis is a command-line application,
available for different operating systems. However, there exists also user inter-
faces, for more comfort. Among them, the model designer let the user draw the
model graphically, and the web application converts it into a Logol grammar.
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3.2 Sequence Analysis

Pattern matching is performed in two stages. At first the Logol pattern is deci-
phered by the grammar analyzer, then it is applied on the input sequences by
the sequence matcher.

• Parser: The grammar analyzer is a Java program. Its role is to decode the
grammar to generate a script used by the sequence matcher, and to launch the
calls to the sequence matcher. The generated script is a Prolog file which uses a
dedicated library containing Prolog predicates for each kind of grammar element
(spacers, repeats, ...). The grammar follows a DSL (Domain Specific Language)
analyzed by the Antlr library (http://www.antlr.org/). The Prolog program-
ming language has been chosen for its flexibility and conciseness in expressing
parsers, due to its built-in ability for backtracking on partial solutions and natu-
ral handling of non determinism. However, the implementation could have been
achieved with any other language.

To generate the script, several parsing runs are achieved. The first parsing
stage gathers information on each element (expected position range, minimum
and maximum size, number of allowed errors, ...).

A second parsing stage tries to solve cases where a variable is used but will be
instanciated later in the model, e.g in ”acgt”,?X1,”cgta”:{ X1 }. Indeed, though
the grammar itself does not require a left to right reading, we use in practice a
left to right parsing of the sequence. To manage such cases, the tool finds the
variables in this specific situation and applies a dedicated search technique. It
also uses information gathered in the first step to add as many constraints as
possible on the variable (length, content, ...) in order to reduce the search space.

The last step, using information from previous stages, generates the Prolog
script that will be used by the sequence matcher.

Once the script is generated, the analyzer tries to split the input sequence
in smaller parts. Indeed, if grammar analysis or input parameters show match
length to be smaller than a fixed integer N, then sequences can be cut in several
parts (according to configuration, but at least 2N long). This is used to parallelize
the search (multi-threading or using a DRMAA compliant cluster). The analyzer
triggers sequence matcher runs on each sequence part and merges the results. In
case of multiple input sequences, each sequence analysis will also be parallelized.

If multi-thread is used, the program will limit the number of parallel analysis
according to the configuration. If DRMAA is used, the program will also try to
use multi-thread on the remote node if sequences can be cut in smaller parts.

• Sequence Matcher: The sequence matcher is a Prolog compiled script that
loads the script generated by the grammar analyzer. It has been tested with
Sicstus Prolog (sicstus.sics.se) and SWI-Prolog (swi-prolog.org). It scans
the input sequence with the input script rules, trying to match each rule one by
one. When a complete rule is matched, it records the match.

For each rule element, the matcher takes a chunk of the sequence and tries
to apply the rule on the chunk. If it matches, it goes to the end location of the
match and tries to apply the next rule. The matcher records all the details of the
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match in an XML format. The matcher will optionally apply a filter to delete
redundant matches at different levels since it is possible to get two matches at
the same location that only differ by their parsing structures.

In case of spacers in a model, the matcher calls an external program using
indexing sequence techniques to directly look for positions of the following words.
Two possibilities are offered by Logol to perform indexing: VMatch or Cassiopee.

VMatch[1] is a suffix array search tool that supports substitution and indel
search. An index is created at startup and the matcher calls the VMatch program
to search for a pattern in sequences. VMatch is not open source, but is free for
academics. The tool is not delivered with the Logol software suite and needs a
manual installation. It is efficient for large sequences.

Cassiopee (https://github.com/osallou/cassiopee) is a Ruby tool, devel-
oped for Logol, though it can be used independently. It scans the sequence to
match a pattern with error support. This tool has been developed to provide
a complete open source solution, but it is not as efficient as VMatch for large
sequences. Then, VMatch usage is the recommended choice when performance
is crucial. The tool selection is made in the configuration file so that it can be
adapted for each analysis.

4 Illustration: Modeling -1 Ribosomal Frameshifting

RNA recoding is a fundamental biological mechanism that cells use to expand
the number of proteins assembled from a single DNA code. There are several
types of RNA editing modifying the standard translation of a messenger RNA
by the ribosome, which seem largely directed by the 3D conformation adopted
by the RNA molecule. The -1 programmed ribosomal frameshifting (PRF) is a
recoding event which occurs when the ribosome is moving rearward exactly 1 nt
on a ’slippery site’, X XXY YYZ, where X,Y and Z are nucleotides. The ribosome
reads the first X nucleotide two times in this case. Indeed, while standard trans-
lation processes codons ABX XXY YYZ CDE ..., the codons processed by PRF
are ABX XXX YYY ZCD .... The typical structure promoting a -1 frameshifting
event, which we call in the following “PRF pattern”, is sketched in Figure 1. It
is made sequentially of a start codon, a number of codons, a heptameric slippery
site XXXYYYZ placed in -1 phase, a few nucleotide spacer, and a characteristic
stable secondary structure. The secondary structure is the obstacle stopping the
ribosome during the heptamer translation and triggering a movement one nu-
cleotide backwards that causes reading frameshifting. The secondary structure
is usually made of a “H-type pseudo-knot” including two nested stem-loops.

A number of tools exists for the detection of putative sites where a -1
frameshifting event might occur [7], but this detection process remains an active
research topic since the PRF pattern is not universal (the characteristic features
of the heptamer, the spacer, and the secondary structure depend on the organ-
ism) and the detection of pseudo-knots is a difficult issue. Many methods pro-
ceed by successive filtering steps like KnotInFrame[21], one of the most advanced
tool in this category. KnotInFrame initially detects all heptamers XXXYYYZ, then
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Fig. 1. “PRF pattern”= typical structure promoting a -1 frameshifting event

looks for potential pseudo-knots downstream of this motif, using a dedicated
RNA folding procedure.

4.1 PRF Logol Model

The complexity of the PRF pattern makes it a good candidate to investigate
the expressivity of Logol. In order to elaborate the corresponding model, one
needs to use a number of Logol features like multi-analysis, negative content
constraints, repeated motifs or search for biological palindromic structures. We
present here the most prominent aspects of the model.

• Multi-analysis of Two Overlapping ORFs: Among the mandatory struc-
tural features for the occurrence of a -1 frameshifting event, some are concerning
the reading frame setting. The standard translation occurs in a sequence with
an open reading frame: a start codon (AUG) followed by a number of non stop
codons (triplets), and a stop codon (UGA,UAG ou UAA) terminating the transla-
tion. All these codons are in 0 phase. The alternative translation, in case of -1
frameshifting, starts on the same start codon but moves backward one nucleotide
on the slippery site, leading to proceed further on triplets in -1 phase until a
stop codon is reached, also in -1 phase.

In order to possibly generate a -1 frameshifting event, a RNA sequence should
thus contain both an open reading frame in 0 phase (a start followed by a suffi-
cient numbers of codons ending by a stop codon) and at a constrained distance
from the start, a series of codons ending by a stop in -1 phase.

This check is triggered in Logol by a multiple analysis recognizing alternative
patterns, “ORF” and “ORFminus”, on the same string with a parameter-passing
between the two models in order to share the common start. The ORF model
thus contains a repeat that accepts up to 300 non stop codons (a value consistent
with the literature), that is: repeat(notstop(),[0,0])+[0,300], where notstop

stands for a model built from a view, that accepts a string of length 3 that is
not a stop. This is achieved by a negative content constraint on the view.
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• Slippery Site and Spacer: The PRF pattern describes 3 segments: the
slippery site, the spacer and the secondary structure. The Logol model for
the slippery site respects the consensus: it is an heptameric motif in the form
XXXYYYZ, which must be positioned in -1 phase, where X is any nucleotide
repeated 3 times, Y is the base A or U repeated 3 times, and Z differs from base
G, according to the Logol pattern mod3 below.

mod3()==> mod4(), (("aaa")|("uuu")), ! "g":{#[1,1]}

mod4()==> (("aaa")|("ccc")|("uuu")|("ggg"))

The spacer is straightforwardly described by a gap element (of size less than 10
in this case).

• Pseudo-knots: The most efficient secondary structure for -1 frameshifts is
the pseudo-knot of type H (two interwined stem-loops, cf 1), even if it is not the
sole existing structure. It is thus the structure that has been modeled here.

We first provide a simplified Logol grammar for pseudo-knot structures. In
this grammar, STEM15 refers to the first strand (in the 5’ direction) of the first
stem and -"wc" ?IS15 refers to its 2nd strand (in the 3’ direction), which is its
reverse complement up to 4 mismatches. STEM25 and -"wc" ?IS25 refer to the
two elements of the2nd stem. The gaps refer to the loop elements between stems.

STEM15:{#[4,16],_IS15},.*:{#[1,5]}, STEM25:{#[3,8],_IS25},.*:{#[0,4]},

-"wc" ?IS15 :{$[0,4]},.*:{#[4,40]},-"wc" ?IS25 :{$[0,2]}

Our validation process on real data (next paragraph) resulted in a significant
refinement of this model (cf Figure 2). The final model makes use of a great
variety of Logol language elements. Among new elements, the model integrates
the count of the GC ratio in stems, the separate treatment of nucleotides at the
end of stems in order to forbid mismatches at these positions, or the possibil-
ity of non-canonical Wobble pairing (G-U), called wcw here, at particular stem
positions [17]. An excerpt from the Logol grammar dedicated to the first stem
follows, the whole model being presented in figure 2:

// 50% of GC pairing in Stem1 => 25% of C in [Stem1.5’ + Stem1.3’]

controls:{ % "c"[mod5.IA5,mod5.IS15,mod5.IZ5,mod5.IZ3,mod5.S13,mod5.IA3]>=25}

mod5()==> (A5:{#[1,1],_IA5},S15:{#[2,14],_IS15},Z5:{#[1,1],_IZ5}):{%"gc":50},

LOOP1:{#[1,5]}, ... stuff deleted ....
-"wcw" ?IZ5:{_IZ3}, -"wc" ?IS15:{_S13}:{p$[0,34]}, -"wcw" ?IA5:{_IA3}, ...

• A First Model Validation: In order to test and refine our -1 frameshift
model, we have elaborated a sequence test set [17] around sequences known to
produce -1 frameshift events. Thirty proven sequences (“validated -1 frameshift”)
from the reference base Recode2 (recode.genetics.utah.edu) have been com-
pleted by random sequences obtained by shuffling 100 times each reference se-
quence, using Shuffleseq (emboss.bioinformatics.nl/cgi-bin/emboss/).This
procedure keeps the sequence lengths and nucleotidic ratios of the reference. The
final set thus contains 30 “positive” sequences (in which one expects to find the
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Fig. 2. Global overview of the final Logol model for the PRF pseudo-knot

PRF pattern at the right position) and 300 “negative” sequences (in which one
expects a minimum number of PRF pattern occurrences).

This validation work [17] led us to perform comparisons between the Logol
prediction of pseudo-knots and those made by “DotKnot”, a pseudo-knot predic-
tion software using RNAfold to compute the probability of each folding struc-
ture (http://dotknot.csse.uwa.edu.au). It brought about some significant
changes in our initial model: parameter tuning has concerned wooble pairing,
GC ratio and the mismatch rate in the stems. Ultimately, the Logol model finds
about 100 matches per sequence on the Recode2 reference set, among them be-
ing in most cases the desired match. It is possible to compute a posteriori a
quality score for each stem and sort accordingly the matches[17]. This procedure
leads to the right frameshift area prediction in 20 cases over the 30. The score
is based on a pairing cost function proposed by J.P. Forest [8] for the stem:
{GCpairing=+3, AUpairing=+2, GUpairing=+1, mismatch=-2}.

• Runtime. To give an idea of the performances, parsing the largest refer-
ence sequence (30Kb) with the final Logol model takes 1’30s (on a PC Intel
X5550, 144Go RAM), while the KnotinFrame answer is immediate on such
a sequence. The complete analysis of the Bacillus subtilis genomic sequence
(str168NC 000964.3 , 4.2 Mbp) produces 7000 matches in 2 hours. KnotinFrame
web site does not accept such a large sequence.

5 Conclusion

The Logol pattern matching tool has been conceived to allow the modeling
and search of realistic structures in biological sequences. It has been designed
to be expressive but also evolutive, in order to ease the introduction of new
features. The fact that the language has proved fairly well suited to model the
complex pattern of ribosomal frameshift, whereas it was not designed for this
task, seems an encouraging sign on the genericity of the language elements. The
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tool is operational and available on the GenOuest bioinformatics platform, under
CeCILL license. Although efforts have been made to offer a wide access to Logol
functionalities through either command-line or graphical interface inputs, we
welcome any user feed-back to increase its ergonomic features and actual range
of applicability.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Billoud, B., Kontic, M., Viari, A.: Palingol: a declarative programming language to
describe nucleic acids’ secondary structures and to scan sequence database. Nucleic
Acids Res. 24(8) (1996)

3. de Castro, E., Sigrist, C.J.A., et al.: Scanprosite: detection of prosite signature
matches and prorule-associated functional and structural residues in proteins. Nu-
cleic Acids Research 34(suppl. 2), 362–365 (2006)

4. Dong, S., Searls, D.B.: Gene structure prediction by linguistic methods. Ge-
nomics 23(3), 540–551 (1994)

5. Dsouza, M., Larsen, N., Overbeek, R.: Searching for patterns in genomic data.
Trends in Genetics 13(12), 497–498 (1997)

6. Eddy, S.: Rnabob: a program to search for rna secondary structure motifs in se-
quence databases (1996)

7. Firth, A.E., Bekaert, M., Baranov, P.V.: Computational resources for studying
recoding. In: Atkins, J.F., Gesteland, R.F. (eds.) Recoding: Expansion of Decoding
Rules Enriches Gene Expression, Nucleic Acids and Molecular Biology, vol. 24,
pp. 435–461. Springer, New York (2010)
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Abstract. Microarray represents a recent multidisciplinary technology.
It measures the expression levels of several genes under different biolog-
ical conditions, which allows to generate multiple data. These data can
be analyzed through biclustering method to determinate groups of genes
presenting a similar behavior under specific groups of conditions.

This paper proposes a new evolutionary algorithm based on a new
crossover method, dedicated to the biclustering of gene expression data.
This proposed crossover method ensures the creation of new biclusters
with better quality. To evaluate its performance, an experimental study
was done on real microarray datasets. These experimentations show that
our algorithm extracts high quality biclusters with highly correlated
genes that are particularly involved in specific ontology structure.

Keywords: Biclustering, Evolutionary algorithm, Crossover method,
Microarray data, Data mining.

1 Introduction

During recent years, microarray technology has reached a main role in biological
and biomedical research [24]. This technology measures the expression levels of
thousands of genes in different biological conditions. It allows to generate large
amount of data [14]. The analysis of these data allows the extraction of biological
knowledge in order to understand diseases [4]. Given the huge masses of data to
be analyzed, the use of data mining techniques has become essential to extract
the knowledge embedded in these masses of information. Among the clustering
techniques, we can find the biclustering which has been used extensively to
analyse gene expression data.

The biclustering is a data mining technique to discover high quality biclusters.
These biclusters are illustrated by groups of genes presenting a similar behavior
under specific groups of conditions. Formally, the biclustering problem [26] is to
build a group of biclusters associated with a data matrix taking account a fitness
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function that measures the quality of a group of biclusters. Thus, it is highly
combinatorial problem [26] and known to be NP-Hard [5].

Given the robustness to dynamic changes of the evolutionary approach and
their ability to self-optimization, we adopt this approach to solve the biclus-
tering problem. Most of the biclustering algorithms based on the evolutionary
approach, like [1,8,9], use random crossover method. However, these methods
do not guarantee to obtain a better quality child biclusters, that prompt us to
seek a crossover method specific for the biclustering of gene expression data and
allowing to have better quality biclusters.

In this work, we propose an Evolutionary Biclustering Algorithm based on
a new Crossover method (EBACross). This new method is dedicated to the
biclustering of gene expression data. EBACross uses a fast local search algo-
rithm to generate an initial population with reasonable quality. A selection and
a mutation operator are used. After an experimental study, we notice that our
proposed algorithm can extract high quality biclusters with highly correlated
genes which are particularly involved in specific ontology structure.

2 Description of the Proposed Biclustering Algorithm

In order to extract high-quality biclusters, we propose a new biclustering algo-
rithm adopting the evolutionary approach. It can be summarized by 5 steps:

1. Generate the initial population Pinit. This step is based on the Cheng and
Church algorithm [5]. It is recognized for its reasonable results in a quick
time and its almost total coverage of genes and conditions. It allows to start
with reasonable quality biclusters covering almost all the data matrix.

2. Build the parent set P by selecting the best biclusters of the initial popu-
lation Pinit. The selection is based on four complementary fitness functions:
size (f1), MSR (f2), average correlation (f3) and coefficient of variation (f3).

3. Create children biclusters by our proposed crossover operator that is dedi-
cated for the biclustering of gene expression data. Based on a discretization
method and the standard deviation function, this crossover combines the
biclusters parents in pair giving priority to the biclusters that satisfy a max-
imum number of fitness functions.

4. In order to avoid overlapping biclusters and to increase the diversification
of biclusters a mutation operator is used. This operator is applied to the
biclusters resulting to the crossover. It is based on the average correlation
function which allows to improve the coherence of gene biclusters.

5. Replace bicluster parents by those resulting to the mutation and repeat from
step 2 until the reaching of the number of iterations.

2.1 Biclusters Encoding

To represent the biclusters, the majority of existing biclustering algorithms uses
a fixed size binary string [17,19]. This string is built by two bit strings. The first
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one represents the genes and the second represents the conditions. The string
position of a gene (respectively a condition) takes 1 if the gene (respectively the
condition) belongs to the bicluster, 0 otherwise. This method explores all genes
and conditions. It leads to high consumption of time and memory space.

To remedy, we represent biclusters as string composed by an ordered gene and
condition indices like in [7,22,1].

2.2 Selection

The selection method is applied on the initial population Pinit to build the
parent set P . This set includes the best biclusters of Pinit according the fitness
functions. To extract maximal high-quality biclusters of highly correlated genes,
we can consider four main complementary fitness functions:

Size: Most of biclustering algorithm defined the size of a bicluster by its number
of elements |G| ∗ |C| as in [11]. This function gives more chance to the number
of genes to be maximized since the total number of genes is higher than the
number of conditions. To be able to choose if we want to give more chance to
the number of genes or to the number of conditions to be maximized, we define
the size of biclusters by the following function where α and β are two constants.

f1(Bic) = α
|G′|
|G| + β

|C ′|
|C| (1)

Mean Squared Residue: Cheng and Church [5] proposed Mean Squared
Residue (MSR) which measures the correlation of a bicluster. A high value of
MSR indicates that the bicluster is weakly coherent while a low value of MSR
indicates that it is highly coherent. It is defined as follows:

f2(Bic) =
1

|G′| |C′|
∑

i∈G′,j∈C′
(mij −miC′ −mG′j +mG′C′)2 (2)

where miC′ (respectively mG′j) represents the expression level average of the
ith row (respectively the jth column), mG′C′ corresponds to the expression level
average of the bicluster Bic(G′, C′) and mij represents the expression level cor-
responding to the ith row and the jth column.

Average Correlation: Nepomuceno et al. [18] proposed the average correla-
tion function to evaluate the correlation between genes in each biclusters. They
indicate that the proposed function can find biclusters that cannot be found by
the algorithms based on MSR. Due to these, algorithms might not find scaling
patterns when the variance of gene value is high. The average correlation of the
bicluster Bic(G′, C′) is defined as follows:

f3(Bic) =
2

|G′|.(|G′| − 1)

G′∑
i=1

G′∑
j=i+1

∣∣∣∣cov(gi, gj)σgiσgj

∣∣∣∣ (3)
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where cov(gi, gj) represents the covariance of the rows corresponding to the
gene gi and the gene gj and σgi (respectively σgj ) corresponds to the standard
deviations of the rows corresponding to the gene gi (respectively the gene gj).

This measure varies between 0 and 1. If the genes are highly correlated,
f3(Bic) = 1, 0 otherwise.

Coefficient of Variation: Statistically, the Coefficient of Variation (CV) is
used to characterize the variability of the data in a sample by evaluating the
percentage of variation relative to its average. The higher the value of the coef-
ficient of variation is, the larger is the dispersion around the average. It allows
to compare the variability of several samples that have different average or even
which are not expressed in the same units.

By adopting it to the biclustering of microarray data, the coefficient of vari-
ation can be considered as a measure to evaluate the variability of genes of a
bicluster under all its conditions. This measure is calculated separately for each
bicluster and is defined as follows:

f4(Bic) =
σBic

mG′C′
(4)

where σBic represents the standard deviation of the bicluster Bic and mG′C′

corresponds to the average of all the expression levels of the bicluster Bic.
A bicluster with a high coefficient of variation is a bicluster whose the

dispersion of expression levels is high.When a bicluster have a coefficient of
variation equal to 0 then it has constant values.

So, the parent set P can be divided into four subsets:

• P1: biclusters from Pinit, with a value of f1 higher than the threshold Th1.
• P2: biclusters from Pinit \ P1, with a value of f2 lower than the threshold
Th2.

• P3: biclusters from Pinit \ (P1 ∪ P2), with a value of f3 higher than the
threshold Th3.

• P4: biclusters from Pinit \ (P1 ∪ P2 ∪P3), with a value of f4 higher than the
threshold Th4.

2.3 Crossover

In order to obtain children biclusters with a better quality than their parent bi-
clusters, we propose a new crossover method specific for the biclustering of gene
expression data. Unlike the random crossover method used for the biclustering
of gene expression data [1,22], our crossover considers the two parts of bicluster
(genes and conditions part) simultaneously. It is essentially based on five steps :

Selection of the Biclusters to Combine: It consists to select the biclusters
which satisfies more fitness functions to combine them together.

Let’s consider the four bicluster parents : Bic0, Bic1, Bic2 and Bic3. Table 1
represents the satisfaction of the four parent biclusters to the different fitness
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functions. Bic1 satisfies all the fitness functions, Bic2 satisfies three fitness func-
tions while Bic0 and Bic3 satisfy only two. So, we start by combining the bi-
clusters Bic1 and Bic2. Then, we combine the biclusters Bic0 and Bic3.

Table 1. Satisfaction of the biclusters to the different fitness functions

Biclusters f1 f2 f3 f4

Bic0 < Th1 < Th2 > Th3 < Th4

Bic1 = Th1 < Th2 > Th3 > Th4

Bic2 < Th1 < Th2 > Th3 > Th4

Bic3 < Th1 > Th2 < Th3 = Th4

Creation of the Total Bicluster: This step consists to merge the sets of
genes G1 and G2 (respectively the sets of conditions C1 and C2) of the two
parent biclusters Bic1 and Bic2 into a single set G (respectively C). This allows
to create a new bicluster BicTot.

Let’s consider the following bicluster parents :

Bic1 = ( |G1| × |C1| )
Bic2 = ( |G2| × |C2| )

where :
G1 = { g1, g2, . . . , gn } and G2 = { g′1, g

′
2, . . . , g

′
m } correspond respectively

to the sets of genes of the two parent biclusters Bic1 and Bic2.
C1 = { c1, c2, . . . , cp } and C2 = { c′1, c′2, . . . , c′q } correspond respectively to
the sets of conditions of the two parent biclusters Bic1 and Bic2.

The merge of these two biclusters gives a bicluster BicTot = ( |G| × |C| )
where G = G1 ∪ G2 corresponds to the set of genes and C = C1 ∪ C2 corre-
sponds to the set of conditions.

Discretization of the Total Bicluster: To cluster the conditions with similar
expression levels for each gene, a discretization method is applied independently
for each one. This requires the decomposition of the total bicluster into several
vectors. Each vector represents the expression levels of a specific gene under all
conditions of total bicluster. The discretization method is based on the Standard
Deviation (SD) to determine whether conditions can belong to the same cluster.
It is a statistical measure to evaluate the dispersion of a value around the average.
This measure is defined as follows:

SDC =

√√√√ 1

t− 1

t∑
i=1

(ai − C̄) (5)

where C = {c1, c2, ..., ct} represents a set of t conditions, ai represents the ex-
pression level of the ith condition and C̄ represents the average of the expression
levels of the set C, for a specific gene.
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The discretization method can be summarized by the following steps:

1. Sort the set C, according to their expression levels in ascending order, to
construct a new conditions set C′ = {c′1, c′2, ..., c′t}. This part is important.
It ensures a better clustering and optimal clusters for the next part.

2. Cluster the conditions of the set C′ based on the standard deviation. First,
calculate the standard deviation SDC of the vector. Then, check whether
the cluster Cl is empty and browse the conditions one by one.

3. If Cl = ∅, add the condition c′j to Cl and return to the previous step. Else,
add also the condition c′j to Cl and calculate its standard deviation SDCl.

4. If SDCl > SDC or SDCl > SDOld (SDOld standard deviation of Cl before
adding the last condition c′j), assign c′j to the next cluster and return to the
step 2. Otherwise, to be sure that the condition c′j is closer to the conditions
of Cl than the condition following c′j+1, calculate the standard deviation
SDNext of c

′
j and c′j+1.

5. If (SDCl <= SDNext), assign the condition c′j to the next cluster and repeat
all the steps. Otherwise, let the condition c′j in this cluster Cl, return to the
step 2 and repeat with the condition c′j+1.

These steps are repeated for each vector. Once complete, return vectors in
their original order. Then, bring them together to construct the discretized ma-
trix Disc. The cell of this matrix Dij indicates the index of the cluster to which
the jth condition belongs for the ith gene.

Construction of the Variation Matrix: Based on the discretized matrix, we
build a new matrix. This matrix shows the variation of genes between each pair
of conditions. Columns represent genes and rows represent the pair of conditions
{(c1-c2), (c1-c3), (c1-c3) ..., (ct−1-ct)}. The cells of the matrix Vij can take only
three values:

• If Dia > Dib : Vij = -1 with a ≤ t, b ≤ t and a < b
For the ith gene, the index of the cluster to which belongs the condition a is
higher than the cluster to which belongs condition b.

• If Dia = Dib : Vij = 0 with a ≤ t, b ≤ t and a < b
For the ith gene, both conditions a and b belong to the same cluster.

• If Dia < Dib : Vij = 1 with a ≤ t, b ≤ t and a < b
For the ith gene, the index of the cluster to which belongs the condition a is
lower than the cluster to which belongs condition b.

Search of Children Bicluster: The last step allows to extract the biclusters
by browsing variation matrix and selecting genes having the same index.

Let’s consider the example in Table 2. First, check if there are other genes
with the same index as the gene g0 for the pair of conditions (c0-c1). Only the
gene g3 is found. Now, check if these two genes g0 and g3 have the same index
for other pairs of conditions. In this example, the genes g0 and g3 have the same
index for all pairs of conditions. So, the first child bicluster contains the genes
g0, g3 and the conditions c0, c1, c2, c3 ( Child1 : 0 3 // 0 1 2 3 ).
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Then, do the same steps with the gene g1. The index of the gene is different
from all other genes for the conditions, as well as for the gene g2. Therefore,
back to the gene g0 for the pair of conditions (c0-c2) and check if there are any
other gene with the same index. Only the gene g3 is found. It is the case of
the first child. Thus, ignore it and go to the next gene. So on, until finding all
children biclusters. To avoid overlapping biclusters, we used the Jaccard index
[13]. This index measures the overlap between two biclusters in terms of genes
and conditions.

Table 2. Example of variation matrix

c0-c1 c0-c2 c0-c3 c0-c4 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4
g0 -1 -1 0 1 0 1 1 1 1 1
g1 1 0 0 1 -1 -1 0 0 1 1
g2 0 1 1 1 1 1 1 0 1 1
g3 -1 -1 0 1 0 1 1 1 1 1

This crossover method allows to create children biclusters with a better qual-
ity. The use of standard deviation to discretize parent biclusters allows to group
closest expression levels for each gene and to construct the variation matrix.
This matrix indicates the variation of the expression levels between each pair of
conditions, which allows to determinate the genes presenting a similar behavior
and to extract biclusters with highly correlated genes.

2.4 Mutation

In order to ensure the diversification of biclusters and to improve their quality, a
mutation method is applied. It tries to improve the coherence between the genes
of the biclusters obtained from the crossover, using a correlation matrix. This
genetic operator seeks the less coherent gene in the bicluster. Then, it replaces
this less coherent gene by the most coherent gene which does not belong to the
bicluster.

To construct the correlation matrix, we must calculate the correlation coeffi-
cient between each pair of genes. Then, depending on the value obtained, a value
is assigned to the cell Cij corresponding to the correlation between the gene gi
and the gene gj . The cell Cij can take only three values: Cij = -1, if i = j. Oth-
erwise, Cij = 0 when

∣∣ρ(gi,gj)∣∣ < ThCorr and Cij = 1, when
∣∣ρ(gi,gj)∣∣ ≥ ThCorr.

3 Experimental Results

In order to test the performance of our proposed algorithm and analyze its re-
sults, a series of experiments is performed on real gene expression datasets: Yeast
cell cycle [25] and Saccharomyces cerevisiae [10]. The evaluation of biclustering



Evolutionary Algorithm Based on New Crossover 55

algorithms and its comparison are based on two complementary criteria: statis-
tical criteria and biological criteria. We compare the results of EBACross with
other sate-of-the-art biclustering algorithms ISA [3], BiMax [20], CC [5], OPSM
[2], X-Motif [16] and the evolutionary algorithm EvoBic [1], H-MOBI [22], SEBI
[8].

3.1 Statistical results

To measure the quality of resulting biclusters, we use the functions ”size”, ”av-
erage correlation”, ”MSR” like in [1,18,22]. We calculate the ”coverage” and we
proceed as in [9,11,15]. This criterion is defined as being the total number of
cells of the matrix M covered by the resulting biclusters.

Table 3. Comparing the fitness function values and the coverage of different biclus-
tering algorithms for the Yeast Cell Cycle and Saccharomyces cerevisiae datasets

Yeast Cell Cycle
EvoBic H-MOBI SEBI BiMax CC ISA OPSM X-Motif EBACross

Gene number 788,4 1610,8 — 24,0 39,62 76,3 437,94 1,2 38,08
Condition number 3,3 7,87 — 3 3,16 8,7 9,5 11,4 3,78
Average correlation 0,90 — — 0,66 0,84 0,50 0,91 0,71 0,82

MSR 291 297 205,18 209,5 10,94 248,25 288,04 203,14 167,62
Genes coverage 99,58 — 13,61 79,09 61,79 73,44 83,98 52,86 66,85

Conditions coverage 70,59 — 15,25 64,71 100 100 100 100 100
Total coverage 44,21 — — 46,48 10,75 38,94 18,67 25,36 49,53

Saccharomyces cerevisiae
EvoBic H-MOBI SEBI BiMax CC ISA OPSM X-Motif EBACross

Gene number 17,8 — — 32,8 81,11 76,27 95,58 1,12 41,46
Condition number 3 — — 3 19,64 8,71 12,5 34,52 4,20
Average correlation 0,90 — — 0,68 0,33 0,59 0,87 0,97 0,81

MSR 0,08 — — 0,18 0,36 0,22 0,08 10−17 0,25
Genes coverage 4,84 — — 29,54 96,06 34,08 13,79 10,89 85,77

Conditions coverage 7,51 — — 79,19 100 58,38 26,01 100 84,39
Total coverage 0,09 — — 0,99 49,09 2,25 0,96 2,62 10,12

Table 3 presents the average value of the gene number, the condition number,
the average correlation, the MSR and the coverage of the obtained biclusters for
the Yeast Cell Cycle and Saccharomyces cerevisiae datasets.

We can show that most algorithms have relatively close results. For the Yeast
Cell Cycle, the best MSR value is obtained by CC (MSR = 10,94) and the
best average correlation value is obtained by OPSM (ρ = 0,91) while for the
Saccharomyces cerevisiae dataset, the best MSR and average correlation value
are obtained by X-Motif (MSR = 10−17 and ρ = 0,97). Although the results
of our proposed algorithm are not the best, they have a satisfactory quality
and are consistent. Indeed, we note an average correlation value equal to 0,82
(respectively 0,81) and a MSR value equal to 167,62 (respectively 0,25) for the
Yeast Cell Cycle (respectively the Saccharomyces cerevisiae) dataset.

Concerning the percentage of cells in the initial matrix covered by the differ-
ent biclustering, we can show that most algorithms have relatively close results.
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However, our algorithm has the best percentage for the genes coverage, condi-
tions coverage and total coverage. Indeed, for the Yeast Cell Cycle (respectively
the Saccharomyces cerevisiae) dataset, the biclusters generated by our algorithm
cover 66,85% (respectively 85,77%) of the genes, 100% (respectively 84,39%) of
the conditions and 49,53% (respectively 10,12%) of the cells of the initial matrix.

3.2 Biological Results

The biological criteria allows to measure the quality of resulting biclusters, by
checking whether the genes of a bicluster have common biological characteristics.
For that, we calculate the p-value. The biclusters with a p-value p lower than
5% are considered as over-represented. The most obtained biclusters have a p-
value close to 0, i.e., the most genes of this bicluster have common biological
characteristics.

Given the large number of the obtained biclusters, We proceed as in [8,12,20]
and we test only on the one hundred best biclusters.

Fig. 1. P-value : Yeast Cell Cycle and (a) Saccharomyces cerevisiae dataset (b)

Figure 1 show the percentage of extracted biclusters for different adjusted
p-value (p = 5%; 1%; 0,5%; 0,1%; 0,001%; 10−10; 10−50 and 0), for the Yeast
Cell Cycle and the Saccharomyces cerevisiae datasets.

We can show that the majority of the algorithms have rather low percentage.
For the Saccharomyces cerevisiae dataset, 72%, 80% and 88% of the biclusters
respectively extracted by Bimax, ISA and OPSM are statistically significant with
a p-value p < 0,001%. Only EBACross reaches a value less than 10−10. Indeed,
100% of the biclusters extracted by our algorithm are statistically significant
with a p-value equal to 0. However, for the Yeast Cell Cycle dataset, we notice
a degradation in the results of the majority of algorithms while our algorithm
maintains the quality of its results. Only 62%, 31% and 22% of the biclusters
respectively extracted by Bimax, ISA and OPSM are statistically significant
with a p-value p < 0,001% and 100% of the biclusters extracted by EBACross
are statistically significant with a p-value equal to 0.
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We evaluate also qualitatively the capacity of the algorithms to extract sig-
nificant biclusters with a biological point of view. It requires the incorporation
of biological knowledge. The biological signification of the obtained biclusters
can be interpreted based on Gene Ontology (GO) [6] for the description of the
roles of genes and their products [21]. There are three ontology structures de-
scribing the gene products: biological process, molecular function and cellular
component.

Given the large number of the obtained biclusters, we proceed as in [19,23] and
we present the most significant GO shared of three random biclusters extracted
by our algorithm in Table 4 and Table 5, respectively for the Yeast Cell Cycle
and Saccharomyces cerevisiae datasets. These tables include the gene number,
condition number and the different shared GO terms for each ontology structures
of the biclusters.

Table 4. GO terms of biclusters extracted by EBACross for Yeast Cell Cycle dataset

Biclusters Cellular component Molecular function Biological process

3 genes; cellular process
9 conditions (66,7%; 0)
4 genes; transferase activity
7 conditions (75%; 0)
13 genes; nucleolus
5 conditions (86,7%; 9,4.10−32)

Table 5. GO terms of biclusters extracted by EBACross for Saccharomyces cerevisiae
dataset

Biclusters Cellular component Molecular function Biological process

13 genes; regulation of mitotic
cell cycle

4 conditions (38,4%; 0)
4 genes; binding
5 conditions (50%; 0)
60 genes; intracellular
7 conditions (31,67%; 5,2.10−6)

We can show that the extracted biclusters are biologically relevant according
to a single ontology structure and for this structure, we find only one GO term.
For example, in Table 4, the genes of the first bicluster are particularly involved
in the cellular process with a p-value p = 0, those of the second bicluster are
particularly involved in the transferase activity function with a p-value p = 0,
those of the third bicluster are particularly involved in the nucleolus component
with a p-value p = 9, 4.10−6.

We can note that EBACross is efficient to extract signicant biclusters with
specific GO term for all ontology structures (biological process, molecular func-
tion and cellular component).
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4 Conclusion

In this paper, we introduce a new evolutionary algorithm. The selection oper-
ator allows to keep the best quality biclusters, based on four complementary
functions. Then, a new crossover operator dedicated for the biclustering of gene
expression data is used. This proposed crossover ensures the creation of new
biclusters with better quality. Finally, based on the average correlation function
a mutation operator seeks the least coherent gene in each bicluster to replace it
with a more coherent gene.

To evaluate the performance of our algorithm, an experimental study was done
on the real microarray datasets. We compare the results to other existing biclus-
tering algorithms. These experimentations show that our algorithm EBACross
allows to extract high quality biclusters with highly correlated genes. These bi-
clusters are significant with specific GO term and their genes are particularly
involved in specific ontology structure.

To refine the search mechanisms and improve the quality of the extracted
biclusters in our future works, we plan to integrate biological knowledge in the
research process by benefiting from the help of biologists.
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Fábio Fernandes da Rocha Vicente1,2 and Fabŕıcio Martins Lopes1
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Abstract. In recent years, several methods for gene networks (GNs) in-
ference from expression data have been developed. Also, models of data
integration (as protein-protein and protein-DNA) are nowadays broadly
used to face the problem of few amount of expression data. Moreover, it
is well known that biological networks conserve some topological proper-
ties. The small-world topology is a common arrangement in nature found
both in biological and non-biological phenomena. However, in general
this information is not used by GNs inference methods. In this work we
proposed a new GNs inference algorithm that combines topological fea-
tures and expression data. The algorithm outperforms the approach that
uses only expression data both in accuracy and measures of recovered
network.

Keywords: small-world, gene networks, feature selection, graph theory,
pattern recognition, bioinformatics.

1 Introduction

Complex networks systems is a very common phenomenon. In fact, we live in
a universe of things that can be seen as complex networks [1–3]. These real
systems are both biological and non-biological such as Internet, social interac-
tions, physical systems, infection dynamics, regulatory networks, to cite but a
few [3–7]. The occurrence of certain specific topologies has been observed and
characterized in several research fields. These works points that diverse networks
of natural phenomenon are not random but follow some particular arrangements
[2–4, 8–10]. Thus, it is necessary to describe these distinct specific topologies in
some manner to better understand the differences between them. In this way two
aspects are important: characterization and representation [11]. A network can
be characterized through a feature vector composed by network measurements,
such as average vertex degree, average path length, degree distribution, etc., in
which the network is said mapped to the feature vector. Thus, the feature vector
can be used to group the several networks topologies into classes. On other hand,
the inverse way is commonly impossible and the original network cannot be re-
covered from the feature vector. However, when the network can be recovered
the mapping is said to provide a representation. Examples of representation are
the adjacency list and the adjacency matrix[11, 12].
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The study of complex networks can occur into two scenarios: In the first, the
topology is determined by construction through a theoretical model thus, both
the complete network and its properties can be clearly known a priori. The second
group is composed by those networks for which the underlying construction rules
(if one exists) are unknown and even the graph can be partially observed. In
this case the topology is described in terms of its features. Frequently, both the
rules of construction and the complete network are unknown as for instance,
real neuronal network, gene networks (GNs) and social networks. The exception
can occurs on planed networks as artificial neuronal networks, subway, power
distribution, computer networks, etc.

When matter is life, the class of topology is commonly unknown. However,
biological networks conserve properties between organisms and it is not very dis-
tinct of non-biological phenomenon [13]. Therefore, the research on this area try
to determine some features that can characterize biological networks sometimes
adopting some construction model as reference. Distinct descriptions has been
proposed to biological networks as scale-free [2] for example in yeast [13] and
metabolic networks [13]. Also a hierarchic structure was observed in E.coli [14].
In special, the small-world (SW) topology [15, 16] has been observed in several
areas and seems to be a common phenomenon both in physical events, social
and biological networks. Some examples are: seismic events [7], subway station
distribution [5], social networks [15, 17], value dynamics in financial market [18],
epidemics [19], neuronal networks [4] and brain networks [6].

In particular, it was adopted in this work the SW construction model proposed
by Watts and Strogatz [20, 16]. This model has two main properties: small
average path length and high average clustering coefficient. These SW features
has been observed on biological networks. For instance human protein-protein
interaction network (PPI) presented SW properties [21] and a study of networks
of 43 organisms presented a higher clustering coefficient [22].

The research of gene networks is broadly used to better understand living
organisms. Moreover, since many gene interactions remains unknown, the in-
ference of gene networks from expression data has been used to discover new
interactions [23–27]. Moreover, the topology of living organisms should conserve
some structure, following some particular features. Considering that the infer-
ence of gene networks is an inverse problem where more than one network could
produce equivalent data [28, 26], the use of topology could help the search al-
gorithms by avoiding improbable biological structures. An algorithm guided by
scale-free (Barabási-Albert [2]) topology achieved better accuracy on inference
[29]. Thus, the topology can be an important component for GNs inference.
This work presents a new algorithm for GNs inference whose criterion function
is based both in expression data and topological features of SW networks.

Methodology

The real structure of gene networks (GNs) is commonly unknown and the ob-
servation of physical relationships between components (protein-DNA, protein-
protein, etc.) is expensive and some times hard to obtain. Therefore, the network
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is frequently inferred from expression. The reasoning behind this approaches is
that the set of relationships between cellular components (i.e. the network) pro-
duces the output observed expression. The challenge is to recover the network
from the observed data [23, 26]. It was adopted in this work the Probabilistic
Boolean Networks (PBN) model [23] to represent the gene network. PBN is a
probabilistic approach derived from Boolean Networks (BN) model, first intro-
duced by Kauffman [30]. The genes of a BN are represented by variables and
can just assume discrete values, typically 1 (the gene is up regulated) and 0 (the
gene is down regulated). In other words, the value correspond to the expression
of that gene in a given observation t. The value of one given variable in the
sample t is named state of the variable and the set of values of all variables
in the sample t is called state of the system. The relationship between genes is
represented by boolean functions. If the samples is given through a time series,
the set of boolean functions applied to the system state at observation t deter-
mines the state of the system in the next observation t+1. Thus, the transitions
between states can be deterministic (BN) if there is no changes in the set of
boolean functions or probabilistic (PBN) where each variable is associated to
set of boolean functions with a probability of choice at each observation.

In this work we address the problem of selecting a set of predictor genes (i.e.
features) in the sample t that can better be used to classify the state value of a
given target gene on a sample t+1 based on the state of the set of predictors in the
time sample t. In this context, a naive algorithm could perform an evaluation over
all possible combinations of n−1 genes taken k at time, with k = 1, 2, . . . , n−1,
leading to an exponential increasing of the search space with the increment of
n. Ir order to avoid this computational complexity we have adopted a feature
selection method.

Feature Selection Algorithm

Regarding the classification task, a feature selection approach try to select a sub-
set of features that produce the better classification of the observed classes. In
this way, a feature selection algorithm requires two components: a criterion func-
tion that assign a value to a subset of features and a search algorithm whose ob-
jective is performed in order to find a subset of features that minimize/maximize
the criterion function. The SFFS algorithm [31] and other alternative versions
to the canonical SFFS has been applied on GNs inference [32, 33]. Thus, we
adopted the SFFS search strategy on this work.

Criterion Function

We defined a criterion function that includes both the gene expression data and
a topological features. The expression values are used to compute the Mean
Conditional Entropy (MCE) which is presented below.
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Mean Conditional Entropy. In some problems it is necessary to assign a
measure of uncertainty to a given random variable Y after the observation of
another random variable X . For instance, the uncertainty about the value of a
target gene Y after the observation of the value of another gene X . The condi-
tional entropy of Y given x is defined as:

H(Y |x) = −
∑
y∈Y

P (y|x)log[P (y|x)] (1)

The Mean Conditional Entropy [32] is the weighted average of H(Y |x) for
each x ∈ X .

H(Y |X) =
∑
x∈X

H(Y |x)P (x) (2)

In the common context of GNs inference, the algorithm must search for those
variables (i.e. features) that minimizes the MCE even if using few observations.
Furthermore, even one had large observation set, it could be expected that some
system states does not occur because they can be rare [26, 34, 23]. Thus, the
number of observed instances (N) is commonly much lower then the number
of possible instances (M). Thereby, to face this problem the MCE is computed
with penalization of the non-observed instances as defined in [32]:

H(Y |X) =
α(M −N)H(Y ) +

∑N
i=1(fi + α)H(Y |X = xi)

αM + T
(3)

where T is the number of samples, fi the absolute frequency of xi and α is a
parameter to determine the weight of the penalization.

Small-World Networks. The small-world network proposed by Watts and
Strogatz [20] allows to model the increasing of randomness in a regular network.
The SW construction proposed by Watts and Strogatz is defined as follows:
First set N as the number of vertices and k as the average degree. Start with a
one-dimensional ring lattice with each vertex connected to 2k neighbors. Then,
for each vertex rewire each edge with probability p. Thus, p defines the global
randomness of the network which ranges from p = 0 (regular original lattice) to
p = 1 (totally random).

The two main features of this networks are the clustering coefficient (C) and
path length (L). The clustering coefficient (Eq. 4) of a vertex Cv is defined
as follows: given a vertex v, select its m neighbors. Then, count the number
of edges ηv between the m neighbors of v (i.e. except the edges with v). Let
ηm = m(m− 1)/2 denote the maximum number of edges in the sub-graph with
m vertices. Then, compute Cv = ηv/ηm. Thus, the network clustering coefficient
is given by averaging over all vertices:

C =
1

N

∑
v∈V

Cv (4)
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The path length Lij is defined as the number edges in the shortest path be-
tween two vertices vi and vj . The network path length L is the average over all
pair of vertices. Let λ denote the number of paths in the network.

L =
1

λ

∑
vi,vj∈V

Lij (5)

MCE-SW Criterion Function. We defined a criterion function based on the
MCE and the topological properties of SW networks (MCE-SW). The MCE-
SW is a linear combination of MCE and SW features. The topological part is
composed by the two SW features described by Watts and Strogatz [16].

The clustering coefficient is in the interval [0, 1] as defined on Equation 4.
The path length L is a value greater than 1 without upper limit since N is a
network parameter. The theoretical maximum path length for a given pair vi, vj
is N − 1 in a network of size N . However, the path length in a SW network
is frequently very lower than that maximum. Thus, L is normalized through
max-min normalization (Eq. 6). Where min = 1 and max was estimated by
sampling 1000 SW networks with the same k,N and p and taking the maximum
path length. Also, if eventually L is greater than max than we set L = 1.

Normalized(L) =
L−min

max−min
(6)

Form this point we will refer to the Normalized(L) simply as L. The MCE-
SW criterion function has one parameter w ∈ [0, 1] which is the weight of topo-
logical features. We set half of w to each topological measure w1 = w/2 and
set weight of MCE w2 = 1 − w. Thus, the MCE-SW criterion function of two
variables x and y is defined as:

MCE-SWy,x = w2 ×MCEx,y + w1 × L− w1 × C

= w2 ×MCEx,y + w1 × (L− C)
(7)

Where C ∈ [0, 1] and L ∈ [0, 1]. Since, L − C ∈ [−1, 1] we rescale (L − C) in
[0, 1] to maintain a positive score.

SW =
(L− C) + 1

2
(8)

Thus, MCE-SW became:

MCE-SWy,x = w2 ×MCEx,y + w1 × SW (9)

SFFS-SW Feature Selection Algorithm

The proposed search algorithm is composed by two distinct steps. At the fist
step the network is inferred from expression data by using MCE as criterion
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function, which guarantees an initial topology. On the second step each vertex
is revisited at the same order they were visited in the first phase and the MCE-
SW criterion function is applied. As can be seen in Equation 9 the part MCE
gives the local contribution of the edges between a gene y and its predictors.
In other words, MCE does not take into account how the the global topology if
affected by those edges. Differently, the topological part measures how the local
changes influences the global properties of the network. Thus, the second phase
of the algorithm readdress the inferred edges in terms of both local and global
topological effects.

The Algorithm 1 receive N genes G, the expression data set D, the maxi-
mum number of features mf the SFFS will search for each target Y and the
weight of topological measurements w. Once the set or predictors of a target
gene Y is defined by SFFS-SW algorithm, the edges from predictors to target
are added and thus, the network is updated. At each iteration of the second step

input : G,D,mf,w
output: network
var list: predictor-set[N]
First step
foreach target Y ∈ G do

predictor-set[Y ] ← SFFS-MCE(Y,G,D,mf)
network ← update-network(predictor-set[Y ])

end
Second step
foreach target Y ∈ G do

predictor-set[Y ] ← SFFS-SW(Y,G,D,mf,w)
network ← update-network(predictor-set[Y ])

end

Algorithm 1. Main function of the inference algorithm

of Algorithm 1, the SFFS method is performed to search for the best subset of
size q ≤ mf . The edges from a feature set X to the target gene Y are temporarily
added to the graph in order to compute the topological features and the criterion
function. After the criterion function is computed the edges are removed. At the
end, when the best subset is finally chosen the edges are permanently added in
the network. The Algorithm 2 shows the computation of the criterion function
value for a given feature set X . The algorithm starts by removing all previously
inferred predictor of that target variable in the first step of Algorithm 1. The
inclusion of each feature on this execution take into account how much the added
characteristic affects both the MCE and the network topology by considering all
other previously inferred edges. In other words, the predictor set of each target
is re-inferred from an empty set, based on the possible changes in topology.
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input : Y ,X ∈ G,D,w
output: criterion function value
MCE ← H(Y |X)
network ← add-edges(X,Y )
Compute L,C and SW
MCE-SWX,Y = w2 ×MCEx,y + w1 × SW
network ← remove-edges(X, Y )
return MCE-SWX,Y

Algorithm 2. MCE-SW criterion function computation

Computational Complexity. Assuming a network with N vertex and maxi-
mum degree k, the complexity of SFFS algorithm is performed N times (one for
each target), each with costO(2k). The complexity of computation of the average
clustering coefficient part depends on the number of neighbors kv of each vertex
v. The algorithm must to sum the number of edges between the kv neighbors of
v. Thus, the maximum number of operation for a given vertex is k2, The short-
est path between two vertices is computed in O(N2) and the average shortest
path is computed to N vertex in O(N3). Thus, for each subset of predictors (or
for each target) the algorithm calculates the average clustering coefficient and
average path length procedures performing k2+N3 operations. Thus, the SFFS
performs 2k × (k2 +N3) operations. Since in the context of GNs inference k is
limited to a small value the total cost of one run of SFFS algorithm is O(N3).
The SFFS algorithm is executed N times (one for each target) on each step of
algorithm. Thus the total complexity of algorithm is O(N4). The computational
cost is justified by the increasing in the performance on recovering a network
with better topological features.

Validation. In order to evaluate the method we used the Artificial Gene Net-
works (AGN) simulation and validation model [35, 36] to generate both the
networks and the expression data. The AGN was used to create Watts and
Strogatz SW networks and to simulate the corresponding output signal by con-
sidering a probabilistic boolean network model. To evaluate the performance of
the proposed algorithm we computed the following confusion matrix:

Table 1. Confusion matrix. TP = true positive, FN = false negative, FP = false
positive, TN = true negative.

Edge Inferred Not Inferred

Present TP FN
Absent FP TN

Commonly, in GNs inference it is preferable to predict a low number of edges
with high precision than a high number of edges with low precision. This has
a practical aspect: the inferred relationships will probably be validated through
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some expensive biochemical experiment. Thus, the set of predicted edges can be
as a set of hypothesis to be tested. However, an ideal algorithm model should
recover edges with high precision without missing existing edges. To evaluate
these properties we compute the PPV (Positive Predictive Value, also know as
precision) and Sensitivity (also know as recall or True Positive Rate – TPR). We
adopted also the similarity measure which is a geometrical average of precision
and recall.

PPV =
TP

(TP + FP )

Sensitivity = TPR =
TP

(TP + FN)

Similarity(A,B) =
√
PPV · Sensitivity

(10)

Since we are mostly interested on the inference of networks that follow small-
world properties, we also adopted the computation of trajectories for both clus-
tering coefficient and path length at each step of the inference algorithm.

Results and Discussion

This section presents the experimental results of the proposed methodology when
applied to SW networks. We evaluate our methods in networks with 100 vertices
and average edges k varying from 1 up to 4. We set the rewiring probability to
p = 0.01 and the threshold of the criterion function to 0.3. We performed 10
executions to each configuration. On each execution produced a network in the
first phase (recovered-1 ). Then, the second step of the proposed algorithm was
executed with weights 0.2, 0.4, 0.6, 0.8, 1.0. For each weight the search always
starts from the same recovered-1 network of that configuration.

It is important that the topological features do not suppress the expression
information but on the contrary, be well combined in order to increase the accu-
racy and the networks properties. We find a small variation in accuracy as the
topological information weight vary from 0.2− 0.6 (Figure 1).

The algorithm frequently achieves the highest precision values when w = 0.8
(see Table 2). There is a gain in precision given by the inclusion of topological
information for any value of k. It is interesting to note that when the weight
is 1.0 the PPV decreases fast showing that both expression and topological
information are essential to inference. There is also an improvement in sensitivity
when SW features is used. The exception occurs in the highest connected network
(k=4) were the value is not altered. Thus, this also suggests an interdependence
between topology and the expression. Moreover, the topological features does
not suppress the expression information, but in contrary, the search is biased
through the combination of these two elements. the inference is not dominated
by topological features it is just biased by the new criterion function.

We also analyzed the trajectory of clustering coefficient (C) and path length
(L) – Figure 2. It could be observed distinct behaviors between C and L and
also an improvement on the small-world features of the recovered network.
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Fig. 1. Positive Predictive Value (PPV). The algorithm reaches the highest value with
w=0.8 for any K. The precision decreases fast when the algorithm does not consider
the MCE (w=1.0) showing that both expression and topology is necessary to increase
precision.

Table 2. Precision (PPV), Sensitivity (Recall) and Similarity for k = 1, 2, 3, 4 and
weight=0, 0.2, 0.4, 0.6, 0.8, 1.0

weight
0 0.2 0.4 0.6 0.8 1.0

k=1
PPV 0.56 0.54 0.55 0.56 0.60 0.10
Sensitivity 0.78 0.80 0.80 0.80 0.80 0.09
Similarity 0.76 0.75 0.76 0.76 0.78 0.20

k=2
PPV 0.60 0.57 0.58 0.59 0.65 0.11
Sensitivity 0.58 0.59 0.58 0.58 0.58 0.05
Similarity 0.70 0.69 0.69 0.70 0.72 0.18

k=3
PPV 0.62 0.60 0.61 0.62 0.67 0.13
Sensitivity 0.44 0.45 0.45 0.44 0.44 0.10
Similarity 0.65 0.64 0.64 0.65 0.66 0.10

k=4
PPV 0.67 0.66 0.66 0.67 0.69 0.28
Sensitivity 0.39 0.39 0.39 0.39 0.35 0.01
Similarity 0.64 0.64 0.63 0.64 0.62 0.12
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Fig. 2. Left: trajectory of the average clustering coefficient. The first step of the
algorithm (SFFS-MCE) is printed in black. The achieved value of the SFFS-SW step
is higher than the final value of the SFFS-MCE step (exceptions: weight = 1.0 with
k = 3 and k = 4). Right: trajectory of the average path length (normalized in the
range [0,1]). The SFFS-SW achieves a lower value than the SFFS-MCE. The exception
is weight = 0.8.

With respect to clustering coefficient C the value starts from zero, gradually
increases until it achieves a point. In the second step the value increases when
SFFS-SW is applied, showing the relevance of this topological feature.

With respect to path length, the algorithm presented a distinct behavior. Like
C, on the first phase L starts from zero. However, it can be observed that L
increases fast at the first steps then, it decreases and converges to an smallest
path length. This shows that the SFFS-MCE algorithm drives the search to a
small path length. Following this reasoning, the bias given by the new crite-
rion function drives the path length to a lower value. However, the trajectory
maintains almost stable in respect to path length.

The MCE-SW criterion function improve the features of the inferred network
by increasing the clustering coefficient and maintaining the achieved path length.
The algorithm reach different values as average degree increases.

Conclusion

In this work we presented a new feature selection method, called SFFS-SW
for the inference of GNs. The algorithm uses both expression data and two
topological features of SW networks: high average clustering coefficient and low
average path length. The SFFS-SW combines the Mean Conditional Entropy
(MCE), network clustering coefficient and the network path length through a
criterion function. The search is performed through an SFFS algorithm in two
steps: The first step uses only expression to recover a network. On the second step
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the network is inferred by considering both MCE and SW features. The proposed
algorithm inferred networks with higher precision and recall than the strategy
that uses only expression data. Moreover, the inferred networks are biased to
topology with higher clustering coefficient and lower average path length than
networks inferred without topological information. Thus, even when precision
and recall are very similar between topological and non-topological approaches,
the network features are biased to SW topology in SFFS-SW. The reasoning is
that it is important not only to find a set of correct edges and discard incorrect
ones, but to find those correct edges that are also consistent to the network
topology. Finally, the results indicate that topological information is important
both on the inference process and evaluation of results.
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Abstract. In Cytomics, the study of cellular systems at the single cell level,
High-Throughput Screening (HTS) techniques have been developed to imple-
ment the testing of hundreds to thousands of conditions applied to several or up
to millions of cells in a single experiment.

Recent technological developments of imaging systems and robotics have lead
to an exponential increase in data volumes generated in HTS-experiments. This
is pushing forward the need for a semantically oriented bioinformatics approach
capable of storing large volume of linked metadata, handling a diversity of data
formats, and querying data in order to extract meaning from the experiments per-
formed.

This paper describes our research in developing CytomicsDB, a modern
RDBMS based platform, designed to provide an architecture capable of deal-
ing with the computational requirements involved in high-throughput content.
CytomicsDB supports web services and collaborative infrastructure in order to
perform further exploration of linked information generated in each experiment.

The objective of this system is to build a semantic layer over the data so as
to enable querying metadata and at the same time allowing scientists to integrate
new tools and APIs taking care of the image and data analysis. The results will
become part of the metadata of the whole HTS experiment and will be available
for semantic post analysis.

1 Introduction

High-Throughput Screening (HTS) is a well-established process in drug discovery for
pharma and biotechnology companies and is now also being set up for basic and ap-
plied research in academia and some research hospitals [10]. Recent developments in
microscopy systems and robotics enabled large-scale screening of cellular systems. A
popular screen setup is automated time-lapse confocal image acquisition which enables
capturing of e.g. high content subcellular information (derived as features) or dynamic
aspects like cell migration. Cells are exposed to hundreds and even thousands of dif-
ferent conditions using one or several multiwell (96, 384, 1536) plates. This typically
results in 20-40 GB of data consisting of in the order of 100,000 - 200,000 images in
an overnight experiment.

In cytometry, HTS-experiments are usually employed in the context of functional
analysis, closing the gap between genomics-proteomics and functional responses on the
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cellular level. Examples are genome wide siRNA screens, where all existing genes are
lowered in activity one at a time using siRNA mediated knock down followed by some
cellular-level phenotypic readout, e.g., cell migration speed, focal adhesion dynamics,
subcellular morphological changes, cell death.

A next step in the HTS-experiment pipeline is image quantification using image
analysis software tools. In this manner, biological hypothesis can be statistically tested
using the quantification results from the image analysis stage, and can depict an objec-
tive understanding of the cell response to various treatments or exposures.

In a typical HTS workflow, spreadsheet applications are commonly used for book-
keeping all information related to the design of the multiwell-imaging plates, image
analysis quantification results and even statistical analysis results. This approach has
many drawbacks. Firstly, it is extremely difficult to link the data produced during the
different stages of an HTS experiments, such as linking the images generated in the HTS
experiment and the metadata collected during the design of the plate layout. Secondly,
it is highly prone to man made errors. The lack of standards, formats and a centralized
place for storing the information makes it difficult to promote a collaborative environ-
ment with or between research groups. Finally, spreadsheet applications are not suitable
for knowledge discovery, as they do not allow to combine sophisticated visualization
and querying of the (meta)data previously stored.

In our previous work [8], we presented the initial design of a platform for managing
and analyzing HTS images resulting from cytomics screens taking the automated HTS
workflow as a starting point. This platform seamlessly integrates the whole HTS work-
flow into a single system. The platform relies on a modern relational database system
to store user data and process user requests, while providing a convenient web inter-
face to end-users. Using this platform, the overall workload of HTS experiments, from
experiment design to data analysis, can be significantly reduced. Additionally, the plat-
form provides the potential for data integration to accomplish genotype-to-phenotype
modeling studies. In this paper, the initial design, particularly, the database model, has
been rigorously revised and generalised to manage all kinds of metadata produced by
automated HTS systems. We call our system CytomicsDB, which is designed as a user
oriented platform but considers the HTS workflow as a template for managing, visual-
izing and querying the metadata.

Current software and architectures for HTS are mostly based on generic Lab In-
formation Management Systems (LIMS) [12], which face significant challenges to ac-
cessing, analyzing, and sharing the data required to drive day-to-day processes within
the laboratory. Furthermore, the limited connectivity to other legacy systems and poor
visualization of the data is an obstacle to extract new insights from the data stored,
and cause a deep impact in the efficiency of the HTS experiment. Comparing with the
existing LIMS systems, CytomicsDB has a number of important advantages:

1. Ease of promoting scientific collaborations. Since all data in CytomicsDB are cen-
tralized, granting access to collaborators or sharing information has been made
simple;

2. Flexibility for integration with other legacy systems. It it common to use external
APIs for performing image and data analysis results, such as Weka, PRTools. In the
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design of the architecture of CytomicsDB, special care has been taken to assure the
possibility of invoking external API through web services.

3. The web-based architecture allows its users to easily access to their experiments
data from wherever and at any time. The architecture also allows the whole or parts
of the system to be smoothly moved to a Cloud based environment.

4. The capability to drill-down through experiments’ metadata due to the metadata-
based approach.

5. A single interface for visualization of all experiments data, include raw images,
metadata and analysis results.

6. Pattern recognition (PR) within an experiment and PR across HTS experiments.

To sum up, the contributions of this work include:

1. Metadata organization in an HTS experiment (Section 2).
2. Data modeling and storage (Section 3).
3. A case study in endocytosis of EGFR, describing how a Metadata-based RDBMS

approach can facilitate the identification of EGFR dynamics and classification of
EGFR phenotype stages (Section 4).

Finally, in Section 5 we discuss related work and in Section 6 present our conclu-
sions.

2 Metadata Organization in an HTS Experiment

The metadata of an HTP experiment consists of a variety of types and formats and has
been grouped in five levels as showed in Figure 1: Project, Experiment, Plate - Wells,
Video/Images and Measurements. These levels contain each other in a cascade fashion,
for instance: [1] Project contains [1..n] Experiments, [1] Experiment contains [1..n]
Plates, [1] Plate contains [24,48,96,384] Wells, [1] Well contains [1..n] Video/Images
and finally [1] Well contains [1..n] measurements.

Project. This level contains a title which describes the aim of the project, the dura-
tion, the author, etc. When a project is created, its creator becomes its administrator
and is possible to grant access to another scientist in order to promote a collaborative
environment.

Experiment. Figure 2 shows the structure of the metadata contained in the Experiment
level. This level is divided in Hardware and Type of Experiment. Firstly, the metadata
associated to the hardware correspond to the microscope and the imaging technique
used. Depending on which microscope is used, the set of imaging techniques differs.
For instance, the imaging techniques available for a Becton Dickinson (BD) Pathway
microscope are EPI, Spinning disk or Bright Field, but in a Nikon TE 2000-e micro-
scope it is possible to use: FRAP, FRET, EPI, Confocal, Spectral or DIC. Secondly, the
metadata associated to the type of experiment can be separated in four groups: (1) Fixed
or Live experiment including a 2D or 3D option for each case; (2) Assay type, in this
case there are the following options: migration/invasion, proliferation, primary tumor,
apoptosis and sub cellular perturbations; (3) Species, the options available are: human,
rat, mouse and zebrafish; and (4) Cell / Tissue origin, considering in this area: primary,
cell line, iPSC, stem cel, biopsy, etc.
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Fig. 1. Structure of the metadata in an HTS experiment

Fig. 2. Structure of the Experiment and Plate metadata

Plate-Wells. This level is also divided into two groups: metadata about the Hardware
and about the Parameters used. Figure 2 shows an UML diagram of the structure of
these two groups. The Hardware sub level includes information about the plate type, the
brand and the fabrication material. The level of Parameters includes information about
(1) Coating, (2) Cell-line / tissue, (3) treatment, (4) siRNA, (5) Antibodies / reagents and
(6) Parameters of control or comments. The metadata of Wells is a subset of metadata
of the plate level. For instance, in a 8x12 wells plate, different wells can have a subset of
the parameters assigned to the whole plate. This level is also associated with the output
of the HTS process (Raw Video / Images) and with the results of the image and data
analysis phase which is also called measurements.

Part of the metadata at this level is critical information that should be verified and
validated when it is uploaded. For instance, The parental cell line/tissue, or the treatment
and its concentration are just two cases which the entry is verified in a first instance
(obligatory data) and then they are validated with the information pre loaded in the
imaging database. In order to keep the consistency of the metadata it is necessary to
validate each entry and when a new value is detected the administrator of the platform
is in charge of accepting this new entry as valid or correct to the right value if it is
necessary. The consistency in the metadata is a key task in the imaging database because
the obligatory data will be further used as a controlled vocabulary for querying.
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Fig. 3. Structure of the Raw Images metadata

Fig. 4. Structure of the Measurements metadata

Raw Images. Raw images are obtained after image acquisition with automated mi-
croscopy systems. These images are the basis for the image analysis which results
in quantitative data used for hypothesis testing. The response of the cells is recorded
through time-lapse microscopy imaging and the resulting image sequences are the ba-
sis for the image analysis. The structure of an image file depends on the type of ex-
periment (Fixed/Live) and the microscopy technique used in the experiment. Currently,
four types of structures are supported (cf. Figure 3) [8]:

1. 2D (XY): this structure corresponds to one frame containing one image which is
composed of multiple channels ([1]Frame - [1]Image - [1..n]Channels).

2. 2D+T (XY+T): this structure corresponds to one video with multiple frames. Each
frame contains one image composed of multiple channels ([1]Video - [1..n]Frame
- [1]Image - [1..n]Channels).

3. 3D (XYZ): this structure corresponds to one frame with multiple sections. Each
section contains one image composed of multiple channels ([1]Frame - [1..n]
Sections - [1]Image - [1..n]Channels).

4. 3D+T(XYZ+T):this structure corresponds to one video with multiple frames. Each
frame can have multiple sections and each section contains one image composed
of multiple channels ([1]Video - [1..n]Frame - [1..n]Sections - [1]Image - [1..n]
Channels).

Measurements. This level contains the results of the Image and Data Analysis process
(cf. Figure 4):

Results of Image Analysis: The results of image analysis are auxiliary images which
are usually binary masks or trajectories. These images are results of the application of
quality enhancing filters and segmentation algorithms employed to extract regions of
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Fig. 5. Database schema for Project Metadata

Fig. 6. Database schema for Experiment Metadata

interests (ROIs). These metadata are also linked to the raw video image file, on which
the image analysis has been applied.

Results of Data Analysis:
Measurements extracted from the image analysis are further analyzed using pattern
recognition tools. After applying operations such as feature selection, clustering and
classification, a CSV file is generated with the results accompanied by a HDF file with
information of the structure of the CSV file (features).

3 Data Modeling and Storage
The relational database schema designed to store the metadata in an HTS experiment is
divided in 5 schema views according to the structure described in Section 2. Figure 5
shows the key components for the project metadata and the possibility to create groups
and grant 4 different levels of access to our experiments (Author, Expert User, Analyst
User and Guest).

Figure 6 describes the entity Experiment and how the metadata is stored according
to the type of experiment performed, the microscope used and the image technique
associated. Furthermore, other key components of metadata are mandatory for creating
an experiment, such as the specie, assay type and cell/tissue origin.

The most critical part of the metadata corresponds to the Plate-Well metadata shown
in figure 7. It requires a validation and verification process before registering new entries
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Fig. 7. Database schema for Plate-Well Metadata

Fig. 8. Database schema for Raw Images and Measurement Metadata

to these entities. The author of an experiment uploads the metadata associated to a plate
upon completion of the plate layout design and every entry is validated with the master
entities for siRNAs, cell lines, antibodies, reagents, coatings and treatments in order to
ensure consistency with the metadata being uploaded.

The main output in an HTS experiment are the raw images or time lapse sequence
of images. The image dataset is located on a file server and the URLs to access them
are stored in the database (cf. Figure 8). Those images are uploaded to the CytomicsDB
through a web interface, which represents the web plate layout interface. During up-
loading time, using the open source Bio-Formats library [9], a new dataset of images
(thumbnails) is generated, and also linked to the raw images in the database. These
images are used to have a preview visualization of the plate layout in the web interface.
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Another key component to consider in the database schema are the image and data
analysis results. The information obtained after the image analysis process is parsed to
the database using the entities Features and Measurements (cf. Figure 8). These two
entities store the information required by another API such as PRTools [6] to perform
the pattern recognition and statistical analysis.

4 Case Study in Endocytosis of EGFR: Identification of EGFR
Dynamics and Classification of EGFR Phenotype Stages

In this section we describe a case study on how the structure of the metadata and
RDBMS are applied in order to identify the EGFR dynamics and classify the differ-
ent EGFR phenotypes.

Endocytosis is regarded as a mechanism of attenuating epidermal growth factor re-
ceptor (EGFR) signaling and of receptor degradation. Increasingly, evidence becomes
available showing that cancer progression is associated with a defect in EGFR
endocytosis [5]. Functional genomics technologies combine high-throughput RNA in-
terference with automated fluorescence microscopy imaging and multi-parametric im-
age analysis, thereby enabling detailed insight into complex biological processes, like
EGFR endocytosis. The experiments produce over half a million images. Such a volume
of images is beyond the capacity of manual processing and therefore, image processing
and machine learning are required to provide an automated analysis solution for HTS
experiments [2]. The total size in average can vary between 500 Mb to 20 Gb of raw
images per experiment and CytomicsDB is designed to cope with the growing data size
due to the scalable architecture for storing the images in a File Server and the metadata
of the entire experiment in the database.

According to the methodology described in [2], three stages are identified: (1) Im-
age Acquisition, (2) Image Analysis and (3) Data Analysis. We describe each stage as
follows:

Image Acquisition: The experiment “Endocytosis of EGFR” is created in the Cy-
tomicsDB platform and its respectively plates. The type of metadata required for creat-
ing an experiment and the plates in our platform is described in Section 2. The respective
values associated to each type of metadata have been detailed in [2]. After designing
the plate in the platform, the wet-lab experiment is initiated, which includes the fol-
lowing steps: (1) cell culturing, siRNA transfection and EGF exposure, (2) fluorescent
staining of proteins of interest and (3) image acquisition. Upon completion of the ac-
quisition process 960 images are uploaded to the platform which size in total is 767
Mbytes. These images correspond to a 96 wells plate (cf. Figure 9) and for each well,
images are captured from ten randomly selected locations. However, an experiment can
consist of more than one plate and the number of samples per well can differ per case.

Image Analysis: The API in charge of the image analysis, request from the database the
location of each image to process. The query executed is:

SELECT v.vide_id, v.vide_name, v.vide_url, v.vide_position, v.well_row, v.well_column
FROM HTS.Video v
WHERE v.plat_id = 17;
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Fig. 9. Web plate layout

The value of column plat id is in this case 17 and it was assigned after selecting the
plate for endocytosis in the web interface. Three steps are performed by this API: (1)
noise suppression, (2) image segmentation and (3) phenotype measurement. The algo-
rithms and process details are described in [2]. Upon completion of the image analysis
process, the API returns two outputs: (1) The location in the database of a new set of
images and (2) a CSV file containing the features and the phenotype measurement re-
spectively. The set of images generated are: (a) Original image: PERK (red), EFGR
(green) and nucleus (blue) (cf. Figure 10), (b) Component definition: artificial cell bor-
der (red) and binary mask of protein expression (green) (cf. Figure 11), (c) Cell border
reconstruction: artificial cell border (W-V) (cf. Figure 12), (d) Image segmentation: bi-
nary mask of EFGR channel by WMC (cf. Figure 13) [13].

The phenotype measurements (CSV file) are parsed first and then stored in the
database by a web service executing the following query:

INSERT INTO HTS.Measurement
(Obje_id, Feat_id, Plat_id, Chan_id, Imag_id, Sect_id, Fram_id, Vide_id)
VALUES (0,1,17,1,1,1,1,1,14.0);

In this example, the column Feat id=1 corresponds to Area in the entity Feature and
the measurement obtained for this feature is 14.0. The column Plat id is still 17 because
we refer to the same plate.

The measurements are categorized in two subgroups: (1) basic measurements of the
phenotypes covering shape descriptors and (2) the localization phenotype describing the
assessment of the correlation between two information channels. The basic phenotype
measurement includes a series of shape parameters such as: size, perimeter, extension,
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Fig. 10. Original
image

Fig. 11. Component
definition

Fig. 12. Cell border
reconstruction

Fig. 13. Image seg-
mentation

dispersion, elongation, orientation, intensity, circularity, semi-major axis length, semi-
minor axis length, closest object distance and in nucleus, these can be extended as the
experiments so dictates. In addition to the basic phenotype measurement, localization
measurements can be derived for a specific experimental hypothesis. The localization
phenotypes are quantifications of comparative measurement between information chan-
nels such as relative structure-to-nucleus distance or structure-to-border distance. The
features in EGFR-screen based localization phenotypes used are: nucleus distance, bor-
der distance and intactness. On the basis of the phenotype measurements, objects are
classified into phenotypic stages. For the assessment of significance statistical analysis
is performed [2]. Upon completion of the image analysis, it is possible to visualize the
results in a web plate layout and export the measurements to files.

Data Analysis: The aim of the endocytosis study is to quantify the process of EGF-
induced EGFR endocytosis in human breast cells and to identify proteins that may
regulate this process. The EGFR endocytosis process can roughly be divided into three
characteristic episodes: i.e. (1) at the onset EGFR is present at the plasma-membrane;
(2) subsequently, small vesicles containing EGFR will be formed and transported from
the plasma-membrane into the cytoplasm; and (3) finally, vesicles are gradually merging
near the nuclear region forming larger structures or clusters. The characteristic episodes
are the read-out for HTS. Based on this model it is believed that EGFR endocytosis reg-
ulators may be potential drug targets for EGFR-induced breast cancer. Studying each
of the stages, i.e. plasma-membrane, vesicle and cluster, may provide a deeper under-
standing of the EGFR endocytosis process [2].

When the data analysis process is triggered, a web service request to the database
(entities feature and measurement) the results from the image analysis process. The
output of this web service is the location of a file which contains the results of the test
for each siRNA regulator. This file will be requested for the API PRTools for generating
classifications and graphs with the comparison of the results, such as: (1) Weighted clas-
sification error curve, which represents a combination of a feature selection/extraction
method and a classifier algorithm, (2) Results of the feature extraction and (3) Aver-
age number of plasma-membrane (a) and vesicle (b) per nucleus [2]. Consolidating in
CytomicsDB the experiment’s metadata, raw images and images/data analysis results,
facilitates further comparison with the result of other HTS experiments.

5 Related Work

In the current area of -omics research, various systems/tools have emerged to try to solve
the problem that the existing practice of keeping meta data does not allow for effective



82 E. Larios et al.

data searching and mining. They are generally referred to as Laboratory Information
Management System (LIMS).

The work proposed by Colmsee et. al. [4] is probably the closest to CytomicsDB.
The authors defined central requirements for a primary lab data management and as-
pects of best practices to realise those requirements. As a proof of concept, the authors
implemented a pipeline to manage primary lab data of crop plants. The pipeline consists
of i) data storages including a Hierarchical Storage Management system, an RDBMS
and a BFiler package to store primary lab data and their meta information; ii) the Vir-
tual Private Database for the realisation of data security and the LIMS Light application
to iii) upload and iv) retrieve stored primary lab data. Compared with this work, Cy-
tomicsDB has a more sophisticated data model to cope with different types of data
(i.e., images, videos, and data produced in different steps in an HTS experiment), pays
special attention to the extensibility of the architecture to enable adding new tools.

In [11], the authors presented three open-source, platform independent software tools
for genomic data: a next generation sequencing / microarray LIMS and analysis project
center (GNomEx); an application for annotating and programmatically distributing ge-
nomic data using the DAS/2 data exchange protocol (GenoPub); and a standalone Java
Swing application (GWrap) that provides a GUI for the command line analysis tools.
CytomicsDB provides similar functionalities as these tools, but focuses on dealing with
Cytomic data. Moreover, for the design of CytomicsDB, we have deliberately chosen
for a single integrated system to include all features required for conduction HTS ex-
periments and analysis, instead of individual tools and enabling high profile pattern
recognition.

In [12], the authors describe a general modeling framework for laboratory data. The
model utilises several abstraction techniques, with focus on the concepts of inheritance
and meta-data. In this model, distinct regular entity and event schemas can be defined
and fully integrated via a standardized interface. The design allows definition of a pro-
cessing pipeline as a sequence of events. A layer above the event-oriented schema inte-
grates events into a workflow by defining processing directives, which act as automated
project managers of items in the system. This LIMS is built on the Oracle RDBMS, and
is maintained by multiple database administrators (DBAs). While with CytomicsDB,
our goal is to meet the needs of HTS experiments with a more light-weight, flexible
system. By adapting modern web and database technologies, CytomicsDB is easy to
maintain (i.e., no DBAs required) and extend (i.e., allowing integrating new tools natu-
rally).

The work by Chan et al. [3] focuses on interactive visualization methods for data
generated by HTS experiments. The visualization methods might be adapted by Cy-
tomicsDB. However, CytomicsDB is a much more comprehensive information system
for HTS data, because it integrates both experiments and analysis data into a single
system, and allows various types of users and groups to be defined.

Based on the Golm Plant Database System, Köhl et. al. [7] devised a data manage-
ment system based on a classical LIMS combined with web-based user interfaces for
data entry and retrieval to collect this information in an academic environment. This
system stores plant cultivation units in an MS ACCESS database, which would quickly
run into scalability issues as the data size grows.
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6 Conclusions and Future Work
In this paper, we have presented a semantic approach for organizing metadata and an
RDBMS for metadata management in High-Throughput Screening experiments. Our
goal is to facilitate the exploration process in the HTS workflow, scientist are aware
of semantics and they are pushing forward the need for new approaches in organizing
the metadata according to which queries are mostly applied on the data. In HTS, im-
ages by itself do not have any meaning, but linking images to their respective metadata
allows researchers to learn from their experience and help them in mentalizing seman-
tic structures of the metadata. The RDBMS schema has been designed to support the
acquisition, visualization and integration stages using a metadata-based approach. Fur-
thermore, CytomicsDB uses a database engine suitable for applications which demands
intensive data mining tasks. Finally, we plan to extend this architecture to a more sophis-
ticated interdisciplinary platform for cytomics. The structure of the metadata proposed
in this paper will further evolve to an ontology based framework. A new layer to the
architecture will be added in order to perform semantic queries, turning the architecture
to a web based interactive semantic platform for cytomics [1].
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Abstract. Reverse engineering of the Gene Regulatory Networks
(GRNs) from high-throughput gene expression data is one of the most
pressing challenges of computational biology. In this paper a method
for parallelization of the Gene Regulatory Network inference algorithm,
GENIE3, based on GPU by exploiting the compute unified device ar-
chitecture (CUDA) programming model is designed and implemented.
GENIE3 solves regulatory network prediction by developing tree based
ensemble of Random forests. Our proposed method significantly improves
the computational efficiency of GENIE3 by constructing the forest on the
GPU in parallel. Our experiments on real and synthetic datasets show
that, CUDA implementation outperforms sequential implementation by
achieving a speed-up of 15 times (real data) and 14 to 18 times (synthetic
data) respectively.

Keywords: Gene regulatory network, Random forests, GPU, compute
unified device architecture (CUDA).

1 Introduction

A set of DNA portions which collaborate together and with other objects con-
trol RNA and proteins expression levels in a cell is called a Gene Regulatory
Network (GRN). Predicting GRN is critical for perceiving the functioning and
development of biological organisms [1]. Due to progresses in high-throughput
gene expression patterns profiling with DNA microarrays and prevalence of ex-
pression data, reverse engineering of GRN from biological data is now widely
used for understanding the underlying mechanisms. However it is still one of
the most challenging tasks in bioinformatics and systems biology. The ability of
GRN models to precisely predict gene expressions would help find interrelated
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genes in a biological process in addition to exploring how a system of genes is in-
fluenced by drugs. There are several different methods to predict GRN, including
relevance networks [2], empirical Bayesian networks [3], Boolean networks [4,5],
Bayesian networks [6,7], and neural network [8]. In spite of intense studies, GRN
inference approaches still suffer from low performance. The two main reasons
are their incapability of modelling inherent complexities of biological processes
and the difficulty to handle high dimensional data (which include expressions
of thousands of genes). On account of recent advancement in high-throughput
technologies, large datasets are frequently available, thus algorithms and soft-
ware of high-performance computing for GRN inference with high accuracy is
becoming more important for the current research in systems biology.

Within this context, Huynh et al. has applied Random forests to GRN in-
ference in order to tackle the above difficulties [9], because the Random forests
method has become popular in handling large datasets as well as high dimen-
sional data [10,11]. Their method, namely GENIE3, was one of the best perform-
ers in the DREAM4 in Silico challenge for GRN reverse engineering [12]. Even
though it infers GRN with a higher accuracy than other similar methods, it still
takes a significant amount of time even for a dataset of moderate size (e.g. less
than 50 genes).

In this paper, we present a novel method to accelerate the GENIE3 algorithm
based on the model of CUDA programming. In order to increase the speed of
GENIE3, for each forest, trees grow in parallel inside GPU. Also, for gaining
efficiency, shared memory for fast I/O is exploited. We evaluate our approach
for several simulated datasets and one real dataset. Our parallelized approach
(named CUDAGRN) is able to achieve a speed-up of 15 times on the real dataset
on NVidia Quadra 600 in comparison to the sequential algorithm of GENIE3.

Several methods in computational science and technology have been imple-
mented to run on a GPU in CUDA environment. For instance, GPU implementa-
tions have been reported for Smith-Waterman algorithm for sequence alignment
[13], robotic multisensory perception [14], structured Bayesian mixture [15], im-
age processing methods [16], mutual information estimation algorithm [17], a
PoissonBoltzmann equation solver [18] and biomolecules Del-Phi [19]. To our
knowledge, CUDAGRN is one of the first few attempts to parallelize a GRN
inference algorithm, which will find applications in many biological problems
involving high-throughput data and large regulatory networks.

2 Method

2.1 Sequential Algorithm of GRN Inference

There is an assumption of GENIE3, apart from random noises of the regulatory
network, that the gene expression of an individual gene is a function of the
expression levels of all other genes. It is assumed that the function defining the
expression of gene i can be written in the following formula:

Y i
j = fi(Y

i∗
j ) + εj , ∀j ∈ All experiments (1)
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where Y i∗
j = [(Y 1

j , ..., Y
i−1
j , Y i+1

j , ..., Y p
j ], is the list of input samples, containing

values of expression in the jth experiment of all genes excluding gene i and εj is a
random fluctuation with mean of 0. Moreover, GENIE3 algorithm assumes that
the function fi only uses the expression of the genes in Y i∗ that regulates gene
i directly. These are the genes with an edge linked to gene i in the final output
network. Constructing regulatory edges connecting to gene i will be finding genes
whose expression levels are predictive of the expression of gene i. In terminology
of machine learning, the problem is a feature selection problem in regression [20].

Each function of fi is nonlinear [9] and it has to take into account the expres-
sion of a number of genes. Hence, it is required to be fast. Generally, tree-based
ensemble approaches, particularly Random forests, are methods of choice to ful-
fil this purpose. Random forests method is scalable, fast and does not assume
the nature of the functions. Also, it can cope with a higher number of features
and nonlinear functions [21].

In 2001, Brieman introduced the method of Random forests [22]. From the
same dataset, it constructs several decision trees using randomly sampled vari-
ables and bootstrapping to generate variant trees to work as an ensemble clas-
sifier. In bootstrapping, for each tree new datasets are created uniformly by
sampling with replacement cases from the training dataset. Then, these pro-
duced bootstraps are used for building trees which are finally aggregated into a
forest. It has been demonstrated to be efficacious for datasets which are large
and have missing attributes values [22,23]. Two parameters can be configured
during the Random Forest training. One is the number of trees which can be
adjusted by the user, and the other one is the number of attributes to consider
in each split (denoted by K). By tweaking the two parameters, the result can
be optimized. Building many decision trees is inefficacious when the trees need
to be constructed independently from each other. When the number of trees in
the forest is large, a parallel implementation of random forest has the potential
to achieve considerable speed-up. On the other hand, it might be an ineffective
approach only a small number of trees in the forest.

The GENIE3 algorithm uses the tree-based random forest method to predict
a regulatory network. The main idea of the random forest method for inferring
a network is to break the problem of constructing a network with p genes into
p independent sub-problems. Each sub-problem is defined by a unique learning
sample consisting of a pair of input-output sets of the ith gene (denoted by LS)
from which the network can be inferred. For instance, the learning sample of
gene i is as follows:

LSi
j = (Y i∗

j , Y i
j ), j = 1, 2, ..., N (2)

where N is total number of samples for each gene, Y i∗
j is the set of all samples of

input genes and Y i
j is the set of all samples of output gene i. Taking this learning

sample as input, the objective of a GRN inference algorithm is to predict the
regulatory links among genes such that it works by first ranking all possible
regulatory links from the most significant to the least significant links. Recovery
of a network is then achieved by pruning the ranked list of links using a threshold.
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In this paper, our focus is mainly on the first one. As such, inference algorithm
is introduced here as a process that uses LS to allocate weights to candidate
regulatory links from any gene to any other gene, such that edges corresponding
to real interactions in the regulatory network would be given higher weights.
Each sub-problem which is determined by LSi, is a regression problem which
tries to find a function of fi to minimize the error in (3):

ΣN
j=1 = (Y i

j − fi(Y
i∗
j ))2 (3)

In random forest, regression trees [24] solve the above problem. The main
idea is to split the learning sample iteratively with binary tests in accordance
with one input variable (Y i∗) and strive to deduct the output variable variance
(Y i) in the resulting subsets of samples. Candidates are split for variables by
comparing with the threshold which is defined as long as the tree grows with the
values of input variables. In the method, each tree is constructed on a bootstrap
learning sample from the original one, and at each test node, before defining the
best split, K attributes are chosen randomly from all attributes which become
candidates.

One of the key strengths of the Random forests method is its ability to calcu-
late a variables importance from a tree which allows to rank the input features
based on their pertinence for predicting the output [23]. In the Random Forest
technique several ways to measure the importance of variables have been rec-
ommended. Here, we adopt a measure such that in every test node Z, we can
calculate the whole reduction of the variance of the output variable because of
the split [25]

R(Z) = |S|σ2(S)− |St|σ2(St)− |Sf |σ2(Sf ) (4)

where S denotes the set of samples which reach node Z, St is its subset for
which the test is true, Sf is the subset for which the test is false, σ2 (S) is the
variance of the output variable in a subset, and |S| denotes the cardinality of
a set of samples. For an individual tree, the total importance of one variable
is calculated by adding resulting values of nodes in the entire tree where this
variable is used to split. Those attributes that are never chosen, receive a value
of 0 for their importance, and those attributes that are chosen near the root node
generally get high scores. Measures of attribute importance can be extended to
ensembles, simply by averaging importance scores over all trees in the ensemble.

The computational complexity of the Random Forests is O(TKN log(N)),
where N is the size of the learning sample, K is the number of attributes
and T is the number of trees. Therefore, our method has a time complexity
of O(pTKN log(N)) as it needs to recover trees in the forest for every p genes.
Thus, the computational complexity is log-linear with reference to the number
of measurements. In the worst case scenario, it is quadratic in reference to the
number of genes since K = p− 1. In the next section we will describe how the
approach can be parallelized since the p problems, and the generation of T trees,
in Random Forest are executed independently from each other.
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The final results are directed graphs (i.e. networks) each with p nodes and
each node indicates a gene. In each graph, a directed edge from one gene i to
another gene j represents that gene i regulates, i.e. represses or activates, the
expression of gene j. The objective of inferring the GRN is to find a graph only
by analysis of the genes expression in diverse situations. By taking into account
the dynamic and combinatorial regulatory relations among genes, the expression
levels of individual genes can be predicted. Since the overall procedure of the
inference tends to be time-consuming, sometimes taking several days even for
datasets of moderate sizes, our goal is to implement parallel versions of GRN
inference using CPU cluster and GPU.

2.2 CUDA Programming Model

The general architecture of NVIDIA GPUs with the support of CUDA is illus-
trated in Figure 1. The GPU has a number of CUDA cores known as shader
processors (SP). Each SP has an immense number of registers and a private
local memory (LM). Eight SPs together form a streaming multiprocessor (SM).
Each SM also contains a particular memory region that is shared among the SPs
within the same SM. By combining a number of SMs the GPU is constructed.
GPUs also have some additional memories, for instance the global device mem-
ory which is accessible from all SPs. The GPU used for the development of our
approach and experimental evaluation is the NVidia Quadra 600.

Fig. 1. The GPU architecture assumed by CUDA
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The important features of utilized GPU are described in Table 1. For com-
putation in GPU, all data need to be transferred to the GPU memory from the
host memory. Therefore the bottleneck of the system is the latency between the
CPU and the GPU.

Table 1. The main characteristics for the NVIDIA Quadro 600 graphics card

GPU Property Values

CUDA cores 98
Compute capability 2.1
GPU / Memory clock rate 1280 Mhz / 800 Mhz
Total amount of memory 1024 MB
Memory interface 128-bit DDR3, 25.6 GB/s

2.3 CUDAGRN Inference Algorithm

All CUDA programs are separated into two sections: (1) sequential codes which
are executed on the host CPU and (2) CUDA functions, or kernels, which are
launched from the host and executed on the GPU. Before launching a kernel,
required data must be transferred to the device memory from the host memory.
Since there are several different memories with different sizes accessible by GPU,
data transferred into GPU need to be managed, which also can be a bottleneck.
In our algorithm, data are arranged based on usage frequency. If data are regu-
larly used, they are moved to the fastest accessible memory, i.e. shared memory.
Otherwise, they are stored in the global memory. By placing data in the GPU
memory, in a similar way as calling a regular C function, the CUDA kernel is
launched. During the execution of a kernel, several CUDA threads are generated
and each thread executes an instance of it. Threads are arranged systematically
into blocks, and blocks are arranged into grids.

In this paper, we address the problem of parallel constructing Gene Regulatory
Networks from gene expression data using the computational power of the GPU.
To parallelize the described method in the CUDA environment, some algorithm
sections are sent to GPU and executed by GPU threads. The proposed algorithm
is highly parallelizable, since all of the p problems of feature selection, solvable
by Random Forest, are independent of each other. In addition, different trees in
a forest grow independently. Thus, to implement the program in CUDA, forests
construction of feature selection problems is achieved in GPU. Because of the
memory constraints of device, our approach computes only one problem at a
time and for each problem, all of the trees in the forest grow in parallel. As such,
it needs a loop of p iterations to accomplish the calculation and come up with
the final network. Figure 2 depicts the overall procedure.

As the figure illustrates, we divide the network recovery problem into p iso-
lated sub-problems and iterate p times, where the p is the number of genes, to
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solve the overall problem. In each loop, constructions of all T trees are paral-
lelized. Furthermore, there is not any straightforward way to recover each single
tree in parallel, so we exploit one thread of CUDA to construct a complete tree
in the forest. Therefore, our algorithm performs better with a larger number of
trees.

Fig. 2. Parallel procedure for execution of Random Forest algorithm for GRN inference
on GPU

Several algorithms for decision tree are developed by recursion. However, using
a recursion is not possible for algorithms implemented in CUDA since kernels
running on graphic device do not support recursion. Hence, it was necessary
to design an algorithm which generates trees iteratively. Algorithm 1 shows the
pseudo-code of GENIE3 and algorithm 2 describes the steps in our parallelization
of the random forest algorithm for GRN inference.

We have described the details of how trees are built during the training phase.
The rest of our approach is similar to the sequential implementation. That is,
each tree in the forest is sequentially built by using one thread per tree during
the training phase. If N threads are run, then N trees are generated in parallel.
Thus, our system works best for an immense number of trees. At each level in
a tree, the best attribute to use in order to split a node is picked from a pool of
K attributes that are randomly chosen. While all trees are built, they are sent
to the host memory for use during the phase of computing variable importance.



92 S.Z. Alborzi et al.

Algorithm 1. GENIE3 [9] Pseudo Code

1: procedure GRN-Inference Sequentially
2: Data ← DataReader()
3: For each sub problem (i = 1 to p):
4: LearningSamplesGenerator(Data)
5: FeatureSelectionApproach()
6: Result ← CalculateLevelOfConfidence()
7: Normalization(Result)
8: End For
9: RankResult(Result)
10: end procedure

Algorithm 2. CUDAGRN Pseudo Code

1: procedure GRN-Inference In Parallel Using GPU
2: HostMemory ← DataReader()
3: For each sub problem (i = 1 to p):
4: LearningSamplesGenerator()
5: DeviceMemory ← CUDAMemCpy(HostMemory)
6: KernelLaunch()
7: For each Tree (j=0 to NumberOfTreesInForest)
8: OpenNodeInStack ← FirstNodeOfATreeGeneration()
9: While(OpenNodeInStack)
10: Node ← OpenNodeInStack[head]
11: If(StopSplitFunction(Node))
12: Leaf(Node)
13: Else
14: FindSplit(Node)
15: Split(Node)
16: End While
17: Trees ← SaveTree()
18: End For
19: HostMemory ← CUDAMemCpy(Trees)
20: GPUMemoryCleanUp()
21: Result ← VariableImportanceCalculator(Trees)
22: Normalization(Result)
23: End For
24: RankResult(Result)
25: end procedure
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2.4 Parallel GRN Inference on CPU

Message Passing Interface (MPI) is a portable and standardized message-passing
system designed to run on a diverse range of parallel computers [26]. Further-
more, OpenMP is an API which supports multi-platform shared memory multi-
processing programming on most processor architectures and operating systems
[27]. In this section the CPU parallelization of GENIE3, using MPI and OpenMP
are presented. Assuming there is enough memory, there are two ways to paral-
lelize GENIE3. In the first way, the algorithm can be parallelized at the tree
construction level. For each sub-problem, each CPU thread corresponds to con-
structing a tree since trees grow independently. Thus, for each sub-problem, a
loop with W interactions is executed, where W = T/thr, T is the number of
trees and thr is the number of active threads. Overall W ∗p iterations are needed
to solve the whole problem. In the second way of parallelizing, each sub-problem
must be dealt with in one CPU thread. Therefore, in order to find an answer for
a sub-problem, a loop with T iterations is required, and T ∗V , where V = p/thr,
iterations are required to find a result for all sub-problems.

Since there are overhead costs each time we start OpenMP and MPI, and
this can slow down the method, we chose the second way of CPU parallelizing.
As such, each CPU thread corresponds to one sub-problem and threads run the
problems independently. Eventually, at the end of execution, the main thread ac-
cumulates the intermediate results which have been produced by all the threads
and provides the final result.

3 Result

In this section, we compare the execution times of the proposed CUDAGRN
(described in details in the Methods section) with its sequential and parallel
CPU counterparts. The platform for our development was Microsoft Windows 7
along with CUDA version 2.3. Our software also used Core i7 Intel CPU, RAM
DDR3 of 8GB as the hardware platform. The GPU was a Quadra 600 NVIDIA
with memory of 1GB. Note that we have used a low end GPU versus a high
end CPU, which suggests that the observed speedups achieved by CUDAGRN
were mainly through the parallelization. Both real and synthetic datasets have
been used in our experiments. The real dataset, with 130 experiments and over
6000 genes, was downloaded from http://rana.lbl.gov/EisenData.htm. To further
test the scalability of CUDAGRN, we have additionally generated simulated
datasets with various parameters, e.g. the numbers of experiments, genes, and
trees in the Random forests. Simulated datasets were produced by the software
of GeneNetWeaver [28].

Three different versions of the GENIE3 algorithm are implemented and com-
pared in our evaluation, i.e. the sequential C++program, the CPU-parallelization
(by MPI and OpenMP), and the GPU-based version (CUDAGRN). In our ex-
perimental evaluation, we studied how the execution time would be influenced
by varying different parameters, which include the number of trees to generate
(T ), the number of genes (p) and sample size. Based on empirical experiments
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done in [22,23], we configured the number of attributes to sample in each split
(K) to its optimal value of K =

√
p− 1. However, it is beyond the scope of this

paper to prove which configuration of the parameters has the greatest impact
on the performance.

Since there are three parameters to vary in the algorithm, we alter one and
keep the other two constant. Measurements are collected by running the algo-
rithms on synthetic datasets with the number of trees in a forest from 100 to
10000 and the number of genes from 10 to 500 and sample size (i.e. number of
conditions or time points in microarray) from 100 to 5000. Table 2, shows the
runtime improvement of CUDAGRN in comparison with other implementations
of the GENIE3 algorithm running on different synthetic datasets. As shown in
the table, CUDA implementation of the GENIE3 has a faster runtime than the
other two implantations when the amount of computation increases. Moreover,

Table 2. Demo result of execution improvement with 1000 trees and 1000 experiments

Number of Genes Sequential(sec) CPU 8-Threads(sec) GPU(sec)

10 30 6 2

20 84 13 6

50 274 38 18

100 753 98 51

200 2175 285 154

500 8361 1093 586

Fig. 3. Diagram of runtimes while the number of genes is varying

line charts of the three tables are shown in Figure 3. The diagram is depicted
for a varying number of genes, while the numbers of experiments and trees are
both equal to 1000. From the figure, we can see that CUDAGRN achieves the
best performance in term of runtime.
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In addition, CUDAGRN was faster than the other two implementations when
executed on the aforementioned real dataset. CUDAGRN obtained the result
of GRN inference approximately 15 times faster than the sequential program
(Figure 4). In this section we conducted experiments on real and simulated
datasets to show that CUDAGRN is able to infer gene regulatory networks from
large and high-dimensional datasets faster than other implementations while
maintaining nearly all the accuracy of inference.

Fig. 4. Computational times of real dataset (6331 Genes, 131 Experiments, 1000 Trees)

4 Conclusion

We presented a novel parallel model of the GENIE3 algorithm, CUDAGRN, de-
veloped by exploiting the Compute Unified Device Architecture (CUDA). Com-
paring the performances of CUDAGRN, Sequential GRN inference and CPU
multi-threaded implementations, we observed that CUDAGRN can outperform
both the other competitors in term of computational time provided paralleliza-
tion did not reduce the accuracy of inference.

Unlike the sequential approach and CPU parallelization, the CUDAGRN al-
gorithm as proposed in this paper is executable on the GPUs. On ordinary PCs,
the number of processing units (cores) in the CPUs is significantly less than the
number of processing units on GPUs. In our approach, whereas the difference
in regression performance, e.g. accuracy, among the different implementations
is imperceptible (data not shown), it is clear that CUDAGRN is much more
efficient in term of computational speed, particularly with large numbers of ex-
periments and trees to build in the Random forest. Testing on real data shows
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that CUDAGRN is nearly 15 times faster than Sequential GRN, and about twice
faster than multi-threaded CPU implementation.

In future, we will refine our implementation of CUDAGRN. In particular,
we plan to append properties to make CUDAGRN more accessible to different
kinds of applications and practical conditions. For instance, the present version
of CUDAGRN is only able to operate on input attributes that are numeric and
it cannot deal with missing values which will be addressed in the new version of
our implementation.
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20. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioin-
formatics. Bioinformatics 23(19), 2507–2517 (2007)

21. Geurts, P., Irrthum, A., Wehenkel, L.: Supervised learning with decision tree-
based methods in computational and systems biology. Molecular Biosystems 5(12),
1593–1605 (2009)

22. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
23. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression

trees. CRC Press (1984)
24. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learn-

ing 63(1), 3–42 (2006)
25. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest vari-

able importance measures: Illustrations, sources and a solution. BMC Bioinformat-
ics 8(1), 25 (2007)

26. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with
the message-passing interface, vol. 1. MIT Press (1999)

27. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: portable shared memory
parallel programming, vol. 10. MIT Press (2008)

28. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: in silico benchmark
generation and performance profiling of network inference methods. Bioinformat-
ics 27(16), 2263–2270 (2011)



Supervised Selective Kernel Fusion

for Membrane Protein Prediction

Alexander Tatarchuk1, Valentina Sulimova2, Ivan Torshin1, Vadim Mottl1,
and David Windridge3

1 Computing Center of the Russian Academy of Sciences, Moscow, Russia
2 Tula State University, Tula, Russia

3 Centre for Vision, Speech and Signal Processing,
University of Surrey, Guildford, UK

{aitech,vsulimova,vmottl}@yandex.ru, tiy135@yahoo.com,

D.Windridge@surrey.ac.uk

Abstract. Membrane protein prediction is a significant classification
problem, requiring the integration of data derived from different sources
such as protein sequences, gene expression, protein interactions etc. A
generalized probabilistic approach for combining different data sources
via supervised selective kernel fusion was proposed in our previous pa-
pers. It includes, as particular cases, SVM, Lasso SVM, Elastic Net SVM
and others. In this paper we apply a further instantiation of this ap-
proach, the Supervised Selective Support Kernel SVM and demonstrate
that the proposed approach achieves the top-rank position among the
selective kernel fusion variants on benchmark data for membrane pro-
tein prediction. The method differs from the previous approaches in that
it naturally derives a subset of “support kernels” (analogous to support
objects within SVMs), thereby allowing the memory-efficient exclusion
of significant numbers of irrelevant kernel matrixes from a decision rule
in a manner particularly suited to membrane protein prediction.

Keywords: Multiple Kernel Learning, SVM, supervised selectivity, sup-
port kernels, membrane protein prediction.

1 Introduction

Membrane proteins comprise 20− 30% of all proteins encoded by a genome and
perform a variety of functions vital to the survival of organisms. Membrane pro-
teins serve as receptors (i.e. sensors of the cells), transport molecules across the
membrane, participate in energy production (ATP biosynthesis) and in cell-cell
interaction (cell adhesion) etc. [1]. They are targets of over 50% of all modern
medicinal drugs [2]. Consequently, membrane protein prediction, i.e. the clas-
sification of proteins as either a membrane or non-membrane is a biomedically
important problem, and the subject of much research [3],[4],[5].

This is a typical pattern recognition problem in that the most informative indi-
vidual feature (in this case typically amino acid sequence data) does not provide
the full story. Additional feature information can be derived from a number of
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other sources, such as gene expression data, protein-protein interactions and so
on. All these data sources contain different and at least partly independent in-
formation about membrane protein prediction task [6]. Consequently, there is a
natural desire to incorporate them into a combined prediction rule to decrease
prediction-errors.

If the data consisted of vectorized features then this act of combination would
constitute a trivial matter of appending feature spaces. However, this is generally
not the case for gene-based problems, where data may, for instance, consist only
of pairwise comparisons. The most appropriate way for integrating heterogeneous
data with a wide variety of gene representations (in this case, amino acid and
gene sequences, feature vectors, graphs and so on) thus consists in embedding
data objects into representation-specific hypothetical linear spaces via kernel
functions and constructing the decision function at the combined space. (A kernel
function is any real-valued symmetric function of two-arguments, which forms a
semidefinite matrix for any finite collection of objects [7],[8]). In particular, there
are a number of approaches in the literature for introducing kernel functions into
biomolecular data (cf [7]).

Any kernel function embeds a set of objects into some linear space and plays
the role of inner product within it [7],[8]. This fact allows us to employ the kernel-
based interpretation of the Support Vector Machine (SVM) method, which was
originally designed for linear feature space [9] and is one of the most convenient
and effective instruments for the binary classification of objects, forming an
optimal linear separating hyperplane from specific “support” training examples.

Mercer Kernels further have the property that linear combinations are also
Mercer, meaning that kernel combination is straightforward. There have thus
been a number of attempts at combine kernel functions for biomolecular data
analysis, the simplest approach being an unweighted sum of kernels. Different lin-
ear (or even non-linear) combinations with fixed or heuristically-chosen weights
have also been considered; however, overall performance is generally poor.

The most general method of kernel fusion is the approach of Lanckriet et al.
[6] which seeks to directly solve for the optimal linear combination of kernels
and gives rise to a quadratically-constrained algorithm for determining the non-
negative adaptive weights of kernel matrices. The respective kernel combination
is incorporated into a decision rule with each kernel’s influences on the decision
proportional to its weight.

A number of authors have carried this work further in various ways, gener-
alizing the approach to problems other than classification [11],[12], working on
algorithmic improvements [13],[14], or deriving theoretical variations, applying
different restrictions for weights [15] and making certain theoretical extensions,
e.g. weighting not only kernels but also features [16],[17]. These variants typ-
ically perform well in constrained scenarios, and where the data are initially
represented by feature vectors. However, they tend not to out-perform [6] on
real protein data.

Furthermore, most of existing multiple kernel learning methods share a com-
mon disadvantage - the absence of a mechanism for supervising so-called
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”sparseness” of the obtained vector of kernel weights. In the genetic arena, the
obtained vector of weights is frequently too sparse, with many informative ker-
nels excluded from the decision rule, with the resulting loss the decision quality.

Only a few methods are explicitly oriented towards elimination of this dis-
advantage and obtaining non-sparse decisions [19],[20] (more advanced versions
utilize a supervised sparseness parameter [21],[22],[23],[24]). We refer to this prop-
erty as ”selectivity”, because it defines an algorithm’s ability to select kernels
most useful to the classification task at hand. A generalized probabilistic ap-
proach for supervised selective kernel fusion was proposed by the authors in
[23],[24] and includes, as particular cases, such familiar approaches as the clas-
sical SVM [9], Lasso SVM [25], Elastic Net SVM [26] and others.

In this paper we apply a further particular case of this approach, called Su-
pervised Selective Support Kernel SVM (SKSVM), initially proposed in [24] to
the membrane protein prediction problem.

We will demonstrate that the proposed approach achieves the top-ranked
position among the selective kernel fusion variants on benchmark data set for
membrane protein prediction. Uniquely, the proposed approach has the very
significant qualitative advantage over the other methods of explicitly indicating
a discrete subset of support kernels within the combination, in contrast to the
other methods that assign some positive (even if small) weight to each kernel,
requiring significantly greater memory overhead.

2 Generalized Probabilistic Formulation of the Multiple
Kernel Two-Class Recognition Problem

Let {(ωj, yj), j = 1, ..., N} be the training set of real-world objects ωj ∈Ω (for
example, proteins) and yj = y(ωj) ∈ {−1, 1} defines its class-membership. Let
also n similarity functions Ki(ω

′, ω′′), ω′, ω′′ ∈ Ω, i = 1, ..., n be defined, each
of which forms a positive semidefinite matrix {Ki(ωj , ωk)} for any finite set of
objects {ωj, ωk ∈ Ω, j, k = 1, ..., S} and is hence a kernel function [8].

Each kernel function Ki(ω
′, ω′′), i = 1, ..., n embeds the set of objects Ω into

some hypothetical linear space Xi by a hypothetical mapping xi = xi(ω) ∈
Xi, ω ∈ Ω, and plays the role of inner product within it Ki(ω

′, ω′′) =
< xi(ω

′), xi(ω
′′) >: Xi×Xi→R.

For combination using several kernels we here utilize the generalized proba-
bilistic formulation of the SVM, which was proposed in [20,22,23] as an instru-
ment for making Bayesian decisions on the discriminant hyperplane∑n

i=1 Ki(ai, ω) + b ≷ 0 within the Cartesian product of the kernel-induced hy-
pothetical linear spaces a = (a1, ..., an) ∈ X, b ∈ R.

The main idea of the proposed probabilistic formulation consists in assuming
a specific system of probabilistic assumptions regarding the two distribution
densities of hypothetical feature vectors for the two classes: ϕ (x|y=+1) and
ϕ (x|y=−1), defined by the (as yet) undetermined hyperplane in the combined
linear space x=(x1, ..., xn) ∈ X =X1×...×Xn under certain a priori probabilistic
assumptions.
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Let aTx + b ≷ 0 be some hyperplane with the direction element a ∈ X and
the bias b ∈ R. Associated with it are two parametric families of conditional
distributions of object densities:

ϕ(x|a, b, y; c) = const

{
1, y(aTx+ b) � 1,

exp
[−c

(
1− y(aTx+ b)

)]
, y

(
aTx+ b

)
< 1.

(1)

We assume that the random vectors of two classes are distributed substantially
within their respective subspaces aTx+ b > 0 and aTx+ b < 0; the parameter
c regulates the extent to which this assumption holds. (Note that fact that
the uniform distribution in the upper row of (1) implies an infinite area does
not lead to mathematical contradiction, since it participates only in the Bayes’
formula[27]).

Suppose the training set {(xj , yj), j=1, ..., N},xj ∈ X = X1×...×Xn, yj = ±1
has been obtained. Then the conditional distribution of the whole training set is

Φ(X |Y,a, b; c) =
∏N

j=1
ϕ(xj |a, b, yj; c). (2)

The second key assumption in the proposed probabilistic model is the as-
sumption of a joint a priori distribution Ψ(a, b) of parameters (a, b) defining the
separating hyperplane. Assume that we have no any a priori preferences about
b. We then have that:

Ψ(a, b) ∝ Ψ(a). (3)

The a posteriori distribution density P (a, b|X,Y ; c) of parameters (a, b) with
respect to the training set (X,Y ) is then defined by Bayes’ formula:

P (a, b|X,Y ; c) =
Ψ(a, b)Φ(X |Y,a, b; c)

const
∝ Ψ(a, b)Φ(X |Y,a, b). (4)

Understanding the training problem as that of maximizing this a posteriori
distribution density in the space of model parameters (a, b) leads to the criterion:

(â, b̂|X,Y ; c) = argmax
a∈X,b∈R

[lnΨ(a, b) + lnΦ(X |Y,a, b; c)] (5)

Theorem 1. The training criterion (5) for distributional family (1) and a-
priori distribution of hyperplane parameters (3) is equivalent to the problem of
minimization of the criterion J(a, b, δ|c) in a convex set defined by linear in-
equality constraints for training objects:

⎧⎪⎪⎨
⎪⎪⎩
− lnΨ(a1, ..., an)+c

N∑
j=1

δj → min
(
ai∈Xi, b∈R, δj ∈R

)
,

yj

(
n∑

i=1

< ai, xi(ωj) >+b

)
� 1−δj, δj � 0, j = 1, ..., N.

(6)

Kernelizing criterion (6) yields the form:
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⎧⎪⎪⎨
⎪⎪⎩
− lnΨ(a1, ..., an)+c

N∑
j=1

δj → min
(
ai∈Xi, b∈R, δj∈R

)
,

yj

(
n∑

i=1

Ki(ai, ωj)+b

)
� 1−δj, δj � 0, j = 1, ..., N.

(7)

Each specific choice of a priori distribution density Ψ(a1, ..., an) expresses a
specific a priori preference about the hyperplane orientation, and endows train-
ing criterion (7) with the ability to select informative kernel-representations (and
suppress redundant ones).

In particular, a number of well-known SVM-based training criteria can be
obtained form the proposed probabilistic approach, for example, the traditional
SVM, Lasso SVM and Elastic Net SVM, differing from one another in the reg-
ularization function, which has the form, respectively:

∑n
i=1Ki(ai, ai),∑n

i=1

√
Ki(ai, ai) and

∑n
i=1Ki(ai, ai) +μ

∑n
i=1

√
Ki(ai, ai).

3 Supervised Selective Support Kernel SVM (SKSVM)

We apply here a very specific case of the general problem formulation (7), one
which was initially proposed in [24]. The a priori density of orientation distri-
butions is represented here as composite of the Laplace distribution, while the
norms of the components are not less than some given threshold∑n

i=1

√
Ki(ai, ai) ≤ μ, and the Gaussian distribution when the norms are greater

than the given threshold
∑n

i=1

√
Ki(ai, ai) > μ:

ψ(ai|μ) ∝ exp(−q(ai|μ)),
q(ai|μ) =

{
2μ
∑n

i=1

√
Ki(ai, ai),

∑n
i=1

√
Ki(ai, ai) ≤ μ,

μ2 +
∑n

i=1 Ki(ai, ai),
∑n

i=1

√
Ki(ai, ai) > μ.

(8)

The a priori assumption of (8) along with the generalized training criterion
(7) together define a training optimization problem of the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JSKSVM (a1, ..., an, b, δ1, ..., δN |c, μ) =
n∑

i=1

q(ai |μ)+ c
N∑
j=1

δj→ min
(
ai∈Xi, b∈R, δj∈R

)
,

q(ai |μ) =
{
2μ
√
Ki(ai, ai) if

√
Ki(ai, ai) � μ,

μ2 +Ki(ai, ai) if
√
Ki(ai, ai) > μ,

yj

(
n∑

i=1

Ki(ai, xij) +b

)
�1−δj, δj�0, j=1, ..., N.

(9)

The proposed training criterion (9) is thus a generalized version of the clas-
sical SVM that implements the principle ofkernel selection. We hence refer to
the threshold 0 � μ < ∞ in(1) as a ”selectivity” parameter because it reg-
ulates the ability of the criterion to enact kernel selection. When μ = 0 ⇒
q(ai|μ) = Ki(ai, ai) the criterion (7) is equivalent to the kernel-based SVM cri-
terion with the minimum ability to kernel selection. At the same time, values
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μ � 0 ⇒ q(ai|μ) = 2μ
√
Ki(ai, ai) are equivalent to the Lasso SVM with in-

creasing selectivity as μ is increased with respect to the parameter c (until full
suppression of all kernels occurs).

Moreover, this criterion, in contrast to other criteria for kernel fusion, explic-
itly partitions the entire set into two subsets (as is shown in the next section);
“support” kernels (which occur in the resulting discriminant hyperplane) and ex-
cluded kernels. The proposed approach is hence termed the Supervised Selective
Support Kernel SVM (SKSVM).

The approach to solving problem (9) is set out the following two theorems;
more detailed description can be found at [24].

Theorem 2. The decision implicit in problem (9) is equivalent to the decision

(ξ̂i � 0, i ∈ I = {1, ..., n}, λ̂j � 0, j = 1, ..., N) of the dual problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L (λ1, ..., λN |c, μ) =
N∑
j=1

λj −
∑
i∈I

(1/2)ξi → max(λ1, ..., λN ),

ξi≥ 0, ξi≥
N∑
j=1

N∑
l=1

yjylKi(ωj , ωl)λjλl−μ2, i∈I={1, ..., n},
N∑
j=1

yjλj = 0, 0 ≤ λj ≤ (c/2), j = 1, ..., N.

(10)

and is expressed at the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

âi=
∑

j:̂λj>0

yj λ̂jxi(ωj), i∈I+=

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(ωj , ωl)λ̂j λ̂l−μ2>0

}
.

âi= η̂i
∑

j:λ̂j>0

yj λ̂jxi(ωj), i∈I0=

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(ωj , ωl)λ̂j λ̂l−μ=0

}
,

âi=0, i∈I−=

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(ωj , ωl)λ̂j λ̂l−μ2 <0

}
,

(11)

4 The Resulting Discriminant Hyperplane and Support
Kernels

Assume the dual optimization problem (10) has been solved. Only the Lagrange
multipliers λ1�0, ..., λN�0 are of interest. In accordance with (11), the solution
arrived at partitions the set of all kernels I = {1, ..., n} into three subsets:

I+=

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(xij , xil)λjλ l > μ2

}
,

I0 =

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(xij , xil)λjλ l = μ2

}
,

I−=

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(xij , xil)λjλ l < μ2

}
.

(12)
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Theorem 3. The optimal discriminant hyperplane defined by the solution of the
Supervised Selective Support SVM training problem (9) has the form∑

j:λj>0

yjλj

(∑
i∈I+

Ki(ωj , ω) +
∑
i∈I0

ηiKi(ωj , ω)

)
+ b ≷ 0, (13)

where the numerical parameters {0�ηi�1, i∈I0; b} are solutions of the linear
programming problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2μ2
∑
i∈I0

ηi + c
n∑

j=1

δj → min(ηi, i ∈ I0; b; δ1, . . . , δN ),

∑
i∈I0

(
N∑
l=1

yjylKi(ωj , ωl)λ l

)
ηi+yjb+δj � 1−∑

i∈I+

N∑
l=1

yjylKi(ωj , ωl)λ l,

δj � 0, j = 1, . . . , N, 0 � ηi � 1, i ∈ I0.

(14)

5 The Subset of Support Kernels

The solution (η̂i, i ∈ I0; b̂; δ̂1, . . . , δ̂N ) of the linear programming problem (14)
is completely defined by the training set (X,Y ). As is seen from criterion (14),
some of coefficients (η̂i, i∈I0) may equal zero if the respective constraints 0 � ηi
are active at the solution point.

However, it can be shown that, if all the linear spaces Xi are finite-dimensional
and if the training set is considered as randomly-selected points defined by a con-
tinuous probability distribution, then the inequalities η̂i>0 are almost certainly
met for all i∈I0.

This means that, without any loss of generality, the constraints {0 � ηi �
1, i ∈ I0} may be omitted in (14), and, yet, all kernels i ∈ I0 will occur in
the discriminant hyperplane (13) with nonzero weights. It is hence natural (by
analogy with the notion of support objects) to call the subset Isupp=I+∪I0 ⊆ I
the set of support kernels.

The structure of the subsets of kernels (12) explicitly reveals how the subset of
support kernels Isupp is affected by the parameter μ in the training criterion (9).
Thus, if μ = 0, the set of evident support kernels I+⊆I coincides with the entire
set I={1, . . . , n}. In this particular case, the function q(ai | μ) in (9) is quadratic
q(ai |μ) = const +Ki(ai, ai) for all ai ∈ Xi, and the training criterion does not
differ from the usual SVM without selectivity properties; all of the initial kernels
are support kernels because they all occur in the resulting decision rule.

As μ grows, increasing numbers of kernels appear in the set I− of nonsupport
kernels (12), and, correspondingly, the set of support kernels Isupp=I+∪ I0 gets
smaller. At the asymptote, the selectivity parameter μ→ ∞ forces all kernels
into I−, such that no support kernels remain at all: Isupp = ∅.

6 Adjusting the Selectivity Parameter

The selectivity parameter 0 � μ < ∞ is thus a structural parameter of the
Supervised Selective Support Kernel SVM training criterion that determines a
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sequence of nested classes of training-set models whose dimensionality dimin-
ishes as μ grows, starting from the usual SVM model when μ = 0. As it is
not determined a priori, at present, the most effective method for choosing the
value of the structural parameter is via cross-Validation, directly estimating the
generalization performance of the training method.

7 Experimental Design

7.1 Membrane Proteins Data Set

To evaluate the proposed approach as a method for membrane protein prediction
we use the same data set as Lanckriet et all. (described in [6]). We thus use as a
gold standard the annotations provided by the Munich Information Center for
Protein Sequences Comprehensive Yeast Genome Database (CYGD) [28]. The
CYGD assigns subcellular locations to 2318 yeast proteins, of which 497 belong
to various membrane protein classes. The remaining approximately 4000 yeast
proteins have uncertain location and are therefore not used in these experiments.

7.2 Kernel Functions for Membrane Proteins

For the membrane protein prediction we evaluate seven kernel matrices derived
from three different types of data: four from the primary protein sequence, two
from proteinprotein interaction data, and one from mRNA expression data col-
lected by Lanckriet et all. [6]. (All of these kernel matrices, along with the data
from which they were generated are available at noble.gs.washington.edu/proj/
sdp-svm).

The first two kernel matrices (KSW and KB) are based on the pairwise se-
quence alignment algorithms SmithWaterman local alignment (SW) and BLAST
(B).

The third kernel (KPfam) was also derived from protein sequences, but was
obtained using hidden Markov models (HMMs) on the Pfam database.

The fourth kernel (KFFT ) uses hydropathy profiles, generated from the Kyte-
Doolittle index and characterized by alternations of hydrophobic and hydrophilic
aminoacids regions which are sufficiently conserved for membrane proteins. The
frequency content of the hydropathy profiles, estimated by a FFT procedure, was
utilized as a feature vector and used for forming the Gaussian (radial) kernel.

The next two kernels - the linear kernel (KLi) and the diffusion kernel (KD)
are constructed from information about medium- and high-confidence protein-
protein interactions from a database of known interactions, which is presented
as a matrix [2318x2318] of ones (for pairs of interacted proteins) and zeros (for
pairs of non-interacted proteins).

The linear kernel (KLi) matrix is derived from protein feature vectors (i.e. via
the inner-product of protein feature pairs).

The diffusion kernel (KD) considers the interaction-matrix as a graph, in
which the nodes corresponded to proteins and the edges to the interactions
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between them. The diffusion kernel function then measures the similarity of two
nodes of the graph based on a randomwalk distance, i.e. such that nodes that
are connected by shorter paths (or by many paths) are considered more similar.

Finally, the seventh kernel (KE) is a radial kernel constructed on the basis of
441-element feature vectors obtained entirely from microarray gene expression
measurements. Though gene expression information is not expected to be par-
ticularly correlated with any one membrane protein, it is not possible to exclude
this kernel a priori.

Additionally, five random kernels (KRnd1, ...,KRnd5) were computed on the
basis of 100-length feature vectors, randomly generated without taking into ac-
count labeling information about the classes of the proteins. These non-
informative kernels were introduced in order to check the ability of the proposed
procedure to eliminate non-useful information.

7.3 Experimental Setup

The full set of 2318 proteins (497 membrane proteins and 1821 non-membrane
proteins) was randomly split 30 times into training and test sets in the propor-
tion 80:20. As a result, each training set contained 397 membrane proteins and
1456 non-membrane proteins. Each of the test sets contain, respectively, 100
membrane proteins and 365 non-membrane proteins.

For each of 30 training sets obtained we derive 20 different decision rules for
membrane protein prediction:

1. For each of 7 informative and 5 random kernels the traditional SVM training
procedure was performed separately;

2. SVM classification on the unweighted sum of all 12 kernels was also applied;
3. For all 12 kernels, the proposed Selective Supervised Selective Kernel SVM

was performed 6 times with 6 different values of the selectivity-parameter;
4. The optimal decision rule was selected for the proposed method via 5-fold

cross-validation.

As a pre-processing step each kernel matrix was centered and normalized to
be a unit diagonal matrix.

The quality of each decision was estimated via the ROC-score using the hy-
perplane bias b to vary sensitivity.

7.4 Results and Discussion

The averages and standard deviations of ROC-scores, computed across 30 ran-
domly generated 80:20 splits for each of 20 training conditions listed in the
previous section, are presented in table 1.

As we can see from table 1, the results of the proposed supervised selective
support kernel SVM outperform those obtained for each of 12 kernels individu-
ally, and also those of the unweighted kernel sum with SVM training. The result
obtained at the zero-selectivity level is exactly equal to the result obtained for
the unweighted kernel sum (and which supports the theoretical results above).
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Table 1. Results of membrane protein prediction

Kernels algorithm μ ROC-score Kernels algorithm μ ROC-score

KB SVM - 0,825± 0,032 KRnd4 SVM - 0,521± 0,029

KSW SVM - 0,809± 0,027 KRnd5 SVM - 0,509± 0,029

KPham SVM - 0,859± 0,022 All 12 SVM - 0,881± 0,014

KFTT SVM - 0,776± 0,014 All 12 SKSVM 0 0,881± 0,014

KLi SVM - 0,634± 0,042 All 12 SKSVM 1 0,881± 0,015

KD SVM - 0,638± 0,037 All 12 SKSVM 5 0,909± 0,014

KE SVM - 0,752± 0,022 All 12 SKSVM 7.5 0,917± 0,015

KRnd1 SVM - 0,510± 0,029 All 12 SKSVM 10 0,916± 0,015

KRnd2 SVM - 0,517± 0,028 All 12 SKSVM 15 0,904± 0,015

KRnd3 SVM - 0,515± 0,030 All 12 SKSVM optimal 0,918± 0,016

Moreover, it may be seen that practically all reasonable values of the
selectivity-parameter provide good results. The performance obtained using the
optimal selectivity value selected via 5-fold cross-validation for each of 30 train-
ing sets individually only slightly outperforms the best result obtained using
fixed selectivity-levels. This implies that the same selectivity-level is near opti-
mal across the range of training sets (though of course a fixed selectivity level
may be not appropriate for different tasks, for example, for recognition different
classes of proteins).

The reported results of membrane protein prediction obtained by another
multiple kernel learning techniques [6], [16], [18] for the same data set lie in the
range [0.87-0.917]. The proposed approach therefore achieves the top-ranked po-
sition of the methods reported in the literature. It should be noted, furthermore,
that the proposed approach has the unique qualitative advantage of clearly-
delineating the subset of support kernels that participate in the decision rule,
being thereby directly scientifically interpretable, and potentially assisting with
further experimental hypothesis generation.

To demonstrate this delineation of support kernels for one of 30 training sets,
table 2 contains the results of the partitionings of the full set of 12 kernels into
three subsets: 1) the subset of kernels I−, which were classified by the algorithm
as non-supported, and which are not weighted or included in the decision rule;
2) the subset of kernels I+ having unit weight and 3) the subset of kernels I0

having a weight between 0 and 1.
Only the kernels of subsets I+ and I0 are support kernels and participate in

the decision rule.
As we can see from table 2, the highest selectivity value excludes the random

kernels from the set of support kernels entirely. Also, interaction-based linear
kernelKLi was excluded in the most cases, while another interaction-based kernel
KD was always excluded.

This result can be explained by such a way. The information about protein-
protein interactions can be useful for membrane protein prediction for two rea-
sons. First, hydrophobic molecules or regions of molecules tend to interact with
each other. Second, transmembrane proteins are often involved in signaling
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Table 2. Kernel fusion results for different selectivity values μ: subsets of non-support
(I−) kernels and support (I+ and I0) kernels with their weights

μ KB KSW KPham KFTT KLi KD KE KRnd1 KRnd2 KRnd3 KRnd4 KRnd5 ROC

0 I+ I+ I+ I+ I+ I+ I+ I+ I+ I+ I+ I+

1 1 1 1 1 1 1 1 1 1 1 1 0.877

5 I+ I+ I+ I+ I0 I+ I+ I0 I0 I0 I0 I0

1 1 1 1 0.87 1 1 0.26 0.26 0.14 0.36 0.30 0.907

7.5 I0 I+ I0 I0 I− I+ I0 I− I− I− I− I−

0.70 1.00 0.88 0.81 - 1.00 0.99 - - - - - 0.919

10 I0 I+ I0 I0 I− I+ I0 I− I− I− I− I−

0.34 1 0.63 0.56 - 1 0.72 - - - - - 0.913

15 I− I0 I0 I0 I− I0 I0 I− I− I− I− I−

- 0.95 0.14 0.10 - 0.94 0.11 - - - - - 0.889

pathways, and therefore different membrane proteins are likely to interact with
a similar class of molecules upstream and downstream in these pathways. At
the same time the diffusion kernel involves the information about interactions
more carefully and provides essentially more acurate way for comparing protein
sequences in contrast to the linear kernel.

Finally, we can see that only half (6 of 12) of the full kernel set are support
kernels in this example, saving on memory requirements.

Thus, in sum, this particular feature of the proposed method makes it prefer-
able to other multi-kernel methods within the literature, which generally assign
positive weight to all kernels.
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Abstract. RNA sequencing (RNA-seq) is a New Generation Sequencing
(NGS) method used for the analysis of transcripts and differential gene
expression profiles. With respect to the microarray technology, RNA-
seq method has two main advantages: the quantization of a large dy-
namic range of expression levels, with absolute rather than relative values
and no a priori knowledge needed about the sequences to be analyzed.
Among small non coding RNAs (sncRNA) obtained through RNA-seq,
microRNAs (miRNAs, 22–25 nt long) represent key regulators in multi-
ple cellular functions, as they have a crucial role in different physiological
processes. miRNAs are in fact differentially expressed in several types of
cancer, in specific tissues and during specific cell status. Since the studies
about miRNAs are quite recent, there is not an accurate and unambigu-
ous “pipeline” which can be applied to the study of gene expression by
RNA-seq. Clustering algorithms, for instance, have been applied to mi-
croarray data in order to discover groups of genes that are co-regulated
with respect to certain experimental conditions. Since many regulation
mechanisms involve only a set of genes and a limited set of experimental
conditions, a new approach is needed. Biclustering is a suitable approach
because it can separate groups of rows and columns, in a data matrix,
that exhibits similar values or similar characteristics.

In this work we used a biclustering approach in order to identify some
patterns of miRNA gene expression deregulation in human breast cancer
versus healthy controls. We used the Iterative Signature Algorithm (ISA)
tool, which has proved one of the most efficient when applied to gene
expression datasets. Considering a real word breast cancer dataset, with
our analysis we highlighted 12 miRNA biclusters, each of them involving
different types of tumor samples and miRNA families, that were validated
in the current scientific literature with the support of the MetaMirClust
and UCSC Genome Browser online tools. Our approach has shown the
association between specific sub-class of tumor samples having the same
immuno-histo-chemical (IHC) and/or histological features. The proposed
biclustering methodology has proved a valid instrument for the study of
miRNA expression profiles, with the possibility to identify biclusters that
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can provide novel relationships among groups of miRNAs and patient
conditions, that eventually have to be validated by in-vitro experiments.

Keywords: Next Generation Sequencing, miRNA expression profiles,
breast cancer, biclustering.
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Abstract. The functioning of a protein relies on its location in the
cell. Therefore, predicting protein subcellular localization is an impor-
tant step towards protein function prediction. Bacterial proteins are con-
sidered among the most important proteins that play a wide range of
useful and harmful roles. They generally can be divided into two groups
namely: Gram-positive and Gram-negative. In this study, we aim at solv-
ing Gram-positive and Gram-negative bacterial proteins subcellular lo-
calization. Recent studies have shown that using Gene Ontology (GO)
for feature extraction can improve the prediction performance. However,
for newly sequenced proteins, the GO is not available. Therefore, for
these cases, the prediction performance of GO based methods degrade
significantly. Besides, the impact of other sources of features such as
physicochemical, and evolutionary information to extract local informa-
tion to tackle this problem, have not been explored adequately.

In this study, we develop a method to effectively employ physicochem-
ical and evolutionary-based information in the protein sequence. To do
this, we propose two new segmentation-based feature extraction meth-
ods, namely: overlapped segmented density and overlapped segmented
autocorrelation. We extract these feature groups by dividing the protein
sequence into several segments and extract density and autocorrelation
information for each segment in the cumulative, overlapping manner.
These feature groups are extracted to capture potential discriminatory
information based on physicochemical properties of the amino acids to
tackle Gram-positive and Gram-negative subcellular localizations. To in-
corporate evolutionary information as well, we extract overlapped seg-
mented density and overlapped segmented autocorrelation feature groups
from the transformed protein sequence using Position Specific Scoring
matrix (PSSM).

We also extract two evolutionary based feature groups, namely: semi
composition and auto covariance feature groups. These features groups
are extracted to add more evolutionary information to our extracted fea-
tures. We investigate the effectiveness of our proposed feature extraction
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techniques using 10 attributes. These attributes have been experimen-
tally selected among a wide range of (117 attributes) physicochemical
attributes. We also employ Rotation Forest classification technique for
our task. Rotation Forest is a newly proposed classifier to build ensem-
ble classifier. It is based on the bagging technique and aims at increasing
the diversity in the ensemble classifier. Despite its promising performance
for similar studies, it has not been used for protein subcellular localiza-
tion prediction problem (Figure 1). By applying Rotation Forest to our
extracted features, we enhance Gram-positive and Gram-negative sub-
cellular localization accuracies up to 3.4% better than previous studies
which also used Gene Ontology for feature extraction.

Keywords: Protein Subcellular Localization, Gram-positive, Gram-
negative, Feature Extraction, Physicochemical-based Features, Rotation
Forest.

Fig. 1. The overall architecture of our proposed approach



Data Driven Feature Selection

for RNA-Seq Differential Expression Analysis

Henry Han

Department of Computer and Information Science,
Fordham University, New York NY 10023 USA

Quantitative Proteomics Center
Columbia University, New York, NY 10027 USA

xhan9@fordham.edu

Abstract. RNA-Seq provides an unprecedented way to unveil transcrip-
tional details by using ultra-high-throughput sequencing technologies to
generate hundreds of million short reads from RNA molecules. As a novel
big data, RNA-Seq data challenge existing omics data analytics for its
volume and complexity. A major challenge in RNA-Seq analysis is to ro-
bustly determine whether an observed count difference of a gene across
two or more conditions is statistically significant. Quite a few differential
expression (D.E.) analysis models have been proposed to address it from
different standing points. They can be categorized as parametric and
non-parametric methods according to whether they rely on statistical
parameter estimation modeling approaches.

However, almost all these methods do not provide a serious feature se-
lection mechanism but invite all genes into differential expression analysis
procedures directly. Such an invite-all scheme not only brings challenges
in model-fitting statistically, but also inevitably lowers accuracy in D.E.
analysis by increasing false positive ratios. This is because those genes
with less contribution to data variations can be falsely detected as D.E.
genes by the models, even if count differences for some genes are caused
by alignment artifacts, inaccurate library-preparations, or other factors
rather than reaction to treatment.

In this study, we presented a data-driven feature selection method:
nonnegative singular value approximation to enhance RNA-Seq D.E.
analysis by selecting genes with large contributions to data variations
along first singular value direction by taking advantages of RNA-Seq
count data’s built-in characteristics. Unlike most feature selection meth-
ods in microarray communities, it does not have any prior data distri-
bution assumption, and avoids any impact from possible distribution
modeling biases on D.E. analysis. Moreover, it provides a novel purely
data additive way to evaluate each genes significance by avoiding trans-
forming them into a subspace via a linear or nonlinear transform as tra-
ditional transform-based feature selection methods such as PCA, ICA
or NMF did for microarray data. We further integrated our algorithm
with a state-of-the-art D.E. analysis algorithm: DESeq, and found that
the proposed algorithm demonstrated advantages in identifying differen-
tially expressed genes with low false positive rates on benchmark data.
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Furthermore, we found that our algorithm contributed to better size fac-
tor calculation and more robust parameter estimation in DESeq analysis,
in addition to enhancing its sequencing-depth independence in D.E. anal-
ysis. Finally, we demonstrated our algorithm’s application in RNA-Seq
biomarker discovery, which is an important but not addressed topic in
RNA-Seq analysis.

Keywords: RNA-Seq, feature selection, differential expression analysis,
biomarker.
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Abstract. This work presents a framework to estimate intramuscular
fat percentage on live cattle based on ultrasound images. A procedure
to automatically determine the region of interest is proposed. Given the
determined ROI, feature extraction and dimensionality reduction is per-
formed based on statistics measures, texture, local binary pattern, among
others. A model based in Support Vector Regression (SVR) is trained to
estimate the intramuscular fat percentage. A database of ultrasound im-
ages acquired by an beef industry expert is used; for each animal there are
available the intramuscular fat estimation obtained by an expert using a
commercial software, and by chemical analysis. The proposed framework
shows good results for a fully automatic procedure.

Keywords: ultrasound images, feature extraction, intramuscular fat es-
timation, beef quality, support vector regression.

1 Introduction

Beef quality is a complex measure, among others, consumers highlight tender-
ness as one of the most determinant factors [14,17]. It has been show that intra-
muscular fat percentage (%IMF) is highly correlated with tenderness [17,2,4].
Therefore an automatic system for its measurement is fundamental.

Intramuscular fat percentage is the proportion of intramuscular fat in the rib
eye. This quality measure are usually performed in slaughtered animals. How-
ever, is clear the importance and the utility of measuring them with the animal
alive, for selective feeding, breeding, rearing [10]. For that reason is becoming
important to develop automatic measurements and analysis algorithms on ul-
trasound images in livestock.

Ultrasound has been used in predicting beef quality for decades, allowing to
measure animals’ characteristics in a non invasive way and reaching objective
measures [5]. It is simple and allows real time evaluations, easy to use in a
large group of animals with reasonable costs and offers an alternative for data
collection in progeny testing programs.

There are several previous work in this kind of applications, such as [6] ad-
dressing the estimation of the %IMF in ultrasound images for livestock. In [3]
the rib area was used as a determinant factor in the estimation of beef quality.
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(a) (b)

Fig. 1. Image examples. Figure 1a shows an example image used as an input for the
algorithm. Intramuscular fat appears on the top side, 12th and 13th rib are on the
bottom and between them is the ROI. In Figure 1b can see the image in Figure 1a
processed by the Otsu’s method [15], the result is an binary image where the fat is
contained in the white part.

The production method used in Latin America usually includes a high com-
ponent of extensive farming (although feedlot is used too) impacting in the
amount of %IMF, while in other regions the feedlot production is preferred
[9,10,1].Therefore, the content of %IMF in animals analyzed in previous works
such as [5,10,12,13] might be different from the animals analyzed in the present
work and predictors should be adjusted to this case.

In this work we propose an automatic method for feature extraction from
the ultrasound image, and adjust a model in order give an estimation of the
%IMF. The remainder of the paper is organized as follows section 2 describes
the framework, Section 3 presents the experiments and results, and Section 4
gives some conclusions and future work.

2 Framework

The proposed framework performs an automatic procedure for defining the re-
gion of interest (ROI) in the ultrasound image (see Figure 1a), and extract a
set of features. Then Principal Components Analysis is performed with the ex-
tracted features in order to reduce its dimensionality. With this new space of
features a Support Vector Regression (epsilon-SVR) was performed to obtain
the intramuscular fat estimation. Details of this procedure are given next.

2.1 Defining the Region of Interest Detection

Our interest lies in measuring the %IMF in the longissimus dorsi muscle, there-
fore the ultrasound images are acquired around the 12th and 13th ribs and below
the subcutaneous fat [9], only the muscle between the 12th and 13th rib under
the subcutaneous fat is taken to determine the %IMF value.
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Fig. 2. An image example of the standard output from the automatic ROI detection
procedure. Red lines represent subcutaneous fat and both ribs. The square in green is
the ROI, an 80×80 pixels square set on the center of the delimited by the subcutaneous
fat and the ribs.

In order to automatically determine the region of interest, middle points of
both ribs (horizontally) and the upper point were detected, and the lower point of
the subcutaneous fat as seen on the Figure 1a. For the subcutaneous fat location
the Otsu method [15] was applied for thresholding the image (see Figure 1b).
In the binary image we look for a region like the subcutaneous fat. A labeling
algorithm was run on the image and then the labeled object with the highest
ratio between the horizontal and vertical length was set as the subcutaneous fat.
For locating the ribs, an algorithm based on anisotropic diffusion was applied
in order to smooth the image without losing border information and restricting
small variations of intensity in a same region [16].

Then, a correlation between the image and a synthetic template emulating a
generic rib (see Figure 3b) was performed. The two local maxima in magnitude
found in the correlation image represent the location of the ribs (see Figure 3a).

Finally, the ROI is defined as a 80 × 80 pixels square set on the center zone
delimited by the subcutaneous fat and the ribs [12]. Figure 2 shows an example
of the output from the ROI detection procedure.

2.2 Features Extraction and Selection

A set of forty two features were extracted from each ROI image. These features
are based on several statistics and transformation on the ROI, for example, tex-
ture descriptors, local binary pattern, co-occurrence matrix, histograms, Fourier
Transform, etc. [12,13,11,10].
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Features:

Gradient Co-occurrence matrix
- mean μ (45◦,90◦,135◦,180◦) - correlation (45◦,90◦,135◦,180◦)
- std σ (45◦,90◦,135◦,180◦) - homogeneity (45◦,90◦,135◦,180◦)
Gray Level - contrast (45◦,90◦,135◦,180◦)
- mean - energy (45◦,90◦,135◦,180◦)
- contrast ratio
Histogram Local Binary Pattern (LBP)
- percentile (each 20%) - correlation
- skewness - homogeneity

Fourier transform - contrast
- variance coefficient - energy
- power percentile (× 5)

As a result of the feature acquisition stage we obtain a 42-dimension feature
space. To reduce the space dimension in order to improve computational perfor-
mance a feature extraction stage based on Principal Components Analysis was
done, finding that 99% of the variance is accumulated in the first ten compo-
nents. As a result of the PCA a new space of ten new features combinations was
used to do the %IMF estimation model.

2.3 Estimation of the %IMF through Support Vector Regression

Support Vector Regression is a variant of the classic Support Vector Machine
algorithm. The basic idea of SVR consist in make a mapping of the training
data, x ∈ X, to a larger space F via a nonlinear mapping Φ : X → F, where a
linear regression can be performed. For more details on SVR see [7].

In this work, a radial basis function (g(u, v) = e−γ|u−v|2) was used as kernel
type. Parameters γ and tolerance of termination criterion were optimized based
on the data train set.

3 Experiments and Results

3.1 Database

We worked with a database of 283 ultrasound images (8-bits gray level) obtained
from 71 live steers. Four images were taken per animal, and were analyzed inde-
pendently [12]. Ultrasound images were collected at a cattle ranch in Uruguay.
The ultrasound hardware used was the Aquila Pro Vet, an industry standard
equipment. Based in the ultrasound images an estimation of the %IMF was per-
formed by an expert from the beef industry using a commercial software. Also,
the %IMF was measured by chemical analysis and used as ground truth to val-
idate the regression results. The lipid extraction protocols used are described
in [8]; its margin of error in the measurement is less than 0.3%.
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(a) (b)

Fig. 3. (a) The result of the correlation with the image after the anisotropic diffusion
and the template of a synthetic rib, in (b) shows the template who emulates a generic
rib
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Fig. 4. Scatter plot between both, the %IMF estimation algorithm developed (in pur-
ple) and the estimation performed by the expert (in yellow), and the ground truth
obtained by chemical analysis. The 71 animals are represented in the graphic.

3.2 Performance Analysis

The database was divided into two sets randomly drawn, one to train the al-
gorithm and compute the linear regression coefficients (184 images, 2/3 of the
dataset) and the other to test it (92 images, 1/3 of the dataset).

This procedure was repeated 100 times, varying the test and training set. The
results were: RMSE = 1.31 and R2 = 0.37, where RMSE is the root mean
square error and R2 is the Pearson coefficient of correlation. Figure 4 shows the
71 animals in a scatter plot of the %IMF estimation vs. the ground truth. To
contrast, the estimation of the %IMF made by the expert, which has an RMSE
of 1.58 and a correlation coefficient of 0.23. Table 1 compares the result of the
algorithm developed and the expert estimation.
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Table 1. Quantitative evaluation of the %IMF estimation algorithm

Ours Expert

RMSE 1.31 1.58
R2 0.37 0.23

4 Conclusions and Future Work

A new procedure for estimating the intramuscular fat percentage was presented.
First, the region of interest was automatically determined based in ultrasound
images characteristics, from this region a set of features was extracted for fat
estimation.

The performance of the automatic selection of the ROI was highly satisfactory,
more than 96% of the database were well detected, in the reminder 4% where
the ROI was wrong detected, the software gives an alert and allows for a manual
definition.

The prediction of the intramuscular fat showed a better adjustment in the
middle range of fat percentages (3%-5%). Meanwhile for the range of higher
fat percentages the error is considerable, underestimating the intramuscular fat,
however this error in our approach is lower than the error in the expert’s esti-
mation. The overall performance is promising, clearly a deeper analysis of the
features considered is needed.

The average execution time is 15 seconds in a standard laptop, which is neg-
ligible in terms of industry requirements. Allowing fast estimation of the intra-
muscular fat percentage at industrial scale.

In future work we propose to study the impact of different parameters in the
estimation, such as the ROI’s area and location. We also want to explore new
textures descriptors in the feature extraction and selection stage.

Acknowledgments. This work was partially supported by ANll grant FMV
2 2011 1 7376. The authors would like to thanks Eileen Armstrong, Gessy Druil-
let, Marcela Eugster for their contribution on the database acquisition and
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Abstract. The development of stem cells and progenitor cells into ma-
ture functioning cells depends on, among others, the correct functioning
of the wingless-Int (WNT) signaling pathway. WNT signaling has a crit-
ical role in regulating stem cell functioning and fate decisions in many
different cancerous cells, among them in Leukemia cells by the regula-
tion of haematopoiesis. For Acute Myeloid Leukemia (AML), the ma-
lignant counterpart of HSC, currently only a selective number of genes
of the WNT pathway are analyzed by using either gene expression or
DNA-methylation profiles for the identification of prognostic markers
and potential candidate targets for drug therapy. It is known that mRNA
expression is controlled by DNA-methylation and that specific patterns
can infer the ability to differentiate biological differences, thus a com-
bined analysis using all WNT annotated genes could provide more insight
in the WNT signaling.

In this study we had for 344 AML samples, genome wide mRNA ex-
pression profiling data (GEP), genome wide DNA-methylation profiling
data (DMP), and survival characteristics for the same samples.

We created a computational approach that integrates gene expression
and DNA promoter methylation profiles. The approach represents the
continuous gene expression and promoter methylation profiles with nine
discrete mutually exclusive scenarios. The scenario representation allows
for a refinement of patient groups, a more powerful statistical analysis,
and the construction of a co-expression network. We focused on 268 WNT
annotated signaling genes that are derived from the molecular signature
database. Using the scenarios we identified seven independent prognostic
markers for overall survival and event-free survival. Three genes are novel
prognostic markers; two with favorable outcome and one with unfavor-
able outcome. The remaining four genes (LEF1, SFRP2, RUNX1, and
AXIN2 ) were previously identified but we could refine the patient groups.
Three AML risk groups were further analyzed and the co-expression net-
work showed that only the good risk group harbors frequent promoter
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hypermethylation and significantly correlated interactions with protea-
some family members.

Although many studies illustrate that solely gene expression or DNA-
methylation levels can serve as a prognostic marker, our computational
approach proved more effective in the identification of prognostic mark-
ers and improves characterization of patient groups by the integration of
gene expression and DNA-methylation profiles. This is especially impor-
tant when groups are selected on prognostic markers that may be used
for therapeutic interventions.

Keywords: Data integration, Gene expression, DNA-methylation,
Prognostic markers, Acute Myeloid Leukemia, Wingless-Int (WNT).
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1 Background

Data from biomedical domains often have implicit hierarchical structure that is
usually ignored by practitioners interested in constructing and evaluating pre-
dictive models from it. A typical example is genomic data, where a single gene
can harbor many mutations while it is at the same time a part of higher-order
construct (e.g., chromosome). In such a case different features can be defined
over distinct levels of hierarchy. In parallel, a target variable can reflect this
intrinsic property of the data, potentially resulting in a biased model.

This happens if the rows (i.e., examples) are inter-dependent, even though the
data consists of a single table where each example is described as a fixed-length
feature vector. The interdependencies exhibit themselves on different levels of
granularity, where all inter-dependent examples have an identical value for a
specific feature as well as the same value for the target variable. Thus the feature
value appears correlated with the target variable whereas in reality the feature
value is correlated with the hierarchical structure of the data. Failing to consider
the interdependencies during learning could cause the algorithm to produce a
model that simply identifies a pattern that is correlated with the hierarchical
structure of the data as opposed to a pattern that is correlated with the target
variable.

The described issue figures in the state-of-the-art variant prioritization algo-
rithm called eXtasy[1]. This method incorporates predictors defined over three
distinct levels of data granularity - gene level, mutation level and data record
level (mutation/phenotype combination), where many data instances share the
same values of higher order features (e.g. genes). Here the bias materializes as
learning, to a certain degree, to recognize genes which constitute the training
set, rather than extracting general characteristics of disease causing mutations.
This results in degradation of the performance on the test set.
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2 Methods

We propose a straightforward sampling-based solution for elimination of the de-
scribed bias. It is implemented and tested within the Random forest framework
[2](the eXtasy core model), but it easily generalizes to other types of ensemble
learners as well. In particular, instead of extracting a bootstrap[3] from the com-
plete training set to build a single tree on, we first stratify the training examples
according to the distinct values of the feature over which the coarsest granularity
level is defined. In the case of the eXtasy data, that is the gene identifier. After
stratification we randomly select just one data instance from each partition to
form the in-bag sample. This prevents algorithm from learning to recognize a
particular value of the higher-order feature, as only one example having it will
be present in the sample. The procedure differs from the stratification approach
that is typically used with the Random forest, where a bootstrap replicate is
extracted from each strata to assure that all of them are well-represented.

To ensure a fair comparison, we test the method on the original eXtasy bench-
mark data using the same evaluation scheme as in the original study. That is, we
randomly divide the complete benchmark data set on the gene-level such that
two-thirds of the genes belong to the training set and one-third are in the test
set. Furthermore, we consider two test scenarios. In the first one we compare
two sampling schemes on the unaltered test set, effectively repeating the eXtasy
benchmark. In the second one we randomly undersample the positives from the
test set in order to mimic the class distributions we would expect to see in the
wild; where only one out of 8000 non-synonymous mutation in a genome is po-
tentially disease-causing[4]. We repeat the aforementioned procedure 100 times
to stabilize the values of the performance metrics.

3 Results and Conclusions

Under the original eXtasy benchmark scenario, Random forest trained with the
hierarchical sampling achieves precision of 0.84, while classical approach results
in 0.71. In the same time, the sensitivity drops from 0.86 to 0.78. However, in-
creased Matthews correlation coefficient (from 0.75 to 0.78) indicates that the
same sensitivity can be achieved with the hierarchical sampling while maintain-
ing higher precision, by setting an appropriate decision threshold. Furthermore,
the realistic class balance scenario underlines this difference even more, as preci-
sion doubles (from 0.0024 to 0.0053) with hierarchical sampling, while sensitivity
drops from 0.88 to 0.81. In other words, the improved version of eXtasy classifies
approximately 188 out of 8000 variants as disease causing, with the probability
of capturing the real one equal to 0.81 (i.e. sensitivity). In the same time, the
standard eXtasy calls 417 out of 8000 variants, with the probability of hit being
0.88.

Hence, the hierarchical sampling leads to a notable improvement in the model
performance in terms of the precision, especially in the most important operating
regions for this particular application (i.e. top of prioritized list, see Fig 1.).
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Also, as it uses less data (per single tree) than standard Random forests, it
results in a more parsimonious model. Finally, we hypothesize that the gain in
performance might be even bigger for certain classes of problems. That is, if
the number of distinctive values of the coarsest grain concept is much smaller
than total number of data records, overfitting on these concepts is more likely
to occur. Therefore, such problems could potentially greatly benefit from the
proposed sampling scheme.

Fig. 1. Precision-recall curves obtained by the application of the eXtasy on the bench-
mark data (left panel) and the data with the realistic class distribution (right panel).
Each panel displays two curves - the one corresponding to the standard Random for-
est classifier training with bootstrapping and the one corresponding to hierarchical
sampling based training.
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Accurately predicting the binding affinities (BAs) of large sets of protein-ligand
complexes (PLCs) is a key challenge in computational biomolecular science, with
applications in drug discovery, chemical biology, and structural biology. Since a
scoring function (SF) is used to score, rank, and identify drug leads, the fidelity
with which it predicts the affinity of a ligand candidate for a protein’s binding
site has a significant bearing on the accuracy of virtual screening. Despite in-
tense efforts in developing conventional SFs, which are either force-field based,
knowledge-based, or empirical, their limited predictive power has been a ma-
jor roadblock toward cost-effective drug discovery. Therefore, in this work, we
present two novel SFs employing a large ensemble of neural networks (NNs) in
conjunction with a diverse set of physicochemical and geometrical features char-
acterizing PLCs to predict BA. We build the first ensemble SF, BgN-Score, using
the bootstrap aggregation technique [1], in which hundreds of neural networks
are fitted independently to sets of PLCs sampled randomly without replacement
from the training data. BgN-Score calculates the final BA score by computing the
average of the predictions of the constituent NNs. The boosting approach [2,3]
is used to construct the second ensemble SF, BsN-Score, which is based on an
additive stagewise fitting of NNs to random sets of PLCs sampled from the train-
ing data. The calculated BA of BsN-Score is a weighted sum of the predictions
of the individual NNs in the ensemble. These ensemble SFs are trained on 1105
high-quality PLCs retrieved from the 2007 version of PDBbind [4]. Each PLC in
this set is characterized using physicochemical features employed by the empiri-
cal SFs X-Score [5] (6 features) and AffiScore [6] (30 features) and calculated by
GOLD [7] (14 features), and geometrical features used in the machine-learning
SF RF-Score [8] (36 features).

We assess the scoring accuracies of the new ensemble NN SFs, BgN-Score and
BsN-Score, as well as those of 16 conventional SFs [9] in the context of the 2007
PDBbind benchmark. This dataset encompasses a diverse set of 65 high-quality
protein families and contains 195 PLCs independent of the training set. We find
that BgN-Score and BsN-Score have more than 25% better Pearson’s correlation
coefficient (0.807 and 0.815 vs. 0.644) between predicted and measured binding

� Corresponding author.
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affinities compared to that achieved by a state-of-the-art conventional SF. In
addition, these ensemble NN SFs are also at least 27% more accurate (0.807 and
0.815 vs. 0.631) than SFs based on a single NN that has been traditionally used
in drug discovery applications.

References

1. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
2. Friedman, J.H.: Stochastic gradient boosting. Computational Statistics & Data

Analysis 38(4), 367–378 (2002)
3. Cao, D.S., Xu, Q.S., Liang, Y.Z., Zhang, L.X., Li, H.D.: The boosting: A new idea

of building models. Chemometrics and Intelligent Laboratory Systems 100(1), 1–11
(2010)

4. Wang, R., Fang, X., Lu, Y., Wang, S.: The PDBbind database: Collection of bind-
ing affinities for protein-ligand complexes with known three-dimensional structures.
Journal of Medicinal Chemistry 47(12), 2977–2980 (2004) PMID: 15163179

5. Wang, R., Lai, L., Wang, S.: Further development and validation of empirical scoring
functions for structure-based binding affinity prediction. Journal of Computer-Aided
Molecular Design 16, 11–26 (2002) 10.1023/A:1016357811882

6. Zavodszky, M.I., Sanschagrin, P.C., Kuhn, L.A., Korde, R.S.: Distilling the essen-
tial features of a protein surface for improving protein-ligand docking, scoring, and
virtual screening. Journal of Computer-Aided Molecular Design 16, 883–902 (2002)

7. Jones, G., Willett, P., Glen, R., Leach, A., Taylor, R.: Development and validation
of a genetic algorithm for flexible docking. Journal of Molecular Biology 267(3),
727–748 (1997)

8. Ballester, P., Mitchell, J.: A machine learning approach to predicting protein-ligand
binding affinity with applications to molecular docking. Bioinformatics 26(9), 1169
(2010)

9. Cheng, T., Li, X., Li, Y., Liu, Z., Wang, R.: Comparative assessment of scoring
functions on a diverse test set. Journal of Chemical Information and Modeling 49(4),
1079–1093 (2009)



Integration of Gene Expression

and DNA-methylation Profiles Improves
Molecular Subtype Classification

in Acute Myeloid Leukemia

Erdogan Taskesen1,2,�, Sepideh Babaei1,2,�, Marcel J.T. Reinders1,2,
and Jeroen de Ridder1,2

1 Delft Bioinformatics Lab., Delft University of Technology,
Delft, 2628CD, The Netherlands

2 Netherlands Bioinformatics Centre (NBIC), The Netherlands
{e.taskesen,s.babaei,J.deRidder,M.J.T.Reinders}@tudelft.nl

Abstract. Acute Myeloid Leukemia (AML) is characterized by various
cytogenetic and molecular abnormalities. Detection of these abnormal-
ities is important in the risk-classification of patients but requires la-
borious experimentation. Various studies showed that gene expression
profiles (GEP), and the gene signatures derived from GEP, can be used
for the prediction of subtypes. Similarly, successful prediction was also
achieved by exploiting DNA-methylation profiles (DMP). There are,
however, no studies that compared classification accuracy and perfor-
mance between GEP and DMP, neither are there studies that integrated
both types of data to determine whether predictive power can be im-
proved. Here, we used 344 AML samples that can be categorized into 15
well-characterized cytogenetical and molecular subtypes. For each sam-
ple, both gene expression and DNA-methylation profiles are available.
We created three different classification strategies for the prediction of
AML subtypes. For each subtype, we train a two class classifier (logis-
tic regression classifier with lasso regularization) to distinguish between
samples that belong to the subtype and samples that belong to the other
subtypes. The first classification strategy is no integration of GEP and
DMP datasets. The second is early integration by concatenating all GEP
and DMP features. The third is late integration based on a two-layer
classifier in which the first layer generates optimized sets of parameters
for the logistic regression model for separately GEP and DMP, and the
second layer employs the posterior probabilities of the GEP and DMP
logistic regressors as feature space to train an additional classifier. To
assure unbiased measurements of the classification performance of the
classifier we followed the double-loop cross-validation protocol. We illus-
trate that both mRNA expression and DNA-methylation profiles contain
distinct patterns that contribute to discriminating AML subtypes and
that an integration strategy can exploit these patterns to achieve synergy
between both data types. We show that integration of features from both
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data sets improves the predictive power compared to classifiers trained
on GEP or DMP alone. In conclusion, we demonstrate that prediction
of known cytogenetic and molecular abnormalities in AML can be fur-
ther improved by integrating GEP and DMP profiles. The best subtype
classification accuracy was obtained by the late integration strategy. It
outperformed, with one exception, GEP, DMP and early integration for
all AML subtypes.

Keywords: Classification, Integration, Gene Expression, DNA-
methylation, Acute Myeloid Leukemia subtypes.
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Abstract. Cellular processes are known to be modular and are realized by groups
of proteins implicated in common biological functions. Such groups of proteins
are called functional modules, and many community detection methods have been
devised for their discovery from protein interaction networks (PINs) data. In cur-
rent agglomerative clustering approaches, vertices with just a very few neighbors
are often classified as separate clusters, which does not make sense biologically.
Also, a major limitation of agglomerative techniques is that their computational
efficiency do not scale well to large PINs. Finally, PIN data obtained from large
scale experiments generally contain many false positives, and this makes it hard
for agglomerative clustering methods to find the correct clusters, since they are
known to be sensitive to noisy data.

We propose a local similarity premetric, the relative vertex clustering value,
as a new criterion allowing to decide when a node can be added to a given node’s
cluster and which helps addresses the above three issues. Based on this criterion,
we introduce a novel and very fast agglomerative clustering technique, FAC-PIN,
for discovering functional modules and protein complexes from a PIN data.

Our proposed FAC-PIN algorithm is applied to eight PINs from different
species including the yeast PIN, and the identified functional modules are val-
idated using Gene Ontology (GO) annotations. Identified protein complexes are
also validated using experimentally verified complexes. Computational results
show that FAC-PIN is robust to false positives and can discover functional mod-
ules or protein complexes from PINs more accurately and more efficiently than
HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in
an agglomerative manner.
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