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Abstract. Large amounts of data (“big data”) are readily available and collected 
daily by global networks worldwide. However, much of the real-time utility of 
this data is not realized, as data analysis tools for very large datasets, particular-
ly time series data are cumbersome. A methodology for data cleaning and prep-
aration needed to support big data analysis is presented, along with a compara-
tive examination of three widely available data mining tools. This methodology 
and offered tools are used for analysis of a large-scale time series dataset of en-
vironmental data. The case study of environmental data analysis is presented as 
visualization, providing future direction for data mining on massive data sets 
gathered from global networks, and an illustration of the use of big data tech-
nology for predictive data modeling and assessment. 

1 Introduction 

Increasingly large data sets are resulting from global data networks. For example, the 
United States government’s National Oceanic and Atmospheric Administration 
(NOAA) compiles daily readings of weather conditions from monitoring stations 
located around the world. These records are freely available. While such a large 
amount of data is readily available, the value of the data is not always evident. In this 
chapter, large time series data was mined and analyzed using data mining algorithms 
to find patterns. In this specific instance, the patterns identified could result in better 
weather predictions in the future. 

Building on earlier work [1,2,3,4], two separate datasets from NOAA were used. 
One was the Global Summary of Day (GSOD) dataset [5], which currently has data 
from 29,620 stations. The second was the Global Historical Climatology Network 
(GHCN) dataset [6], which currently has data from 77,468 stations. In previous pro-
jects, the datasets were downloaded from NOAA’s FTP servers and made locally 
available on our local database server. Each of the GSOD stations collect 10 different 
types of data (precipitation, snow depth, wind speeds, etc.), while the GHCN stations 
can collect over 80 different types of data, although the majority only collect 3 or 4 
types. Some stations have been collecting data for over 100 years. Both datasets com-
bined consist of over 2.62 billion rows (records) in our database.  
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Data from both datasets was mined using Weka, RapidMiner, and Orange, which 
are free data mining programs. Each of these programs has a variety of data mining 
algorithms which were applied to our data. However, before mining, the data had to 
be converted into a format which allowed it to be properly mined. The problem was 
solved by developing custom Java programs to rearrange the data. 

In this illustrated example, the goal was to find any patterns existing in the data, 
help predict future significant weather events (snowstorm, hurricane, etc.), and visual-
ize results in a meaningful format. It is also hoped that this work mining large-scale 
datasets will help others do the same with any dataset of similar magnitude. Although 
global data was available, the portion of the dataset used was New Jersey, as it has its 
own special microclimate. By using data from some of New Jersey’s extreme weather 
events as starting points, this research was able to look for patterns that may assist in 
predicting such events in the future. Examples of extreme events in New Jersey in-
clude the unpredicted snowstorm of October 2011, the December 26, 2010 snowstorm 
(24”-30” accumulation), and a tornado Supercell that hit the state in August 2008. 

2 Big Data Applications 

The objective was to use the very large amount of data previously imported into a 
local database server and run data mining algorithms against it to find patterns. This 
approach was similar to one taken to find relationships in medical data from patients 
with diabetes [7]. Fields such as telemedicine and environmental sustainability offer 
great opportunities for big data analysis and visualization. For environmental big data 
analysis, a variety of popular data mining software was used to evaluate the data to 
see if one product provided superior results. The software products used were Weka 
[8], RapidMiner [9], and Orange [10]. Additionally, the raw data was graphed 
[11, 12] to see if any patterns were identified through visual inspection which the 
mining software might overlook. By mining the data, a trend was expected in envi-
ronment/weather. Possible results could be evidence of global warming, colder win-
ters, warmer summers (heat waves), stronger/weaker storms, or more/less large 
storms. This chapter is an extension of [1, 2], with a specific application of environ-
mental sustainability.  

2.1 Environmental Sustainability 

Environmental sustainability encompasses several stages. Initially, environmental 
sustainability referred to development that minimized environmental impact. Howev-
er, in established areas, such as urban communities, environmental sustainability in-
cludes detection of potential problems, monitoring the impact of potential or actual 
problems, and working to reduce adverse impact of identified threats to environmen-
tal sustainability.  

The repetitive nature of threats to environmental sustainability in urban environ-
ments, such as the underpass that consistently floods during heavy rains, or the air 
quality that predictably degrades over the course of a workday, is the stuff of urban 
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legend. Neighborhood residents and regular visitors to the area may generally know 
the hazards of a particular urban spot, but sharing the knowledge of destructive or 
hazardous patterns with organizations which might be able to remediate or prevent 
such regular environmental degradation is not easily done. Rather, at each instance of 
an environmental threat, the flooded underpass or poor air is addressed as a public 
safety crisis and personnel and resources are deployed in an emergency manner to 
provide appropriate traffic rerouting or medical attention. 

In addition to critical events which threaten urban environmental conditions, more 
insidious, slowly evolving circumstances which may result in future urban crises are 
not monitored. For example, traffic volume on highly used intersections or bridges is 
not monitored for increasing noise or volume, which might result in a corresponding 
increase in hazardous emissions or stress fractures. When urban threats are identified, 
the response process can be aggravated as traffic comes to a standstill or is rerouted, 
hindering, or delaying emergency response personnel.  

Both immediate and slower threats to urban environmental sustainability are dealt 
with on an ‘as occurring’ basis, with no anticipation or preventive action taken to 
avert or decrease the impact of the urban threat. The result, over the past years, has 
been an increase in urban crisis management, rather than an increased understanding 
of how our urban environments could be better managed for best use of all our re-
sources – including resources for public safety and environmental sustainability.  

The increasing age of urban infrastructures, and the further awareness of environ-
mental hazards in our midst highlights that the management of environmental threats 
on an ‘as needed’ basis is no longer feasible, particularly as the cost of managing an 
environmental crisis can exceed the cost of preventing an environmental crisis. With 
the potential to gather data in a real-time manner from urban sites, the opportunity for 
anticipatory preparation and preventive action prior to urban environmental events 
has become possible. Specifically, street level mapping, using real-time information, 
is now possible, with the integration of new tools and technology, such as geographic 
information systems and sensors.  

Environmental sustainability in an urban environment is challenging. While nu-
merous measures of environmental sustainability, including air quality, rainfall, and 
temperature, are possible, the group assessment of these measured parameters is not 
as easily done. Air quality alone is composed of a variety of measurements, such as 
airborne particulate matter (PM10), nitrogen dioxide (NO2), Ozone (O3), carbon 
monoxide (CO) and carbon dioxide (CO2). Road traffic is the main cause of NO2 and 
CO. While simple environmental solutions such as timing traffic lights are identified 
as saving billions in fuel consumption and reducing air-pollution (i.e., improving air 
quality) by as much as 20%, the technological underpinnings to accomplish this have 
not been developed and deployed on an appropriate scale for urban data gathering and 
correlation. Furthermore, the use of predictive models and tools, such as data mining, 
to identify patterns in support or opposed to environmental sustainability is not com-
monly done in an urban setting. While hurricane, earthquake, and other extreme 
weather events occur and the aftermath is dramatically presented, more mundane but 
not less impacting events such as urban flash flooding, chemical spills on city roads, 
and other environmental events are not anticipated or measured while occurring or 
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developing, with intent to reduce in scope and damage. By gathering data locally, for 
assessment and prediction, areas, and events can be identified that might harm envi-
ronmental sustainability. This knowledge can be used to avoid or disable what might 
have previously been an urban environmental disaster.  

2.2 Data Mining for Trend Identification 

Data mining [13] can be referred to as ‘knowledge discovery in databases’, and is a 
key element of the “big data” analysis project. Of the four core data mining tasks:  

• Cluster analysis 
• Predictive modeling 
• Anomaly detection 
• Association analysis 

both predictive modeling and anomaly detection are used in the big data analysis pro-
ject detailed here. “Predictive modeling” can be further defined by two types of tasks: 
classification, used for discrete target variables, and regression, which is used for 
continuous target variables. 

Forecasting the future value of a variable, such as would be done in a model of an 
urban ecosystem, is a regression task of predictive modeling, as the values being 
measured and forecast are continuous-valued attributes. In both tasks of predictive 
modeling, the goal is to develop a model which minimizes the error between predict-
ed and true values of the target variables. By doing so, the objective is to identify 
crucial thresholds that can be monitored and assessed in real-time so that any action 
or alert may be automatic and high responsive. 

“Anomaly detection” is also crucial to the success of big data modeling. Formally 
stated anomaly detection is the task of identifying events or measured characteristics 
which are different from the rest of the data or the expected measurement. These 
anomalies are often the source of the understanding of rare or infrequent events. 
However, not all anomalies are critical events, meriting escalation, and further inves-
tigation. A good anomaly detection mechanism must be able to detect non-normal 
events or measurements, and then validate such events as being outside of expecta-
tions – a high detection rate and low false alarm rate is desired, as these define the 
critical success rate of the application.  

2.3 Sensor Networks and Visualization 

Sensor networks have become part of our everyday lives and attract wide interest 
from industry due to their potential diversity of applications, with a strong expectation 
that outdoor and environmental uses will dominate the application space [14]. How-
ever, actual deployment experience is limited and application development has been 
further restricted [15]. Previous work in sensors for structure monitoring [16], urban 
flash flood awareness [17], and mobile emissions monitoring [18] has been initiated, 
but not to the extent and geographical contextual presentation outlined here. 
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The overall objective of the big data environmental network implementation is the 
gathering of environmental information in real-time and storing the data in a database 
so that, the data can be visually presented in a geographic context for maximum un-
derstanding. Ideally, the big data environmental network is an implementation of a 
wireless environmental sensing network for urban ecosystem monitoring and envi-
ronmental sustainability. By measuring environmental factors and storing the data for 
comparison with future data gathered, the changes in data measured over time can be 
assessed. Furthermore, if a change in one measured variable is detected, examination 
of another measured variable may be needed to correlate the information, and deter-
mine if the measured conditions are declining or advancing over time. Known as  
‘exception mining,’ this assessment can also be visually presented in a geographical 
context, for appropriate understanding and preventive or divertive action.  

2.4 Network Application Design 

The network design used was that of a system of distributed sensors, reporting to a 
base station, which was then connected to a server between the network and the appli-
cation. The focus was on total application design, from data storage in the relational 
database, to final interpretation, and presentation in the geographical context. 
 
A. Visual Presentation 
 

Application development included a collection of data, which was archived into a 
database. This was accomplished by using SQL, a relational database system. To 
clearly understand and visualize the importance, functionality, and advantages pro-
vided by the wireless sensor network, the data must be clearly represented. In order to 
do so, a programming language or framework is needed that provides the ability to 
quickly gather data and accurately represent each of our sensors.  

After consideration of availability, scalability, and recognition, as well as under-
standing the well-defined API and number of tutorials available, the Google Maps 
framework was selected. The Google Maps API allows the user to use Google Maps 
on individual websites, with JavaScript. In additional, a number of different utilities 
are available.  

Google Maps provides an additional advantage, as the nodes represented on the 
map and the data contained in each one of the nodes can be setup using XML and 
additional nodes or markers can be added with ease. Once the decision to use Google 
Maps was made, the software development effort shifted from data representation 
efforts to working on accessing the actual real-time data from the wireless sensor 
network server. For Google Maps to process this new data and properly represent it, 
an XML file is generated. Fig. 1 shows the exchange between the web server and the 
wireless sensor network server.  

As data is sent in from the nodes, it is passed through the base station to the Perl 
XML Parser, which parses the incoming data and filters out unwanted packets. The 
result remaining is the desired data packet set.  
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B. Integration of Geovisualization and Data Mining 
 

The presentation of data in real-time for contextual understanding is only one aspect 
of the big data application. The archived information in the database permits before 
and after animations to be developed, using time gradients to show how the measured 
variables have changed in the preceding time, or are expected to change in the future, 
based on predictive algorithms, taking into account the reported variables, such as 
wind speed, in the case of a chemical spill and the potential migration over an urban 
community, for example.  

Once the data of the multiple network nodes has been collected for a long period of 
time, it is desirable to reveal patterns, if any, in the data. For example, with regard to 
spatial-temporal variations of air quality along the streets or at intersections, patterns 
regarding daily and seasonal cycles of air quality, change, and decay over distances 
from the intersection can be directly visualized through an interactive and animated 
visualization environment. Furthermore, the visualization tool can be used together 
with numerical data mining algorithms to model quantitative relationships between air 
quality and other factors such as weather and traffic conditions. Numerical data min-
ing algorithms such as supervised learning can be easily integrated here. The findings 
can then be applied to simulate the spatial-temporal air quality variations given arbi-
trary weather and traffic conditions for the purpose of predictive modeling.  

Human visual perception offers a broadband channel for information flow and ex-
cellent pattern recognition capabilities that facilitate knowledge discover and the de-
tection of spatial-temporal relations [19]. An effective tool to explore geographic  
data and communicate geographic information to private or public audiences,  
geovisualization has long been used for data exploration and pattern recognition. The 
approach presented and discussed here integrates geovisualization with data mining to 
reveal spatial-temporal patterns embedded in the data collected by the sensor network 
over time. While prior work [20] has approached such an idea, the work presented 
here is the first to visually present the data correlations. 

2.5 Big Data Analysis for Environmental Sustainability 

Wireless sensor network applications, and the very large dataset of gathered data as-
sociated with them, are an emerging area of technology which will benefit organiza-
tions and governments with valuable real-time data. In order to properly use such 
data, a strong, dynamic, and user-friendly interface is needed which allows individu-
als to clearly see how measured conditions, such as environmental circumstances, are 
changing over time. The visual depiction of urban environmental events, for example, 
will permit anticipatory or preventive actions to be taken in advance of adverse hu-
man and ecological impact. The use of data mining techniques on the data gathered by 
the wireless sensor network permits the identification of past patterns and developing 
trends in air quality or urban flooding, for example. The network and interface illus-
trated here accomplishes the goals of real-time information gathering and display for 
environmental sustainability and further work is underway to improve and refine the 
solution presented here.  
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Additional research underway includes a case study where a number of exploratory 
spatial data analysis (ESDA) techniques will be tested to facilitate the visual detection 
of spatial-temporal patterns of air quality in relation to weather conditions. ESDA 
techniques being tested in the case study include temporal brushing [21] and temporal 
focusing [22], temporal reexpression through multiscale data aggregation [23] and 
static visual bench marking [24]. Animation of the temporal data will enable common 
users to visualize the change of air quality over space and time. With temporal brush-
ing and focusing, the use is not only a passive viewer of the information, but can in-
teract with the animation and learn actively. Temporal reexpression through 
multiscale data aggregation provides an opportunity to directly visualize the daily and 
seasonal cycles of air quality change. Finally, using static visual benchmarking, the 
air quality level at any recorded time spot can be compared visually with health 
standards and give the viewer a direct alert on how high air quality is affecting human 
health. Efforts continue to integrate the geovisualization environment with a 
knowledge discovery procedure for data mining.  

3 Visualization and Pattern Identification in Big Data 

Visualization of massively large datasets presents two significant problems. First, the 
dataset must be prepared for visualization, and traditional dataset manipulation meth-
ods fail due to lack of temporary storage or memory. The second problem is the 
presentation of the data in the visual media, particularly real-time visualization of 
streaming time series data. Visualization of data patterns, particularly 3D visualiza-
tion, represents one of the most significant emerging areas of research. Particularly 
for geographic and environmental systems, knowledge discovery and 3D visualization 
is a highly active area of inquiry. Recent advances in association rule mining for time 
series data or data streams makes 3D visualization and pattern identification on time 
series data possible.  

In streaming time series data the problem is made more challenging due to the dy-
namic nature of the data. Emerging algorithms permit the identification of time-series 
motifs [25] which can be used as part of a real-time data mining visualization applica-
tion. Geographic and environmental systems frequently use sensor networks or other 
unmanned reporting stations to gather large volumes of data which are archived in 
very large databases [26]. Not all the data gathered is important or significant. How-
ever the sheer volume of data often clouds and obscures critical data which causes it 
to be ignored or missed.  

The research presented here outlines an ongoing research project working to visu-
alize the data from national repositories in two very large datasets. Problems encoun-
tered include dataset navigation, including storage and searching, data preparation for 
visualization, and presentation.  

Data filtering and analysis are critical tasks in the process of identifying and visual-
izing the knowledge contained in large datasets, which is needed for informed deci-
sion making. This research is developing approaches for time series data which will 
permit pattern identification and 3D visualization. Research outcomes include as-
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sessment of data mining techniques for streaming time series data, as well as interpre-
tive algorithms, and visualization methods which will permit relevant information to 
be extracted and understood quickly and appropriately.  

3.1 Large-Scale Data for Visualization 

This research works with datasets from the National Oceanic and Atmospheric Ad-
ministration (NOAA), a federal agency in the U.S., focused on the condition of the 
oceans and the atmosphere. The purpose of the research project is to take meteorolog-
ical data and analyze it to identify patterns that could help to predict future weather 
events. Data from the GHCN (Global Historical Climatology Network) dataset [3] 
was initially used. Earlier research had worked with NOAA’s Integrated Surface Da-
taset (ISD) [4]. Both of these datasets are open access and the volume of streaming 
time series data was significant and growing.  

The GHCN dataset consists of meteorological data from over 76,000 stations world-
wide with over 50 different searchable element types. Examples of element types in-
clude minimum and maximum temperature, precipitation amounts, cloudiness levels, 
and 24-hour wind movement. Each station collects data on different element types.  

3.2 Time Series Data Analysis 

Searching for temporal association rules in time series databases is important for dis-
covering relationships between various attributes contained in the database and time. 
Association rules mining provides information in an “if-then” format. Because time 
series data is being analyzed for this research, time lags are included to find more 
interesting relationships within the data. A software package from Universidad de La 
Rioja’s EDMANS Groups was used to preprocess and analyze the time series from 
the NOAA datasets. The software package is called KDSeries and was created using 
R, a language for statistical computing. 

The KDSeries package contains several functions that preprocess the time series data 
so knowledge discovery becomes easier and more efficient. The first step in prepro-
cessing is filtering. The time series are filtered using a sliding-window filter chosen by 
the user. The filters included in KDSeries are Gaussian, rectangular, maximum, mini-
mum, median, and a filter based on the Fast Fourier Transform. Important minimum 
and maximum points of the filtered time series are then identified. The optima are used 
to identify important episodes in the time series. The episodes include increasing, de-
creasing, horizontal and over, below, or between a user-defined threshold.  

After simple and complex episodes are defined, each episode is view as an item to 
create a transactional database. Another R-based software package, arules, makes this 
possible. Arules provide algorithms that seek out items that appear within a window 
of a width defined by the user. From there, temporal association rules are then  
extracted from the database.  

The first algorithm being used to extract the temporal association rules is the Eclat 
algorithm. Eclat (Equivalence Class Clustering and Bottom-up Lattice Traversal) is an 
efficient algorithm that generates frequent item sets in a depth-first manner. Other 
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data mining friendly format. The program queries for data within a specific date range 
and station range (numbers were assigned to the stations), and for the specific data 
types which we wanted to retrieve. The program then compiles the results into a file, 
in which each station has a single record for each day. The file can be read like a table 
in which each data type has its own column. This lets data be efficiently retrieved 
from the database, while still allowing the data to be properly organized for mining. 

A subset of the data is requested at one time as the conversion process can take 
hours or days if too much data is requested. Most mining programs cannot handle 
such large amounts of data, and not all element types are commonly used. Some min-
ing algorithms will not run if a data type is missing too many entries, which would be 
the case if some of the less commonly collected data types were used. This program is 
used to retrieve data from both the GSOD and GHCN datasets to reduce time wasted 
on retrieving the same data multiple times, and to remove the need to have mining 
programs connect to our database server. 

A second Java program was written that converts commas to tabs. The mining pro-
gram Orange does not read CSV files, but does read tab-delimited files. Originally, 
commas were used to separate data values, so a second program was made that would 
quickly convert all commas to tabs in order to analyze the data with Orange. 

5 RapidMiner vs. Weka vs. Orange 

Three programs were used to mine the data. The most success came from 
RapidMiner, with quite a bit less success experienced with Weka and Orange. All the 
three programs have a similar setup in which different functions are dragged and 
dropped onto the interface screens and then connected together to run the chosen al-
gorithms. Each of the programs gave operational issues at times, but RapidMiner 
seemed to be the most stable and useful. 

Initially, mining began with Weka, but a few key issues made it clear that Weka 
should be dropped early on. First, Weka’s “Knowledge Flow” program, which contains 
mining functions, was not able to connect to our local database server (before we built 
our conversion program). Second, Weka has a lot of mining algorithms, but little expla-
nation of how to use them. Frustrated with these problems, RapidMiner was tried. 

RapidMiner has a large amount of mining functions, and it has an extension that 
gives it some functions from Weka. It also has a file import wizard that helps ensure that 
data is correctly imported into the program. Most importantly, there is a small guide for 
each mining algorithm on the bottom right-hand corner of the screen that is automatical-
ly shown whenever a function is selected. The guide explains exactly what a function is 
for, how to use it, and what its inputs and outputs are. RapidMiner also has a search 
feature that lets users quickly find the algorithms they want to use. In addition, it has a 
wizard called “Automatic System Construction” that runs different algorithms on data 
to determine which ones may yield results [11]. We did not have much success with this 
feature. Out of all the programs, only RapidMiner provided results. 

Despite those positive features, there were two main problems with RapidMiner. 
The first problem was that it would crash if functions with more than ~5MB of input 
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data were used. The second problem was that many functions would only run if nu-
meric data were converted to nominal data. This means that those numeric values 
would be treated as though they were words, thus entirely removing their important 
numeric properties. The nominal values have no relation to each other, such as differ-
ence (between two values), but are treated as separate, equal instances. 

Orange was the last program we tried using. Before using Orange the CSV files 
were converted to tab-delimited files, but this was not really an issue. A feature that 
stands out in Orange is that Orange will only permit the addition of a new function if 
it can be attached to one that has already been chosen. This removes some guesswork, 
allows us to easily see what we can use, and identify functions that we may have oth-
erwise overlooked. Like RapidMiner, Orange would sometimes crash if it received 
too much data. 

6 Mining the Data 

In an effort to find patterns, a variety of algorithms were used. There are three main 
algorithms that provided some form of results, and those were the 

• association rules algorithms 
• various decision tree algorithms 
• Naïve Bayes algorithm 

All algorithms were run on a computer using a 2.66 GHz Intel Core 2 Duo E8200 
processor, 3 GB of RAM, and the 32-bit version of Windows XP. Times listed below 
will be for algorithms analyzing a 5.39MB file containing 238,839 records from the 
GHCN dataset. 

The purpose of an association rules algorithm is to find relationships between dif-
ferent columns of data (data types). An example could be if a day’s minimum temper-
ature was above 75˚F then the month is June, July, or August (summer months in 
New Jersey). Weka had originally given some very simple relationships like this, but 
nothing of significance. RapidMiner required conversion of most numeric values to 
nominal values, so when these algorithms were used the rules produced were not 
helpful. The average time for running an association rules algorithm in RapidMiner 
on the GHCN file was 8.3 seconds. 

The purpose of the decision tree algorithms is very similar to the association rules in 
that it tries to find relationships between different data columns. These relationships are 
then used to form a tree that leads from one column to another until you arrive at a leaf 
node. A data column which will be a leaf node in the tree must be selected (assign it as a 
label), as this will be the value which you are trying to predict. RapidMiner always as-
sembles the decision trees in any arrangement it chooses, so it is not possible to desig-
nate the position of specific data columns in the traversal of the tree.  

RapidMiner did not produce any significant results with these algorithms. The pro-
gram produced trees, but they were not very useful, most likely because it again  
required numeric values to be converted to nominal values. Some of the different 
decision trees tried included regular decision trees, CHAID (shown in Fig. 7), and 
ID3. The average time for running a regular decision tree algorithm in RapidMiner on 
the GHCN file was 12.5 seconds. 



 Analysis and 

 

Fig. 7. Connection of functio

The Naïve Bayes algorit
ranges. Using RapidMiner’s
data columns that took the 
them into ranges of very col
ature ranges used were pick
ning the Naïve Bayes algori
very cold days in New Jerse
from ~2.3% of days in 2005 
Naïve Bayes algorithm in Ra

Fig. 8. Graph showing tempe
using data from the GHCN d
Bayes algorithm. 

Visualization of Large-Scale Time Series Network Data 

ons used with the CHAID decision tree algorithm in RapidMin

thm is a classification algorithm used to group temperat
s “Generate Attribute” function, we were able to create n

minimum and maximum temperature values and grou
ld, cold, middle, warm, and very warm. The different temp
ked by the group. The results are shown in Fig. 8. After r
ithm on this new data, it was determined that the numbe
ey has increased significantly over the past 7 years, jump
to ~24.7% of days in 2011. The average time for running

apidMiner on the GHCN file was 7.1 seconds. 

rature changes in New Jersey over the last 7 years (2005-20
dataset. This graph was generated from the results of the N

225 

 

ner 

ture 
new 

uped 
per-
run-

er of 
ping 
g the 

 

012) 
aïve 



226 P. Morreale, A. Gonc

 

7 Visual Inspectio

In addition to mining the d
gram DPlot [12]. Various d
dates they were recorded. O
proach, which was discove
last 7 years in New Jersey u
0.8 or 0.12 Celsius degrees 
values. In addition, the blo
along the graph (shown in F
missing values. 

Fig. 9. Histogram showing m
Jersey (using the GHCN datase

8 Visualization an

Overall, the data mining p
datasets used thus far. How
information. There was littl
actual results. Most of the 
from numeric to nominal ty
(like colder temperatures ar
results or refused to give a
single node). Some of this
commonly collected data t
both datasets. To make ma
 

calves, and C. Silva 

on of Raw Data 

data using algorithms, raw data was graphed using the p
data values were graphed against each other and against 
Overall, only one significant pattern resulted from this 
ered while graphing maximum temperature values for 
using the GHCN dataset. This graph shows that after ev
there is a gap of 0.4 Celsius degrees without any recor

ocks of 0.8 and 0.12 degrees alternate almost continuou
Fig. 9). This is very odd, and there is no explanation for 

maximum temperature distributions over the past 7 years in N
et). There is a pattern of missing values shown in the graph. 

nd Presentation in Context 

rograms did not yield results of great significance on 
wever, the work with the data mining tools yielded m
le new information learned from the algorithms or from 
association rules were either nonsense due to convers

ypes or very basic rules that are already commonly kno
re seen in the winter). Most decision trees also gave sim
anything at all (many times the results were a tree wit
s may also be due to the fact that there were only a f
types (precipitation, minimum/maximum temperature)
atters worse, many data types in the GHCN dataset m

pro-
the 
ap-
the 

very 
rded 
usly 
 the 

 

New 

the 
more 
m the 

sion 
own 

milar 
th a 
few 
) in 
may  



 Analysis and Visualization of Large-Scale Time Series Network Data 227 

 

have been similar (value of 0) or missing too many values to form accurate associa-
tions or predictions. To obtain results of significance or find previously unknown 
patterns there are two things needed: 

1. many more data types that are continuously collected by all weather stations and 
2. mining algorithms that support a greater range of numeric data types. 

9 Conclusions 

Although no new patterns were identified by this project, the greater benefit was 
learning how to organize data for mining and how to mine large amounts of data. The 
approach taken here for data mining is valid, however: 

1. stronger connections between the data types were needed for pattern identification,  
2. the mining programs did not handle the data properly, and 
3. a greater range of data types is needed to obtain more significant results.  

The methodology outlined here can be applied to a wide range of other fields, as 
long as a dataset with a large number of continuously collected data types is used. The 
health industry in particular may benefit from mining patient data to find hidden links 
between different patients with the same diseases or illnesses. Such medical data is 
almost continuously being collected in large amounts. 

Reorganizing the data for use by mining algorithms is an important part of the pro-
cess. Writing a program to retrieve the data from the NOAA database and saving it 
locally in a different format was not difficult, but the conversion process sometimes 
took a very long time. The bulk of this time was taken to retrieve the files from the 
database. To reduce such time, researchers can either build the database in the needed 
format to begin with (not always possible), or convert the data from a file stored on 
the same machine. The process to request and fetch the data from the database is the 
most time consuming portion of the large dataset analysis. Storing the converted data 
in a local file will make sure that the request-and-fetch process only has to be per-
formed once for each set of test data. 

As for the different programs used, RapidMiner was far easier to use than Orange 
and Weka. RapidMiner had its drawbacks with data handling and occasional crashing, 
but it was simply easier to use thanks to its search feature, its documentation for every 
function, and the fact that it gave results. Overall, Weka and Orange were lacking as 
programs, as they were troublesome and not useful. 

The three main algorithms that were used (association rules, Naïve Bayes, 
and decision trees) all took approximately the same amount of time to run against a 
very large amount of data. To remedy most of the crashes experienced, a computer 
upgrade to a 64-bit operating system, more RAM, and more/faster processors, is 
planned. Even without a more capable system, this problem was somewhat overcome 
by splitting the files into subsets that were mined separately. 

Future plans for this research include additional comparative experience with larg-
er datasets, involved data from other areas and case studies from other disciplines.  
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