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Abstract. An increasing amount of valuable data sources, advances in Internet 
of Things and Big Data technologies as well as the availability of a wide range 
of machine learning algorithms offers new potential to deliver analytical ser-
vices to citizens and urban decision makers. However, there is still a gap in 
combining the current state of the art in an integrated framework that would 
help reducing development costs and enable new kind of services. In this chap-
ter, we show how such an integrated Big Data analytical framework for Internet 
of Things and Smart City application could look like. The contributions of this 
chapter are threefold: (1) we provide an overview of Big Data and Internet of 
Things technologies including a summary of their relationships, (2) we present 
a case study in the smart grid domain that illustrates the high-level requirements 
towards such an analytical Big Data framework, and (3) we present an initial 
version of such a framework mainly addressing the volume and velocity chal-
lenge. The findings presented in this chapter are extended results from the EU 
funded project BIG and the German funded project PEC. 

1 Introduction 

In times of increasing urbanization, local decision makers must be prepared to main-
tain and increase the quality of life of a growing urban population. For instance, there 
are major challenges related to minimizing pollution, managing traffic as well as mak-
ing efficient use of scarce energy resources. For instance, in regard to congested traf-
fic conditions, the Confederation of British Industries estimates that the cost of road 
congestion in the UK is GBP 20 billion (i.e., USD 38 billion) annually. In addition to 
challenges related to the efficient use of natural and manmade resources ensuring the 
health and safety of urban citizens, e.g., in the context of large events or supporting 
law enforcement are key concerns of a modern smart city. 

In order to address these challenges urban decision makers as well as citizens will 
need the capacity to make the right assessment of urban situations based on correct 
data, and, more importantly, they will need the key information contained in the data 
to assist them in their decision processes. 

As put by Neelie Kroes, EU commissioner for the Digital Agenda, data is the new 
gold, meaning that data is a valuable resource that can be mined for creating new 
values. In the context of smart cities, there is an abundance of data sources that can be 
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mined by applying data analytics techniques and generate value by offering innova-
tive services that increase citizens’ quality of life. Data may be provided by all stake-
holders of a Smart City [10], i.e., the society represented by citizens and businesses 
and governments represented by policy makers and administrations.  

On one hand data sources may include traditional information held by public bod-
ies (Public Sector Information, PSI) including anonymous data such as cartography, 
meteorology, traffic, and any kind of statistics data as well as personal data, e.g., from 
public registries, inland revenues, health care, social services etc. [67].  

On the other hand citizens themselves create a constant stream of data in and about 
cities by using their smartphones. By using apps like Twitter and Facebook, or apps 
provided by the city administration, they leave digital traces related to their activities in 
the physical city that has the potential to create valuable insights for urban planners.  

With the advent of deployed sensor systems such as mobile phone networks, camera 
networks in the context of intelligent transportation systems (ITS) or smart meters for 
metering electricity usage, new data sources are emerging that are often discussed in the 
context on the Internet of Things (IoT), i.e., the extension of the internet to virtually 
every artifact of daily life by the use of identification and sensing technologies.  

Thus, we can summarize that the key components required for Smart City applica-
tion are available: 1) an abundance of data sources, 2) infrastructure, networks, inter-
faces and architectures are being defined in the IoT and M2M community, 3) a vast 
range of Big Data technologies are available that support the processing of large data 
volumes, and 4) there is ample and wide knowledge about algorithms as well as 
toolboxes [62] that can be used to mine the data. 

Despite all the necessary conditions for a Smart City are met, there is still a lack of 
an analytical framework that pulls all these components together such that services for 
urban decision makers can easily be developed.  

In this chapter, we address this need by proposing an initial version of such an ana-
lytical framework that we derived based on existing state of the art, initial findings 
from our participation in the publicly funded projects Big Data Public Private Forum 
(BIG) [7] and Peer Energy Cloud (PEC) [46] as well as our own experiences with 
analytical applications for Smart Cities.  

The European Project BIG is a Coordinated Support Action (CSA) that seeks to build 
an industrial community around Big Data in Europe with the ultimate goal to develop a 
technology roadmap for Big Data in relevant industrial sectors. As a part of this effort 
the BIG project gathers requirements on Big Data technologies in industry driven work-
ing groups. Groups relevant for Smart Cities include health, public sector, energy, and 
the transport working group. The project has released both an initial version of require-
ments in these and other sectors [67] as well as a set of technical white papers providing 
an overview of the state of the art in Big Data technologies [31]. In this chapter, we 
draw from these results of the BIG project and complement it with the findings from a 
concrete use case in the energy sector as carried out in the PEC project.  

The remainder of this chapter is structured as follows: Section 2 provides back-
ground about the technical challenges associated with the Big Data and Internet of 
Things topics. Section 3 summarizes the state of the art in Big Data technologies. In 
Section 4 we elaborate on the concrete Big Data challenges that need to be addressed 
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in the context of Smart City applications. Section 5 presents a case study from the 
smart grid domain that demonstrates how we applied big data analytics in a realistic 
setting. In Section 6, we extend the analytics presented in this case study towards an 
initial big data analytics framework. In section 7 we report on our lessons learned. In 
Section 8 we summarize further research directions required to extend the framework 
fully implement it. Finally, Section 9 concludes this chapter. 

2 Background: Big Data and the Internet of Things 

In this section we describe the technologies that are concerned with connecting eve-
ryday artefacts, i.e., the Internet of Things, and relate them to Big Data technologies 
that address the challenges of managing and processing large and complex data  
sets. For an extensive discussion and definition of the term Big Data we refer to the 
respective report of McKinsey [37]. 

2.1 The Various Faces of Big Data 

Although managing and processing large data sets is not fundamentally new, during the 
past years a range of technologies have emerged that facilitate the efficient storage and 
processing of big data sets. While Big Data technologies such as Map Reduce [14] and 
Hadoop [63] are the result of big Internet companies such as Google and Yahoo!, the 
need to handle and process large data sets is quickly extending to other sectors. For 
instance, the amount of various patient data in the health sector offers new opportunities 
for better treatments [67] and the advent of smart meters, allows utility provider to bet-
ter cope with the instabilities of the grid caused by renewable energy sources [33]. From 
a technological perspective Big Data challenges and technologies can best be described 
along the so-called 3 V’s: Volume, Velocity, and Variety [32].  

The Volume Challenge. The Volume challenge refers to storing, processing, and 
quickly accessing large amounts of data. While it is hard to quantify the boundary for 
a volume challenge, common data sets in the order of hundreds of Terabyte or more 
are considered to be big. In contrast to traditional storage technologies such as rela-
tional database management systems (RDBMS), new Big Data technologies such as 
Hadoop are designed to easily scale with the amount of data to be stored and pro-
cessed. In its most basic form, the Hadoop system uses its Hadoop Distributed File 
System (HDFS), to store raw data. Parallel processing is facilitated by means of its 
Map Reduce framework that is highly suitable for solving any embarrassingly parallel 
processing problems. With Hadoop it is possible to scale by simply adding more pro-
cessing nodes to the Hadoop cluster without the need to do any reprogramming as the 
framework takes care of using additional resources as they become available. 

Summarizing the trends in the volume challenge one can observe a paradigm shift 
with respect to the way the data is handled. In traditional database management sys-
tems the database design is optimized for the specific usage requirements, i.e., data is 
preprocessed and only the information that is considered relevant is kept. In contrast, 
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in a truly data-driven enterprise that builds on Big Data technologies, there is aware-
ness that data may contain value beyond the current use. Thus, a master data set of the 
raw data is kept that allows data scientists to discover further relationships in the data, 
relationships that may reside beyond the requirements of today. As a side effect it also 
reduce the costs of human error such as erroneous data extraction or transformation. 

The Velocity Challenge. Velocity refers to the fact that data is streaming into the 
data infrastructure of the enterprise at a high rate and must be processed with minimal 
latency. To this end, different technologies are applicable, depending on the amount 
of state and complexity of analysis [57]. In cases where only little state is required 
(e.g., maintaining a time window of incoming values), but complex calculations need 
to be performed over a temporally scoped subset of the data, Complex Event Pro-
cessing (CEP) engines (see section 3.3) offer efficient solutions for processing incom-
ing data in a stream manner. In contrast, when each new incoming data set needs to be 
related to a large number of previous records, but only simple aggregations and value 
comparisons are required, noSQL databases offer the necessary write performance. 
The required processing performance can then be achieved by using streaming infra-
structures such as Storm [56] or S4 [51]. 

The Variety Challenge. In a data-driven economy the objective is to maximize the 
business value by considering all available data. From a technical perspective one 
could formulate that problem by evaluating a function over all accessible data sets 
[38]. In practice, however, this approach must confront the challenge of heterogene-
ous data sources ranging from unstructured textual sources (e.g., social media data) to 
the wide disparity in the formats of sensor data. Traditionally this challenge is ad-
dressed by various forms of data integration. In the context of Big Data there is how-
ever a new dimensions to the integration challenge which is the amount of different 
data sources that need to be integrated. Social media, open (governmental) data 
sources [12], [21], and data platforms [64] and markets [11], result in a data ecosys-
tem of significant variation. As the integration of new data sources requires manual 
work to understand the source schema, to define the proper transformations and to 
develop data adapters, existing approaches do not scale effectively. 

Veracity. Apart from the original 3V’s described above, an almost inexhaustible list 
of Big Data V’s are discussed. For instance veracity relates to the trust and truthful-
ness of the data. Data may not fully be trusted, because of the way it has been ac-
quired, for instance by unreliable sensors or imperfect natural language extraction 
algorithms, or because of human manipulation. Assessing and understanding data 
veracity is a key requirement when deriving any insights from data sets. 

Visualization. Visualization of big data is particularly important for data scientists 
that try to discover new patterns in the data that can exploited for creating new busi-
ness value, e.g., by creating new services by combining seemingly unrelated data sets.  
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2.2 Internet of Things 

Over the last decade, there has been a growing research interest in the “Internet of 
Things” – a disruptive technology, according to the US National Intelligence Council 
[59]. Despite its recent popularity, the term “Internet of Things” was actually first 
heard of in the previous century. The original definition envisioned a world where 
computers would relieve humans of the Sisyphean burden of data entry by automati-
cally recording, storing, and processing in a proper manner all the relevant infor-
mation about the things involved in human activities [29]. Henceforth, and depending 
on the viewpoint, different understandings and definitions of what the “Internet of 
Things” is about have been reported in the literature [2][39][26]. The European 
Commission envisions it as an integrated part of the Future Internet where “Things 
having identities and virtual personalities operating in smart spaces using intelligent 
interfaces to connect and communicate within social, environmental, and user con-
texts [28]”. The use of standard technologies in the World Wide Web to instrument 
the “Internet of Things” is frequently referred to as the “Web of Things.” 

Prominent players in all the major ICT markets (i.e., information technology, data 
networking, telecommunications, etc.) have publicly acknowledged the challenges 
brought on and the potential entailed by the Internet of Things (IoT) and Machine to 
Machine Communications (M2M). For instance, NEC expects that the M2M market 
will expand to approximately JPY 330 billion by 2015, while the Big Data market 
will expand to JPY 630 billion by 2017 and will exceed JPY 1 trillion by 2020. The 
58.5% annual growth observed in 2010 in deployed M2M devices (as quantified via 
M2M SIM cards) in EU27 stands as market evidence in support of these estimates. 

M2M Standardization. Making rapid progress over the last couple of years, the 
ETSI Technical Committee (TC) on Machine to Machine (M2M) communications 
has recently published its first version of M2M specifications. The objective is to 
define the end-to-end system architecture that enables integration of a diverse range 
of M2M devices (e.g., sensors, actuators, gateways, etc.) into a platform that exposes 
to applications a standardized interface for accessing and consuming the data and 
services rendered through these (typically last mile) devices [16]. To this end, ETSI 
M2M standards define the architecture, interfaces, protocols, and interaction rules that 
govern the communication between M2M compliant devices. 

The M2M logical architecture under development in ETSI comprises two high-
level domains: 

1. The Network and Application (NA) domain, composed of the following elements: 
─ M2M Access Network (AN) providing for communication between the Device 

Domain and the Core Network (CN). 
─ M2M Core Network (CN) providing for IP connectivity and the associated con-

trol functions to accommodate roaming and network interconnection. 
─ M2M Service Capabilities (SC) providing functions shared by M2M applica-

tions by exposing selected infrastructure functionalities through network inter-
faces while hiding realization details. 

─ M2M Applications running the actual application logic. 
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Over these references, resource management procedures adopt the RESTful style 
for the exchange and update of data values on the basis of CRUD (Create, Read, Up-
date, Delete) and NE (Notify, Execute) primitives. 

The role of wireless technologies in ETSI M2M is that of connectivity with mini-
mal infrastructure investment both in the Device domain and the Network and Appli-
cations domain. 

On a global scale, the oneM2M Partnership Project, established by seven of the 
world’s leading information and communications technology (ICT) Standards Devel-
opment Organizations (SDOs) is chartered to the efficient deployment of M2M sys-
tems. To this end, existing ETSI M2M standards are to be transferred to oneM2M and 
ratified as global M2M standards. 

Smart Cities. By amassing large numbers of people, urban environments have long 
exhibited high population densities and now account for more than 50% of the 
world’s population [58]. With 60% of the world population projected to live in urban 
cities by 2025, the number of megacities (i.e., cities with a minimum population of 10 
million people) is expected to increase also. It is estimated that, by 2023, there will be 
30 megacities globally. 

Considering that cities currently occupy 2% of global land area, consume 75% of 
global energy resources and produce 80% of global carbon emissions, the benefit of 
even marginally better efficiency in their operation will be substantial [58]. For in-
stance, the Confederation of British Industries estimates that the cost of road conges-
tion in the UK is GBP 20 billion (i.e., USD 38 billion) annually. In London alone, 
introduction of an integrated ICT solution for traffic management resulted in a 20% 
reduction of street traffic, 150 thousand tons of CO2 less emissions per year and a 
37% acceleration in traffic flow [18]. 

Being unprecedentedly dense venues for the interactions – economic, social and of 
other kind – between people, goods, and services, megacities also entail significant 
challenges. These relate to the efficient use of resources across multiple domains 
(e.g., energy supply and demand, building and site management, public and private 
transportation, healthcare, safety, and security, etc.). To address these challenges, a 
more intelligent approach in managing assets and coordinating the use of resources is 
envisioned, based on the pervasive embodiment of sensing and actuating technologies 
throughout the city fabric and supported by ubiquitous communication networks and 
the ample processing capacity of data centers. The umbrella term Smart City [68] 
refers to the application of this approach in any of six dimensions: 

• Smart economy 
• Smart mobility 
• Smart environment 
• Smart people 
• Smart living 
• Smart governance 

By aggregating data feeds across these domains and applying data processing algo-
rithms to surface the dominant relationships in the data, the situational awareness of 
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the Smart City at the executive level becomes possible. For instance, by leveraging its 
open data initiative, the city of London provides a dashboard application demonstrat-
ing the kind of high-level oversight achievable by cross-silo data integration and the 
use of innovative analytic applications [35]. 

The footprint of our current cities’ impact is growing at 8% annually, which means 
it more than doubles every 10 years. Thus not surprisingly, NIKKEI estimates that 
USD 3.1 trillion will be invested globally in Smart City projects over the next 20 
years [69].  

Relationship to Big Data. The popularity of data mashup platforms, as evident today 
for human-to-machine and machine-to-human information, is expected to extend to 
machine-to-machine information [16]. Data generated in the context of machine-to-
machine communication are typically not constrained by the processing capacities of 
human entities in terms of volume, velocity, and variety. Particularly in regard to 
velocity, the ongoing deployment of a large number of smart metering devices and 
their supporting infrastructures across urban areas increases the percentage of fre-
quently updated small volume data in the overall data set of the Smart City. Thus 
M2M data exchanges in the context IoT applications for a Smart City impact upon the 
requirements of data handling through an increase in the volume, variety, and velocity 
of the data. 

Considering the trinity of IoT, M2M, and Smart Cities from the standpoint of cloud 
technologies, it becomes apparent that the scalability to a large number of M2M de-
vices (i.e., sensors, actuators, gateways) and data measurements will be a prime (non-
functional) application requirement. It is, therefore, apparent, that IoT, M2M, and 
Smart Cities are, from a requirements perspective, right at the core of what Big Data 
technologies provides. 

Increasing urbanization and M2M deployment bring on significant increases in the 
data generated by IoT applications deployed in the Smart City fabric. For instance, the 
London Oyster Card data set amounts to 7 million data records per day and a total of 
160 million data records per month [4]. Given that a Smart City generates a wide 
spectrum of data sets of similar – and even larger – size, challenges characteristic of 
Big Data arise in collecting, processing, and storing Smart City data sets. 

3 State of the Art 

In this section we describe state of the art of Big Data according focusing on the vol-
ume and velocity challenge. For this section, we describe the state of the art mainly 
from an industrial perspective, i.e., we provide examples of available technologies 
that represent technologies that can also be used in a productive environment. 

3.1 Big Data 

As described in the previous section, the advances in IoT infrastructures, combined 
with the social demands for more efficient resource usage in densely populated urban  
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Fig. 2. Lambda Architecture (Source: Big Data – Principles and best practices of scalable 
realtime data systems, ISBN 9781617290343 [38]) 

environments, introduces data-related challenges that are at the focus of Big Data 
toolsets. The latter include technologies and tools that support solving the volume 
challenge. A range of noSQL databases are able to keep up with high update rates. 
Programming frameworks such as MapReduce [14] help processing large data in 
batches. And Stream processing infrastructure such as Storm [56] and S4 [51] provide 
support for scalable processing of high velocity data. In practice both technologies are 
required in order to design a low latency query system. Marz and Warren have de-
vised the term Lambda architecture as an architectural pattern that defines the inter-
play between batch and speed layer in order to provide low latency queries [38].  

New data (A) is provided both to the batch and speed layer as depicted in Fig. 2. 
The batch layer (C) stores all incoming data in its raw format as master data set (B). It 
is also responsible for running batch jobs that create batch views in a serving layer 
(D) that is optimized for efficient querying (F). The batch layer is optimized for pro-
cessing large amount of data, e.g., by using the MapReduce framework and may re-
quire hours to process data. Consequently, the batch view will not be updated between 
repeated executions of the batch jobs and the corresponding data cannot be included 
in the result set of a query to the serving layer. 

The speed layer (E) addresses this information gap by providing a real-time view 
on the data that has arrived since the last executed batch job. This way an application 
will always have up-to-date information by querying both the serving and speed layer. 
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3.2 Batch Processing 

In order to cope with the volume challenge so-called noSQL databases are gaining in 
popularity. Those databases can be classified according to their scalability with re-
spect to data size and suitability to model complex data relationships [43]. With de-
creasing ability to handle data size and increasing capability to handle complex rela-
tionships, we can distinguish between key-value stores, columnar stores, document 
databases, and graph databases. 

Key-value stores are databases that scale easily, but are only able to capture simple 
relationships, i.e., a key and its value. Columnar stores in contrast store data in col-
umns and are thus better suited for queries that access only small portions of high 
dimensional data. Document databases are able to store even more complex data, but 
typically do not scale as well. Graph databases in contrast can easily model any rela-
tionship, but do not scale as easily. 

The actual processing of data uses different computational frameworks such as 
Hadoop’s MapReduce [63], Hama’s Bulk Synchronous Processing framework [53], 
or graph processing frameworks [24]. They are designed to process large volumes of 
data in batches, i.e., in regular intervals. As a consequence these technologies are not 
suitable to process data in real-time. 

3.3 Real-Time Analytics 

It is commonly acknowledged that, in a lot of economically significant application do-
mains, the value of information decreases as it ages. That is, the more recently the data 
(and the respective information drawn from it) has been acquired, the more valuable it 
is. The challenge of processing high velocity data in real-time calls for dedicated solu-
tions that can handle data in motion. Today a number of solutions exist that are designed 
for executing complex logic over continuous data flows with high performance. These 
solutions are typically referred to as stream processing or complex event processing 
systems. The terms stream processing and event processing developed independently 
and one may argue for some differences in the underlying philosophies. However, the 
terms are increasingly used interchangeably and the corresponding solutions follow 
similar principles. We will subsequently only use the term Complex Event Processing 
(CEP) and subsume stream processing under this term. 

CEP engines are designed for implementing logic in the form of queries or rules 
over continuous data flows. Typically, they include a high level declarative language 
for the logic definition with explicit support for temporal constructs. The defined 
logic is executed by the engine using processing techniques that are optimized for 
continuous data flows. In contrast to batch-driven processing that is triggered on re-
quest, CEP engines process incoming data continuously in an event-driven manner. 
Another difference to batch systems is that CEP engines do not persist information. 
That is, they operate on temporal windows or synopsis of the incoming data in 
memory. Consequently the scope of this analytics is live data or data about the recent 
past as opposed to long-term analysis of recorded information. 
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The need for CEP technology is rooted in various domains that required fast analy-
sis of incoming information. Examples can be found among others in the finance 
domain where CEP technologies are used for applications like algorithmic trading or 
the detection of credit card fraud [27].  In these cases CEP is very well suited due to 
applications requiring fast analysis of high volume data streams involving temporal 
patterns. For instance, a credit card fraud may be detected if multiple transactions are 
executed in short time from far apart locations. Other application domains for CEP 
include fields like logistics [60], business process management [61], and security 
[22]. Also, the IoT domain has sparked a range of applications that require event-
driven processing and is one of the drivers for CEP technology. Specifically the field 
of sensor networks has early on let to development of systems that are designed for 
processing in an event-driven manner (e.g., TinyDB [36], Aurora/Borealis [1]). 

Over the last years a number of CEP solutions have emerged in academia as well 
as in industry. Some of the known early academic projects are TelegraphCQ [8], Ti-
nyDB [36], STREAM [41], Aurora/Borealis [1], and Padres [30]. The research initi-
ates were followed by (or directly led to) the emergence of several startups in this 
domain. For instance the company StreamBase is based on the Aurora/Borealis pro-
ject and results from the STREAM project fueled the startup Coral8 and the CEP 
solution of Oracle. Other vendors software vendors like Microsoft and IBM have 
created CEP solution based on their own internal research projects (CEDR [3], Sys-
tem S [24]). In addition several major vendors have strengthened or established CEP 
capabilities through acquisitions in recent years.  Some examples to name are the 
acquisition of Apama by Software AG, StreamBase Systems by TIBCO, and Sybase 
by SAP. 

Next to purely commercial offerings the market includes offerings that are availa-
ble as open source solutions. Example include engines like Esper [19], ruleCore [50], 
or Siddhi [55]. Noticeable additions to the open source domains are the solutions 
Storm [56] and S4 [51]. These solutions are not classical CEP engines in the sense 
that they do not provide a dedicated query language. In contrast, Storm and S4 pro-
vide event processing platforms that are focusing on support for distributing of logic 
to achieve scalability. 

4 The Big Smart City Integration Challenges 

In this section, we describe in brief the challenges related toward an integrated solu-
tion for scalable analysis of Smart City data sources. We consider these challenges 
mainly from an integration point of view along two dimensions. First there is a ques-
tion how batch and stream processing should be integrated in a modern Smart City 
environment (Section 4.1). And second, there is the challenge how the variety  
of data source should be handled in order to efficiently deliver new services and ana-
lyze these data sets as a whole rather than in isolation (Section 4.2). As social media 
sources provide a potentially rich source of information, we describe them separately 
(Section 4.3). 
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4.1 Integration of Batch and Stream Processing 

New kind of smart city application will greatly benefit from elaborate analytical algo-
rithms. For instance in order to make prediction about traffic patterns, crime [47], 
diseases, or energy consumption, it is necessary to first learn patterns from the data, 
e.g., using statistical or machine learning algorithms. In a second step, the model is 
applied to new data making decisions based on the model such as the future energy 
consumption. 

As the learned models do not need to be adapted with every incoming data set, 
state of the art big data batch processing approaches are suitable to learn models on 
large data sets. Vice versa stream processing approaches are suitable to evaluate new 
data in real-time. 

Note that this is different from Marz’ and Warren’s main application of the Lamb-
da architecture with applications in mind that require a scalable and robust system 
design, for querying large amounts of data with low latencies as for instance required 
for real-time Business Intelligence dashboard visualizations. These kind of applica-
tions require essentially the same logic in the batch and stream layer whereas in mod-
el-based analysis the logic differs. 

The challenge is therefore to devise distributed version of known model learning 
algorithms and implement them on common distributed processing frameworks such 
as MapReduce [14]. As with any application of statistical or machine learning model, 
the main challenge is to find the right features. In particular, it is necessary to define 
interactions between the batch and speed layers required to access the model. Howev-
er, the biggest challenge is finding the right combination of technologies that allow 
for a scalable and robust design. On top of that, the design must ensure that the inter-
actions defined for accessing the model do not run counter to the realization of effi-
cient and scalable processing. 

4.2 Integration of Heterogeneous Data Sources 

The spectrum of IoT data sources includes sensor data, product databases, or data 
extracted from the web, including social media. Different data sources model data in 
different ways and use different protocols and interfaces for communication. To avoid 
forcing each IoT application to understand a multitude of different data models, in-
cluding the encoding and semantics of the consumed data as well as the protocol used 
to access it, the IoT platform must accommodate many different data models by sup-
porting extensions, and a continuum in the evolution of data models and render those 
to the application in a standard, semantically enriched format. This will also enable 
better integration between data sources thus facilitating the analysis over disparate 
data sets. 

It is understood that IoT applications vary in terms of the data sets they employ in 
their function and in the nonfunctional requirements (e.g., reliability, scalability, etc.) 
imposed upon their operation. Therefore, selecting the solution technology set that 
renders the intended function while meeting the nonfunctional requirements of the 
application domain will be an important concern. For instance, some IoT applications 
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will require real-time processing of frequently updated small volume structured data 
sets, while other will require complex analytic operations on large volumes of infre-
quently updated but semantically enriched unstructured data sets. The wide range of 
operational requirements entailed by this disparity, suggests that the proper instru-
mentation of the data processing stage will be a paramount concern for IoT applica-
tions in Smart Cities. Such instrumentation matters need to be addressed in conjunc-
tion with instrumentation options arising from section 4.1 above. 

4.3 Natural Text and Social Media Analysis 

Nowadays, social networks are widely accessible via mobile devices such as smart 
phones making them a rich source for monitoring citizen’s behaviors and sentiments 
in real time. Social networks such as Twitter, Facebook, Foursquare, etc. provide 
access to various location-based information reported by their users, though usually in 
an unstructured format.  

Integrating social sensors data with the IoT could be highly beneficial in several 
aspects: 

1. Contextualization of physical phenomena by providing a subjective context signal-
ing (i.e., explanation) on top of physical events detected by physical sensors 

2. Calibration of noisy events detected by physical sensors, by providing an addition-
al supportive signaling of the same events by the social sensors. 

3. Detection of ‘below the radar’ events by combining both subjective and objective 
sensors data, which otherwise would not have been detected using each separately. 

The initial challenge when considering the integration of social networks reports as 
sensorial insights is the extraction of such signals. Extracted sensorial data might 
include peoples’ stated opinions and statements regarding a particular sentiment, topic 
of interests, reported facts about one’s self (e.g., illness, vacation, event attendance) 
and various additional subjective reports. Natural language processing (NLP) along 
with Machine Learning algorithms are applied for extracting the relevant signals from 
the data posted by the users of the social medium.  

An additional challenge is the reliability/credibility of the social sensors. Naturally, 
the model-based inferred signals are attached with a certainty level produced by the 
model, where handling the data uncertainty is not trivial. Moreover, the reporting user 
could also be attached with a credibility score which measures the overall worthiness 
of considering its data in general.  

The sparsity of geo-tagged data in social network data is another challenge when 
considering its value for integration with the IoT. For example, only 1% of all Twitter 
messages are explicitly geo-tagged by the users. Recent work suggests several meth-
odologies to overcome this challenge by inferring the users’ location based on its 
context [13] [17]. 

Finally, there is a need for an architecture that combines both batch and stream 
processing over social data, for achieving a couple of goals:  
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1. Enabling the combination of offline-modeling over vast amounts of data and ap-
plying the resulting model over streaming data in real time. Most of the complex 
semantic analysis tasks, as for instance Sentiment Analysis [34] [45] require batch 
modeling. Feature extraction could be done in real time over a data stream by ap-
plying a sliding time window (e.g., 20 seconds) over measures as terms’ frequency 
or TF-IDF [52]. For addressing the challenge of evaluating models in data streams 
where the data distribution changes constantly, a sliding window kappa-based 
measure was proposed [6]. 

2. Analyzing data of all social sensor types, either streaming (e.g., Twitter) or non-
streaming (e.g., blog posts) using the same architecture. 

5 Case Study: Smart Grid Analytics 

In this section, we discuss a case study from the smart grid domain that illustrates the 
application of big data on smart home sensor data. The case is taken from Peer Ener-
gy Cloud (PEC) project [46] that runs a smart grid pilot in a German city. The pilot 
includes installations of smart home sensors in private homes that measure energy 
consumption and power quality such as power voltage and frequency at several power 
outlets in each home. Each sensor takes measurements every two seconds and streams 
the results into a cloud-based infrastructure that runs analytics for several different 
use cases. In this section, we discuss the technical details of three scenarios that we 
implemented in our labs using data from deployed sensors: 

1. Power quality analytics – shows the benefits of big data batch processing tech-
nologies. 

2. Real-time grid monitoring – shows the benefits of in-stream analytics. 
3. Forecasting energy demand – shows the need to combine both batch and stream 

processing. 

5.1 Power Quality Analytics 

Power quality analytics addresses the identification of problem areas within the distri-
bution grid. The fine-grained sensing allows for detecting power quality issues in the 
last mile of the grid, down to the household level. For instance, voltage fluctuations 
can be detected and compared between houses or streets. This enables to pinpoint 
hotspots of power quality problems and identify root causes. Fig. 3  below shows 
exemplary the statistics that identify problem hotspots (left) and an analysis of the 
root cause (right). Spatiotemporal clustering of power quality anomalies can provide 
operators with insights about the circumstances when power quality issues arise. 

Clustering analysis may be further extended adding additional dimensions such as 
weather conditions, or periodic time attributes like season or time of the day. Togeth-
er, these analysis support exploratory investigation of root causes and planning of 
counter measures. 
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Fig. 3. Analysis of voltage deviations 

The big data challenges in this use cases arises due to the high data volumes. Every 
household produces almost 2 million energy-related measurements a day. This num-
ber has to be multiplied by the number of households that use the technology and 
accumulates over time. For instance, about 200,000 million voltage measurements per 
month would be available in a full rollout in the small pilot city of Saarlouis. 

The query logic for power quality analytics is relatively simple but poses challeng-
es due the high data volumes. Experiments in the pilot project revealed operational 
challenges already when implementing the analytics for the first four pilot house-
holds. Already at this limited scope relational databases required tweaking to handle 
the queries. However, using the MapReduce programming model and the Hadoop 
framework it was straightforward to implement the power quality analytics in a scala-
ble way. This is because the underlying analytics problem is of embarrassingly paral-
lel nature and hence very well suited for parallel processing. For instance, it is trivial 
to partition the data for analyzing household specific voltage fluctuations by house-
hold and the Hadoop-based implementation achieved close to linear scalability. 

5.2 Real-Time Grid Monitoring  

The second use case – real-time grid monitoring – is about providing live insights into 
the current state of the electrical grid. Industrial control systems typically provide 
measures of the grid down to the level of secondary substations. With smart homes it 
now becomes possible to monitor the distribution grid on a level that is not covered 
by current infrastructures. For instance, power quality measures and the consumed 
power can be observed for each customer in real-time. This allows detecting critical 
states and aid responses on a local level. For instance, customers may selectively get 
demand response signals to temporally adapt their consumption in order to avoid 
overload situations. 

The big data challenges in this use cases arises due to the high data volumes and 
velocity of the data. In the PEC pilot, every household produces about 18 sensor 
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measurements per second. A full rollout in the pilot city would result in about 
360,000 new measurements every second. Continuously inferring an accurate live 
state of the grid poses challenges to the throughput and latency of the analytics sys-
tem. The addressed analytics for power quality and consumption analysis are charac-
terized by incremental updates as well as temporal aggregates. Specifically for such a 
setting, stream processing and CEP technologies provide an answer to these challeng-
es. Inferring the live state only requires computations over latest sensor information. 
Thus, the state that is needed for processing is relatively small. CEP engines keep the 
state in memory and thereby enable high throughput. We found that CEP engines are 
suitable to (a) support the query logic for live analysis power quality measures and 
power consumption and (b) to provide the required throughput. Using the open source 
CEP engine Esper [19] we could run the required analytics for thousands of house-
holds in parallel on a single machine. The performance depends on implementation 
details of the specific analysis. However, the processing paradigm of CEP significant-
ly eased the development of high throughput analytics over the pilot data. 

5.3 Forecasting Energy Demand 

The third use case – forecasting energy demand – is an important element in demand 
side management solutions that are under investigation within the PEC pilot. Demand 
side management takes the approach to balance the grid, not only by adapting the 
production but also the consumption. Being able to predict the consumption on a 
household level allows taking proactive measures to influence demand, e.g., by send-
ing demand response signals that ask consumers to reduce load [44].  In the context 
of the PEC project we are investigating mechanisms to continuously predict load on 
household level. The underlying concept is to (a) build a prediction model based on 
recorded sensor data and (b) to apply the model in real-time based on using the latest 
sensor measurements.  

The big data challenge in this use case is twofold. The first challenge arises for build-
ing prediction models based on high volumes of sensor records. The second challenge is 
to apply these models in the stream, using high velocity sensor measurements.  

To build prediction models, a large spectrum of candidate algorithms may be ap-
plied and tuned to predict household-specific electricity demand. For instance, in [66] 
we used support vector machines and neural networks. In experiments we observed 
error reductions in load predictions between compared to persistence predictors of up 
to 33% (see [66] for details). A straightforward way to implement the model learning 
in a scalable way is to scale out by partitioning data and processing along households. 
This approach works to learn arbitrary prediction models in batch mode. To apply the 
model in real-time, one needs to continuously extract the model features from the 
incoming energy measurements and call the learned models. Partitioning can be done 
along households and supported by frameworks for stream processing. In [65] we 
describe an instantiation of the concept based on a combination of Esper [19] and 
Weka [62]. With this approach we are able to make low latency real-time forecast for 
1000 households on a single machine (see [65] for details).  
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Suitable technologies exist for the challenges of model learning as well as real-time 
application of the prediction models. However, no off-the-self solutions to our 
knowledge directly meet the twofold challenges of this use case. Instead, a combina-
tion of big data technologies in required. We discuss such a combination in the fol-
lowing section. 

5.4 Lessons Learned 

Throughout the pilot project PEC we are gaining first-hand experience into operation-
al aspects of IoT applications with big data. These experiences underpin many of the 
considerations described in the preceding sections. Specifically, we discuss (1) ex-
perience with practical use of Hadoop, (2) implications of using relational schemas, 
(3) operational challenges in an uncontrolled environment for sensor deployment, (4) 
and the challenge of combining batch and stream processing. 

Using Hadoop Eased Development. By using the Hadoop framework, we found that 
the benefits of out-of-the box scalability materialized very early in the project. Even 
for rather simple analytics and after only a few month of data collection the develop-
ment team struggled to make the corresponding queries scale sufficiently on relational 
databases. However, using Hadoop it was straightforward to achieve sufficient scal-
ability and performance, without the need tune the implementation. This does not 
mean that solutions based on relational databases could not have achieved the re-
quired performance and scalability. Yet, the burden for the development teams was 
significantly lower using Hadoop. 

Denormalization Helped with Operational Challenges. Regarding (2), the use of 
relational schemas, we found that denormalization helps with several operational 
challenges when handling time series of sensor data. Storing each sensors value with 
all related metadata (e.g., deployment location) makes it trivial to keep the metadata 
consistent with the measurement. This is especially helpful in an evolving system 
environment. Throughout the project we found that initially assumed functional de-
pendencies between sensors and metadata entries did not hold anymore as the system 
use cases expanded. For instance, we initially assumed that sensor deployments reside 
within one household. However, the need to move the same hardware to multiple 
locations arose later in the project. By storing the metadata along with the sensor val-
ues, it is trivial to ensure that each sensor recording can always be analyzed in the 
context of the information data was correct during measurement time.  

Uncontrolled Environments Require Robust Analytics. Regarding (3), operational 
challenges for sensor deployments in an uncontrolled environment, we found that this 
factor has major implications on developing analytics. The part of the system that is 
outside the realm of control is naturally exposed to unavoidable distortions and exter-
nally induced disruptions. This challenge arises in most IoT scenario and is therefore 
typical for this domain. In the PEC project the sensors are deployed in private house-
holds. Distortions due to power outages, accidental disconnection of the sensors, or 
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simply mishandling of the system are among incidents that must be expected.  
Therefore,  analytics solution must cope with some degree of errors and uncertainty 
in the input data. 

Missing Best Practices for Combining Batch and Stream Processing. Regarding 
(4), the challenge of combining batch and stream processing, we found that the appli-
cation of existing big data technologies is straightforward when doing batch and 
stream processing in isolation. Both worlds have matured tool chains that work to a 
large degree out of the box. However, the design space for combining batch and 
stream processing is more open and best practices are less explored. While adapters 
for data exchange exist, the details of the interplay between batch and stream process-
ing leaves significant effort to development. For instance, we found that the need for 
batch driven model learning and stream driven application of the models reoccurs in 
many use cases. However, the most suitable technologies for these tasks do not pro-
vide off-the-shelf support for this integrated scenario.  

6 Unified Big Data Processing 

As a first step toward addressing the Volume and Velocity challenge in the context of 
Smart Cities, we devised an Analytical Stream Processing framework for handling 
large quantities of IoT-related data. It extends the basic Lambda architecture by sup-
porting statistical- and machine-based model learning in batches and its use in the 
streaming  layer. 

 

Fig. 4. Big Data Analytical Stream Processing Framework 
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Fig. 4 shows an initial draft of our framework. New data is being dispatched both 
to batch layer and stream processing layer. The main responsibility of the batch layer 
is to calculate models that characterize the incoming data, e.g., by describing re-
occurring patterns creating a prediction model. For instance, the batch layer can real-
ize the learning of models for households specific load prediction in the PEC project. 
The model is provided in the serving layer. Further to the basic lambda architecture, it 
is important to note that the serving layer must also serve the streaming layer that 
needs the model data in order to provide its analytical results to the application layer. 
Online load prediction in the PEC project is an example for such a situation. Here the 
speed layer extracts features (i.e., temporal aggregates) from the incoming load meas-
urements and calls the previously learned prediction models to obtain a prediction 
value. 

6.1 Model Learning in the Batch Layer 

In the batch layer new data is collected in persistent storage such as the Hadoop File 
System (HDFS) or a NoSQL database (1). The model learning process consists of two 
main steps as commonly used by machine learning algorithms. They are executed in 
regular time intervals in order to adapt to changing patterns in the data.  These three 
steps are preprocessing (2) and model learning (3). We briefly describe these pro-
cessing steps and outline how they can be applied to large data sets. 

PreProcessing. In the pre-processing step raw data is processed in order to obtain a 
list of features that is suitable for applying the respective model learning algorithms. 
For raw sensor data this typically includes further substages such as a sampling stage, 
data cleaning, feature extraction, and noise filtering. The sampling stage outputs a list 
of equally sampled measurements. This is particularly important for event-based 
sources. Data cleaning may include removal or substitution of erroneous sensor data. 
The feature extraction stage outputs a time series of one or multiple features that pro-
vide a suitable input to the model learning step. A feature can be any value that is 
calculated out of the raw sensor measurements including the raw measurement itself 
or applying a function over several types of raw measurements. Finally, the noise 
filtering stage smoothens the extracted features, e.g., by applying a moving average or 
median filter. 

Model Learning. In the model learning step the extracted features are used to calcu-
late the actual model. The model parameters representing the model depend on the 
used algorithms. In our use case above this would include temporal aggregates of 
household- and device-specific load measurements. For a statistical model the model 
parameters would represent the parameters of a statistical distribution function such as 
the mean and standard deviation for a normal distribution. The model would also 
include thresholds on the variance based on which an anomaly is considered to be 
detected. 
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Scalable Processing. In the context of processing large amounts of data it is im-
portant to parallelize the processing steps discussed above. The realization of the par-
allelization depends to a large degree on the actual data and algorithms used. Due to 
the simplicity of the MapReduce framework it is beneficial to describe the batch layer 
processing in terms of map and reduce steps.  

In order to apply the MapReduce framework to a model learning problem, we first 
need to consider whether the problem is embarrassingly parallel, i.e., whether the 
input data can be split into independent parts for which the algorithms can be applied. 
If there is a large number of spatial or temporal groups of data records for which a 
model needs to be learned, applying the MapReduce framework is an obvious proce-
dure. For instance for the load prediction use case discussed above, we can create our 
load model for each household independently mapping individual measurement to a 
household and calculating the model for each household in the reduce step.  

In other cases it may be necessary to rewrite the algorithm in a distributed way. 
Chu et al. describe how a special class of machine learning algorithms can be rewrit-
ten so that their execution can be sped up by using the MapReduce framework [9]. 
For more complex problems, it may be necessary to redesign the algorithm, potential-
ly sacrificing optimal solutions, or use other parallel programming frameworks such 
as Apache Hama [53] that provides an implementation of Bulk Synchronous Pro-
cessing technique. 

6.2 Viewing Data Patterns in the Serving Layer 

Similar to the basic Lambda architecture the serving layer provides a view of the out-
put data generated by the batch jobs. In the context of our analytical streaming 
framework such batch views includes a feature view (4) that contains the pre-
processed feature values prepared for fast access by applications.  

The model view (5) is an important specialization of the serving layer. It contains 
the model parameters as calculated in the model learning step. The size of the model 
view is typically considerably smaller than the original data sets. For instance, the size 
of a statistical model that characterizes load distributions of individual households 
aggregates data over the period that is used for model learning. 

In contrast to the basic Lambda architecture, the model views are primarily used by 
the speed layer and not the application layer. Different design options exist for this 
integration. Two fundamental options are to (a) leave the model in the serving layer 
and (b) to load the model into the speed layer. In both options the speed layer extracts 
model inputs from the live data stream and calls the model. In option (a), the speed 
layer sends the extracted model input to the serving layer and gets the result of the 
model application in return. This option has the advantage that the model must not be 
managed in the memory of the speed layer. The drawback is that calls to the serving 
layer may increase latency and reduce throughput. In option (b), the model is loaded 
into the memory of the speed layer one the corresponding streaming logic is instanti-
ated this option has the advantage that the model application avoids the overhead of 
making external calls but – dependent on the model size – can also cause resource 
problems with respect to the main memory.   
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6.3 In-Stream Analytics in the Streaming Layer 

The streaming layer receives the same stream of new data (6) as the batch layer. Its 
main purpose is to analyze the incoming data stream in real-time. As a first step the 
data is preprocessed (7) in order to receive the features out of the raw data stream. 
This calculation is functionally equivalent to the preprocessing step in the batch layer 
(2). Thus it may be beneficial to reuse the logic in the batch layer, in particular if 
complex processing over time series data is being performed. In this case, the query 
languages offered by complex event processing engines may often be better suited to 
formulate the logic than a hand-crafted code or even SQL [20]. This can for instance 
be achieved by invoking the CEP queries in the reduce step of a MapReduce job [40]. 

In the next step the model in the serving layer is accessed in order to apply the 
model on the preprocessed features calculated in the previous step (8). In the case of 
statistical anomaly detection, this could for instance involve computing the deviation 
from the expected value as stored in the model for the matching time period and 
throwing an event if the threshold is exceeded.  For instance, to detect power quality 
anomalies one may compare current voltage fluctuations against a statistical model of 
typically observed fluctuations. 

As the processing in the speed layer is often time critical, it may be necessary to 
avoid further latencies introduced by accessing the stored model in the serving layer. 
This could for instance be achieved by providing an event source in the streaming  
layer that accesses the corresponding parts of the model or directly loading the model 
into the CEP engine and manually updating it. However, if the model is large and 
requires complex update strategy it is more beneficial to query an in memory data-
base, e.g., using Redis [48]. 

The final step in the speed layer is the postprocessing of applied model data (8). 
This step may be necessary to reduce the number of false positives. In the case of 
anomaly detection for instance, it is often not desired to propagate a singular anomaly 
event that may result from measurement errors or other inaccuracies in the data or 
model. Thus, an anomaly may only be indicated if it is consecutively detected over a 
certain time.  

Scalable Processing. In order to cope with a large number of events it is necessary to 
scale out the processing logic to multiple machines. This can for instance be achieved 
by creating a Storm [56] topology that defines how stream-based data is being pro-
cessed. The partitioning of data can then be defined in a similar was in the batch pro-
cessing layer. For instance if the data can easily spatially be separated it is possible to 
use Storm’s field grouping capability to ensure that data of a spatial partition is al-
ways processed by the same task. The processing logic itself can then be implemented 
using modern complex event processing engines such as Esper [19] benefiting from 
their performance and query languages. 

6.4 Accessing the Data in the Application Layer 

As in the basic Lambda architecture the application layer is accessing the data both 
from the serving and speed layer. The application uses the data from the batch and 
streaming layer in two ways. First, the streaming data can be used to provide a real 
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time view of the features calculated in the batch layer (10). As in the basic lambda 
architecture this can be useful to provide a real-time dashboard view, for instance 
reflecting the current state of the power grid. Second, the application may only con-
sume events generated in the stream layer that are based on applying incoming data to 
the model as described above (11). This way applications and human operators  
can receive events about detected anomalies or continuous predictions about energy 
consumption. 

7 Further Research Directions 

For further work we plan to extend our analytical framework and apply it to other 
domains in the context of Smart Cities. This includes in particular adding more ma-
chine learning algorithms for the batch layer and the corresponding logic for the 
streaming layer.  

In this chapter we have focused on an analytical framework for processing large 
volumes of data in real-time, i.e., we addressed mainly the volume and velocity chal-
lenge. As we extend our work to different data sets and application domains, it will, 
however, be increasingly important to cope with the variety of data sources and their 
data.  

It is, therefore, a key requirement for the proposed analytical framework that both 
the model learning algorithms as well as the stream logic can be applied uniformly 
across different data sets and application domains. On one hand this will maximize 
the value that can be extracted from available data sets and on the other hand the pro-
cessing chain can then easily be applied to new data sets, thus saving effort, time, and 
costs during the development process. 

A future research direction is therefore to extend the analytical framework with the 
necessary mechanisms to achieve such uniform processing. This could for instance be 
realized by a metadata model on which the corresponding logic operates. As we see 
the application of this analytical framework mainly in the context of Smart Cities and 
the Internet of Things, an entity-based framework that naturally models real-world 
entities such as sensors, people, buildings, etc. [23]. Such an information model along 
with a corresponding architecture has been defined by the IoT-A project [5]. 

8 Conclusions 

In this chapter, we have proposed an initial draft of a Big Data analytical framework 
for IoT and Smart City applications. The framework is based on existing state of the 
art, initial findings from our participation in the publicly funded projects BIG [7] and 
PEC [46] as well as our own experiences with analytical applications for Smart Cities. 
Our work is motivated by the fact that key components such as data, sources, algo-
rithms, IoT architectures, and Big Data technologies are available today, but still there 
is a lot of effort required to put them into operational value.  

A significant part of this effort is due to missing standards (cf. for instance the SQL 
query language for relational databases) and wide variety of different technologies in 
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the Big Data domain as well as the required integration effort. But the application of 
advanced analytical computation at scale and speed also requires considerable design 
effort and experience. We believe that an analytical Big Data framework along with 
appropriate toolboxes can add significant value both to required development effort 
and insights that can be derived from the data. While there are Big Data machine 
learning libraries such as Mahout [42], as well as frameworks for model learning on 
top of Hadoop [48], we are not aware of fully integrated analytical frameworks that 
combine model learning and stream processing. 

In order to fully benefit from the framework its overall design and associated 
toolboxes need to support a variety of data sources and algorithms. While this re-
quirement does not change the high level architecture of the framework, such exten-
sions do have significant impact on the interface level and overall design of the indi-
vidual processing components. A carefully planned and sound conceptual design as 
well as pragmatic implementation decisions will be an important enabler to reduce 
development costs and create innovative services in the IoT and Smart City domain. 
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