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Abstract. In this contribution we continue the study of the Lovász-
Schrijver PSD-operator applied to the edge relaxation of the stable set
polytope of a graph. The problem of obtaining a combinatorial charac-
terization of graphs for which the PSD-operator generates the stable set
polytope in one step has been open since 1990. In an earlier publication,
we named these graphs N+-perfect. In the current work, we prove that
the only imperfect web graphs that are N+-perfect are the odd-cycles
and their complements. This result adds evidence for the validity of the
conjecture stating that the only graphs which are N+-perfect are those
whose stable set polytope is described by inequalities with near-bipartite
support. Finally, we make some progress on identifying some minimal
forbidden structures on N+-perfect graphs which are also rank-perfect.

1 Introduction

Perfect graphs were introduced by Berge in the early sixties [1]. A graph is perfect
if each of its induced subgraphs has chromatic number equal to the cardinality
of a maximum cardinality clique in the subgraph.

According to the results in [6] the family of perfect graphs constitute a class
where the Maximum Weighted Stable Set Problem (MWSSP) can be solved in
polynomial time. Some years later, the same authors proved a beautiful result
[8]: for every graph G,

G is perfect ⇔ TH(G) = STAB(G) ⇔ TH(G) = CLIQUE(G) ⇔
STAB(G) = CLIQUE(G) ⇔ TH(G) is polyhedral, (1)

where STAB(G) is the stable set polytope of G, CLIQUE(G) is its clique relax-
ation and TH(G) is the theta body of G defined by Lovász [10].

In the early nineties, Lovász and Schrijver introduced the PSD-operator N+

which, applied over the edge relaxation of STAB(G), generates the positive semi-
definite relaxation N+(G) stronger than TH(G) [11].

As it holds for perfect graphs, MWSSP can be solved in polynomial time
for the class of graphs for which N+(G) = STAB(G). We will call these graphs
N+-perfect.
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Our main goal is to obtain a characterization of N+-perfect graphs similar to
the one given in (1) for perfect graphs. More precisely, we would like to find an
appropriate polyhedral relaxation of STAB(G) playing the role of CLIQUE(G)
in (1). Following this line, in a recent publication [3], we proposed the following
conjecture:

Conjecture 1. The stable set polytope of every N+-perfect graph can be described
by facet inducing inequalities with near-bipartite support.

In [2] the validity of this conjecture on near-perfect graphs is established. In
fact, the following theorem is proved.

Theorem 1 [2]. Let G be an N+-perfect and a properly near-perfect graph.
Then, either G or its complement is an odd cycle.

Later, in [3] we extended its validity to fs-perfect graphs, a superclass of
near-perfect graphs defined as those graphs for which the stable set polytope is
completely described by clique constraints and a single full-support inequality.

The main contribution of this paper is to prove the validity of the conjecture
on one more infinite family of graphs, the web graphs.

2 Preliminaries

Given a graph G = (V,E) a stable set is a subset of mutually non-adjacent nodes
in G. The maximum cardinality of a stable set is denoted by α(G), the stability
number of G. The stable set polytope is the convex hull of the incidence vectors
of the stable sets in the graph G and it is denoted by STAB(G).

The polyhedron

FRAC(G) = {x ∈ [0, 1]V : xi + xj ≤ 1 for every ij ∈ E}
is the edge relaxation of STAB(G).

A clique Q is a subset of pairwise adjacent nodes in G. Every incidence
vector of a stable set must satisfy clique constraints, i.e.,

∑
i∈Q xi ≤ 1. These

constraints define the clique relaxation of the stable set polytope, CLIQUE(G).
In general, STAB(G) ⊂ CLIQUE(G). Chvatal [5] showed that perfect graphs are
exactly those graphs for which equality holds.

Minimally imperfect graphs are those graphs that are not perfect but after
deleting any node they become perfect. The Strong Perfect Graph Theorem
states that the only minimally imperfect graphs are the odd cycles and their
complements [4].

The support of a valid inequality for STAB(G) is the subgraph induced by the
nodes having positive coefficient in it. We say that an inequality is a full-support
inequality if its support is the whole graph.

In [14] Shepherd called a graph G near-perfect if its stable set polytope is
defined only by non-negativity constraints, clique constraints and the full-rank
constraint ∑

u∈V

xu ≤ α(G).
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Clearly, every node induced subgraph of a near-perfect graph is also near-
perfect [14].

Due to results of Chvátal [5] near-perfect graphs constitute a superclass of
perfect graphs. According to Padberg [13] minimally imperfect graphs are also
near-perfect graphs.

Near-bipartite graphs, defined in [15], are those graphs such that removing
all neighbours of an arbitrary node and the node itself, leaves the resulting graph
bipartite.

Given integer numbers k and n such that n ≥ 2(k + 1), the web graph,
denoted by W k

n , is the graph having node set {1, . . . , n} and such that ij is an
edge if i and j differ by at most k (mod n) and i �= j.

If k = 1, W 1
n is a cycle. If k ≥ 2 and n ≤ 2k + 2 W k

n is a perfect graph and
W k

2k+3 is the complementary graph of the (2k + 3)-cycle.
In [18] Wagler characterized all near-perfect web graphs:

Theorem 2 [18]. A web graph is near-perfect if and only if it is perfect, an odd
hole, the web W 2

11 or it has stability number 2.

If W k′
n′ is a node induced subgraph of W k

n then it is a subweb of W k
n . In [17]

Trotter characterized for which values of n′ and k′, W k′
n′ is a subweb of W k

n .

Theorem 3 [17]. If k ≥ 1 and n ≥ 2(k + 1) the graph W k′
n′ is a subweb of W k

n

if and only if
k′

k
≤ n′

n
≤ k′ + 1

k + 1
.

2.1 The N+-Operator

As we have already mentioned, in this paper we focus on the behaviour of the
N+-operator defined by Lovász and Schrijver [11] on the edge relaxation of the
stable set polytope.

We denote by e0, e1, . . . , en the vectors of the canonical basis of Rn+1 (where
the first coordinate is indexed zero), 1 the vector with all components equal to
1 and S

n
+ the space of n-by-n symmetric and positive semidefinite matrices with

real entries.
Given a convex set K in [0, 1]n, let

cone(K) =
{(

x0

x

)

∈ R
n+1 : x = x0y; y ∈ K

}

.

Then, we define the polyhedral set

M(K) =
{
Y ∈ S

n+1
+ : Y e0 = diag(Y ),

Y ei ∈ cone(K),
Y (e0 − ei) ∈ cone(K), i = 1, . . . , n} ,

where diag(Y ) denotes the vector whose i-th entry is Yii, for every i = 0, . . . , n.
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Projecting this polyhedral lifting back to the space R
n results in

N+(K) =
{

x ∈ [0, 1]n :
(

1
x

)

= Y e0, for some Y ∈ M(K)
}

.

In practice, we prove that a point x ∈ [0, 1]n belongs to N+(K) by showing
the existence of a symmetric PSD matrix Y of the form

Y =

⎛

⎜
⎜
⎝

1 xt

x Ȳ

⎞

⎟
⎟
⎠ (2)

where xt stands for the transpose of column vector x and Ȳ is an n × n matrix
with columns Ȳi for i = 1, . . . , n, satisfying the following conditions:

1. Ȳii = xi,
2. If xi = 0 then Ȳi = 0,
3. If xi = 1 then Ȳi = x,
4. If 0 < xi < 1 then 1

xi
Ȳi ∈ K and 1

1−xi
(x − Ȳi) ∈ K,

for every i = 1, . . . , n.
In [11], Lovász and Schrijver proved that N+(K) is a relaxation of the convex

hull of integer solutions in K.
If we let N0

+(K) = K then k-th application of the N+-operator is Nk
+(K) =

N+(Nk−1
+ (K)) for every k ≥ 1. The authors in [11] showed that Nn

+(K) =
conv(K ∩ {0, 1}n).

In this work we focus on the behaviour of a single application of the N+-
operator on the edge relaxation of the stable set polytope of a graph. Then, in
order to simplify the notation we write N+(G) = N+(FRAC(G)).

In [11] it is shown that

STAB(G) ⊂ N+(G) ⊂ TH(G) ⊂ CLIQUE(G).

Also from results in [11], we know that graphs for which every facet defin-
ing inequality of STAB(G) has a near-bipartite support is N+-perfect. Then,
Conjecture 1 establishes that these graphs are the only N+-perfect graphs.

In particular, perfect and near-bipartite graphs are N+-perfect. In addition,
it can be proved that every subgraph of an N+-perfect graph is also N+-perfect.
A graph G that is not N+-perfect is called N+-imperfect.

Using the properties of the N+-operator, if G′ is an N+-imperfect subgraph
of G then G is also N+-imperfect.

In [7] and [9] it was proved that all the imperfect graphs with at most 6
nodes are N+-perfect graphs, except for the two imperfect near-perfect graphs
depicted in Fig. 1. The graph on the left is denoted by GLT and the other one
is denoted by GEMN .

A graph G′ is an odd subdivision of a graph G if it is obtained by replacing
an edge of G by a path of odd length.

As a consequence of the results in [9] we have the following:
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Fig. 1. The graphs GLT and GEMN .

Lemma 1. If G is N+-imperfect and G′ is obtained after the odd subdivision of
an edge in G, then G′ is also N+-imperfect.

This result becomes relevant in the proof of the validity of the conjecture
on web graphs since there we show that most of the web graphs have an odd
subdivision of the graph GLT as a node induced subgraph.

3 The Conjecture on Web Graphs

The fact that the conjecture holds on web graphs will follow after proving that
the only N+-perfect webs are either perfect or minimally imperfect webs.

Theorem 1 [2] asserts that every near-perfect graph satisfies the conjecture,
therefore, from Theorem 2, we only need to consider web graphs with stability
number at least three. It is known that the stability number of W k

n is α(W k
n ) =⌊

n
k+1

⌋
. Then, if n ≤ 3k+2, W k

n is near-perfect and from Theorem 1 the conjecture
holds on these web graphs. Therefore, from now on we can consider web graphs
W k

n with n ≥ 3k + 3.
Now we are able to present the following result:

Theorem 4. If n ≥ 9 and n �= 10, W 2
n has an odd subdivision of GLT as a node

induced subgraph.

Proof. Let n ≥ 9 and {1, . . . , n} be the node set of W 2
n . Assume that we delete

the six consecutive nodes in the set {n − 5, n − 4, . . . , n}. Note that if we find a
subset T s = {v1, . . . , v2s} of {1, . . . , n − 6}, with s ≥ 1, v1 = 1, v2s = n − 6 and
such that T s induces a path in W 2

n , then T s ∪{n− 4, n− 3, n− 2, n− 1} induces
in W 2

n an odd subdivision of GLT .
For example, in the web W 2

14 the set T 3 = {1, 2, 4, 5, 7, 8} induces a path and
T 3 ∪ {10, 11, 12, 13} induces an odd subdivision of GLT . See Fig. 2.

Then, in order to prove the result we show the existence of such a set T s

with the above required properties for every n ≥ 9 and n �= 10.
We divide the rest of the proof into four different cases according to the value

of n − 6.
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Fig. 2. The web graph W 2
14 and a node induced odd subdivision of GLT .

– If n − 6 = 4r + 3 for some r ≥ 0, then

T r+1 = {2t − 1 : 1 ≤ t ≤ 2r + 2}.

– If n − 6 = 4r + 2 then r ≥ 1 since n ≥ 9. In this case, we consider

T r+1 = {2t − 1 : 1 ≤ t ≤ 2r + 1} ∪ {n − 6}.

– If n − 6 = 4r + 1 again r ≥ 1. In this case, we find

T r+1 = {2t : 1 ≤ t ≤ 2r} ∪ {1, n − 6}.

– If n − 6 = 4r we have r ≥ 2 since n ≥ 9 and n �= 10. In this case we consider

T r+1 = {3 + 2t : 1 ≤ t ≤ 2r − 2} ∪ {1, 2, 4, n − 6}.


�
Corollary 1. If n ≥ 8 and n �= 10 then W 2

n is N+-imperfect.

Proof. The web graph W 2
8 is an imperfect near-perfect graph and then it is

N+-imperfect.
Since every odd subdivision of GLT is N+-imperfect and the N+-imperfection

of a subgraph implies the N+-imperfection of the graph itself, the result follows
directly from the previous theorem. 
�

In order to complete the analysis of the family of web graphs W 2
n we need to

prove that W 2
10 is N+-imperfect. Note that it does not have an odd subdivision

of GLT as a node induced subgraph. Instead, we make use of the definition of
N+(W 2

10).

Lemma 2. The web graph W 2
10 is N+-imperfect.
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Proof. The proof is based on finding a point x̄ ∈ N+(W 2
10) \ STAB(W 2

10).
Let us consider the point x̄ = λ1 ∈ FRAC(W 2

10) for λ = 31
100 . Clearly it

violates the full-rank constraint and therefore, x̄ /∈ STAB(W 2
10).

In order to prove that x̄ ∈ N+(W 2
10) we present a matrix Y as in (2) which

represents the point in the higher dimensional space.
For this purpose we make use of the following definition.
Let T : Rn → R

n be such that T (v1, . . . , vn) = (vn, v1, . . . , vn−1). The matrix
circ(u) is the n × n-matrix whose first row is T 0(u) = u and whose j-th row is
given by T j−1(u) = T (T j−2(u)), for every j ≥ 2.

Let z = (λ, 0, 0, β, γ, δ, γ, β, 0, 0) where

γ =
853

10000
, δ =

336
10000

and β =
2234
10000

.

If Ȳ = circ(z) then it is not difficult to check that Y ∈ R
11 defined as in (2) is

PSD and it satisfies that
1
λ

Ȳi ∈ FRAC(W 2
10) and

1
1 − λ

(λ1 − Ȳi) ∈ FRAC(W 2
10).


�
The following result implies that Conjecture 1 holds for web graphs.

Theorem 5. If the web graph W k
n is N+-perfect then it is either a perfect or a

minimally imperfect graph.

Proof. Due to the fact that the conjecture is proved for near-perfect graphs
(Theorem 1) we only need consider those webs which are not near-perfect and
prove that none of them are N+-perfect.

If the web W k
n is not near-perfect then k ≥ 2 and n ≥ 3k + 3.

If k = 2 the result follows from Corollary 1 and Lemma 2.
Let k ≥ 3 and n ≥ 3k + 3. We will prove that every web W k

n has a subweb
of the form W 2

n′ for some n′ ≥ 8.
After Trotter’s result (Theorem 3) W 2

n′ is a subweb of W k
n if

2n

k
≤ n′ ≤ 3n

k + 1
.

Let Δk(n) = 3n
k+1 − 2n

k = n k−2
k(k+1) .

Observe that Δk(n) assumes its minimum value when n is minimum, i.e.
when n = 3k + 3. In this case, Δk(n) = 3(k−2)

k ≥ 1. Then, for every value of
n ≥ 3k + 3 we can find an integer n′ satisfying

2n

k
≤ n′ ≤ 3n

k + 1

and then W 2
n′ is a subweb of W k

n .

Moreover, since n ≥ 3k + 3 we have that
⌊

3n
k+1

⌋
≥ 9 and W k

n has a subweb

W 2
n′ for some n′ ≥ 8.
Finally, Corollary 1 and Lemma 2 prove the result. 
�
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4 On minimally N+-imperfect subgraphs

In [2] we proved the validity of the conjecture on the family of near-perfect
graphs. Rank-perfect graphs constitute a superclass of near-perfect graphs, then
it seems natural to continue our work towards proving the conjecture on this
family. In fact, while studying the N+-perfect graphs which are also near-perfect
graphs we could identify some minimal forbidden structures on this family.

We say that a graph is minimally N+-imperfect if it is N+-imperfect but
deleting any node leaves an N+-perfect graph. The results in [2] give the min-
imally N+-imperfect graphs in the family of near-perfect graphs. In order to
present them let us introduce some more definitions.

We denote by C2k+1 the cycle having node set {1, . . . , 2k + 1} and edge set
{i(i + 1) : i ∈ {1, . . . , 2k} ∪ {1(2k + 1)}.

In [2] we consider two families of near-perfect graphs, named Wk and Hk for
each k ≥ 2.

Let H2 = W2 = {GLT , GEMN}. For k ≥ 3, Wk is the family of graphs with
node set {0, 1, . . . , 2k + 1} such that:

– G − 0 = C2k+1;
– there is no pair of consecutive nodes (in C2k+1) with degree 2;
– the degree of node 0 is k + 2.

For k ≥ 3, Hk is the family of graphs having node set {0, 1, . . . , 2k + 1} such
that:

– G − 0 is the complement of C2k+1;
– there is no pair of consecutive nodes (in C2k+1) with degree 2k − 2;
– the degree of node 0 is at most 2k.

In Fig. 3 we have represented one of the graphs in the family W9 and one of
the graphs in the family H9.

Using the results in [2] we have the following

Fig. 3. A graph in the family W9 and H9.
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Lemma 3. Let G be a minimally N+-imperfect graph. If G is a near-perfect
graph then it is an odd subdivision of a graph in Hk ∪ Wk for some k ≥ 2.

In this contribution it was important to identify the odd subdivisions of GLT

as minimally N+-imperfect structures in the webs, except for W 2
10.

In fact, we have proved that the web W 2
10 is a minimally N+-imperfect

rank-perfect graph which is not near-perfect. This shows some advance in order
to characterize N+-perfect rank-perfect graphs and also a line for our future
research.
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