Pierre Fouilhoux

Luis Eduardo Neves Gouveia
A. Ridha Mahjoub

Vangelis T. Paschos (Eds.)

Combinatorial
Optimization

Third International Symposium, ISCO 2014
Lisbon, Portugal, March 5-7, 2014
Revised Selected Papers

LNCS 8596

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

8596

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Pierre Fouilhoux - Luis Eduardo Neves Gouveia
A. Ridha Mahjoub - Vangelis T. Paschos (Eds.)

Combinatorial Optimization

Third International Symposium, ISCO 2014

Lisbon, Portugal, March 5-7, 2014
Revised Selected Papers

@ Springer

Editors

Pierre Fouilhoux A. Ridha Mahjoub
LIP6 Vangelis T. Paschos
Université Pierre et Marie Curie LAMSADE
Paris Université Paris-Dauphine
France Paris Cedex 16

France

Luis Eduardo Neves Gouveia
Universidade de Lisboa

Lisbon

Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-09173-0 ISBN 978-3-319-09174-7 (eBook)

DOI 10.1007/978-3-319-09174-7

Library of Congress Control Number: 2014945216

LNCS Sublibrary SL1 — Theoretical Computer Science and General Issues
Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (Www.springer.com)

Preface

This volume contains the regular papers presented at ISCO 2014, the Third Interna-
tional Symposium on Combinatorial Optimization, held in Lisbon during March 5-7,
2014. ISCO 2014 was preceded by the Spring School on “Stochastic Programs with
Integer Variables: Theory, Algorithms and Applications” given by Riidiger Schultz
and Jonas Schweiger. ISCO is a new biennial symposium. The first edition was held in
Hammamet, Tunisia, in March 2010, and the second in Athens, Greece, in April 2012.
The symposium aims to bring together researchers from all the communities related to
combinatorial optimization, including algorithms and complexity, mathematical pro-
gramming, operations research, stochastic optimization, graphs, and combinatorics. It
is intended to be a forum for presenting original research on all aspects of combi-
natorial optimization, ranging from mathematical foundations and theory of algo-
rithms to computational studies and practical applications, and especially their
intersections.

In response to the call for papers, ISCO 2014 received 97 regular submissions.
Each submission was reviewed by at least two Program Committee (PC) members
with the assistance of external reviewers. The submissions were judged on their
originality and technical quality and the PC had to discuss in length the reviews and
make tough decisions. As a result, the PC selected 37 regular papers to be presented in
the symposium giving an acceptance rate of 38 % (64 short papers were also selected
from both regular and short submissions). Three eminent invited speakers, Michel
Balinski (CNRS and Ecole Polytechnique, Paris), Martin Grotshel (Zuse Institute
Berlin), and Matteo Fischetti (Badova University), gave talks at the symposium. The
revised versions of the accepted regular papers and extended abstracts of the invited
talks are included in this volume.

We would like to thank all the authors who submitted their work to ISCO 2014, and
the PC members and external reviewers for their excellent work. We would also like
to thank our invited speakers as well as the speakers of the Spring School for their
exciting lectures. They all greatly contributed to the quality of the symposium.

Finally, we would like to thank the Organizing Committee members for their
dedicated work in preparing this conference, and we gratefully acknowledge our
sponsoring institutions for their assistance and support.

April 2014 Pierre Fouilhoux
Luis Eduardo Neves Gouveia

A. Ridha Mahjoub

Vangelis T. Paschos

Organization

ISCO 2014 was organized by the “Centro de Investigao Operacional” (Operations
Research Center) of the Faculty of Sciences of the University of Lisbon, in

cooperation with LAMSADE Laboratory of Université Paris-Dauphine.

Program Committee Co-chairs

Luis Eduardo Neves Gouveia

A. Ridha Mahjoub

Program Committee

Agostinho Agra
Mourad Baiou

Francisco Barahona

Domingos Cardoso

Miguel Fragoso Constantino

Angel Corberin
José Correa
Bernard Fortz
Pierre Fouilhoux
Satoru Fujishige
Bernard Gendron
Oktay Gunluk
Mohamed Haouari
Brahim Hnich
Martine Labbé
Leo Liberti

Abdel Lisser
Ivana Ljubic
Andrea Lodi
Abilio Lucena
Nelson Maculan
Isabel Méndez-Diaz
Toannis Milis

Jerome Monnot
Adam Ouorou
Vangelis Paschos

CIO, University of Lisbon, Portugal
Paris Dauphine University, France

University of Aveiro, Portugal

LIMOS, CNRS, University Blaise-Pascal,
Clermont-Ferrand, France

IBM T.J. Watson Research Center, New York,
USA

University of Aveiro, Portugal

CIO, University of Lisbon, Portugal

University of Valencia, Spain

University of Chile, Chile

Université Libre de Bruxelles, Belgium

Université Pierre et Marie Curie, France

Kyoto University, Japan

CIRRELT, University of Montréal, Canada

IBM, New York, USA

Qatar University, Quatar

Izmir University of Economics, Turkey

Université Libre de Bruxelles, Belgium

IBM, New York, USA

University of Paris-Sud, France

University of Vienna, Austria

University of Bologna, Italy

Federal University of Rio de Janeiro, Brazil

Federal University of Rio de Janeiro, Brazil

University of Buenos Aires, Argentina

Athens University of Economics and Business,
Greece

Paris Dauphine University, France

Orange Labs, Paris, France

Paris Dauphine University, France

VIII Organization

Pierre Pesneau
Giovanni Rinaldi

Juan Jose Salazar Gonzalez

Riidiger Schultz
Maria Grazia Scutella
Cid de Sousa
Eduardo Uchoa
Francois Vanderbeck
Hande Yaman

Additional Reviewers

Marek Adamczyk
Pablo Adasme
Amirali Ahmadi
Laurent Alfandari
Aysegul Altin
Eduardo Alvarez-Miranda
Milica Andelic
Miguel Anjos
Antonios Antoniadis
Cesar Beltran-Royo
Andreas Bley
Christian Bliek
Edouard Bonnet
Laurent Bulteau
Paola Cappanera
Jean Cardinal
Paula Carvalho
Jordi Castro
Daniele Catanzaro
Andre Cire

Franois Clautiaux
Andrea Clementi
Joo Clmaco
Johanne Cohen
Denis Cornaz
Pedro Cruz
Alexandre Cunha
Amaro de Sousa
Paolo Detti
Ibrahima Diarrassouba
Thang Dinh
Charles Dominic
Emrah Edis

University of Bordeaux, France

IASI, Rome, Italy

University of La Laguna, Spain
University of Duisburg-Essen, German
University of Pisa, Italy

University of Campinas, Brazil

UFF Rio de Janeiro, Brazil

University of Bordeaux, France
Bikent University, Turkey

Augusto Eusbio
Lionel Eyraud-Dubois
Javier Faulin

Rosa Figueiredo
Samuel Fiorini
Alexandre Freire
Yuri Frota

Takuro Fukunaga
Fabio Furini
Aristotelis Giannakos
Kristiaan Glorie
Laurent Gourves
Vincent Guigues
Magnus M. Halldorsson
Jinil Han

Said Hanafi

Hiplito Hernndez-Prez
Olivier Hudry
Andrew Hughes
Philipp Hungerlaender
Imed Kacem

Enver Kayaaslan
Sandi Klavzar
Alexander Kononov
Carlile Lavor

Markus Leitner
Dimitrios Letsios
Janny Leung

Roel Leus

Carlos Luz

Jens Lysgaard

Enrico Malaguti
Javier Marenco

Silvano Martello
Alfredo Marn
Marta Mesquita
Philippe Michelon
Juan Jose Miranda Bront
Stefano Moretti
Pedro Moura
Cécile Murat
Fernando Ordonez
Aris Pagourtzis
Ana Paias
Aline Parreau
Fanny Pascual
Arnaud Pecher
Dilson Lucas Pereira
Raffaele Pesenti
Ulrich Pferschy
Daniel Porumbel
Michael Poss
Lionel Pournin
Pablo Pérez-Lantero
Maurice Queyranne
Steffen Rebennack
Cristina Requejo
Mauricio Resende
Jorge Riera-Ledesma
Bernard Ries
Inmaculada
Rodriguez-Martin
Mario Ruthmair
Ignaz Rutter
Ruslan Sadykov
Saket Saurabh

Organization

Marco Senatore Raouia Taktak Gustavo Vulcano
Luidi Simonetti Orestis Telelis Annegret Wagler
Markus Sinnl Claudio Telha Bang Ye Wu
Georgios Stamoulis Lydia Tlilane Eduardo Xavier
Leen Stougie Artur Tomaszewski Georgios Zois
Anand Subramanian Sebastidn Urrutia

Kenjiro Takazawa Paolo Ventura

Organizing Committee

Maria Conceicdo Fonseca CIO, University of Lisbon, Portugal
Rodrigo Marques CIO, University of Lisbon, Portugal
Pedro Moura CIO, University of Lisbon, Portugal
Ana Paias CIO, University of Lisbon, Portugal

Sponsoring Institutions

Associacdo Portuguesa de Investigacdo Operacional

Centro de Investigacdo Operacional, Faculdade de Ciéncias da Universidade de
Lisboa, Portugal

Fundagao para a Ciéncia e a Tecnologia, Portugal

Instituto Nacional de Estatistica, Portugal

LAMSADE, Université Paris-Dauphine, France

IX

Invited Talks

Judge: Don’t Vote!

Michel Balinski

CNRS and Ecole Polytechnique Paris, France

This talk argues that the traditional methods of voting and judging contestants (e.g.,
figure skaters, movies, wines, beauty queens, political candidates) fail in both theory
and practice and should be replaced by a new method, “majority judgment.” Majority
judgment best meets five essential properties: (1) It avoids the Condorcet and Arrow
paradoxes, (2) it elicits honest voting, (3) it is meaningful (in the sense of
measurement theory), (4) it resists manipulation, and (5) it heeds the majority’s will.

BRANCHSstorming
(Brainstorming About Tree Search)

Matteo Fischetti

Padova University, Italy

Quoting from Wikipedia (http://en.wikipedia.org/wiki/System_dynamics): “System
Dynamics is an aspect of systems theory as a method for understanding the dynamic
behavior of complex systems. The basis of the method is the recognition that the
structure of any system the many circular, interlocking, sometimes time-delayed
relationships among its components is often just as important in determining its
behavior as the individual components themselves. Examples are chaos theory and
social dynamics. It is also claimed that because there are often properties-of-the-whole
which cannot be found among the properties-of-the-elements, in some cases the
behavior of the whole cannot be explained in terms of the behavior of the parts.”

No doubts that tree search is a very complex process with its own dynamics, that
sometimes behaves as a chaotic system due to its high dependency on the initial
conditions.

However, tree search is seldom studied as a whole by the Mathematical
Programming community, perhaps because it is often perceived as a shame—we
should be able to solve our problems at the root node, don’t we? As a matter of fact, its
main ingredients (e.g., cut generation and selection) are often studied in vitro—i.e.,
evaluated “at the root node”—and then just transplanted in the enumeration body with
significant organ-rejection rates.

The study of the properties-of-the-whole of tree search is of course a long-term
project. In this talk we will make a mandatory preliminary step by addressing a
number of preconceptions about it.

We will start reviewing recent work on the role of erraticism in the design and
validation of tree-search algorithms, thus addressing the prejudice that enumeration is
a stable mechanism whose performance only depends on how clever we are in
designing its single elements.

We will then address a main source of erraticism in a branch-and-bound scheme,
namely, the existence of multiple relaxation solutions. In particular, we will comment
about the risk of overfitting due to the common practice of uncritically picking one
such solution (or just few) for guiding the search.

http://en.wikipedia.org/wiki/System_dynamics

Routing Problems: Standard and Unusual Cases

Martin Grotschel

Zuse Institute Berlin, Germany

Shortest path, Chinese postman and symmetric travelling salesman problems are
combinatorial optimization problems with a rich theory. They have undergone
extensive computational studies and can be viewed as “solved” for the majority of
their practical applications. However, most routing problems are not so nicely
structured. They often come with various combinations of side constraints such as
capacity, depot and ordering constraints as well as time windows, with online or real-
time requirements and possibly multiple objective functions. Such routing problems
are notoriously difficult and a typical playground for heuristics.

In the last 30 years my research group has covered a large variety of routing
problems in public transport, logistics, general transportation, machine and emergency
scheduling, etc.

I plan to give a broad survey on these problems as well as on successful solution
approaches, and I will concentrate on particular cases that we are currently working
on. These include train scheduling (high-speed trains ICE in Germany with
uncommon “regularity requirements”) and a quite unusual routing problem where
vehicles have to be routed “optimally” to catch trucks on the German Autobahn that
try to avoid the payment of road tolls. Needless to say, that these inspection vehicles
have to satisfy several nonstandard legal requirements.

Contents

Maximum Throughput Network Routing Subject to Fair Flow Allocation . . . 1
Edoardo Amaldi, Stefano Coniglio, and Leonardo Taccari

Study of Identifying Code Polyhedra for Some Families of Split Graphs. . . . 13
Gabriela Argiroffo, Silvia Bianchi, and Annegret Wagler

Parametric Multiroute Flow and Its Application to Robust Network

with k Edge Failures. 26
Jean-Frangois Baffier, Vorapong Suppakitpaisarn, Hidefumi Hiraishi,
and Hiroshi Imai

The Dominating Set Polytope via Facility Location 38
Mourad Baiou and Francisco Barahona

Solving Graph Partitioning Problems Arising in Tagless Cache Management. .. 50
Sandro Bartolini, lacopo Casini, and Paolo Detti

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization ... 62
Frank Baumann, Christoph Buchheim, and Anna Ilyina

Maximum Generalized Assignment with Convex Costs. 75
Marco Bender and Stephan Westphal

An Integer Programming Formulation for the Maximum k-Subset

Intersection Problem 87
Eduardo T. Bogue, Cid C. de Souza, Eduardo C. Xavier,
and Alexandre S. Freire

b-Coloring is NP-Hard on Co-Bipartite Graphs
and Polytime Solvable on Tree-Cographs 100
Flavia Bonomo, Oliver Schaudt, Maya Stein, and Mario Valencia-Pabon

Proactive Reactive Scheduling in Resource Constrained Projects
with Flexibility and Quality Robustness Requirements 112
Mario Bré¢i¢, Damir Kalpié, and Marija Kati¢

Active Set Methods with Reoptimization for Convex Quadratic Integer
Programming 125
Christoph Buchheim and Long Trieu

Fixed-Parameter Algorithms for Scaffold Filling 137
Laurent Bulteau, Anna Paola Carrieri, and Riccardo Dondi

http://dx.doi.org/10.1007/978-3-319-09174-7_1
http://dx.doi.org/10.1007/978-3-319-09174-7_2
http://dx.doi.org/10.1007/978-3-319-09174-7_3
http://dx.doi.org/10.1007/978-3-319-09174-7_3
http://dx.doi.org/10.1007/978-3-319-09174-7_3
http://dx.doi.org/10.1007/978-3-319-09174-7_4
http://dx.doi.org/10.1007/978-3-319-09174-7_5
http://dx.doi.org/10.1007/978-3-319-09174-7_6
http://dx.doi.org/10.1007/978-3-319-09174-7_7
http://dx.doi.org/10.1007/978-3-319-09174-7_8
http://dx.doi.org/10.1007/978-3-319-09174-7_8
http://dx.doi.org/10.1007/978-3-319-09174-7_9
http://dx.doi.org/10.1007/978-3-319-09174-7_9
http://dx.doi.org/10.1007/978-3-319-09174-7_10
http://dx.doi.org/10.1007/978-3-319-09174-7_10
http://dx.doi.org/10.1007/978-3-319-09174-7_11
http://dx.doi.org/10.1007/978-3-319-09174-7_11
http://dx.doi.org/10.1007/978-3-319-09174-7_12

XVIII Contents

Finding Totally Independent Spanning Trees with Linear
Integer Programming.
Alexandre Salles da Cunha and Fernanda Sumika Hojo de Souza

Coupled-Tasks in Presence of Bipartite Compatibilities Graphs
Benoit Darties, Gilles Simonin, Rodolphe Giroudeau,
and Jean-Claude Konig

The Computational Complexity of Stochastic Optimization
Cassio Polpo de Campos, Georgios Stamoulis, and Dennis Weyland

A Hybrid Heuristic Approach Based on a Quadratic Knapsack Formulation
for the Max-Mean Dispersion Problem
Federico Della Croce, Michele Garraffa, and Fabio Salassa

A Constraint Generation Approach for the Two-Machine Flow Shop Problem
with Jobs Selection. e
Federico Della Croce, Christos Koulamas, and Vincent T kindt

Rectilinear Shortest Path and Rectilinear Minimum Spanning
Tree with Neighborhoods.
Yann Disser, Matis Mihaldk, Sandro Montanari, and Peter Widmayer

Lovasz and Schrijver N, -Relaxation on Web Graphs
Mariana Escalante and Graciela Nasini

The Envy-Free Pricing Problem and Unit-Demand Markets.
Cristina G. Fernandes, Carlos E. Ferreira, Alvaro J.P. Franco,
and Rafael C.S. Schouery

Mathematical Programming Models for Traffic Engineering in Ethernet
Networks Implementing the Multiple Spanning Tree Protocol
Bernard Fortz, Luis Gouveia, and Martim Moniz

Graph Compact Orthogonal Layout Algorithm.
Karlis Freivalds and Jans Glagolevs

State Space Reduced Dynamic Programming for the Aircraft Sequencing
Problem with Constrained Position Shifting.
Fabio Furini, Martin Philip Kidd, Carlo Alfredo Persiani, and Paolo Toth

Decomposition Algorithm for the Single Machine Scheduling Polytope
Ruben Hoeksma, Bodo Manthey, and Marc Uetz

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination. . .
Toshimasa Ishii, Hirotaka Ono, and Yushi Uno

149

161

173

186

198

208

221

230

242

255

267

280

292

http://dx.doi.org/10.1007/978-3-319-09174-7_13
http://dx.doi.org/10.1007/978-3-319-09174-7_13
http://dx.doi.org/10.1007/978-3-319-09174-7_14
http://dx.doi.org/10.1007/978-3-319-09174-7_15
http://dx.doi.org/10.1007/978-3-319-09174-7_16
http://dx.doi.org/10.1007/978-3-319-09174-7_16
http://dx.doi.org/10.1007/978-3-319-09174-7_17
http://dx.doi.org/10.1007/978-3-319-09174-7_17
http://dx.doi.org/10.1007/978-3-319-09174-7_18
http://dx.doi.org/10.1007/978-3-319-09174-7_18
http://dx.doi.org/10.1007/978-3-319-09174-7_19
http://dx.doi.org/10.1007/978-3-319-09174-7_19
http://dx.doi.org/10.1007/978-3-319-09174-7_20
http://dx.doi.org/10.1007/978-3-319-09174-7_21
http://dx.doi.org/10.1007/978-3-319-09174-7_21
http://dx.doi.org/10.1007/978-3-319-09174-7_22
http://dx.doi.org/10.1007/978-3-319-09174-7_23
http://dx.doi.org/10.1007/978-3-319-09174-7_23
http://dx.doi.org/10.1007/978-3-319-09174-7_24
http://dx.doi.org/10.1007/978-3-319-09174-7_25

Contents XIX

Efficient Approximation Schemes for the Maximum Lateness Minimization

on a Single Machine with a Fixed Operator or Machine

Non-Availability Interval 305
Imed Kacem, Hans Kellerer, and Maryam Seifaddini

A Multi-period Bi-level Stochastic Programming with Decision
Dependent Uncertainty in Supply Chains. 315
Yohanes Kristianto

{k}-Packing Functions of Graphs 325
Valeria Alejandra Leoni and Erica G. Hinrichsen

Robust Shift Scheduling in Call Centers 336
Sara Mattia, Fabrizio Rossi, Mara Servilio, and Stefano Smriglio

A Tabu Search Heuristic for the Equitable Coloring Problem 347
Isabel Méndez Diaz, Graciela Nasini, and Daniel Severin

Linear Arrangement Problems and Interval Graphs. 359
Alain Quilliot and Djamal Rebaine

On the Asymmetric Connected Facility Location Polytope 371
Markus Leitner, Ivana Ljubi¢, Juan-José Salazar-Gonzdlez,
and Markus Sinnl

Heuristic Approaches for the Robust Vehicle Routing Problem 384
Elyn L. Solano-Charris, Christian Prins, and Andréa Cynthia Santos

A Fast Large Neighborhood Search for Disjunctively Constrained
Knapsack Problems. 396
Mhand Hifi, Sagvan Saleh, and Lei Wu

Approximating the k-Set Packing Problem by Local Improvements 408
Martin Fiirer and Huiwen Yu

Multi-Objective Cuckoo Search with Leader Selection Strategies. 421
Kamel Zeltni and Souham Meshoul

Vulnerability Assessment of Spatial Networks: Models and Solutions. 433
Eduardo Alvarez-Miranda, Alfredo Candia-Véjar, Emilio Carrizosa,
and Francisco Pérez-Galarce

Author Index e 445

http://dx.doi.org/10.1007/978-3-319-09174-7_26
http://dx.doi.org/10.1007/978-3-319-09174-7_26
http://dx.doi.org/10.1007/978-3-319-09174-7_26
http://dx.doi.org/10.1007/978-3-319-09174-7_27
http://dx.doi.org/10.1007/978-3-319-09174-7_27
http://dx.doi.org/10.1007/978-3-319-09174-7_28
http://dx.doi.org/10.1007/978-3-319-09174-7_29
http://dx.doi.org/10.1007/978-3-319-09174-7_30
http://dx.doi.org/10.1007/978-3-319-09174-7_31
http://dx.doi.org/10.1007/978-3-319-09174-7_32
http://dx.doi.org/10.1007/978-3-319-09174-7_33
http://dx.doi.org/10.1007/978-3-319-09174-7_34
http://dx.doi.org/10.1007/978-3-319-09174-7_34
http://dx.doi.org/10.1007/978-3-319-09174-7_35
http://dx.doi.org/10.1007/978-3-319-09174-7_35
http://dx.doi.org/10.1007/978-3-319-09174-7_36
http://dx.doi.org/10.1007/978-3-319-09174-7_37

Maximum Throughput Network Routing
Subject to Fair Flow Allocation

Edoardo Amaldi', Stefano Coniglio?, and Leonardo Taccari' ™)

! Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy
{edoardo.amaldi,leonardo.taccari}@polimi.it
2 Lehrstuhl II Fiir Mathematik, RWTH Aachen University, Aachen, Germany
coniglio@math2.rwth-aachen.de

Abstract. We investigate a bilevel network routing problem where,
given a directed graph with a capacity for each arc and a set of elastic
traffic demands specified by the corresponding origin-destination pairs,
the network operator has to select a single path for each pair so as to
maximize the total throughput while assuming that the flows are allo-
cated over the chosen paths according to a fairness principle. We consider
max-min fair flow allocation as well as maximum bottleneck flow alloca-
tion. After presenting a complexity result, we discuss MILP formulations
for the two problem versions, describe a Branch-and-Price algorithm and
report some computational results.

Keywords: Networks - Routing - Fairness - Computational complex-
ity - Integer programming

1 Introduction

Network routing problems with elastic traffic demands (specified by an origin-
destination pair without a prescribed flow value) and fair allocation of flows have
been attracting a growing attention. Our original motivation arises from best-
effort service in Internet Protocol (IP) networks [2] where, for instance, several
users simultaneously download data between different hosts with no guaranteed
rate, but wish to do so as fast as possible. Although the IP network opera-
tor, which aims at maximizing a utility function such as the total throughput,
can select the routing paths, it has no direct control over the transport proto-
col (TCP). In this setting, the flow of each origin-destination pair is adapted
by TCP based on the available capacity (which depends on the current traffic
load) and the distributed congestion control mechanism is expected to allocate
the flows in a fair way, that is, without privileging any user.

Consider a capacitated network defined by a directed graph G = (V, A) with
a capacity c;; for each arc (i,7) € A and a set K of k origin-destination pairs
(s,t). Let ¢ € R* denote a flow vector whose i-th component ¢; corresponds to
the flow allocated to the i-th origin-destination pair.
© Springer International Publishing Switzerland 2014

P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 1-12, 2014.
DOT: 10.1007/978-3-319-09174-7_1

2 E. Amaldi et al.

A widely used notion of fairness in networks is that of Max-Min Fairness
(MMF). Indeed, in IP networks common congestion avoidance mechanisms aim
at realizing a max-min fair allocation of the flows over the routing paths provided
by the IP layer, see e.g. [11] and the references therein.

Definition 1. Let o be the sorting operator permuting the components of ¢
in nondecreasing order, i.e., such that o(¢); < o(¢); whenever i < j. A flow

vector ¢ € R* 4s Max-Min Fair (MMF) if, for any other flow vector Q' € R¥,
0(¢) lezicographically dominates o(¢"), i.e., either o(¢) = o(¢") or there exists

an integer £, with 1 < £ < k, such that o(¢), = U(Q/)q for all ¢ < 0 and
o(¢)e > a(¢)e.

If the routing paths are given, the set of feasible flows is convex and equivalently
a flow vector is MMF if and only if there is no way to increase the flow of any
origin-destination pair without decreasing the flow of a pair with an equal or
smaller flow.

When restricting the attention to the first element o(¢); of the lexicograph-
ically sorted allocation vector o(¢), we obtain the simpler and relaxed fairness

criterion where min(g 4)c ¢ ¢s¢ is maximized.

Definition 2. A flow vector ¢ € R* is Max-Bottleneck (MB) if, for any other
flow vector ¢' € R*, o(¢)1 > o(¢)1.

Along the lines of [2,3], in this work we consider the Max-Throughput Single-
Path Network Routing problem subject to fair flow allocation.

MT-SPNR-Fair: Given a directed graph G = (V, A) with capacities ¢;; and
a set of k origin-destination pairs, select a single routing path for each pair so
L. k . .
as to maximize the total throughput > ;| ¢;, subject to the constraint that the
amount of flow allocated to the origin-destination pairs is fair w.r.t. the chosen

paths.

Depending on the adopted notion of fairness, the problem version is referred to
as MT-SPNR-MMF or MT-SPNR-MB.

MT-SPNR-fair is a bilevel problem where, at the upper level, the leader (e.g.,
the network operator) selects a routing path for each origin-destination pair and,
at the lower level, the follower (e.g., the TCP protocol) allocates the flows to the
chosen paths according to the MMF or MB principle. For each origin-destination
pair (s,t) € K, let P** be the set of all the simple paths connecting s to t. Let
the binary variable /\;t be 1 if the path of index p is selected for the pair (s,t)
and 0 otherwise, and let ¢ € Rﬁ be the vector of flow allocations. Denote by
A={X"e{0,1}, (s,t) € K, pe P*': Y _pu Ayt = 1} the feasible region of
the leader, namely, the set of all vectors A with exactly one path for each origin-
destination pair (s,t). For any given choice of paths prescribed by the vector A,
the feasible region ®(A) for the follower amounts to the set of all vectors ¢ of
flows that can be allocated (according to the considered fairness principle) along
those paths without exceeding the arc capacities.

Network Routing Subject to Fair Flow Allocation 3

A high-level formulation for MT-SPNR-MMF is:

max lTQ (1)

st Aed @)

¢ € arglexmax {o()}, (3)
PEP(N)

where 1 is the all-one vector and arglexmax is used as in Definition 1. The
formulation for the case of a Max-Bottleneck flow allocation, MT-SPNR-MB; is
obtained by substituting Constraint (3) with:

pe argmax{ min {qbst}} . (4)

PEB(N) (s,t)EK

2 Related Work

A thorough treatment on fairness in network routing and design can be found
in [15]. For a good introduction to Max-Min Fairness, see the tutorial [13].

So far, most of the attention has been devoted to the problem of finding a
solution which is “as fair as possible”, where fairness is the problem objective. If
the routing paths are given, a simple polynomial algorithm, known as water (or
progressive) filling, allows to allocate the flows in an MMF way, as explained in
Chap. 6 of [5]. If the routing paths are not known a priori, the problem consists
in determining a network routing such that the flow allocation is as (max-min)
fair as possible. An important distinction is between the cases with unsplittable
or splittable routing, that is where the flow between each origin-destination
pair can be routed over one or many (not necessarily disjoint) paths. In the
splittable case, the problem can be solved via a sequence of at most k£ Linear
Programming (LP) problems, one per origin-destination pair [14,18,20]. In the
unsplittable case, it can be solved via a sequence of at most & Mixed Integer
Linear Programming (MILP) problems with binary variables [17].

Following the work of [12], where the MMF (splittable) single-source routing
problem is originally introduced, the authors of [10] provide hardness results and
a 2-approximation scheme for the extension of the problem where the unsplit-
table fairest routing is sought. Note that the results of [10,12] are, in general,
only valid for the case of a single-source or a single-sink. A game theoretic app-
roach to MMF routing can be found in [9], where routing games that converge
to a fair equilibrium are considered.

Different definitions of fairness have also be investigated. In [19], an approach
similar to that of [14,18,20] is adopted to derive fair flow allocations balancing
fairness and efficiency (utility). In [1], the splittable case with a weighted MMF
criterion is considered. The authors of [6] propose a relaxation of the notion of
MMF with the definition of Upward Max-Min Fairness, whereas in [7] a practical
algorithm to balance throughput and fairness for splittable routing is presented.

4 E. Amaldi et al.

To the best of our knowledge, the work in [2] is the first to consider the
fair flow allocation as a constraint of a more general network routing problem,
rather than the optimization objective. Since the TCP flow allocation can be
approximated by MMF, [2] proposes the bilevel problem MT-SPNR-MMF and
an arc-based MILP formulation for it. As shown in [3], the problem is A"P-hard
and the gap (in terms of either maximum throughput or smallest flow) between
optimal solutions of MT-SPNR-MMF and of Max-Min fairest routing can be
arbitrarily large. In this work, we pursue the study of MT-SPNR-MMF and
extend it to the relaxed case of maximum bottleneck fairness.

3 Problem Versions and Complexity

Since, for any path selection vector A, the set of feasible flow vectors @(\) for
MMEF is a subset of () for MB, MT-SPNR-MB is a relaxation of MT-SPNR-
MMF and, hence, the optimal objective function value of the former is an upper
bound on that of the latter.

The following simple example shows that, in general, the optimal solution
values of the unconstrained throughput maximization problem (referred to as
MT-SPNR or MT), the MT-SPNR-MMF, and the MT-SPNR-MB differ.

Example. Consider the graph with the arc

capacities and the k£ = 6 origin-destination /@\

pairs reported in the figure on the right,

where ¢, = € is a positive value smaller

than 1. Note that for i« = 2,...,5 there is %@ Z—W

a unique path to route (s;,t;), while there -

are two paths for (s1,¢1) and three paths for

(s6,te). It is easy to verify that the optimal (

value of MT can be obtained by allocating a (

flow ¢1 = 0 to the pair (s1,t1), and by routing (ss=ct3=¢e

a flow ¢g = € over the arc (a, €). The resulting (

flow allocation vector is ¢ = (0,3,3,2,2,¢), (

with a total throughput 7 = 10+-e. If the flow (

allocation is subject to the Max-Bottleneck

Constraint (4), it is easy to see that the maximum throughput is obtained

by routing again (sg,ts) over the arc (a,e) and by assigning a flow ¢g = e.

If (s1,t1) is routed over the path through node ¢, the resulting allocation is

o= (g3,3,2—¢,2—¢,¢), with 7 = 10. If that through node d is used, we obtain

¢ = (6,3 —¢,3—¢,2,2,¢), with the same 7 = 10. Finally, if the flow allocation

is required to be Max-Min Fair, the reader can verify that, in the optimal solu-

tion, (sg,tg) is routed over the arc (a,e), and (s1,¢1) is routed through d. The

allocation vector is then ¢ = (1,3,3,1,1,¢), with 7 = 9 + £. Notice that, in this

case, routing (s1,t1) through ¢ gives a smaller, suboptimal total throughput.
The connection between our two problems and the fundamental and exten-

sively studied problem of finding edge-disjoint paths in directed and undirected

graphs with or without congestion leads to the following inapproximability results.

Network Routing Subject to Fair Flow Allocation 5

Proposition 1. MT-SPNR-MMF and MT-SPNR-MB are N'P-hard to approx-
imate within any factor smaller than 2.

Proof. By polynomial-time reduction from the following NP-hard problem [8]:

2-DIR-PATH: Given a directed graph G = (V, A) and distinct vertices
S1, 82, t1, ta, decide whether there exist two edge-disjoint paths, one from
s1 to t9 and the other from s to 5.

For any instance of 2-DIR-PATH, consider the special instance of MT-SPNR-
MMF with the same graph G, the same two origin-destination pairs and ¢;; = 1
for all (i,7) € A. Clearly, Yes instances of 2-DIR-PATH are mapped onto MT-
SPNR-MMF instances whose optimal flow allocation has total throughput of
value 2, and No instances onto those with total throughput of at most 1. Thus,
a p-approximation algorithm for MT-SPNR-MMF with 1 < p < 2 would solve
2-DIR-PATH in polynomial time.

The same argument can be applied to MT-SPNR-MB. O

A stronger inapproximability result for MT-SPNR-MMF and MT-SPNR-
MB can be proved by building on that presented in [4] for the well-known prob-
lem of finding edge-disjoint paths with low congestion in undirected graphs.

4 Single-Level MILP Path Formulations

As shown in [2], the bilevel formulation (1)—(3) can be cast as a single-level
MILP formulation by exploiting a simple characterization of the unique optimal
MMF flow allocation for a given set of paths, which is based on the notion of
bottleneck arc.

Definition 3. An arc (i,j) € A is bottleneck for the pair (s,t) if

1. the arc capacity c;; is saturated,
2. the flow allocated to (s,t) is greater than or equal to the value of the flow
allocated to any other pair that shares the arc (i, 7).

The characterization is as follows:

Proposition 2 (Bertsekas, Gallager [5]). Given a directed graph G = (V, A),
a set K of origin-destination pairs and a simple path for each (s,t) € K, a
feasible flow allocation vector ¢ is MMF if and only if there is at least a bottleneck
arc for each pair (s,t) € K.

According to this proposition, the second level problem in Formulation (1)-
(3) can be replaced with a set of linear constraints and binary variables that
ensure the existence of a bottleneck arc for each (s,t) pair, see [2,20].

Let P be the set of all the simple paths connecting the origin-destination
pair (s,t) € K. Let the parameter crijt be 1 if the path p € P! contains the
arc (i,7) and 0 otherwise. Let the binary variable A be 1 if the path of index

6 E. Amaldi et al.

p is selected for the pair (s,t) and 0 otherwise. For each pair (s,t) € K, let
¢°t € Ry be the flow allocated to it and let fff the amount of flow on the arc

(i,7) € A. Notice that f; is either ¢** or 0. Let u;; be an upper bound on
the flows over the arc (i,j) € A. The binary variables yfjt indicate whether an

arc (i,7) is a bottleneck for (s,t). We obtain the following MILP formulation,
originally introduced in [3]:

max Z @ (5)

(s,t)eK
o ifi=s
s.t. SN - D fi=q-et iti=t i€V, (s,t)e K (6)

(4,5) €8T (4) (4,1)€5~ (4) 0 else

S ofif<ey (i,j)e A (7)
(s,t)EK

SN =1 (s,) e K (8)
pePst
f:]t < cig Z (Uf]'st)‘gt) (i,4) €A (s,1) € K (9)

pePst

oy (s,t) € K (10)
(4,5)€EA

Z fiojd 2 Cijyis; (Za]) € A7 (S7t) €K (11)
(0,d)eK
wiy > [(i,j) € A (s,t) e K (12)
Uij < f@sjt+clj(17yzsgt) (Zv.]) GAa (S,t) eEK (13)
oot > MiGpEA Cis (s.t) € K (14)

||

¢5tafisjt7uij 20 (Za]) EA? (57'[‘) €K (15)
N, € {0,1} (s,t) € K,p € P** (16)
vl €{0,1} (i,§) € A, (s,t) € K. (17)

Constraints (6)—(7) are standard flow conservation and capacity constraints.
Constraints (8) guarantee that only one path is chosen for each (s,t) € K.
Constraints (9) ensure that fff is 0 if the selected path p € P! does not contain
the arc (i,7) € A. Constraints (10)—(13) impose that the flow vector is MMF for
the selected paths, according to Proposition 2. More specifically, Constraints (10)
guarantee that at least an arc is bottleneck for each (s, t). Constraints (11) ensure
that arc (7, j) is saturated if it is bottleneck for some pair (s,¢). Constraints (12)
make sure that u,;; is equivalent to the largest flow allocated over arc (i, 7).
Constraints (13) impose that the flow of a pair (s,¢) through its bottleneck
arc (4,7) is as large as the largest flow through (i,j) for all the other pairs.
Finally, Constraints (14) introduce a valid lower bound on the value of the flow
allocations, which is tight in the case where all the flows are routed over the
same arc with minimum capacity. For an equivalent arc formulation, see [2].

Network Routing Subject to Fair Flow Allocation 7

We now derive a characterization of the optimal solution for the Max-Bottle-
neck version, similar to that of Proposition 2.

Proposition 3. Given a directed graph G = (V, A), a set K of origin-destination
pairs and a simple path for each (s,t) € K, a feasible flow allocation vector ¢ is
optimal for the problem of mazimizing the minimum flow allocated to any pair if
and only if there is at least an arc (i,7) € A (referred to as global bottleneck),
satisfying the following properties:

1. the arc capacity is saturated,

2. the arc capacity is equally divided among all the origin-destination pairs that
share the arc,

3. the flow allocated to the pairs that share the arc is the smallest among the
flow values allocated to the pairs in K.

Proof. Suppose that arc (i, j) is a global bottleneck and let i := min;—y . x{¢;}.
Due to (3), all the flows sharing the global bottleneck have a value of 7. Since,
due to (1) and (2), the capacity ¢;; is equally divided among the pairs, it is not
possible to improve one of the allocations of value n without decreasing another
one (thus, decreasing n). Since 7 is independent of the flow value for pairs not
using (4, j), it follows that the solution is optimal.

Conversely, suppose that ¢ is optimal. Consider again the smallest flow allo-
cation 77 in ¢. Assume that there is no global bottleneck. Then, for all (s,t)
pairs with flow value 7, either all the arcs in their path are nonsaturated, or the
capacity is not equally shared. In both cases, the flow can be increased (in the
latter case, by decreasing a larger flow). a

To obtain a formulation for MT-SPNR-MB, it suffices to remove the yff
variables while introducing the binary variables b;;, each of which equals 1 if the
corresponding arc (i,7) is a global bottleneck. Then, we can replace the MMF
constraints (10)-(13) and the variables y;} with the following ones:

Z bij > 1 (18)

(i,5)€A
Z 50> cijbi (i,j) € A (19)
(s,t)eK
n < ¢ (s,t) € K (20)
n> fi— e (2 — Y o) (i,h) € A, (s,t) € K (21)
pepst
n =0, bij € {Oa 1} (Za]) €A (22)

5 Branch-and-Price

Clearly, Formulation (5)—(17) has an exponential number of variables w.r.t. the
size of the graph. A natural idea is to use a Branch-and-Price algorithm where

8 E. Amaldi et al.

the paths, and their associated Aff variables, are dynamically generated. Since
the same approach can be used for both MT-SPNR-MMF and MT-SPNR-MB,
what follows is valid for both variants, unless differently specified.

The restricted master problem is obtained by restricting each set P! to
the set P** of the paths that have been generated so far. In order to facilitate
branching, we adopt an extended formulation where we also include the arc
variables x5} € {0,1}, whose value is 1 if arc (i,5) is used by (s,t) € K and 0
otherwise. Path variables A5 and arc variables £} are linked as follows:

> Atobt = a (i,j) € A, (s,t) € K. (23)

peEPst

Notice that, assuming that the paths in P** are distinct, Constraints (23) imply
the integrality of the variables /\;t. Constraints (16) can hence be dropped, thus
yielding a MILP model where branching only involves the xfjt and yfjt variables.
Pricing. Let w* € R, 77f > 0 and v} € R be the dual variables associated to,
respectively, Constraints (8), (9), and (23). The dual constraint associated to a
variable A\f is w* + 37 o4 a%“(uff —m5jcij) < 0.

In order to generate an improving column for a given (s,t) € K, we need
to generate a simple path p € P*" whose associated A\5' variable has a positive
Pst(yst_ st
ij \Yig — g
to finding, for each (s,t) € K, a longest simple path p € P! over the original
graph G where the weight of each arc is given by ﬂf}cij — l/fjt if the arc (i,j) € A
belongs to the path and equals 0 otherwise.

The longest simple path problem is well known to be hard even to approxi-
mate. Here, we cast it as a MILP which is based on the standard LP formulation
of the shortest path problem. Therefore we add continuous variables and con-
straints taken from the extended formulation proposed by Wong in [21] for the
TSP, which prevents subtours. A desirable property of the MILP approach is
its flexibility, which allows us to easily incorporate the branching information in
the pricing subproblems.

Let V, := V' \{s} and V; := V' \ {s, t}, for a given (s,t) € K. Let the variable
oi; € {0,1} be 1 if the path that we are looking for contains arc (i,j) and 0
otherwise. Let the variable z, € {0,1}, for h € Vi, be 1 if the path contains
node h. Let qlhj < 0 be the value of an auxiliary flow from node s to node h € Vj,
and 0 otherwise. The pricing subproblem reads as follows:

reduced cost, i.e., such that Z(i eal ¢;ij) > —w*t. This is equivalent

max Z (Cijmij — Vij)oij (24)
(i.7)eA
1 ifi=s
s.t. Soooii— Y. o= -1 ifi=t i€V (25)
(4,5)€5% () (4,1)€6 (1) 0 else
> o<t eV (26)

(4,7)€8% ()

Network Routing Subject to Fair Flow Allocation 9

Zn ifi=s
o= Y =Sz ifi=h heV, (28)
(i,5)€6% () (4,4)€6 (@) 0 else
Z Oih = Zh h € Vg (29)
(i,h)€8—(h)
gy >0 (i,5) € A,h eV, (30)
oij.2n € {0,1} (i,7) € A,h € Vy (31)

Constraints (25) are standard flow balance constraints. Constraints (26) limit
the outgoing degree to 1, hence guaranteeing that the flow be unsplittable. Con-
straints (27) ensure that the auxiliary flow qu be 0 for all h € Vj if the arc (i, 7)
is not contained in the path. Constraints (28) are flow balance constraints for
the auxiliary flow, guaranteeing that each node h € V; be the sink node of the
corresponding auxiliary flow. Constraints (29) impose that z, be 1 if the path
contains an arc entering the node h € V; and 0 otherwise.

Pool Initialization. In order to initialize the Branch-and-Price algorithm, we
populate the initial pool of columns by generating a set of initial paths for each
(s,t) € K. This is achieved by repeatedly finding a shortest path from s to ¢ in
the graph, using unit arc weights. Then, each time a new path is generated, the
cost of the arcs therein contained is increased, thus promoting diversity among
the paths. For each (s,t) pair in K, we generate a number of initial paths that
is proportional to the minimum (s,t)-cut in the graph with unit arc capacities.

Primal Heuristics. Very often, finding even a feasible solution with state-
of-the-art MILP solvers is extremely hard for both MT-SPNR-MMF and MT-
SPNR-MB. Thus, the introduction of ad hoc primal heuristics is crucial to the
effectiveness of any algorithm based on Branch-and-Bound.

We propose three such heuristics. The first two are based on rounding;:

— Standard rounding: starting from a feasible solution of the continuous relax-
ation, for each (s, t) select the path p € P! with the largest)\;t; alternatively
(randomized variant) pick a path p € P** with a probability equal to A3f.

— Shortest-path rounding: starting from a feasible solution of the continuous
relaxation, for each (s,t) find a shortest path in G with weights 1 — z£} for
each arc (7,7) € A. A variant is obtained by sampling the weight of each arc
from a uniform distribution in (0,1 — x£}). If the path that is found is not
already in P*t, a new column is added to the pool.

For both rounding heuristics, once a path p € P** has been selected or gener-
ated for each (s,t) pair, a complete feasible solution is constructed by running,
for MT-SPNR-MMF, the water filling algorithm or, for MT-SPNR-MB, a simple
2-stage algorithm. The latter consists in solving a bottleneck maximization prob-
lem followed by an LP that maximizes the total throughput over the residual
graph.

10 E. Amaldi et al.

The third algorithm is a MILP-based heuristic:

— Restricted MILP: the restricted master problem is solved by imposing the
integrality constraints on /\Is)t, using only the columns that have been generated
so far. Since solving this restricted MILP is still hard, in order to use it within
the Branch-and-Price framework, we adopt a short time limit to provide good
solutions quickly.

6 Some Computational Results

We have carried out computational experiments on a set of network topologies
taken from the SND library [16]. We report results for MT-SPNR-MMF and MT-
SPNR-MB on three network topologies: atlanta (|[V| = 15, |A| = 44), france
(V| = 25,|A| = 90), and nobel-us (|V| = 14, |A| = 42). The arc capacities are
randomly assigned to the arcs from a predefined set of values, see [2].

We compare the results of the Branch-and-Price algorithm to those obtained
with an arc formulation of the problem, similar to that presented in [2]. We
solve it with SCIP, using CPLEX as the underlying LP solver. The Branch-and-
Price method is implemented in C++ within the SCIP framework. The machine
used for the experiments is equipped with Intel Xeon E5645 CPUs and 16 GB
of RAM.

The following table summarizes the computational results. Column k reports
the number of origin-destination pairs. Column opt represents the optimal value
of the unconstrained Max-Throughput problem (MT). The “-arc” suffix denotes
the results for the arc formulation of the two problem variants, while “-B&P”
represents the Branch-and-Price algorithm. Columns UB, best, and gap report,
respectively, the best upper bound found within the time limit, the value of the
best feasible solution, and the relative gap percentage. Column time represents
the solution time in seconds. An asterisk is used when the time limit is reached
(3600s). When no feasible solution is found, the gap is reported as “inf”.

For MT-SPNR-~MB, the arc formulation is tractable on the two smaller topolo-
gies (atlanta and nobel-us), where small gaps are obtained for all instances. The
Branch-and-Price algorithm has a similar behaviour, with solutions that are only
marginally different. On france, however, the problem quickly becomes very hard
for the arc formulation as k grows. On the contrary, the Branch-and-Price algo-
rithm is capable of finding the optimal solution on more than half of the instances,
with gaps exceeding 4 % only twice.

MT-SPNR-MMF proves to be very challenging to solve on all topologies.
With the arc formulation, SCIP is able to find a feasible solution in only 10 of
the 36 instances, with optimal solutions only for smaller instances. On the other
hand, the Branch-and-Price algorithm finds good solutions for all the instances,
achieving a gap of 2.6 % on average, with optimal solutions for 12 instances. The
gap is never larger than 10 %.

It is interesting to point out that the optimal values for MT-SPNR-MB and
MT-SPNR-MMF are very close (often identical) to those for the simple unsplit-
table Max Throughput problem (MT). In particular, for all instances solved to

Network Routing Subject to Fair Flow Allocation 11

optimality except one, we obtain the same optimal values. Notice that there are
only few cases in which the upper bound for MT-SPNR-MB and MT-SPNR-
MMF is strictly smaller than the optimal value of MT, for example nobel-9-1.
This small difference in optimal objective function values is good news from the
point of view of the leader (the IP network operator), since it suggests that, for
the instances under consideration, the throughput that can be achieved when
the flows are allocated fairly by the follower (the TCP protocol) is almost the
same as when fairness is completely neglected. Note however that the paths in
the optimal solutions of our bilevel network routing problem subject to fairness
constraints can substantially differ from those of MT, where the leader has full
control on the flow allocation as well as on the paths.

MT MT-MB-arc MT-MB-B&P MT-MMF-arc MT-MMF-B&P

k| opt|| UB best gap time| UB best gap time|| UB best gap time| UB best gap time
atll [12] 48.5|| 48.5 48.5 0 19| 485 485 O 8|| 48.5 48.5 0 23] 485 485 0 3
atl2 |12 56 56 56 0 10 56 56 0 0 56 56 0 30 56 56 0 1
at21|20| 62.5| 62.5 62.5 0 38| 62.5 625 0 75| 62.562.5 0 338] 62.5 62.5 0 56
at22 (20 63|| 62.9 62.5 0.6 * 63 62.5 0.7 *I| 62.5 62.5 01717 63 62.5 0.7 *
at31|30| 98.5|| 98.3 97.1 1.3 *| 98.3 96.8 1.6 *| 98.6 — inf *| 98.3 95 3.5 *
at32 (30| 83.5|| 83.5 83.3 0.2 *| 83.5 83.3 0.2 *| 83.5 — inf *| 83.5 82 1.8 *
atdl |42 76|| 75.9 75.6 0.4 * 75.9 75.6 0.5 * 76 — inf * 759 73.7 3 *
at42(42(119.5(|/119.5 119.5 0 228(119.5119.5 0 999|(119.5 — inf *1119.5 117.9 1.3 *
atb1|56| 87.5|| 87.3 86 1.5 *| 87.3 86.1 1.3 *I| 87.3 — inf *| 87.3 80.6 8.3 *
ath2 |56 141(/140.7 139.7 0.7 *1140.7 139.4 1 *11140.8 — inf *1141.4 132.3 6.9 *
fr21 [10] 52.5|| 52.5 52.5 0 1358] 52.5 52.5 0 23| 52.552.5 0 1701} 52.5 52.5 0 32
fr22 |10| 48.5|| 48.5 48.5 0 2028| 48.5 48.5 0 713|| 49.548.5 2 *| 48.5 48.5 01132
fr31 |15| 56.5|| 56.5 50.511.9 * 56.5 56.5 0 30|| 56.5 — inf *| 56.5 56.5 0 65
fr32 |15 67 67 58.514.5 * 67 67 0 49 67 59 13.6 * 67 67 0 195
fr41 |21 7Tl 77.3 75.2 2.8 * ud 77T 01763|| 77.5 — inf ¥ 777 76.5 1.6 *
fr42 |21 72| 72.7 53 37.2 * 72 72 0 208|| 72.5 — inf * 72 72 0 726
fr51 |28(113.5(|113.5 — inf *|113.5 112.5 0.9 *11113.5 — inf *1113.5113.5 0 51
fr52 28| 101|| 102 — inf * 101 101 0 1159{|102.1 — inf *1102.2 101 1.2 *
fr61 |36 116|| 116 — inf *1116.3 114.8 1.3 *11116.2 — inf *1116.2 114.5 1.5 *
fr62 |36 95.5|| 95.5 inf * 95.5 95.3 0.3 *1| 95.5 inf *1 95.5 93.3 2.4 *
fr71 |45(131.5(|131.7 124.2 6.1 *1131.4 125.7 4.5 * — — inf *1132.2 120.5 9.7 *
fr72 |45| 110 111 — inf *l 111 106 4.7 * — — inf *1111.2 100.3 11 *
nb31|15| 63.5| 63.5 63.5 0 31} 63.5 63.5 0 1|| 63.5 63.5 0 1266] 63.5 63.5 0 4
nb32|15| 49.5|| 49.5 49.5 0 45| 49.5 495 0 29| 49.544.511.2 *1 495 495 0 22
nb41|21 76|| 75.9 75.2 1 * 76 75.2 1.1 * 76 — inf * 76 75 1.3 *
nb42|21| 85.5|| 85.5 85.5 0 112| 85.5 85.5 0 20| 85.585.5 0 966| 85.5 85.5 0 118
nb51|28| 106(/105.9 105.5 0.4 *| 106 105.5 0.4 *11106.4 — inf * 106 105.2 0.7 *
nb52|28(100.5(|100.5 100.2 0.3 *|100.5 100.2 0.3 *11100.5 — inf *¥1100.5 99.1 1.4 *
nb61|36 92|| 91.9 91 1 *1 91.9 91.5 0.5 *I| 91.9 — inf *1 91.9 89.7 2.5 *
nb62|36| 117(/116.9 115.8 0.9 *1116.9 116 0.8 *11116.9 — inf *1116.9 115 1.6 *
nb71|42| 104(/103.9 102.3 1.6 *1103.9 103.5 0.4 *11103.9 inf *1103.9 98.7 5.3 *
nb72|42| 127|/126.9 125.8 0.9 *1126.9 125.8 0.9 *11126.9 — inf *¥1126.9 125.6 1 *
nb91|50| 84.5|| 84.3 82.8 1.8 *| 84.3 83.3 1.3 *| 84.3 — inf *| 84.3 785 7.4 *
nb92|50| 118 118 115.9 1.8 *l 118 117.6 0.3 | 118 — inf * 118 111.6 5.7 *
nb81|56| 89.5|| 89.3 88.3 1.2 *| 89.3 87.8 1.8 *|| 89.3 — inf *| 89.3 82.3 8.5 *
nb82|56| 129(|/128.8 128 0.7 *1128.8 127.8 0.9 *1/128.8 — inf *1128.9 121.7 6 *

References

1. Allalouf, M., Shavitt, Y.: Maximum flow routing with weighted max-min fairness.
In: Solé-Pareta, J., Smirnov, M., Van Mieghem, P., Domingo-Pascual, J., Monteiro,
E., Reichl, P., Stiller, B., Gibbens, R.J. (eds.) QofIS 2004. LNCS, vol. 3266, pp.
278-287. Springer, Heidelberg (2004)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

E. Amaldi et al.

. Amaldi, E., Capone, A., Coniglio, S., Gianoli, L.G.: Network optimization problems
subject to max-min fair flow allocation. IEEE Commun. Lett. 17(7), 1463-1466
(2013)

Amaldi, E., Coniglio, S., Gianoli, L.G., Ileri, C.U.: On single-path network routing
subject to max-min fair flow allocation. Electron. Notes Discrete Math. 41, 543—
550 (2013)

. Andrews, M., Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K., Zhang, L.:
Inapproximability of edge-disjoint paths and low congestion routing on undirected
graphs. Combinatorica 30(5), 485-520 (2010)

Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Upper Saddle River
(1992)

Danna, E., Hassidim, A., Kaplan, H., Kumar, A., Mansour, Y., Raz, D., Segalov,
M.: Upward max min fairness. In: Proceedings IEEE INFOCOM 2012, pp. 837-845,
March 2012

Danna, E., Mandal, S., Singh, A.: A practical algorithm for balancing the max-
min fairness and throughput objectives in traffic engineering. In: Proceedings IEEE
INFOCOM 2012, pp. 846-854, March 2012

Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10(2), 111-121 (1980)

Harks, T., Hoefer, M., Schewior, K., Skopalik, A.: Routing games with progressive
filling. CoRR abs/1308.3161, abs/1308.3161 (2013)

Kleinberg, J., Rabani, Y., Tardos, E.: Fairness in routing and load balancing. In:
40th Annual Symposium on Foundations of Computer Science (FOCS), pp. 568—
578. IEEE (1999)

Massoulié, L., Roberts, J.: Bandwidth sharing: objectives and algorithms.
IEEE/ACM Trans. Netw. 10(3), 320-328 (2002)

Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math.
Program. 7(1), 97-107 (1974)

Nace, D., Piéro, M.: Max-min fairness and its applications to routing and load-
balancing in communication networks: a tutorial. Commun. Surv. Tutorials 10(4),
5-17 (2008)

Nace, D., Doan, N.L., Klopfenstein, O., Bashllari, A.: Max-min fairness in multi-
commodity flows. Comput. Oper. Res. 35(2), 557-573 (2008)

Nilsson, P.: Fairness in communication and computer network design. Ph.D. thesis,
Lund University, Sweden (2006)

Orlowski, S., Wessily, R., Piéro, M., Tomaszewski, A.: SNDIlib 1.0 - survivable
network design library. Networks 55(3), 276-286 (2010)

Pioro, M.: Fair routing and related optimization problems. In: International Con-
ference on Advanced Computing and Communications (ADCOM), pp. 229-235.
IEEE (2007)

Radunovic, B., Boudec, J.Y.L.: A unified framework for max-min and min-max
fairness with applications. IEEE/ACM Trans. Netw. 15(5), 1073-1083 (2007)
Salles, R.M., Barria, J.A.: Lexicographic maximin optimisation for fair bandwidth
allocation in computer networks. Eur. J. Oper. Res. 185(2), 778-794 (2008)
Tomaszewski, A.: A polynomial algorithm for solving a general max-min fairness
problem. Eur. Trans. Telecommun. 16(3), 233-240 (2005)

Wong, R.: Integer programming formulations of the travelling salesman problem.
In: Proceedings IEEE Conference on Circuits and Computers, pp. 149-152 (1980)

Study of Identifying Code Polyhedra
for Some Families of Split Graphs

Gabriela Argiroffo’, Silvia Bianchi', and Annegret Wagler?(®)
! Facultad de Ciencias Exactas, Ingenierfa y Agrimensura,
Universidad Nacional de Rosario, Rosario, Argentina
{garua,sbianchi}@fceia.unr.edu.ar
2 University Blaise Pascal (LIMOS, UMR 6158 CNRS),
Clermont-Ferrand, France
wagler@isima.fr

Abstract. The identifying code problem is a newly emerging search
problem, challenging both from a theoretical and a computational point
of view, even for special graphs like bipartite graphs and split graphs.
Hence, a typical line of attack for this problem is to determine minimum
identifying codes of special graphs or to provide bounds for their size.

In this work we study the associated polyhedra for some families
of split graphs: headless spiders and complete suns. We provide the
according linear relaxations, discuss their combinatorial structure, and
demonstrate how the associated polyhedra can be entirely described or
polyhedral arguments can be applied to find minimum identifying codes
for special split graphs. We discuss further lines of research in order to
apply similar techniques to obtain strong lower bounds stemming from
linear relaxations of the identifying code polyhedron, enhanced by suit-
able cutting planes to be used in a B&C framework.

Keywords: Identifying code problem - Polyhedral approach - Split
graphs

1 Introduction

Many practical applications can be stated as set covering problems, among them
newly emerging search problems for identifying codes [12]. Consider a graph
G = (V,E) and denote by NJ[i] = {i} U N(4) the closed neighborhood of i. A
subset C C V is dominating (resp. identifying) if N[¢{] N C are non-empty (resp.
distinct) sets for all ¢ € V. An identifying code of G is a node subset which is
dominating and identifying, and the identifying code number v (G) of a graph
G is the minimum cardinality of an identifying code of G.

Determining a minimum identifying code in a graph G = (V,E) can be
formulated as set covering problem min 17z, M;p(G) > 1,z € {0, 1}V by:

This work was supported by an ECOS-MINCyT cooperation France-Argentina,
A12E01.
© Springer International Publishing Switzerland 2014

P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 13-25, 2014.
DOT: 10.1007/978-3-319-09174-7_2

14 G. Argiroffo et al.

min1%z
(N[j]) = Yienyjzi 21 Vi€V (domination)
(NI ANK]) = Yicnpjanm @ 2 1 Vi, k € V,j # k (identification)
x € {0,1}IVI

We call NG
MID(G) = (A%G%))

the identifying code matriz of G, encoding the closed neighborhoods of the nodes
of G (N[G]) and their symmetric differences (A[G]), and define the identifying
code polyhedron of G as Prp(G) = conv{z € ZLY' : Mip(G) x > 1}. It is clear by
construction that v/?(G) equals the covering number 7(Mrp(G)) := min{17z :
x € Prp(G)}. In addition, a graph G has an identifying code or is identifiable
if and only if M;p(G) has no zero-row. As N[G] has clearly no zero-row, G is
identifiable if and only if A[G] has no zero-row which is equivalent to the known
condition that G is identifiable if and only if it has no true twins, i.e., nodes i, j
with N[i| = N[j], see [12].

As M;p(G) may contain rows which are equal to or dominated by other
rows in M;p(G), we define the corresponding clutter matrix, the identifying

code clutter Crp(G) of G, obtained by removing repeated or dominated rows
from M;p(G). We clearly have that

Pip(G@) = conv{z € ZV . C1p(G) 2 > 1},
and obtain as a linear relaxation the fractional identifying code polyhedron
Qip(G) ={z eRY . C1p(@) 2> 1}.

In [2,3] we characterized when P;p(G) is full-dimensional and which con-
straints of Qrp(G) define facets of Prp(G):

Lemma 1 [2,3]. Let G be a graph without isolated nodes and let V1 (G) be the
set of nodes k € V(QG) such that {k} = N[i] A N[j] for two different nodes i and
j in V(G). Then,

- Prp(QG) is full-dimensional if and only if V1(G) = 0.
— The constraint x; > 0 defines a facet of Prp(G) if and only if i ¢ V1(G).
— All constraints from Crp(G) x > 1 define facets of Prp(G).

Due to the possible formulation as set covering problem, it is immediate that
the identifying code problem is hard in general. It even remains hard for several
graph classes where many other in general hard problems are easy to solve,
including bipartite graphs [6], split graphs [8] and, therefore, chordal graphs (see
Sect. 2 for details).

Our aim is to study identifying codes in split graphs from a polyhedral point
of view. In this work we study the associated polyhedra for some families of
split graphs: headless spiders and complete suns. We provide the according lin-
ear relaxations, discuss their combinatorial structure, and demonstrate how the

Study of Identifying Code Polyhedra for Some Families of Split Graphs 15

associated polyhedra can be entirely described or polyhedral arguments can be
applied to find minimum identifying codes for special split graphs, see Sect. 2. We
discuss further lines of research in order to apply similar techniques to obtain
strong lower bounds stemming from linear relaxations of the identifying code
polyhedron, enhanced by suitable cutting planes to be used in a B&C frame-
work, see Sect. 3.

1.1 Preliminary Definitions

Given a set F' of vectors in {0,1}", we say y € F is a dominating vector (of F')
if there exits € F with « < y. It can be also said that z is dominated by y.

From now on, every matrix has 0, 1-entries, no zero columns and no domi-
nating rows.

As there is a one-to-one correspondence between a vector € {0,1}"™ and
the subset S, C {1,...,n} having x as characteristic vector, we write x instead
of S;. Remind that a cover of a matrix M is a vector x € {0,1}" such that
Mz > 1. According to the previous convention, a cover of M is a subset of
columns ({1,...,n}) that intersects all the rows of M.

In addition, the cardinality of a cover z is denoted by |z| and equals 1z. A
cover x is minimum if it has the minimum cardinality and in this case |z| is
called the covering number of the matrix M, denoted by 7(M). Recall that the
set covering polyhedron of M, denoted by Q*(M), is defined as the convex hull
of its covers. The polytope Q(M) = {x € [0,1]" : Mx > 1} is known as the
linear relazation of Q*(A). When Q*(A) = Q(A) the matrix A is ideal and the
set covering problem can be solved in polynomial time (in the size of M).

A cover of M is minimal if it does not dominate any other cover of M. The
blocker of M, denoted by b(M), is the matrix whose rows are the minimal covers
of M. It is known that b(b(M)) = M and also that a matrix M is ideal if and
only if its blocker is (see [13]). In addition, since b(b(M)) = M we can refer to
Q* (M) and Q(b(M)) as a blocking pair of polyhedra. Moreover, a is an extreme
point of Q(b(M)) if and only if a’x > 1 is a facet defining inequality of Q*(M)
(see [10]). In the sequel we will refer to this property as blocking duality.

Given a matrix M and j € {1,...,n}, we introduce two matrix operations:
the contraction of j, denoted by M/j, means that column j is removed from
M as well as the resulting dominating rows and hence, corresponds to setting
x; = 0 in the constraints Mz > 1. The deletion of j, denoted by M\ j means that
column j is removed from M as well as all the rows with a 1 in column j and this
corresponds to setting x; = 1 in the constraints Mx > 1. Then, given M and
V1,Va C {1,...,n} disjoint, we will say that M/V;\ V4 is a minor of M and this
minor does not depend on the order of operations or elements in {1,...,n}. It is
clear that M is always a minor of itself and we will say that a minor M/V; \ V;
is proper if Vi1 U Va # (). It is not hard to see that b(M/j) = b(M) \ j and
b(M\j)=b(M)/j for every j € {1,...,n}. In addition, if a matrix is ideal then
so are all its minors (see [7] for further details).

16 G. Argiroffo et al.

A rank inequality is
> @i T(M) (1)
ieM’
associated with a minor M’ = M \ U. If (1) is a facet of Q*(M’), then it is also
a facet of Q*(M) (see [14]).
In addition, if the rank constraint associated with some minor induces a
facet defining inequality of @Q*(M) then this inequality is also induced by a
minor obtained by deletion (see [1] for further details).

2 Identifying Code Polyhedra of Some Split Graphs

A graph G = (CUS, E) is a split graph if its node set can be partitioned into
a clique C and a stable set .S. Hence, split graphs are closed under taking com-
plements by definition. Moreover, they form the complementary core of chordal
graphs (graphs without chordless cycles of length > 4) since G is a split graph if
and only if G and G are chordal [9]. This is also reflected in terms of forbidden
subgraphs since a graph is a split graph if and only if it is (Cy, Cy, Cs)-free [9]
(note that Cj is self-complementary and that Cy occurs as induced subgraph
in any chordless cycle C; with £k > 6 such that all chordless cycles Cj with
k > 4 are excluded in G as well as in G). The relation between chordal and split
graphs can also be interpreted in terms of intersection graphs: while chordal
graphs are the intersection graphs of distinct subtrees of a tree, split graphs are
the intersection graphs of distinct substars of a star, see e.g. [5].

Our aim is to study identifying codes in split graphs from a polyhedral point
of view. First note that a split graph is identifiable if and only if no two nodes
in C have the same neighbors in S. For instance, a complete split graph (i.e., a
split graph where all edges between C and S are present) is not identifiable as
soon as C contains 2 nodes (as any two nodes in C are true twins).

Next, recall that finding a minimum identifying code in split graphs is NP-
hard [8]. So far, v/P(G) is only known for two families: on the one hand, stars
(the complete split graphs G = (C'US, E) with |C| = 1) are the only identifiable
complete split graphs and have y/P(G) = |S|; on the other hand, split graphs
G = (CUS, E) where every node in S is connected to a distinct 2-node subset
of C have yIP(G) of order log(|S|+|C|), see [8]. The two families show the wide
range of the possible size of minimum identifying codes in split graphs: while
the lowest possible lower bound of logn is attained for the latter, stars achieve
almost the highest possible value n.

Moreover, a split graph is connected if and only if no node in S is isolated.
Every non-connected split graph G contains a connected split graph G’ and a
non-empty subset S’ C S of isolated nodes, and clearly v/P(G) = v'P(G')+|5'|.

This motivates the study of identifying codes in non-complete, connected
split graphs G. We concentrate on three families of split graphs with a regular
structure. This allows us to benefit from a certain combinatorial structure of the
identifying code clutter Crp(G) of G and to draw conclusions for the polyhedra
Prp(G) and the identifying code number v/P(G) in a similar way as discussed

Study of Identifying Code Polyhedra for Some Families of Split Graphs 17

(a) (b) (©)

Fig. 1. (a) thin headless spider, (b) complete sun, (c) thick headless spider.

for families of bipartite graphs in [2,3]. In particular, note that stars K, are
bipartite graphs as well as split graphs. Their identifying code clutter is related
to g-roses RZ, 0, 1-matrices with n columns whose rows encode the incidence
vectors of all the g-element subsets of {1,...,n}. We have:

Theorem 1 [2,3]. For a star K1, = (V,E) with n > 3, we have

- Crip(Ki1,n) = R2,4;

- Prp(Ki,y,) is entirely described by the inequalities z(V') > |V| — 1 for all
nonempty subsets V' C V;

- ’YID(Kl,n) =n.

In this paper, we study three families of split graphs with |S| = |C] > 2
having a regular structure. A headless spider is a split graph G = (C U S, E)
with S = {s1,...,8,}, C ={ec1,...,cn}, and n > 2. In a thin headless spider, s;
is adjacent to c; if and only if ¢ = j, and in a thick headless spider, s; is adjacent
to c; if and only if 7 # j. It is straightforward to check that the complement of
a thin spider is a thick spider, and vice-versa. Moreover, headless spiders where
s; is adjacent to exactly ¢; and c¢;41 for all 1 <4 < n are called complete suns.

It is easy to see that for n = 2, the path P, equals the thin and thick headless
spider, whereas the complete sun is not identifiable. For n = 3, the thin headless
spider equals the net, and thick headless spider and complete sun its complement,
the 3-sun. We consider headless spiders with n > 4; Fig. 1 illustrates all studied
three families for n = 4. The partition (C,.S) is called the spider partition and
can be found in linear time [11].

2.1 Thick Headless Spiders

For simplicity, we will denote thick headless spiders by their partition and we
will consider that C = {1,...,n} and S = {n+1,...,2n}. Also, E denotes a
matrix with all entries at value one.

Lemma 2. For a thick headless spider G = (C U S, E) with n > 4, we have

R I

18 G. Argiroffo et al.

Proof. Let G = (CUS, E) be a thick headless spider. The neighborhood matrix

of G can be written as)
_(E Ry~
va- (%),

Now, in order to find A[G]:

(1) Ifi,j € C, NI AN[j] = {i +n,j + n}.

(2) Ifi,j €S, Ni] AN[j] = {i} U(C = {i =nP] A[{j} U (C—{j—n})] =
{i,4,i—n,j —n} and is dominated by a row of the case (1).

Ba)lfieCandje S, j#i+n, Ni|AN[j]=[CUS—{i+n})]A[{j}U
(C—{j—n})={j—n}tU(S—{j,i+n}) and is dominated by a row of the case
(1) as n > 4.

(Bb)IfieCandj=i+neS, N[i]AN[jl=[CU(S—-{i+n})]A[{j}U
(C—{j—nh)=[CUS—{i+n})]A{i+n}u(C—{i}) ={i}US and are
dominated by a row of the case (1).

As the first n rows of the matrix N[G] above are also dominated, we have
that the clutter matrix Crp(G) can be written as

Rl 1
CID(G)_ (0 Rr%)
As an immediate consequence, we obtain:

Corollary 1. Let G = (CUS, E) be a thick headless spider. Then,

~ Prp(G) is full-dimensional.
— The constraint x; > 0 defines a facet of Pip(G) for each i€ C'US.
— All constraints from Crp(G) x > 1 define facets of Prp(G).

Observe that 7(I,I) = n. Then if G = (C U S, E) is a thick headless spider,
vIP(G) > n. In fact, we have:

Corollary 2. Let G = (CUS, E) be a thick headless spider. Then S is a mini-
mum identifying code and, thus, v'P(G) = n.

In [4], the set covering polyhedron Q*(R%) = conv{z € Z} : Rlx > 1} of
complete g-roses was studied.

Theorem 2 [4]. Let n > q > 2. A non-Boolean inequality ax > 1 is a facet
defining inequality for Q*(R1) if and only if ax > 1 can be written as x(Ag) >
|As|—q+1 for some As C {1,...,n} wheres € {0,...,n—q—1} and |As| = n—s.

As R? is a minor of Crp(G) obtained from the deletion of the nodes of C,
in the underlying graph G = (C' U S, E), we have:

Corollary 3. Let G = (CUS, E) be a thick headless spider. Then, for all non-
empty subsets A C S, the inequalities z(A) > |A| — 1 are facets of Pip(G).

Study of Identifying Code Polyhedra for Some Families of Split Graphs 19

In order to study the remaining facets we need a description of the blocker
of Crp (G)

From now on we consider vectors in {0, 1}** of the form e; @ f; where e;
for i = 1,...,1 is the unit vector in {0,1}! and f; for j = 1,...,k is a vector in
{0,1}* such that (f;); =0if j =t and (fj)e =1if j #£¢.

Theorem 3. Let Cip(G) be the clutter matriz of a thick headless spider G =
(CUS,E). Every minimal cover x of Cip(G) is minimum. Moreover, either
x=0&1 where 0,1 € {0,1}" or z =e; ® f; where e;, f; € {0,1}" with i # j.

Proof. From Corollary 2, S is a minimum cover of Crp(G).

Now, let z be a minimal cover of C;p(G) such that z; = 0 for some j €
{n+1,...,2n}. It is known that every row of R"~! covers (e; + €;) for every
i,j =1,...,n [4], then any cover x with x,+; = 0 for some j € {n+1,...,2n}
must be of the form z = y & f; with some y € {0,1}". In order to cover the rows
of submatrix (R2~',I) it is enough to consider 27 =¢; & f; for i,j = 1,...,n
and i # j. Then |z| = |2%7| = n for every i, = 1,...,n and i # j and they are
all minimum covers.

Now, let v be a cover of Crp(G), with vp,4; = 0. Then v = y @ f; and
y € {0,1}". But y must be a cover of R"~! i.e., y =e; + h for some i # j and
some h € {0,1}"™. Then y is not minimal.

We can further prove the following:

Corollary 4. If # € R?" is an extreme point of Q(b(Crp(Q))) such that z; # 0
then T = %1 € R,

Proof. From Theorem 3 it follows that every row of b(Cyp(G)) is either 0 & 1
where 0,1 € {0,1}" or ¢; & f; for 4,5 = 1,...,n and ¢ # j. Then they all
have n ones per row. One can show that there are 2n linearly independent rows.
It follows that if z = 11 € R” then it satisfies b(Crp(G))z = 1. Hence z
is a fractional extreme pomt of Q(b(Crp(G))). Now, if g is an extreme point
of Q(b(Crp(G))) with all nonzero components then it must satisfy 2n linearly
independent inequalities of Q(b(Crp(G))) at equality. It follows that § = Z.

Using blocking duality it can be seen that Corollary 4 gives an alternative
proof of v/P(G) = n and states that the only facet of P;p(G) with full support
is the rank inequality associated with C;p(G).

With the help of some technical lemmas, we can further show:

Theorem 4. Let b(Crp(G)) be the blocker of the identifying clutter matriz of a
thick headless spider G = (C' U S, E). Let ¥ € R*" be a fractional extreme point
of Q(b(Crp(Q))) such that the set A = {i:z; =0} is nonempty. Then either

1. AQSanda?i:n%wwhenigéAor
2.CCAand|A <2(n—-1) andfi:ﬁforalli¢fl.

As a consequence of Theorem 4 and blocking duality, we conclude:

20 G. Argiroffo et al.

Corollary 5. Let G = (C U S, E) be a thick headless spider and S" C S non-
empty. Then, the inequalities x(C)+x(S") > n—|S— 5| when2 <|S'| <n—-1
and z(S") > |S’| — 1 when 2 < |S’| < n are facets of Pip(G).

As a consequence of Corollary 5 and Theorem 4, we obtain the main result
of this section:

Corollary 6. Let G = (CUS, E) be a thick headless spider. Then, the facets of
P]D(G) are:

— the constraint x; > 0 for alli € CUS;

— the constraints Cip(G) = > 1;

— the constraints x(C) + x(S") > n—|S — 5’| and =(S") > |S'| — 1 for every
S C S with 2 < |5.

2.2 Thin Headless Spiders

Lemma 3. For a thin headless spider G = (C' U S, E) with n > 4, we have

I 1
Cip(G) = 0 R}
B! 0

Proof. Let G = (CUS, E) be a thin headless spider having C = {1,...,n} and
S ={n+1,...,2n}. The neighborhood matrix of (C,S) can be written as

N[G] = (1%)

Now, in order to find A[G]:

(1) Ifé,jeC, N[i]AN[jl={i+n,5+n}.

(2) If 4,5 € S, N[i]] A N[j] = {i,i —n} A {j,j — n} and are dominated by
NTi].
(Ba)IfieCandj€ S, j#i+n, Ni|AN[j]=[CU{i+n})]A{j,j—n}=
{j,i+n}U(C —{j—n}) is dominated by N[i].

Bb)IfieCand j=i+neS, Ni]AN[j]=[CU{i+n}]A[{i,i+n}=
C — {i}.

As the first n rows of the matrix N above are also dominated, we have that
the clutter matrix Cyp(G) can be written as

I I
Cip(@)=| 0o R?
R"1 0

As an immediate consequence, we obtain:

Corollary 7. Let G = (C U S,E) be a thin headless spider. Then,

Study of Identifying Code Polyhedra for Some Families of Split Graphs 21

~ Prp(G) is full-dimensional.
— The constraint x; > 0 defines a facet of Prp(G) for alli € CUS.
— All constraints from Crp(G) x > 1 define facets of Prp(G).

Observe that 7(I,I) = n. Then if G = (C U S, E) is a thin headless spider,
vIP(G) > n. In fact, we have:

Corollary 8. Let G = (C U S, E) be a thin headless spider. Then, v'P(G) =
n+ 1.

Moreover, we obtain:
Corollary 9. Let G = (CUS, E) be a thin headless spider. Then,

1. the inequalities x(A) > |A| — 1 for all nonempty subsets A C S are facets of
PID (G)7
2. the inequality x(C) > 2 is a facet of Prp(G).

Proof. As R? is a minor of C;p(G) obtained after deletion of the nodes in C, as
a consequence of Theorem 2 we have that the inequalities 2:(A) > |A| — 1 for all
nonempty subsets A C S are facets of Prp(G).

Also, R"~! is a minor of C;p(G) obtained after deletion of the nodes in S,
and again using Theorem 2 we obtain z(C') > 2 as a facet of Pip(G).

As an immediate observation the rank inequality x(C,S) > n + 1 is not a
facet of Prp(G) since it can be obtained as the sum of the facets z(S) > n —1
and z(C) > 2.

Based on our computational experience, we conjecture that the identifying
code polyhedra P;p(G) of thin headless spiders have rank facets of a special
structure only:

Conjecture 1. Let G = (C,S) be a thin headless spider. Then, the facets of
Prp(G) are:

— the constraint z; > 0 for alli € C U S

— all constraints from Crp(G) = > 1;

— the constraint z(C) > 2;

— the constraints x(S’) > |S’| — 1 for all nonempty subsets S" C S.

2.3 Complete Suns

As third family of headless spiders G = (C' U S, E) having a regular structure,
we consider complete suns, where S = {s1,...,8,}, C = {c1,...,¢,} and s; is
adjacent to exactly ¢; and ¢;41 for all 1 <4 <n (indices are taken modulo n).

In contrary to thin and thick headless spiders whose identifying code clutters
are composed by few g-roses, the identifying code clutters of complete suns have
a more complex structure, involving different combinations of submatrices with
a circular structure, where some submatrices occur for all n > 4, others not
(depending on the parity of n and the size of the graph).

22 G. Argiroffo et al.

A circulant matrix is a square matrix where each row vector is rotated one
element to the right relative to the preceding row vector. We denote by CF a
matrix in {0, 1}™*" having as first row the vector starting with k 1l-entries and
having 0-entries otherwise. Moreover, we denote by C*** a matrix in {0,1}"*"
with n > 2k + 2 having as first row the vector starting with k£ 1l-entries, then
having O-entries, again k£ l-entries, and 0-entries otherwise.

Lemma 4. For a complete sun G = (CU S, E) with n > 4, the identifying code
clutter Crp(G) is composed by the following submatrices

(c2| 1) Vn >4

(0 | CHL Vn > 5

(0 |CL,CL) forn =4
(0 | 22 Vn>9

(0 |C%,C%) VYn > 8,n even
(cp=2| I) Vn >4
(G o) ¥n >4

where the first part refers to C, the second part of the matrices to S.

Proof. Let G = (C'U S, E) be a complete sun. The neighborhood matrix N|[G]
of (C,S) is composed from

(E[C7) for N[CT,
(C2| 1) for N[S].

Thus, only N[S] is in Crp(G). In order to find A[G], we distinguish three cases.
Case 1: the symmetric differences between two nodes in C' have the form

— Nlei] A Nleiva] = {si—1,si11};
- N[Cz] A N[Cz’—i-j] = {Si—175i75i+j—175i+j} for 1 < 7 < %

For all n > 4, the former symmetric differences remain in C;p(G) as submatrix
(0| CH1) Vn>5

(but yield for n = 4 not the whole circulant matrix). The latter symmetric
differences are dominated by the former if j = 2,3. Thus, for each 4 < j < 7,
the symmetric differences N[¢;] A Nlc;] remain in Crp(G) as submatrix

(0] C?*2) Vn > 9

(but yield for j = § not the whole circulant matrix).
Case 2: the symmetric differences between nodes in C' and S have the form
= Nlci] A N[si] = (C —{ei, ciga}) U{sima}s

— Nlei] A N[si—1] = (C = {ci—2,¢i-1}) U{si};

— N[Cz] A N[Sj] = (O - {ijl,Cj}) @] {Sifl,si} for j #£4,i — 1.

Study of Identifying Code Polyhedra for Some Families of Split Graphs 23

Thus, N[c;] A Ns;] is dominated by N{s;] if j # i,%— 1, and remains in C;p(G)
for j = 4,7 — 1, forming two submatrices of the form

(C"2|T1) Vn > 4.
Case 3: the symmetric differences between two nodes in S have the form

~ NIsi] A N[sip1] = {ci, civa, } U{si, 841}
- N[Sl] A N[S]] = {Ci,Ci+1,Cj7Cj+1} U {Si,Sj} fOI‘j 7é Z

Thus, Ns;] A N|[s;] is dominated by Ns;] if j # i + 1, and remains in Crp(G)
for j =i+ 1, forming a submatrix of the form

(Ccittc?) Vn > 4.
This together completely describes the identifying code clutter Crp(G).
As an immediate consequence, we obtain:

Corollary 10. Let G = (CUS, E) be a complete sun with n > 4.

— Prp(G) is full-dimensional.
— The constraint x,, > 0 defines a facet of Prp(G) for each v e CUS.
— All constraints from Crp(G) x > 1 define facets of Prp(G).

Unfortunately, the whole system of facet-defining inequalities for the iden-
tifying code polyhedra P;p(G) of complete suns is not easy to describe since
non-rank facets are required for all cases n > 4 (in fact, most facets of Prp(G)
are non-rank and involve large coefficients). However, from a careful analysis of
the constraints involved in the identifying code clutter C;p(G) of complete suns,
we derive at the following conjecture:

Conjecture 2. For a complete sun G = (C U S, E) with n > 4, the stable set S
is a minimum identifying code.

Note that it is easy to see that S is always an identifying code for a complete
sun G = (C' U S, E), since all rows of Crp(G) have at least one l-entry in S.
Hence, v/P(G) < |S| = n follows. On the other hand, for some cases, it has
been already verified that S is a minimum identifying code, by generating the
full rank constraint z(C) + x(S) > |S| = n by means of the Chétal-Gomory
procedure. This implies v/ (G) > |S| = n, and together equality follows for
these cases. Our goal is to find a general construction of this type for all n > 4.

3 Concluding Remarks

The identifying code problem is hard in general and challenging both from a theo-
retical and a computational point of view, even for special graphs like split graphs
[8]. In this paper, we studied three families of split graphs with |S| = |C| > 2
having a regular structure: thin headless spiders, thick headless spiders, and

24 G. Argiroffo et al.

complete suns. For all three families, we determined the identifying code clutter
and discussed according consequences. In the case of thin and thick spiders G,
C1p(G) is composed from certain g-roses. Based on related results from [4,14],
we could give the complete description of P;p(G) for thick spiders, and arrived
at a profound conjecture for thin spiders. For both classes, we found the exact
value for v/P(@): |S| for thick spiders and |S| + 1 for thin spiders. It turned
out that the identifying code clutters of complete suns have a more complex
structure involving different circulant matrices and, accordingly, more involved
facets are required to describe Prp(G). For this class, we showed 7P (G) < |S]
and conjecture that v/ (G) = |S| holds. So, all three families seem to have small
minimum identifying codes close to the lower bound of order log(|S| + |C]).

This demonstrates how the polyhedral approach can be applied to find iden-
tifying codes of minimum size for special graphs G, just by determining and
analyzing the identifying code clutter Crp(G), even in cases where no complete
description of Prp(G) is known yet.

As future lines of research, we plan to apply similar and more advanced
techniques to obtain either the identifying code of minimum size or strong lower
bounds stemming from linear relaxations of the identifying code polyhedron,
enhanced by suitable cutting planes. For that, note that facets associated with
deletion minors of C;p(G) remain facets in Prp(G), so according facets identified
for special graphs are relevant for every graph having such subgraphs.

References

1. Argiroffo, G., Bianchi, S.: On the set covering polyhedron of circulant matrices.
Discrete Optim. 6(2), 162-173 (2009)

2. Argiroffo, G., Bianchi, S., Wagler, A.: Polyhedra associated to identifying codes
(extended abstract), In: Proceedings of the VII Latin-American Algorithms,
Graphs and Optimization Symposium (LAGOS 2013), Electronic Notes in Dis-
crete Mathematics, vol. 44, pp. 175-180 (2013)

3. Argiroffo, G., Bianchi, S., Wagler, A.: Polyhedra associated with identifying codes,
submitted to Discrete Applied Mathematics

4. Argiroffo, G., Carr, M.: On the set covering polyhedron of g-roses. In: Proceedings
of the VI ALIO/EURO Workshop on Applied Combinatorial Optimization 2008,
Buenos Aires, Argentina (2008)

5. Brandstdt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs
on Discrete Mathematics and Applications. STAM, Philadelphia (1999)

6. Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theoret. Comput. Sci. 290, 2109-
2120 (2003)

7. Cornuéjols, G.: Combinatorial optimization: packing and covering. STAM, CBMS,
vol. 74 (2001)

8. Foucaud, F.: The complexity of the identifying code problem in restricted graph
classes. In: Lecrog, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp.
150-163. Springer, Heidelberg (2013)

9. Foldes, S., Hammer, P.: Split graphs, In: Proceedings of the VIII Southeastern
Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, La.),
Congressus Numerantium XIX, Winnipeg: Utilitas Math., pp. 311-315 (1977)

10.

11.

12.

13.
14.

Study of Identifying Code Polyhedra for Some Families of Split Graphs 25

Fulkerson, D.: Blocking polyhedra. In: Haris, B. (ed.) Graph Theory and its Appli-
cations, pp. 93-112. Academic Press, New York (1970)

Jamison, B., Olariu, S.: Recognizing P;-tidy graphs in linear time. STAM J. Com-
put. 21, 381-406 (1992)

Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for
identifying vertices in graphs. IEEE Trans. Inf. Theory 44, 599-611 (1998)
Lehman, A.: On the width-length inequality. Math. Program. 17, 403-417 (1979)
Sassano, A.: On the facial structure of the set covering polytope. Math. Program.
44, 181-202 (1989)

Parametric Multiroute Flow and Its Application
to Robust Network with k Edge Failures

Jean-Francois Baffier!2, Vorapong Suppakitpaisarn®*®&),

Hidefumi Hiraishi'**, and Hiroshi Imai®

! The University of Tokyo, Tokyo, Japan
2 JFLI, CNRS, Université Paris-Sud, Orsay, France
3 National Institute of Informatics, Tokyo, Japan
vorapong@nii.ac. jp

4 JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan

Abstract. In this work, we investigate properties of the function taking
the real value h to the max h-route flow value, and apply the result
to solve robust network flow problems. We show that the function is
piecewise hyperbolic, and modify a parametric optimization technique,
the ES algorithm, to find this function. The running time of the algorithm
is O(Amn), when X is a source-sink edge connectivity of our network,
m is the number of links, and n is the number of nodes. We can use
the result from that algorithm to solve two max-flow problems against k
edge failures, referred to as max-MLA-robust flow and max-MLA-reliable
flow. When h is optimally chosen from the function, we show that the
max-h-route flow is an exact solution of both problems for graphs in
a specific class. Our numerical experiments show that 98 % of random
graphs generated in the experiment are in that specific class. Given a
parametric edge e, we also show that the function taking the capacity of
e to the max-h-route flow value is linear piecewise. Hence we can apply
our modified ES algorithm to find that function in O(h*mn).

1 Introduction

Since its introduction by Ford and Fulkerson [1], the maximum flow problem
(max-flow) has been widely studied due to its many theoretical and practical
applications. There are many polynomial-time algorithms with which to solve
this problem, including the recent results by Orlin [2] where the max-flow of a
network with n nodes and m links is solved in O(mn).

An h-route flow is a nonnegative linear combination of h edge-disjoint paths.
The notion was introduced by Kishimoto and Takeuchi in [3], where they extend
the max-flow/min-cut duality property to the multiroute flow context and pro-
vide an algorithm to compute a max-h-route flow based on h iterations of a
classical max-flow algorithm. The duality proof is simplified by Bagchi et al. [4],
and the improved algorithm, in which the number of max-flow iterations is less
than h is some networks, is proposed by Aggarwal and Orlin [5].

It is shown in [6] that the max-(k + 1)-route flow is a (k + 1)-approximation
of two natural variants of the max-flow problem against k edge failures, referred

© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 26-37, 2014.
DOI: 10.1007/978-3-319-09174-7_3

Parametric Multiroute Flow and Its Application to Robust Network 27

to, in this work, as the mazimum multilink attack robust flow (maz-MLA-robust
flow) and mazimum multilink attack reliable flow (maz-MLA-reliable flow) prob-
lems. The max-MLA-robust flow problem is to find the minimum max-flow value
among (7,?) networks obtained by deleting each set of k edges. The problem can
be considered as a special case of R-MAX-FLOW-KCU, which is proposed and
shown to be NP-hard in [7]. The max-MLA-reliable flow is to find a max-flow
of the network such that the flow value is maximum against any set of k edge
failures, when deleting the corresponding flow to those k edges in the original
flow. The problem can be considered as a special case of the minimax problem
to combat link attacks, which is proposed and solved heuristically in [8]. For the
case when k = 1, we can solve this problem by the method for J-reliable flow
proposed in [9]. Throughout this paper, we will also refer to the edge failures as
edge attacks, since the best attacks are equivalent to the worst failures.

The parametric optimization scheme is introduced to several problems in
network design. In this scheme, our goal is to find an algorithm that outputs a
function taking some network parameters to an optimization result. For instance,
the parametric max-flow algorithm proposed in [10] outputs a function taking a
capacity of a parametric edge e to a max-flow value. Several works have intro-
duced the variants of that algorithm to solving problems in database [11] and
computer vision [12]. For those variants, the output function is shown to be
linear piecewise. They introduce a method called ES algorithm to find that lin-
ear piecewise function in O(pT') when p is the number of line segments in that
function and T is the running time to get an optimization result for a specific
parameter value.

While the most common parameter considered in this scheme is the edge
capacity, we consider the route number A as a parameter in this work. In Sect. 3,
we consider the definition of max-h-route flow for the case when the route num-
ber h can be non-integer proposed in [13]. We show that a function taking the
value h to the flow value is piecewise hyperbolic. We call the problem as maz-
route-parametric h-route flow, and propose an algorithm to find that function.
The bottleneck part of the algorithm is the calculation of a linear piecewise
function with at most A line segments. Because we compute that function by ES
algorithm, our computation time is O(AT) where A is a source-sink edge con-
nectivity of our network and T is the computation time of max-flow algorithm.
We note that we can find max h-route flow for any A in O(log) time from our
function. Those include the case that h = A where the state-of-the-art algorithm
also takes O(AT") only to compute this case.

Although the max-route-parametric h-route flow itself can be applied to solv-
ing problems in network design, we show that it can also be applied to exactly
solve max-MLA-robust flow and max-MLA-reliable flow in Sect.4. When the
route number h is optimally chosen from the function obtained from Sect. 3,
we show that the max-h-route flow is an exact solution for both problems in a
specific class of network. Our numerical experiments show that 98 % of random
graphs generated in the experiment are in that specific class.

Shown in Sect.5, we also have a contribution when the parameter is edge
capacities. Given a parametric edge e, we show that the function taking the

28 J.-F. Baffier et al.

capacity of e to the max-h-route flow value is linear piecewise with at most h+1
line segments. Using ES algorithm, we can find that function in O(hT), when
T is the computation time of max-hA-route flow algorithm. We will refer to this
problem as maz-edge-parametric h — route flow in this paper.

2 Preliminaries

In this section, we provide the notation that we will use throughout this article.
The definition and properties of the multiroute flow are provided in Subsect. 2.1,
while max-MLA-robust flow and max-MLA-reliable flow will be discussed in
Subsect. 2.2.

Let G = (V, E, ¢) be a network, where V is a set of nodes, F is a set of links,
and c¢: E — R* is a capacity function. Let s, € V be a source node and a sink
node, respectively. Throughout this paper, we will consider single-commodity
flows from s to t. All terminologies are based on that setting unless otherwise
specified. The set € (resp., .%) refers to the set of all s-t cuts (resp., the set all
possible s-t flows) of G. X refers to the s-t edge connectivity of G, and k refers
to the number of edges that the attacker can remove.

Definition 2.1 (MLA-robust capacity [14]). Given a cut X € €, let {eq, €1,
...,ep} be the cut-set of X, where c(e;) = c(ejp1) for any 0 < i < p. For 0 <
k < p, we define the MLA-robust capacity of X, a(X) as ap(X) = Y1_, c(e;).
For k > p, we define ap(X) = 0.

2.1 Multiroute Flow

In this subsection, we will briefly describe the h-route flow introduced in [3],
which, for h > 2, is also called a multiroute flow.

Definition 2.2 (h-route flow). A h-route flow is a nonnegative linear combi-
nation of h edge-disjoint s-t paths with unitary flow, in which the value on each
edge does not exceed the edge capacity.

Definition 2.3 (max-h-route flow). A maz-h-route flow is a h-route flow
such that its value is at least as large as the value of any other h-route flow.

Next, we explain an algorithm that can efficiently calculate the max-h-route
flow proposed by Kishimoto and Takeuchi [3]. The running time of that algorithm
is O(hT'), where T is the computation time of the max-flow problem. Let GP =
(V,E,cp), where cp(e) = min(c(e),p). If p* is the value such that the max-flow
value of GP” is equal to hp*, then the max-flow of GP” is shown to be the max-
h-route flow of G. The paper proposes an effective method to search for that
p* based on the max-flow value of GP for at most h distinct values of p. In the
same paper, Kishimoto and Takeuchi also extend the max-flow/min-cut duality
property to h-route flow. That duality is as follows.

Parametric Multiroute Flow and Its Application to Robust Network 29

Definition 2.4 (h-capacity [14]). The h-capacity of a cut X is given by
Br(X) = min (% ~ai(X))

0<i<h—1
A min-h-route cut is a cut minimizing the h-capacities over all the cuts in
the network. Now, we can state the h-route duality theorem.

Theorem 2.1 (h-route duality [3,4]). The value of a maz-h-route flow is
equal to the h-capacity of a min-h-route cut,)r(m% Br(X).
€

The definition of h-route flow is extended to the case when h can be non-
integer by Aneja et al. [13]. While we omit a precise definition due to the page
limitation, we give an equivalent notation of the flow in Definition 2.5. By the
definition, the non-integer case share several properties with the integer case.
Those properties include the result shown in Lemma 2.1.

Definition 2.5 [13]. For h € R*, a flow F with value v is an h-route flow if
F(e) < # foralle € E.

Lemma 2.1 [13]. For real number h < X, a maz-h-route flow value is equal to

v*, if v* >0 and the maz-flow value of G% is equal to v*.

2.2 Max-MLA-Robust Flow and Max-MLA-Reliable Flow [6]

The maximum multilink attack robust flow problem (max-MLA-robust flow) is
to find the minimum max-flow value among (7;) networks obtained by deleting
each set of k edges. Define ¢g as the value of a max-flow of the network (V, E\S).

The formal definition of max-MLA-robust flow is as follows.

Definition 2.6 (max-MLA-robust flow). Let S* = argmin ¢gs. A maz-
SCE:|S|=k

MLA-robust flow with k edge failures is a max-flow of the network (V, E\S*).
We denote its value as Pj.

The maximum multilink attack reliable flow problem (max-MLA-reliable
flow) is to find a max-flow of the network such that the flow value is maxi-
mum against any set of k£ edge failures, when deleting the corresponding flow to
those k edges in the original flow. In this setting, we will choose a flow F' € &
before the attacker selects the edges to attack. Assume that our choice is F'. We
will call the value of the flow that remains after the attack the k-effectiveness of
F, and we define it as follows.

Definition 2.7 (Effectiveness of a Flow). Let F be a valid flow, and let ¢%
be a maz-flow of a network G' = (V, E\S, f), where f(e) is a value of the flow
F on edge e. We define the k-effectiveness of F as Cp = min ¢k.
SCE:|S|=k
We note that ¢%, defined in Definition 2.7, is actually the amount of flow F
that remains after all the edges in S have been removed. The formal definition
of the max-MLA-reliable flow is as follow.

30 J.-F. Baffier et al.

Definition 2.8 (max-MLA-reliable flow). The maz-MLA-reliable flow can

be defined as a solution of F* = argmax CF.
Fez

For any h and k, we know that the k-effectiveness of max-h-route flow value
cannot be larger than the max-MLA-reliable flow value by their definition. Also,
it is shown that the max-MLA-reliable flow value cannot be larger than the
max-MLA-robust flow value.

Theorem 2.2. The algorithm for the maz-(k + 1)-route flow problem in [3] is
also a (k + 1)-approzimation algorithm for the max-MLA-robust flow and the
max-MLA-reliable flow problems with k edge failures.

3 Route-Parametric Multiroute Flow Problem

In this section, we will apply the concept of parametric optimization to the max-
h-route flow. The parameter we will consider in this section is the route number
h. In other words, we will propose an algorithm to find a function taking a value
h € R} to max-h-route flow value.

Define a network G* as (V, E,c;) when c;(e) := min(c(e),z). One of the
most important elements of our algorithm is a parametric function F that takes
a value z to the max-flow value of G*. We will discuss its properties, and propose
an algorithm to find this function in Subsect. 3.1. In Subsect. 3.2, we will extend
the notation of the max-h-route flow to the case when h can be non-integer, and
use the result of Subsect. 3.1 as a part to solve our problem.

3.1 Parametric Function F

The parametric function F is first studied in [5], where the following property
is shown.

Proposition 3.1 (Piecewise-Linear Property of F [5]). Consider a net-
work G(V, E, ¢) such that c(e) € {1,...,U} for all e € U. The parametric func-
tion F is linear piecewise with at most |E|?U line segments.

Recall P the max-MLA-robust flow value with k edge failures defined in
Subsect. 2.2. In Theorem 3.1, we give the relationship between F and those Pj.

Theorem 3.1. F(z) = min (iz + P;).
0<i<A
Proof. Consider a cut X € ¢ with a cutset E = {eo,...,e,} such that c(eg) >
cler) = -+ = c(ep). Denote Cx (x) a capacity of this cut in the graph G*. We
know that Cx(z) = Y. c(e)+ > .
ic(e;) <z ic(e;) 2w

Recall Definition 2.1 where we denote Y ©_,c(e;) as ay(X). Then, we get
Cx(z) =+ 1z =ap1(X)+ (p+ 1z if © < clep), Cx(x) = ap(X) + lx if
cleg) < x < clep—q), and Cx () = ap(X) otherwise.

Parametric Multiroute Flow and Its Application to Robust Network 31

Next, we show that the step function shown above can be simplified to

Cx(z) = min (a;(X)+ jx). Let ¢(X) < 2 < ¢i—1(X). We know from the
0<i<p+1

previous paragraph that Cx(z) = au(X) + fx. To prove that ap(X) + lx =

0<m<in+1 (o (X) + jz), we will show that ap(X)+flx < a;(X)+ jx for any j # L.
IIP

P P -1
Forj <, aj(X)+joz=3 cle)+jz=>3 cle)+ Y cle)+jz
i=j i=0 i=j
P
> Zc(ei) +(—j)x+jr=aiX)+ Lla.
=t
P p
For j > ¢, o;j(X)+{lx= Zc(ei) +jx = Zc(ei) + -0+ Lz
i=j i=j
P Jj—1
> Zc(ei) + Zc(ei) + jz = ap(X) + La.
i=j i=t

We can also use the similar argument to show the case when z > ¢(eg) and
x < c(ep). Since a;(X) = 0 for i > p, we can further simplify the formula to
Cx(2) = min (o (X) + j).

j/

It is easy to see that F(z) =)rgli%cx(a:). Hence,
€

F(x) = min min (ix + o;(X)) = min (z:r -+ min ai(X)> =min (iz + ;).
Xe% i20 >0 Xe% j

=0

Since P; = 0 for i > A\, we get F(z) = min (ix + B;). O
0<i<A
By Theorem 3.1, we know that the parametric function F is a minimum of
A+ 1 linear functions. All of them have a non-negative slope, and one of them
is constant. We get the following corollary from that.

Corollary 3.1. The parametric function F is linear piecewise, continuous, and
derivative non-increasing. The function contains at most A + 1 line segments,
and there exists x* such that F is constant on [z*,00).

Corollary 3.1 improve Proposition 3.1 in two aspects. We improve the upper
bound for the number of line segments from |E[?U to A + 1, and our result
does not need the restriction that the edge capacities have to be an integer less
than U.

It is shown in [11,15] that a function with such properties can be computed
efficiently using a method called ES algorithm. The computation time is equal
to O(pT') when p is the number of line segments and 7" is the computation time
of a function F at a specific point . In our setting, T is the computation time
of max-flow, and p is A + 1. Hence, we get the following corollary.

32 J.-F. Baffier et al.

Corollary 3.2. Using ES algorithm, we can find the function F in O(Amn).

For the remaining part of this paper, we will assume that the output of ES
algorithm is S = {(no, F(1n0)) ,-- -, (Mg F(14))}, when 0 = ng < m1 < --- < 1,
and the derivation of F at n; is not equal to the derivation at 7717*' for1 <i<gq.
We call the pair (n;, F(n;)) a breaking point.

Those breaking points can fully described our function F, because we know
that

Fa) = {f(m) +F () (@ —mi)for s < w < i,
Fln,) for > 17,

when F'(n;h) == % We can store the description in O(A\) memory as
we know from Corollary 3.1 that ¢ < A+ 1.

Consider the example of the network in Fig. la. First, we will use a costly
method [6] based on direct computation of max-MLA-robust flow. By Definition
2.6, we know that Py =7, P, =3, P, =1, and P; = 0. From Theorem 3.1, we
get F(z) = min (7,3 4+ z, 1 + 2z, 3z) as shown in Fig. 1b. Second, we will obtain
an equivalent result by using our ES algorithm. At the initial phase, we calculate
a line segment at the points z = 07 and © — co. As a result, we get the lines
y =3z and y = 7. Then, we find the intersection of those two functions. The
point is (3, 7). We test if it is a breaking point of F by calculating]—'(). If
F(%) =1, the point (%,7) is the breaking point of . Unfortunately, (%) = 3.
We compute the line correspondlng to that point, and get the line y =3 + x.
Next, we find the points where the line y = 3 + = intersects y = 3x and y = 7,
and get (1.5,4.5) and (4,7). By calculating F(1.5) and F(4), we know that
(1.5,4.5) is not a breaking point, while (4,7) is. We add the line corresponding
to F(1.5), that is y = 1 4 2z. Now, all the cut points are the breaking points of

F. The result that we get from ES algorithm is {(0,0), (1,3),(2,5), (4,7)}.

F(z) R(h)
h=3h=2
hs
PoT =777 T
| s 6
1 6 772_- 4 h=1 ha
L ./ 4
/\ A ha
s 2 t o
24 // | . 2
_/ Pé 0
4 0 2 4 x 0 1 2 3 h

Fig. 1. (a) The network that we consider in this figure (b) the parametric function F
of the network (c¢) The function R taking the value h to the max-h-route flow value

Parametric Multiroute Flow and Its Application to Robust Network 33

3.2 Non-integer Parametric Multiroute Flow

Recall Definition 2.5 and Lemma 2.1. By the definition of function F, we can
imply from the definition that a max-h-route flow value is equal to v* if v* =
f(%) and v* > 0 for h < \. When h > A, we can obtain the max-h-route flow
value following the similar idea. The value is F(n;) when h = A, and it is 0 for
any h > A. Define R as our desired output function, i.e. R is a function taking
h € R, to the max-h-route flow value. By Lemma 2.1 and Theorem 3.1, we get

the following result.

Theorem 3.2. For 1 < i < q, let h; := % Also, for 0 < i < q, let p; =

F'(nf) = W be a derivation of F atn;", and ~y; := F(n;) — F' (0)n:.

hh%y;ii fO’I“ hi+1 <h < hi,
R(h) = 74 for 0 < h < hg,
0 for h > hj.

Proof. Recall from Theorem 3.1 that F(z) = Ogng)\(zx + P;). Since P, > 0

for i < A and Py = 0, there exists * > 0 such that F(z) = Az + P\ = Az for
x < z*. Thus, (1, F(m)) = (m, Am), and hy = X\. We know that F(h) = 0 for
h > hy by the argument done previously in this subsection.

Recall from Lemma 2.1 that the max-h-route flow value is equal to hz if
hx = F(z). Our task is to find the point (x,hx) where the line hz cut the
function F(x). That is equivalent to the task of finding a value x such that
L(z) = F(z) — hx is equal to 0. When h < A, the function is increasing for a
small x and decreasing after the derivation of F becomes less than h. When h
becomes larger, the point x such that F begin to decrease comes faster, and the
decrement are faster. Thus, the value x such that £(x) = 0 becomes smaller in
that case.

Consider the case when h = h; for some 1 < i < ¢. Since h; = %,
know that h;n; = F(1;). Hence, the max-h-route flow is h;7; and the cut point
is (1, hini)-

When h = hg, the value « such that £(z) = 0 is ;. We know from the
previous paragraph that x will become larger for h < h,. By Corollary 3.2 and
the definition of breaking points, we know that F(z) = F(n,) = 7, for all z > n,.
Hence, if h < hy, the point that the line hx cut F(x) is (z*,~,) for some x*.
The max-h-route flow is ~,.

When h;y1 < h < h;, we know that the value x such that L(z) = 0 is in
between 7); and 7;41. Because of that, the line hz cut the function F(z) at the
line segment linking (n;, F(n;)) and (9;4+1, F(n;+1)). By some algebra, we know
that the line segment is p;x + 7;, and the cut point is (hj"m, hhjul). Hence the

max-h-route flow is hh—v;i* O
T

we

By Theorem 3.2, we also get the following corollary.

34 J.-F. Baffier et al.

Corollary 3.3. The function R taking the value h to maz-h-route flow is hyper-
bolic piecewise with at most A+ 1 hyperbolic segments. The function can be com-
puted in O(Amn).

Proof. From Corollary 3.2, we can get the set of breaking points of R in O(Amn).
Then, we can compute R from those breaking points in O(A) as shown in
Theorem 3.2.]

Using the result function we get from Corollary 3.3, we can compute the max
h-route flow value for any h in O(log A). Those include the case when h = .
In [5], the max-h-route flow algorithm has been improved, but the algorithm still
need O(Amn) only to compute the max-A-route flow in the worst case. Because
of this, we can say that our algorithm outputs more general results without
increasing the time complexity.

Consider the function F that we get in Fig.1b. By Theorem 3.2, we get
h1 =3, h2:%7andh3:£. Also, o =3, p1 =2, us =1, pug = 0, and vy = 0,
v =1, 2 = 3, 43 = 7. Hence, as shown in Fig.1lc, R(h) = 0 when h > 3,
R(h) = ;25 when 3 < h < 3, R(h) = 24 when I < h < 2, and R(h) =7
when 0 < h < %.

4 Applications to Max-Flow with k Edge Failures

In this section, we apply the result of Sect. 3 to two variants of the max-flow prob-
lem, max-MLA-robust flow and max-MLA-reliable flow. Recall the parametric
function F defined in the previous section, we get the following results.

Corollary 4.1. If there exists a real number x such that kx + P, = F(x), then

the maz—(@) -route flow value is equal to the max-MLA-robust flow and mazx-

MLA-reliable flow value with k edge failures.

Proof. Let h := @ The cut point of lines y = hx and y = F(x) is (x, kx + Py).
From Theorem 2.1, we know that the max-h-route flow value is kx 4+ Py. By our
definition of h-route flow, the amount of flow remaining after k£ edge attacks is
at least 2% (kz 4+ Py). We get

_— Fla) _ kP
T(ka:—i—Pk):”}T(kx—&—Pk):ﬁ(kﬁ-i—Pk):Ph
x x

Hence, the max-h-route value is equal to max-MLA-robust flow value. Since the
max-MLA-reliable flow is in between max-MLA-robust flow and max-h-route
flow value, the max-MLA-reliable flow is also equal to that max-h-route flow
value. 0

Corollary 4.1 shows that the maximum multiroute flow is not only an approx-
imate result of two robust network problems as in [6], but it provides an exact
solutions for the problems if we can find an appropriate route number h. The only

Parametric Multiroute Flow and Its Application to Robust Network 35

weak point of the result is the requirement that there must be some real x such
that kx + P, = F(z).

We perform a set of experiments to show that such z does exists in most
random network using the same setting as in [6]. We generate 100 networks with
|[V| = 20 and |E| = 80. To have a network with higher source-sink connectivity,
each node is chosen with probability ﬁ = (.05 to be the tail endpoint of an edge.
Exceptions to this are the source node and sink node, where the probabilities
are % = 0.1, and 0, respectively. Similarly, the probabilities that the source
node, the sink node, and the other nodes are chosen to be a head endpoint are
0, |%| = 0.1, and ‘—él = 0.05, respectively. The capacity of each edge was picked
uniformly at random between 0 and 20.

In 98 out of those 100 random networks, the requirement in Corollary 4.1 is
satisfied for all 0 < k < A. For a larger graph, we also perform an experiment on
the case when |V| = 40, |E| = 160. We also get the similar result for that case,
as 98 out of 100 networks are satisfying the equation for all 0 < k& < A. Since the
value of max-MLA-reliable flow and max-MLA-robust flow are equal when the
requirement is satisfied, we can also imply from the experimental results that
those two values are equal in most of the random networks.

We also performed experiments on the graph where a small number of edges
had capacities that were larger than those of others. Let G = (V, E, ¢) be a net-
work used for the experiment mentioned in the previous paragraph. We modified

the network to G’ = (V, E, '), where ¢/(e) = ;é,f),hl for 2 < h < 3. By doing this,
the capacity will follow a power-law distribution with A as the exponent [16].
As a result, we found that all those random networks with a power-law capacity

satisfy the equation for all 0 < k < A.

5 Edge-Parametric Multiroute Flow Problem

In this section, we will consider a network such that the capacity of a given edge
e can be any real number, while the capacities of the other edges are fixed. From
here, h is a fixed integer. We call the edge e as parametric edge, and denote the
capacity of edge e as a variable z. We refer to af(X), f7(X) as a value o;(X)

and 3;(X) when the capacity of that parametric edge is equal to z. Also, we
denote %, as the set of cuts containing the parametric edge e, and €, := €\€..

Lemma 5.1. For any cut X € €., a?(X) = min(a?_;(X),a?(X) + 2), for any
i>1and o (X) = af(X) + z.

Proof. The first statement is obvious. To prove the second statement, let the

cut-set of X be {eg,e1,...,ep} U{e} where c(eg) > ce1) = -+ > c(ep) and
e; # e for all i. We note that af(X) = ’;:i clej).

If z > c¢(e;—1), then {eg, ..., e;—2,e} will be the set of edges with the i largest
capacities. Hence, of (X) = >20_, | c(e;) = ad (X).

If z < c(e;—1), then {eg,...,e;—1} will be the set of edges of size ¢ with the i
largest capacities. Hence, af (X) = 30_, c(ej) + 2z = o (X) + 2. O

36 J.-F. Baffier et al.

Theorem 5.1. Let Cy(2) be a value of a max-h-flow when the capacity of the
parametric edge is z. The function Cpy is (h 4 1)-piecewise linear, continuous,
and derivative non-increasing. Also, there exists some z* such that the derivative
of Cay is 0 for all z > z*.

Proof. Let P? =)r(ni% af(X). We know from Lemma 5.1 that
c%
¢ X€Eb. Xe¥

P? = min (min (!, (X),ay(X) + z), min ozi(X)>)

Let J; := min ()Eréi% a? (X)),)I(nel% ai(X)), and H; :=)?éi% ad(X). We get

P? = min(J;, H; + z). By Definition 2.4, we know that Cp(z) = Or<n_inh (Z}Z)
<<

Thus, Cps(z) = min (J, min {W}) , when J := min (;‘_I) It is easy to
0<i<h y 0<i<h \7°

see that p;(z) := % is a linear function of z. Since the function Cjy is the
minimum of those linear functions, we know that the function is (h+1)-piecewise
linear, continuous, and derivative non-increasing. As we know that the functions
i is increasing, there exists some z* such that p;(z) > J for all ¢ and z > z*.

We get Cpr(2z) = J for those z. O
The theorem leads us to the following corollary.

Corollary 5.1. Using ES algorithm, the breaking points of function Cys can be
found in O(h*mn).

Proof. As shown in Theorem 5.1, the function Cp; at most h + 1 line segments.
The calculation of Cps(2) at a specific z is the computation of one max-h-route
flow value. By the algorithm in [5], we can compute the flow value in O(hmn).
Hence, it takes O(h?mn) to find all breaking points of Cj;. O

Similar to Sect.3, we can calculate Cjs(z) for a specific z from the set of
breaking points obtained from ES algorithm. Assume that the set is
{(m0, Crr(m0)) ;- - -, (Mg, Casr(ng))}. The calculation can be done as follows.

Onr() = 4 (Corin) = Car () 52, or i <
M Cum (1), for 2 > 17,

6 Conclusion and Future Works

When we tune parameters in our network, the conventional way to evaluate
each parameter value is the amount of max-flow. However, the amount of max-
h-route flow can also be another design criteria, as it is an approximate value
of the max-flow when edges are attacked. We propose algorithms that help that
tuning in this work. The algorithms output a trade-off function between edge
capacity, route number h, and the max-h-route flow value.

Parametric Multiroute Flow and Its Application to Robust Network 37

In a specific class of network, we can prove that the max-h-route flow can be

an exact solution of max-flow with k edge attacks, if h is optimally chosen. Our
experimental results show that most of the random networks are in that class,
and we are currently finding their theoretical properties.

Acknowledgement. We would like to thank Prof. Abdel Lisser and anonymous
reviewers for giving us valuable comments during the course of this research.

References

10.

11.

12.

13.

14.

15.

16.

Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1955)

Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the STOC
2013, pp. 765-774 (2013)

Kishimoto, W.: A method for obtaining maximum multi-route flows in a network.
Networks 27(4), 279-291 (1996)

Bagchi, A., Chaudhary, A., Kolman, P., Sgall, J.: A simple combinatorial proof of
duality of multiroute flows and cuts. Technical report, Charles Univ. (2004)
Aggarwal, C., Orlin, J.B.: On multi-route maximums flows in networks. Networks
39(1), 43-52 (2002)

Baffier, J.-F., Suppakitpaisarn, V.: A (k + 1)-approximation robust network flow
algorithm and a tighter heuristic method using iterative multiroute flow. In: Pal,
S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 68-79. Springer,
Heidelberg (2014)

Minoux, M.: On robust maximum flow with polyhedral uncertainty sets. Optim.
Lett. 3(3), 367-376 (2009)

Lee, P.P., Misra, V., Rubenstein, D.: Distributed algorithms for secure multipath
routing. In: Proceedings of the INFOCOM 2005, vol. 3, pp. 1952-1963. IEEE (2005)
Kishimoto, W., Takeuchi, M.: A method for obtaining the maximum J§-reliable flow
in a network. IEICE Trans. Fundam. 81(5), 776-783 (1998)

Diallo, M., Gueye, S., Berthomé, P.: Impact of a varying capacity on the all pairs
2-route network flows. Electron. Notes Discrete Math. 35(3), 59-64 (2009)
Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record seg-
mentation in large shared databases. JACM 23(4), 619-635 (1976)

Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in
computer vision. In: Proceedings of the ICCV 2007, pp. 1-8 (2007)

Aneja, Y.P., Chandrasekaran, R., Kabadi, S.N., Nair, K.: Flows over edge-disjoint
mixed multipaths and applications. Discrete Appl. Math. 155(15), 1979-2000
(2007)

Chandrasekaran, R., Nair, K., Anejac, Y., Kabadib, S.: Multi-terminal multipath
flows: synthesis. Discrete Appl. Math. 143, 182-193 (2004)

Hulgeri, A., Sudarshan, S.: Parametric query optimization for linear and piecewise
linear cost functions. In: Proceedings of the VLDB 2002, pp. 167-178 (2002)
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251-262 (1999)

The Dominating Set Polytope
via Facility Location

Mourad Baiou!® and Francisco Barahona?

! CNRS and Université Clermont II, Campus des Cézeaux, BP 125,
63173 Aubiere Cedex, France
baiou@isima.fr
2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10589, USA

Abstract. In this paper we present an extended formulation for the
dominating set polytope via facility location. We show that with this for-
mulation we can describe the dominating set polytope for cacti graphs,
though its description in the natural node variables dimension has been
only partially obtained. Moreover, the inequalities describing this poly-
tope have coefficients in {—1,0, 1}. This is not the case for the dominating
set polytope in the node-variables dimension. It is known from [1] that
for any integer p, there exists a facet defining inequality having coeffi-
cients in {1,...,p}. We also show a decomposition theorem by means
of 1-sums. Again this decomposition is much simpler with the extended
formulation than with the node-variables formulation given in [2].

1 Introduction

Let G = (V, A) be a directed graph, not necessarily connected, where each arc
and each node has a cost (or a profit) associated with it. Consider the follow-
ing version of the uncapacitated facility location problem (UFLP), where each
location v € V has a weight w(v) that corresponds to the revenue obtained
by opening a facility at that location, minus the cost of building this facility.
Each arc (u,v) € A has a weight w(u,v) that represents the revenue obtained
by assigning the customer u to the opened facility at location v, minus the cost
originated by this assignment. The goal is to select some nodes where facili-
ties are opened and assign to them the non selected node in such a way that
the overall profit is maximized. This version of the UFLP is called the prize-
collecting uncapacitated facility location (pc-UFLP). The following is a natural
linear relaxation of the pc-UFLP.

max Z w(u, v)z(u,v) + Z w(v)y(v) (1)

(u,v)EA veV
Z z(u,v) +y(u) <1 VYueV, (2)
(u,v)EA
z(u,v) <ylv) VY(u,v) € A, (3)

This work has been supported by project PICS05891, CNRS-IBM.

© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 38-49, 2014.
DOI: 10.1007/978-3-319-09174-7_4

The Dominating Set Polytope via Facility Location 39

z(u,v) >0 V(u,v) € A, (4)
y(v) >0 YveV. (5)

Let P(G) be the polytope defined by (2)—(4), and let UFLP'(G) be the convex
hull of P(G) N {0,1}IVI+IA4l Clearly UFLP'(G) C P(G).

Given a directed graph G = (V, A), a subgraph induced by the nodes vy, ..., v,
of G is called a bidirected cycle if the only arcs in this induced subgraph are
(vi,vi41) and (viy1,v;), for ¢ = 1,...,r, with v,11 = v;. We denote it by BIC,..
The first part of this paper is devoted to the study of UF LP'(G), when G is a bidi-
rected cycle. At first sight, the description of UFLP'(BIC),) seems easy because
of the simple structure of BIC,,. We will show that we need to add the so-called
lifted g-odd cycle inequalities, to complete its description. These inequalities define
facets of UFLP'(BIC,,), and are valid for UFLP’(G) for any graph G. We also
give a linear time algorithm to separate these inequalities.

To complete the description of UFLP’(G) in a more general class of graphs,
we consider the graphs G = (V, A) that decompose by means of 1-sum. As a
consequence we obtain a complete description of UFLP'(G) when G can be
decomposed as 1-sums of bidirected cycles.

In the second part of this paper we discuss the consequences of these results
when applied to the dominating set problem. More precisely, let G = (V, E) be
an undirected graph. A subset D C V is called a dominating set if every node of
V'\ D is adjacent to a node of D. The minimum weight dominating set problem
(MWDSP) is to find a dominating set D that minimizes), w(v), where w(v)
is a weight associated with each node v € V. A natural linear relaxation of the
MWDSP is defined by the linear program below

min Z w(v)z(v) (6)

veV
s(Np)) >1 WoeV, (7
z(v) >0 YveV, (8
z(v) <1 Wwev, 9)

where N[v] denotes the set of neighbors of v including it. Define DSP(G) to be
the convex hull of the integer vectors satisfying (7)—(9).

The MWDSP is a special case of the set covering problem. It is NP-hard even
when all the weights are equal to 1, this can be shown using a simple reduction
from the vertex cover problem. A large literature is devoted to this case and
many of its variants, for a deep understanding of the subject we refer to [3,4]. It
has been shown that when the weights are all equal to 1, the MWDSP is solvable
in many classes of graphs, a non-exhaustive list is cactus graphs, series-parallel
graphs, permutation graphs, cocomparability graphs (see Chap. 2 in [4] for more
classes). For the weighted case of the MWDSP we have a short list of graphs
where this problem can be solved in polynomial time, for threshold graphs [5],
for cycles [6] and for strongly chordal graphs [7]. Little is known from the point
of view of polyhedral approach and particularly few complete characterizations
of the polytope associated with the MDWSP are known. For the case of strongly

40 M. Bailou and F. Barahona

chordal graph Farber [7] gives a primal-dual algorithm to solve the MWDSP
this shows that DSP(G) is defined by (7)—(9). DSP(G) has been described for
threshold graphs [5]. And it has been, first, characterized for cycle graphs in
[6] and later published in [1]. This result has also been established in [8] using
a different approach. One can also use the results related to the set covering
polytope [9-13], to cite a few, to establish new results for the MWDSP. The set
covering polytope is the convex hull of {x € R" : Az > 1, z € {0,1}"}, where
A is an m x n matrix with 0, 1 entries. For example, the polytope DSP(G) when
G is a cycle with n nodes coincide with the set covering polytope when A is the
C3 circulant matrix. Recently in [14] a complete description of the set covering
polytope is established when A is the circulant matrix C%, or C:’fk, k> 3.

We give an extended formulation via facility location to completely charac-
terize the DSP(G) when G is a cactus. This description has been studied in the
original dimension that is RV in [1,6]. They developed several facet defining
inequalities for this case, and showed that this polytope has a more complicated
structure than the case when G is a cycle. Even with the 1-sum composition
developed in [2], the complete characterization of DSP(G) in cactus graphs has
not been found. The main difficulty reported in [1,6] is the description of the
polytope when restricted to the auxiliary graphs obtained after the decompo-
sition. In our work we show that with the extended formulation this task is
easy and allows us to completely describe this polytope in a higher dimension.
Moreover in [1,6], it has been shown that for any fixed integer p, there exist
a cactus G such that DSP(G) has a facet defining inequality with coefficients
1,...,p. In our description all the facets defining inequalities have coefficients in
{0,-1,+1}.

This paper is organized as follows. In Sect. 2, we give some useful definitions
and notations. Section 3 is devoted to the characterization of U FLP’(G) when G
is a bidirected cycle. In Sect. 4, we show how the results of the previous sections
apply to the dominating set polytope using a composition theorem. Finally, in
Sect. 5 we present the algorithmic consequences of our approach. In particular,
we devise the first polynomial time algorithm to solve the MWDSP in cacti. This
is done via a linear time separation algorithm of the inequalities we introduced.

2 Definitions and Notations

Recall that a bidirected cycle BIC, of a directed graph G = (V, A) is a sequence
of nodes vy,...,v, in V and arcs (v, vi41), (viy1,v;) in A, for ¢ = 1,...,n,
where v,11 = v;. The arcs of BIC,, are denoted by A(BIC)). To simplify
the notation, we will denote the nodes of BIC,, by 1,...,n, and the arcs by
(i,i+ 1) and (i + 1,4) for ¢ = 1,...,n. When we use numbers ¢ + j or i — j,
i,7 € {1,n}, the positive numbers are taken modulo n and the negative ones are
taken modulo —n. The number zero represents the node n. A bidirected path P
of the graph BIC,, is an ordered sequence of consecutive nodes of BIC,,, where
the arcs (i,4 + 1) and (¢ + 1,7) of any two consecutive nodes ¢ and i + 1 of P,
are both considered in the path. Here ¢ + 1 is taken modulo n. The size of P

The Dominating Set Polytope via Facility Location 41

is the number of its nodes minus one. Given a directed graph G = (V, A) its
intersection graph denoted by I(G) is obtained by associating a node for each
arc of A. Two nodes are adjacent if the tail of one of the corresponding arcs
coincides with the tail or the head of the other corresponding arc. It is easy to
see that I(BIC},) consists of the following circulant graph Ga, = (A(BIC,), E),
where A = {a,...,a2,} and the set of edges F consists of the edges {a;,ai+1}
and {a;,a;42}, for i =1,...,2n; the indices are taken modulo 2n.

For a directed graph D = (V, A), and S C V, we denote by §+(S5) the set
of arcs (u,v) € A with u € S and v € V'\ S. For a node v € V' we write 67 (v)
instead of 6F({v}). If there is a risk of confusion we use 8.

Given an undirected graph G = (V, E), a subset S C V is called stable if
there is no edge between any pair of nodes of S. The convex hull of the incidence
vectors of the stable sets in G is called the stable set polytope and is denoted by
SSP(G). When each node v € V' has an associated weight w(v), the mazimum
weight stable set problem (MWSSP) is to find a stable set S C V maximizing
Y wes W(v). Aset K C 'V is called a clique if there is an edge between every pair
of nodes in K.

For a ground set U and a function f from U to IR, we use f(5) to denote
f(S) =2 4cs fla), whenever S C U.

3 The Characterization of UFLP’(BIC),)

First we will give two families of valid inequalities for U F LP’(G), when G is any
directed graph.

Let G = (V, A) be any directed graph. Let BIC, a bidirected cycle included
in G. The inequality below is called a bidirected cycle inequality and has been

introduced in [15],
Yoo oa(e) < f';'J . (10)
acA(BIC,)

Now let us introduce the g-odd cycle inequalities. For any directed graph G =
(V, A), a simple cycle C' is an ordered sequence vy, ag, v1,a1, ..., Gp—1, Up, Where
vg = vp and for 7 = 0,...,p—1, v; and a; are distinct nodes and arcs, respectively.
For i =0,...,p — 1, the nodes v; and v;11 are the endnodes of a;.

By setting a, = ag, we associate with C' three more sets as below.

— We denote by C the set of nodes v, such that v; is the head of a;_1 and also
the head of a;, 1 <1i < p.

— We denote by C the set of nodes v;, such that v; is the tail of a;_1 and also
the tail of a;, 1 < i < p.

— We denote by C the set of nodes v;, such that either v; is the head of a;_; and
also the tail of a;, or v; is the tail of a;_; and also the head of a;, 1 < i < p.

Notice that |C] = |C|. A cycle will be called g-odd (generalized odd) ifp+ |C| (or
|C| + |C|) is odd, otherwise it will be called g-even. A cycle C' with C = C = ()
is a directed cycle. The set of arcs in C' is denoted by A(C).

42 M. Bailou and F. Barahona

Let C' be a g-odd cycle. Now we define a set of arcs A(C) as follows. For each
node v; € C' we have two cases. Let v;—; and v;+1 be the two neighbors of v,
in C.

— Ifv;_1 and v;41 are in C, we pick arbitrarily one arc from {(vi—1,v3), (Vig1,vi)}
and add it to A(C).

— If only one of the neighbors of v; is in C, say the node vj € {vi—1,viq1}. We
add (vj,v;) to A(O).

Once the lifting set fl(C) has been defined, a lifted g-odd cycle inequality has the

form - R
Y @t Y al)- Y uw < CHAZL (11)

a€A(C) acA(C) vel

One can easily show that this is a Gomory-Chvétal cut of rank one. Notice
that given a g-odd cycle C, we might have several lifting sets A(C’), therefore
we might have several lifted g-odd cycle inequalities. Similar inequalities called
lifted odd cycle inequalities have been studied in [16-19].

The main result of this section is the following theorem.

Theorem 1. UFLP'(BIC,) is described by the constraints (2)-(5), the bidi-
rected cycle inequality (10) with respect to BIC,, and the lifted g-odd cycle
inequalities (11).

The remainder of this section is devoted to prove this theorem. It is easy to
see that UFLP’(QG) is full dimensional for any graph G. Now assume that

azr + By < p, (12)

is a valid inequality defining a facet of UFLP'(BIC,). Let F, 3 = {(z,y) €
UFLP(G)N{0,1}VIHIAl . ax + By = p}. We will show that (12) is one of the
inequalities (2)—(5), (10) or (11). We assume in this section that (12) is different
from (2)—(5) and (10). We will recall this when needed. In the proof we will
implicitly use the following remark.

Remark 1. There exist always a feasible 0-1 solution in F, s that satisfies
inequalities (2)—(5) as a strict inequalities (not necessarily at the same time).
Otherwise (12) is one of the inequalities (2)—(5).

Now we give a series of technical lemmas that will be used in the discussion that
complete the proof in Sect. 3.1. For a detailed proofs see [20].

Lemma 1. We have a(u,v) € {0,1} for each (u,v) € A(BIC,) and B(u) €
{0, -1} for each u € V(BIC,).

Proof. The main idea of the proof is a transformation to the stable set polytope.
We add a slack variable to each inequality (2), then we eliminate the y’s variables
using the equations obtained from (2) after the additions of the slack variables. Tt
is not difficult to see that the convex hull of the 0-1 solutions in this new system is

The Dominating Set Polytope via Facility Location 43

exactly the stable set polytope of a graph H = (U, E). Each column corresponds
to a node in H, and two nodes are adjacent if there is some inequality so that the
two respective columns appear with non zero coefficients. We can observe that
this graph is quasi-line. Using the results in [21], we show that the inequalities
defining the stable set polytope in this new graph can have coefficients in {0, 1, 2}.
And we know that any valid inequality of UFLP’(G) can be obtained from a
valid inequality of that stable set polytope by eliminating the slack variables
using the equations obtained from (2). This yield to a valid inequality with
coefficients in {0, 1} for the z’s variables and with coefficients in {0, —1} for the
y’s variables. O

The following four lemmas are easy to prove, see [20].

Lemma 2. We cannot have a(u,v) = 1 for all (u,v) € A(BIC,) and
B(u) = —1 for allu € V(BIC,,).

Lemma 3. Let i be a node of BIC,, with 3(i) = —1. Then a(i +1,7) = a(i —
1,i) = 1.

Lemma 4. Let i be a node of BIC, with B(i) = —1. If a(i,i — 1) = a(i —
1,4) = 1, then (i —1) = —1.

Lemma 5. Let i be a node of BIC,, with 3(i) = —1. If a(i,i — 1) = 1, then
alii+1)=1.

Lemma 6 below summarizes the implications of Lemmas 2, 3, 4 and 5.

Lemma 6. Leti be a node of BIC,, with 3(i) = —1. Then the following assump-
tions hold

(al) a(i+1,i) =a(i—1,i) =1, and
(a2) a(i,i —1) =a(i,i +1) =0.

Proof. (al) is obtained from Lemma 3. Now if we suppose that (a2) is not true,
then Lemma 4 and Lemma 5 imply that o(u,v) =1 for each (u,v) € A(BIC,)
and f(u) = —1 for each u € V(BIC,,). But this contradicts Lemma 2. O

Lemma 7. If a(i — 1,i) =1 and (i) = 0, then a(i,i +1) = 1.
Proof. There is a vector x € Fy, g with y(i — 1) +z(i —1,4) +z(i — 1,i — 2) = 0.

- Ify(i) = 1, we set (i — 1,7) = 1 and violate the inequality; so y(i) = 0.

— If 2(i,i + 1) = 0, then we can set y(i) = 1 and proceed as before; so
z(i,i+1) =1

- Ifa(i,i+1) = 0, we set z(i,i+1) = 0 and proceed as before; so a(i,i+1) = 1.0

Lemma 8. Suppose that we are not dealing with the bidirected cycle inequality.
Ifa(i,i+1)=a(i+1,i)) =1 then a(i+2,i+ 1) = (i — 1,i) = 0.

Proof. Assume i = 1. The proof is based on the statements below.

44 M. Bailou and F. Barahona

— It follows from Lemma 6 that 5(1) = 8(2) = 0.

— It follows from Lemma 7 that «(2,3) = a(1,n) = 1.

— Since this is not a bidirected cycle inequality, we assume that there is an index
k > 2 such that:
« B()=BG+1)=0,ajj+1) =a(j+1,j) =1 for 1 <j < k.
e a(n,l)=alk+2,k+1)=0.
e a(l,n)=alk+1,k+2)=1.

— There is a vector z € F,, 3 with y(k — 1) + z(6+(k — 1)) = 0. We modify z as
below to obtain a vector that violates the inequality.
o If y(k) =1 we just set x(k—1,k) =1

o If y(k) =0 and x(k,k+ 1) = 0, we set y(k) = 1 and proceed as above.

o Ify(k)=0and x(k,k+1)=1,weset ylk+1) =x(k,k+1) =x(k+2,k+
1)=0,and y(k) =xz(k — 1,k) =x(k+ 1,k) = 1. O

Lemma 9. If a(i — 1,i) = a(i + 1,i) = 1, then B(i) = —1.

Proof. Suppose (i) = 0. It follows from Lemma 7 that a(i,i—1) = a(i,i+1) =
1. This contradicts Lemma 8. O

Lemma 10. We have at least one of the values a(i,i+1) or a(i+1,4) equal to
1, foreachi=1,...,n

3.1 The Proof of Theorem 1

Let G, be the graph induced by the arcs (i,j) € A(BIC,) with a(i,j) = 1,
we call this graph the support graph of (12). Recall that a bidirected path P of
a graph G = (V, A) is a sequence of nodes P = 1,2,...,k with (i,7 + 1) and
(i+1,7) are both in A, fori =1,...,k—1. The size of P is k — 1. We say that P
is mazimal if we cannot extend it to a bidirected path from one of its endnodes.

Notice that by definition the support graph of any g-odd lifted cycle inequal-
ity satisfy the following three properties

— it contains a cycle as a subgraph,

— each maximal bidirected path is of size 1. Moreover, if P = 4,7 + 1 is such a
path, then (i — 1,7) and (¢ + 2,7 4+ 1) do not appear, and

— if C is the lifted cycle and i a node in C, then the support graph must contain
exactly one of the arcs (i —1,4) or (i+1,7) when both nodes i —1 and i+1 are
in C, it contains none of the arcs if both of these nodes are in C' and finally
if, say i + 1 is in C, we must have the arc (i + 1,7).

Let us see that these properties are satisfied by G,. Lemma 10 implies that G,
contains at least one cycle as a subgraph. Choose any such a cycle and call it C'.
Lemma 8 implies that each maximal bidirected path is of size one, and that for
any such bidirected path P = 4,7+ 1 the arcs (i — 1,4) and (i + 2,7+ 1) are not
in G4. Again Lemma 10 implies that (i,7 — 1) and (i + 1,7 + 2) belong to G,.

Let i € C, and let i — 1 and i + 1 be the neighbors of i in G,. Notice that
G, must contain at most one of the arcs (i — 1,7) and (¢ + 1,4) since the size of
maximal bidirected path is one.

The Dominating Set Polytope via Facility Location 45

If both i — 1 and i + 1 are in C, then Lemma 9 implies that (i —1) = —1 =
B(i + 1), and using Lemma 6 we obtain that a(i — 1,7) = 0 = a(i + 1,7). So in
this case the arcs (¢ — 1,7) and (i + 1,) are not in G,.

Assume that i + 1 is in C' and that G, contains none of the arcs (i — 1,1)
or (i 4+ 1,i), that is a(i — 1,4) = «a(i + 1,4) = 0. By definition «(i,i — 1) =
a(i,i+ 1) = 1. Lemma 6 implies that §(¢) = 0 and since 7 + 1 is in C, we must
have a(i+1,i+2) = 1 and then again Lemma 6 implies that 5(i+1) = 0. We can
assume that there is a solution (z,y) € Fo g with z(i 4+ 1,7) = 1, otherwise (12)
is the trivial inequality x(i+1,4) > 0. Now if we set x(i,74 1) and y(i + 1) to 1;
z(i+1,7) and y(4) to 0 and possibly (i —1,7) to 0, we obtain a feasible solution
that violates (12). Therefore, we must have exactly one of the arcs (i — 1,1%)
or (i + 1,4) in G,. Moreover, if the node ¢ — 1 is in C, Lemma 9 implies that
B(i — 1) = —1, and Lemma 6 implies that «(i — 1,4) = 0, so (i — 1,4) is not an
arc of Gg.

The above discussion shows that the support graph G coincides with the
support graph of the lifted g-odd cycle inequality defined from C. Moreover,
from Lemma 6, each node i with 3(i) = —1 must be in C'. And from Lemma 9,
for each node i € C' we have B(i) = —1. For a g-odd cycle inequality it is easy
to find a 0-1 vector of UFLP'(BIC),) that satisfies it with equation. Then we
have p > (|C| + |C| — 1)/2. Now the proof of Theorem 1 is complete.

4 Application to the Dominating Set Polytope

Let G = (V, E) an undirected connected graph. The graph G is a cactus if each
edge of G is contained in at most one cycle of G. For example every tree is a
cactus. The main result of this section is a complete description of the domi-
nating set polytope DSP(G) in R!VIT2El when G is a cactus. This description
can be seen as an extended formulation of DSP(G). We will show that with
this extended formulation, to obtain the polytope associated with a cactus, it
suffices to characterize the polytope associated with the maximal two-connected
components. Given an undirected graph G = (V, E). We say that G is a 1-sum
of G1 = (VlvEl) and G1 = (VhEl) if |V1 n ‘/Ql =]., V= V1 @] ‘/2, E= E1 UEQ.
Consider the following equalities obtained from (2).

Z z(u,v) +y(u)=1 YueV. (13)
(u,v)€EA

Define UFLP(G) to be the convex hull of the feasible 0-1 vectors satisfying
(13) and (3)—(5). This is the classical uncapacitated facility location polytope.
Now given an undirected graph G = (V, E), define the directed graph E) =
(V, A) that have the same node-set as G, and its arc-set A is defined from E by
replacing each edge uv € E by two arcs (u,v) and (v, u).

Lemma 11. For any undirected graph G = (V, E), the projection of UFLP(?)
onto the y’s variables is exactly DSP(G).

46 M. Bailou and F. Barahona

Proof. We have to prove, DSP(G) = {y| there is a vector = such that (z,y) €
UFLP(?)}. First consider § € DSP(G). We have § = > a;y%, Yoy = 1,
a > 0, where {y'} are extreme points of DSP(G). Consider now a particular
vector y*. Let D* = {u|y*(u) = 1}. For each v € V \ D, there is at least
one of its neighbors in D*, w, say. We set (v, w,) = 1. We set z¥(i,j) =
0 for all other arcs (i,7) in ‘G. Each vector (z*,y*) is an extreme point of
UFLP(G). So (z,5) = Y ai(2%,y') is a vector in UFLP('G). Consider now
(z,9) € UFLP(?). We have (Z,7) = > ai(2h,9%), Dy = 1, a > 0, where

each vector (z%,y') is an extreme point of UF LP(?). Then each vector y® is

the incidence vector of a dominating set D?, therefore it is an extreme point of
DSP(G). Then §j = > ayy* is a vector in DSP(G). 0

Theorem 2 [22]. Let D be a directed graph that is a 1-sum of D1 = (V1, Ay)
and Dy = (Va, Ag), with ViNVy = {u}. Let D} be the graph obtained from Dy by
replacing u with u', and DY is obtained from Do by replacing u with u”’. Suppose
that the system

A <b (14)

o (5;i (u’)) 4 <1 (15)

describes UFLP'(D]). Suppose that (14) contains the inequalities (2)—(5) except
for (15). Similarly suppose that

CZ'<d (16)
Z/I((Sgé(u//)) +ZN(U”> g 1 (17)

describes UFLP'(D}). Also (16) contains the inequalities (2)—(5) except for
(17). Then the system below describes an integral polyhedron.

18
19
20
21

2 (5]53 (u’)) + 2" (5;5é (u”)) +7(W)<1

z/(u/) — Z”(U//).

(18)
(19)
(20)
(21)

Thus the theorem below follows from Theorem 1 and Theorem 2.

—

Theorem 3. If G is a cactus, then UFLP'(G') is described by the constraints
(2)-(5), the bidirected cycle inequalities (10), and the lifted g-odd cycle inequal-
ities (11).

UFLP(G) is a face of UFLP'('G). From Lemma 11, DSP(G) is a projec-
>
tion of UFLP(G). Therefore we have an extended formulation for DSP(G).

The Dominating Set Polytope via Facility Location 47

5 Algorithmic Consequences

In [1] the authors give the first polynomial algorithm to solve the minimum
weighted dominating set problem (MWDSP) in a cycle. They showed that the
separation of the inequalities defining the dominating set polytope in a cycle
can be done in O(n?). Below we will show that the separation of our inequalities
can be done in linear time. From Theorem 3 it suffices to develop a polynomial
time algorithm to solve the separation problem associated with inequalities (10)

and (11). Recall that ‘G can be decomposed by means of 1-sum into bidirected
cycles and bidirected paths of size one. The number of bidirected cycles is at

n
most 3 where n is the number of nodes of G. It follows that one can easily

introduce the bidirected cycle inequalities (10) in any linear program. Therefore
we only need to solve the separation problem for the lifted g-odd inequalities

(11) for each component of ‘G’ that is a bidirected cycle.

Separating Lifted g-Odd Inequalities in a Bidirected Cycle. Given a
vector (x,y) we want to verify if there is a lifted g-odd cycle inequality (11)
violated by (x,y) if there is any.

Theorem 4. The g-odd lifted cycle inequalities can be separated in linear time
for bidirected cycles.

Proof. A lifted g-odd cycle inequality (11) can also be written as

> -22(a) - Y 22(a)+ > () —1) > 1L (22)

a€A(C) a€A(C) vel

Thus we look for a cycle that violates (22). For that we create a directed
graph D' = (V'] A’) as follows. For every arc (i,i + 1) and (i + 1,7) we create a
node in D’. The arcs in A’ are as below.

— From (4,74 1) to (i + 1,7+ 2) we create an arc with weight 1 —2z(i + 1,7+ 2)
and label “odd.”

— From (i,i4+1) to (i + 2,7+ 1) we create an arc with weight 2y(i + 1) — 2z (i +
2,7+ 1) and label “even.”

— From (i +1,4) to (i+ 1,7+ 2) we create an arc with weight 1 —2z(i 4+ 1,7+ 2)
and label “odd.”

— From (¢4 1,4) to (i +2,i+ 1) we create an arc with weight 1 —2z(i+2,i+ 1)
and label “odd.”

— From (i,i — 1) to (i + 1,7 + 2) we create an arc with weight 2 — 2z (4,4 4+ 1) —
2x(i + 1,4) — 2z(i + 1,4 + 2), and label “even.” This arc corresponds to the
case when either (i,i + 1) or (i 4 1,4) is in the lifting set A(C).

Then we look for a minimum weight directed cycle with an odd number of odd
arcs in D’. If the weight of such a cycle is less than one, we have found a violated
inequality. Now we give the details of how to find a minimum weight directed

48 M. Bailou and F. Barahona

cycle with an odd number of odd arcs. We pick and index 4, and remove the
arcs entering (¢,7 + 1) and (i 4+ 1,47). We add an extra node s and connect it to
(i,i4 1) and (i + 1,7) with even arcs of weight zero. For each node v in D’ let
fo(v) (resp. fe(v)) be the weight of a shortest path from s to v having an odd
(resp. even) number of odd arcs. We set f.(s) = 0, fo(s) = fo(v) = fe(v) = 0
for every other node v in D’. We call the labels of s permanent and all others
temporary. For each arc (u,v) we denote by w(u,v) its weight. Then for a node
v such that all its predecessors have permanent labels we update its labels as
below.

folw) = min { ming{f,(u) + w(u, v) : (u,v) is even},
ming { f. (w) + w(u,v) : (u,v) is odd}}

fe() = min { ming{fo(u) + w(u,v) : (u,v) is odd},
ming { f. (w) + w(u,v) : (u,v) is even}}.

Then the labels of v are called permanent, and we continue. Once all labels are
permanent, we use the arcs entering (4,7 + 1) and (¢ + 1,¢) to find a shortest
directed cycle with an odd number of odd arcs and including either (i,i + 1) or
(i 4+ 1,4). Next we have to consider the case when neither (i,7 4+ 1) nor (i + 1,1)
is in the shortest cycle. This is when the arc from (i,i — 1) to (i + 1,7+ 2) is
part of the shortest cycle. For that we repeat the same procedure with ¢/ =7+ 1.
Since the indegree of each node in D’ is at most three, the labels are computed
in constant time for each node. Therefore this is a linear time algorithm. O

References

1. Bouchakour, M., Contenza, T.M., Lee, C.W., Mahjoub, A.R.: On the dominating
set polytope. Eur. J. Comb. 29(3), 652-661 (2008)

2. Bouchakour, M., Mahjoub, A.R.: One-node cutsets and the dominating set poly-
tope. Discrete Math. 165-166(15), 101-123 (1997)

3. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Monographs and Textbooks in Pure and Applied Mathematics. Taylor & Francis,
Boca Raton (1998)

4. Haynes, T., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics.
Monographs and Textbooks in Pure and Applied Mathematics, vol. 2. Taylor &
Francis, Boca Raton (1998)

5. Mahjoub, A.R.: Polytope des absorbants dans une classe de graphe a seuil. North-
Holland Math. Stud. 75, 443-452 (1983)

6. Bouchakour, M.: I: Composition de graphes et le polytope des absorbants, II: Un
algorithme de coupes pour le probleme du flot a cott fixes. Ph.D. thesis, Université
de Rennes 1, Rennes, France, December 1996

7. Farber, M.: Domination, independent domination, and duality in strongly chordal
graphs. Discrete Appl. Math. 7(2), 115-130 (1984)

8. Saxena, A.: Some results on the dominating set polytope of a cycle. GSIA Working
paper 2004-E28 (2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

The Dominating Set Polytope via Facility Location 49

Cornuéjols, G., Sassano, A.: On the 0, 1 facets of the set covering polytope. Math.
Program. 43, 45-55 (1989)

Balas, E., Ng, S.M.: On the set covering polytope: I. All the facets with coefficients
in 0, 1, 2. Math. Program. 43, 57-69 (1989)

Balas, E., Ng, S.M.: On the set covering polytope: II. Lifting the facets with coef-
ficients in 0, 1, 2. Math. Program. 45, 1-20 (1989)

Cornuéjols, G., Novick, B.: Ideal 0, 1 matrices. J. Comb. Theory Ser. B 60(1),
145-157 (1994)

Sénchez-Garcia, M., Sobrén, M., Vitoriano, B.: On the set covering polytope: facets
with coefficients in {0,1,2,3}. Ann. Oper. Res. 81, 343-356 (1998)

Bianchi, S., Nasini, G., Tolomei, P.: The minor inequalities in the description of
the set covering polyhedron of circulant matrices. Preprint (2012)

Avella, P., Sassano, A., Vasilév, I.: Computational study of large-scale p-median
problems. Math. Program. 109, 89-114 (2007)

Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program.
5, 199-215 (1973)

Cornuejols, G., Thizy, J.M.: Some facets of the simple plant location polytope.
Math. Program. 23(1), 50-74 (1982)

Cho, D.C., Johnson, E.L., Padberg, M., Rao, M.R.: On the uncapacitated plant
location problem. I. Valid inequalities and facets. Math. Oper. Res. 8(4), 579-589
(1983)

Cho, D.C., Padberg, M.W., Rao, M.R.: On the uncapacitated plant location prob-
lem. II. Facets and lifting theorems. Math. Oper. Res. 8(4), 590-612 (1983)
Baiou, M., Barahona, F.: Simple extended formulation for the dominating set poly-
tope via facility location. IBM Research Report RC25325t (2012)

Eisenbrand, F., Oriolo, G., Stauffer, G., Ventura, P.: The stable set polytope of
quasi-line graphs. Combinatorica 28(1), 45-67 (2008)

Baiou, M., Barahona, F.: On the integrality of some facility location polytopes.
SIAM J. Discrete Math. 23(2), 665-679 (2009)

Solving Graph Partitioning Problems
Arising in Tagless Cache Management

Sandro Bartolini, Iacopo Casini, and Paolo Detti(*)
Dipartimento di Ingegneria dell’Informazione Scienze Matematiche,
University of Siena, Siena, Italy
{bartolini,detti}@dii.unisi.it,
casiniaco@gmail.com

Abstract. The instruction cache is a critical component in any micro-
processor. It must have high performance to enable fetching of instruc-
tions on every cycle. In this paper, we consider an optimization problem
arising in the management of a new hybrid hardware and linker-assisted
approach for cache memory management. A graph partitioning formula-
tion is presented and different ILP formulations are proposed, obtained
by strengthening and/or relaxing constraints and by reducing the num-
ber of integer variables. The formulations are tested on large benchmarks
(with thousands of nodes and edges) arising from real applications.

Keywords: Cache memory - Graph partitioning - Integer programming

1 Introduction and Problem Description

One big technological constraint which since many years affects microprocessor
and computer systems design is known as the memory wall [11]: CPUs are much
faster than the main memory speed. Cache memories are adopted just to address
this problem. They must have high performance to enable fetching of instructions
on every cycle and, because of that, consume a big amount of energy and occupy
significant space on chip, which in turn determines their building cost. In general,
the more a given cache is able to capture the largest portion of the used memory
space, the faster access latency the processor perceives or, from a design point of
view, the smallest (and less energy hungry) cache module can be used to match
a fixed performance/energy objective.

Therefore, numerous hardware and software solutions have been proposed to
improve the cache ability to serve a higher fraction of the main memory space
or to limit its power consumption.

As cache memories are much smaller than main memory, each of their
elementary locations (blocks) can accommodate many memory blocks in a
mutually exclusive fashion. For instance, if the cache is 16 kByte, organized in 32-
byte blocks (512 blocks), and main memory is 512 MByte (about 16 millions of
blocks), at a given time each cache block can host one of the 32768 (16 mil-
lions/512) memory blocks. For this reason, along with the data, the cache needs

© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 50-61, 2014.
DOI: 10.1007/978-3-319-09174-7_5

Solving Graph Partitioning Problems Arising in Tagless Cache Management 51

to maintain also information about which memory block is stored, i.e.: “tag”
information. In a cache, tags constitute auxiliary overhead chip area and energy
consumption, needed for correct operation. Recently, a special cache has been
proposed [8] in which, under some conditions and hypotheses on the software,
tag accesses can be avoided at all, with a great benefit (more than 50 %) in
cache power consumption. Such conditions and hypotheses dictate that, accord-
ing to the proposed cache hardware features, the software (memory content)
needs to be split into a few special tagless regions (e.g.: eight 4-kByte regions
for a 32kByte cache) where the most used instructions need to be stored. When
accessing these tagless regions, tag checks can be typically omitted. To avoid
some intrinsic overheads and get the most out of this scheme, we have to:

— fill tagless regions carefully, privileging frequently used instruction groups
(named basic-blocks);

— limit as much as possible both successive access to different tagless regions
and successive accesses to tagless and non-tagless memory regions.

The behavior of a running application determines the access pattern to basic
blocks (BBs), and thus to regions. A BB is a sequence of consecutive instructions
ending with a jump instruction, and not having other jumps inside. Hence, BBs
are executed sequentially and can have various lengths. The exact access pattern
of an application run is represented by a graph called the Control Flow Graph
(CFG), a weighted directed graph where nodes correspond to BBs and weights
on edges between two BBs represent the number of times program execution
jumps from the predecessor BB to the successor BB.

In the exposed scenario, the limitation of the overheads of the tagless cache
can be achieved with a careful assignment of BBs to available tagless regions,
taking into account the CFG and the following qualitative criteria:

(c1) We want to spend as much time as possible executing instructions from
a tagless region. Therefore, nodes in CFG, i.e., basic blocks, having incoming
edges with high weights (the sum of the weights of the incoming edges in a given
node is called the execution count of the node) should be preferred over those
with edges with low weights.

(c2) We want to minimize switching amongst tagless regions, and at a more
limited extension to/from BBs outside tagless regions, as this induces overhead
due to partial cache flushing. Hence, BBs connected by edges with high weights
should be preferably kept in the same tagless region.

(c3) We want to fill the tagless regions as much as possible to maximize the tag-
less accessing. This poses further challenges as, for instance, BBs have different
sizes and tagless regions can be filled using leftover BBs that do not significantly
impact the other two goals.

Another phenomenon, called lecway management, poses further challenges
as the compiler increases the size of a basic block, according to the basic blocks
it can possibly jump to that are allocated far, e.g., in another tagless region
or outside any tagless region. Such information cannot be derived by the CFG,

52 S. Bartolini et al.

which represent only one sample run of the application, but by a static graph,
provided by the compiler, which exposes a directed edge for any possible jump
between BBs. More precisely, the size of a BB i decreases with the number of
successors of i in the static graph, that are assigned to the same tagless region.

In this paper, a problem arising in the management of tagless cache memo-
ries is addressed. The problem can be formulated as a graph partitioning prob-
lem with side constraints and features. Different ILP formulations are proposed,
obtained by strengthening and/or relaxing constraints and by reducing the num-
ber of integer variables. Some theoretical results are presented that allow to com-
pare the different formulations. The formulations are tested on large benchmarks
(with thousands of nodes and edges) arising from real applications. Computa-
tional results show that optimal or near optimal solutions can be achieved by
using a state-of-the-art mathematical programming solver.

The paper is organized as follows. In Sect. 2, results from the literature are
presented. In Sect. 3, the problem is formally defined and an ILP formulation
is presented. In Sect.4, other ILP formulations are presented and a theoreti-
cal comparative analysis is performed. Section5 reports on the computational
experiments performed on real world instances. Finally, conclusions follow.

2 Literature Review

The problem addressed in this paper generalizes a problem known in the liter-
ature as Graph Partitioning (GP) [6]. In GP the vertex set of a node-weighted
and arc-weighted graph is to be partitioned into k disjoint clusters, such that the
sum of the weights of the nodes belonging to the same cluster does not exceed a
given value F', and the sum of the arc weights within the clusters is maximized
(or equivalently the sum of the arc weights between different clusters is mini-
mized). As it will be clear later the tagless cache management problem addressed
in this paper can be formulated as a GP problem with additional constraints and
features.

Graph partitioning is NP-complete [6] and, hence, the tagless cache man-
agement problem is NP-complete, too. GP has several applications arising in a
wide area of applications, such as compiler design [7], VLSI (Very Large Scale
Integration) design [2], qualitative data analysis [3], finite element computation
[4] and manufacturing systems [1]. Branch-and-cut and branch-and-bound [10]
algorithms have been presented in the literature for solving GP problems. In [7],
a branch-and-cut algorithm has been proposed that includes cuts to reduce the
symmetric nature of the suggested problem formulation. In [4], a study of classes
of cutting planes for the GP problem is presented, and in [5] a computational
study is proposed. In [9], a branch-and-price method is presented.

The tagless cache management problem addressed in this paper has been
first introduced in [8]. In the same paper, a constructive four-phase heuristic
algorithm is proposed, that, in our experiments, is used to provide a starting
feasible solution to the branch-and-cut algorithm.

Solving Graph Partitioning Problems Arising in Tagless Cache Management 53

3 Problem Definition and Formulations

Let G = (V, A) be the Control Flow Graph introduced in Sect. 1. For each BB,
a node 7 exists in V. An edge (4,) exists in A, if the execution of BB j passes
through the execution of BB i. A positive weight w;; is associated to each edge
(i,7) € A, corresponding to the number of times the execution passes from
BB i and BB j. A weight v; and a gross size s; are associated to each node
i € V, where v; correspond to the size of node 7 times its execution count, i.e.,
v;=s8; ». wj (in which 67 (7) denotes the set of edges in A entering into
(4,1)€6~(4)

node (i), and s; is the size of node 4, when no size reduction occurs. In fact, as
explained in Sect. 1, the size of a given node i can be reduced if its successors in
the static graph provided by the compiler, are assigned to the same tagless region
of i. Let H = (V, E) denote the static graph. H is defined on the same node set
V of G. An edge (i,7) exists in F, if it is possible to jump from BBs ¢ and 7,
i,j € V. A weight a;; > 0 is associated to each edge (4, j) € E, representing the
size reduction occurring to node ¢ when node j is assigned to the same cluster
of i. Let C = {1,..., K} denote the set of tagless regions, called clusters in the
following, and let Dy be the size of cluster k € C. Let ¢ be an assignment of the
nodes in V' to the clusters in C, and let S be the set of nodes in V assigned to
the cluster k£ € C. Then, the net size of a node ¢ € S, is defined as

S; — Z Q- (1)

jGSk:(i,j)eE
Moreover, given an edge (i,7j) € A, we say that:

— (4,7) is an inter-cluster edge if nodes ¢ and j are assigned to different clusters
in o;

— (4,7) is an outbound edge if node i is assigned to a cluster and j is not assigned
to any cluster in o.

A feasible solution of the tagless cache management problem is an assignment
of nodes of V' to the clusters in C, in a such way that the sum of the net sizes of
the nodes assigned to each cluster k& does not exceed the capacity Dy. According
to the criteria cl, ¢2 and ¢3, the tagless cache management problem consists in
finding a feasible assignment of nodes to the clusters in such a way that:

— the sum of the weights of the nodes assigned to the clusters is maximized;
— the sum of the weights of inter-cluster and outbound edges is minimized.

3.1 Integer Linear Programming Formulations

In this section, Integer Linear Programming models for the tagless cache man-
agement problem are presented. In the proposed models, the objectives listed at
the end of the previous section are combined into a single function by introducing
suitable weights.

54 S. Bartolini et al.

Let

x;; be a binary variable equal to 1 if node ¢ is assigned to cluster k € C, and 0
otherwise;

y;; be a binary variable associated to edge (i,j) € A, equal to 1 if nodes i and
Jj are assigned to different clusters (i.e., if (¢,7) is an inter-cluster edge), and 0
otherwise;

zi; be a binary variable associated to edge (i,7) € A, equal to 1 if node ¢ belongs
to a cluster and j does not belong to any cluster (i.e., if (z,7) is an outbound
edge), and 0 otherwise;

hijr be a binary variable associated to edge (i,j) € E, i.e., belonging to the
static graph H, equal to 1 if nodes ¢ and j are assigned to the same cluster
k € C, and 0 otherwise.

An Integer Linear Programming formulation for the problem, denoted as
ILP;, is as follows.

K
maxZZvixik*a Z wijYi; — B Z WijZij (2)

1€V k=1 (i,5)€A (i,5)EA
Zsil’ik — Z aijhijk < D VkeC (3)
a% (i,4)€E

K

dawx<1VieV (4)
k=1

hijk <z V(i,j) € E VEe C (5)

Yij +2i; <1 V(i,5) € A (7)

Tik +xjn —vi; <1 V(i,j) € AVkeC VheC, k#h (8)

K K

Zijfzwik+zﬂﬂjh >0 V(i,j) €A 9)
k=1 h=1
Tik, high, Yig, zij € {0,1} (10)

According to the goals listed in Sect. 1, the objective function (2) is composed
of three terms: the total value of the nodes assigned to the clusters, the sum
of the weights w;; of the inter-cluster edges (7,7), and the sum of the weights
w;; of the outbound edges (7,7). The last two terms of the objective function
are weighted by coefficients « and 8, respectively, with a, § > 0. Constraints (3)
assure that the total size of nodes assigned to cluster k can not exceed the cluster
size Dy. Observe that, when assigned to cluster k, the size of node i is equal to
the net size as defined in relation (1). Constraints (4) state that each node can
be assigned to at most one cluster. For each edge (4, j) € E, Constraints (5) and
(6) impose that h,j;, can be 1 only if node i and node j are assigned to cluster k.

Constraints (7) state that, for each edge (4, j) € A, variables y;; and z;; can
not be 1 at the same time. Constraints (8) force the variable y;; to be 1 if nodes
¢ and j belong to different clusters. Constraints (9) force the variable z;; to be

Solving Graph Partitioning Problems Arising in Tagless Cache Management 55

M=

1 if node 4 belongs to a cluster (i.e., xix = 1) and node j does not belong to

k

1

K
any cluster (i.e., Y xj, =0).
k=1

4 Constraint Reduction and Strengthening and Variable
Redefinition

In this section, new and stronger formulations for the problem are proposed.

4.1 Constraint Reduction and Strengthening

In the following we show that Constraints (7) are redundant. At this aim, observe
that, Constraints (8) force the variable y;; to be bigger than or equal to 1 only
if two variables x;;, and z;, equal to 1 exist, with £ # h (i.e., if the nodes ¢
and j are assigned to different clusters). Similarly, in Constraints (9), variable

K K
zi; is forced to be bigger than or equal to 1 only if >~ z;, =1 and > z;5, =0
k=1 k=1

K
(recall that, by (4), > x4 < 1for all k € C and i € N). As a consequence,
k=1
Constraints (8) and (9) imply that z;; is forced to be 1 if and only if y;; is 0.
On the other hand, since the objective function coefficients of variables y;; and
z;; are all positive, y;; and z;; will be 1in an optimal solution only if they are
forced. Hence, Constraints (7) are redundant.
Constraints (8) can be strengthened as explained in the following. Since
> xjn <1, Constraints (8) can be replaced by the following set of stronger
heC h#k
constraints
Tk + Z Tin —Yi; <1 V(i,j) € AVkeC. (11)
hEC h#k
Observe that, from a linear relaxation point of view, Constraints (11) are stronger
than Constraints (8) and are smaller in number of a factor K — 1. By the

above discussion, it follows that a new ILP formulation for the problem, in
the following denoted as I LP;, reads as:

K
maxy > wvima— oy wiyy —B Y wijzi (12)

i€V k=1 (i,j)€A (i,j)EA
Zsimik — Z aijhijr < Dy Yk e C (13)
eV JEV:(i,j)EE
K
dan<1VieV (14)
k=1
hije < Tk V(i,j) e E VkeC (15)

hije < xjx Y(i,j) € E YkeC (16)

56 S. Bartolini et al.

T+ >, wn -y <1 V(i,j) €A VEEC (17)
heC h#k
K K
Zij — szk + Ziﬂjh >0 V(i,j) €A (18)
k=1 h=1
CCikyhijhyij,Zz‘j S {0, 1} (19)

In the following lemma, a relation between the solutions of the linear relaxations
of ILP; and ILP; is established.

Lemma 1. Let zp, and z1,p, be the optimal solution values of the linear relax-
ations of ILPy and I1LPs, respectively. Then

ZLp, < ZLp; -

Proof. Recall that ILP, has been obtained from I LP; by replacing Constraints
(8) with (17) and by relaxing Constraints (7). Since Constraints (17) are stronger
than (8), the thesis can be simply proved by showing that Constraints (7) are
satisfied by the optimal solution, say (z*,h*,y*, z*), of the linear relaxation of
ILP,. By Constraints (17) and (18), we have

Yij = Tik + Z zip — 1
heC htk

and
K K
Zij = E Tik — E Zjh.
k=1 h=1

Since variables y;; and z;; are not negative and do not appear in other constraints
of ILP, and w;; > 0 for all (¢,7) € A, in (z*, h*, y*, 2*), it must be

y; = max{0; r]gleaé({:r;‘k + Z xi, — 1}}
heC h#k

and
K K
* . * *
2;; = max{0; E x5 — E i}
k=1 h=1

Otherwise, (z*, h*,y*, z*) could not be optimal.
Summing the two relations above we obtain

K K
* * * * * *
Y+ 2 = max{O;Igleaé({xik + E x7y, — 1} + max{0; E xh, — E i}
heC h#k k=1 h=1

*

Four cases can be considered: (1) y; = zj; = 0; (2) yj; = maxpec{z];, +

K
wi = 20 s (3)
h=1

<)
BN

M=

> i, — 1} and 25 = 0; 3) yj; = 0 and 2; =

heC h#k k=1
K K
* * * * * *
Y = maxgec{zl, + z7, — 1} and 25 = o — > T3
heC h#k k=1 h=1

Solving Graph Partitioning Problems Arising in Tagless Cache Management 57

Case (1) is trivial. In Case (2) we obtain

* * * *
Yij t 25 = Il?eaé,({xik + Z xi, — 11 <1
heC hetk

K
since z;, < 1land Y a7, < 1. Case (3) follows since) zf, < 1 for all
heC h#k k=1
i € V. In Case (4), we have

K K
* * * * * *
Yij + 25 = Il?eac},({xik + E i, — 1} + E Tik — E Tjp

k=1 h=1

heC h#k
Let g be the cluster in C' such that
* * % *
heC h#k heC h#q

Then

yi*j'i_zw Zm _1+xzq+ Z x Zaj]h_zx —1+m

heC h#q h=1

M=

where the last inequality follows since () zf, —1) < 0 (by Constraints (14)),
k=1

x;?‘q <1 and x;q > 0. O

4.2 Variable Redefinition

Denote by ILPs; the formulation obtained from ILP, by relaxing the integer
constraints on variables y;; and z;;. The following lemma holds.

Lemma 2. Let (z*,h*,y*, z*) be an optimal solution of ILPs, then y;; and z;
belong to {0,1}, for all (i,5) € A.

Proof. Let us consider first the variables y;;. Note that, they only appear in
Constraints (17). Let us consider the Constraint (17) related to a given a variable
yij and a cluster k € C. Since 27y, € {0,1}and >~ 7, € {0, 1}. The following

heC h#k
four cases can be considered: (1) zj; =0and > =z}, =0; (2) 27, =1 and
heC h#k
> w5, =03z =land > zj,=0;4)zjy=1land > aj,=
heC ha#k heC h#k heC h#k

1. In Case (1), Constraints (17) imply that yi; = —1, e, y;; = 0, since w;; >0
for all (¢,7) € A (otherwise (x*, h*,y*, 2z*) could not be an optimal solution). In
Cases (2) and (3), Constraints (17) imply that y;; > 0, i.e., yj; = 0, too. Finally,
in Case (4), by Constraints (17) we have y;; > 1, i.e., yj; = 1 (since y;; < 1).

Let us Consider now the variables zlj Since they only appear in Constraints (18),

and since Z z7, € {0,1} and Z 7, € {0,1}, the thesis follows by repeating

and adaptlng the arguments used for variables ¥;;. O

58 S. Bartolini et al.

According to Lemma 2, I L P; is a valid formulation of the problem. Now, denote
by ILP, the formulation obtained from ILPs by relaxing the integer constraints
on variables h;;;. The following lemma holds.

Lemma 3. Let (z*,h*,y",2") be an optimal solution of ILPy, in which h};; €
(0,1) for some (i,j) € E and k € C. Then an optimal solution of ILPy, say
(%, h,9,2), exists (and can be built), in which T = z*, § = y*, 2 = z*, h €
{0’ l}EXK

Proof. Let (z*,h',y*,z*) be a solution obtained from (a*, h*,y*,2*) in which
bl = 1and hy,, = hy,, for all (u,v) € E and h € C, with (u,v) # (i, j). Since
the h variables do not appear in the objective function, solutions (z*, h*,y*, z*)
and (z*, ', y*, z*) yield the same objective function value.

We show now that (z*,h', y*, 2*) is a feasible solution. In fact, in ILPy, the
h variables appear in the Constraints (13), (15) and (16). Since hj;; > h};;., the
solution (z*,h’,y*, 2*) satisfies Constraints (13), and, since z* € {0, 1}V*K it
satisfies Constraints (15) and (16), too. O

By Lemma 3 it follows that an optimal solution of ILPy, (z*,h*,y*, 2*), can be
converted into an optimal solution of the tagless cache management problem by
simply rounding up the values attained by variables h*.

According to Lemmas 2 and 3, ILP3; and I LP, are valid formulations for the
tagless cache management problem. Observe that, ILP; and ILP, respectively
have 2|A| and 2|A| + |E| x |V| integer variables less than ILP; and ILP;.

5 Numerical Results

In this section, experimental results are presented. The proposed ILP formula-
tions have been tested on 12 instances arising from real world applications. The
results are reported in Table 1. For each instance, columns 2 and 3 of Table 1
report the number of nodes |V| and the number of edges |A| of the control flow
graph G. Observe that, the smallest instance has 19,436 nodes and that the
CGF's are sparse, with |V| ~ |A]. In all the instances, |C| = 8 clusters have been
considered with Dy = 4096 for all k € C.

According to a preliminary campaign of experiments, the weights o and 3 of
the second and third terms of the objective functions of ILP,—ILP; have been
set to 1 and 5, respectively, in all the instances.

The instances have been solved by CPLEX 12.5 on a 6 cores, 12 threads, PC.
A time limit of 48 h has been set and the procedures to break symmetries have
been enabled in CPLEX. The CPLEX’s branch-and-cut has been initialized by
the feasible integer solution obtained by the algorithm proposed in [8].

Table 1 reports the computational results for I LP;—I L P, on the 12 instances.
More precisely, the results for ILP; are reported in column 4, while columns 57,
8-10 and 11-13 report the results for ILP,, ILP; and ILP,, respectively. The
last row of Table 1 reports the average values.

Solving Graph Partitioning Problems Arising in Tagless Cache Management 59

For each instance and ILP formulation, let f*, fi,, fup and f respectively
be the value of the best solution found by CPLEX (within the time limit), the
optimal solution value of the linear relaxation, the best upper bound obtained
by CPLEX (within the time limit) and the value of the solution provided by
the heuristic presented in [8]. In Table1, for each instance: “Heu Gap” is the
percentage gap between the solution provided by the algorithm presented in [§]
and the best solution found by CPLEX, compuetd as ff;hfh x 100; “Root Gap”
is the gap at the root node between the linear relaxation and the best solution

found by CPLEX, computed as f”}%f x 100; and “Opt Gap” is computed as
p

ﬁ’fUi;f* x 100. As the results show, the Opt Gap of ILP; attained by CPLEX
within the time limit is poor in terms of quality (about 22 % on average), when
compared to those obtained with ILP,—ILP,. (And we do not report the Heu
Gap and Root Gap values for ILP;.) As it can be observed, ILP, and ILPs
provide very similar results. More precisely, the Opt Gap is 1.07% and 1.15%
on average for ILP, and I LPs, respectively. Three instances out of 12 have been
solved to the optimality by CPLEX on all the ILP formulations. Observe that,
on these three instances, the heuristic presented in [8] provides a solution that
is either optimal or very close to it. While, in the other 9 instances, the heuristic
provides solution quite far from the optimum (on average at least 22 %, 22 % and
21 % far from the best solution found by ILP,, ILP; and ILPy, respectively).
On the other hand, the Root Gaps of ILP,—ILP, are in general quite small
and close to the Opt Gap, stating the good quality of the LP relaxations of
ILP,—ILP,. Formulation ILP; has a slightly worse performance with respect
to ILP, and ILPs;. Such a behavior highlights that branching operations on
the h variables performed in ILP, and ILP; are useful during the B&C search
(obviously, no branching operation is performed on variables h in ILPy, since h
are continuos). Finally we point out that, since the instances have quite large
dimensions, the computational time required to compute the optimal solution
of the linear relaxation is big: it is about 1200s on average, for formulations
ILP,~ILP,, and ranges from 160 to 8,300s.

6 Conclusions and Future Research

In this paper, an optimization problem arising in the management of a new
hybrid hardware and linker-assisted approach is considered. A graph partition-
ing formulation is given and different ILP formulations are proposed. Some the-
oretical results have been presented that allow to strength the formulations or to
reduce the number of integer variables. The formulations are tested on large size
instances arising from real world applications. The computational results show
that formulations ILP,—ILP, present quite strong linear relaxations. Further-
more, a comparison of the solution provided by the algorithm presented in [8]
with the best solution found by CPLEX suggests that new heuristic approaches
can be investigated to find better feasible solutions for the problem.

S. Bartolini et al.

60

(1) x4 €9°C 69°1C ST'T €0°C 69°CC L0°T 96°T 18°CC €6°CC | €8°01C'TV | L1°098°6€ AV
8%°0 ge'1 €L°LT Sv°0 0e'T 6L°LT 620 Tt L6°LT T6°¢T 1.0'0€ 008°8% xda
¢80 081 68°G¢ c0'1 981 18°¢€ €L°0 6’1 0L°G€ Ge'8¢ 09G°'L¥ 0LE Ty | x0%I04
19°0 G6°0 4’9 19°0 G6°0 Y49 19°0 901 cr'9 csL L08°0¢ g1eoe Jromy
90°¢C 0e'e L9°6¢ Sv'e LG°€ 1€°6¢ 09'¢ 6L°€ ¢c0'6¢ 06'€€ 6169 0T¥'8G | uqrad
L8°0 9¢°'¢ EV'8Y €9°0 (44 G987 L0 [qaxé 04'87 9L°LE jAlhgs LLETVT Tosred
000 10°0 g0'0 00°0 10°0 g0'0 00°0 10°0 G0°0 90°0 66591 9e7'61 Joux
000 10°0 000 0070 10°0 000 00°0 100 00°0 100 IV LT 0T drz3
1971 1971 LT TV €r'g 6¢°L 1T°€s 107 ¥¢'9 ¢c0'q¢ 11°€9 269°'sY ANz de3
yee gey G6°G¢ 11T €% 66°G¢ (47! 9 L0°9¢ G9'1¢€ eV LY €6779 o9
02¢ 89°C Sty €1'g 95C 17°L% TeT 69°C ve'Le i gd G08°LT €ILLT | Ayem
920 L2°0 99°L¢ L2°0 62°0 ¥9°LC LT°0 81°0 8L°LC - 927601 69176 199
000 00°0 000 00°0 00°0 000 000 000 00°0 00°0 667°LT €96°02 gdrzq
deny 9dQ | dex) 100y | der) nay | der) 1dQ | dex) 100y | der) ney | dex) 3dQ | dex) 100y | dex) ney | dex) 1dQ

Y1 &I Tl g1 |A| | eouesur

TATT PU® §J 7] 10§ sHUSAY T O[qBL

Solving Graph Partitioning Problems Arising in Tagless Cache Management 61

Acknowledgements. The authors would like to thank Tim M. Jones and Jonas
Maebe for the discussion about the tagless cache operation and for the preparation
of the input data used in this work. This work was partially supported by IT FIRB
PHOTONICA project (RBFROSLE6V).

References

10.

11.

Alfieri, A., Nicosia, G., Pacifici, A.: Exact algorithms for a discrete metric labeling
problem. Discrete Optim. 3(3), 181-194 (2006)

Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey.
Integr. VLSI J. 19, 1-81 (1995)

Grotschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering prob-
lem. Math. Program. 45(1), 59-96 (1989)

Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: Formu-
lations and valid inequalities for the node capacitated graph partitioning problem.
Math. Program. 74(3), 247-266 (1996)

Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node
capacitated graph partitioning problem: a computational study. Math. Prog. Series
B 81, 229-256 (1998)

Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory
of NP-Completeness. Freeman and co., New York (1979)

Holm, S., Sorensen, M.M.: The optimal graph partitioning problem. OR Spectrum
15(1), 1-8 (1993)

Jones, T.M., Bartolini, S., Maebe, J., Chanet, D.: Link-time optimization for power
efficiency in a tagless instruction cache. In: 2011 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pp. 32—41 (2011)
Mehrotra, A., Trick, M.A.: Cliques and clustering: a combinatorial approach. Oper.
Res. Lett. 22, 1-12 (1998)

Nossack, J., Pesch, E.: A branch-and-bound algorithm for the acyclic problem.
Comput. OR 41, 174-184 (2014)

Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious.
SIGARCH Comput. Archit. News 23(1), 20-24 (1995)

Lagrangean Decomposition for Mean-Variance
Combinatorial Optimization

Frank Baumann, Christoph Buchheim, and Anna Ilyina®™)

Fakultét fiir Mathematik, Technische Universitdt Dortmund,
Dortmund, Germany
{frank.baumann,christoph.buchheim,anna.ilyina}@tu-dortmund.de

Abstract. We address robust versions of combinatorial optimization
problems, focusing on the uncorrelated ellipsoidal uncertainty case, which
corresponds to so-called mean-variance optimization. We present a branch
and bound-algorithm for such problems that uses lower bounds obtained
from Lagrangean decomposition. This approach allows to separate the
uncertainty aspect in the objective function from the combinatorial struc-
ture of the feasible set. We devise a combinatorial algorithm for solv-
ing the unrestricted binary subproblem efficiently, while the underlying
combinatorial optimization problem can be addressed by any black box-
solver. An experimental evaluation shows that our approach clearly out-
performs other methods for mean-variance optimization when applied
to robust shortest path problems and to risk-averse capital budgeting
problems arising in portfolio optimization.

Keywords: Robust combinatorial optimization - Mean-risk optimiza-
tion - Lagrangean decomposition

1 Introduction

Decision making under uncertainty is a challenge both from an economical and a
mathematical perspective. In combinatorial optimization, where the constraints
describe some problem-specific structure, the uncertainty usually appears in the
objective function, i.e. the costs of the variables. We assume that a set U of
potential cost vectors is given and aim at minimizing the value of a solution in
its worst case scenario from this uncertainty set, i.e. we take a risk-averse attitude
and consider the min-max criterion [1] to define solutions that are robust against
variation of costs. That is we consider problems of the form

min maxc' (R)
celd
s.t. x € X,

The first author has been supported by the German Research Foundation (DFG)

under grant BU 2313/2. The third author has been supported by the German Federal

Ministry of Economics and Technology within the 6th Energy Research Programme.
© Springer International Publishing Switzerland 2014

P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 6274, 2014.
DOT: 10.1007/978-3-319-09174-7_6

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 63

with X C {0,1}" defining the combinatorial structure of the feasible set. We
focus on problems whose deterministic versions are easy to solve, i.e. where a
linear objective function can be optimized quickly over the set X.

Reasonable choices of scenario sets U depend on the application at hand,
but also on the (theoretical and practical) tractability of the resulting problems.
Among the popular types of uncertainty we find interval uncertainties, discrete
scenario sets and the so-called ellipsoidal uncertainty. In the latter case the set
of all possible scenarios forms an ellipsoid in R™ and each point in this ellipsoid
represents a possible cost vector.

In this paper we address uncorrelated ellipsoidal uncertainties. Compared
with interval uncertainty, which is more commonly used and easier to deal with
computationally, using ellipsoidal uncertainties can avoid overly pessimistic solu-
tions. In fact, the worst-case scenario in Problem (R) always corresponds to
an extreme point of U, so that in the interval case all coefficients are at their
extremes, which is very unlikely in practice. In the ellipsoidal case this is explic-
itly excluded. More precisely, when assuming that the objective function coef-
ficients are jointly normally distributed, the confidence regions form ellipsoids.
Under the additional assumption that the distributions are independent, we
obtain axis-parallel ellipsoids.

Interest in robust optimization under ellipsoidal uncertainty has been steadily
growing in recent years, with a focus on the special case of axis-parallel ellipsoids,
where the problem is equivalently reformulated to a mean-variance optimization
problem. Depending on the underlying combinatorial structure efficient algo-
rithms for Problem (R) may exist. As an example, the mean-risk spanning tree
problem can be solved in polynomial time, as noted by Nikolova [6], who also pro-
poses general-purpose approximation schemes. For other underlying problems,
such as the shortest path problem, the complexity of (R) is unknown.

Another general solution approach has been to solve the problem as a general
mixed-integer quadratic program. Atamtiirk Narayanan [2] propose a SOCP-
based branch and bound-algorithm for the robust knapsack problem with axis-
parallel ellipsoidal uncertainty that additionally exploits the submodularity of
the objective function.

In this paper we develop a new exact approach for min-max problems of
type (R). We propose a branch and bound-algorithm using lower bounds obtained
from Lagrangean decomposition, allowing to separate the uncertainty aspect in
the objective function from the combinatorial structure of the feasible set. In
particular, we present an efficient algorithm to solve (R) for X = {0,1}" in the
case of uncorrelated ellipsoidal uncertainty. The combinatorial subproblem in
the decomposition can be addressed by any black box-solver.

This paper is organized as follows. In Sect.2 we present our Lagrangean
decomposition approach for general binary nonlinear minimization problems.
The special case of mean-variance combinatorial optimization is discussed in
Sect. 3; we study the unconstrained binary optimization problem arising in the
decomposition and devise an efficient algorithm that can deal with fixed vari-
ables. This allows us to embed the decomposition approach into a branch and

64 F. Baumann et al.

bound-algorithm to compute provably optimal solutions. In Sect.4 we evaluate
our algorithm for the robust shortest path problem and the risk-averse capital
budgeting problem. Extensive experimental studies show that our new algorithm
clearly outperforms other approaches described in the literature.

2 A Lagrangean Decomposition Approach

Lagrangean decomposition can be considered a special case of Lagrangean relax-
ation, applied to a set of artificial constraints [4]. Its aim is to decompose a prob-
lem into auxiliary problems that can be easily computed. We use Lagrangean
decomposition to separate the nonlinear objective function from the combinato-
rial constraints. Starting from the problem

min f(z) (P)
st.z e X C{0,1}",

we introduce new variables y € R™ along with artificial linking constraints and
express the original set of combinatorial constraints in the new variables:

min f(x)
st.z=y
z €{0,1}"
ye X.

Lagrangean relaxation of the linking equations yields

min f(z) + A" (y - 2)
s.t. z € {0,1}"
yeX,

where A € R” is the vector of Lagrangean multipliers. Since the original objec-
tive function and the set of constraints are now independent of each other, the
problem decomposes into

min f(x) -z + min)\Ty
s.t. € {0,1}" st.yeX. (L(N)

The two minimization problems in (L(\)) can be solved independently. The
left problem is an unconstrained nonlinear minimization problem over binary
variables, whereas the problem on the right is a linear instance of the underlying
combinatorial problem. For any A € R™, (L()\)) is a relaxation of the original
problem (P) and yields a lower bound on its optimal value. The best possible
bound is obtained by computing the Lagrangean dual

max L(}), (1)

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 65

for example with a subgradient algorithm. In each iteration the two subproblems
of (L(\)) have to be solved for a given A. Note that

L) = min z — A2 + min ATy
B s.t. (z,2) € conv(F) s.t. y € conv(X)

where F := {(z,z) | z € {0,1}", z > f(x)}. By general results on Lagrangean
relaxation we obtain

Lemma 1.
min 2
max L\ = s.t. (z,x) € conv(F')
x € conv(X).
Note that
min z min f(x) .
s.t. (z,z) €conv(F) > stz €conv({0,1}") = I;th i(g)conv(X)
x € conv(X) x € conv(X) o ’

and that the inequality is strict in general if f is nonlinear. This is due to the
fact that the objective function f is minimized over {0,1}" in the left problem
of (L()\)), instead of over [0,1]™. In other words, the bounds we obtain are
potentially stronger than those obtained from convexifying the feasible set in
Problem (P).

Instead of solving the decomposition (L(\)) exactly, it is possible to solve
relaxations of the subproblems. This might be advantageous when the subprob-
lems are computationally hard or no exact algorithm is known. Even if the relax-
ation may decrease the quality of the resulting lower bounds and hence increase
the number of nodes in the branch and bound-algorithm, this effect might be
compensated by the shorter time required to compute the bounds.

When embedding the computation of the Lagrangean dual into a branch and
bound-algorithm, in order to obtain exact solutions, the problem solved in the
root node of the branch and bound-tree is (1), but in deeper levels of the tree
variable fixings have to be respected. This means that the algorithms for both
the (formerly) unconstrained nonlinear subproblem and the linear combinatorial
subproblem have to be adapted to handle fixed variables.

Within a branch and bound-scheme our approach can be improved signifi-
cantly by reoptimization: in order to compute the Lagrangean dual (1) quickly
with a subgradient method, a good starting guess for the multipliers A is cru-
cial. The choice of the initial multipliers in the root node should depend on the
objective function, i.e. on the type of uncertainty set considered. In the remain-
ing nodes of the branch and bound-tree, we use the optimal multipliers of the
parent node for warmstart.

An important advantage of the Lagrangean decomposition approach is that
we get a primal heuristic for free: each time we solve (L(\)) we obtain a feasible

66 F. Baumann et al.

solution y € X for Problem (R). In particular, we can use f(y) as an upper
bound in our algorithm.

In robust optimization, the function f is defined as the worst case solution
quality of a vector x € X over all scenarios ¢ in a given set Y. More formally, we
consider objective functions of the form

— T
flx): maxc'z

where U C R" is a compact set. In many applications, linear optimization over
the feasible set X is only possible (or at least easier) if the objective function
satisfies certain additional constraints such as, e.g., non-negativity or triangle
inequalities. In the following, we argue that our approach also works in this
case. More precisely, we claim that any homogeneous inequality that is valid for
all scenarios ¢ € U can be assumed to be valid also for each vector \ appearing
in the subproblem on the right in (L())). To this end, one can show

Theorem 2. Let cone(U) denote the closed convex cone generated by U and let
cone(U)* be its dual cone. Then

min maxec' x
min maxec' z ecU
pacy _ st x €{0,1}"
st.xe X ye X

x —y € cone(d)*.

Due to space restrictions the proof is omitted here. By Theorem 2 we can apply
the Lagrangean relaxation approach directly to the problem
T

min maxc x
ceUl
s.t. x e {0,1}"
yeX

x —y € cone(U)",

meaning that the dual multipliers have to be chosen from cone(l{). It remains
to investigate whether this restriction on A yields the same bound as (1).

Theorem 3. Assume that C is a polyhedral cone withd C C. Then

max L(\) = max L(\).
aec AER™

Again, we have to omit the proof. By Theorem 3, any finite number of conditions

on the objective function of one of the following types can be carried over from U

to A without weakening the lower bound:

— non-negativity or non-positivity of a given objective function coefficient;

— the triangle inequality on a given triple of coefficients;

— if variables correspond to edges of a graph, the non-negativity of the total cost
of a given cycle.

Depending on the underlying combinatorial structure, such conditions may be
crucial for linear optimization over X. This is true, e.g., when the underlying
optimization problem asks for a shortest path or a minimum cut in a graph.

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 67

3 Uncorrelated Ellipsoidal Uncertainty

We now focus on the case of ellipsoidal uncertainty, i.e. the set U of all possible
scenarios has the form of an ellipsoid in R",

U= {CER”|(C—CO)TA_1 (c— o) §1},

with ¢ € R™ denoting the center of the ellipsoid and A € R™*"™ being a positive
definite symmetric matrix. In this case the objective function
T
T) =maxc x
f(z) = max

of (P) can be replaced by a closed formula: for a given « € R™, the value f(z)
is obtained by a linear maximization over an ellipsoid. The KKT optimality

conditions yield
f(x) =cjx+ VaT Ax.

Thereby the unconstrained min-max problem arising in the left part of prob-
lem (L(\)) in the ellipsoidal uncertainty case reads

min (co—A)' z+ VaT Az (2)
ze{0,1}"
Here, ¢y and A can be interpreted as the mean values and the covariance matrix
of a set of random variables.
In the following, we restrict ourselves to the case of uncorrelated random
variables. In this case, the ellipsoid U is axis-parallel or equivalently the matrix A
is diagonal. Exploiting the binarity of x we can simplify Problem (2) to

min (co—A) ' =+ VaTz, (3)

z€{0,1}m

where A = Diag(a) for some non-negative vector a € R™.

3.1 An Efficient Algorithm for the Unconstrained Problem

Problem (3) is an unconstrained variant of the so-called mean-risk optimization
problem. It can be solved to optimality in polynomial time since the objective
function is submodular [2]. As minimization algorithms for general submodular
functions are too slow to be applied in practice, we aim at a faster algorithm
exploiting the special structure of Problem (3).

To this end, consider two solutions of (3) which differ in exactly one variable i.
The difference between the corresponding objective values is

Az-f(J)Z(Co—A)ﬂr\/ZajJrai—\/Z% (4)

JjEJ JjEJ

with J denoting the set of variables which are 1 in both solutions. The value (4) is
also known as the discrete derivative of variable i [8]. It describes the contribution

68 F. Baumann et al.

of setting variable ¢ to 1, which clearly depends on the set J or, more precisely,
on the quantity jes aj- We hence define for each variable i its contribution

function by
CZ(Z) = (C() —)\)z + V4 + a; — \/E

The functions C; are strictly decreasing and therefore have at most one root
each. The root r; of C; is the value which > jeg 0 must reach such that setting
variable 7 to 1 becomes profitable. Note that setting a variable to 1 never has
a negative effect on the contributions of other variables, since the objective
function of (3) is submodular.

Our basic idea for the construction of an optimal solution of (3) is that, due
to the definition of r;, a variable ¢ cannot be 1 in an optimal solution while
another variable having a smaller root is 0. This leads to an obvious sorting
algorithm. However, in a first step we have to eliminate variables ¢ for which C;
has no root, using the following observation.

Lemma 4. There exists an optimal solution x* of Problem (3) with the following
properties:

(i) if (co — A); > 0, then xf = 0.
(i) if (co — A); < —/a;, then x} = 1.

Proof. The condition in (i) implies that the function C; is positive everywhere,
as a; > 0. This implies that any solution with x; = 1 can be improved by
setting x; = 0. The condition in (ii) implies that C; is non-positive everywhere,
as

(co=AN)i+Vz+a;i—Vz<(co—A)i++a; <0

by concavity of the square-root function. The contribution of variable i to the
value of an arbitrary solution is therefore non-positive, so that it may be fixed
to 1 without loss of generality. O

For each i such that —/a; < (co — A); < 0, the function C; has exactly one
positive root
(ai — (CO —)\)12)2
rp = ———--—2) .
2(00 —)\)z

The algorithm for solving the unconstrained problem proceeds as follows: first
variables are fixed according to Lemma 4, then the remaining non-fixed vari-
ables x; are sorted by non-decreasing roots r;. Finally, all binary vectors where
the non-fixed entries have values that are non-increasing in the resulting order
are enumerated and the best such solution is reported.

Theorem 5. Problem (3) can be solved in time O(nlogn).

Proof. The algorithm can be implemented to run in linear time except for the
sorting of variables which takes O(nlogn) time. It thus remains to prove cor-
rectness. By Lemma 4 we may assume that no variable is fixed, then it suffices to
show that (after sorting) every optimal solution z* satisfies 7 > x5 > -+ > af.

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 69

Assume on contrary that z* is an optimal solution with z7 =0 and 27, =1
for some j < n. Consider the two solutions z° and z! defined by

o {Ofori:j+1 . {1fori:j

x; otherwise, 2} otherwise.

By optimality of =* we have
0> f(z*) = f(2°) = Cjua(Xics @)

for I={ie{1,...,n}\{j+ 1} | zf =1} and hence by definition of r;;, and r;

Zai ZTrjip1 =Ty (5)
iel

Then using the concavity of the square-root function we have

f(xl)ff(x*):((:o*)\)j+ Z(M‘Faj_H Jraj* Za,;Jraj_H

el el
<(Co—>\)j+ Zai—i—aj— Zai
el el

(5)
< (Co—)\)j%-\/Tj—Faj—\/’/‘ij:O,

which contradicts the optimality of z*. a

Note that a similar algorithm for Problem (3) using a different sorting rule has
been devised by Shen et al. [7].

It is easily verified that the fixings of variables arising in the branch and
bound-scheme for the min-max problem do not affect the validity of our algo-
rithm. The roots can be computed using the same formula, because an additional
constant under the root does not change the order of the roots.

3.2 A Mixed-Integer SOCP Formulation

Due to the nonlinearity of the set U, there is no straight-forward mixed-integer
linear formulation of Problem (R) in the ellipsoidal uncertainty case. However,
the problem can be modeled as a mixed-integer second-order cone program
(SOCP), even in the correlated case: the objective function in (2) can be mod-
eled by an SOCP constraint, while the feasible set X has to be modeled by a
polyhedral description of conv(X). In practice, mixed-integer SOCPs are much
harder to solve than mixed-integer linear programs, making this approach much
less competitive than similar linearization approaches used for min-max prob-
lems in the discrete scenario case. Moreover, if the polytope conv(X) does not
have a compact outer description, a separation algorithm might be needed.

70 F. Baumann et al.

4 Applications

The Lagrangean decomposition approach presented in Sect. 3 is applicable to a
wide range of robust combinatorial optimization problems. In the following we
present numerical results for the robust shortest path problem and the robust
knapsack problem. We compare the performance of the decomposition algorithm
with the standard mixed-integer SOCP approach as explained in Sect. 3.2, using
CPLEX 12.5 to solve the resulting programs. The left subproblem of the decom-
position (L(\)), i.e. the unconstrained nonlinear binary minimization problem,
was solved with the algorithm discussed in Sect. 3.1. The initial Lagrangean mul-
tipliers were chosen as the center of the ellipsoid. To implement the optimization
of the Lagrangean dual problem we used the Conic Bundle Library [5]. A very
natural branching rule is choosing some variable, for which the solutions of both
sides differ most. The Best-Node-First search strategy was adopted.

All experiments were carried out on a machine running SUSE Linux on an
Intel Xeon CPU at 2.60 GHz. All running times are stated in CPU-seconds; the
time limit for each instance was one CPU-hour.

4.1 The Shortest Path Problem with Ellipsoidal Uncertainty

For the uncorrelated ellipsoidal uncertainty variant of the shortest path problem,
no polynomial time algorithm is known [6]. Here each arc in the graph is asso-
ciated with a mean and a variance value. The uncertain part of the objective
function is weighted with a parameter {2 € {1, %, %, %, %}, the resulting problem
of minimizing

fx)=cjz+2Va Tz

over the set of s, t-paths in a given directed graph falls into the class of problems
considered in Sect. 3. The factor {2 leads to a scaling of the ellipsoid U by 272

We solved the combinatorial subproblem of the decomposition (L()\)) with
the network simplex optimizer of CPLEX 12.5, allowing to deal with fixed vari-
ables easily. For the left subproblem of (L(A)) the algorithm proposed in Sect. 3.1
is directly applicable.

All tests were done on directed grid graphs having the following form: n x n
nodes are arranged on a grid, where n ranges from 100 to 500. Each node is
linked by an arc to the node to the right and to the node below. The start
node s is the node in the upper left corner of the grid, the end node ¢ is in
the lower right corner. In these graphs the total number of arcs is 2n(n — 1)
and each path consists of 2(n — 1) arcs. The ellipsoid center was generated by
randomly choosing coefficients in the interval [0,100], then the variances were
determined as squares of randomly chosen numbers in the interval between 0
and the ellipsoid center. We generated 10 instances of each size and type.

Table 1 shows our results compared to the SOCP solver of CPLEX. Our
approach could solve all but 2 instances within the time limit of 1h while the
CPLEX solver reached its limit at 500 x 500 grids. Instances with smaller ellipsoid
volume turned out to be easier to solve in both cases, which can be seen in all

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 71

Table 1. Results for the shortest path problem with ellipsoidal uncertainty on n X n
grid graphs with n € {100,200, 300, 400, 500}. The number of edges is m = 2n(n — 1)

Decomposition approach CPLEX SOCP
Vars & | #s Subs Iter Time/s | #s Subs Iter Time/s
19800 10 | 10 4.0 17.4 0.20 10 1.5 6774.1 8.98
10 4.6 24.5 0.25 | 10 5.0 6874.4 11.43
10 5.6 33.2 0.33 | 10 16.4 7033.9 12.83
2110 6.8 45.6 048 | 10 57.6 7337.5 15.03
10 7.2 85.0 0.83 | 10 902.7 12405.1 35.45
79600 10 | 10 4.0 24.4 1.52 | 10 3.4 27482.8 91.51

10 6.6 34.9 1.77 | 10 6.7 277259 109.95
10 8.2 56.4 2.77 |10 19.4 28076.3 130.95
2] 10 24.8 176.3 729 | 10 166.1 292149 159.11
10 164.2 1165.8 42.93 8 4895.0 89498.8 637.97
179400 10 | 10 6.4 22.1 5.58 | 10 5.0 62455.9 369.34

5110 8.6 34.2 6.23 | 10 124 62903.1 405.86
10 8.4 44.4 7.54 | 10 51.1 63674.3 453.39
10 14.6 101.7 14.58 | 10 205.0 65409.2 529.34
10 198.0 1390.6 144.99 5 91428 141693.6 2217.49
319200 10 | 10 5.6 254 1411 |10 4.3 1123309 1168.52

5110 8.4 45.8 19.62 | 10 14.5 113040.9 1205.93
10 14.6 84.5 2475 |10 67.4 114185.6 1364.80
10 58.4 411.6 10747 | 10 513.9 120765.1 1565.60
9 323.2 2296.0 579.62 1 5324.0 160764.0 3350.32
499000 10 | 10 6.4 26.0 27.02 |10 3.9 177395.6 2710.71
10 7.8 38.6 31.54 |10 21.6 178383.3 3076.77
10 264 1574 79.92 8 112.9 180086.5 3260.07
10 92.2 638.7 285.77 2 52.5 180432.0 2970.01
9 2372 1704.0 849.53 0 - - -

= N W

= N W Ot

performance indicators. While the number of subproblems is not substantially
different in both approaches, CPLEX obviously spent a lot more iterations than
our approach. Overall, our approach was faster than CPLEX by a factor of 10
to 100.

4.2 The Knapsack Problem with Ellipsoidal Uncertainty

In portfolio theory an important concept is to not only consider the expected
return when choosing a set of investments but also take into account the risk

72 F. Baumann et al.

Table 2. Results for the knapsack problem with ellipsoidal uncertainty

Vars Vars
€ #s Subs Tter Time/s | #s Subs Tter Time/s
1000 4000

0.10 10 11970.4 26085.8 9.15 |0.10 10 87337.6 200149.1 297.48
0.05 10 11999.0 264419 9.21 |0.05 10 76084.4 173606.0 257.95
0.03 10 18363.6 40781.0 14.29 | 0.03 10 129048.6 296989.3 440.18
0.02 10 17761.0 40074.8 13.98 | 0.02 10 156201.2 355627.5 528.33
0.01 10 17861.4 38516.4 13.65 |0.01 10 170836.2 397621.9 589.41
2000 5000

0.10 10 39777.8 88595.8 63.12 |0.10 10 128904.8 295368.9 558.42
0.05 10 43534.4 96112.8 68.76 |0.05 9 243370.6 567948.6 1071.93
0.03 10 80259.2 182641.9 129.76 | 0.03 9 273028.8 629101.6 1200.04
0.02 10 57073.6 126914.7 90.43 | 0.02 10 217465.6 512935.8 972.53
0.01 10 46486.4 106990.0 76.42 |0.01 10 380360.4 894375.6 1712.76
3000 6000

0.10 10 72851.0 164835.7 185.49 | 0.10 10 214092.4 494438.2 1143.04
0.05 10 65032.8 147170.3 165.58 | 0.05 &8 303761.0 701917.5 1632.30
0.03 10 73101.8 167410.3 187.52 |0.03 294969.7 690688.8 1606.99
0.02 10 198490.0 461660.2 514.55 |0.02 327128.7 754971.9 1754.51
0.01 10 127533.0 297333.5 332.10 |0.01 258226.6 611664.8 1421.17

© g ©

associated with investments. Such mean-risk optimization problems can be mod-
eled using stochastic objective functions. Potential investment decisions are rep-
resented by independent random variables that have an associated mean value as
well as a variance. The mean value stands for the expected return of the invest-
ments, and the variance models the uncertainty inherent in the investment, i.e.
the risk that the real return deviates from the expected. The case of continu-
ous variables is well studied whereas the case of discrete variables has received
relatively little attention yet [3].

We concentrate on the risk-averse capital budgeting problem with binary
variables [2]. In this variant of the mean-risk optimization problem we are given
a set of possible investments characterized by their costs w, expected return
values ¢y and variances a, as well as a number €. The number € > 0 characterizes
the level of risk the investor is willing to take. Investment decisions are binary.
The only constraint is a limit on the available budget. The choice of investments
guarantees that with probability 1 — ¢ the portfolio will return at least a profit
of the objective value.

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 73

The corresponding nonlinear IP-model is

1—

max cg & — . STz

st. w'x<b (6)
z € {0,1}",

which can easily be converted into a minimization problem of the form considered
in Sect.3. In this case the underlying combinatorial optimization problem is a
knapsack problem. Note that here the scaling factor for 0 < € < % isf2 = % > 1,
whereas for the shortest path problem with ellipsoidal uncertainty it was 2 < 1.

We generated the objective function for our instances as described in Sect. 4.1.
The constraints were created as follows: the (certain) rational weights w were
chosen randomly and uniformly distributed from [0, 100], while the threshold b
was determined as % i, w;. This choice of the right-hand side was proposed
in [2] to avoid trivial instances. We generated 10 instances of each size between
1000 and 6000 and solved each instance for the values of € given in Table 2. The
legend of the table is as in Table 1.

Also here we compared the performance of the decomposition approach with
the performance of the SOCP solver of CPLEX. However, we do not state the
results of the SOCP solver because it was not competitive: already for n = 75
not all instances could be solved within the time limit of 1h.

Atamti