
Pierre Fouilhoux
Luis Eduardo Neves Gouveia
A. Ridha Mahjoub
Vangelis T. Paschos (Eds.)

 123

LN
CS

 8
59

6

Third International Symposium, ISCO 2014
Lisbon, Portugal, March 5–7, 2014
Revised Selected Papers

Combinatorial
Optimization

Lecture Notes in Computer Science 8596

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Pierre Fouilhoux • Luis Eduardo Neves Gouveia
A. Ridha Mahjoub • Vangelis T. Paschos (Eds.)

Combinatorial Optimization
Third International Symposium, ISCO 2014
Lisbon, Portugal, March 5–7, 2014
Revised Selected Papers

123

Editors
Pierre Fouilhoux
LIP6
Université Pierre et Marie Curie
Paris
France

Luis Eduardo Neves Gouveia
Universidade de Lisboa
Lisbon
Portugal

A. Ridha Mahjoub
Vangelis T. Paschos
LAMSADE
Université Paris-Dauphine
Paris Cedex 16
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-09173-0 ISBN 978-3-319-09174-7 (eBook)
DOI 10.1007/978-3-319-09174-7

Library of Congress Control Number: 2014945216

LNCS Sublibrary SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the regular papers presented at ISCO 2014, the Third Interna-
tional Symposium on Combinatorial Optimization, held in Lisbon during March 5–7,
2014. ISCO 2014 was preceded by the Spring School on ‘‘Stochastic Programs with
Integer Variables: Theory, Algorithms and Applications’’ given by Rüdiger Schultz
and Jonas Schweiger. ISCO is a new biennial symposium. The first edition was held in
Hammamet, Tunisia, in March 2010, and the second in Athens, Greece, in April 2012.
The symposium aims to bring together researchers from all the communities related to
combinatorial optimization, including algorithms and complexity, mathematical pro-
gramming, operations research, stochastic optimization, graphs, and combinatorics. It
is intended to be a forum for presenting original research on all aspects of combi-
natorial optimization, ranging from mathematical foundations and theory of algo-
rithms to computational studies and practical applications, and especially their
intersections.

In response to the call for papers, ISCO 2014 received 97 regular submissions.
Each submission was reviewed by at least two Program Committee (PC) members
with the assistance of external reviewers. The submissions were judged on their
originality and technical quality and the PC had to discuss in length the reviews and
make tough decisions. As a result, the PC selected 37 regular papers to be presented in
the symposium giving an acceptance rate of 38 % (64 short papers were also selected
from both regular and short submissions). Three eminent invited speakers, Michel
Balinski (CNRS and Ecole Polytechnique, Paris), Martin Grötshel (Zuse Institute
Berlin), and Matteo Fischetti (Badova University), gave talks at the symposium. The
revised versions of the accepted regular papers and extended abstracts of the invited
talks are included in this volume.

We would like to thank all the authors who submitted their work to ISCO 2014, and
the PC members and external reviewers for their excellent work. We would also like
to thank our invited speakers as well as the speakers of the Spring School for their
exciting lectures. They all greatly contributed to the quality of the symposium.

Finally, we would like to thank the Organizing Committee members for their
dedicated work in preparing this conference, and we gratefully acknowledge our
sponsoring institutions for their assistance and support.

April 2014 Pierre Fouilhoux
Luis Eduardo Neves Gouveia

A. Ridha Mahjoub
Vangelis T. Paschos

Organization

ISCO 2014 was organized by the ‘‘Centro de Investigao Operacional’’ (Operations
Research Center) of the Faculty of Sciences of the University of Lisbon, in
cooperation with LAMSADE Laboratory of Université Paris-Dauphine.

Program Committee Co-chairs

Luis Eduardo Neves Gouveia CIO, University of Lisbon, Portugal
A. Ridha Mahjoub Paris Dauphine University, France

Program Committee

Agostinho Agra University of Aveiro, Portugal
Mourad Baiou LIMOS, CNRS, University Blaise-Pascal,

Clermont-Ferrand, France
Francisco Barahona IBM T.J. Watson Research Center, New York,

USA
Domingos Cardoso University of Aveiro, Portugal
Miguel Fragoso Constantino CIO, University of Lisbon, Portugal
Ángel Corberán University of Valencia, Spain
José Correa University of Chile, Chile
Bernard Fortz Université Libre de Bruxelles, Belgium
Pierre Fouilhoux Université Pierre et Marie Curie, France
Satoru Fujishige Kyoto University, Japan
Bernard Gendron CIRRELT, University of Montréal, Canada
Oktay Gunluk IBM, New York, USA
Mohamed Haouari Qatar University, Quatar
Brahim Hnich Izmir University of Economics, Turkey
Martine Labbé Université Libre de Bruxelles, Belgium
Leo Liberti IBM, New York, USA
Abdel Lisser University of Paris-Sud, France
Ivana Ljubic University of Vienna, Austria
Andrea Lodi University of Bologna, Italy
Abílio Lucena Federal University of Rio de Janeiro, Brazil
Nelson Maculan Federal University of Rio de Janeiro, Brazil
Isabel Méndez-Diaz University of Buenos Aires, Argentina
Ioannis Milis Athens University of Economics and Business,

Greece
Jerome Monnot Paris Dauphine University, France
Adam Ouorou Orange Labs, Paris, France
Vangelis Paschos Paris Dauphine University, France

Pierre Pesneau University of Bordeaux, France
Giovanni Rinaldi IASI, Rome, Italy
Juan Jose Salazar Gonzalez University of La Laguna, Spain
Rüdiger Schultz University of Duisburg-Essen, German
Maria Grazia Scutella University of Pisa, Italy
Cid de Sousa University of Campinas, Brazil
Eduardo Uchoa UFF Rio de Janeiro, Brazil
Francois Vanderbeck University of Bordeaux, France
Hande Yaman Bikent University, Turkey

Additional Reviewers

Marek Adamczyk
Pablo Adasme
Amirali Ahmadi
Laurent Alfandari
Aysegul Altin
Eduardo Alvarez-Miranda
Milica Andelic
Miguel Anjos
Antonios Antoniadis
Cesar Beltran-Royo
Andreas Bley
Christian Bliek
Edouard Bonnet
Laurent Bulteau
Paola Cappanera
Jean Cardinal
Paula Carvalho
Jordi Castro
Daniele Catanzaro
Andre Cire
Franois Clautiaux
Andrea Clementi
Joo Clmaco
Johanne Cohen
Denis Cornaz
Pedro Cruz
Alexandre Cunha
Amaro de Sousa
Paolo Detti
Ibrahima Diarrassouba
Thang Dinh
Charles Dominic
Emrah Edis

Augusto Eusbio
Lionel Eyraud-Dubois
Javier Faulin
Rosa Figueiredo
Samuel Fiorini
Alexandre Freire
Yuri Frota
Takuro Fukunaga
Fabio Furini
Aristotelis Giannakos
Kristiaan Glorie
Laurent Gourves
Vincent Guigues
Magnus M. Halldorsson
Jinil Han
Said Hanafi
Hiplito Hernndez-Prez
Olivier Hudry
Andrew Hughes
Philipp Hungerlaender
Imed Kacem
Enver Kayaaslan
Sandi Klavzar
Alexander Kononov
Carlile Lavor
Markus Leitner
Dimitrios Letsios
Janny Leung
Roel Leus
Carlos Luz
Jens Lysgaard
Enrico Malaguti
Javier Marenco

Silvano Martello
Alfredo Marn
Marta Mesquita
Philippe Michelon
Juan Jose Miranda Bront
Stefano Moretti
Pedro Moura
Cëcile Murat
Fernando Ordonez
Aris Pagourtzis
Ana Paias
Aline Parreau
Fanny Pascual
Arnaud Pecher
Dilson Lucas Pereira
Raffaele Pesenti
Ulrich Pferschy
Daniel Porumbel
Michael Poss
Lionel Pournin
Pablo Pérez-Lantero
Maurice Queyranne
Steffen Rebennack
Cristina Requejo
Mauricio Resende
Jorge Riera-Ledesma
Bernard Ries
Inmaculada

Rodriguez-Martin
Mario Ruthmair
Ignaz Rutter
Ruslan Sadykov
Saket Saurabh

VIII Organization

Marco Senatore
Luidi Simonetti
Markus Sinnl
Georgios Stamoulis
Leen Stougie
Anand Subramanian
Kenjiro Takazawa

Raouia Taktak
Orestis Telelis
Claudio Telha
Lydia Tlilane
Artur Tomaszewski
Sebastián Urrutia
Paolo Ventura

Gustavo Vulcano
Annegret Wagler
Bang Ye Wu
Eduardo Xavier
Georgios Zois

Organizing Committee

Maria Conceição Fonseca CIO, University of Lisbon, Portugal
Rodrigo Marques CIO, University of Lisbon, Portugal
Pedro Moura CIO, University of Lisbon, Portugal
Ana Paias CIO, University of Lisbon, Portugal

Sponsoring Institutions

Associação Portuguesa de Investigação Operacional
Centro de Investigação Operacional, Faculdade de Ciências da Universidade de

Lisboa, Portugal
Fundaçao pàra a Ciência e a Tecnologia, Portugal
Instituto Nacional de Estatística, Portugal
LAMSADE, Université Paris-Dauphine, France

Organization IX

Invited Talks

Judge: Don’t Vote!

Michel Balinski

CNRS and Ecole Polytechnique Paris, France

This talk argues that the traditional methods of voting and judging contestants (e.g.,
figure skaters, movies, wines, beauty queens, political candidates) fail in both theory
and practice and should be replaced by a new method, ‘‘majority judgment.’’ Majority
judgment best meets five essential properties: (1) It avoids the Condorcet and Arrow
paradoxes, (2) it elicits honest voting, (3) it is meaningful (in the sense of
measurement theory), (4) it resists manipulation, and (5) it heeds the majority’s will.

BRANCHstorming
(Brainstorming About Tree Search)

Matteo Fischetti

Padova University, Italy

Quoting from Wikipedia (http://en.wikipedia.org/wiki/System_dynamics): ‘‘System
Dynamics is an aspect of systems theory as a method for understanding the dynamic
behavior of complex systems. The basis of the method is the recognition that the
structure of any system the many circular, interlocking, sometimes time-delayed
relationships among its components is often just as important in determining its
behavior as the individual components themselves. Examples are chaos theory and
social dynamics. It is also claimed that because there are often properties-of-the-whole
which cannot be found among the properties-of-the-elements, in some cases the
behavior of the whole cannot be explained in terms of the behavior of the parts.’’

No doubts that tree search is a very complex process with its own dynamics, that
sometimes behaves as a chaotic system due to its high dependency on the initial
conditions.

However, tree search is seldom studied as a whole by the Mathematical
Programming community, perhaps because it is often perceived as a shame—we
should be able to solve our problems at the root node, don’t we? As a matter of fact, its
main ingredients (e.g., cut generation and selection) are often studied in vitro—i.e.,
evaluated ‘‘at the root node’’—and then just transplanted in the enumeration body with
significant organ-rejection rates.

The study of the properties-of-the-whole of tree search is of course a long-term
project. In this talk we will make a mandatory preliminary step by addressing a
number of preconceptions about it.

We will start reviewing recent work on the role of erraticism in the design and
validation of tree-search algorithms, thus addressing the prejudice that enumeration is
a stable mechanism whose performance only depends on how clever we are in
designing its single elements.

We will then address a main source of erraticism in a branch-and-bound scheme,
namely, the existence of multiple relaxation solutions. In particular, we will comment
about the risk of overfitting due to the common practice of uncritically picking one
such solution (or just few) for guiding the search.

http://en.wikipedia.org/wiki/System_dynamics

Routing Problems: Standard and Unusual Cases

Martin Grötschel

Zuse Institute Berlin, Germany

Shortest path, Chinese postman and symmetric travelling salesman problems are
combinatorial optimization problems with a rich theory. They have undergone
extensive computational studies and can be viewed as ‘‘solved’’ for the majority of
their practical applications. However, most routing problems are not so nicely
structured. They often come with various combinations of side constraints such as
capacity, depot and ordering constraints as well as time windows, with online or real-
time requirements and possibly multiple objective functions. Such routing problems
are notoriously difficult and a typical playground for heuristics.

In the last 30 years my research group has covered a large variety of routing
problems in public transport, logistics, general transportation, machine and emergency
scheduling, etc.

I plan to give a broad survey on these problems as well as on successful solution
approaches, and I will concentrate on particular cases that we are currently working
on. These include train scheduling (high-speed trains ICE in Germany with
uncommon ‘‘regularity requirements’’) and a quite unusual routing problem where
vehicles have to be routed ‘‘optimally’’ to catch trucks on the German Autobahn that
try to avoid the payment of road tolls. Needless to say, that these inspection vehicles
have to satisfy several nonstandard legal requirements.

Contents

Maximum Throughput Network Routing Subject to Fair Flow Allocation . . . 1
Edoardo Amaldi, Stefano Coniglio, and Leonardo Taccari

Study of Identifying Code Polyhedra for Some Families of Split Graphs. . . . 13
Gabriela Argiroffo, Silvia Bianchi, and Annegret Wagler

Parametric Multiroute Flow and Its Application to Robust Network
with k Edge Failures . 26

Jean-François Baffier, Vorapong Suppakitpaisarn, Hidefumi Hiraishi,
and Hiroshi Imai

The Dominating Set Polytope via Facility Location 38
Mourad Baïou and Francisco Barahona

Solving Graph Partitioning Problems Arising in Tagless Cache Management . . . 50
Sandro Bartolini, Iacopo Casini, and Paolo Detti

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization . . . 62
Frank Baumann, Christoph Buchheim, and Anna Ilyina

Maximum Generalized Assignment with Convex Costs 75
Marco Bender and Stephan Westphal

An Integer Programming Formulation for the Maximum k-Subset
Intersection Problem . 87

Eduardo T. Bogue, Cid C. de Souza, Eduardo C. Xavier,
and Alexandre S. Freire

b-Coloring is NP-Hard on Co-Bipartite Graphs
and Polytime Solvable on Tree-Cographs . 100

Flavia Bonomo, Oliver Schaudt, Maya Stein, and Mario Valencia-Pabon

Proactive Reactive Scheduling in Resource Constrained Projects
with Flexibility and Quality Robustness Requirements 112

Mario Brčić, Damir Kalpić, and Marija Katić

Active Set Methods with Reoptimization for Convex Quadratic Integer
Programming . 125

Christoph Buchheim and Long Trieu

Fixed-Parameter Algorithms for Scaffold Filling . 137
Laurent Bulteau, Anna Paola Carrieri, and Riccardo Dondi

http://dx.doi.org/10.1007/978-3-319-09174-7_1
http://dx.doi.org/10.1007/978-3-319-09174-7_2
http://dx.doi.org/10.1007/978-3-319-09174-7_3
http://dx.doi.org/10.1007/978-3-319-09174-7_3
http://dx.doi.org/10.1007/978-3-319-09174-7_3
http://dx.doi.org/10.1007/978-3-319-09174-7_4
http://dx.doi.org/10.1007/978-3-319-09174-7_5
http://dx.doi.org/10.1007/978-3-319-09174-7_6
http://dx.doi.org/10.1007/978-3-319-09174-7_7
http://dx.doi.org/10.1007/978-3-319-09174-7_8
http://dx.doi.org/10.1007/978-3-319-09174-7_8
http://dx.doi.org/10.1007/978-3-319-09174-7_9
http://dx.doi.org/10.1007/978-3-319-09174-7_9
http://dx.doi.org/10.1007/978-3-319-09174-7_10
http://dx.doi.org/10.1007/978-3-319-09174-7_10
http://dx.doi.org/10.1007/978-3-319-09174-7_11
http://dx.doi.org/10.1007/978-3-319-09174-7_11
http://dx.doi.org/10.1007/978-3-319-09174-7_12

Finding Totally Independent Spanning Trees with Linear
Integer Programming. 149

Alexandre Salles da Cunha and Fernanda Sumika Hojo de Souza

Coupled-Tasks in Presence of Bipartite Compatibilities Graphs 161
Benoit Darties, Gilles Simonin, Rodolphe Giroudeau,
and Jean-Claude König

The Computational Complexity of Stochastic Optimization 173
Cassio Polpo de Campos, Georgios Stamoulis, and Dennis Weyland

A Hybrid Heuristic Approach Based on a Quadratic Knapsack Formulation
for the Max-Mean Dispersion Problem . 186

Federico Della Croce, Michele Garraffa, and Fabio Salassa

A Constraint Generation Approach for the Two-Machine Flow Shop Problem
with Jobs Selection . 198

Federico Della Croce, Christos Koulamas, and Vincent T’kindt

Rectilinear Shortest Path and Rectilinear Minimum Spanning
Tree with Neighborhoods. 208

Yann Disser, Matúš Mihalák, Sandro Montanari, and Peter Widmayer

Lovász and Schrijver Nþ-Relaxation on Web Graphs 221
Mariana Escalante and Graciela Nasini

The Envy-Free Pricing Problem and Unit-Demand Markets 230
Cristina G. Fernandes, Carlos E. Ferreira, Álvaro J.P. Franco,
and Rafael C.S. Schouery

Mathematical Programming Models for Traffic Engineering in Ethernet
Networks Implementing the Multiple Spanning Tree Protocol 242

Bernard Fortz, Luís Gouveia, and Martim Moniz

Graph Compact Orthogonal Layout Algorithm . 255
Kārlis Freivalds and Jans Glagol�evs

State Space Reduced Dynamic Programming for the Aircraft Sequencing
Problem with Constrained Position Shifting . 267

Fabio Furini, Martin Philip Kidd, Carlo Alfredo Persiani, and Paolo Toth

Decomposition Algorithm for the Single Machine Scheduling Polytope 280
Ruben Hoeksma, Bodo Manthey, and Marc Uetz

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination . . . 292
Toshimasa Ishii, Hirotaka Ono, and Yushi Uno

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-09174-7_13
http://dx.doi.org/10.1007/978-3-319-09174-7_13
http://dx.doi.org/10.1007/978-3-319-09174-7_14
http://dx.doi.org/10.1007/978-3-319-09174-7_15
http://dx.doi.org/10.1007/978-3-319-09174-7_16
http://dx.doi.org/10.1007/978-3-319-09174-7_16
http://dx.doi.org/10.1007/978-3-319-09174-7_17
http://dx.doi.org/10.1007/978-3-319-09174-7_17
http://dx.doi.org/10.1007/978-3-319-09174-7_18
http://dx.doi.org/10.1007/978-3-319-09174-7_18
http://dx.doi.org/10.1007/978-3-319-09174-7_19
http://dx.doi.org/10.1007/978-3-319-09174-7_19
http://dx.doi.org/10.1007/978-3-319-09174-7_20
http://dx.doi.org/10.1007/978-3-319-09174-7_21
http://dx.doi.org/10.1007/978-3-319-09174-7_21
http://dx.doi.org/10.1007/978-3-319-09174-7_22
http://dx.doi.org/10.1007/978-3-319-09174-7_23
http://dx.doi.org/10.1007/978-3-319-09174-7_23
http://dx.doi.org/10.1007/978-3-319-09174-7_24
http://dx.doi.org/10.1007/978-3-319-09174-7_25

Efficient Approximation Schemes for the Maximum Lateness Minimization
on a Single Machine with a Fixed Operator or Machine
Non-Availability Interval . 305

Imed Kacem, Hans Kellerer, and Maryam Seifaddini

A Multi-period Bi-level Stochastic Programming with Decision
Dependent Uncertainty in Supply Chains. 315

Yohanes Kristianto

fkg-Packing Functions of Graphs . 325
Valeria Alejandra Leoni and Erica G. Hinrichsen

Robust Shift Scheduling in Call Centers . 336
Sara Mattia, Fabrizio Rossi, Mara Servilio, and Stefano Smriglio

A Tabu Search Heuristic for the Equitable Coloring Problem 347
Isabel Méndez Díaz, Graciela Nasini, and Daniel Severín

Linear Arrangement Problems and Interval Graphs 359
Alain Quilliot and Djamal Rebaine

On the Asymmetric Connected Facility Location Polytope 371
Markus Leitner, Ivana Ljubić, Juan-José Salazar-González,
and Markus Sinnl

Heuristic Approaches for the Robust Vehicle Routing Problem 384
Elyn L. Solano-Charris, Christian Prins, and Andréa Cynthia Santos

A Fast Large Neighborhood Search for Disjunctively Constrained
Knapsack Problems. 396

Mhand Hifi, Sagvan Saleh, and Lei Wu

Approximating the k-Set Packing Problem by Local Improvements 408
Martin Fürer and Huiwen Yu

Multi-Objective Cuckoo Search with Leader Selection Strategies 421
Kamel Zeltni and Souham Meshoul

Vulnerability Assessment of Spatial Networks: Models and Solutions 433
Eduardo Álvarez-Miranda, Alfredo Candia-Véjar, Emilio Carrizosa,
and Francisco Pérez-Galarce

Author Index . 445

Contents XIX

http://dx.doi.org/10.1007/978-3-319-09174-7_26
http://dx.doi.org/10.1007/978-3-319-09174-7_26
http://dx.doi.org/10.1007/978-3-319-09174-7_26
http://dx.doi.org/10.1007/978-3-319-09174-7_27
http://dx.doi.org/10.1007/978-3-319-09174-7_27
http://dx.doi.org/10.1007/978-3-319-09174-7_28
http://dx.doi.org/10.1007/978-3-319-09174-7_29
http://dx.doi.org/10.1007/978-3-319-09174-7_30
http://dx.doi.org/10.1007/978-3-319-09174-7_31
http://dx.doi.org/10.1007/978-3-319-09174-7_32
http://dx.doi.org/10.1007/978-3-319-09174-7_33
http://dx.doi.org/10.1007/978-3-319-09174-7_34
http://dx.doi.org/10.1007/978-3-319-09174-7_34
http://dx.doi.org/10.1007/978-3-319-09174-7_35
http://dx.doi.org/10.1007/978-3-319-09174-7_35
http://dx.doi.org/10.1007/978-3-319-09174-7_36
http://dx.doi.org/10.1007/978-3-319-09174-7_37

Maximum Throughput Network Routing
Subject to Fair Flow Allocation

Edoardo Amaldi1, Stefano Coniglio2, and Leonardo Taccari1(B)

1 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

{edoardo.amaldi,leonardo.taccari}@polimi.it
2 Lehrstuhl II Für Mathematik, RWTH Aachen University, Aachen, Germany

coniglio@math2.rwth-aachen.de

Abstract. We investigate a bilevel network routing problem where,
given a directed graph with a capacity for each arc and a set of elastic
traffic demands specified by the corresponding origin-destination pairs,
the network operator has to select a single path for each pair so as to
maximize the total throughput while assuming that the flows are allo-
cated over the chosen paths according to a fairness principle. We consider
max-min fair flow allocation as well as maximum bottleneck flow alloca-
tion. After presenting a complexity result, we discuss MILP formulations
for the two problem versions, describe a Branch-and-Price algorithm and
report some computational results.

Keywords: Networks · Routing · Fairness · Computational complex-
ity · Integer programming

1 Introduction

Network routing problems with elastic traffic demands (specified by an origin-
destination pair without a prescribed flow value) and fair allocation of flows have
been attracting a growing attention. Our original motivation arises from best-
effort service in Internet Protocol (IP) networks [2] where, for instance, several
users simultaneously download data between different hosts with no guaranteed
rate, but wish to do so as fast as possible. Although the IP network opera-
tor, which aims at maximizing a utility function such as the total throughput,
can select the routing paths, it has no direct control over the transport proto-
col (TCP). In this setting, the flow of each origin-destination pair is adapted
by TCP based on the available capacity (which depends on the current traffic
load) and the distributed congestion control mechanism is expected to allocate
the flows in a fair way, that is, without privileging any user.

Consider a capacitated network defined by a directed graph G = (V,A) with
a capacity cij for each arc (i, j) ∈ A and a set K of k origin-destination pairs
(s, t). Let φ ∈ R

k denote a flow vector whose i-th component φi corresponds to
the flow allocated to the i-th origin-destination pair.
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 1–12, 2014.
DOI: 10.1007/978-3-319-09174-7 1

2 E. Amaldi et al.

A widely used notion of fairness in networks is that of Max-Min Fairness
(MMF). Indeed, in IP networks common congestion avoidance mechanisms aim
at realizing a max-min fair allocation of the flows over the routing paths provided
by the IP layer, see e.g. [11] and the references therein.

Definition 1. Let σ be the sorting operator permuting the components of φ
in nondecreasing order, i.e., such that σ(φ)i ≤ σ(φ)j whenever i < j. A flow
vector φ ∈ R

k is Max-Min Fair (MMF) if, for any other flow vector φ′ ∈ R
k,

σ(φ) lexicographically dominates σ(φ′), i.e., either σ(φ) = σ(φ′) or there exists
an integer α, with 1 ≤ α ≤ k, such that σ(φ)q = σ(φ′)q for all q < α and
σ(φ)α > σ(φ′)α.

If the routing paths are given, the set of feasible flows is convex and equivalently
a flow vector is MMF if and only if there is no way to increase the flow of any
origin-destination pair without decreasing the flow of a pair with an equal or
smaller flow.

When restricting the attention to the first element σ(φ)1 of the lexicograph-
ically sorted allocation vector σ(φ), we obtain the simpler and relaxed fairness
criterion where min(s,t)∈K φst is maximized.

Definition 2. A flow vector φ ∈ R
k is Max-Bottleneck (MB) if, for any other

flow vector φ′ ∈ R
k, σ(φ)1 ≥ σ(φ′)1.

Along the lines of [2,3], in this work we consider the Max-Throughput Single-
Path Network Routing problem subject to fair flow allocation.

MT-SPNR-Fair: Given a directed graph G = (V,A) with capacities cij and
a set of k origin-destination pairs, select a single routing path for each pair so
as to maximize the total throughput

∑k
i=1 φi, subject to the constraint that the

amount of flow allocated to the origin-destination pairs is fair w.r.t. the chosen
paths.

Depending on the adopted notion of fairness, the problem version is referred to
as MT-SPNR-MMF or MT-SPNR-MB.

MT-SPNR-fair is a bilevel problem where, at the upper level, the leader (e.g.,
the network operator) selects a routing path for each origin-destination pair and,
at the lower level, the follower (e.g., the TCP protocol) allocates the flows to the
chosen paths according to the MMF or MB principle. For each origin-destination
pair (s, t) ∈ K, let P st be the set of all the simple paths connecting s to t. Let
the binary variable λst

p be 1 if the path of index p is selected for the pair (s, t)
and 0 otherwise, and let φ ∈ R

k
+ be the vector of flow allocations. Denote by

Λ = {λst
p ∈ {0, 1}, (s, t) ∈ K, p ∈ P st :

∑
p∈P st λst

p = 1} the feasible region of
the leader, namely, the set of all vectors λ with exactly one path for each origin-
destination pair (s, t). For any given choice of paths prescribed by the vector λ,
the feasible region Φ(λ) for the follower amounts to the set of all vectors φ of
flows that can be allocated (according to the considered fairness principle) along
those paths without exceeding the arc capacities.

Network Routing Subject to Fair Flow Allocation 3

A high-level formulation for MT-SPNR-MMF is:

max
φ, λ

1T φ (1)

s.t. λ ∈ Λ (2)

φ ∈ arglexmax
φ∈Φ(λ)

⎡
σ(φ)
⎣

, (3)

where 1 is the all-one vector and arglexmax is used as in Definition 1. The
formulation for the case of a Max-Bottleneck flow allocation, MT-SPNR-MB, is
obtained by substituting Constraint (3) with:

φ ∈ argmax
φ∈Φ(λ)

{

min
(s,t)∈K

{φst}
}

. (4)

2 Related Work

A thorough treatment on fairness in network routing and design can be found
in [15]. For a good introduction to Max-Min Fairness, see the tutorial [13].

So far, most of the attention has been devoted to the problem of finding a
solution which is “as fair as possible”, where fairness is the problem objective. If
the routing paths are given, a simple polynomial algorithm, known as water (or
progressive) filling, allows to allocate the flows in an MMF way, as explained in
Chap. 6 of [5]. If the routing paths are not known a priori, the problem consists
in determining a network routing such that the flow allocation is as (max-min)
fair as possible. An important distinction is between the cases with unsplittable
or splittable routing, that is where the flow between each origin-destination
pair can be routed over one or many (not necessarily disjoint) paths. In the
splittable case, the problem can be solved via a sequence of at most k Linear
Programming (LP) problems, one per origin-destination pair [14,18,20]. In the
unsplittable case, it can be solved via a sequence of at most k Mixed Integer
Linear Programming (MILP) problems with binary variables [17].

Following the work of [12], where the MMF (splittable) single-source routing
problem is originally introduced, the authors of [10] provide hardness results and
a 2-approximation scheme for the extension of the problem where the unsplit-
table fairest routing is sought. Note that the results of [10,12] are, in general,
only valid for the case of a single-source or a single-sink. A game theoretic app-
roach to MMF routing can be found in [9], where routing games that converge
to a fair equilibrium are considered.

Different definitions of fairness have also be investigated. In [19], an approach
similar to that of [14,18,20] is adopted to derive fair flow allocations balancing
fairness and efficiency (utility). In [1], the splittable case with a weighted MMF
criterion is considered. The authors of [6] propose a relaxation of the notion of
MMF with the definition of Upward Max-Min Fairness, whereas in [7] a practical
algorithm to balance throughput and fairness for splittable routing is presented.

4 E. Amaldi et al.

To the best of our knowledge, the work in [2] is the first to consider the
fair flow allocation as a constraint of a more general network routing problem,
rather than the optimization objective. Since the TCP flow allocation can be
approximated by MMF, [2] proposes the bilevel problem MT-SPNR-MMF and
an arc-based MILP formulation for it. As shown in [3], the problem is NP-hard
and the gap (in terms of either maximum throughput or smallest flow) between
optimal solutions of MT-SPNR-MMF and of Max-Min fairest routing can be
arbitrarily large. In this work, we pursue the study of MT-SPNR-MMF and
extend it to the relaxed case of maximum bottleneck fairness.

3 Problem Versions and Complexity

Since, for any path selection vector λ, the set of feasible flow vectors Φ(λ) for
MMF is a subset of Φ(λ) for MB, MT-SPNR-MB is a relaxation of MT-SPNR-
MMF and, hence, the optimal objective function value of the former is an upper
bound on that of the latter.

The following simple example shows that, in general, the optimal solution
values of the unconstrained throughput maximization problem (referred to as
MT-SPNR or MT), the MT-SPNR-MMF, and the MT-SPNR-MB differ.

a b

c

d e

3
210

3
2

ε

(s1 = b, t1 = e)
(s2 = b, t2 = c)
(s3 = c, t3 = e)
(s4 = b, t4 = d)
(s5 = d, t5 = e)
(s6 = a, t6 = e)

Example. Consider the graph with the arc
capacities and the k = 6 origin-destination
pairs reported in the figure on the right,
where cae = ε is a positive value smaller
than 1. Note that for i = 2, . . . , 5 there is
a unique path to route (si, ti), while there
are two paths for (s1, t1) and three paths for
(s6, t6). It is easy to verify that the optimal
value of MT can be obtained by allocating a
flow φ1 = 0 to the pair (s1, t1), and by routing
a flow φ6 = ε over the arc (a, e). The resulting
flow allocation vector is φ = (0, 3, 3, 2, 2, ε),
with a total throughput τ = 10+ε. If the flow
allocation is subject to the Max-Bottleneck
Constraint (4), it is easy to see that the maximum throughput is obtained
by routing again (s6, t6) over the arc (a, e) and by assigning a flow φ6 = ε.
If (s1, t1) is routed over the path through node c, the resulting allocation is
φ = (ε, 3, 3, 2−ε, 2−ε, ε), with τ = 10. If that through node d is used, we obtain
φ = (ε, 3 − ε, 3 − ε, 2, 2, ε), with the same τ = 10. Finally, if the flow allocation
is required to be Max-Min Fair, the reader can verify that, in the optimal solu-
tion, (s6, t6) is routed over the arc (a, e), and (s1, t1) is routed through d. The
allocation vector is then φ = (1, 3, 3, 1, 1, ε), with τ = 9 + ε. Notice that, in this
case, routing (s1, t1) through c gives a smaller, suboptimal total throughput.

The connection between our two problems and the fundamental and exten-
sively studied problem of finding edge-disjoint paths in directed and undirected
graphs with or without congestion leads to the following inapproximability results.

Network Routing Subject to Fair Flow Allocation 5

Proposition 1. MT-SPNR-MMF and MT-SPNR-MB are NP-hard to approx-
imate within any factor smaller than 2.

Proof. By polynomial-time reduction from the following NP-hard problem [8]:

2-DIR-PATH: Given a directed graph G = (V,A) and distinct vertices
s1, s2, t1, t2, decide whether there exist two edge-disjoint paths, one from
s1 to t2 and the other from s2 to t2.

For any instance of 2-DIR-PATH, consider the special instance of MT-SPNR-
MMF with the same graph G, the same two origin-destination pairs and cij = 1
for all (i, j) ∈ A. Clearly, Yes instances of 2-DIR-PATH are mapped onto MT-
SPNR-MMF instances whose optimal flow allocation has total throughput of
value 2, and No instances onto those with total throughput of at most 1. Thus,
a ρ-approximation algorithm for MT-SPNR-MMF with 1 ≤ ρ < 2 would solve
2-DIR-PATH in polynomial time.

The same argument can be applied to MT-SPNR-MB. ��
A stronger inapproximability result for MT-SPNR-MMF and MT-SPNR-

MB can be proved by building on that presented in [4] for the well-known prob-
lem of finding edge-disjoint paths with low congestion in undirected graphs.

4 Single-Level MILP Path Formulations

As shown in [2], the bilevel formulation (1)–(3) can be cast as a single-level
MILP formulation by exploiting a simple characterization of the unique optimal
MMF flow allocation for a given set of paths, which is based on the notion of
bottleneck arc.

Definition 3. An arc (i, j) ∈ A is bottleneck for the pair (s, t) if

1. the arc capacity cij is saturated,
2. the flow allocated to (s, t) is greater than or equal to the value of the flow

allocated to any other pair that shares the arc (i, j).

The characterization is as follows:

Proposition 2 (Bertsekas, Gallager [5]). Given a directed graph G = (V,A),
a set K of origin-destination pairs and a simple path for each (s, t) ∈ K, a
feasible flow allocation vector φ is MMF if and only if there is at least a bottleneck
arc for each pair (s, t) ∈ K.

According to this proposition, the second level problem in Formulation (1)–
(3) can be replaced with a set of linear constraints and binary variables that
ensure the existence of a bottleneck arc for each (s, t) pair, see [2,20].

Let P st be the set of all the simple paths connecting the origin-destination
pair (s, t) ∈ K. Let the parameter σpst

ij be 1 if the path p ∈ P st contains the
arc (i, j) and 0 otherwise. Let the binary variable λst

p be 1 if the path of index

6 E. Amaldi et al.

p is selected for the pair (s, t) and 0 otherwise. For each pair (s, t) ∈ K, let
φst ∈ R+ be the flow allocated to it and let fst

ij the amount of flow on the arc
(i, j) ∈ A. Notice that fst

ij is either φst or 0. Let uij be an upper bound on
the flows over the arc (i, j) ∈ A. The binary variables yst

ij indicate whether an
arc (i, j) is a bottleneck for (s, t). We obtain the following MILP formulation,
originally introduced in [3]:

max
⎡

(s,t)∈K

φst (5)

s.t.
⎡

(i,j)∈δ+(i)

fst
ij −

⎡

(j,i)∈δ−(i)

fst
ji =

⎧
⎪⎨

⎪⎩

φst if i = s

−φst if i = t

0 else

i ∈ V, (s, t) ∈ K (6)

⎡

(s,t)∈K

fst
ij ≤ cij (i, j) ∈ A (7)

⎡

p∈Pst

λp
st = 1 (s, t) ∈ K (8)

fst
ij ≤ cij

⎡

p∈Pst

(σpst
ij λp

st) (i, j) ∈ A, (s, t) ∈ K (9)

⎡

(i,j)∈A

yst
ij ≥ 1 (s, t) ∈ K (10)

⎡

(o,d)∈K

fod
ij ≥ cijy

st
ij (i, j) ∈ A, (s, t) ∈ K (11)

uij ≥ fst
ij (i, j) ∈ A, (s, t) ∈ K (12)

uij ≤ fst
ij + cij(1 − yst

ij) (i, j) ∈ A, (s, t) ∈ K (13)

φst ≥ min(i,j)∈A cij

|K| (s, t) ∈ K (14)

φst, fst
ij , uij ≥ 0 (i, j) ∈ A, (s, t) ∈ K (15)

λp
st ∈ {0, 1} (s, t) ∈ K, p ∈ P st (16)

yst
ij ∈ {0, 1} (i, j) ∈ A, (s, t) ∈ K. (17)

Constraints (6)–(7) are standard flow conservation and capacity constraints.
Constraints (8) guarantee that only one path is chosen for each (s, t) ∈ K.
Constraints (9) ensure that fst

ij is 0 if the selected path p ∈ P st does not contain
the arc (i, j) ∈ A. Constraints (10)–(13) impose that the flow vector is MMF for
the selected paths, according to Proposition 2. More specifically, Constraints (10)
guarantee that at least an arc is bottleneck for each (s, t). Constraints (11) ensure
that arc (i, j) is saturated if it is bottleneck for some pair (s, t). Constraints (12)
make sure that uij is equivalent to the largest flow allocated over arc (i, j).
Constraints (13) impose that the flow of a pair (s, t) through its bottleneck
arc (i, j) is as large as the largest flow through (i, j) for all the other pairs.
Finally, Constraints (14) introduce a valid lower bound on the value of the flow
allocations, which is tight in the case where all the flows are routed over the
same arc with minimum capacity. For an equivalent arc formulation, see [2].

Network Routing Subject to Fair Flow Allocation 7

We now derive a characterization of the optimal solution for the Max-Bottle-
neck version, similar to that of Proposition 2.

Proposition 3. Given a directed graph G = (V,A), a set K of origin-destination
pairs and a simple path for each (s, t) ∈ K, a feasible flow allocation vector φ is
optimal for the problem of maximizing the minimum flow allocated to any pair if
and only if there is at least an arc (i, j) ∈ A (referred to as global bottleneck),
satisfying the following properties:

1. the arc capacity is saturated,
2. the arc capacity is equally divided among all the origin-destination pairs that

share the arc,
3. the flow allocated to the pairs that share the arc is the smallest among the

flow values allocated to the pairs in K.

Proof. Suppose that arc (i, j) is a global bottleneck and let η := mini=1,...,k{φi}.
Due to (3), all the flows sharing the global bottleneck have a value of η. Since,
due to (1) and (2), the capacity cij is equally divided among the pairs, it is not
possible to improve one of the allocations of value η without decreasing another
one (thus, decreasing η). Since η is independent of the flow value for pairs not
using (i, j), it follows that the solution is optimal.

Conversely, suppose that φ is optimal. Consider again the smallest flow allo-
cation η in φ. Assume that there is no global bottleneck. Then, for all (s, t)
pairs with flow value η, either all the arcs in their path are nonsaturated, or the
capacity is not equally shared. In both cases, the flow can be increased (in the
latter case, by decreasing a larger flow). ��

To obtain a formulation for MT-SPNR-MB, it suffices to remove the yst
ij

variables while introducing the binary variables bij , each of which equals 1 if the
corresponding arc (i, j) is a global bottleneck. Then, we can replace the MMF
constraints (10)–(13) and the variables yst

ij with the following ones:

⎤

(i,j)∈A

bij ≥ 1 (18)

⎤

(s,t)∈K

fst
ij ≥ cijbij (i, j) ∈ A (19)

η ≤ φst (s, t) ∈ K (20)

η ≥ fst
ij − cij(2 − bij −

⎤

p∈P st

σpst
ij λp

st) (i, h) ∈ A, (s, t) ∈ K (21)

η ≥ 0, bij ∈ {0, 1} (i, j) ∈ A. (22)

5 Branch-and-Price

Clearly, Formulation (5)–(17) has an exponential number of variables w.r.t. the
size of the graph. A natural idea is to use a Branch-and-Price algorithm where

8 E. Amaldi et al.

the paths, and their associated λst
p variables, are dynamically generated. Since

the same approach can be used for both MT-SPNR-MMF and MT-SPNR-MB,
what follows is valid for both variants, unless differently specified.

The restricted master problem is obtained by restricting each set P st to
the set P̄ st of the paths that have been generated so far. In order to facilitate
branching, we adopt an extended formulation where we also include the arc
variables xst

ij ∈ {0, 1}, whose value is 1 if arc (i, j) is used by (s, t) ∈ K and 0
otherwise. Path variables λst

p and arc variables xst
ij are linked as follows:

⎤

p∈P st

λst
p σpst

ij = xst
ij (i, j) ∈ A, (s, t) ∈ K. (23)

Notice that, assuming that the paths in P̄ st are distinct, Constraints (23) imply
the integrality of the variables λst

p . Constraints (16) can hence be dropped, thus
yielding a MILP model where branching only involves the xst

ij and yst
ij variables.

Pricing. Let ωst ∈ R, πst
ij ≥ 0 and νst

ij ∈ R be the dual variables associated to,
respectively, Constraints (8), (9), and (23). The dual constraint associated to a
variable λst

p is ωst +
∑

(i,j)∈A σpst
ij (νst

ij − πst
ij cij) ≤ 0.

In order to generate an improving column for a given (s, t) ∈ K, we need
to generate a simple path p ∈ P st whose associated λst

p variable has a positive
reduced cost, i.e., such that

∑
(i,j)∈A σpst

ij (νst
ij −πst

ij cij) > −ωst. This is equivalent
to finding, for each (s, t) ∈ K, a longest simple path p ∈ P st over the original
graph G where the weight of each arc is given by πst

ij cij −νst
ij if the arc (i, j) ∈ A

belongs to the path and equals 0 otherwise.
The longest simple path problem is well known to be hard even to approxi-

mate. Here, we cast it as a MILP which is based on the standard LP formulation
of the shortest path problem. Therefore we add continuous variables and con-
straints taken from the extended formulation proposed by Wong in [21] for the
TSP, which prevents subtours. A desirable property of the MILP approach is
its flexibility, which allows us to easily incorporate the branching information in
the pricing subproblems.

Let Vs := V \{s} and Vst := V \{s, t}, for a given (s, t) ∈ K. Let the variable
σij ∈ {0, 1} be 1 if the path that we are looking for contains arc (i, j) and 0
otherwise. Let the variable zh ∈ {0, 1}, for h ∈ Vs, be 1 if the path contains
node h. Let qh

ij ≤ 0 be the value of an auxiliary flow from node s to node h ∈ Vs,
and 0 otherwise. The pricing subproblem reads as follows:

max
⎤

(i,j)∈A

(cijπij − νij)σij (24)

s.t.
⎤

(i,j)∈δ+(i)

σij −
⎤

(j,i)∈δ−(i)

σji =

⎧
⎪⎨

⎪⎩

1 if i = s

−1 if i = t

0 else
i ∈ V (25)

⎤

(i,j)∈δ+(i)

σij ≤ 1 i ∈ V (26)

Network Routing Subject to Fair Flow Allocation 9

qh
ij ≤ σij (i, j) ∈ A, h ∈ Vs (27)

⎤

(i,j)∈δ+(i)

qh
ij −

⎤

(j,i)∈δ−(i)

qh
ji =

⎧
⎪⎨

⎪⎩

zh if i = s

−zh if i = h

0 else
h ∈ Vs (28)

⎤

(i,h)∈δ−(h)

σih = zh h ∈ Vs (29)

qh
ij ≥ 0 (i, j) ∈ A, h ∈ Vs (30)

σij , zh ∈ {0, 1} (i, j) ∈ A, h ∈ Vs (31)

Constraints (25) are standard flow balance constraints. Constraints (26) limit
the outgoing degree to 1, hence guaranteeing that the flow be unsplittable. Con-
straints (27) ensure that the auxiliary flow qh

ij be 0 for all h ∈ Vs if the arc (i, j)
is not contained in the path. Constraints (28) are flow balance constraints for
the auxiliary flow, guaranteeing that each node h ∈ Vs be the sink node of the
corresponding auxiliary flow. Constraints (29) impose that zh be 1 if the path
contains an arc entering the node h ∈ Vs and 0 otherwise.

Pool Initialization. In order to initialize the Branch-and-Price algorithm, we
populate the initial pool of columns by generating a set of initial paths for each
(s, t) ∈ K. This is achieved by repeatedly finding a shortest path from s to t in
the graph, using unit arc weights. Then, each time a new path is generated, the
cost of the arcs therein contained is increased, thus promoting diversity among
the paths. For each (s, t) pair in K, we generate a number of initial paths that
is proportional to the minimum (s, t)-cut in the graph with unit arc capacities.

Primal Heuristics. Very often, finding even a feasible solution with state-
of-the-art MILP solvers is extremely hard for both MT-SPNR-MMF and MT-
SPNR-MB. Thus, the introduction of ad hoc primal heuristics is crucial to the
effectiveness of any algorithm based on Branch-and-Bound.

We propose three such heuristics. The first two are based on rounding:

– Standard rounding: starting from a feasible solution of the continuous relax-
ation, for each (s, t) select the path p ∈ P̄ st with the largest λst

p ; alternatively
(randomized variant) pick a path p ∈ P̄ st with a probability equal to λst

p .
– Shortest-path rounding: starting from a feasible solution of the continuous

relaxation, for each (s, t) find a shortest path in G with weights 1 − xst
ij for

each arc (i, j) ∈ A. A variant is obtained by sampling the weight of each arc
from a uniform distribution in (0, 1 − xst

ij). If the path that is found is not
already in P̄ st, a new column is added to the pool.

For both rounding heuristics, once a path p ∈ P st has been selected or gener-
ated for each (s, t) pair, a complete feasible solution is constructed by running,
for MT-SPNR-MMF, the water filling algorithm or, for MT-SPNR-MB, a simple
2-stage algorithm. The latter consists in solving a bottleneck maximization prob-
lem followed by an LP that maximizes the total throughput over the residual
graph.

10 E. Amaldi et al.

The third algorithm is a MILP-based heuristic:

– Restricted MILP: the restricted master problem is solved by imposing the
integrality constraints on λst

p , using only the columns that have been generated
so far. Since solving this restricted MILP is still hard, in order to use it within
the Branch-and-Price framework, we adopt a short time limit to provide good
solutions quickly.

6 Some Computational Results

We have carried out computational experiments on a set of network topologies
taken from the SND library [16]. We report results for MT-SPNR-MMF and MT-
SPNR-MB on three network topologies: atlanta (|V | = 15, |A| = 44), france
(|V | = 25, |A| = 90), and nobel-us (|V | = 14, |A| = 42). The arc capacities are
randomly assigned to the arcs from a predefined set of values, see [2].

We compare the results of the Branch-and-Price algorithm to those obtained
with an arc formulation of the problem, similar to that presented in [2]. We
solve it with SCIP, using CPLEX as the underlying LP solver. The Branch-and-
Price method is implemented in C++ within the SCIP framework. The machine
used for the experiments is equipped with Intel Xeon E5645 CPUs and 16 GB
of RAM.

The following table summarizes the computational results. Column k reports
the number of origin-destination pairs. Column opt represents the optimal value
of the unconstrained Max-Throughput problem (MT). The “-arc” suffix denotes
the results for the arc formulation of the two problem variants, while “-B&P”
represents the Branch-and-Price algorithm. Columns UB, best, and gap report,
respectively, the best upper bound found within the time limit, the value of the
best feasible solution, and the relative gap percentage. Column time represents
the solution time in seconds. An asterisk is used when the time limit is reached
(3600 s). When no feasible solution is found, the gap is reported as “inf”.

For MT-SPNR-MB, the arc formulation is tractable on the two smaller topolo-
gies (atlanta and nobel-us), where small gaps are obtained for all instances. The
Branch-and-Price algorithm has a similar behaviour, with solutions that are only
marginally different. On france, however, the problem quickly becomes very hard
for the arc formulation as k grows. On the contrary, the Branch-and-Price algo-
rithm is capable of finding the optimal solution on more than half of the instances,
with gaps exceeding 4 % only twice.

MT-SPNR-MMF proves to be very challenging to solve on all topologies.
With the arc formulation, SCIP is able to find a feasible solution in only 10 of
the 36 instances, with optimal solutions only for smaller instances. On the other
hand, the Branch-and-Price algorithm finds good solutions for all the instances,
achieving a gap of 2.6 % on average, with optimal solutions for 12 instances. The
gap is never larger than 10 %.

It is interesting to point out that the optimal values for MT-SPNR-MB and
MT-SPNR-MMF are very close (often identical) to those for the simple unsplit-
table Max Throughput problem (MT). In particular, for all instances solved to

Network Routing Subject to Fair Flow Allocation 11

optimality except one, we obtain the same optimal values. Notice that there are
only few cases in which the upper bound for MT-SPNR-MB and MT-SPNR-
MMF is strictly smaller than the optimal value of MT, for example nobel-9-1.
This small difference in optimal objective function values is good news from the
point of view of the leader (the IP network operator), since it suggests that, for
the instances under consideration, the throughput that can be achieved when
the flows are allocated fairly by the follower (the TCP protocol) is almost the
same as when fairness is completely neglected. Note however that the paths in
the optimal solutions of our bilevel network routing problem subject to fairness
constraints can substantially differ from those of MT, where the leader has full
control on the flow allocation as well as on the paths.

MT MT-MB-arc MT-MB-B&P MT-MMF-arc MT-MMF-B&P
k opt UB best gap time UB best gap time UB best gap time UB best gap time

at11 12 48.5 48.5 48.5 0 19 48.5 48.5 0 8 48.5 48.5 0 23 48.5 48.5 0 3
at12 12 56 56 56 0 10 56 56 0 0 56 56 0 30 56 56 0 1
at21 20 62.5 62.5 62.5 0 38 62.5 62.5 0 75 62.5 62.5 0 338 62.5 62.5 0 56
at22 20 63 62.9 62.5 0.6 * 63 62.5 0.7 * 62.5 62.5 0 1717 63 62.5 0.7 *
at31 30 98.5 98.3 97.1 1.3 * 98.3 96.8 1.6 * 98.6 – inf * 98.3 95 3.5 *
at32 30 83.5 83.5 83.3 0.2 * 83.5 83.3 0.2 * 83.5 – inf * 83.5 82 1.8 *
at41 42 76 75.9 75.6 0.4 * 75.9 75.6 0.5 * 76 – inf * 75.9 73.7 3 *
at42 42 119.5 119.5 119.5 0 228 119.5 119.5 0 999 119.5 – inf * 119.5 117.9 1.3 *
at51 56 87.5 87.3 86 1.5 * 87.3 86.1 1.3 * 87.3 – inf * 87.3 80.6 8.3 *
at52 56 141 140.7 139.7 0.7 * 140.7 139.4 1 * 140.8 – inf * 141.4 132.3 6.9 *
fr21 10 52.5 52.5 52.5 0 1358 52.5 52.5 0 23 52.5 52.5 0 1701 52.5 52.5 0 32
fr22 10 48.5 48.5 48.5 0 2028 48.5 48.5 0 713 49.5 48.5 2 * 48.5 48.5 0 1132
fr31 15 56.5 56.5 50.5 11.9 * 56.5 56.5 0 30 56.5 – inf * 56.5 56.5 0 65
fr32 15 67 67 58.5 14.5 * 67 67 0 49 67 59 13.6 * 67 67 0 195
fr41 21 77 77.3 75.2 2.8 * 77 77 0 1763 77.5 – inf * 77.7 76.5 1.6 *
fr42 21 72 72.7 53 37.2 * 72 72 0 208 72.5 – inf * 72 72 0 726
fr51 28 113.5 113.5 – inf * 113.5 112.5 0.9 * 113.5 – inf * 113.5 113.5 0 51
fr52 28 101 102 – inf * 101 101 0 1159 102.1 – inf * 102.2 101 1.2 *
fr61 36 116 116 – inf * 116.3 114.8 1.3 * 116.2 – inf * 116.2 114.5 1.5 *
fr62 36 95.5 95.5 – inf * 95.5 95.3 0.3 * 95.5 – inf * 95.5 93.3 2.4 *
fr71 45 131.5 131.7 124.2 6.1 * 131.4 125.7 4.5 * – – inf * 132.2 120.5 9.7 *
fr72 45 110 111 – inf * 111 106 4.7 * – – inf * 111.2 100.3 11 *
nb31 15 63.5 63.5 63.5 0 31 63.5 63.5 0 1 63.5 63.5 0 1266 63.5 63.5 0 4
nb32 15 49.5 49.5 49.5 0 45 49.5 49.5 0 29 49.5 44.5 11.2 * 49.5 49.5 0 22
nb41 21 76 75.9 75.2 1 * 76 75.2 1.1 * 76 – inf * 76 75 1.3 *
nb42 21 85.5 85.5 85.5 0 112 85.5 85.5 0 20 85.5 85.5 0 966 85.5 85.5 0 118
nb51 28 106 105.9 105.5 0.4 * 106 105.5 0.4 * 106.4 – inf * 106 105.2 0.7 *
nb52 28 100.5 100.5 100.2 0.3 * 100.5 100.2 0.3 * 100.5 – inf * 100.5 99.1 1.4 *
nb61 36 92 91.9 91 1 * 91.9 91.5 0.5 * 91.9 – inf * 91.9 89.7 2.5 *
nb62 36 117 116.9 115.8 0.9 * 116.9 116 0.8 * 116.9 – inf * 116.9 115 1.6 *
nb71 42 104 103.9 102.3 1.6 * 103.9 103.5 0.4 * 103.9 – inf * 103.9 98.7 5.3 *
nb72 42 127 126.9 125.8 0.9 * 126.9 125.8 0.9 * 126.9 – inf * 126.9 125.6 1 *
nb91 50 84.5 84.3 82.8 1.8 * 84.3 83.3 1.3 * 84.3 – inf * 84.3 78.5 7.4 *
nb92 50 118 118 115.9 1.8 * 118 117.6 0.3 * 118 – inf * 118 111.6 5.7 *
nb81 56 89.5 89.3 88.3 1.2 * 89.3 87.8 1.8 * 89.3 – inf * 89.3 82.3 8.5 *
nb82 56 129 128.8 128 0.7 * 128.8 127.8 0.9 * 128.8 – inf * 128.9 121.7 6 *

References

1. Allalouf, M., Shavitt, Y.: Maximum flow routing with weighted max-min fairness.
In: Solé-Pareta, J., Smirnov, M., Van Mieghem, P., Domingo-Pascual, J., Monteiro,
E., Reichl, P., Stiller, B., Gibbens, R.J. (eds.) QofIS 2004. LNCS, vol. 3266, pp.
278–287. Springer, Heidelberg (2004)

12 E. Amaldi et al.

2. Amaldi, E., Capone, A., Coniglio, S., Gianoli, L.G.: Network optimization problems
subject to max-min fair flow allocation. IEEE Commun. Lett. 17(7), 1463–1466
(2013)

3. Amaldi, E., Coniglio, S., Gianoli, L.G., Ileri, C.U.: On single-path network routing
subject to max-min fair flow allocation. Electron. Notes Discrete Math. 41, 543–
550 (2013)

4. Andrews, M., Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K., Zhang, L.:
Inapproximability of edge-disjoint paths and low congestion routing on undirected
graphs. Combinatorica 30(5), 485–520 (2010)

5. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Upper Saddle River
(1992)

6. Danna, E., Hassidim, A., Kaplan, H., Kumar, A., Mansour, Y., Raz, D., Segalov,
M.: Upward max min fairness. In: Proceedings IEEE INFOCOM 2012, pp. 837–845,
March 2012

7. Danna, E., Mandal, S., Singh, A.: A practical algorithm for balancing the max-
min fairness and throughput objectives in traffic engineering. In: Proceedings IEEE
INFOCOM 2012, pp. 846–854, March 2012

8. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10(2), 111–121 (1980)

9. Harks, T., Hoefer, M., Schewior, K., Skopalik, A.: Routing games with progressive
filling. CoRR abs/1308.3161, abs/1308.3161 (2013)

10. Kleinberg, J., Rabani, Y., Tardos, É.: Fairness in routing and load balancing. In:
40th Annual Symposium on Foundations of Computer Science (FOCS), pp. 568–
578. IEEE (1999)

11. Massoulié, L., Roberts, J.: Bandwidth sharing: objectives and algorithms.
IEEE/ACM Trans. Netw. 10(3), 320–328 (2002)

12. Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math.
Program. 7(1), 97–107 (1974)

13. Nace, D., Pióro, M.: Max-min fairness and its applications to routing and load-
balancing in communication networks: a tutorial. Commun. Surv. Tutorials 10(4),
5–17 (2008)

14. Nace, D., Doan, N.L., Klopfenstein, O., Bashllari, A.: Max-min fairness in multi-
commodity flows. Comput. Oper. Res. 35(2), 557–573 (2008)

15. Nilsson, P.: Fairness in communication and computer network design. Ph.D. thesis,
Lund University, Sweden (2006)

16. Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A.: SNDlib 1.0 - survivable
network design library. Networks 55(3), 276–286 (2010)

17. Pioro, M.: Fair routing and related optimization problems. In: International Con-
ference on Advanced Computing and Communications (ADCOM), pp. 229–235.
IEEE (2007)

18. Radunovic, B., Boudec, J.Y.L.: A unified framework for max-min and min-max
fairness with applications. IEEE/ACM Trans. Netw. 15(5), 1073–1083 (2007)

19. Salles, R.M., Barria, J.A.: Lexicographic maximin optimisation for fair bandwidth
allocation in computer networks. Eur. J. Oper. Res. 185(2), 778–794 (2008)

20. Tomaszewski, A.: A polynomial algorithm for solving a general max-min fairness
problem. Eur. Trans. Telecommun. 16(3), 233–240 (2005)

21. Wong, R.: Integer programming formulations of the travelling salesman problem.
In: Proceedings IEEE Conference on Circuits and Computers, pp. 149–152 (1980)

Study of Identifying Code Polyhedra
for Some Families of Split Graphs

Gabriela Argiroffo1, Silvia Bianchi1, and Annegret Wagler2(B)

1 Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura,
Universidad Nacional de Rosario, Rosario, Argentina

{garua,sbianchi}@fceia.unr.edu.ar
2 University Blaise Pascal (LIMOS, UMR 6158 CNRS),

Clermont-Ferrand, France
wagler@isima.fr

Abstract. The identifying code problem is a newly emerging search
problem, challenging both from a theoretical and a computational point
of view, even for special graphs like bipartite graphs and split graphs.
Hence, a typical line of attack for this problem is to determine minimum
identifying codes of special graphs or to provide bounds for their size.

In this work we study the associated polyhedra for some families
of split graphs: headless spiders and complete suns. We provide the
according linear relaxations, discuss their combinatorial structure, and
demonstrate how the associated polyhedra can be entirely described or
polyhedral arguments can be applied to find minimum identifying codes
for special split graphs. We discuss further lines of research in order to
apply similar techniques to obtain strong lower bounds stemming from
linear relaxations of the identifying code polyhedron, enhanced by suit-
able cutting planes to be used in a B&C framework.

Keywords: Identifying code problem · Polyhedral approach · Split
graphs

1 Introduction

Many practical applications can be stated as set covering problems, among them
newly emerging search problems for identifying codes [12]. Consider a graph
G = (V,E) and denote by N [i] = {i} ∈ N(i) the closed neighborhood of i. A
subset C ≤ V is dominating (resp. identifying) if N [i] ≥ C are non-empty (resp.
distinct) sets for all i ∈ V . An identifying code of G is a node subset which is
dominating and identifying, and the identifying code number γID(G) of a graph
G is the minimum cardinality of an identifying code of G.

Determining a minimum identifying code in a graph G = (V,E) can be
formulated as set covering problem min1Tx,MID(G) ≥ 1, x ∈ {0, 1}|V | by:

This work was supported by an ECOS-MINCyT cooperation France-Argentina,
A12E01.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 13–25, 2014.
DOI: 10.1007/978-3-319-09174-7 2

14 G. Argiroffo et al.

min1Tx
x(N [j]) =

∑
i∈N [j] xi ≥ 1 ∀j ∈ V (domination)

x(N [j] ∃ N [k]) =
∑

i∈N [j]∈N [k] xi ≥ 1 ∀j, k ∈ V, j ⇒= k (identification)
x ∈ {0, 1}|V |

We call

MID(G) =
⎡

N [G]
∃[G]

⎣

,

the identifying code matrix of G, encoding the closed neighborhoods of the nodes
of G (N [G]) and their symmetric differences (∃[G]), and define the identifying
code polyhedron of G as PID(G) = conv{x ∈ Z

|V |
+ : MID(G) x ≥ 1}. It is clear by

construction that γID(G) equals the covering number τ(MID(G)) := min{1Tx :
x ∈ PID(G)}. In addition, a graph G has an identifying code or is identifiable
if and only if MID(G) has no zero-row. As N [G] has clearly no zero-row, G is
identifiable if and only if ∃[G] has no zero-row which is equivalent to the known
condition that G is identifiable if and only if it has no true twins, i.e., nodes i, j
with N [i] = N [j], see [12].

As MID(G) may contain rows which are equal to or dominated by other
rows in MID(G), we define the corresponding clutter matrix, the identifying
code clutter CID(G) of G, obtained by removing repeated or dominated rows
from MID(G). We clearly have that

PID(G) = conv{x ∈ Z
|V |
+ : CID(G) x ≥ 1},

and obtain as a linear relaxation the fractional identifying code polyhedron

QID(G) = {x ∈ R
|V |
+ : CID(G) x ≥ 1}.

In [2,3] we characterized when PID(G) is full-dimensional and which con-
straints of QID(G) define facets of PID(G):

Lemma 1 [2,3]. Let G be a graph without isolated nodes and let V1(G) be the
set of nodes k ∈ V (G) such that {k} = N [i] ∃ N [j] for two different nodes i and
j in V (G). Then,

– PID(G) is full-dimensional if and only if V1(G) = ∅.
– The constraint xi ≥ 0 defines a facet of PID(G) if and only if i /∈ V1(G).
– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Due to the possible formulation as set covering problem, it is immediate that
the identifying code problem is hard in general. It even remains hard for several
graph classes where many other in general hard problems are easy to solve,
including bipartite graphs [6], split graphs [8] and, therefore, chordal graphs (see
Sect. 2 for details).

Our aim is to study identifying codes in split graphs from a polyhedral point
of view. In this work we study the associated polyhedra for some families of
split graphs: headless spiders and complete suns. We provide the according lin-
ear relaxations, discuss their combinatorial structure, and demonstrate how the

Study of Identifying Code Polyhedra for Some Families of Split Graphs 15

associated polyhedra can be entirely described or polyhedral arguments can be
applied to find minimum identifying codes for special split graphs, see Sect. 2. We
discuss further lines of research in order to apply similar techniques to obtain
strong lower bounds stemming from linear relaxations of the identifying code
polyhedron, enhanced by suitable cutting planes to be used in a B&C frame-
work, see Sect. 3.

1.1 Preliminary Definitions

Given a set F of vectors in {0, 1}n, we say y ∈ F is a dominating vector (of F)
if there exits x ∈ F with x ≤ y. It can be also said that x is dominated by y.

From now on, every matrix has 0, 1-entries, no zero columns and no domi-
nating rows.

As there is a one-to-one correspondence between a vector x ∈ {0, 1}n and
the subset Sx ⊂ {1, . . . , n} having x as characteristic vector, we write x instead
of Sx. Remind that a cover of a matrix M is a vector x ∈ {0, 1}n such that
Mx ≥ 1. According to the previous convention, a cover of M is a subset of
columns ({1, . . . , n}) that intersects all the rows of M .

In addition, the cardinality of a cover x is denoted by |x| and equals 1x. A
cover x is minimum if it has the minimum cardinality and in this case |x| is
called the covering number of the matrix M , denoted by τ(M). Recall that the
set covering polyhedron of M , denoted by Q∗(M), is defined as the convex hull
of its covers. The polytope Q(M) = {x ∈ [0, 1]n : Mx ≥ 1} is known as the
linear relaxation of Q∗(A). When Q∗(A) = Q(A) the matrix A is ideal and the
set covering problem can be solved in polynomial time (in the size of M).

A cover of M is minimal if it does not dominate any other cover of M . The
blocker of M , denoted by b(M), is the matrix whose rows are the minimal covers
of M . It is known that b(b(M)) = M and also that a matrix M is ideal if and
only if its blocker is (see [13]). In addition, since b(b(M)) = M we can refer to
Q∗(M) and Q(b(M)) as a blocking pair of polyhedra. Moreover, a is an extreme
point of Q(b(M)) if and only if aTx ≥ 1 is a facet defining inequality of Q∗(M)
(see [10]). In the sequel we will refer to this property as blocking duality.

Given a matrix M and j ∈ {1, . . . , n}, we introduce two matrix operations:
the contraction of j, denoted by M/j, means that column j is removed from
M as well as the resulting dominating rows and hence, corresponds to setting
xj = 0 in the constraints Mx ≥ 1. The deletion of j, denoted by M \j means that
column j is removed from M as well as all the rows with a 1 in column j and this
corresponds to setting xj = 1 in the constraints Mx ≥ 1. Then, given M and
V1, V2 ⊂ {1, . . . , n} disjoint, we will say that M/V1 \V2 is a minor of M and this
minor does not depend on the order of operations or elements in {1, . . . , n}. It is
clear that M is always a minor of itself and we will say that a minor M/V1 \ V2

is proper if V1 ∈ V2 ⇒= ∅. It is not hard to see that b(M/j) = b(M) \ j and
b(M \ j) = b(M)/j for every j ∈ {1, . . . , n}. In addition, if a matrix is ideal then
so are all its minors (see [7] for further details).

16 G. Argiroffo et al.

A rank inequality is ∑

i∈M ′
xi ≥ τ(M ≤) (1)

associated with a minor M ≤ = M \ U . If (1) is a facet of Q∗(M ≤), then it is also
a facet of Q∗(M) (see [14]).

In addition, if the rank constraint associated with some minor induces a
facet defining inequality of Q∗(M) then this inequality is also induced by a
minor obtained by deletion (see [1] for further details).

2 Identifying Code Polyhedra of Some Split Graphs

A graph G = (C ∈ S,E) is a split graph if its node set can be partitioned into
a clique C and a stable set S. Hence, split graphs are closed under taking com-
plements by definition. Moreover, they form the complementary core of chordal
graphs (graphs without chordless cycles of length ≥ 4) since G is a split graph if
and only if G and G are chordal [9]. This is also reflected in terms of forbidden
subgraphs since a graph is a split graph if and only if it is (C4, C4, C5)-free [9]
(note that C5 is self-complementary and that C4 occurs as induced subgraph
in any chordless cycle Ck with k ≥ 6 such that all chordless cycles Ck with
k ≥ 4 are excluded in G as well as in G). The relation between chordal and split
graphs can also be interpreted in terms of intersection graphs: while chordal
graphs are the intersection graphs of distinct subtrees of a tree, split graphs are
the intersection graphs of distinct substars of a star, see e.g. [5].

Our aim is to study identifying codes in split graphs from a polyhedral point
of view. First note that a split graph is identifiable if and only if no two nodes
in C have the same neighbors in S. For instance, a complete split graph (i.e., a
split graph where all edges between C and S are present) is not identifiable as
soon as C contains 2 nodes (as any two nodes in C are true twins).

Next, recall that finding a minimum identifying code in split graphs is NP-
hard [8]. So far, γID(G) is only known for two families: on the one hand, stars
(the complete split graphs G = (C ∈S,E) with |C| = 1) are the only identifiable
complete split graphs and have γID(G) = |S|; on the other hand, split graphs
G = (C ∈ S,E) where every node in S is connected to a distinct 2-node subset
of C have γID(G) of order log(|S|+ |C|), see [8]. The two families show the wide
range of the possible size of minimum identifying codes in split graphs: while
the lowest possible lower bound of log n is attained for the latter, stars achieve
almost the highest possible value n.

Moreover, a split graph is connected if and only if no node in S is isolated.
Every non-connected split graph G contains a connected split graph G≤ and a
non-empty subset S≤ ⊂ S of isolated nodes, and clearly γID(G) = γID(G≤)+|S≤|.

This motivates the study of identifying codes in non-complete, connected
split graphs G. We concentrate on three families of split graphs with a regular
structure. This allows us to benefit from a certain combinatorial structure of the
identifying code clutter CID(G) of G and to draw conclusions for the polyhedra
PID(G) and the identifying code number γID(G) in a similar way as discussed

Study of Identifying Code Polyhedra for Some Families of Split Graphs 17

(b)(a) (c)

Fig. 1. (a) thin headless spider, (b) complete sun, (c) thick headless spider.

for families of bipartite graphs in [2,3]. In particular, note that stars K1,n are
bipartite graphs as well as split graphs. Their identifying code clutter is related
to q-roses Rq

n, 0, 1-matrices with n columns whose rows encode the incidence
vectors of all the q-element subsets of {1, . . . , n}. We have:

Theorem 1 [2,3]. For a star K1,n = (V,E) with n ≥ 3, we have

– CID(K1,n) = R2
n+1;

– PID(K1,n) is entirely described by the inequalities x(V ≤) ≥ |V | − 1 for all
nonempty subsets V ≤ ⊂ V ;

– γID(K1,n) = n.

In this paper, we study three families of split graphs with |S| = |C| ≥ 2
having a regular structure. A headless spider is a split graph G = (C ∈ S,E)
with S = {s1, . . . , sn}, C = {c1, . . . , cn}, and n ≥ 2. In a thin headless spider, si
is adjacent to cj if and only if i = j, and in a thick headless spider, si is adjacent
to cj if and only if i ⇒= j. It is straightforward to check that the complement of
a thin spider is a thick spider, and vice-versa. Moreover, headless spiders where
si is adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n are called complete suns.

It is easy to see that for n = 2, the path P4 equals the thin and thick headless
spider, whereas the complete sun is not identifiable. For n = 3, the thin headless
spider equals the net, and thick headless spider and complete sun its complement,
the 3-sun. We consider headless spiders with n ≥ 4; Fig. 1 illustrates all studied
three families for n = 4. The partition (C,S) is called the spider partition and
can be found in linear time [11].

2.1 Thick Headless Spiders

For simplicity, we will denote thick headless spiders by their partition and we
will consider that C = {1, . . . , n} and S = {n + 1, . . . , 2n}. Also, E denotes a
matrix with all entries at value one.

Lemma 2. For a thick headless spider G = (C ∈ S,E) with n ≥ 4, we have

CID(G) =
⎡

Rn−1
n I
0 R2

n

⎣

.

18 G. Argiroffo et al.

Proof. Let G = (C ∈ S,E) be a thick headless spider. The neighborhood matrix
of G can be written as

N [G] =
⎡

E Rn−1
n

Rn−1
n I

⎣

.

Now, in order to find ∃[G]:
(1) If i, j ∈ C, N [i] ∃ N [j] = {i + n, j + n}.
(2) If i, j ∈ S, N [i] ∃ N [j] = [{i} ∈ (C − {i − n})] ∃ [{j} ∈ (C − {j − n})] =

{i, j, i − n, j − n} and is dominated by a row of the case (1).
(3.a) If i ∈ C and j ∈ S, j ⇒= i+n, N [i]∃N [j] = [C ∈ (S −{i+n})]∃ [{j}∈

(C − {j − n}) = {j − n} ∈ (S − {j, i + n}) and is dominated by a row of the case
(1) as n ≥ 4.

(3.b) If i ∈ C and j = i + n ∈ S, N [i] ∃ N [j] = [C ∈ (S − {i + n})] ∃ [{j} ∈
(C − {j − n}) = [C ∈ (S − {i + n})] ∃ [{i + n} ∈ (C − {i}) = {i} ∈ S and are
dominated by a row of the case (1).

As the first n rows of the matrix N [G] above are also dominated, we have
that the clutter matrix CID(G) can be written as

CID(G) =
⎡

Rn−1
n I
0 R2

n

⎣

.

As an immediate consequence, we obtain:

Corollary 1. Let G = (C ∈ S,E) be a thick headless spider. Then,

– PID(G) is full-dimensional.
– The constraint xi ≥ 0 defines a facet of PID(G) for each i ∈ C ∈ S.
– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Observe that τ(I, I) = n. Then if G = (C ∈ S,E) is a thick headless spider,
γID(G) ≥ n. In fact, we have:

Corollary 2. Let G = (C ∈ S,E) be a thick headless spider. Then S is a mini-
mum identifying code and, thus, γID(G) = n.

In [4], the set covering polyhedron Q∗(Rq
n) = conv

{
x ∈ Z

n
+ : Rq

nx ≥ 1
⎤

of
complete q-roses was studied.

Theorem 2 [4]. Let n ≥ q ≥ 2. A non-Boolean inequality ax ≥ 1 is a facet
defining inequality for Q∗(Rq

n) if and only if ax ≥ 1 can be written as x(As) ≥
|As|−q+1 for some As ⊂ {1, . . . , n} where s ∈ {0, . . . , n−q−1} and |As| = n−s.

As R2
n is a minor of CID(G) obtained from the deletion of the nodes of C,

in the underlying graph G = (C ∈ S,E), we have:

Corollary 3. Let G = (C ∈ S,E) be a thick headless spider. Then, for all non-
empty subsets A ⊂ S, the inequalities x(A) ≥ |A| − 1 are facets of PID(G).

Study of Identifying Code Polyhedra for Some Families of Split Graphs 19

In order to study the remaining facets we need a description of the blocker
of CID(G).

From now on we consider vectors in {0, 1}l+k of the form ei ⊕ fj where ei
for i = 1, . . . , l is the unit vector in {0, 1}l and fj for j = 1, . . . , k is a vector in
{0, 1}k such that (fj)t = 0 if j = t and (fj)t = 1 if j ⇒= t.

Theorem 3. Let CID(G) be the clutter matrix of a thick headless spider G =
(C ∈ S,E). Every minimal cover x of CID(G) is minimum. Moreover, either
x = 0 ⊕ 1 where 0,1 ∈ {0, 1}n or x = ei ⊕ fj where ei, fj ∈ {0, 1}n with i ⇒= j.

Proof. From Corollary 2, S is a minimum cover of CID(G).
Now, let x be a minimal cover of CID(G) such that xj = 0 for some j ∈

{n + 1, . . . , 2n}. It is known that every row of Rn−1
n covers (ei + ej) for every

i, j = 1, . . . , n [4], then any cover x with xn+j = 0 for some j ∈ {n + 1, . . . , 2n}
must be of the form x = y ⊕fj with some y ∈ {0, 1}n. In order to cover the rows
of submatrix (Rn−1

n , I) it is enough to consider xi,j = ei ⊕ fj for i, j = 1, . . . , n
and i ⇒= j. Then |x| = |xi,j | = n for every i, j = 1, . . . , n and i ⇒= j and they are
all minimum covers.

Now, let v be a cover of CID(G), with vn+j = 0. Then v = y ⊕ fj and
y ∈ {0, 1}n. But y must be a cover of Rn−1

n , i.e., y = ei + h for some i ⇒= j and
some h ∈ {0, 1}n. Then y is not minimal.

We can further prove the following:

Corollary 4. If x̄ ∈ R
2n is an extreme point of Q(b(CID(G))) such that xi ⇒= 0

then x̄ = 1
n1 ∈ R

2n.

Proof. From Theorem 3 it follows that every row of b(CID(G)) is either 0 ⊕ 1
where 0,1 ∈ {0, 1}n or ei ⊕ fj for i, j = 1, . . . , n and i ⇒= j. Then they all
have n ones per row. One can show that there are 2n linearly independent rows.
It follows that if x̄ = 1

n1 ∈ R
n then it satisfies b(CID(G))x̄ = 1. Hence x̄

is a fractional extreme point of Q(b(CID(G))). Now, if ȳ is an extreme point
of Q(b(CID(G))) with all nonzero components then it must satisfy 2n linearly
independent inequalities of Q(b(CID(G))) at equality. It follows that ȳ = x̄.

Using blocking duality it can be seen that Corollary 4 gives an alternative
proof of γID(G) = n and states that the only facet of PID(G) with full support
is the rank inequality associated with CID(G).

With the help of some technical lemmas, we can further show:

Theorem 4. Let b(CID(G)) be the blocker of the identifying clutter matrix of a
thick headless spider G = (C ∈ S,E). Let x̄ ∈ R

2n be a fractional extreme point
of Q(b(CID(G))) such that the set A = {i : x̄i = 0} is nonempty. Then either

1. A ∅ S and x̄i = 1
n−|A| when i /∈ A or

2. C ∅ A and |A| ≤ 2(n − 1) and x̄i = 1
|A−C|−1 for all i /∈ A.

As a consequence of Theorem 4 and blocking duality, we conclude:

20 G. Argiroffo et al.

Corollary 5. Let G = (C ∈ S,E) be a thick headless spider and S≤ ⊂ S non-
empty. Then, the inequalities x(C) + x(S≤) ≥ n − |S − S≤| when 2 ≤ |S≤| ≤ n − 1
and x(S≤) ≥ |S≤| − 1 when 2 ≤ |S≤| ≤ n are facets of PID(G).

As a consequence of Corollary 5 and Theorem 4, we obtain the main result
of this section:

Corollary 6. Let G = (C ∈S,E) be a thick headless spider. Then, the facets of
PID(G) are:

– the constraint xi ≥ 0 for all i ∈ C ∈ S;
– the constraints CID(G) x ≥ 1;
– the constraints x(C) + x(S≤) ≥ n − |S − S≤| and x(S≤) ≥ |S≤| − 1 for every

S≤ ≤ S with 2 ≤ |S≤|.

2.2 Thin Headless Spiders

Lemma 3. For a thin headless spider G = (C ∈ S,E) with n ≥ 4, we have

CID(G) =

⎧

⎪
I I
0 R2

n

Rn−1
n 0

⎨

⎩ .

Proof. Let G = (C ∈ S,E) be a thin headless spider having C = {1, . . . , n} and
S = {n + 1, . . . , 2n}. The neighborhood matrix of (C,S) can be written as

N [G] =
⎡
E I
I I

⎣

.

Now, in order to find ∃[G]:
(1) If i, j ∈ C, N [i] ∃ N [j] = {i + n, j + n}.
(2) If i, j ∈ S, N [i] ∃ N [j] = {i, i − n} ∃ {j, j − n} and are dominated by

N [i].
(3.a) If i ∈ C and j ∈ S, j ⇒= i+n, N [i]∃N [j] = [C ∈{i+n})]∃{j, j −n} =

{j, i + n} ∈ (C − {j − n}) is dominated by N[i].
(3.b) If i ∈ C and j = i + n ∈ S, N [i] ∃ N [j] = [C ∈ {i + n})] ∃ [{i, i + n} =

C − {i}.
As the first n rows of the matrix N above are also dominated, we have that

the clutter matrix CID(G) can be written as

CID(G) =

⎧

⎪
I I
0 R2

n

Rn−1
n 0

⎨

⎩ .

As an immediate consequence, we obtain:

Corollary 7. Let G = (C ∈ S,E) be a thin headless spider. Then,

Study of Identifying Code Polyhedra for Some Families of Split Graphs 21

– PID(G) is full-dimensional.
– The constraint xi ≥ 0 defines a facet of PID(G) for all i ∈ C ∈ S.
– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Observe that τ(I, I) = n. Then if G = (C ∈ S,E) is a thin headless spider,
γID(G) ≥ n. In fact, we have:

Corollary 8. Let G = (C ∈ S,E) be a thin headless spider. Then, γID(G) =
n + 1.

Moreover, we obtain:

Corollary 9. Let G = (C ∈ S,E) be a thin headless spider. Then,

1. the inequalities x(A) ≥ |A| − 1 for all nonempty subsets A ⊂ S are facets of
PID(G),

2. the inequality x(C) ≥ 2 is a facet of PID(G).

Proof. As R2
n is a minor of CID(G) obtained after deletion of the nodes in C, as

a consequence of Theorem 2 we have that the inequalities x(A) ≥ |A| − 1 for all
nonempty subsets A ⊂ S are facets of PID(G).

Also, Rn−1
n is a minor of CID(G) obtained after deletion of the nodes in S,

and again using Theorem 2 we obtain x(C) ≥ 2 as a facet of PID(G).

As an immediate observation the rank inequality x(C,S) ≥ n + 1 is not a
facet of PID(G) since it can be obtained as the sum of the facets x(S) ≥ n − 1
and x(C) ≥ 2.

Based on our computational experience, we conjecture that the identifying
code polyhedra PID(G) of thin headless spiders have rank facets of a special
structure only:

Conjecture 1. Let G = (C,S) be a thin headless spider. Then, the facets of
PID(G) are:

– the constraint xi ≥ 0 for all i ∈ C ∈ S;
– all constraints from CID(G) x ≥ 1;
– the constraint x(C) ≥ 2;
– the constraints x(S≤) ≥ |S≤| − 1 for all nonempty subsets S≤ ⊂ S.

2.3 Complete Suns

As third family of headless spiders G = (C ∈ S,E) having a regular structure,
we consider complete suns, where S = {s1, . . . , sn}, C = {c1, . . . , cn} and si is
adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n (indices are taken modulo n).

In contrary to thin and thick headless spiders whose identifying code clutters
are composed by few q-roses, the identifying code clutters of complete suns have
a more complex structure, involving different combinations of submatrices with
a circular structure, where some submatrices occur for all n ≥ 4, others not
(depending on the parity of n and the size of the graph).

22 G. Argiroffo et al.

A circulant matrix is a square matrix where each row vector is rotated one
element to the right relative to the preceding row vector. We denote by Ck

n a
matrix in {0, 1}n×n having as first row the vector starting with k 1-entries and
having 0-entries otherwise. Moreover, we denote by Ck+k

n a matrix in {0, 1}n×n

with n ≥ 2k + 2 having as first row the vector starting with k 1-entries, then
having 0-entries, again k 1-entries, and 0-entries otherwise.

Lemma 4. For a complete sun G = (C ∈ S,E) with n ≥ 4, the identifying code
clutter CID(G) is composed by the following submatrices

(C2
n | I) ∀n ≥ 4

(0 | C1+1
n) ∀n ≥ 5

(0 | C1
n
2
, C1

n
2

) for n = 4
(0 | C2+2

n) ∀n ≥ 9
(0 | C2

n
2
, C2

n
2

) ∀n ≥ 8, n even
(Cn−2

n | I) ∀n ≥ 4
(C1+1

n | C2
n) ∀n ≥ 4

where the first part refers to C, the second part of the matrices to S.

Proof. Let G = (C ∈ S,E) be a complete sun. The neighborhood matrix N [G]
of (C,S) is composed from

(E | C2
n) for N [C],

(C2
n | I) for N [S].

Thus, only N [S] is in CID(G). In order to find ∃[G], we distinguish three cases.
Case 1: the symmetric differences between two nodes in C have the form

– N [ci] ∃ N [ci+1] = {si−1, si+1};
– N [ci] ∃ N [ci+j] = {si−1, si, si+j−1, si+j} for 1 < j ≤ n

2 .

For all n ≥ 4, the former symmetric differences remain in CID(G) as submatrix

(0 | C1+1
n) ∀n ≥ 5

(but yield for n = 4 not the whole circulant matrix). The latter symmetric
differences are dominated by the former if j = 2, 3. Thus, for each 4 ≤ j ≤ n

2 ,
the symmetric differences N [ci] ∃ N [ci+j] remain in CID(G) as submatrix

(0 | C2+2
n) ∀n ≥ 9

(but yield for j = n
2 not the whole circulant matrix).

Case 2: the symmetric differences between nodes in C and S have the form

– N [ci] ∃ N [si] = (C − {ci, ci+1}) ∈ {si−1};
– N [ci] ∃ N [si−1] = (C − {ci−2, ci−1}) ∈ {si};
– N [ci] ∃ N [sj] = (C − {cj−1, cj}) ∈ {si−1, si} for j ⇒= i, i − 1.

Study of Identifying Code Polyhedra for Some Families of Split Graphs 23

Thus, N [ci]∃N [sj] is dominated by N [si] if j ⇒= i, i−1, and remains in CID(G)
for j = i, i − 1, forming two submatrices of the form

(Cn−2
n | I) ∀n ≥ 4.

Case 3: the symmetric differences between two nodes in S have the form

– N [si] ∃ N [si+1] = {ci, ci+2, } ∈ {si, si+1};
– N [si] ∃ N [sj] = {ci, ci+1, cj , cj+1} ∈ {si, sj} for j ⇒= i.

Thus, N [si] ∃ N [sj] is dominated by N [si] if j ⇒= i + 1, and remains in CID(G)
for j = i + 1, forming a submatrix of the form

(C1+1
n | C2

n) ∀n ≥ 4.

This together completely describes the identifying code clutter CID(G).

As an immediate consequence, we obtain:

Corollary 10. Let G = (C ∈ S,E) be a complete sun with n ≥ 4.

– PID(G) is full-dimensional.
– The constraint xv ≥ 0 defines a facet of PID(G) for each v ∈ C ∈ S.
– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Unfortunately, the whole system of facet-defining inequalities for the iden-
tifying code polyhedra PID(G) of complete suns is not easy to describe since
non-rank facets are required for all cases n ≥ 4 (in fact, most facets of PID(G)
are non-rank and involve large coefficients). However, from a careful analysis of
the constraints involved in the identifying code clutter CID(G) of complete suns,
we derive at the following conjecture:

Conjecture 2. For a complete sun G = (C ∈ S,E) with n ≥ 4, the stable set S
is a minimum identifying code.

Note that it is easy to see that S is always an identifying code for a complete
sun G = (C ∈ S,E), since all rows of CID(G) have at least one 1-entry in S.
Hence, γID(G) ≤ |S| = n follows. On the other hand, for some cases, it has
been already verified that S is a minimum identifying code, by generating the
full rank constraint x(C) + x(S) ≥ |S| = n by means of the Chátal-Gomory
procedure. This implies γID(G) ≥ |S| = n, and together equality follows for
these cases. Our goal is to find a general construction of this type for all n ≥ 4.

3 Concluding Remarks

The identifying code problem is hard in general and challenging both from a theo-
retical and a computational point of view, even for special graphs like split graphs
[8]. In this paper, we studied three families of split graphs with |S| = |C| ≥ 2
having a regular structure: thin headless spiders, thick headless spiders, and

24 G. Argiroffo et al.

complete suns. For all three families, we determined the identifying code clutter
and discussed according consequences. In the case of thin and thick spiders G,
CID(G) is composed from certain q-roses. Based on related results from [4,14],
we could give the complete description of PID(G) for thick spiders, and arrived
at a profound conjecture for thin spiders. For both classes, we found the exact
value for γID(G): |S| for thick spiders and |S| + 1 for thin spiders. It turned
out that the identifying code clutters of complete suns have a more complex
structure involving different circulant matrices and, accordingly, more involved
facets are required to describe PID(G). For this class, we showed γID(G) ≤ |S|
and conjecture that γID(G) = |S| holds. So, all three families seem to have small
minimum identifying codes close to the lower bound of order log(|S| + |C|).

This demonstrates how the polyhedral approach can be applied to find iden-
tifying codes of minimum size for special graphs G, just by determining and
analyzing the identifying code clutter CID(G), even in cases where no complete
description of PID(G) is known yet.

As future lines of research, we plan to apply similar and more advanced
techniques to obtain either the identifying code of minimum size or strong lower
bounds stemming from linear relaxations of the identifying code polyhedron,
enhanced by suitable cutting planes. For that, note that facets associated with
deletion minors of CID(G) remain facets in PID(G), so according facets identified
for special graphs are relevant for every graph having such subgraphs.

References

1. Argiroffo, G., Bianchi, S.: On the set covering polyhedron of circulant matrices.
Discrete Optim. 6(2), 162–173 (2009)

2. Argiroffo, G., Bianchi, S., Wagler, A.: Polyhedra associated to identifying codes
(extended abstract), In: Proceedings of the VII Latin-American Algorithms,
Graphs and Optimization Symposium (LAGOS 2013), Electronic Notes in Dis-
crete Mathematics, vol. 44, pp. 175–180 (2013)

3. Argiroffo, G., Bianchi, S., Wagler, A.: Polyhedra associated with identifying codes,
submitted to Discrete Applied Mathematics

4. Argiroffo, G., Carr, M.: On the set covering polyhedron of q-roses. In: Proceedings
of the VI ALIO/EURO Workshop on Applied Combinatorial Optimization 2008,
Buenos Aires, Argentina (2008)

5. Brandstdt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

6. Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theoret. Comput. Sci. 290, 2109–
2120 (2003)

7. Cornuéjols, G.: Combinatorial optimization: packing and covering. SIAM, CBMS,
vol. 74 (2001)

8. Foucaud, F.: The complexity of the identifying code problem in restricted graph
classes. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp.
150–163. Springer, Heidelberg (2013)

9. Földes, S., Hammer, P.: Split graphs, In: Proceedings of the VIII Southeastern
Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, La.),
Congressus Numerantium XIX, Winnipeg: Utilitas Math., pp. 311–315 (1977)

Study of Identifying Code Polyhedra for Some Families of Split Graphs 25

10. Fulkerson, D.: Blocking polyhedra. In: Haris, B. (ed.) Graph Theory and its Appli-
cations, pp. 93–112. Academic Press, New York (1970)

11. Jamison, B., Olariu, S.: Recognizing P4-tidy graphs in linear time. SIAM J. Com-
put. 21, 381–406 (1992)

12. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for
identifying vertices in graphs. IEEE Trans. Inf. Theory 44, 599–611 (1998)

13. Lehman, A.: On the width-length inequality. Math. Program. 17, 403–417 (1979)
14. Sassano, A.: On the facial structure of the set covering polytope. Math. Program.

44, 181–202 (1989)

Parametric Multiroute Flow and Its Application
to Robust Network with k Edge Failures

Jean-François Baffier1,2, Vorapong Suppakitpaisarn3,4(B),
Hidefumi Hiraishi1,4, and Hiroshi Imai1

1 The University of Tokyo, Tokyo, Japan
2 JFLI, CNRS, Université Paris-Sud, Orsay, France
3 National Institute of Informatics, Tokyo, Japan

vorapong@nii.ac.jp
4 JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan

Abstract. In this work, we investigate properties of the function taking
the real value h to the max h-route flow value, and apply the result
to solve robust network flow problems. We show that the function is
piecewise hyperbolic, and modify a parametric optimization technique,
the ES algorithm, to find this function. The running time of the algorithm
is O(λmn), when λ is a source-sink edge connectivity of our network,
m is the number of links, and n is the number of nodes. We can use
the result from that algorithm to solve two max-flow problems against k
edge failures, referred to as max-MLA-robust flow and max-MLA-reliable
flow. When h is optimally chosen from the function, we show that the
max-h-route flow is an exact solution of both problems for graphs in
a specific class. Our numerical experiments show that 98 % of random
graphs generated in the experiment are in that specific class. Given a
parametric edge e, we also show that the function taking the capacity of
e to the max-h-route flow value is linear piecewise. Hence we can apply
our modified ES algorithm to find that function in O(h2mn).

1 Introduction

Since its introduction by Ford and Fulkerson [1], the maximum flow problem
(max-flow) has been widely studied due to its many theoretical and practical
applications. There are many polynomial-time algorithms with which to solve
this problem, including the recent results by Orlin [2] where the max-flow of a
network with n nodes and m links is solved in O(mn).

An h-route flow is a nonnegative linear combination of h edge-disjoint paths.
The notion was introduced by Kishimoto and Takeuchi in [3], where they extend
the max-flow/min-cut duality property to the multiroute flow context and pro-
vide an algorithm to compute a max-h-route flow based on h iterations of a
classical max-flow algorithm. The duality proof is simplified by Bagchi et al. [4],
and the improved algorithm, in which the number of max-flow iterations is less
than h is some networks, is proposed by Aggarwal and Orlin [5].

It is shown in [6] that the max-(k + 1)-route flow is a (k + 1)-approximation
of two natural variants of the max-flow problem against k edge failures, referred
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 26–37, 2014.
DOI: 10.1007/978-3-319-09174-7 3

Parametric Multiroute Flow and Its Application to Robust Network 27

to, in this work, as the maximum multilink attack robust flow (max-MLA-robust
flow) and maximum multilink attack reliable flow (max-MLA-reliable flow) prob-
lems. The max-MLA-robust flow problem is to find the minimum max-flow value
among

(
m
k

⎡
networks obtained by deleting each set of k edges. The problem can

be considered as a special case of R-MAX-FLOW-KCU, which is proposed and
shown to be NP-hard in [7]. The max-MLA-reliable flow is to find a max-flow
of the network such that the flow value is maximum against any set of k edge
failures, when deleting the corresponding flow to those k edges in the original
flow. The problem can be considered as a special case of the minimax problem
to combat link attacks, which is proposed and solved heuristically in [8]. For the
case when k = 1, we can solve this problem by the method for φ-reliable flow
proposed in [9]. Throughout this paper, we will also refer to the edge failures as
edge attacks, since the best attacks are equivalent to the worst failures.

The parametric optimization scheme is introduced to several problems in
network design. In this scheme, our goal is to find an algorithm that outputs a
function taking some network parameters to an optimization result. For instance,
the parametric max-flow algorithm proposed in [10] outputs a function taking a
capacity of a parametric edge e to a max-flow value. Several works have intro-
duced the variants of that algorithm to solving problems in database [11] and
computer vision [12]. For those variants, the output function is shown to be
linear piecewise. They introduce a method called ES algorithm to find that lin-
ear piecewise function in O(pT) when p is the number of line segments in that
function and T is the running time to get an optimization result for a specific
parameter value.

While the most common parameter considered in this scheme is the edge
capacity, we consider the route number h as a parameter in this work. In Sect. 3,
we consider the definition of max-h-route flow for the case when the route num-
ber h can be non-integer proposed in [13]. We show that a function taking the
value h to the flow value is piecewise hyperbolic. We call the problem as max-
route-parametric h-route flow, and propose an algorithm to find that function.
The bottleneck part of the algorithm is the calculation of a linear piecewise
function with at most σ line segments. Because we compute that function by ES
algorithm, our computation time is O(σT) where σ is a source-sink edge con-
nectivity of our network and T is the computation time of max-flow algorithm.
We note that we can find max h-route flow for any h in O(log σ) time from our
function. Those include the case that h = σ where the state-of-the-art algorithm
also takes O(σT) only to compute this case.

Although the max-route-parametric h-route flow itself can be applied to solv-
ing problems in network design, we show that it can also be applied to exactly
solve max-MLA-robust flow and max-MLA-reliable flow in Sect. 4. When the
route number h is optimally chosen from the function obtained from Sect. 3,
we show that the max-h-route flow is an exact solution for both problems in a
specific class of network. Our numerical experiments show that 98% of random
graphs generated in the experiment are in that specific class.

Shown in Sect. 5, we also have a contribution when the parameter is edge
capacities. Given a parametric edge e, we show that the function taking the

28 J.-F. Baffier et al.

capacity of e to the max-h-route flow value is linear piecewise with at most h+1
line segments. Using ES algorithm, we can find that function in O(hT), when
T is the computation time of max-h-route flow algorithm. We will refer to this
problem as max-edge-parametric h − routeflow in this paper.

2 Preliminaries

In this section, we provide the notation that we will use throughout this article.
The definition and properties of the multiroute flow are provided in Subsect. 2.1,
while max-MLA-robust flow and max-MLA-reliable flow will be discussed in
Subsect. 2.2.

Let G = (V,E, c) be a network, where V is a set of nodes, E is a set of links,
and c : E ∈ R

+ is a capacity function. Let s, t ≤ V be a source node and a sink
node, respectively. Throughout this paper, we will consider single-commodity
flows from s to t. All terminologies are based on that setting unless otherwise
specified. The set C (resp., F) refers to the set of all s-t cuts (resp., the set all
possible s-t flows) of G. σ refers to the s-t edge connectivity of G, and k refers
to the number of edges that the attacker can remove.

Definition 2.1 (MLA-robust capacity [14]). Given a cut X ≤ C , let {e0, e1,
. . . , ep} be the cut-set of X, where c(ei) � c(ei+1) for any 0 � i < p. For 0 �
k � p, we define the MLA-robust capacity of X, αk(X) as αk(X) =

⎣p
i=k c(ei).

For k > p, we define αk(X) = 0.

2.1 Multiroute Flow

In this subsection, we will briefly describe the h-route flow introduced in [3],
which, for h � 2, is also called a multiroute flow.

Definition 2.2 (h-route flow). A h-route flow is a nonnegative linear combi-
nation of h edge-disjoint s-t paths with unitary flow, in which the value on each
edge does not exceed the edge capacity.

Definition 2.3 (max-h-route flow). A max-h-route flow is a h-route flow
such that its value is at least as large as the value of any other h-route flow.

Next, we explain an algorithm that can efficiently calculate the max-h-route
flow proposed by Kishimoto and Takeuchi [3]. The running time of that algorithm
is O(hT), where T is the computation time of the max-flow problem. Let Gp =
(V,E, cp), where cp(e) = min(c(e), p). If p∗ is the value such that the max-flow
value of Gp∗

is equal to hp∗, then the max-flow of Gp∗
is shown to be the max-

h-route flow of G. The paper proposes an effective method to search for that
p∗ based on the max-flow value of Gp for at most h distinct values of p. In the
same paper, Kishimoto and Takeuchi also extend the max-flow/min-cut duality
property to h-route flow. That duality is as follows.

Parametric Multiroute Flow and Its Application to Robust Network 29

Definition 2.4 (h-capacity [14]). The h-capacity of a cut X is given by
λh(X) = min

0�i�h−1

(
h

h−i · αi(X)
)

.

A min-h-route cut is a cut minimizing the h-capacities over all the cuts in
the network. Now, we can state the h-route duality theorem.

Theorem 2.1 (h-route duality [3,4]). The value of a max-h-route flow is
equal to the h-capacity of a min-h-route cut, min

X∈C
λh(X).

The definition of h-route flow is extended to the case when h can be non-
integer by Aneja et al. [13]. While we omit a precise definition due to the page
limitation, we give an equivalent notation of the flow in Definition 2.5. By the
definition, the non-integer case share several properties with the integer case.
Those properties include the result shown in Lemma 2.1.

Definition 2.5 [13]. For h ≤ R
+, a flow F with value v is an h-route flow if

F (e) � v
h for all e ≤ E.

Lemma 2.1 [13]. For real number h < σ, a max-h-route flow value is equal to
v∗, if v∗ > 0 and the max-flow value of G

v∗
h is equal to v∗.

2.2 Max-MLA-Robust Flow and Max-MLA-Reliable Flow [6]

The maximum multilink attack robust flow problem (max-MLA-robust flow) is
to find the minimum max-flow value among

(
m
k

⎡
networks obtained by deleting

each set of k edges. Define ΛS as the value of a max-flow of the network (V,E\S).
The formal definition of max-MLA-robust flow is as follows.

Definition 2.6 (max-MLA-robust flow). Let S∗ = argmin
S∗E:|S|=k

ΛS . A max-

MLA-robust flow with k edge failures is a max-flow of the network (V,E\S∗).
We denote its value as Pk.

The maximum multilink attack reliable flow problem (max-MLA-reliable
flow) is to find a max-flow of the network such that the flow value is maxi-
mum against any set of k edge failures, when deleting the corresponding flow to
those k edges in the original flow. In this setting, we will choose a flow F ≤ F
before the attacker selects the edges to attack. Assume that our choice is F . We
will call the value of the flow that remains after the attack the k-effectiveness of
F , and we define it as follows.

Definition 2.7 (Effectiveness of a Flow). Let F be a valid flow, and let ΛF
S

be a max-flow of a network G≤ = (V,E\S, f), where f(e) is a value of the flow
F on edge e. We define the k-effectiveness of F as CF = min

S∗E:|S|=k
ΛF

S .

We note that ΛF
S , defined in Definition 2.7, is actually the amount of flow F

that remains after all the edges in S have been removed. The formal definition
of the max-MLA-reliable flow is as follow.

30 J.-F. Baffier et al.

Definition 2.8 (max-MLA-reliable flow). The max-MLA-reliable flow can
be defined as a solution of F ∗ = argmax

F∈F
CF .

For any h and k, we know that the k-effectiveness of max-h-route flow value
cannot be larger than the max-MLA-reliable flow value by their definition. Also,
it is shown that the max-MLA-reliable flow value cannot be larger than the
max-MLA-robust flow value.

Theorem 2.2. The algorithm for the max-(k + 1)-route flow problem in [3] is
also a (k + 1)-approximation algorithm for the max-MLA-robust flow and the
max-MLA-reliable flow problems with k edge failures.

3 Route-Parametric Multiroute Flow Problem

In this section, we will apply the concept of parametric optimization to the max-
h-route flow. The parameter we will consider in this section is the route number
h. In other words, we will propose an algorithm to find a function taking a value
h ≤ R+ to max-h-route flow value.

Define a network Gx as (V,E, cx) when cx(e) := min(c(e), x). One of the
most important elements of our algorithm is a parametric function F that takes
a value x to the max-flow value of Gx. We will discuss its properties, and propose
an algorithm to find this function in Subsect. 3.1. In Subsect. 3.2, we will extend
the notation of the max-h-route flow to the case when h can be non-integer, and
use the result of Subsect. 3.1 as a part to solve our problem.

3.1 Parametric Function F
The parametric function F is first studied in [5], where the following property
is shown.

Proposition 3.1 (Piecewise-Linear Property of F [5]). Consider a net-
work G(V,E, c) such that c(e) ≤ {1, . . . , U} for all e ≤ U . The parametric func-
tion F is linear piecewise with at most |E|2U line segments.

Recall Pk the max-MLA-robust flow value with k edge failures defined in
Subsect. 2.2. In Theorem 3.1, we give the relationship between F and those Pk.

Theorem 3.1. F(x) = min
0�i�α

(ix + Pi).

Proof. Consider a cut X ≤ C with a cutset E = {e0, . . . , ep} such that c(e0) �
c(e1) � · · · � c(ep). Denote CX(x) a capacity of this cut in the graph Gx. We
know that CX(x) =

⎣

i:c(ei)<x

c(ei) +
⎣

i:c(ei)�x

x.

Recall Definition 2.1 where we denote
⎣p

i=φ c(ei) as αφ(X). Then, we get
CX(x) = (p + 1)x = αp+1(X) + (p + 1)x if x � c(ep), CX(x) = αφ(X) + Φx if
c(eφ) < x � c(eφ−1), and CX(x) = α0(X) otherwise.

Parametric Multiroute Flow and Its Application to Robust Network 31

Next, we show that the step function shown above can be simplified to
CX(x) = min

0�j�p+1
(αj(X) + jx). Let cφ(X) < x � cφ−1(X). We know from the

previous paragraph that CX(x) = αφ(X) + Φx. To prove that αφ(X) + Φx =
min

0�j�p+1
(αj(X) + jx), we will show that αφ(X)+Φx � αj(X)+jx for any j ≥= Φ.

For j < Φ, αj(X) + jx =
p⎤

i=j

c(ei) + jx =
p⎤

i=φ

c(ei) +
φ−1⎤

i=j

c(ei) + jx

�
p⎤

i=φ

c(ei) + (Φ − j)x + jx = αφ(X) + Φx.

For j > Φ, αj(X) + Φx =
p⎤

i=j

c(ei) + jx =
p⎤

i=j

c(ei) + (j − Φ)x + Φx

�
p⎤

i=j

c(ei) +
j−1⎤

i=φ

c(ei) + jx = αφ(X) + Φx.

We can also use the similar argument to show the case when x > c(e0) and
x � c(ep). Since αi(X) = 0 for i � p, we can further simplify the formula to
CX(x) = min

j�0
(αj(X) + jx).

It is easy to see that F(x) = min
X∈C

CX(x). Hence,

F(x) = min
X∈C

min
i�0

(ix + αi(X)) = min
i�0

⎧

ix + min
X∈C

αi(X)
⎪

= min
i�0

(ix + Pi) .

Since Pi = 0 for i � σ, we get F(x) = min
0�i�α

(ix + Pi). ��

By Theorem 3.1, we know that the parametric function F is a minimum of
σ + 1 linear functions. All of them have a non-negative slope, and one of them
is constant. We get the following corollary from that.

Corollary 3.1. The parametric function F is linear piecewise, continuous, and
derivative non-increasing. The function contains at most σ + 1 line segments,
and there exists x∗ such that F is constant on [x∗,∀).

Corollary 3.1 improve Proposition 3.1 in two aspects. We improve the upper
bound for the number of line segments from |E|2U to σ + 1, and our result
does not need the restriction that the edge capacities have to be an integer less
than U .

It is shown in [11,15] that a function with such properties can be computed
efficiently using a method called ES algorithm. The computation time is equal
to O(pT) when p is the number of line segments and T is the computation time
of a function F at a specific point x. In our setting, T is the computation time
of max-flow, and p is σ + 1. Hence, we get the following corollary.

32 J.-F. Baffier et al.

Corollary 3.2. Using ES algorithm, we can find the function F in O(σmn).

For the remaining part of this paper, we will assume that the output of ES
algorithm is S = {(ε0,F(ε0)) , . . . , (εq,F(εq))}, when 0 = ε0 < ε1 < · · · < εq,
and the derivation of F at ε−

i is not equal to the derivation at ε+
i for 1 � i � q.

We call the pair (εi,F(εi)) a breaking point.
Those breaking points can fully described our function F , because we know

that

F(x) =

⎨
F(εi) + F ≤(ε+

i)(x − εi) for εi � x � εi+1,

F(εq) for x � εq,

when F ≤(ε+
i) := F(λi+1)−F(λi)

λi+1−λi
. We can store the description in O(σ) memory as

we know from Corollary 3.1 that q � σ + 1.
Consider the example of the network in Fig. 1a. First, we will use a costly

method [6] based on direct computation of max-MLA-robust flow. By Definition
2.6, we know that P0 = 7, P1 = 3, P2 = 1, and P3 = 0. From Theorem 3.1, we
get F(x) = min (7, 3 + x, 1 + 2x, 3x) as shown in Fig. 1b. Second, we will obtain
an equivalent result by using our ES algorithm. At the initial phase, we calculate
a line segment at the points x = 0+ and x ∈ ∀. As a result, we get the lines
y = 3x and y = 7. Then, we find the intersection of those two functions. The
point is (73 , 7). We test if it is a breaking point of F by calculating F(73). If
F(73) = 7, the point (73 , 7) is the breaking point of F . Unfortunately, F(73) = 16

3 .
We compute the line corresponding to that point, and get the line y = 3 + x.
Next, we find the points where the line y = 3 + x intersects y = 3x and y = 7,
and get (1.5, 4.5) and (4, 7). By calculating F(1.5) and F(4), we know that
(1.5, 4.5) is not a breaking point, while (4, 7) is. We add the line corresponding
to F(1.5), that is y = 1 + 2x. Now, all the cut points are the breaking points of
F . The result that we get from ES algorithm is {(0, 0), (1, 3), (2, 5), (4, 7)}.

s t
2

1

4

(a)

x

F(x)

h = 1

h = 2h = 3

η1

η2

η3

0 2 4
0

2

4

6

P2

P1

P0

(b)

h

R(h)

h3

h2

h1

0 1 2 3
0

2

4

6

(c)

Fig. 1. (a) The network that we consider in this figure (b) the parametric function F
of the network (c) The function R taking the value h to the max-h-route flow value

Parametric Multiroute Flow and Its Application to Robust Network 33

3.2 Non-integer Parametric Multiroute Flow

Recall Definition 2.5 and Lemma 2.1. By the definition of function F , we can
imply from the definition that a max-h-route flow value is equal to v∗ if v∗ =
F(v∗

h) and v∗ > 0 for h < σ. When h � σ, we can obtain the max-h-route flow
value following the similar idea. The value is F(ε1) when h = σ, and it is 0 for
any h > σ. Define R as our desired output function, i.e. R is a function taking
h ≤ R+ to the max-h-route flow value. By Lemma 2.1 and Theorem 3.1, we get
the following result.

Theorem 3.2. For 1 � i � q, let hi := F(λi)
λi

. Also, for 0 � i � q, let μi :=

F ≤(ε+
i) := F(λi+1)−F(λi)

λi+1−λi
be a derivation of F at ε+

i , and τi := F(εi)−F ≤(ε+
i)εi.

R(h) =

⎩


⎟

hΦi

h−μi
for hi+1 < h � hi,

τq for 0 < h � hq,

0 for h > h1.

Proof. Recall from Theorem 3.1 that F(x) = min
0�i�α

(ix + Pi). Since Pi > 0

for i < σ and Pα = 0, there exists x∗ > 0 such that F(x) = σx + Pα = σx for
x � x∗. Thus, (ε1,F(ε1)) = (ε1, σε1), and h1 = σ. We know that F(h) = 0 for
h > h1 by the argument done previously in this subsection.

Recall from Lemma 2.1 that the max-h-route flow value is equal to hx if
hx = F(x). Our task is to find the point (x, hx) where the line hx cut the
function F(x). That is equivalent to the task of finding a value x such that
L(x) := F(x) − hx is equal to 0. When h < σ, the function is increasing for a
small x and decreasing after the derivation of F becomes less than h. When h
becomes larger, the point x such that F begin to decrease comes faster, and the
decrement are faster. Thus, the value x such that L(x) = 0 becomes smaller in
that case.

Consider the case when h = hi for some 1 � i � q. Since hi := F(λi)
λi

, we
know that hiεi = F(εi). Hence, the max-h-route flow is hiεi and the cut point
is (εi, hiεi).

When h = hq, the value x such that L(x) = 0 is εq. We know from the
previous paragraph that x will become larger for h < hq. By Corollary 3.2 and
the definition of breaking points, we know that F(x) = F(εq) = τq for all x � εq.
Hence, if h < hq, the point that the line hx cut F(x) is (x∗, τq) for some x∗.
The max-h-route flow is τq.

When hi+1 < h � hi, we know that the value x such that L(x) = 0 is in
between εi and εi+1. Because of that, the line hx cut the function F(x) at the
line segment linking (εi,F(εi)) and (εi+1,F(εi+1)). By some algebra, we know
that the line segment is μix + τi, and the cut point is (Φi

h−μi
, hΦi

h−μi
). Hence the

max-h-route flow is hΦi

h−μi
. ��

By Theorem 3.2, we also get the following corollary.

34 J.-F. Baffier et al.

Corollary 3.3. The function R taking the value h to max-h-route flow is hyper-
bolic piecewise with at most σ+1 hyperbolic segments. The function can be com-
puted in O(σmn).

Proof. From Corollary 3.2, we can get the set of breaking points of R in O(σmn).
Then, we can compute R from those breaking points in O(σ) as shown in
Theorem 3.2. ��

Using the result function we get from Corollary 3.3, we can compute the max
h-route flow value for any h in O(log σ). Those include the case when h = σ.
In [5], the max-h-route flow algorithm has been improved, but the algorithm still
need O(σmn) only to compute the max-σ-route flow in the worst case. Because
of this, we can say that our algorithm outputs more general results without
increasing the time complexity.

Consider the function F that we get in Fig. 1b. By Theorem 3.2, we get
h1 = 3, h2 = 5

2 , and h3 = 7
4 . Also, μ0 = 3, μ1 = 2, μ2 = 1, μ3 = 0, and τ0 = 0,

τ1 = 1, τ2 = 3, τ3 = 7. Hence, as shown in Fig. 1c, R(h) = 0 when h > 3,
R(h) = h

h−2 when 5
2 < h � 3, R(h) = 3h

h−1 when 7
4 < h � 5

2 , and R(h) = 7
when 0 < h � 7

4 .

4 Applications to Max-Flow with k Edge Failures

In this section, we apply the result of Sect. 3 to two variants of the max-flow prob-
lem, max-MLA-robust flow and max-MLA-reliable flow. Recall the parametric
function F defined in the previous section, we get the following results.

Corollary 4.1. If there exists a real number x such that kx + Pk = F(x), then
the max-

(
F(x)

x

)
-route flow value is equal to the max-MLA-robust flow and max-

MLA-reliable flow value with k edge failures.

Proof. Let h := F(x)
x . The cut point of lines y = hx and y = F(x) is (x, kx+Pk).

From Theorem 2.1, we know that the max-h-route flow value is kx+Pk. By our
definition of h-route flow, the amount of flow remaining after k edge attacks is
at least h−k

h (kx + Pk). We get

h − k

h
(kx + Pk) =

F(x)
x − k
F(x)

x

(kx + Pk) =
kx+Pk

x − k
kx+Pk

x

(kx + Pk) = Pk.

Hence, the max-h-route value is equal to max-MLA-robust flow value. Since the
max-MLA-reliable flow is in between max-MLA-robust flow and max-h-route
flow value, the max-MLA-reliable flow is also equal to that max-h-route flow
value. ��

Corollary 4.1 shows that the maximum multiroute flow is not only an approx-
imate result of two robust network problems as in [6], but it provides an exact
solutions for the problems if we can find an appropriate route number h. The only

Parametric Multiroute Flow and Its Application to Robust Network 35

weak point of the result is the requirement that there must be some real x such
that kx + Pk = F(x).

We perform a set of experiments to show that such x does exists in most
random network using the same setting as in [6]. We generate 100 networks with
|V | = 20 and |E| = 80. To have a network with higher source-sink connectivity,
each node is chosen with probability 1

|V | = 0.05 to be the tail endpoint of an edge.
Exceptions to this are the source node and sink node, where the probabilities
are 2

|V | = 0.1, and 0, respectively. Similarly, the probabilities that the source
node, the sink node, and the other nodes are chosen to be a head endpoint are
0, 2

|V | = 0.1, and 1
|V | = 0.05, respectively. The capacity of each edge was picked

uniformly at random between 0 and 20.
In 98 out of those 100 random networks, the requirement in Corollary 4.1 is

satisfied for all 0 � k � σ. For a larger graph, we also perform an experiment on
the case when |V | = 40, |E| = 160. We also get the similar result for that case,
as 98 out of 100 networks are satisfying the equation for all 0 � k � σ. Since the
value of max-MLA-reliable flow and max-MLA-robust flow are equal when the
requirement is satisfied, we can also imply from the experimental results that
those two values are equal in most of the random networks.

We also performed experiments on the graph where a small number of edges
had capacities that were larger than those of others. Let G = (V,E, c) be a net-
work used for the experiment mentioned in the previous paragraph. We modified
the network to G≤ = (V,E, c≤), where c≤(e) = c(e)h

20h−1 for 2 � h � 3. By doing this,
the capacity will follow a power-law distribution with h as the exponent [16].
As a result, we found that all those random networks with a power-law capacity
satisfy the equation for all 0 � k � σ.

5 Edge-Parametric Multiroute Flow Problem

In this section, we will consider a network such that the capacity of a given edge
e can be any real number, while the capacities of the other edges are fixed. From
here, h is a fixed integer. We call the edge e as parametric edge, and denote the
capacity of edge e as a variable z. We refer to αz

i (X), λz
i (X) as a value αi(X)

and λi(X) when the capacity of that parametric edge is equal to z. Also, we
denote Ce as the set of cuts containing the parametric edge e, and Ce := C \Ce.

Lemma 5.1. For any cut X ≤ Ce, αz
i (X) = min(α0

i−1(X), α0
i (X) + z), for any

i � 1 and αz
0(X) = α0

0(X) + z.

Proof. The first statement is obvious. To prove the second statement, let the
cut-set of X be {e0, e1, . . . , ep} ∃ {e} where c(e0) � c(e1) � · · · � c(ep) and
ei ≥= e for all i. We note that α0

i (X) =
⎣p

j=i c(ej).
If z � c(ei−1), then {e0, . . . , ei−2, e} will be the set of edges with the i largest

capacities. Hence, αz
i (X) =

⎣p
j=i−1 c(ej) = α0

i−1(X).
If z < c(ei−1), then {e0, . . . , ei−1} will be the set of edges of size i with the i

largest capacities. Hence, αz
i (X) =

⎣p
j=i c(ej) + z = α0

i (X) + z. ��

36 J.-F. Baffier et al.

Theorem 5.1. Let CM (z) be a value of a max-h-flow when the capacity of the
parametric edge is z. The function CM is (h + 1)-piecewise linear, continuous,
and derivative non-increasing. Also, there exists some z∗ such that the derivative
of CM is 0 for all z � z∗.

Proof. Let P z
i = min

X∈C
αz

i (X). We know from Lemma 5.1 that

P z
i = min

⎧

min
X∈Ce

(α0
i−1(X), α0

i (X) + z), min
X∈C

αi(X)
⎪

.

Let Ji := min
⎧

min
X∈Ce

α0
i−1(X), min

X∈C
αi(X)

⎪

, and Hi := min
X∈Ce

α0
i (X). We get

P z
i = min(Ji,Hi + z). By Definition 2.4, we know that CM (z) = min

0�i<h

(
hP z

i

h−i

)
.

Thus, CM (z) = min
⎧

J, min
0�i<h

[
h(Hi+z)

h−i

]⎪

, when J := min
0�i<h

(
hJi

h−i

)
. It is easy to

see that μi(z) := h(Hi+z)
h−i is a linear function of z. Since the function CM is the

minimum of those linear functions, we know that the function is (h+1)-piecewise
linear, continuous, and derivative non-increasing. As we know that the functions
μi is increasing, there exists some z∗ such that μi(z) � J for all i and z � z∗.
We get CM (z) = J for those z. ��

The theorem leads us to the following corollary.

Corollary 5.1. Using ES algorithm, the breaking points of function CM can be
found in O(h2mn).

Proof. As shown in Theorem 5.1, the function CM at most h + 1 line segments.
The calculation of CM (z) at a specific z is the computation of one max-h-route
flow value. By the algorithm in [5], we can compute the flow value in O(hmn).
Hence, it takes O(h2mn) to find all breaking points of CM . ��

Similar to Sect. 3, we can calculate CM (z) for a specific z from the set of
breaking points obtained from ES algorithm. Assume that the set is
{(ε0, CM (ε0)) , . . . , (εq, CM (εq))}. The calculation can be done as follows.

CM (z) =

⎨
(CM (εi+1) − CM (εi)) z−λi

λi+1−λi
, for εi � z � εi+1

CM (εq), for z � εq

6 Conclusion and Future Works

When we tune parameters in our network, the conventional way to evaluate
each parameter value is the amount of max-flow. However, the amount of max-
h-route flow can also be another design criteria, as it is an approximate value
of the max-flow when edges are attacked. We propose algorithms that help that
tuning in this work. The algorithms output a trade-off function between edge
capacity, route number h, and the max-h-route flow value.

Parametric Multiroute Flow and Its Application to Robust Network 37

In a specific class of network, we can prove that the max-h-route flow can be
an exact solution of max-flow with k edge attacks, if h is optimally chosen. Our
experimental results show that most of the random networks are in that class,
and we are currently finding their theoretical properties.

Acknowledgement. We would like to thank Prof. Abdel Lisser and anonymous
reviewers for giving us valuable comments during the course of this research.

References

1. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1955)

2. Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the STOC
2013, pp. 765–774 (2013)

3. Kishimoto, W.: A method for obtaining maximum multi-route flows in a network.
Networks 27(4), 279–291 (1996)

4. Bagchi, A., Chaudhary, A., Kolman, P., Sgall, J.: A simple combinatorial proof of
duality of multiroute flows and cuts. Technical report, Charles Univ. (2004)

5. Aggarwal, C., Orlin, J.B.: On multi-route maximums flows in networks. Networks
39(1), 43–52 (2002)

6. Baffier, J.-F., Suppakitpaisarn, V.: A (k + 1)-approximation robust network flow
algorithm and a tighter heuristic method using iterative multiroute flow. In: Pal,
S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 68–79. Springer,
Heidelberg (2014)

7. Minoux, M.: On robust maximum flow with polyhedral uncertainty sets. Optim.
Lett. 3(3), 367–376 (2009)

8. Lee, P.P., Misra, V., Rubenstein, D.: Distributed algorithms for secure multipath
routing. In: Proceedings of the INFOCOM 2005, vol. 3, pp. 1952–1963. IEEE (2005)

9. Kishimoto, W., Takeuchi, M.: A method for obtaining the maximum δ-reliable flow
in a network. IEICE Trans. Fundam. 81(5), 776–783 (1998)

10. Diallo, M., Gueye, S., Berthomé, P.: Impact of a varying capacity on the all pairs
2-route network flows. Electron. Notes Discrete Math. 35(3), 59–64 (2009)

11. Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record seg-
mentation in large shared databases. JACM 23(4), 619–635 (1976)

12. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in
computer vision. In: Proceedings of the ICCV 2007, pp. 1–8 (2007)

13. Aneja, Y.P., Chandrasekaran, R., Kabadi, S.N., Nair, K.: Flows over edge-disjoint
mixed multipaths and applications. Discrete Appl. Math. 155(15), 1979–2000
(2007)

14. Chandrasekaran, R., Nair, K., Anejac, Y., Kabadib, S.: Multi-terminal multipath
flows: synthesis. Discrete Appl. Math. 143, 182–193 (2004)

15. Hulgeri, A., Sudarshan, S.: Parametric query optimization for linear and piecewise
linear cost functions. In: Proceedings of the VLDB 2002, pp. 167–178 (2002)

16. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999)

The Dominating Set Polytope
via Facility Location

Mourad Bäıou1(B) and Francisco Barahona2

1 CNRS and Université Clermont II, Campus des Cézeaux, BP 125,
63173 Aubière Cedex, France

baiou@isima.fr
2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10589, USA

Abstract. In this paper we present an extended formulation for the
dominating set polytope via facility location. We show that with this for-
mulation we can describe the dominating set polytope for cacti graphs,
though its description in the natural node variables dimension has been
only partially obtained. Moreover, the inequalities describing this poly-
tope have coefficients in {−1, 0, 1}. This is not the case for the dominating
set polytope in the node-variables dimension. It is known from [1] that
for any integer p, there exists a facet defining inequality having coeffi-
cients in {1, . . . , p}. We also show a decomposition theorem by means
of 1-sums. Again this decomposition is much simpler with the extended
formulation than with the node-variables formulation given in [2].

1 Introduction

Let G = (V,A) be a directed graph, not necessarily connected, where each arc
and each node has a cost (or a profit) associated with it. Consider the follow-
ing version of the uncapacitated facility location problem (UFLP), where each
location v ∈ V has a weight w(v) that corresponds to the revenue obtained
by opening a facility at that location, minus the cost of building this facility.
Each arc (u, v) ∈ A has a weight w(u, v) that represents the revenue obtained
by assigning the customer u to the opened facility at location v, minus the cost
originated by this assignment. The goal is to select some nodes where facili-
ties are opened and assign to them the non selected node in such a way that
the overall profit is maximized. This version of the UFLP is called the prize-
collecting uncapacitated facility location (pc-UFLP). The following is a natural
linear relaxation of the pc-UFLP.

max
∑

(u,v)∈A

w(u, v)x(u, v) +
∑

v∈V

w(v)y(v) (1)

∑

(u,v)∈A

x(u, v) + y(u) ≤ 1 ≥u ∈ V, (2)

x(u, v) ≤ y(v) ≥(u, v) ∈ A, (3)

This work has been supported by project PICS05891, CNRS-IBM.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 38–49, 2014.
DOI: 10.1007/978-3-319-09174-7 4

The Dominating Set Polytope via Facility Location 39

x(u, v) ≥ 0 ≥(u, v) ∈ A, (4)
y(v) ≥ 0 ≥v ∈ V. (5)

Let P (G) be the polytope defined by (2)–(4), and let UFLP ∈(G) be the convex
hull of P (G) ∩ {0, 1}|V |+|A|. Clearly UFLP ∈(G) ∀ P (G).

Given a directed graph G = (V,A), a subgraph induced by the nodes v1, . . . , vr

of G is called a bidirected cycle if the only arcs in this induced subgraph are
(vi, vi+1) and (vi+1, vi), for i = 1, . . . , r, with vr+1 = v1. We denote it by BICr.
The first part of this paper is devoted to the study of UFLP ∈(G), when G is a bidi-
rected cycle. At first sight, the description of UFLP ∈(BICn) seems easy because
of the simple structure of BICn. We will show that we need to add the so-called
lifted g-odd cycle inequalities, to complete its description. These inequalities define
facets of UFLP ∈(BICn), and are valid for UFLP ∈(G) for any graph G. We also
give a linear time algorithm to separate these inequalities.

To complete the description of UFLP ∈(G) in a more general class of graphs,
we consider the graphs G = (V,A) that decompose by means of 1-sum. As a
consequence we obtain a complete description of UFLP ∈(G) when G can be
decomposed as 1-sums of bidirected cycles.

In the second part of this paper we discuss the consequences of these results
when applied to the dominating set problem. More precisely, let G = (V,E) be
an undirected graph. A subset D ∀ V is called a dominating set if every node of
V \ D is adjacent to a node of D. The minimum weight dominating set problem
(MWDSP) is to find a dominating set D that minimizes

∑
v∈V w(v), where w(v)

is a weight associated with each node v ∈ V . A natural linear relaxation of the
MWDSP is defined by the linear program below

min
∑

v∈V

w(v)x(v) (6)

x(N [v]) ≥ 1 ≥v ∈ V, (7)
x(v) ≥ 0 ≥v ∈ V, (8)
x(v) ≤ 1 ≥v ∈ V, (9)

where N [v] denotes the set of neighbors of v including it. Define DSP (G) to be
the convex hull of the integer vectors satisfying (7)–(9).

The MWDSP is a special case of the set covering problem. It is NP-hard even
when all the weights are equal to 1, this can be shown using a simple reduction
from the vertex cover problem. A large literature is devoted to this case and
many of its variants, for a deep understanding of the subject we refer to [3,4]. It
has been shown that when the weights are all equal to 1, the MWDSP is solvable
in many classes of graphs, a non-exhaustive list is cactus graphs, series-parallel
graphs, permutation graphs, cocomparability graphs (see Chap. 2 in [4] for more
classes). For the weighted case of the MWDSP we have a short list of graphs
where this problem can be solved in polynomial time, for threshold graphs [5],
for cycles [6] and for strongly chordal graphs [7]. Little is known from the point
of view of polyhedral approach and particularly few complete characterizations
of the polytope associated with the MDWSP are known. For the case of strongly

40 M. Bäıou and F. Barahona

chordal graph Farber [7] gives a primal-dual algorithm to solve the MWDSP
this shows that DSP (G) is defined by (7)–(9). DSP (G) has been described for
threshold graphs [5]. And it has been, first, characterized for cycle graphs in
[6] and later published in [1]. This result has also been established in [8] using
a different approach. One can also use the results related to the set covering
polytope [9–13], to cite a few, to establish new results for the MWDSP. The set
covering polytope is the convex hull of {x ∈ IRn : Ax ≥ 1, x ∈ {0, 1}n}, where
A is an m×n matrix with 0, 1 entries. For example, the polytope DSP (G) when
G is a cycle with n nodes coincide with the set covering polytope when A is the
C3

n circulant matrix. Recently in [14] a complete description of the set covering
polytope is established when A is the circulant matrix Ck

2k or Ck
3k, k ≥ 3.

We give an extended formulation via facility location to completely charac-
terize the DSP (G) when G is a cactus. This description has been studied in the
original dimension that is IR|V | in [1,6]. They developed several facet defining
inequalities for this case, and showed that this polytope has a more complicated
structure than the case when G is a cycle. Even with the 1-sum composition
developed in [2], the complete characterization of DSP (G) in cactus graphs has
not been found. The main difficulty reported in [1,6] is the description of the
polytope when restricted to the auxiliary graphs obtained after the decompo-
sition. In our work we show that with the extended formulation this task is
easy and allows us to completely describe this polytope in a higher dimension.
Moreover in [1,6], it has been shown that for any fixed integer p, there exist
a cactus G such that DSP (G) has a facet defining inequality with coefficients
1, . . . , p. In our description all the facets defining inequalities have coefficients in
{0,−1,+1}.

This paper is organized as follows. In Sect. 2, we give some useful definitions
and notations. Section 3 is devoted to the characterization of UFLP ∈(G) when G
is a bidirected cycle. In Sect. 4, we show how the results of the previous sections
apply to the dominating set polytope using a composition theorem. Finally, in
Sect. 5 we present the algorithmic consequences of our approach. In particular,
we devise the first polynomial time algorithm to solve the MWDSP in cacti. This
is done via a linear time separation algorithm of the inequalities we introduced.

2 Definitions and Notations

Recall that a bidirected cycle BICr of a directed graph G = (V,A) is a sequence
of nodes v1, . . . , vn in V and arcs (vi, vi+1), (vi+1, vi) in A, for i = 1, . . . , n,
where vn+1 = v1. The arcs of BICn are denoted by A(BICn). To simplify
the notation, we will denote the nodes of BICn by 1, . . . , n, and the arcs by
(i, i + 1) and (i + 1, i) for i = 1, . . . , n. When we use numbers i + j or i − j,
i, j ∈ {1, n}, the positive numbers are taken modulo n and the negative ones are
taken modulo −n. The number zero represents the node n. A bidirected path P
of the graph BICn is an ordered sequence of consecutive nodes of BICn, where
the arcs (i, i + 1) and (i + 1, i) of any two consecutive nodes i and i + 1 of P ,
are both considered in the path. Here i + 1 is taken modulo n. The size of P

The Dominating Set Polytope via Facility Location 41

is the number of its nodes minus one. Given a directed graph G = (V,A) its
intersection graph denoted by I(G) is obtained by associating a node for each
arc of A. Two nodes are adjacent if the tail of one of the corresponding arcs
coincides with the tail or the head of the other corresponding arc. It is easy to
see that I(BICn) consists of the following circulant graph G2n = (A(BICn), E),
where A = {a1, . . . , a2n} and the set of edges E consists of the edges {ai, ai+1}
and {ai, ai+2}, for i = 1, . . . , 2n; the indices are taken modulo 2n.

For a directed graph D = (V,A), and S ∀ V , we denote by δ+(S) the set
of arcs (u, v) ∈ A with u ∈ S and v ∈ V \ S. For a node v ∈ V we write δ+(v)
instead of δ+({v}). If there is a risk of confusion we use δ+G.

Given an undirected graph G = (V,E), a subset S ∀ V is called stable if
there is no edge between any pair of nodes of S. The convex hull of the incidence
vectors of the stable sets in G is called the stable set polytope and is denoted by
SSP (G). When each node v ∈ V has an associated weight w(v), the maximum
weight stable set problem (MWSSP) is to find a stable set S ∀ V maximizing∑

v∈S w(v). A set K ∀ V is called a clique if there is an edge between every pair
of nodes in K.

For a ground set U and a function f from U to IR, we use f(S) to denote
f(S) =

∑
a∈S f(a), whenever S ∀ U .

3 The Characterization of UFLP ′(BICn)

First we will give two families of valid inequalities for UFLP ∈(G), when G is any
directed graph.

Let G = (V,A) be any directed graph. Let BICr a bidirected cycle included
in G. The inequality below is called a bidirected cycle inequality and has been
introduced in [15],

∑

a∈A(BICr)

x(a) ≤
⌊

2|r|
3

⌋

. (10)

Now let us introduce the g-odd cycle inequalities. For any directed graph G =
(V,A), a simple cycle C is an ordered sequence v0, a0, v1, a1, . . . , ap−1, vp, where
v0 = vp and for i = 0, . . . , p−1, vi and ai are distinct nodes and arcs, respectively.
For i = 0, . . . , p − 1, the nodes vi and vi+1 are the endnodes of ai.

By setting ap = a0, we associate with C three more sets as below.

– We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also
the head of ai, 1 ≤ i ≤ p.

– We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also
the tail of ai, 1 ≤ i ≤ p.

– We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and
also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle will be called g-odd (generalized odd) if p+ |Ċ| (or
|Ċ| + |C̃|) is odd, otherwise it will be called g-even. A cycle C with Ċ = Ĉ = ∃
is a directed cycle. The set of arcs in C is denoted by A(C).

42 M. Bäıou and F. Barahona

Let C be a g-odd cycle. Now we define a set of arcs Ã(C) as follows. For each
node vi ∈ Ċ we have two cases. Let vi−1 and vi+1 be the two neighbors of vi

in C.

– If vi−1 and vi+1 are in C̃, we pick arbitrarily one arc from {(vi−1, vi), (vi+1, vi)}
and add it to Ã(C).

– If only one of the neighbors of vi is in C̃, say the node vj ∈ {vi−1, vi+1}. We
add (vj , vi) to Ã(C).

Once the lifting set Ã(C) has been defined, a lifted g-odd cycle inequality has the
form

∑

a∈A(C)

x(a) +
∑

a∈Ã(C)

x(a) −
∑

v∈Ĉ

y(v) ≤ |C̃| + |Ĉ| − 1
2

. (11)

One can easily show that this is a Gomory-Chvátal cut of rank one. Notice
that given a g-odd cycle C, we might have several lifting sets Ã(C), therefore
we might have several lifted g-odd cycle inequalities. Similar inequalities called
lifted odd cycle inequalities have been studied in [16–19].

The main result of this section is the following theorem.

Theorem 1. UFLP ∈(BICn) is described by the constraints (2)–(5), the bidi-
rected cycle inequality (10) with respect to BICn and the lifted g-odd cycle
inequalities (11).

The remainder of this section is devoted to prove this theorem. It is easy to
see that UFLP ∈(G) is full dimensional for any graph G. Now assume that

αx + βy ≤ ρ, (12)

is a valid inequality defining a facet of UFLP ∈(BICn). Let Fα,β = {(x, y) ∈
UFLP (G) ∩ {0, 1}|V |+|A| : αx + βy = ρ}. We will show that (12) is one of the
inequalities (2)–(5), (10) or (11). We assume in this section that (12) is different
from (2)–(5) and (10). We will recall this when needed. In the proof we will
implicitly use the following remark.

Remark 1. There exist always a feasible 0-1 solution in Fα,β that satisfies
inequalities (2)–(5) as a strict inequalities (not necessarily at the same time).
Otherwise (12) is one of the inequalities (2)–(5).

Now we give a series of technical lemmas that will be used in the discussion that
complete the proof in Sect. 3.1. For a detailed proofs see [20].

Lemma 1. We have α(u, v) ∈ {0, 1} for each (u, v) ∈ A(BICn) and β(u) ∈
{0,−1} for each u ∈ V (BICn).

Proof. The main idea of the proof is a transformation to the stable set polytope.
We add a slack variable to each inequality (2), then we eliminate the y’s variables
using the equations obtained from (2) after the additions of the slack variables. It
is not difficult to see that the convex hull of the 0-1 solutions in this new system is

The Dominating Set Polytope via Facility Location 43

exactly the stable set polytope of a graph H = (U,E). Each column corresponds
to a node in H, and two nodes are adjacent if there is some inequality so that the
two respective columns appear with non zero coefficients. We can observe that
this graph is quasi-line. Using the results in [21], we show that the inequalities
defining the stable set polytope in this new graph can have coefficients in {0, 1, 2}.
And we know that any valid inequality of UFLP ∈(G) can be obtained from a
valid inequality of that stable set polytope by eliminating the slack variables
using the equations obtained from (2). This yield to a valid inequality with
coefficients in {0, 1} for the x’s variables and with coefficients in {0,−1} for the
y’s variables. ⇒∅

The following four lemmas are easy to prove, see [20].

Lemma 2. We cannot have α(u, v) = 1 for all (u, v) ∈ A(BICn) and
β(u) = −1 for all u ∈ V (BICn).

Lemma 3. Let i be a node of BICn with β(i) = −1. Then α(i + 1, i) = α(i −
1, i) = 1.

Lemma 4. Let i be a node of BICn with β(i) = −1. If α(i, i − 1) = α(i −
1, i) = 1, then β(i − 1) = −1.

Lemma 5. Let i be a node of BICn with β(i) = −1. If α(i, i − 1) = 1, then
α(i, i + 1) = 1.

Lemma 6 below summarizes the implications of Lemmas 2, 3, 4 and 5.

Lemma 6. Let i be a node of BICn with β(i) = −1. Then the following assump-
tions hold

(a1) α(i + 1, i) = α(i − 1, i) = 1, and
(a2) α(i, i − 1) = α(i, i + 1) = 0.

Proof. (a1) is obtained from Lemma 3. Now if we suppose that (a2) is not true,
then Lemma 4 and Lemma 5 imply that α(u, v) = 1 for each (u, v) ∈ A(BICn)
and β(u) = −1 for each u ∈ V (BICn). But this contradicts Lemma 2. ⇒∅
Lemma 7. If α(i − 1, i) = 1 and β(i) = 0, then α(i, i + 1) = 1.

Proof. There is a vector x ∈ Fα,β with y(i − 1) + x(i − 1, i) + x(i − 1, i − 2) = 0.

– If y(i) = 1, we set x(i − 1, i) = 1 and violate the inequality; so y(i) = 0.
– If x(i, i + 1) = 0, then we can set y(i) = 1 and proceed as before; so

x(i, i + 1) = 1.
– If α(i, i+1) = 0, we set x(i, i+1) = 0 and proceed as before; so α(i, i+1) = 1.⇒∅
Lemma 8. Suppose that we are not dealing with the bidirected cycle inequality.
If α(i, i + 1) = α(i + 1, i) = 1 then α(i + 2, i + 1) = α(i − 1, i) = 0.

Proof. Assume i = 1. The proof is based on the statements below.

44 M. Bäıou and F. Barahona

– It follows from Lemma 6 that β(1) = β(2) = 0.
– It follows from Lemma 7 that α(2, 3) = α(1, n) = 1.
– Since this is not a bidirected cycle inequality, we assume that there is an index

k ≥ 2 such that:
• β(j) = β(j + 1) = 0, α(j, j + 1) = α(j + 1, j) = 1, for 1 ≤ j ≤ k.
• α(n, 1) = α(k + 2, k + 1) = 0.
• α(1, n) = α(k + 1, k + 2) = 1.

– There is a vector x ∈ Fα,β with y(k − 1) + x(δ+(k − 1)) = 0. We modify x as
below to obtain a vector that violates the inequality.
• If y(k) = 1 we just set x(k − 1, k) = 1.
• If y(k) = 0 and x(k, k + 1) = 0, we set y(k) = 1 and proceed as above.
• If y(k) = 0 and x(k, k +1) = 1, we set y(k +1) = x(k, k +1) = x(k +2, k +

1) = 0, and y(k) = x(k − 1, k) = x(k + 1, k) = 1. ⇒∅
Lemma 9. If α(i − 1, i) = α(i + 1, i) = 1, then β(i) = −1.

Proof. Suppose β(i) = 0. It follows from Lemma 7 that α(i, i−1) = α(i, i+1) =
1. This contradicts Lemma 8. ⇒∅
Lemma 10. We have at least one of the values α(i, i+1) or α(i+1, i) equal to
1, for each i = 1, . . . , n.

3.1 The Proof of Theorem 1

Let Gα be the graph induced by the arcs (i, j) ∈ A(BICn) with α(i, j) = 1,
we call this graph the support graph of (12). Recall that a bidirected path P of
a graph G = (V,A) is a sequence of nodes P = 1, 2, . . . , k with (i, i + 1) and
(i+1, i) are both in A, for i = 1, . . . , k −1. The size of P is k −1. We say that P
is maximal if we cannot extend it to a bidirected path from one of its endnodes.

Notice that by definition the support graph of any g-odd lifted cycle inequal-
ity satisfy the following three properties

– it contains a cycle as a subgraph,
– each maximal bidirected path is of size 1. Moreover, if P = i, i + 1 is such a

path, then (i − 1, i) and (i + 2, i + 1) do not appear, and
– if C is the lifted cycle and i a node in Ċ, then the support graph must contain

exactly one of the arcs (i−1, i) or (i+1, i) when both nodes i−1 and i+1 are
in C̃, it contains none of the arcs if both of these nodes are in Ĉ and finally
if, say i + 1 is in C̃, we must have the arc (i + 1, i).

Let us see that these properties are satisfied by Gα. Lemma 10 implies that Gα

contains at least one cycle as a subgraph. Choose any such a cycle and call it C.
Lemma 8 implies that each maximal bidirected path is of size one, and that for
any such bidirected path P = i, i + 1 the arcs (i − 1, i) and (i + 2, i + 1) are not
in Gα. Again Lemma 10 implies that (i, i − 1) and (i + 1, i + 2) belong to Gα.

Let i ∈ Ċ, and let i − 1 and i + 1 be the neighbors of i in Gα. Notice that
Gα must contain at most one of the arcs (i − 1, i) and (i + 1, i) since the size of
maximal bidirected path is one.

The Dominating Set Polytope via Facility Location 45

If both i − 1 and i + 1 are in Ĉ, then Lemma 9 implies that β(i − 1) = −1 =
β(i + 1), and using Lemma 6 we obtain that α(i − 1, i) = 0 = α(i + 1, i). So in
this case the arcs (i − 1, i) and (i + 1, i) are not in Gα.

Assume that i + 1 is in C̃ and that Gα contains none of the arcs (i − 1, i)
or (i + 1, i), that is α(i − 1, i) = α(i + 1, i) = 0. By definition α(i, i − 1) =
α(i, i + 1) = 1. Lemma 6 implies that β(i) = 0 and since i + 1 is in C̃, we must
have α(i+1, i+2) = 1 and then again Lemma 6 implies that β(i+1) = 0. We can
assume that there is a solution (x, y) ∈ Fα,β with x(i + 1, i) = 1, otherwise (12)
is the trivial inequality x(i +1, i) ≥ 0. Now if we set x(i, i + 1) and y(i +1) to 1;
x(i+1, i) and y(i) to 0 and possibly x(i−1, i) to 0, we obtain a feasible solution
that violates (12). Therefore, we must have exactly one of the arcs (i − 1, i)
or (i + 1, i) in Gα. Moreover, if the node i − 1 is in Ĉ, Lemma 9 implies that
β(i − 1) = −1, and Lemma 6 implies that α(i − 1, i) = 0, so (i − 1, i) is not an
arc of Gα.

The above discussion shows that the support graph Gα coincides with the
support graph of the lifted g-odd cycle inequality defined from C. Moreover,
from Lemma 6, each node i with β(i) = −1 must be in Ĉ. And from Lemma 9,
for each node i ∈ Ĉ we have β(i) = −1. For a g-odd cycle inequality it is easy
to find a 0-1 vector of UFLP ∈(BICn) that satisfies it with equation. Then we
have ρ ≥ (|Ĉ| + |C̃| − 1)/2. Now the proof of Theorem 1 is complete.

4 Application to the Dominating Set Polytope

Let G = (V,E) an undirected connected graph. The graph G is a cactus if each
edge of G is contained in at most one cycle of G. For example every tree is a
cactus. The main result of this section is a complete description of the domi-
nating set polytope DSP (G) in IR|V |+2|E| when G is a cactus. This description
can be seen as an extended formulation of DSP (G). We will show that with
this extended formulation, to obtain the polytope associated with a cactus, it
suffices to characterize the polytope associated with the maximal two-connected
components. Given an undirected graph G = (V,E). We say that G is a 1-sum
of G1 = (V1, E1) and G1 = (V1, E1) if |V1 ∩ V2| = 1, V = V1 ∪ V2, E = E1 ∪ E2.
Consider the following equalities obtained from (2).

∑

(u,v)∈A

x(u, v) + y(u) = 1 ≥u ∈ V. (13)

Define UFLP (G) to be the convex hull of the feasible 0-1 vectors satisfying
(13) and (3)–(5). This is the classical uncapacitated facility location polytope.
Now given an undirected graph G = (V,E), define the directed graph

⊂⊕
G =

(V,A) that have the same node-set as G, and its arc-set A is defined from E by
replacing each edge uv ∈ E by two arcs (u, v) and (v, u).

Lemma 11. For any undirected graph G = (V,E), the projection of UFLP (
⊂⊕
G)

onto the y’s variables is exactly DSP (G).

46 M. Bäıou and F. Barahona

Proof. We have to prove, DSP (G) = {y | there is a vector x such that (x, y) ∈
UFLP (

⊂⊕
G)}. First consider ȳ ∈ DSP (G). We have ȳ =

∑
αiy

i,
∑

αi = 1,
α ≥ 0, where {yi} are extreme points of DSP (G). Consider now a particular
vector yk. Let Dk = {u | yk(u) = 1}. For each v ∈ V \ Dk, there is at least
one of its neighbors in Dk, wv say. We set xk(v, wv) = 1. We set xk(i, j) =
0 for all other arcs (i, j) in

⊂⊕
G . Each vector (xk, yk) is an extreme point of

UFLP (
⊂⊕
G). So (x̄, ȳ) =

∑
αi(xi, yi) is a vector in UFLP (

⊂⊕
G). Consider now

(x̄, ȳ) ∈ UFLP (
⊂⊕
G). We have (x̄, ȳ) =

∑
αi(xi, yi),

∑
αi = 1, α ≥ 0, where

each vector (xi, yi) is an extreme point of UFLP (
⊂⊕
G). Then each vector yi is

the incidence vector of a dominating set Di, therefore it is an extreme point of
DSP (G). Then ȳ =

∑
αiy

i is a vector in DSP (G). ⇒∅
Theorem 2 [22]. Let D be a directed graph that is a 1-sum of D1 = (V1, A1)
and D2 = (V2, A2), with V1 ∩V2 = {u}. Let D∈

1 be the graph obtained from D1 by
replacing u with u∈, and D∈

2 is obtained from D2 by replacing u with u∈∈. Suppose
that the system

Az∈ ≤ b (14)

z∈
(
δ+D′

1
(u∈)

)
+ z∈(u∈) ≤ 1 (15)

describes UFLP ∈(D∈
1). Suppose that (14) contains the inequalities (2)–(5) except

for (15). Similarly suppose that

Cz∈∈ ≤ d (16)

z∈∈
(
δ+D′

2
(u∈∈)

)
+ z∈∈(u∈∈) ≤ 1 (17)

describes UFLP ∈(D∈
2). Also (16) contains the inequalities (2)–(5) except for

(17). Then the system below describes an integral polyhedron.

Az∈ ≤ b (18)
Cz∈∈ ≤ d (19)

z∈
(
δ+D′

1
(u∈)

)
+ z∈∈

(
δ+D′

2
(u∈∈)

)
+ z∈(u∈) ≤ 1 (20)

z∈(u∈) = z∈∈(u∈∈). (21)

Thus the theorem below follows from Theorem 1 and Theorem 2.

Theorem 3. If G is a cactus, then UFLP ∈(
⊂⊕
G) is described by the constraints

(2)–(5), the bidirected cycle inequalities (10), and the lifted g-odd cycle inequal-
ities (11).

UFLP (
⊂⊕
G) is a face of UFLP ∈(

⊂⊕
G). From Lemma 11, DSP (G) is a projec-

tion of UFLP (
⊂⊕
G). Therefore we have an extended formulation for DSP (G).

The Dominating Set Polytope via Facility Location 47

5 Algorithmic Consequences

In [1] the authors give the first polynomial algorithm to solve the minimum
weighted dominating set problem (MWDSP) in a cycle. They showed that the
separation of the inequalities defining the dominating set polytope in a cycle
can be done in O(n2). Below we will show that the separation of our inequalities
can be done in linear time. From Theorem 3 it suffices to develop a polynomial
time algorithm to solve the separation problem associated with inequalities (10)
and (11). Recall that

⊂⊕
G can be decomposed by means of 1-sum into bidirected

cycles and bidirected paths of size one. The number of bidirected cycles is at
most

n

3
, where n is the number of nodes of G. It follows that one can easily

introduce the bidirected cycle inequalities (10) in any linear program. Therefore
we only need to solve the separation problem for the lifted g-odd inequalities
(11) for each component of

⊂⊕
G that is a bidirected cycle.

Separating Lifted g-Odd Inequalities in a Bidirected Cycle. Given a
vector (x, y) we want to verify if there is a lifted g-odd cycle inequality (11)
violated by (x, y) if there is any.

Theorem 4. The g-odd lifted cycle inequalities can be separated in linear time
for bidirected cycles.

Proof. A lifted g-odd cycle inequality (11) can also be written as
∑

a∈A(C)

(1 − 2x(a)) −
∑

a∈Ã(C)

2x(a) +
∑

v∈Ĉ

(2y(v) − 1) ≥ 1. (22)

Thus we look for a cycle that violates (22). For that we create a directed
graph D∈ = (V ∈, A∈) as follows. For every arc (i, i + 1) and (i + 1, i) we create a
node in D∈. The arcs in A∈ are as below.

– From (i, i+1) to (i+1, i+2) we create an arc with weight 1− 2x(i+1, i+2)
and label “odd.”

– From (i, i + 1) to (i + 2, i + 1) we create an arc with weight 2y(i + 1) − 2x(i +
2, i + 1) and label “even.”

– From (i+1, i) to (i+1, i+2) we create an arc with weight 1− 2x(i+1, i+2)
and label “odd.”

– From (i+1, i) to (i+2, i+1) we create an arc with weight 1− 2x(i+2, i+1)
and label “odd.”

– From (i, i − 1) to (i + 1, i + 2) we create an arc with weight 2 − 2x(i, i + 1) −
2x(i + 1, i) − 2x(i + 1, i + 2), and label “even.” This arc corresponds to the
case when either (i, i + 1) or (i + 1, i) is in the lifting set Ã(C).

Then we look for a minimum weight directed cycle with an odd number of odd
arcs in D∈. If the weight of such a cycle is less than one, we have found a violated
inequality. Now we give the details of how to find a minimum weight directed

48 M. Bäıou and F. Barahona

cycle with an odd number of odd arcs. We pick and index i, and remove the
arcs entering (i, i + 1) and (i + 1, i). We add an extra node s and connect it to
(i, i + 1) and (i + 1, i) with even arcs of weight zero. For each node v in D∈ let
fo(v) (resp. fe(v)) be the weight of a shortest path from s to v having an odd
(resp. even) number of odd arcs. We set fe(s) = 0, fo(s) = fo(v) = fe(v) = ∞
for every other node v in D∈. We call the labels of s permanent and all others
temporary. For each arc (u, v) we denote by w(u, v) its weight. Then for a node
v such that all its predecessors have permanent labels we update its labels as
below.

fo(v) = min
{

minu{fo(u) + w(u, v) : (u, v) is even},

minu{fe(u) + w(u, v) : (u, v) is odd}
}

fe(v) = min
{

minu{fo(u) + w(u, v) : (u, v) is odd},

minu{fe(u) + w(u, v) : (u, v) is even}
}

.

Then the labels of v are called permanent, and we continue. Once all labels are
permanent, we use the arcs entering (i, i + 1) and (i + 1, i) to find a shortest
directed cycle with an odd number of odd arcs and including either (i, i + 1) or
(i + 1, i). Next we have to consider the case when neither (i, i + 1) nor (i + 1, i)
is in the shortest cycle. This is when the arc from (i, i − 1) to (i + 1, i + 2) is
part of the shortest cycle. For that we repeat the same procedure with i∈ = i+1.
Since the indegree of each node in D∈ is at most three, the labels are computed
in constant time for each node. Therefore this is a linear time algorithm. ⇒∅

References

1. Bouchakour, M., Contenza, T.M., Lee, C.W., Mahjoub, A.R.: On the dominating
set polytope. Eur. J. Comb. 29(3), 652–661 (2008)

2. Bouchakour, M., Mahjoub, A.R.: One-node cutsets and the dominating set poly-
tope. Discrete Math. 165–166(15), 101–123 (1997)

3. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Monographs and Textbooks in Pure and Applied Mathematics. Taylor & Francis,
Boca Raton (1998)

4. Haynes, T., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics.
Monographs and Textbooks in Pure and Applied Mathematics, vol. 2. Taylor &
Francis, Boca Raton (1998)

5. Mahjoub, A.R.: Polytope des absorbants dans une classe de graphe a seuil. North-
Holland Math. Stud. 75, 443–452 (1983)

6. Bouchakour, M.: I: Composition de graphes et le polytope des absorbants, II: Un
algorithme de coupes pour le problème du flot à coût fixes. Ph.D. thesis, Université
de Rennes 1, Rennes, France, December 1996

7. Farber, M.: Domination, independent domination, and duality in strongly chordal
graphs. Discrete Appl. Math. 7(2), 115–130 (1984)

8. Saxena, A.: Some results on the dominating set polytope of a cycle. GSIA Working
paper 2004-E28 (2004)

The Dominating Set Polytope via Facility Location 49

9. Cornuéjols, G., Sassano, A.: On the 0, 1 facets of the set covering polytope. Math.
Program. 43, 45–55 (1989)

10. Balas, E., Ng, S.M.: On the set covering polytope: I. All the facets with coefficients
in 0, 1, 2. Math. Program. 43, 57–69 (1989)

11. Balas, E., Ng, S.M.: On the set covering polytope: II. Lifting the facets with coef-
ficients in 0, 1, 2. Math. Program. 45, 1–20 (1989)

12. Cornuéjols, G., Novick, B.: Ideal 0, 1 matrices. J. Comb. Theory Ser. B 60(1),
145–157 (1994)

13. Sánchez-Garćıa, M., Sobrón, M., Vitoriano, B.: On the set covering polytope: facets
with coefficients in {0, 1, 2, 3}. Ann. Oper. Res. 81, 343–356 (1998)

14. Bianchi, S., Nasini, G., Tolomei, P.: The minor inequalities in the description of
the set covering polyhedron of circulant matrices. Preprint (2012)

15. Avella, P., Sassano, A., Vasilév, I.: Computational study of large-scale p-median
problems. Math. Program. 109, 89–114 (2007)

16. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program.
5, 199–215 (1973)

17. Cornuejols, G., Thizy, J.M.: Some facets of the simple plant location polytope.
Math. Program. 23(1), 50–74 (1982)

18. Cho, D.C., Johnson, E.L., Padberg, M., Rao, M.R.: On the uncapacitated plant
location problem. I. Valid inequalities and facets. Math. Oper. Res. 8(4), 579–589
(1983)

19. Cho, D.C., Padberg, M.W., Rao, M.R.: On the uncapacitated plant location prob-
lem. II. Facets and lifting theorems. Math. Oper. Res. 8(4), 590–612 (1983)

20. Bäıou, M., Barahona, F.: Simple extended formulation for the dominating set poly-
tope via facility location. IBM Research Report RC25325t (2012)

21. Eisenbrand, F., Oriolo, G., Stauffer, G., Ventura, P.: The stable set polytope of
quasi-line graphs. Combinatorica 28(1), 45–67 (2008)

22. Bäıou, M., Barahona, F.: On the integrality of some facility location polytopes.
SIAM J. Discrete Math. 23(2), 665–679 (2009)

Solving Graph Partitioning Problems
Arising in Tagless Cache Management

Sandro Bartolini, Iacopo Casini, and Paolo Detti(B)

Dipartimento di Ingegneria dell’Informazione Scienze Matematiche,
University of Siena, Siena, Italy

{bartolini,detti}@dii.unisi.it,
casiniaco@gmail.com

Abstract. The instruction cache is a critical component in any micro-
processor. It must have high performance to enable fetching of instruc-
tions on every cycle. In this paper, we consider an optimization problem
arising in the management of a new hybrid hardware and linker-assisted
approach for cache memory management. A graph partitioning formula-
tion is presented and different ILP formulations are proposed, obtained
by strengthening and/or relaxing constraints and by reducing the num-
ber of integer variables. The formulations are tested on large benchmarks
(with thousands of nodes and edges) arising from real applications.

Keywords: Cache memory · Graph partitioning · Integer programming

1 Introduction and Problem Description

One big technological constraint which since many years affects microprocessor
and computer systems design is known as the memory wall [11]: CPUs are much
faster than the main memory speed. Cache memories are adopted just to address
this problem. They must have high performance to enable fetching of instructions
on every cycle and, because of that, consume a big amount of energy and occupy
significant space on chip, which in turn determines their building cost. In general,
the more a given cache is able to capture the largest portion of the used memory
space, the faster access latency the processor perceives or, from a design point of
view, the smallest (and less energy hungry) cache module can be used to match
a fixed performance/energy objective.

Therefore, numerous hardware and software solutions have been proposed to
improve the cache ability to serve a higher fraction of the main memory space
or to limit its power consumption.

As cache memories are much smaller than main memory, each of their
elementary locations (blocks) can accommodate many memory blocks in a
mutually exclusive fashion. For instance, if the cache is 16 kByte, organized in 32-
byte blocks (512 blocks), and main memory is 512 MByte (about 16 millions of
blocks), at a given time each cache block can host one of the 32768 (16 mil-
lions/512) memory blocks. For this reason, along with the data, the cache needs
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 50–61, 2014.
DOI: 10.1007/978-3-319-09174-7 5

Solving Graph Partitioning Problems Arising in Tagless Cache Management 51

to maintain also information about which memory block is stored, i.e.: “tag”
information. In a cache, tags constitute auxiliary overhead chip area and energy
consumption, needed for correct operation. Recently, a special cache has been
proposed [8] in which, under some conditions and hypotheses on the software,
tag accesses can be avoided at all, with a great benefit (more than 50 %) in
cache power consumption. Such conditions and hypotheses dictate that, accord-
ing to the proposed cache hardware features, the software (memory content)
needs to be split into a few special tagless regions (e.g.: eight 4-kByte regions
for a 32 kByte cache) where the most used instructions need to be stored. When
accessing these tagless regions, tag checks can be typically omitted. To avoid
some intrinsic overheads and get the most out of this scheme, we have to:

– fill tagless regions carefully, privileging frequently used instruction groups
(named basic-blocks);

– limit as much as possible both successive access to different tagless regions
and successive accesses to tagless and non-tagless memory regions.

The behavior of a running application determines the access pattern to basic
blocks (BBs), and thus to regions. A BB is a sequence of consecutive instructions
ending with a jump instruction, and not having other jumps inside. Hence, BBs
are executed sequentially and can have various lengths. The exact access pattern
of an application run is represented by a graph called the Control Flow Graph
(CFG), a weighted directed graph where nodes correspond to BBs and weights
on edges between two BBs represent the number of times program execution
jumps from the predecessor BB to the successor BB.

In the exposed scenario, the limitation of the overheads of the tagless cache
can be achieved with a careful assignment of BBs to available tagless regions,
taking into account the CFG and the following qualitative criteria:

(c1) We want to spend as much time as possible executing instructions from
a tagless region. Therefore, nodes in CFG, i.e., basic blocks, having incoming
edges with high weights (the sum of the weights of the incoming edges in a given
node is called the execution count of the node) should be preferred over those
with edges with low weights.
(c2) We want to minimize switching amongst tagless regions, and at a more
limited extension to/from BBs outside tagless regions, as this induces overhead
due to partial cache flushing. Hence, BBs connected by edges with high weights
should be preferably kept in the same tagless region.
(c3) We want to fill the tagless regions as much as possible to maximize the tag-
less accessing. This poses further challenges as, for instance, BBs have different
sizes and tagless regions can be filled using leftover BBs that do not significantly
impact the other two goals.

Another phenomenon, called leeway management, poses further challenges
as the compiler increases the size of a basic block, according to the basic blocks
it can possibly jump to that are allocated far, e.g., in another tagless region
or outside any tagless region. Such information cannot be derived by the CFG,

52 S. Bartolini et al.

which represent only one sample run of the application, but by a static graph,
provided by the compiler, which exposes a directed edge for any possible jump
between BBs. More precisely, the size of a BB i decreases with the number of
successors of i in the static graph, that are assigned to the same tagless region.

In this paper, a problem arising in the management of tagless cache memo-
ries is addressed. The problem can be formulated as a graph partitioning prob-
lem with side constraints and features. Different ILP formulations are proposed,
obtained by strengthening and/or relaxing constraints and by reducing the num-
ber of integer variables. Some theoretical results are presented that allow to com-
pare the different formulations. The formulations are tested on large benchmarks
(with thousands of nodes and edges) arising from real applications. Computa-
tional results show that optimal or near optimal solutions can be achieved by
using a state-of-the-art mathematical programming solver.

The paper is organized as follows. In Sect. 2, results from the literature are
presented. In Sect. 3, the problem is formally defined and an ILP formulation
is presented. In Sect. 4, other ILP formulations are presented and a theoreti-
cal comparative analysis is performed. Section 5 reports on the computational
experiments performed on real world instances. Finally, conclusions follow.

2 Literature Review

The problem addressed in this paper generalizes a problem known in the liter-
ature as Graph Partitioning (GP) [6]. In GP the vertex set of a node-weighted
and arc-weighted graph is to be partitioned into k disjoint clusters, such that the
sum of the weights of the nodes belonging to the same cluster does not exceed a
given value F , and the sum of the arc weights within the clusters is maximized
(or equivalently the sum of the arc weights between different clusters is mini-
mized). As it will be clear later the tagless cache management problem addressed
in this paper can be formulated as a GP problem with additional constraints and
features.

Graph partitioning is NP-complete [6] and, hence, the tagless cache man-
agement problem is NP-complete, too. GP has several applications arising in a
wide area of applications, such as compiler design [7], VLSI (Very Large Scale
Integration) design [2], qualitative data analysis [3], finite element computation
[4] and manufacturing systems [1]. Branch-and-cut and branch-and-bound [10]
algorithms have been presented in the literature for solving GP problems. In [7],
a branch-and-cut algorithm has been proposed that includes cuts to reduce the
symmetric nature of the suggested problem formulation. In [4], a study of classes
of cutting planes for the GP problem is presented, and in [5] a computational
study is proposed. In [9], a branch-and-price method is presented.

The tagless cache management problem addressed in this paper has been
first introduced in [8]. In the same paper, a constructive four-phase heuristic
algorithm is proposed, that, in our experiments, is used to provide a starting
feasible solution to the branch-and-cut algorithm.

Solving Graph Partitioning Problems Arising in Tagless Cache Management 53

3 Problem Definition and Formulations

Let G = (V,A) be the Control Flow Graph introduced in Sect. 1. For each BB,
a node i exists in V . An edge (i, j) exists in A, if the execution of BB j passes
through the execution of BB i. A positive weight wij is associated to each edge
(i, j) ∈ A, corresponding to the number of times the execution passes from
BB i and BB j. A weight vi and a gross size si are associated to each node
i ∈ V , where vi correspond to the size of node i times its execution count, i.e.,
vi = si

∑

(j,i)∈δ−(i)

wji (in which δ−(i) denotes the set of edges in A entering into

node (i), and si is the size of node i, when no size reduction occurs. In fact, as
explained in Sect. 1, the size of a given node i can be reduced if its successors in
the static graph provided by the compiler, are assigned to the same tagless region
of i. Let H = (V,E) denote the static graph. H is defined on the same node set
V of G. An edge (i, j) exists in E, if it is possible to jump from BBs i and j,
i, j ∈ V . A weight aij ≤ 0 is associated to each edge (i, j) ∈ E, representing the
size reduction occurring to node i when node j is assigned to the same cluster
of i. Let C = {1, . . . , K} denote the set of tagless regions, called clusters in the
following, and let Dk be the size of cluster k ∈ C. Let σ be an assignment of the
nodes in V to the clusters in C, and let Sk be the set of nodes in V assigned to
the cluster k ∈ C. Then, the net size of a node i ∈ Sk is defined as

si −
∑

j∈Sk:(i,j)∈E

aij . (1)

Moreover, given an edge (i, j) ∈ A, we say that:

– (i, j) is an inter-cluster edge if nodes i and j are assigned to different clusters
in σ;

– (i, j) is an outbound edge if node i is assigned to a cluster and j is not assigned
to any cluster in σ.

A feasible solution of the tagless cache management problem is an assignment
of nodes of V to the clusters in C, in a such way that the sum of the net sizes of
the nodes assigned to each cluster k does not exceed the capacity Dk. According
to the criteria c1, c2 and c3, the tagless cache management problem consists in
finding a feasible assignment of nodes to the clusters in such a way that:

– the sum of the weights of the nodes assigned to the clusters is maximized;
– the sum of the weights of inter-cluster and outbound edges is minimized.

3.1 Integer Linear Programming Formulations

In this section, Integer Linear Programming models for the tagless cache man-
agement problem are presented. In the proposed models, the objectives listed at
the end of the previous section are combined into a single function by introducing
suitable weights.

54 S. Bartolini et al.

Let
xik be a binary variable equal to 1 if node i is assigned to cluster k ∈ C, and 0
otherwise;
yij be a binary variable associated to edge (i, j) ∈ A, equal to 1 if nodes i and
j are assigned to different clusters (i.e., if (i, j) is an inter-cluster edge), and 0
otherwise;
zij be a binary variable associated to edge (i, j) ∈ A, equal to 1 if node i belongs
to a cluster and j does not belong to any cluster (i.e., if (i, j) is an outbound
edge), and 0 otherwise;
hijk be a binary variable associated to edge (i, j) ∈ E, i.e., belonging to the
static graph H, equal to 1 if nodes i and j are assigned to the same cluster
k ∈ C, and 0 otherwise.

An Integer Linear Programming formulation for the problem, denoted as
ILP1, is as follows.

max
∑

i∈V

K∑

k=1

vixik − α
∑

(i,j)∈A

wijyij − β
∑

(i,j)∈A

wijzij (2)

∑

i∈V

sixik −
∑

(i,j)∈E

aijhijk ∈ Dk ≤k ≥ C (3)

K∑

k=1

xik ∈ 1 ≤i ≥ V (4)

hijk ∈ xik ≤(i, j) ≥ E ≤k ≥ C (5)
hijk ∈ xjk ≤(i, j) ≥ E ≤k ≥ C (6)

yij + zij ∈ 1 ≤(i, j) ≥ A (7)
xik + xjh − yij ∈ 1 ≤(i, j) ≥ A ≤k ≥ C ≤h ≥ C, k �= h (8)

zij −
K∑

k=1

xik +
K∑

h=1

xjh ≥ 0 ≤(i, j) ≥ A (9)

xik, hijk, yij , zij ≥ {0, 1} (10)

According to the goals listed in Sect. 1, the objective function (2) is composed
of three terms: the total value of the nodes assigned to the clusters, the sum
of the weights wij of the inter-cluster edges (i, j), and the sum of the weights
wij of the outbound edges (i, j). The last two terms of the objective function
are weighted by coefficients α and β, respectively, with α, β ≤ 0. Constraints (3)
assure that the total size of nodes assigned to cluster k can not exceed the cluster
size Dk. Observe that, when assigned to cluster k, the size of node i is equal to
the net size as defined in relation (1). Constraints (4) state that each node can
be assigned to at most one cluster. For each edge (i, j) ∈ E, Constraints (5) and
(6) impose that hijk can be 1 only if node i and node j are assigned to cluster k.

Constraints (7) state that, for each edge (i, j) ∈ A, variables yij and zij can
not be 1 at the same time. Constraints (8) force the variable yij to be 1 if nodes
i and j belong to different clusters. Constraints (9) force the variable zij to be

Solving Graph Partitioning Problems Arising in Tagless Cache Management 55

1 if node i belongs to a cluster (i.e.,
K∑

k=1

xik = 1) and node j does not belong to

any cluster (i.e.,
K∑

k=1

xjk = 0).

4 Constraint Reduction and Strengthening and Variable
Redefinition

In this section, new and stronger formulations for the problem are proposed.

4.1 Constraint Reduction and Strengthening

In the following we show that Constraints (7) are redundant. At this aim, observe
that, Constraints (8) force the variable yij to be bigger than or equal to 1 only
if two variables xik and xjh equal to 1 exist, with k ≥= h (i.e., if the nodes i
and j are assigned to different clusters). Similarly, in Constraints (9), variable

zij is forced to be bigger than or equal to 1 only if
K∑

k=1

xik = 1 and
K∑

k=1

xjk = 0

(recall that, by (4),
K∑

k=1

xik ≤ 1 for all k ∈ C and i ∈ N). As a consequence,

Constraints (8) and (9) imply that zij is forced to be 1 if and only if yij is 0.
On the other hand, since the objective function coefficients of variables yij and
zij are all positive, yij and zij will be 1 in an optimal solution only if they are
forced. Hence, Constraints (7) are redundant.
Constraints (8) can be strengthened as explained in the following. Since∑

h∈C h∈=k

xjh ≤ 1, Constraints (8) can be replaced by the following set of stronger

constraints
xik +

∑

h∈C h∈=k

xjh − yij ≤ 1 ∀(i, j) ∈ A ∀k ∈ C. (11)

Observe that, from a linear relaxation point of view, Constraints (11) are stronger
than Constraints (8) and are smaller in number of a factor K − 1. By the
above discussion, it follows that a new ILP formulation for the problem, in
the following denoted as ILP2, reads as:

max
∑

i∈V

K∑

k=1

vixik − α
∑

(i,j)∈A

wijyij − β
∑

(i,j)∈A

wijzij (12)

∑

i∈V

sixik −
∑

j∈V :(i,j)∈E

aijhijk ∈ Dk ≤k ≥ C (13)

K∑

k=1

xik ∈ 1 ≤i ≥ V (14)

hijk ∈ xik ≤(i, j) ≥ E ≤k ≥ C (15)
hijk ∈ xjk ≤(i, j) ≥ E ≤k ≥ C (16)

56 S. Bartolini et al.

xik +
∑

h∈C h∧=k

xjh − yij ∈ 1 ≤(i, j) ≥ A ≤k ≥ C (17)

zij −
K∑

k=1

xik +
K∑

h=1

xjh ≥ 0 ≤(i, j) ≥ A (18)

xik, hijk, yij , zij ≥ {0, 1} (19)

In the following lemma, a relation between the solutions of the linear relaxations
of ILP1 and ILP2 is established.

Lemma 1. Let zLP1 and zLP2 be the optimal solution values of the linear relax-
ations of ILP1 and ILP2, respectively. Then

zLP2 ≤ zLP1 .

Proof. Recall that ILP2 has been obtained from ILP1 by replacing Constraints
(8) with (17) and by relaxing Constraints (7). Since Constraints (17) are stronger
than (8), the thesis can be simply proved by showing that Constraints (7) are
satisfied by the optimal solution, say (x∗, h∗, y∗, z∗), of the linear relaxation of
ILP2. By Constraints (17) and (18), we have

yij ≤ xik +
∑

h∈C h∈=k

xjh − 1

and

zij ≤
K∑

k=1

xik −
K∑

h=1

xjh.

Since variables yij and zij are not negative and do not appear in other constraints
of ILP2 and wij > 0 for all (i, j) ∈ A, in (x∗, h∗, y∗, z∗), it must be

y∗
ij = max{0;max

k∈C
{x∗

ik +
∑

h∈C h∈=k

x∗
jh − 1}}

and

z∗
ij = max{0;

K∑

k=1

x∗
ik −

K∑

h=1

x∗
jh}.

Otherwise, (x∗, h∗, y∗, z∗) could not be optimal.
Summing the two relations above we obtain

y∗
ij + z∗

ij = max{0;max
k∈C

{x∗
ik +

∑

h∈C h∈=k

x∗
jh − 1} + max{0;

K∑

k=1

x∗
ik −

K∑

h=1

x∗
jh}.

Four cases can be considered: (1) y∗
ij = z∗

ij = 0; (2) y∗
ij = maxk∈C{x∗

ik +
∑

h∈C h∈=k

x∗
jh − 1} and z∗

ij = 0; (3) y∗
ij = 0 and z∗

ij =
K∑

k=1

x∗
ik −

K∑

h=1

x∗
jh; (3)

y∗
ij = maxk∈C{x∗

ik +
∑

h∈C h∈=k

x∗
jh − 1} and z∗

ij =
K∑

k=1

x∗
ik −

K∑

h=1

x∗
jh.

Solving Graph Partitioning Problems Arising in Tagless Cache Management 57

Case (1) is trivial. In Case (2) we obtain

y∗
ij + z∗

ij = max
k∈C

{x∗
ik +

∑

h∈C h∈=k

x∗
jh − 1} ≤ 1

since x∗
ik ≤ 1 and

∑

h∈C h∈=k

x∗
jh ≤ 1. Case (3) follows since

K∑

k=1

x∗
ik ≤ 1 for all

i ∈ V . In Case (4), we have

y∗
ij + z∗

ij = max
k∈C

{x∗
ik +

∑

h∈C h∈=k

x∗
jh − 1} +

K∑

k=1

x∗
ik −

K∑

h=1

x∗
jh

Let q be the cluster in C such that

max
k∈C

{x∗
ik +

∑

h∈C h∈=k

x∗
jh − 1} = x∗

iq +
∑

h∈C h∈=q

x∗
jh − 1

Then

y∗
ij + z∗

ij =
K∑

k=1

x∗
ik − 1 + x∗

iq +
∑

h∈C h∈=q

x∗
jh −

K∑

h=1

x∗
jh =

K∑

k=1

x∗
ik − 1 + x∗

iq − x∗
jq ≤ 1

where the last inequality follows since (
K∑

k=1

x∗
ik − 1) ≤ 0 (by Constraints (14)),

x∗
iq ≤ 1 and x∗

jq ≤ 0. ∀∃

4.2 Variable Redefinition

Denote by ILP3 the formulation obtained from ILP2 by relaxing the integer
constraints on variables yij and zij . The following lemma holds.

Lemma 2. Let (x∗, h∗, y∗, z∗) be an optimal solution of ILP3, then y∗
ij and z∗

ij

belong to {0, 1}, for all (i, j) ∈ A.

Proof. Let us consider first the variables yij . Note that, they only appear in
Constraints (17). Let us consider the Constraint (17) related to a given a variable
yij and a cluster k ∈ C. Since x∗

ik ∈ {0, 1} and
∑

h∈C h∈=k

x∗
jh ∈ {0, 1}. The following

four cases can be considered: (1) x∗
ik = 0 and

∑

h∈C h∈=k

x∗
jh = 0; (2) x∗

ik = 1 and
∑

h∈C h∈=k

x∗
jh = 0; (3) x∗

ik = 1 and
∑

h∈C h∈=k

x∗
jh = 0; (4) x∗

ik = 1 and
∑

h∈C h∈=k

x∗
jh =

1. In Case (1), Constraints (17) imply that y∗
ij ≤ −1, i.e., y∗

ij = 0, since wij > 0
for all (i, j) ∈ A (otherwise (x∗, h∗, y∗, z∗) could not be an optimal solution). In
Cases (2) and (3), Constraints (17) imply that y∗

ij ≤ 0, i.e., y∗
ij = 0, too. Finally,

in Case (4), by Constraints (17) we have y∗
ij ≤ 1, i.e., y∗

ij = 1 (since yij ≤ 1).
Let us consider now the variables zij . Since they only appear in Constraints (18),

and since
K∑

k=1

x∗
jk ∈ {0, 1} and

k∑

h=1

x∗
jh ∈ {0, 1}, the thesis follows by repeating

and adapting the arguments used for variables yij . ∀∃

58 S. Bartolini et al.

According to Lemma 2, ILP3 is a valid formulation of the problem. Now, denote
by ILP4 the formulation obtained from ILP3 by relaxing the integer constraints
on variables hijk. The following lemma holds.

Lemma 3. Let (x∗, h∗, y∗, z∗) be an optimal solution of ILP4, in which h∗
ijk ∈

(0, 1) for some (i, j) ∈ E and k ∈ C. Then an optimal solution of ILP4, say
(x̄, h̄, ȳ, z̄), exists (and can be built), in which x̄ = x∗, ȳ = y∗, z̄ = z∗, h̄ ∈
{0, 1}E×K .

Proof. Let (x∗, h≤, y∗, z∗) be a solution obtained from (x∗, h∗, y∗, z∗) in which
h≤

ijk = 1 and h≤
uvh = h∗

uvh for all (u, v) ∈ E and h ∈ C, with (u, v) ≥= (i, j). Since
the h variables do not appear in the objective function, solutions (x∗, h∗, y∗, z∗)
and (x∗, h≤, y∗, z∗) yield the same objective function value.

We show now that (x∗, h≤, y∗, z∗) is a feasible solution. In fact, in ILP4, the
h variables appear in the Constraints (13), (15) and (16). Since h≤

ijk > h∗
ijk, the

solution (x∗, h≤, y∗, z∗) satisfies Constraints (13), and, since x∗ ∈ {0, 1}N×K , it
satisfies Constraints (15) and (16), too. ∀∃
By Lemma 3 it follows that an optimal solution of ILP4, (x∗, h∗, y∗, z∗), can be
converted into an optimal solution of the tagless cache management problem by
simply rounding up the values attained by variables h∗.

According to Lemmas 2 and 3, ILP3 and ILP4 are valid formulations for the
tagless cache management problem. Observe that, ILP3 and ILP4 respectively
have 2|A| and 2|A| + |E| × |V | integer variables less than ILP1 and ILP2.

5 Numerical Results

In this section, experimental results are presented. The proposed ILP formula-
tions have been tested on 12 instances arising from real world applications. The
results are reported in Table 1. For each instance, columns 2 and 3 of Table 1
report the number of nodes |V | and the number of edges |A| of the control flow
graph G. Observe that, the smallest instance has 19, 436 nodes and that the
CGFs are sparse, with |V | ⇒ |A|. In all the instances, |C| = 8 clusters have been
considered with Dk = 4096 for all k ∈ C.

According to a preliminary campaign of experiments, the weights α and β of
the second and third terms of the objective functions of ILP1–ILP4 have been
set to 1 and 5, respectively, in all the instances.

The instances have been solved by CPLEX 12.5 on a 6 cores, 12 threads, PC.
A time limit of 48 h has been set and the procedures to break symmetries have
been enabled in CPLEX. The CPLEX’s branch-and-cut has been initialized by
the feasible integer solution obtained by the algorithm proposed in [8].

Table 1 reports the computational results for ILP1–ILP4 on the 12 instances.
More precisely, the results for ILP1 are reported in column 4, while columns 5–7,
8–10 and 11–13 report the results for ILP2, ILP3 and ILP4, respectively. The
last row of Table 1 reports the average values.

Solving Graph Partitioning Problems Arising in Tagless Cache Management 59

For each instance and ILP formulation, let f∗, flp, fUB and fh respectively
be the value of the best solution found by CPLEX (within the time limit), the
optimal solution value of the linear relaxation, the best upper bound obtained
by CPLEX (within the time limit) and the value of the solution provided by
the heuristic presented in [8]. In Table 1, for each instance: “Heu Gap” is the
percentage gap between the solution provided by the algorithm presented in [8]
and the best solution found by CPLEX, compuetd as f∗−fh

fh
× 100; “Root Gap”

is the gap at the root node between the linear relaxation and the best solution
found by CPLEX, computed as flp−f∗

flp
× 100; and “Opt Gap” is computed as

fUB−f∗

fUB
× 100. As the results show, the Opt Gap of ILP1 attained by CPLEX

within the time limit is poor in terms of quality (about 22 % on average), when
compared to those obtained with ILP2–ILP4. (And we do not report the Heu
Gap and Root Gap values for ILP1.) As it can be observed, ILP2 and ILP3

provide very similar results. More precisely, the Opt Gap is 1.07 % and 1.15 %
on average for ILP2 and ILP3, respectively. Three instances out of 12 have been
solved to the optimality by CPLEX on all the ILP formulations. Observe that,
on these three instances, the heuristic presented in [8] provides a solution that
is either optimal or very close to it. While, in the other 9 instances, the heuristic
provides solution quite far from the optimum (on average at least 22 %, 22 % and
21 % far from the best solution found by ILP2, ILP3 and ILP4, respectively).
On the other hand, the Root Gaps of ILP2–ILP4 are in general quite small
and close to the Opt Gap, stating the good quality of the LP relaxations of
ILP2–ILP4. Formulation ILP4 has a slightly worse performance with respect
to ILP2 and ILP3. Such a behavior highlights that branching operations on
the h variables performed in ILP2 and ILP3 are useful during the B&C search
(obviously, no branching operation is performed on variables h in ILP4, since h
are continuos). Finally we point out that, since the instances have quite large
dimensions, the computational time required to compute the optimal solution
of the linear relaxation is big: it is about 1200 s on average, for formulations
ILP2–ILP4, and ranges from 160 to 8,300 s.

6 Conclusions and Future Research

In this paper, an optimization problem arising in the management of a new
hybrid hardware and linker-assisted approach is considered. A graph partition-
ing formulation is given and different ILP formulations are proposed. Some the-
oretical results have been presented that allow to strength the formulations or to
reduce the number of integer variables. The formulations are tested on large size
instances arising from real world applications. The computational results show
that formulations ILP2–ILP4 present quite strong linear relaxations. Further-
more, a comparison of the solution provided by the algorithm presented in [8]
with the best solution found by CPLEX suggests that new heuristic approaches
can be investigated to find better feasible solutions for the problem.

60 S. Bartolini et al.

T
a
b
le

1
.
R

es
u
lt

s
fo

r
I
L

P
3

a
n
d

I
L

P
4
.

In
st
a
n
ce

|V
|

|A
|

I
L
P
1

I
L
P
2

I
L
P
3

I
L
P
4

O
p
t
G
a
p

H
eu

G
a
p

R
o
o
t
G
a
p

O
p
t
G
a
p

H
eu

G
a
p

R
o
o
t
G
a
p

O
p
t
G
a
p

H
eu

G
a
p

R
o
o
t
G
a
p

O
p
t
G
a
p

b
zi
p
2

2
0
,5
5
3

1
7
,4
9
9

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

cc
1

9
4
,1
6
9

1
0
9
,4
2
6

-
2
7
.7
8

0
.1
8

0
.1
7

2
7
.6
4

0
.2
9

0
.2
7

2
7
.6
6

0
.2
7

0
.2
6

cr
a
ft
y

2
7
,7
1
3

2
7
,8
0
5

2
4
.4
8

2
7
.2
4

2
.6
9

2
.2
2

2
7
.4
1

2
.5
6

2
.1
3

2
7
.2
5

2
.6
8

2
.2
0

eo
n

6
4
,4
9
3

6
7
,4
3
4

3
1
.6
5

2
6
.0
7

4
.2
6

1
.4
2

2
5
.9
9

4
.3
1

1
.1
1

2
5
.9
5

4
.3
5

3
.3
4

g
a
p

4
5
,1
2
5

4
5
,6
9
2

6
3
.1
1

5
5
.0
2

6
.2
4

4
.0
1

5
3
.1
1

7
.3
9

5
.1
3

4
1
.1
7

1
4
.6
1

1
4
.5
1

g
zi
p

2
0
,4
4
4

1
7
,4
1
4

0
.0
1

0
.0
0

0
.0
1

0
.0
0

0
.0
0

0
.0
1

0
.0
0

0
.0
0

0
.0
1

0
.0
0

m
cf

1
9
,4
3
6

1
6
,5
9
9

0
.0
6

0
.0
5

0
.0
1

0
.0
0

0
.0
5

0
.0
1

0
.0
0

0
.0
5

0
.0
1

0
.0
0

p
a
rs
er

2
4
,3
7
7

2
4
,5
1
4

3
7
.7
6

4
8
.5
0

2
.2
2

0
.7
4

4
8
.6
5

2
.1
2

0
.6
3

4
8
.4
3

2
.2
6

0
.8
7

p
er
lb
m
k

5
8
,4
1
0

5
9
,7
1
9

3
3
.9
0

2
9
.0
2

3
.7
9

2
.6
0

2
9
.3
1

3
.5
7

2
.4
5

2
9
.6
7

3
.3
0

2
.0
6

tw
o
lf

3
0
,3
1
2

3
0
,8
0
7

7
.5
2

6
.4
2

1
.0
6

0
.6
1

6
.5
4

0
.9
5

0
.6
1

6
.5
4

0
.9
5

0
.6
1

v
o
rt
ex

4
4
,3
7
0

4
7
,5
5
0

3
8
.2
5

3
5
.7
0

1
.9
4

0
.7
3

3
5
.8
1

1
.8
6

1
.0
2

3
5
.8
9

1
.8
0

0
.8
2

v
p
r

2
8
,8
0
0

3
0
,0
7
1

1
5
.5
1

1
7
.9
7

1
.1
5

0
.2
9

1
7
.7
9

1
.3
0

0
.4
5

1
7
.7
3

1
.3
5

0
.4
8

A
v
.

3
9
,8
5
0
.1
7

4
1
,2
1
0
.8
3

2
2
.9
3

2
2
.8
1

1
.9
6

1
.0
7

2
2
.6
9

2
.0
3

1
.1
5

2
1
.6
9

2
.6
3

2
.1
0

Solving Graph Partitioning Problems Arising in Tagless Cache Management 61

Acknowledgements. The authors would like to thank Tim M. Jones and Jonas
Maebe for the discussion about the tagless cache operation and for the preparation
of the input data used in this work. This work was partially supported by IT FIRB
PHOTONICA project (RBFR08LE6V).

References

1. Alfieri, A., Nicosia, G., Pacifici, A.: Exact algorithms for a discrete metric labeling
problem. Discrete Optim. 3(3), 181–194 (2006)

2. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey.
Integr. VLSI J. 19, 1–81 (1995)

3. Grotschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering prob-
lem. Math. Program. 45(1), 59–96 (1989)

4. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: Formu-
lations and valid inequalities for the node capacitated graph partitioning problem.
Math. Program. 74(3), 247–266 (1996)

5. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node
capacitated graph partitioning problem: a computational study. Math. Prog. Series
B 81, 229–256 (1998)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory
of NP-Completeness. Freeman and co., New York (1979)

7. Holm, S., Sorensen, M.M.: The optimal graph partitioning problem. OR Spectrum
15(1), 1–8 (1993)

8. Jones, T.M., Bartolini, S., Maebe, J., Chanet, D.: Link-time optimization for power
efficiency in a tagless instruction cache. In: 2011 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pp. 32–41 (2011)

9. Mehrotra, A., Trick, M.A.: Cliques and clustering: a combinatorial approach. Oper.
Res. Lett. 22, 1–12 (1998)

10. Nossack, J., Pesch, E.: A branch-and-bound algorithm for the acyclic problem.
Comput. OR 41, 174–184 (2014)

11. Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious.
SIGARCH Comput. Archit. News 23(1), 20–24 (1995)

Lagrangean Decomposition for Mean-Variance
Combinatorial Optimization

Frank Baumann, Christoph Buchheim, and Anna Ilyina(B)

Fakultät für Mathematik, Technische Universität Dortmund,
Dortmund, Germany

{frank.baumann,christoph.buchheim,anna.ilyina}@tu-dortmund.de

Abstract. We address robust versions of combinatorial optimization
problems, focusing on the uncorrelated ellipsoidal uncertainty case, which
corresponds to so-called mean-variance optimization. We present a branch
and bound-algorithm for such problems that uses lower bounds obtained
from Lagrangean decomposition. This approach allows to separate the
uncertainty aspect in the objective function from the combinatorial struc-
ture of the feasible set. We devise a combinatorial algorithm for solv-
ing the unrestricted binary subproblem efficiently, while the underlying
combinatorial optimization problem can be addressed by any black box-
solver. An experimental evaluation shows that our approach clearly out-
performs other methods for mean-variance optimization when applied
to robust shortest path problems and to risk-averse capital budgeting
problems arising in portfolio optimization.

Keywords: Robust combinatorial optimization · Mean-risk optimiza-
tion · Lagrangean decomposition

1 Introduction

Decision making under uncertainty is a challenge both from an economical and a
mathematical perspective. In combinatorial optimization, where the constraints
describe some problem-specific structure, the uncertainty usually appears in the
objective function, i.e. the costs of the variables. We assume that a set U of
potential cost vectors is given and aim at minimizing the value of a solution in
its worst case scenario from this uncertainty set, i.e. we take a risk-averse attitude
and consider the min-max criterion [1] to define solutions that are robust against
variation of costs. That is we consider problems of the form

min max
c∈U

c�x (R)

s.t. x ∈ X,

The first author has been supported by the German Research Foundation (DFG)
under grant BU 2313/2. The third author has been supported by the German Federal
Ministry of Economics and Technology within the 6th Energy Research Programme.

c∈ Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 62–74, 2014.
DOI: 10.1007/978-3-319-09174-7 6

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 63

with X ≤ {0, 1}n defining the combinatorial structure of the feasible set. We
focus on problems whose deterministic versions are easy to solve, i.e. where a
linear objective function can be optimized quickly over the set X.

Reasonable choices of scenario sets U depend on the application at hand,
but also on the (theoretical and practical) tractability of the resulting problems.
Among the popular types of uncertainty we find interval uncertainties, discrete
scenario sets and the so-called ellipsoidal uncertainty. In the latter case the set
of all possible scenarios forms an ellipsoid in R

n and each point in this ellipsoid
represents a possible cost vector.

In this paper we address uncorrelated ellipsoidal uncertainties. Compared
with interval uncertainty, which is more commonly used and easier to deal with
computationally, using ellipsoidal uncertainties can avoid overly pessimistic solu-
tions. In fact, the worst-case scenario in Problem (R) always corresponds to
an extreme point of U , so that in the interval case all coefficients are at their
extremes, which is very unlikely in practice. In the ellipsoidal case this is explic-
itly excluded. More precisely, when assuming that the objective function coef-
ficients are jointly normally distributed, the confidence regions form ellipsoids.
Under the additional assumption that the distributions are independent, we
obtain axis-parallel ellipsoids.

Interest in robust optimization under ellipsoidal uncertainty has been steadily
growing in recent years, with a focus on the special case of axis-parallel ellipsoids,
where the problem is equivalently reformulated to a mean-variance optimization
problem. Depending on the underlying combinatorial structure efficient algo-
rithms for Problem (R) may exist. As an example, the mean-risk spanning tree
problem can be solved in polynomial time, as noted by Nikolova [6], who also pro-
poses general-purpose approximation schemes. For other underlying problems,
such as the shortest path problem, the complexity of (R) is unknown.

Another general solution approach has been to solve the problem as a general
mixed-integer quadratic program. Atamtürk Narayanan [2] propose a SOCP-
based branch and bound-algorithm for the robust knapsack problem with axis-
parallel ellipsoidal uncertainty that additionally exploits the submodularity of
the objective function.

In this paper we develop a new exact approach for min-max problems of
type (R). We propose a branch and bound-algorithm using lower bounds obtained
from Lagrangean decomposition, allowing to separate the uncertainty aspect in
the objective function from the combinatorial structure of the feasible set. In
particular, we present an efficient algorithm to solve (R) for X = {0, 1}n in the
case of uncorrelated ellipsoidal uncertainty. The combinatorial subproblem in
the decomposition can be addressed by any black box-solver.

This paper is organized as follows. In Sect. 2 we present our Lagrangean
decomposition approach for general binary nonlinear minimization problems.
The special case of mean-variance combinatorial optimization is discussed in
Sect. 3; we study the unconstrained binary optimization problem arising in the
decomposition and devise an efficient algorithm that can deal with fixed vari-
ables. This allows us to embed the decomposition approach into a branch and

64 F. Baumann et al.

bound-algorithm to compute provably optimal solutions. In Sect. 4 we evaluate
our algorithm for the robust shortest path problem and the risk-averse capital
budgeting problem. Extensive experimental studies show that our new algorithm
clearly outperforms other approaches described in the literature.

2 A Lagrangean Decomposition Approach

Lagrangean decomposition can be considered a special case of Lagrangean relax-
ation, applied to a set of artificial constraints [4]. Its aim is to decompose a prob-
lem into auxiliary problems that can be easily computed. We use Lagrangean
decomposition to separate the nonlinear objective function from the combinato-
rial constraints. Starting from the problem

min f(x) (P)
s.t. x ∈ X ≤ {0, 1}n,

we introduce new variables y ∈ R
n along with artificial linking constraints and

express the original set of combinatorial constraints in the new variables:

min f(x)
s.t. x = y

x ∈ {0, 1}n

y ∈ X.

Lagrangean relaxation of the linking equations yields

min f(x) + λ�(y − x)
s.t. x ∈ {0, 1}n

y ∈ X,

where λ ∈ R
n is the vector of Lagrangean multipliers. Since the original objec-

tive function and the set of constraints are now independent of each other, the
problem decomposes into

min f(x) − λ�x + min λ�y
s.t. x ∈ {0, 1}n s.t. y ∈ X.

(L(λ))

The two minimization problems in (L(λ)) can be solved independently. The
left problem is an unconstrained nonlinear minimization problem over binary
variables, whereas the problem on the right is a linear instance of the underlying
combinatorial problem. For any λ ∈ R

n, (L(λ)) is a relaxation of the original
problem (P) and yields a lower bound on its optimal value. The best possible
bound is obtained by computing the Lagrangean dual

max
λ∈Rn

L(λ), (1)

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 65

for example with a subgradient algorithm. In each iteration the two subproblems
of (L(λ)) have to be solved for a given λ. Note that

L(λ) =

{
min z − λ�x + min λ�y

s.t. (z, x) ∈ conv(F) s.t. y ∈ conv(X)

where F := {(z, x) | x ∈ {0, 1}n, z ≥ f(x)}. By general results on Lagrangean
relaxation we obtain

Lemma 1.

max
λ∈Rn

L(λ) =

⎡
⎣

⎣

min z

s.t. (z, x) ∈ conv(F)
x ∈ conv(X).

Note that

min z
s.t. (z, x) ∈ conv(F)

x ∈ conv(X)
≥

min f(x)
s.t. x ∈ conv({0, 1}n)

x ∈ conv(X)
=

min f(x)
s.t. x ∈ conv(X),

and that the inequality is strict in general if f is nonlinear. This is due to the
fact that the objective function f is minimized over {0, 1}n in the left problem
of (L(λ)), instead of over [0, 1]n. In other words, the bounds we obtain are
potentially stronger than those obtained from convexifying the feasible set in
Problem (P).

Instead of solving the decomposition (L(λ)) exactly, it is possible to solve
relaxations of the subproblems. This might be advantageous when the subprob-
lems are computationally hard or no exact algorithm is known. Even if the relax-
ation may decrease the quality of the resulting lower bounds and hence increase
the number of nodes in the branch and bound-algorithm, this effect might be
compensated by the shorter time required to compute the bounds.

When embedding the computation of the Lagrangean dual into a branch and
bound-algorithm, in order to obtain exact solutions, the problem solved in the
root node of the branch and bound-tree is (1), but in deeper levels of the tree
variable fixings have to be respected. This means that the algorithms for both
the (formerly) unconstrained nonlinear subproblem and the linear combinatorial
subproblem have to be adapted to handle fixed variables.

Within a branch and bound-scheme our approach can be improved signifi-
cantly by reoptimization: in order to compute the Lagrangean dual (1) quickly
with a subgradient method, a good starting guess for the multipliers λ is cru-
cial. The choice of the initial multipliers in the root node should depend on the
objective function, i.e. on the type of uncertainty set considered. In the remain-
ing nodes of the branch and bound-tree, we use the optimal multipliers of the
parent node for warmstart.

An important advantage of the Lagrangean decomposition approach is that
we get a primal heuristic for free: each time we solve (L(λ)) we obtain a feasible

66 F. Baumann et al.

solution y ∈ X for Problem (R). In particular, we can use f(y) as an upper
bound in our algorithm.

In robust optimization, the function f is defined as the worst case solution
quality of a vector x ∈ X over all scenarios c in a given set U . More formally, we
consider objective functions of the form

f(x) := max
c∈U

c�x

where U ⊂ R
n is a compact set. In many applications, linear optimization over

the feasible set X is only possible (or at least easier) if the objective function
satisfies certain additional constraints such as, e.g., non-negativity or triangle
inequalities. In the following, we argue that our approach also works in this
case. More precisely, we claim that any homogeneous inequality that is valid for
all scenarios c ∈ U can be assumed to be valid also for each vector λ appearing
in the subproblem on the right in (L(λ)). To this end, one can show

Theorem 2. Let cone(U) denote the closed convex cone generated by U and let
cone(U)∗ be its dual cone. Then

min max
c∈U

c�x

s.t. x ∈ X
=

min max
c∈U

c�x

s.t. x ∈ {0, 1}n

y ∈ X
x − y ∈ cone(U)∗.

Due to space restrictions the proof is omitted here. By Theorem 2 we can apply
the Lagrangean relaxation approach directly to the problem

min max
c∈U

c�x

s.t. x ∈ {0, 1}n

y ∈ X

x − y ∈ cone(U)∗,

meaning that the dual multipliers have to be chosen from cone(U). It remains
to investigate whether this restriction on λ yields the same bound as (1).

Theorem 3. Assume that C is a polyhedral cone with U ≤ C. Then
max
λ∈C

L(λ) = max
λ∈Rn

L(λ).

Again, we have to omit the proof. By Theorem 3, any finite number of conditions
on the objective function of one of the following types can be carried over from U
to λ without weakening the lower bound:

– non-negativity or non-positivity of a given objective function coefficient;
– the triangle inequality on a given triple of coefficients;
– if variables correspond to edges of a graph, the non-negativity of the total cost

of a given cycle.

Depending on the underlying combinatorial structure, such conditions may be
crucial for linear optimization over X. This is true, e.g., when the underlying
optimization problem asks for a shortest path or a minimum cut in a graph.

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 67

3 Uncorrelated Ellipsoidal Uncertainty

We now focus on the case of ellipsoidal uncertainty, i.e. the set U of all possible
scenarios has the form of an ellipsoid in R

n,

U =
⎤

c ∈ R
n| (c − c0)

�
A−1 (c − c0) ≤ 1

⎧
,

with c0 ∈ R
n denoting the center of the ellipsoid and A ∈ R

n×n being a positive
definite symmetric matrix. In this case the objective function

f(x) = max
c∈U

c�x

of (P) can be replaced by a closed formula: for a given x ∈ R
n, the value f(x)

is obtained by a linear maximization over an ellipsoid. The KKT optimality
conditions yield

f(x) = c�
0 x +

∀
x�Ax.

Thereby the unconstrained min-max problem arising in the left part of prob-
lem (L(λ)) in the ellipsoidal uncertainty case reads

min
x∈{0,1}n

(c0 − λ)�
x +

∀
x�Ax. (2)

Here, c0 and A can be interpreted as the mean values and the covariance matrix
of a set of random variables.

In the following, we restrict ourselves to the case of uncorrelated random
variables. In this case, the ellipsoid U is axis-parallel or equivalently the matrix A
is diagonal. Exploiting the binarity of x we can simplify Problem (2) to

min
x∈{0,1}n

(c0 − λ)�
x +

∀
a�x, (3)

where A = Diag(a) for some non-negative vector a ∈ R
n.

3.1 An Efficient Algorithm for the Unconstrained Problem

Problem (3) is an unconstrained variant of the so-called mean-risk optimization
problem. It can be solved to optimality in polynomial time since the objective
function is submodular [2]. As minimization algorithms for general submodular
functions are too slow to be applied in practice, we aim at a faster algorithm
exploiting the special structure of Problem (3).

To this end, consider two solutions of (3) which differ in exactly one variable i.
The difference between the corresponding objective values is

Δif(J) = (c0 − λ)i +
⎪⎨

j∈J

aj + ai −
⎪⎨

j∈J

aj , (4)

with J denoting the set of variables which are 1 in both solutions. The value (4) is
also known as the discrete derivative of variable i [8]. It describes the contribution

68 F. Baumann et al.

of setting variable i to 1, which clearly depends on the set J or, more precisely,
on the quantity

⎩
j∈J aj . We hence define for each variable i its contribution

function by
Ci(z) = (c0 − λ)i +

∀
z + ai − ∀

z.

The functions Ci are strictly decreasing and therefore have at most one root
each. The root ri of Ci is the value which

⎩
j∈J aj must reach such that setting

variable i to 1 becomes profitable. Note that setting a variable to 1 never has
a negative effect on the contributions of other variables, since the objective
function of (3) is submodular.

Our basic idea for the construction of an optimal solution of (3) is that, due
to the definition of ri, a variable i cannot be 1 in an optimal solution while
another variable having a smaller root is 0. This leads to an obvious sorting
algorithm. However, in a first step we have to eliminate variables i for which Ci

has no root, using the following observation.

Lemma 4. There exists an optimal solution x∗ of Problem (3) with the following
properties:

(i) if (c0 − λ)i ≥ 0, then x∗
i = 0.

(ii) if (c0 − λ)i ≤ −∀
ai, then x∗

i = 1.

Proof. The condition in (i) implies that the function Ci is positive everywhere,
as ai > 0. This implies that any solution with xi = 1 can be improved by
setting xi = 0. The condition in (ii) implies that Ci is non-positive everywhere,
as

(c0 − λ)i +
∀

z + ai − ∀
z ≤ (c0 − λ)i +

∀
ai ≤ 0

by concavity of the square-root function. The contribution of variable i to the
value of an arbitrary solution is therefore non-positive, so that it may be fixed
to 1 without loss of generality. ∃⇒
For each i such that −∀

ai < (c0 − λ)i < 0, the function Ci has exactly one
positive root

ri =
(

ai − (c0 − λ)2i
2(c0 − λ)i

)2
.

The algorithm for solving the unconstrained problem proceeds as follows: first
variables are fixed according to Lemma 4, then the remaining non-fixed vari-
ables xi are sorted by non-decreasing roots ri. Finally, all binary vectors where
the non-fixed entries have values that are non-increasing in the resulting order
are enumerated and the best such solution is reported.

Theorem 5. Problem (3) can be solved in time O(n log n).

Proof. The algorithm can be implemented to run in linear time except for the
sorting of variables which takes O(n log n) time. It thus remains to prove cor-
rectness. By Lemma 4 we may assume that no variable is fixed, then it suffices to
show that (after sorting) every optimal solution x∗ satisfies x∗

1 ≥ x∗
2 ≥ · · · ≥ x∗

n.

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 69

Assume on contrary that x∗ is an optimal solution with x∗
j = 0 and x∗

j+1 = 1
for some j < n. Consider the two solutions x0 and x1 defined by

x0
i =

{
0 for i = j + 1
x∗

i otherwise,
x1

i =

{
1 for i = j

x∗
i otherwise.

By optimality of x∗ we have

0 ≥ f(x∗) − f(x0) = Cj+1

⎟⎩
i∈I ai

)

for I = {i ∈ {1, ..., n} \ {j + 1} | x∗
i = 1} and hence by definition of rj+1 and rj

⎨

i∈I

ai ≥ rj+1 ≥ rj . (5)

Then using the concavity of the square-root function we have

f(x1) − f(x∗) = (c0 − λ)j +
⎪⎨

i∈I

ai + aj+1 + aj −
⎪⎨

i∈I

ai + aj+1

< (c0 − λ)j +
⎪⎨

i∈I

ai + aj −
⎪⎨

i∈I

ai

(5)

≤ (c0 − λ)j +
√

rj + aj − ∀
rj = 0,

which contradicts the optimality of x∗. ∃⇒
Note that a similar algorithm for Problem (3) using a different sorting rule has
been devised by Shen et al. [7].

It is easily verified that the fixings of variables arising in the branch and
bound-scheme for the min-max problem do not affect the validity of our algo-
rithm. The roots can be computed using the same formula, because an additional
constant under the root does not change the order of the roots.

3.2 A Mixed-Integer SOCP Formulation

Due to the nonlinearity of the set U , there is no straight-forward mixed-integer
linear formulation of Problem (R) in the ellipsoidal uncertainty case. However,
the problem can be modeled as a mixed-integer second-order cone program
(SOCP), even in the correlated case: the objective function in (2) can be mod-
eled by an SOCP constraint, while the feasible set X has to be modeled by a
polyhedral description of conv(X). In practice, mixed-integer SOCPs are much
harder to solve than mixed-integer linear programs, making this approach much
less competitive than similar linearization approaches used for min-max prob-
lems in the discrete scenario case. Moreover, if the polytope conv(X) does not
have a compact outer description, a separation algorithm might be needed.

70 F. Baumann et al.

4 Applications

The Lagrangean decomposition approach presented in Sect. 3 is applicable to a
wide range of robust combinatorial optimization problems. In the following we
present numerical results for the robust shortest path problem and the robust
knapsack problem. We compare the performance of the decomposition algorithm
with the standard mixed-integer SOCP approach as explained in Sect. 3.2, using
CPLEX 12.5 to solve the resulting programs. The left subproblem of the decom-
position (L(λ)), i.e. the unconstrained nonlinear binary minimization problem,
was solved with the algorithm discussed in Sect. 3.1. The initial Lagrangean mul-
tipliers were chosen as the center of the ellipsoid. To implement the optimization
of the Lagrangean dual problem we used the Conic Bundle Library [5]. A very
natural branching rule is choosing some variable, for which the solutions of both
sides differ most. The Best-Node-First search strategy was adopted.

All experiments were carried out on a machine running SUSE Linux on an
Intel Xeon CPU at 2.60 GHz. All running times are stated in CPU-seconds; the
time limit for each instance was one CPU-hour.

4.1 The Shortest Path Problem with Ellipsoidal Uncertainty

For the uncorrelated ellipsoidal uncertainty variant of the shortest path problem,
no polynomial time algorithm is known [6]. Here each arc in the graph is asso-
ciated with a mean and a variance value. The uncertain part of the objective
function is weighted with a parameter Ω ∈ {1, 1

2 , 1
3 , 1

5 , 1
10}, the resulting problem

of minimizing
f(x) = c�

0 x + Ω
∀

a�x

over the set of s, t-paths in a given directed graph falls into the class of problems
considered in Sect. 3. The factor Ω leads to a scaling of the ellipsoid U by Ω−2.

We solved the combinatorial subproblem of the decomposition (L(λ)) with
the network simplex optimizer of CPLEX 12.5, allowing to deal with fixed vari-
ables easily. For the left subproblem of (L(λ)) the algorithm proposed in Sect. 3.1
is directly applicable.

All tests were done on directed grid graphs having the following form: n × n
nodes are arranged on a grid, where n ranges from 100 to 500. Each node is
linked by an arc to the node to the right and to the node below. The start
node s is the node in the upper left corner of the grid, the end node t is in
the lower right corner. In these graphs the total number of arcs is 2n(n − 1)
and each path consists of 2(n − 1) arcs. The ellipsoid center was generated by
randomly choosing coefficients in the interval [0, 100], then the variances were
determined as squares of randomly chosen numbers in the interval between 0
and the ellipsoid center. We generated 10 instances of each size and type.

Table 1 shows our results compared to the SOCP solver of CPLEX. Our
approach could solve all but 2 instances within the time limit of 1 h while the
CPLEX solver reached its limit at 500×500 grids. Instances with smaller ellipsoid
volume turned out to be easier to solve in both cases, which can be seen in all

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 71

Table 1. Results for the shortest path problem with ellipsoidal uncertainty on n × n
grid graphs with n ∈ {100, 200, 300, 400, 500}. The number of edges is m = 2n(n − 1)

Decomposition approach CPLEX SOCP

Vars 1
Ω

#s Subs Iter Time/s #s Subs Iter Time/s

19800 10 10 4.0 17.4 0.20 10 1.5 6774.1 8.98

5 10 4.6 24.5 0.25 10 5.0 6874.4 11.43

3 10 5.6 33.2 0.33 10 16.4 7033.9 12.83

2 10 6.8 45.6 0.48 10 57.6 7337.5 15.03

1 10 7.2 85.0 0.83 10 902.7 12405.1 35.45

79600 10 10 4.0 24.4 1.52 10 3.4 27482.8 91.51

5 10 6.6 34.9 1.77 10 6.7 27725.9 109.95

3 10 8.2 56.4 2.77 10 19.4 28076.3 130.95

2 10 24.8 176.3 7.29 10 166.1 29214.9 159.11

1 10 164.2 1165.8 42.93 8 4895.0 89498.8 637.97

179400 10 10 6.4 22.1 5.58 10 5.0 62455.9 369.34

5 10 8.6 34.2 6.23 10 12.4 62903.1 405.86

3 10 8.4 44.4 7.54 10 51.1 63674.3 453.39

2 10 14.6 101.7 14.58 10 205.0 65409.2 529.34

1 10 198.0 1390.6 144.99 5 9142.8 141693.6 2217.49

319200 10 10 5.6 25.4 14.11 10 4.3 112330.9 1168.52

5 10 8.4 45.8 19.62 10 14.5 113040.9 1205.93

3 10 14.6 84.5 24.75 10 67.4 114185.6 1364.80

2 10 58.4 411.6 107.47 10 513.9 120765.1 1565.60

1 9 323.2 2296.0 579.62 1 5324.0 160764.0 3350.32

499000 10 10 6.4 26.0 27.02 10 3.9 177395.6 2710.71

5 10 7.8 38.6 31.54 10 21.6 178383.3 3076.77

3 10 26.4 157.4 79.92 8 112.9 180086.5 3260.07

2 10 92.2 638.7 285.77 2 52.5 180432.0 2970.01

1 9 237.2 1704.0 849.53 0 – – –

performance indicators. While the number of subproblems is not substantially
different in both approaches, CPLEX obviously spent a lot more iterations than
our approach. Overall, our approach was faster than CPLEX by a factor of 10
to 100.

4.2 The Knapsack Problem with Ellipsoidal Uncertainty

In portfolio theory an important concept is to not only consider the expected
return when choosing a set of investments but also take into account the risk

72 F. Baumann et al.

Table 2. Results for the knapsack problem with ellipsoidal uncertainty

Vars Vars

ε #s Subs Iter Time/s ε #s Subs Iter Time/s

1000 4000

0.10 10 11970.4 26085.8 9.15 0.10 10 87337.6 200149.1 297.48

0.05 10 11999.0 26441.9 9.21 0.05 10 76084.4 173606.0 257.95

0.03 10 18363.6 40781.0 14.29 0.03 10 129048.6 296989.3 440.18

0.02 10 17761.0 40074.8 13.98 0.02 10 156201.2 355627.5 528.33

0.01 10 17861.4 38516.4 13.65 0.01 10 170836.2 397621.9 589.41

2000 5000

0.10 10 39777.8 88595.8 63.12 0.10 10 128904.8 295368.9 558.42

0.05 10 43534.4 96112.8 68.76 0.05 9 243370.6 567948.6 1071.93

0.03 10 80259.2 182641.9 129.76 0.03 9 273028.8 629101.6 1200.04

0.02 10 57073.6 126914.7 90.43 0.02 10 217465.6 512935.8 972.53

0.01 10 46486.4 106990.0 76.42 0.01 10 380360.4 894375.6 1712.76

3000 6000

0.10 10 72851.0 164835.7 185.49 0.10 10 214092.4 494438.2 1143.04

0.05 10 65032.8 147170.3 165.58 0.05 8 303761.0 701917.5 1632.30

0.03 10 73101.8 167410.3 187.52 0.03 9 294969.7 690688.8 1606.99

0.02 10 198490.0 461660.2 514.55 0.02 7 327128.7 754971.9 1754.51

0.01 10 127533.0 297333.5 332.10 0.01 9 258226.6 611664.8 1421.17

associated with investments. Such mean-risk optimization problems can be mod-
eled using stochastic objective functions. Potential investment decisions are rep-
resented by independent random variables that have an associated mean value as
well as a variance. The mean value stands for the expected return of the invest-
ments, and the variance models the uncertainty inherent in the investment, i.e.
the risk that the real return deviates from the expected. The case of continu-
ous variables is well studied whereas the case of discrete variables has received
relatively little attention yet [3].

We concentrate on the risk-averse capital budgeting problem with binary
variables [2]. In this variant of the mean-risk optimization problem we are given
a set of possible investments characterized by their costs w, expected return
values c0 and variances a, as well as a number ε. The number ε > 0 characterizes
the level of risk the investor is willing to take. Investment decisions are binary.
The only constraint is a limit on the available budget. The choice of investments
guarantees that with probability 1 − ε the portfolio will return at least a profit
of the objective value.

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization 73

The corresponding nonlinear IP-model is

max c�
0 x −
√

1 − ε

ε
a�x

s.t. w�x ≤ b (6)
x ∈ {0, 1}n,

which can easily be converted into a minimization problem of the form considered
in Sect. 3. In this case the underlying combinatorial optimization problem is a
knapsack problem. Note that here the scaling factor for 0 < ε < 1

2 is Ω = 1−ε
ε > 1,

whereas for the shortest path problem with ellipsoidal uncertainty it was Ω ≤ 1.
We generated the objective function for our instances as described in Sect. 4.1.

The constraints were created as follows: the (certain) rational weights w were
chosen randomly and uniformly distributed from [0, 100], while the threshold b
was determined as 1

2

⎩n
i=1 wi. This choice of the right-hand side was proposed

in [2] to avoid trivial instances. We generated 10 instances of each size between
1000 and 6000 and solved each instance for the values of ε given in Table 2. The
legend of the table is as in Table 1.

Also here we compared the performance of the decomposition approach with
the performance of the SOCP solver of CPLEX. However, we do not state the
results of the SOCP solver because it was not competitive: already for n = 75
not all instances could be solved within the time limit of 1 h.

Atamtürk Narayanan [2] present an approach to improve the second-order
cone program using additional cutting planes to strengthen the relaxation in
each node of the enumeration tree. The cutting planes are derived from the sub-
modularity of the objective function of Problem (6). Their results show that the
additional cutting planes significantly improve the dual bounds and lead to a
much lower number of subproblems and faster solution times. Still, their app-
roach is not competitive with the Lagrangean decomposition approach presented
here: it takes more than 800 s on average for solving the instances with n = 100
and ε = 0.01.

In the decomposition approach the dependence of the number of subproblems
or the running times on the balance between the linear and the nonlinear parts
of the objective function, i.e. the scaling factor ε, is nearly absent, which was
not the case for the SOCP solver. If we take a closer look at the ratio between
the number of calls to the combinatorial algorithms for the two parts of the
decomposition and the number of subproblems in the branch and bound-tree,
we see that only few calls per subproblem are necessary, showing the importance
of reoptimization. For all n this ratio is less than three. Additionally, the algo-
rithms applied to solve the subproblems are very fast in theory and in practice.
In combination with strong primal bounds this leads to very moderate overall
running times.

In summary we could show that the decomposition algorithm is well suited
for the risk-averse capital budgeting problem. It dramatically outperforms both
standard SOCP solvers and more problem-specific approaches found in the lit-
erature.

74 F. Baumann et al.

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of
combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438
(2009)

2. Atamtürk, A., Narayanan, V.: Polymatroids and mean-risk minimization in discrete
optimization. Oper. Res. Lett. 36(5), 618–622 (2008)

3. Cornuéjols, G., Tütüncü, R.: Optimization Methods in Finance. Mathematics,
Finance, and Risk. Cambridge University Press, Cambridge (2006)

4. Guignard, M., Kim, S.: Lagrangean decomposition: a model yielding stronger
lagrangean bounds. Math. Program. 39(2), 215–228 (1987)

5. Helmberg. C.: ConicBundle 0.3.11. Fakultät für Mathematik, Technische Universität
Chemnitz (2012). http://www.tu-chemnitz.de/-helmberg/ConicBundle

6. Nikolova, E.: Approximation algorithms for reliable stochastic combinatorial opti-
mization. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010.
LNCS, vol. 6302, pp. 338–351. Springer, Heidelberg (2010)

7. Max Shen, Z.-J., Coullard, C., Daskin, M.S.: A joint location-inventory model.
Transp. Sci. 37(1), 40–55 (2003)

8. Stobbe, P., Krause, A.: Efficient minimization of decomposable submodular func-
tions. CoRR, abs/1010.5511 (2010)

http://www.tu-chemnitz.de/-helmberg/ConicBundle

Maximum Generalized Assignment
with Convex Costs

Marco Bender(B) and Stephan Westphal

Institute for Numerical and Applied Mathematics, University of Göttingen,
Lotzestr. 16-18, 37083 Göttingen, Germany

{m.bender,s.westphal}@math.uni-goettingen.de

Abstract. We consider a generalization of the maximum generalized
assignment problem. We relax the hard constraints for the bin capaci-
ties, and introduce for every bin a cost function that is convex in the total
load on this bin. These costs are subtracted from the profits of assigned
items, and the task is to find an assignment maximizing the resulting
net profit.

We show that even restricted cases of this problem remain strongly
NP-complete, and identify two cases that can be solved in strongly poly-
nomial time. Furthermore, we present a (1 − 1/e)-approximation algo-
rithm for the general case. This algorithm uses a configuration based
integer programming formulation for a randomized rounding procedure.
In order to turn the rounded solution into a feasible solution, we define
appropriate estimators that linearize the convex costs.

Keywords: Generalized assignment problem · Combinatorial optimiza-
tion · Complexity · Approximation algorithms

1 Introduction

The maximum generalized assignment problem (gap) is a classical combinatorial
optimization problem. We are given a set of items I and a set of bins B. Every
item i yields a profit of pij and has a weight wij when assigned to bin j. The
task is to assign a subset of the items to the bins such that the total profit is
maximized and every bin’s capacity Bj is satisfied. This can be summarized in
the following integer program:

(gap) max
∑

j∈B

∑

i∈I
pijxij (1a)

s.t.
∑

j∈B
xij ∈ 1 ≤ i ≥ I (1b)

∑

i∈I
wijxij ∈ Bj ≤ j ≥ B (1c)

xij ≥ {0, 1} ≤ i ≥ I, j ≥ B. (1d)

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 75–86, 2014.
DOI: 10.1007/978-3-319-09174-7 7

76 M. Bender and S. Westphal

Here, the decision variable xij attains the value one if and only if item i is
assigned to bin j. Constraints (1b) ensure that every item is assigned at most
once, and constraints (1c) ensure that every bin’s capacity is respected.

We consider a natural generalization of gap by dropping the “hard” con-
straints (1c) for the bin capacities and introduce for every bin a cost function
cj that depends on the total weight of items assigned to this bin (see Sect. 1.1
for the formal definition). Then, we define the net profit of an assignment as the
sum over all profits for assigned items minus the costs incurred by the bins.

If we consider arbitrary cost functions, the problem does not admit a constant-
factor approximation, unless P = NP, as shown in [1] already for the case of a
single bin.

We focus our attention on the class of convex cost functions. The motivation
for this stems from scheduling problems concerned with energy-efficient comput-
ing environments, which is known as speed scaling (cf. [2]). If the workload on
a processor increases, it has to run at a higher speed, and thus, its energy con-
sumption increases. This dependence follows approximately the cube-root rule,
which states that the energy consumption increases cubic in the speed.

Most optimization problems that have been researched in this field so far
have “hard” constraints, e.g., minimizing the total energy such that all jobs are
completed, or minimizing the flow time given a fixed energy budget (cf. [2]).
Pruhs and Stein [3] note that it would be of more practical relevance to consider
an objective function that takes both the rewards that are earned for a job
(depending on when it is finished), and a convex cost function depending on the
current workload, into account. This would, e.g., allow to model the situation
of the operator of a large data center that has to decide whether to accept or
reject requests for computation times on his servers. In our setting, the requests
correspond to the items and the servers to the bins.

1.1 Problem Definition

In the course of this paper, we consider the following problem:

Definition 1. (Max-GAP with Convex Costs (gap-cc))
We are given a set of items I = {1, . . . , n} and a set of bins B = {1, . . . , m}. If
we assign item i to bin j, it yields a profit pij ≥ Z∈0 and increases the load of
bin j by the weight wij ≥ Z>0. For each bin j there is a convex non-decreasing
cost function cj : R∈0 → R∈0 with cj(0) = 0, and we assume that it can be
evaluated in constant time. For pairwise disjoint subsets I1, . . . , Im ⊆ I, the
assignment of items I1, . . . , Im to bins 1, . . . , m, respectively, yields a total net
profit of

φ(I1, . . . , Im) :=
∑

j∈B

⎡

⎣
∑

i∈Ij

pij − cj

⎡

⎣
∑

i∈Ij

wij







 .

The task is to find an assignment of disjoint subsets of the items to bins such
that the total net profit is maximized.

Maximum Generalized Assignment with Convex Costs 77

w

cj(w)

Mj

Bj Bj + 1

Fig. 1. Using cost functions (3) shows that gap is a special case of gap-cc.

This can be summarized in the following nonlinear integer program:

(gap-cc) max
∑

j∈B

⎤
∑

i∈I
pijxij − cj

⎤
∑

i∈I
wijxij

⎧⎧

(2a)

s.t.
∑

j∈B
xij ∈ 1 ≤ i ≥ I (2b)

xij ≥ {0, 1} ≤ i ≥ I, j ≥ B. (2c)

Here, the decision variable xij attains the value one if and only if item i is
assigned to bin j, and constraints (2b) ensure that every item is assigned to at
most one bin.

Note that gap-cc contains gap as a special case by choosing as a cost func-
tion for bin j, e.g.,

cj(w) =

⎪
0, if w ∈ Bj

Mj(w − Bj), else,
(3)

as illustrated in Fig. 1. Here, the constant Mj :=
⎨

i∈I pij +1 ensures that in an
optimal solution the load on bin j is no more than the bin capacity Bj in gap.

1.2 Previous Work

gap is a well-studied problem in literature [4,5]. The problem is known to
be APX-hard [6], but there exists a deterministic 1

2 -approximation algorithm
[6,7]. The currently best approximation algorithm due to Feige and Vondrak [8]
achieves an approximation factor of (1 − 1

e + σ) for some small σ > 0. For the
special case of fixed profits, i.e., the profit of assigning an item does not depend
on the bin (pij = pi), Nutov et al. [9] show how the randomized approxima-
tion algorithm of Fleischer et al. [10] can be derandomized using the method of
conditional expectations (cf. [11]) yielding a deterministic (1− 1

e)-approximation.
Special cases of gap-cc have been subject to recent research. Barman et al. [12]

consider the case |B| = 1 and provide a 3-approximation algorithm that first sorts
the items in non-increasing order of densities and then applies a greedy procedure.

78 M. Bender and S. Westphal

Furthermore, they analyze the problem under different additional feasibility con-
straints and show that the related online problems (where the items arrive over
time and an immediate decision whether to accept or reject the item has to be
made without knowledge about future items) allow competitive ratios that are
only a constant factor worse than for the corresponding problems without the con-
vex cost function.

Antoniadis et al. [1] improve upon the results in [12] and show how the ideas
of the 3-approximation algorithm can be modified and analyzed to guarantee
an approximation factor of 2. Furthermore, they propose a dynamic program
and show how this can be scaled in order to obtain an FPTAS. For the case of
concave cost functions, they show that the problem can be solved optimally in
polynomial time by a greedy procedure.

2 Complexity

We have already seen in Sect. 1.1 that gap-cc contains gap as a special case.
In this section, we show strong NP-completeness for restricted cases of gap-
cc that use, in particular, more realistic cost functions.

Theorem 1. gap-cc is strongly NP-complete even if the cost functions of all
bins are identical (cj = c) and quadratic, the weight of an item is the same for
each bin (wij = wi), and either

(i) the weight of each item i equals its profit (wi = pi), or
(ii) all items have the same profit (pij ∀ p).

Proof. Membership in NP holds since the objective function can be evaluated
in polynomial time.

To show NP-hardness, we perform a reduction from 3-partition which is
known to be strongly NP-complete (cf. [13]). An instance of 3-partition is
given by non-negative integers a1, . . . , a3m, B ≥ Z∈0 such that B

4 < ai < B
2 for

all i ≥ {1, . . . , 3m}, and
⎨3m

i=1 ai = mB. The task is to decide whether there
exists a partition into sets of three elements each, i.e., U1, . . . , Um ⊆ {1, . . . , 3m}
such that ∃m

i=1Ui = {1, . . . , 3m} and Ui ⇒ Uj = ∅ for all i �= j, such that⎨
i∈Uj

ai = B for all j ≥ {1, . . . , m}.
Given an instance of 3-partition, we construct an instance of gap-cc as

follows: every bin j has the same convex, quadratic cost function cj(w) := w2

2B .
In case (i), where wi = pi, we define an item with wi := pi := ai for all

i ≥ {1, . . . , 3m}. The net profit when assigning I1, . . . , Im ⊂ I to bins 1, . . . , m,
respectively, is then given as

φ(I1, . . . , Im) =
m∑

j=1

⎡

⎩
⎣
∑

i∈Ij

ai −
(⎨

i∈Ij
ai

)2

2B



⎟
 ,

and attains the value mB
2 if and only if there exists a 3-partition.

Maximum Generalized Assignment with Convex Costs 79

It is easy to see that if there is a 3-partition, then the corresponding assign-
ment yields a net profit of mB

2 . Vice versa, if there is an assignment with net
profit mB

2 , the contribution of every bin to the net profit is B
2 and this implies

that there is a 3-partition.1

In case (ii), where pij ∀ p, we define an item with wi := ai and pi := p :=
c (nmaxi wi) + 1 for all i ≥ {1, . . . , 3m}. Note that we assume that the cost
function can be evaluated in constant time, and hence, p can be determined in
constant time. This “large” profit ensures that all items have to be assigned to
some bin in an optimal solution, and there exists an assignment with net profit
φ∗ := np − mB

2 if and only if there exists a 3-partition.
If there exists an assignment with net profit φ∗, convexity of the cost func-

tions imply that the load on every bin j is exactly B.2 Thus, there exists a
3-partition. The other implication follows immediately from the definition. ⊕�

Note that, using a similar reduction from partition instead of 3-partition,
we can see that the problem is also (weakly) NP-complete under the assumptions
of the previous theorem even if we have only two bins. In particular, the case of
constant profits which can be solved in polynomial time for the single bin case,
becomes weakly NP-complete for two bins.

3 Polynomially Solvable Cases

In this section, we show that special cases of gap-cc can be solved in polynomial
time.

3.1 A Round-Robin Algorithm for wij ≡ w, pij = pi, cj = c

We have seen that gap-cc is strongly NP-complete under the assumptions of
Theorem 1. If we restrict the problem slightly more and assume that the profits
do not depend on the bin (pij = pi), all cost functions are identical (cj = c), and
the weights are constant (wij ∀ w), the problem can be solved in O(n log n).

The idea of Algorithm 1 is to sort the items in non-increasing order of profits,
and then keep on adding them to the bins in a round-robin manner, i.e., item i
is assigned to bin i mod m, as long as the net profit increases.

Theorem 2. gap-cc can be solved in O(n log n) if the profits do not depend
on the bin (pij = pi), the weights are constant (wij ∀ w), and all bins have the
same cost function (cj = c).

1Observe that the function h(w) := w − w2

2B
attains its global maximum B

2
for

w = B.
2Let B + δj be the load on bin j, where

∑
j∈B δj = 0. Then, the total costs are

∑
j∈B cj(B + δj) = 1

2B

(
mB2 +

∑
j∈B δ2j

)
= mB

2
, which implies that δj = 0 for all j.

80 M. Bender and S. Westphal

Algorithm 1. Round-Robin Algorithm for pij = pi, wij ∀ w, cj = c

1: Sort items I in non-increasing order of profits such that p1 ≥ p2 ≥ . . . ≥ pn.
2: for i ∈ I do
3: if net profit increases when item i is assigned to bin i mod m then
4: assign item i to bin i mod m.
5: end if
6: end for

Proof. We assume w.l.o.g. wij ∀ 1. Observe that an optimal solution assigns
items to the bins such that the loads of the bins differ by at most one. Otherwise,
items could be reassigned increasing the net profit since the profits do not change
and the cost functions are convex and identical for all bins. Hence, we can assume
that an optimal solution is given in a round robin-manner.

Since the net profit function can be evaluated in constant time, the running
time is dominated by the time needed for the sorting of the items, which can be
done in O(n log n). ⊕�

3.2 A Minimum-Cost Flow Algorithm for wij = wj

The problem can also be solved in polynomial time if we restrict gap-cc to have
weights that do not depend on the items, i.e., wij = wj . In this case, we can use
a minimum-cost flow algorithm.

Therefore, consider the following network: there is a node for every item i
and for every bin j, an additional source s, and a sink t. There are arcs from s
to all items with costs 0. Furthermore, there is an arc between item i and bin j
with costs −pij , and there are n parallel arcs connecting bin j with the sink t
that have costs of cj(a) − cj(a − 1) for a ≥ {1, . . . , n}, respectively, representing
the additional costs incurred by the a-th unit of weight on bin j. All of these
arcs have unit capacity. Finally, there is an arc connecting t with s at cost 0,
and capacity ∞. This network is illustrated in Fig. 2.

Observe that we can assume all weights to be 1 (if they were different, we
could just scale them appropriately by modifying the cost function), and since
the cost functions are convex and non-decreasing we have that cj(a)−cj(a−1) ∈
cj(b)−cj(b−1) for all a ∈ b. Thus, a minimum-cost circulation then corresponds
to a maximum net profit assignment of items to bins.

Hence, in order to solve gap-cc for wij = wj , we simply need to compute
a minimum-cost circulation in the given network. Since the minimum cost flow
problem can be solved in strongly polynomial time (cf. [14]), and since the graph
has n + m + 2 = O(n + m) nodes and n + 2nm + 1 = O(mn) arcs, we obtain
the following result:

Theorem 3. gap-cc can be solved in strongly polynomial time if the weights
only depend on the bin (wij = wj).

Maximum Generalized Assignment with Convex Costs 81

s

I1

I2

I3

B1

B2

t

0

0

0

−p11−p
12

−p21

−p22

−p3
1

−p32

c1(1)

c1(2) − c1(1)

c1(3) − c1(2)

c2(3)
− c2(2)

c2(2
) − c2(1

)

c2(1)

0

Fig. 2. Illustration of the network for three items and two bins. The labels on the arcs
correspond to the costs. Arc (t, s) has capacity ∞, all other arcs have capacity 1.

4 Approximation Algorithm for the General Case

In this section, we design an approximation algorithm for the general case based
on the ideas of Fleischer et al. [10] for the classical gap.

4.1 A Configuration Based Formulation

Besides the straight-forward formulation (2), gap-cc can also be formulated
using a configuration based integer linear program. A configuration of a bin j is
a subset of the items that may be assigned to the bin.

Although it might lead to negative net profits, it is allowed to assign any
subset of the items to each of the bins. Hence, the set of feasible configurations
for bin j is given by T (j) := 2I . We denote by T :=

⋃̇
j∈BT (j) the disjoint union

of all bins’ configurations. The net profit of a configuration t ≥ T (j) is given by
φt :=
⎨

i∈t pij − cj

(⎨
i∈t wij

)
.

We can then write the problem as the following integer linear program:

(IP) max
∑

t∈T

φtxt (4a)

s.t.
∑

t∈T (j)

xt = 1 ≤ j ≥ B (4b)

∑

t∈T :i∈t

xt ∈ 1 ≤ i ≥ I (4c)

xt ≥ {0, 1} ≤ t ≥ T. (4d)

82 M. Bender and S. Westphal

By constraints (4b), exactly one configuration is chosen for each bin, and con-
straints (4c) ensure that every item is assigned at most once. We denote the linear
relaxation of (IP) that we obtain by relaxing the integrality constraints (4d) to
xt ≥ 0 by (LP) (note that we can neglect the constraints xt ∈ 1 as this is already
implied by the other constraints).

Observe that (LP) has an exponential number of variables. However, we can
use a result by Fleischer et al. [10] that shows how an approximation for (LP)
can be obtained using an approximation algorithm for the single bin subproblem,
i.e., the problem of finding an optimal configuration for a single bin.

Theorem 4 (Fleischer et al. [10]). If there exists an FPTAS for the single
bin subproblem, then there exists an FPTAS for solving (LP) the linear relaxation
of (4).

The single bin subproblem of gap-cc was already investigated by Antoniadis
et al. [1], and they obtained the following result:

Theorem 5 (Antoniadis et al. [1]). For the single bin subproblem of gap-
cc there exists an FPTAS.

Combining the two previous results, we obtain:

Corollary 1. There exists an FPTAS for solving (LP).

4.2 The Randomized Rounding Procedure

Our randomized rounding procedure then works as follows: For a fixed α > 0, we
first solve (LP) approximately using the FPTAS as described above and obtain
a fractional solution xLP ≥ [0, 1]|T | in time polynomial in the encoding length of
the problem and 1/α. Then, for each bin j, we choose a configuration indepen-
dently at random, where configuration t ≥ T (j) is chosen with probability xLP

t .
Note that, by constraints (4b), the values {xLP

t : t ≥ T (j)} define a probability
distribution for every bin j.

We denote the solution obtained by this procedure by xIP ≥ {0, 1}|T |, where
xIP

t = 1 if and only if configuration t is chosen. The expected net profit of the
rounded solution xIP is then given as

E

[
∑

t∈T

φtx
IP
t

]

=
∑

t∈T

φtE
[
xIP

t

]
=
∑

t∈T

φtx
LP
t ≥ (1 − α) · optlp. (5)

By construction, xIP satisfies (4b). However, it does not, in general, fulfill
(4c) since an item might be assigned to more than one bin.

Maximum Generalized Assignment with Convex Costs 83

4.3 Obtaining a Feasible Solution

In order to turn xIP into a feasible solution of (IP), we need to remove multiple
copies of items from the bins they are assigned to. In classical gap, the straight-
forward way of doing this is to delete each item from all bins it is assigned to
except for the one where it yields highest profit (cf. [10]). Due to the nonlinear
cost functions cj , one also has to take the cost increase caused by the items’
weights into account. One natural way to do this is to “linearize” the costs by
charging every item an amount of the costs proportional to its weight. This
motivates the following definition:

Definition 2. For a configuration t ≥ T (j), we define the net profit contribu-
tion of item i with respect to t as

μt
i :=






pij − wij∑

k∗t

wkj
cj

(
⎨

k∈t

wkj

)

, if i ≥ t

0, else.

Note that, for each t ≥ T , the net profit contributions of all items with respect
to t sum up to the net profit of configuration t, i.e.,

⎨
i∈t μt

i = φt. Moreover, the
following result shows that we can use the net profit contributions with respect
to a configuration in order to obtain a lower bound on the net profit of any
subset of the configuration:

Lemma 1. For every configuration t≤ ⊆ t, we have
∑

i∈t≤
μt

i ∈ φt≤ .

Proof. For t≤ = t, the result holds as
⎨

i∈t μt
i = φt by definition of the μt

i. For
t≤ ∅ t, let j denote the bin to which configuration t corresponds, i.e., t ≥ T (j).
Observe that, for 0 ∈ x < y, the convexity of cj and the assumption that
cj(0) = 0 imply that

cj(x) = cj

((

1 − x

y

)

· 0 +
x

y
· y

)

∈
(

1 − x

y

)

· cj(0)
︸ ︷︷ ︸
=0

+
x

y
· c(y) =

x

y
· c(y).

If we choose x :=
⎨

i∈t≤ wij and y :=
⎨

i∈t wij (which satisfy 0 ∈ x < y since
wij > 0 for all i, j and t≤ ∅ t), this shows that

cj

⎤
∑

i∈t≤
wij

⎧

∈
⎨

i∈t≤ wij
⎨

i∈t wij
· cj

⎤
∑

i∈t

wij

⎧

.

Using this inequality, we obtain

∑

i∈t≤
μt

i =
∑

i∈t≤
pij −

⎨
i∈t≤ wij
⎨

k∈t wkj
cj

⎤
∑

k∈t

wkj

⎧

∈
∑

i∈t≤
pij − cj

⎤
∑

i∈t≤
wij

⎧

= φt≤ .

⊕�

84 M. Bender and S. Westphal

In order to decide to which bin a multiply assigned item is assigned, we now
use the net profit contributions. If an item i is assigned to multiple bins, we
delete it from all bins except for the one where the expression

Eij :=
∑

t∈T (j):i∈t

xLP
t

yj
· μt

i (6)

is maximal. Here, Eij denotes the conditional expectation of the profit contri-
bution of item i in bin j given that the configuration chosen for bin j contains
i. We denote by yj :=

⎨
t∈T (j):i∈t xLP

t the probability that item i is assigned
to bin j. Note that for the classical gap, μt

i = pij for all t ≥ T (j) and thus,
Eij = pij .

In the following, let i ≥ I be an arbitrary, but fixed item, and number the
bins in non-increasing order of (6) such that Ei1 ≥ Ei2 ≥ . . . ≥ Eim.

With probability y1 the configuration that is chosen for bin 1 contains item i.
In this case, item i is assigned to bin 1 and its expected profit contribution in
bin 1 is at least Ei1. With probability (1 − y1)y2 the configuration chosen for
bin 1 does not contain item i, but the one for bin 2 does (this holds since the
configurations for the bins are chosen independently). In this case, item i is
assigned to bin 2 and its expected profit contribution in bin 2 is at least Ei2.

This argument can be applied in the same way for the following bins, and
overall, we obtain that the expected profit contribution of item i is at least

y1Ei1 + (1 − y1)y2Ei2 + . . . +

⎡

⎣
m−1∏

j=1

(1 − yj)



 ymEim

=
m∑

j=1

j−1∏

k=1

(1 − yk) yj Eij

≥
(

1 −
(

1 − 1
m

)m)

·
m∑

j=1

yjEij

≥
(

1 − 1
e

)

·
m∑

j=1

yjEij

=
(

1 − 1
e

)

·
m∑

j=1

∑

t∈T (j):i∈t

xLP
t μt

i.

Here, we used the arithmetic-geometric mean inequality for the first inequal-
ity, and the fact that (1 − 1/k)k ∈ e−1 for all k ≥ 1 for the second inequality
(cf. [15]).

If we do this for every multiply assigned item, we choose subsets of the con-
figurations that have been selected in the rounding procedure, and by Lemma 1
we know that using the net profit contributions for the chosen items we under-
estimate the actual net profit. Hence, the total expected net profit we obtain is

Maximum Generalized Assignment with Convex Costs 85

at least the sum of the expected profit contributions of all items that remain in
the solution after removing multiple copies.

Summing up over all items i ≥ I, this shows that we obtain a solution with
expected net profit at least

∑

i∈I

(

1 − 1
e

)

·
∑

t∈T :i∈t

μt
ix

LP
t =
(

1 − 1
e

)

·
∑

t∈T

∑

i∈I
μt

i

︸ ︷︷ ︸
=πt

xLP
t

(5)

≥
(

1 − 1
e

)

· (1 − α) · optlp

≥
(

1 − 1
e

− α

)

· optlp. (7)

Hence, we obtain the following result:

Lemma 2. For every α > 0, there exists a randomized
(
1 − 1

e − α
)
-approxi-

mation algorithm for gap-cc whose running time is polynomial in the encoding
length of the problem and 1/α.

In fact, one can even slightly improve upon the previous result. If we use
instead of the arithmetic-geometric mean inequality, the sharper estimate

1 − (1 − 1/k)k ≥ 1 − 1
e

+
1

32k2
for all k ≥ 1

due to Nutov et al. [9], we can bound the expected profit we obtain similar to (7)
from below by (

1 − 1
e

+
1

32m2
− α

)

· optlp.

If we then choose α = 1/32m2 (which is polynomial in the encoding length of the
problem), we obtain the following result:

Theorem 6. There exists a randomized
(
1 − 1

e

)
-approximation algorithm for

gap-cc.

5 Open Problems

For classical gap with fixed profits (pij = pi), the approximation algorithm
from [10] can be derandomized [9]. It remains an open problem whether such a
derandomization can also be performed in our setting for some cases, or whether
there exist other deterministic approximation algorithms.

Acknowledgments. This research was partially supported by the German Research
Foundation (DFG), grant GRK 1703/1 for the Research Training Group “Resource
Efficiency in Interorganizational Networks – Planning Methods to Utilize Renewable
Resources”.

86 M. Bender and S. Westphal

References

1. Antoniadis, A., Huang, C.-C., Ott, S., Verschae, J.: How to pack your items when
you have to buy your knapsack. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 62–73. Springer, Heidelberg (2013)

2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
3. Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Serna,

M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS,
vol. 6302, pp. 352–365. Springer, Heidelberg (2010)

4. Cattrysse, D.G., Van Wassenhove, L.N.: A survey of algorithms for the generalized
assignment problem. Eur. J. Oper. Res. 60(3), 260–272 (1992)

5. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper.
Res. 176(2), 774–793 (2007)

6. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. SIAM J.
Comput. 35(3), 713–728 (2006)

7. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assign-
ment problem. Math. Program. 62, 461–474 (1993)

8. Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: improv-
ing the factor of 1–1/e. In: Proceedings of the 47th Annual IEEE Symposium on
the Foundations of Computer Science (FOCS), pp. 667–676 (2006)

9. Nutov, Z., Beniaminy, I., Yuster, R.: A (1 − 1/e)-approximation algorithm for the
maximum generalized assignment problem with fixed profits. Oper. Res. Lett. 34,
283–288 (2006)

10. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation
algorithms for maximum general assignment problems. Math. Oper. Res. 36(3),
416–431 (2011)

11. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley and Sons, New
York (1992)

12. Barman, S., Umboh, S., Chawla, S., Malec, D.: Secretary problems with convex
costs. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part I. LNCS, vol. 7391, pp. 75–87. Springer, Heidelberg (2012)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability (A Guide to the Theory
of NP-Completeness). W.H. Freeman and Company, New York (1979)

14. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood
Cliffs (1993)

15. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the max-
imum satisfiability problem. SIAM J. Discrete Math. 7, 656–666 (1994)

An Integer Programming Formulation
for the Maximum k-Subset

Intersection Problem

Eduardo T. Bogue, Cid C. de Souza, Eduardo C. Xavier,
and Alexandre S. Freire(B)

Institute of Computing, University of Campinas, Campinas, Brazil
afreire@ime.usp.br

Abstract. In this paper, we study the maximum k-subset intersec-
tion (MkSI) problem. Given an integer k, a ground set U and a collection
S of subsets of U , the MkSI problem is to select k subsets S1, S2, . . . , Sk

in S whose intersection size |S1 ∩ S2 ∩ · · · ∩ Sk| is maximum. The MkSI
problem is NP-hard and hard to approximate. Some applications of the
MkSI problem can be found in the literature and, to the best of our
knowledge, no exact method was proposed to solve this problem. In this
work, we introduce a very effective preprocessing procedure to reduce
the size of the input, introduce a GRASP heuristic which was able to
find solutions very close to be optimal ones, propose an integer program-
ming formulation for the problem and present computational experi-
ments made with instances that come from an application.

Keywords: Maximum k-subset intersection · Integer programming ·
GRASP

1 Introduction

In this paper1, we study the maximum k-subset intersection (MkSI) prob-
lem. Given an integer k, a ground set U and a collection S of subsets of U , the
MkSI problem is to select k subsets S1, S2, . . . , Sk in S whose intersection size
|S1∈S2∈· · ·∈Sk| is maximum. Using graph theory terminology, the MkSI prob-
lem can be stated as follows: given a bipartite graph G = (V = L≤R,E), find a
biclique (a complete bipartite graph) B, subgraph of G, such that |V (B)∈L| = k
and |V (B)∈R| is maximized. It is worth noticing that the constraint |V (B)∈L| =
k can be relaxed to |V (B) ∈ L| ≥ k. In fact, given an optimal biclique B such
that |V (B)∈L| ≥ k, we can remove |V (B)∈L|−k vertices from (V (B)∈L) and
obtain a feasible solution of the MkSI problem with the same objective value
|V (B) ∈ R|.

The MkSI problem was introduced by Vinterbo in [9]. In [9] and [10], it is
shown that the problem is NP-hard and Xavier shows in [10] that the MkSI
1 This work was partially founded by CNPq (grants 477692/2012-5, 302804/2010-2

and 302067/2011-6) and FAPESP (grants 2012/17585-9 and 2013/03447-6).

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 87–99, 2014.
DOI: 10.1007/978-3-319-09174-7 8

88 E.T. Bogue et al.

problem is hard to approximate. A related NP-hard problem is the maximum
edge biclique (MEB) problem, which is to find a biclique in a graph G with
maximum number of edges. A natural idea for solving the MEB problem is to
solve the MkSI, for k = 1, 2, . . . , |L|, and return a solution with the maximum
number of edges. Intuitively, this process leads to an optimal solution of the MEB
problem. In fact, in [10] it is shown that the MEB problem can be reduced to the
MkSI problem. In [1], Acuña et al. introduced a Mixed Integer Linear Program-
ming (MILP) formulation for the MEB problem and mention some applications
of this problem in bioinformatics and other fields.

A possible way to tackle the MkSI problem is simply to enumerate all
(|L|

k

)

subsets of L with size k and return one solution which maximizes the objective
function. This observation suggests that, if k is bounded by a constant, then
the problem can be solved in polynomial time. In [3], Ganter et al. proposed a
polynomial delay algorithm for enumerating all closed sets, which can be used
to enumerate all maximal bicliques of a given bipartite graph. A (L,R)-bipartite
graph is said to be convex if there is a total order σ of R, such that, for each
u ∈ L, we have that the vertices adjacent to u are consecutive in σ. In [6], D.
Nussbaum et al. showed that a convex bipartite graph has a polynomial number
of maximal bicliques, which implies that the MEB and MkSI problems can be
solved in polynomial time for this special class of graphs. Apart from these two
special cases, to the best of our knowledge, there is no other special case in which
the MkSI problem can be solved in polynomial time.

In [9], an application of the MkSI problem in patients’ data privacy control is
proposed. In this application, each vertex in L represents a patient, each vertex
in R represents an attribute, while an edge indicates that a certain patient has a
certain attribute. The objective is to publish the maximum amount of patients’
data (to be used in statistical analysis, for instance) without violating patients’
privacy. For that purpose, a set of attributes can be published only if at least
k patients have all those attributes in common. In [6], an application of the
MkSI problem in DNA Microarray analysis is mentioned, in which the objective
is to select k genes with the greatest number of characteristics in common.
Although some applications have been previously proposed, we could not find
in the literature any exact method for solving the MkSI problem.

In this work, we consider the following application of the MkSI problem:
each vertex in L represents a musical artist (singer, band, etc.), each vertex in
R represents a person, while an edge indicates that a certain person is a fan
of a certain musical artist. The objective is to find a set of k musical artists
(to be part of a jazz festival, for instance) with maximum number of fans in
common. In this way, it is expected that most of the people attending the concert
will enjoy all the bands. We obtained real data for this application from the
Last FM database. Our main contributions can be summarized as follows: we
introduce a very effective preprocessing procedure to reduce the size of the input;
we introduce a GRASP heuristic that yielded an optimal solution for most of
the tested instances (for all of them it yielded primal bounds very close to the
optimum); we propose an Integer Linear Programming (ILP) formulation with

An Integer Programming Formulation for the MkSI Problem 89

which we solved instances of relatively large size; and we present computational
experiments made with instances obtained from the Last FM database.

The next sections are organized as follows. In Sect. 2, we introduce the nota-
tion and definitions used throughout this paper. In Sect. 3, we present an ILP for-
mulation for the MkSI, study the associated polytope, establish its relation with
the so-called stable set polytope and propose a class of facet-defining inequali-
ties. In Sect. 4, we describe a preprocessing procedure, a GRASP heuristic and
discuss some other issues that we considered in our implementation. In Sect. 5,
we present computational experiments with instances obtained from the Last
FM database. Finally, in Sect. 6, we draw concluding remarks and point out
some possible future work.

2 Notation and Definitions

This section introduces the notation and definitions used throughout this paper.
Let G = (V,E) be a bipartite graph and let L and R be the two parts of the

bipartition of V (i.e., V = L ≤ R, L ∈ R = ∅ and E ∀ L × R). For simplicity,
we say that G is a (L,R)-bipartite graph and, given an edge {u, v} ∈ E, we
assume, as a convention, that u ∈ L, v ∈ R and write uv without braces (i.e.,
the label in the left side corresponds to the vertex in L, and the label in the right
side corresponds to the vertex in R). Given a subgraph B of G, we denote its
vertex set by VB, its edge set by EB and we say that B is a (LB , RB)-bipartite
graph, where LB = VB ∈ L and RB = VB ∈ R. Given a subset of vertices
S ∃ V , the subgraph of G induced by S is the graph G′ = (V ′, E′), such that
V ′ := S and E′ = {uv ∈ E | u ∈ V ′ and v ∈ V ′}. Given a vertex u in V , let
N(u) = {v ∈ V | uv ∈ E} be the set of neighbours of u and let N(u) be the set
of non-neighbours of u in the opposite part (i.e., if u ∈ L then N(u) = R\N(u),
otherwise N(u) = L \ N(u)). Given a subset S of V , let Γ (S) =

⋂
u∈S N(u)

be the set of neighbours that all vertices in S have in common. We denote by
E = {uv | u ∈ L and v ∈ N(u)} the set of edges that are missing for G to be
a complete bipartite graph. We say that B is a biclique if uv ∈ EB , for each
u ∈ LB and v ∈ RB. We denote by χ(B) the incidence vector of B, where
χ(B) ∈ {0, 1}|V | and χ(B)u = 1 if and only if u ∈ VB. In this paper, we study
the problem stated below.

Problem 1. Given a (L,R)-bipartite graph G = (V,E) and a positive integer
k ⇒ |L|, the maximum k-subset intersection (MkSI) problem is to find a
biclique B, subgraph of G, such that |LB | = k and |RB| is maximum.

We denote by opt(G, k) the optimum of an instance (G, k) of the MkSI problem.

3 Formulation and Preliminary Polyhedral Study

In this section, we present an Integer Linear Programming (ILP) formulation for
the MkSI, study the associated polytope, establish its relation with the so-called

90 E.T. Bogue et al.

stable set polytope and propose a class of facet-defining inequalities. To ease the
discussions that follow, we state the problem in a slightly different way.

Suppose that we have a lower bound λ on opt(G, k). Let L(λ) be the set
of pairs of vertices from L that have at most λ − 1 neighbours in common, i.e.
L(λ) = {{u, v} ∃ L s.t. |Γ ({u, v})| < λ}. Analogously, for an integer t, we define
R(t) = {{u, v} ∃ R s.t. |Γ ({u, v})| < t}, the set of pair of vertices in R whose
neighborhoods intersect in less than t vertices. Let F(t, λ) = L(λ) ≤ R(t) ≤ E.
By construction, none of the pairs in F(k, λ) can be part of an optimal solution
of MkSI.

That said, we introduce an ILP formulation for a slightly different variant of
the MkSI problem, denoted by MkSI(λ), in which we consider only the feasible
solutions which do not contain pairs in F(k, λ). Since an optimal solution for
the MkSI does not contain such pairs, this integer program can be used to solve
the latter problem. In this model, to each vertex u in V , we associate a binary
variable xu which is set to one if and only if u is in the computed biclique.

max z(x) =
∑

v∈R

xv

(IP1) s.t.
∑

u∈L

xu = k (1)

xu + xv ⇒ 1, for each {u, v} ∈ F(k, λ) (2)

x ∈ {0, 1}|V | (3)

We first argue informally that (IP1) is a formulation for the MkSI(λ) problem,
and latter prove it formally. Given an optimal solution x∗ of (IP1), we obtain
a subgraph B∗ of G, such that χ(B∗) = x∗. Constraints (1) and (3) together
assure that |LB∗ | = k. Constraints (2) and (3) assure that B∗ does not contain
any pair in E, which implies that B∗ is a biclique. From the objective function,
we have that z(x∗) = |RB∗ |. Therefore, (IP1) is a formulation for the MkSI(λ)
problem. It is worth noticing that a more natural formulation for MkSI is derived
from (IP1) by replacing F(k, λ) in constraint (2) by F(0, 0) = E. Clearly, in this
way no knowledge is assumed of a primal bound λ and no pairs of vertices of
R are eliminated a priori from the solution, leaving this latter task to the ILP
solver. We name this natural formulation as the medge model.

Let PMkSI(G, k, λ) = conv{χ(B) ∈ {0, 1}|V | s.t. B is a biclique in G, |LB | =
k and |Γ ({u, v})| ≥ λ, for each u and v in LB} be the polytope associated with
the MkSI(λ) problem, which corresponds to the convex hull of all feasible solu-
tions of the problem. Since λ is a valid lower bound, we have that there is
at least one biclique B in G with |RB | ≥ λ, thus PMkSI(G, k, λ) ∅= ∅. Let
PIP1(G, k, λ) = conv{x ∈ R

|V | | x satisfies (1), (2) and (3)} be the polytope
associated with the formulation (IP1). We now show the equivalence between
PIP1(G, k, λ) and PMkSI(G, k, λ), then we use this fact to prove that (IP1) is a
formulation for the MkSI(λ) problem.

An Integer Programming Formulation for the MkSI Problem 91

Lemma 1. PMkSI(G, k, λ) = PIP1(G, k, λ).

Proof. Clearly it suffices to check that the set of integral vectors in both poly-
topes are the same. So, given a vector χ(B) in PMkSI(G, k, λ), let x := χ(B).
We now show that x is a feasible solution of (IP1). Since |LB | = k, we have that
constraint (1) is satisfied by x. Since B is a biclique, such that |LB | = k and
|Γ ({u, v})| ≥ λ, for each u and v in VB , then we have that {u, v} /∈ L(λ)≤R(k)≤
E. Thus, constraints (2) are satisfied by x. Hence, PMkSI(G, k) ∀ PIP1(G, k).

Conversely, let x′ be a feasible solution of (IP1) and let B′ be the subgraph
of G induced by VB≤ , where VB≤ = {u ∈ V | χ(B′)u = 1}. By constraint (1),
we have that |LB≤ | = k. By constraints (2), for each u ∈ LB≤ and v ∈ RB≤ , we
have that {u, v} /∈ L(λ) ≤ E and, thus, B′ is a biclique such that |Γ ({u, v})| ≥
λ, for each u and v in LB≤ . Hence PIP1(G, k, λ) ∀ PMkSI(G, k, λ). �⊂
Lemma 2. (IP1) is a formulation for the MkSI(λ) problem.

Proof. Given a feasible solution x of (IP1), let B be the subgraph of G with
χ(B) = x. Clearly, we have that |RB | = z(x). Together with Lemma 1, this
implies that (IP1) is a formulation for the MkSI(λ) problem. �⊂

Due to the equality constraint (1), PIP1(G, k, λ) is not full dimensional. As
a result, for technical convenience, we study the monotone polytope defined as

PIP2(G, k, λ) = conv{x ∈ R
|V | | x satisfies (2), (3) and

∑

u∈L

xu ⇒ k}.

In order to derive a formulation for the MkSI(λ) problem from PIP2(G, k, λ), the
objective function is modified to:

z′(x) = (|R| + 1)
∑

u∈L

xu +
∑

v∈R

xv.

Since PIP1(G, k, λ) ∀ PIP2(G, k, λ), the high costs assigned to the vertices in L
forces that any optimal solution for (IP2) must be in (IP1). In other words, a
solution x∗ which maximizes z′(x∗) also maximizes z(x∗) = z′(x∗) − k(|R| + 1).
For computational purposes, there is no reason to deal with PIP2(G, k, λ) instead
of PIP1(G, k, λ). However, from a theoretical point of view, it is more convenient
to work with a full dimensional polytope, which is the case of PIP2(G, k, λ), as
shown in Lemma 3. In the sequel, for each u ∈ V , we denote by Bu be the biclique
which contains only the vertex u and let B = {χ(Bu) ∈ {0, 1}|V | | u ∈ V }.

Lemma 3. PIP2(G, k, λ) is full dimensional.

Proof. Note that, for each u ∈ V , we have that χ(Bu) ∈ PIP2(G, k, λ). Moreover,
the null vector also belongs to PIP2(G, k, λ). These |V | + 1 vectors are affinely
independent and, since PIP2(G, k, λ) ∃ R

|V |, we have that PIP2(G, k, λ) is full
dimensional. �⊂

92 E.T. Bogue et al.

Let G′ = (V ′, E′) be the graph obtained as follows: V ′ := V and E′ :=
F(k, λ). Note that each feasible solution of (IP2) corresponds to a stable set (a
set with pairwise non-adjacent vertices) in G′, but the converse is not true, since
the stable sets in G′ with more than k vertices in L do not correspond to any
feasible solution of (IP2). For a survey on branch-and-cut algorithms for the
maximum stable set problem, as well as a polyhedral study of the so-called
stable set polytope, we refer to the work of S. Rebennack et al. [7].

A natural question that arises in this context is: which properties of the
stable set polytope corresponding to G′ hold for PIP2(G, k, λ)? We give a partial
answer to this question by showing that some inequalities that are known to
define facets of the stable set polytope also have this same property with respect
to PIP2(G, k, λ). To this end, we first consider the non-negativity inequalities.

Lemma 4. For each u ∈ V , the inequality xu ≥ 0 defines a facet of PIP2(G, k, λ).

Proof. Let u be a vertex in V and consider the face F = {x ∈ PIP2(G, k, λ) |
xu = 0}. Note that, for each v ∈ V \ {u}, we have that χ(Bv) ∈ F . Since the
null vector is also in F , we have found dim(PIP2(G, k, λ)) affinely independent
vectors in this face. Hence, F is a facet of PIP2(G, k, λ). �⊂

Now, suppose that there are three vertices u, v and w in V , such that {u, v},
{u,w} and {v, w} are in F(k, λ). It can be easily checked that, in this case,
xu + xv + xw ⇒ 1 is a valid inequality for PIP2(G, k, λ). This argument can be
generalized to show that, in general, constraints (2) are dominated by clique
inequalities and, as a consequence, can not define facets of PIP2(G, k, λ). For the
graph G′, the clique inequalities are defined as follows.

Let C(G′) be the set of all cliques in G′ with at least two vertices. The clique
inequalities for G′ are given by

∑

u∈C

xu ⇒ 1, for each C ∈ C(G′) (4)

Clique inequalities are known to be valid for the stable set polytope and, only for
maximal cliques, they are facet-defining. Next, we show that the same property
holds for PIP2(G, k, λ).

Lemma 5. Inequalities (4) are valid for PIP2(G, k, λ).

Proof. Let C be a clique in C(G′). We now show, by induction in |C|, that∑
u∈C xu ⇒ 1 is valid for PIP2(G, k, λ). If |C| = 2 then the corresponding

constraint (4) is explicitly added in (IP2), and therefore, valid. Suppose now
that |C| > 2. Then, by the induction hypothesis, we have that the inequality∑

u∈C≤ xu ⇒ 1 is valid for PIP2(G, k, λ), for each C ′ ∃ C, such that |C ′| = |C|−1.
Then, adding all these inequalities we have that

∑
u∈C(n− 1)xu ⇒ n is valid for

PIP2(G, k, λ), where n = |C|. Since all feasible solutions of (IP2) are integral,
then we have that

∑
u∈C xu ⇒

⌊
n

n−1

⌋
= 1 is valid for PIP2(G, k, λ). �⊂

An Integer Programming Formulation for the MkSI Problem 93

Lemma 6. For each maximal clique C in C(G′), we have that the inequality∑
u∈C xu ⇒ 1 defines a facet of PIP2(G, k, λ).

Proof. Let C be a maximal clique in C(G′) and let F = {x ∈ PIP2(G, k, λ) |∑
u∈C xu = 1}. Note that, for each u ∈ C, we have that χ(Bu) ∈ F . If C = V

then the proof is complete. Suppose that C ∅= V . Since C is maximal, given
a vertex u ∈ V \ C, we have that there is at least one vertex φ(u) in C, such
that {u, φ(u)} /∈ E′. For each u ∈ V \ C, let B̌u be a subgraph of G induced by
{u, φ(u)} and let B̌ = {χ(B̌u) ∈ {0, 1}|V | | u ∈ V \C}. Note that χ(B̌u) ∈ F , for
each B̌u ∈ B̌, and the square matrix M composed by the vectors in B̌ ≤ B and
its inverse can be written as below:

M =
(

In×n A
0 Im×m

)

and M−1 =
(

In×n −A
0 Im×m

)

,

where n = |C| and m = |V | − |C|. Since rank(M) = |V | then we have that the
vectors in B̌ ≤ B are affinely independent. Therefore, dim(F) = |V | − 1 and F is
a facet of PIP2(G, k, λ). �⊂

We leave for further investigation the question of identifying which other
inequalities, valid for the stable set polytope, are also valid for PIP2(G, k, λ), as
well as under which conditions they are facet-defining for PIP2(G, k, λ).

4 Implementation Issues

This section describes a preprocessing procedure, a GRASP heuristic and the
implementation of our integer programming formulation for solving the MkSI
problem. All the algorithms were implemented in the C++ programming language.

A Preprocessing Procedure. The goal of the preprocessing is to reduce the
instance size by eliminating vertices from L and R that can not be part of a
feasible solution with cost higher than the primal bound λ. This is done as
follows. For each vertex u in L, let Lu(λ) = {v ∈ L | {u, v} ∈ L(λ)} be the
set of vertices from L that can not be together with u in any feasible point of
PIP2(G, k, λ). Besides, for each vertex v in R, let Rv(k) = {w ∈ R | {v, w} ∈
R(k)} be the set of vertices from R that can not be together with v in any
feasible point of PIP2(G, k, λ). Note that each vertex u in L with |N(u)| < λ or
with |L|−|Lu(λ)| < k can be removed from G. Similarly, each vertex u in R with
|N(u)| < k or with |R| − |Ru(k)| < λ can be removed from G. After removing
such vertices, as well as their incident edges, it may happen that new vertices
with “low degree” appear in the resulting graph. Thus, we reiterate the process
until no further vertices are removed from the graph. Of course, this procedure
can be applied every time a new lower bound λ′ is found, such that λ′ > λ. In
Sect. 5, we show the effectiveness of this preprocessing procedure in practice.

94 E.T. Bogue et al.

A GRASP Heuristic. We now address the question of how to find a good
lower bound λ. For this purpose, we developed a Greedy Randomized Adaptive
Search Procedure (GRASP) heuristic.

The constructive phase of our GRASP begins with an empty set L′, with
λ = 0 and constructs a set S ∀ (L \ L′) of candidate vertices. In order to
explain how we set the maximum size of S, let us introduce some additional
notation. For each u ∈ L \ L′, let c(u) = |Γ (L′ ≤ {u})| be the incremental
value of u. Let cmin = minu∈L\L≤ c(u) and cmax = maxu∈L\L≤ c(u), and let α be
a parameter, such that α ∈ {0.0, 0.1, 0.2, . . . , 1.0}. The candidates included in
S are the ones with incremental value inside the interval [cmin + α × (cmax −
cmin), cmax]. If α = 0 then we have that all vertices in L \ L′ are candidates.
As the value of α increases, only the vertices with the highest incremental value
are candidates and, as a consequence, the size of the candidate list tends to
decrease. In our implementation we change the value of α at each iteration using
a probabilistic criterium. This strategy is known as Reactive GRASP [8]. At each
iteration, the algorithm randomly chooses a candidate to be removed from S and
adds this vertex to L′. This process is repeated until |L′| = k. After that, the
algorithm performs a local search until a local optimal solution is found, where
the neighbourhood of a solution B contains all bicliques obtained by switching
one vertex of LB with a vertex in L\LB . The algorithm performs 500 iterations.

Finally, after executing the procedure described above, we apply a path-
relinking [4] procedure among pairs of the best solutions found so far, which are
kept in a set S∗. In order to get better results, the solutions selected to be in
B∗ must be well diversified. At each iteration of the path-relinking phase, the
algorithm randomly chooses two solutions B1 and B2 from B∗ and explores a
path of intermediate solutions connecting B1 to B2. The path is formed by a
sequence of solutions, starting in B1 and ending in B2, and such that each of
them can be obtained from the previous one through a local search operation.
The local search and the path-relinking phases are executed only if the value of
the current solution is at least 80 % of the value of the best solution found so far.

Strengthening the Integer Programming Model. After computing a lower
bound λ with our GRASP heuristic and applying the preprocessing procedure,
we solve a strengthened version of (IP1). In this model we include the non-
negativity constraints and, for each {u, v} ∈ F(k, λ), a clique inequality for an
arbitrarily chosen maximal clique in G′ containing both u and v. In other words,
we take each constraint (2) of model (IP1) and lift it to a facet-defining inequality
of PIP2(k, λ). We refer to this model as the mclique model.

Initially, we tested with a branch-and-cut algorithm which started with the
mclique model and separated clique inequalities using the heuristics developed in
[5] to that purpose. But, in preliminary experiments, we observed that smaller
computing times were attained by turning off our separation routine. Notice,
however, that the latter can not be considered a pure branch-and-bound algo-
rithm since modern ILP solvers have their own separation routines for generating
cuts throughout the computation. Anyway, we decided to use the mclique model
as input for the ILP solver without adding cuts from our own separation routine.

An Integer Programming Formulation for the MkSI Problem 95

5 Computational Experiments

In this section, we present computational experiments made with instances com-
ing from the application discussed in Sect. 1. We compare the mclique model (see
previous section), against the medge model (see Sect. 3), aiming at assess the
benefits of using a stronger formulation.

The instances used in our tests were generated from a dataset made available
(at http://www.dtic.upf.edu/⊕ocelma/MusicRecommendationDataset/lastfm-
1K.html – last accessed in December, 2013) by Celma in his work [2] on music
recommendation and obtained from Last FM (http://www.last.fm). The dataset
has 176.948 bands, 992 listeners and 19.150.868 listener-band pairs (edges) indi-
cating listening habits of users until May, 2009. Observing the degree distribution
of vertices representing bands, we could see that it follows a power law. As a
consequence, there are a few bands with a high number of listeners and most of
the vertices representing bands have degree close to zero.

From the described dataset, we have generated 6 classes of instances contain-
ing 50, 70, 90, 110, 130 and 150 bands. The bands play the role of the vertices
in L whereas the listeners are associated to vertices in R. Obviously, an edge
exists between the vertex representing band u and listener v if v is a fan of u. To
generate an instance with n bands, we selected the 2n most listened bands and
randomly chose n bands among them. For each class, we generated 10 instances
and each instance was tested with k = 2, 3, 4, 5, 6, 7. In all tables presented in this
section we show the arithmetic mean values followed by the standard deviation
values in parenthesis. We used ibm cplex 12 as the ILP solver, with all primal
heuristics and all general purpose cutting-plane’s generation routines (except the
clique one) provided by cplex turned off. We have executed our code in single
thread mode in a machine with the following configurations: Intel(R) Xeon(R)
2.40 GHz processor and 8 GB of RAM memory.

In the first two tables we show the effect of the preprocessing procedure.
Table 1 displays the percentage of listeners, bands and edges removed, for differ-
ent values of k. Table 2 exhibits the number of listeners, bands and edges, before
and after the preprocessing, for each class of instances. According to Table 1, for
2 ⇒ k ⇒ 4, the preprocessing removed most of the listeners and edges. For all
values of k, the percentage of listeners removed was much larger than that of
bands. As can be noticed, the effectiveness of the preprocessing decreases as the
value of k increases. This can be explained by the fact that an increase in the
value of k leads to a decrease in the value of λ (the size of the solution found
by the GRASP heuristic). Intuitively, if we consider very large values for k we
will observe the same phenomenon but in the opposite “direction” (i.e., almost
all bands will be removed by the preprocessing).

One can see from Table 2 that, as the number of bands increases, the number
of listeners, bands and edges remain almost the same in the preprocessed graphs.
This can be explained by the fact that, as mentioned before, there are a few bands
with a high number of listeners and most of the vertices representing bands have
degree close to zero. Thus, even if we select a very large number of bands, most
of them will be removed by the preprocessing because they have a small number

http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
http://www.dtic.upf.edu/$sim $ocelma/MusicRecommendationDataset/lastfm-1K.html
http://www.last.fm

96 E.T. Bogue et al.

Table 1. The effect of the preprocessing for different values of k.

k Percentage removed

Bands Listeners Edges

2 48.3 (4.2) 97.7 (0.9) 97.2 (0.8)

3 18.4 (9.3) 84.8 (10.0) 80.5 (11.2)

4 9.8 (2.0) 64.3 (15.7) 57.9 (14.2)

5 8.4 (1.9) 44.4 (22.9) 40.3 (18.9)

6 7.5 (1.2) 24.8 (20.8) 24.6 (16.2)

7 7.7 (1.7) 10.7 (13.2) 14.7 (10.1)

Table 2. The effect of the preprocessing for different number of bands.

Original graph Preprocessed graph

bands # listeners # edges # bands # listeners # edges

50 967 (2) 23191 (505) 30 (19) 793 (136) 13889 (8420)

70 974 (2) 30112 (558) 41 (26) 820 (160) 17787 (10351)

90 975 (2) 36616 (510) 44 (31) 820 (151) 18346 (11784)

110 977 (1) 42788 (308) 43 (34) 821 (144) 18178 (12356)

130 982 (1) 48001 (697) 47 (37) 818 (154) 18993 (13133)

150 982 (1) 53495 (768) 43 (36) 806 (151) 17812 (12931)

of listeners. In fact, for graphs with up to 4000 bands generated from the Last
FM database, the figures of the preprocessed graph remain about the same as
those displayed in Table 2.

Once the importance of the preprocessing has been established, we turn our
attention to the choice of the ILP model. In the experiments reported so far,
a time limit of 1800 s was set to solve each instance. In Table 3 we give the
percentage of instances solved to optimality by each model and the duality gaps
calculated in the following way. Given a model (mclique or medge), let lp be
the value of its linear relaxation and lb and ub be the values of the best lower
and upper bounds found during the execution, respectively. Thus, the values in
column “LP/Best-LB Gap” are given by lp−lb

lp ×100 and those in column “Final
Gap” are given by ub−lb

ub × 100. Column “% Opt. Found” shows the percentage
of solutions solved to optimality.

As column “LP/Best-LB Gap” shows, the model mclique is much stronger
than the model medge for these instances. As the value of k increases, the gaps
obtained by both models increase as well and the percentage of solutions solved to
optimality decreases. The model mclique could solve more instances to optimality
than model medge and, for the instances not solved to optimality, the final gaps
obtained by the mclique model were much smaller than the gaps obtained by the
medge model. We observed that when we do not set any time limit, the model
mclique could solve all instances with k = 7 in at most 1h20m of running time.

An Integer Programming Formulation for the MkSI Problem 97

Table 3. Percentage of instances solved to optimality and duality gaps.

k LP/best-LB gap Final gap % opt. found

mclique medge mclique medge mclique medge

2 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100.0 100.0

3 0.0 (0.0) 33.2 (17.4) 0.0 (0.0) 0.0 (0.0) 100.0 100.0

4 11.4 (9.8) 56.2 (4.7) 0.0 (0.0) 0.0 (0.0) 100.0 100.0

5 29.3 (8.4) 63.8 (3.8) 0.0 (0.0) 0.4 (3.2) 100.0 98.3

6 40.3 (6.2) 68.9 (2.6) 8.3 (1.2) 23.3 (9.4) 96.6 53.3

7 46.9 (5.1) 72.1 (2.3) 14.1 (5.3) 39.2 (13.9) 70.0 23.3

Fig. 1. Comparing the running times of mclique and medge models.

In Fig. 1 we show in a box plot the running times obtained by the mclique and
medge models, considering only the instances solved to optimality by both mod-
els. The bottom and top of the box are the first and third quartiles, respectively,
and the band inside the box is the second quartile (the median). The whiskers,
i.e. the ends of the lines extending vertically from the boxes, are calculated as
follows: maximum value lesser than q3 + 1, 5 × (q3 − q1) for the upper end and
minimum value greater than q1 − 1, 5 × (q3 − q1) for the lower end, where q1, q2
and q3 are the first, second and third quartiles, respectively. Each outlier, i.e.
each point not included between the whiskers, is drawn as a small circle.

As seen in Fig. 1 and Table 3, for k ⇒ 4, both models solve each instance in
less than 2 minutes. Independently of the model, as the value of k increases, the
running time increases as well. We highlight that the data in Fig. 1 refer only
to the instances solved to optimality and, as shown in Table 3, the model medge

98 E.T. Bogue et al.

found the optimum only for 23.3% of the instances with k = 7. Thus, for k = 7,
the instances considered in Fig. 1 are the 23.3% easiest ones. This explains the
somewhat unexpected decay in the running time needed to solve the problem
with model medge, from k = 6 to k = 7. Extending the analysis to the entire
set of instances, would confirm that the running time actually increases as k
increases. However, some preliminary experiments that we carried out showed
that after a threshold, the running time diminishes as the value of k augments.

As for the primal bound, our GRASP encounters an optimal solution in about
94 % of the instances, in less than 7 s in average. For the 6 % remaining ones, the
average optimality gap was 13.5%, with a maximum of 21.7%. For comparison,
we also implemented a simple greedy heuristic which found the optimum in
approximately 70 % of the instances, confirming the effectiveness of our primal
heuristic.

6 Concluding Remarks and Future Work

In this work, we tackled the MkSI problem. We introduced a very effective
preprocessing procedure to reduce the input size which, in some cases, solved
completely the problem. Also, we developed a GRASP heuristic that yielded
optimal solutions for most of the tested instances and, if not, produced solutions
with small optimality gaps. Besides, we proposed an ILP formulation with which
we were able to solve to optimality instances of the problem with relatively
large size. Finally, the effectiveness of the proposed methods were validated by
computational experiments with instances coming from a real application.

As for future developments, one could consider to deepen the investigation on
the facial structure of PIP2 and on its relation with the stable set polytope. Alter-
natively, other exact methods, not relying on Integer Programming techniques
could be devised for the MkSI problem. Finally, it could also be interesting to
figure out whether there exist other non trivial cases in which the problem can
be solved exactly, or well approximated, in polynomial time. One such situation
occurs, for example, when the input graph is convex, as observed in Sect. 1.

References

1. Acuña, V., Ferreira, C.E., Freire, A.S., Moreno, E.: Solving the maximum edge
biclique packing problem on unbalanced bipartite graphs. Discrete Appl. Math.
(2011, in press). doi:10.1016/j.dam.2011.09.019

2. Celma, O.: Music Recommendation and Discovery in the Long Tail. Springer,
Berlin (2010)

3. Ganter, B., Reuter, K.: Finding all closed sets: a general approach. Order 8, 283–
290 (1991). doi:10.1007/BF00383449

4. Glover, F.: Tabu search and adaptive memory programing advances, applications
and challenges. In: Barr, R.S., et al. (eds.) Interfaces in Computer Science and
Operations Research, pp. 1–75. Kluwer, Dordrecht (1996)

5. Nemhauser, G.L., Sigismondi, G.: A strong cutting plane/branch-and-bound algo-
rithm for node packing. J. Oper. Res. Soc. 43(5), 443–457 (1992)

http://dx.doi.org/10.1016/j.dam.2011.09.019
http://dx.doi.org/10.1007/BF00383449

An Integer Programming Formulation for the MkSI Problem 99

6. Nussbaum, D., Pu, S., Sack, J.-R., Uno, T., Zarrabi-Zadeh, H.: Finding maximum
edge bicliques in convex bipartite graphs. In: Thai, M.T., Sahni, S. (eds.) COCOON
2010. LNCS, vol. 6196, pp. 140–149. Springer, Heidelberg (2010)

7. Rebennack, S., Reinelt, G., Pardalos, P.M.: A tutorial on branch and cut algorithms
for the maximum stable set problem. Int. Trans. Oper. Res. 19, 161–199 (2012)

8. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures.
In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 219–
249. Springer, New York (2003)

9. Vinterbo, S.A.: A note on the hardness of the k-ambiguity problem. Technical
report, Harvard Medical School, Boston, MA, USA (2002)

10. Xavier, E.C.: A note on a maximum k-subset intersection problem. Inf. Process.
Lett. 112, 471–472 (2012)

b-Coloring is NP-Hard on Co-Bipartite Graphs
and Polytime Solvable on Tree-Cographs

Flavia Bonomo1(B), Oliver Schaudt2, Maya Stein3,
and Mario Valencia-Pabon4

1 CONICET and Dep. de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina

fbonomo@dc.uba.ar
2 Institut de Mathématiques de Jussieu, CNRS UMR7586,
Université Pierre et Marie Curie (Paris 6), Paris, France

schaudt@math.jussieu.fr
3 Centro de Mod. Mat., Universidad de Chile, Santiago, Chile

mstein@dim.uchile.cl
4 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR7030,

Villetaneuse, France
valencia@lipn.univ-paris13.fr

Abstract. A b-coloring of a graph is a proper coloring such that every
color class contains a vertex that is adjacent to all other color classes. The
b-chromatic number of a graph G, denoted by χb(G), is the maximum
number t such that G admits a b-coloring with t colors. A graph G
is called b-continuous if it admits a b-coloring with t colors, for every
t = χ(G), . . . , χb(G), and b-monotonic if χb(H1) ≥ χb(H2) for every
induced subgraph H1 of G, and every induced subgraph H2 of H1.
We investigate the b-chromatic number of graphs with stability number
two. These are exactly the complements of triangle-free graphs, thus
including all complements of bipartite graphs. The main results of this
work are the following:

1. We characterize the b-colorings of a graph with stability number
two in terms of matchings with no augmenting paths of length one
or three. We derive that graphs with stability number two are b-
continuous and b-monotonic.

2. We prove that it is NP-complete to decide whether the b-chromatic
number of a co-bipartite graph is at most a given threshold.

3. We describe a polynomial time dynamic programming algorithm to
compute the b-chromatic number of co-trees.

4. Extending several previous results, we show that there is a
polynomial time dynamic programming algorithm for computing the
b-chromatic number of tree-cographs. Moreover, we show that tree-
cographs are b-continuous and b-monotonic.

Partially supported by UBACyT Grant 20020100100980, PICT ANPCyT 2012-1324
and CONICET PIP 112-200901-00178 and 112-201201-00450CO (Argentina) and
MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France).

M. Valencia-Pabon – Currently Invited at INRIA Nancy - Grand Est.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 100–111, 2014.
DOI: 10.1007/978-3-319-09174-7 9

b-Coloring is NP-Hard on Co-Bipartite Graphs 101

1 Introduction

A b-coloring of a graph G by k colors is a proper coloring of the vertices of G
such that every color class contains a vertex that is adjacent to all the other
k − 1 color classes. Such a vertex will be called a dominant vertex.

The b-chromatic number of a graph G, denoted by χb(G), is the maximum
number k such that G admits a b-coloring with k colors. Clearly, χb(G) ∈
Δ(G) + 1 where Δ(G) denotes the maximum degree of G. The b-chromatic
number was introduced in [11]. The motivation, similarly as the well known
achromatic number (cf. e.g., [2,7] and ref. therein), comes from algorithmic graph
theory. Suppose one colors a given graph properly, but in an arbitrary way.
After all vertices are colored, one would wish to perform some simple operations
to reduce the number of colors. A simple operation consists in recoloring all
the vertices in one color class with a possible different color. Such recoloring is
impossible if each color class contains a dominant vertex. Hence, the b-chromatic
number of the graph serves as the tight upper bound for the number of colors
used by this coloring heuristic. From this point of view, both complexity results
and polynomial time algorithms for particular graph families are interesting.
And, in particular, this arguments show that any coloring of a graph G with
χ(G) many colors is a b-coloring (as usual, we denote by χ(G) the minimum
number of colors needed for a proper coloring of the vertices of a graph).

Assume that the vertices v1, v2, . . . , vn of a graph G are ordered such that
d(v1) ≤ d(v2) ≤ . . . ≤ d(vn), where d(x) denotes the degree of vertex x in G. Let

m(G) := max{i : d(vi) ≤ i − 1}
be the maximum number i such that G contains at least i vertices of degree
≤ i − 1. It is clear that m(G) ∈ Δ(G) + 1. Irving and Manlove [11] show that
this parameter bounds the b-chromatic number:

Proposition 1. For every graph G, χ(G) ∈ χb(G) ∈ m(G).

Irving and Manlove [11] also show that determining χb(G) is NP-complete for
general graphs, but polynomial-time solvable for trees. Kratochv́ıl, Tuza and
Voigt [13] prove that the problem of determining if χb(G) = m(G) is NP-
complete even for connected bipartite graphs G with m(G) = Δ(G)+1. A graph
G is tight if it has exactly m(G) dense vertices (a vertex v of a graph G is dense
if d(v) ≤ m(G)−1), each of which has degree exactly m(G)−1. Havet, Linhares-
Sales and Sampaio [8] recently investigated the problem on tight graphs. They
proved that the problem of determining if a tight graph G has χb(G) = m(G)
is NP-complete for bipartite graphs and ptolemaic graphs, but polynomial-time
solvable for complements of bipartite graphs, split graphs and block graphs.

In last years, several related concepts concerning b-colorings of graphs have
been studied in [6,9,10,12]. A graph G is defined to be b-continuous [6] if
it admits a b-coloring with t colors, for every t = χ(G), . . . , χb(G). In [12]
(see also [6]) it is proved that chordal graphs and some planar graphs are b-
continuous. A graph G is defined to be b-monotonic [3] if χb(H1) ≤ χb(H2) for

102 F. Bonomo et al.

every induced subgraph H1 of G, and every induced subgraph H2 of H1. They
prove that P4-sparse graphs (and, in particular, cographs) are b-continuous and
b-monotonic. Besides, they give a dynamic programming algorithm to compute
the b-chromatic number in polynomial time within these graph classes.

Our paper is organized as follows. In the next section, we characterize
b-colorings of graphs with stability number two in terms of matchings with
no augmenting paths of length one or three. In Sect. 3, we prove that graphs
with stability at most two are both b-continuous and b-monotonic. In Sect. 4,
we prove that computing the b-chromatic number of co-bipartite graphs is an
NP-complete problem. Finally, in Sect. 5, first we describe a polynomial-time
dynamic programming algorithm to compute the b-chromatic number of co-
trees. Next, we extend our results to the family of tree-cographs by showing that
there is a polynomial time dynamic programming algorithm for computing the
b-chromatic number of graphs in this family and that these are also b-continuous
and b-monotonic.

Most of our results are given without proof due to lack of space.

2 b-Colorings and Matchings

The stability of a graph G is defined as the maximum cardinality of a subset of
pairwise non-adjacent vertices in G (i.e. a stable set or independent set). Given a
graph G, we denote by G the complement graph of G, which is the graph on the
same set of vertices as G that has an edge between two different vertices u and
v if and only if u and v are non-adjacent in G. It is not difficult to see that G
is a graph with stability one if and only if it is complete, and G is a graph with
stability at most two if and only if G is a triangle-free graph. In this section, we
will see that matchings in triangle-free graphs are very important when we deal
with b-colorings of graphs with stability at most two.

Let M be a matching of a graph G. Denote by V (M) the set of all vertices
covered by M . An augmenting path for M is a path starting and ending outside
V (M) whose edges alternate between E(G) − M and M . Usually, M is called
maximal if no further edge can be included in M . In other words, G does not
contain an augmenting path of length one with respect to M . Following this
terminology we call M strongly maximal if G does not contain augmenting paths
of length one or three with respect to M . By definition, maximum matchings
are strongly maximal, and strongly maximal matchings are maximal. Our next
lemma shows why strongly maximal matchings are important in our setting.

Lemma 1. Let G be a graph of stability at most two and let c be a proper
coloring of G. Then c is a b-coloring if and only if the set

M = {uv : u, v ≥ V, u �= v and c(u) = c(v)}

is a strongly maximal matching in G. Moreover, the number of colors c uses is
|V (G)| − |M |.

b-Coloring is NP-Hard on Co-Bipartite Graphs 103

Proof. First, observe that M is a (possibly empty) matching of G because G has
stability at most two. Now, suppose that G contains an augmenting path P of
length 1 or 3 for M . If P consists of only one edge uv, then in G, the vertices
u and v are non-adjacent, and each makes up a singleton colour class. Thus c
is not a b-coloring. If P has three edges, then for each of the endvertices of its
middle edge uv there is a singleton color class which it does not see in G. So the
color class {u, v} witnesses the fact that c is not a b-coloring.

Next, suppose that c is not a b-coloring. Note that, as G has stability at
most two, every vertex of G is adjacent (in G) to at least one vertex of any given
color class of size 2. So, the witness for c not being a b-coloring is one of the
following two: either it is a singleton color class whose vertex is non-adjacent to
another singleton color class, or it is a color class {u, v} of size two, such that u
is non-adjacent to some singleton color class, and v is non-adjacent to a different
singleton color class. The first situation corresponds to an augmenting path of
M on one edge, and the second situation corresponds to an augmenting path of
M on three edges. �∀

Observe that coloring c from Lemma 1 is a maximum (minimum) b-coloring
of G if and only if M is a minimum (maximum) strongly maximal matching of
G.

3 b-Continuity and b-Monotonicity of Graphs
with Stability at most Two

In order to prove the b-continuity of graphs with stability at most two, we need
the following result.

Lemma 2. Let M be a strongly maximal matching of a graph G and let P be a
minimum length augmenting path in G with respect to M . Then, the matching
M ′ = (M\E(P))∃ (E(P)\M) is a strongly maximal matching of G, and |M ′| =
|M | + 1.

Proof. Let P = (x1, x2, . . . , xk). By basic results from matching theory, the only
thing we need to prove is that M ′ is again strongly maximal. Since the maximal-
ity of M ′ is clear, suppose for contradiction that there is an augmenting path
of length 3, say Q = (u, v, w, x). Necessarily vw is an edge of M ′\M , and thus
w.l.o.g. there is some i ≥ {1, 2, . . . , k − 1} with v = xi and w = xi+1. Moreover,
u, x /≥ V (M). Thus both paths (x1, x2, . . . , xi, u) and (x, xi+1, xi+2, . . . , xk) are
augmenting paths for M and at least one of these paths is shorter than P . This
is a contradiction to the choice of P . �∀

By Lemma 1, any b-coloring using k > χ(G) colors of a graph G of stability at
most two corresponds to a strongly maximal matching M that is not maximum.
By Berge’s lemma [1], there is an augmenting path for M . Using Lemma 2 we
obtain a strongly maximal matching M ′ of cardinality |M | + 1, which, again by
Lemma 1, corresponds to a b-coloring with k − 1 colors. Repeatedly applying
this argument gives the following result.

104 F. Bonomo et al.

Theorem 1. Graphs of stability at most two are b-continuous.

Given a maximum b-coloring of a graph G of stability at most two, we can
thus find b-colorings for all values between χ(G) and χb(G). Moreover, we can do
this in polynomial time, provided we can find a minimum length augmenting path
for a given matching in polynomial time. This is the aim of the following lemma
that can be derived by a slight modification of Edmonds’ blossom algorithm [5].

Lemma 3. Let M be a matching in a graph G. Then, a minimum length aug-
menting path P in G with respect to M can be computed in polynomial time.

Lemma 3 together with the proof of Theorem 1 implies that given a graph
G of stability at most two, and a b-coloring of G using k > χ(G) colors, we can
compute in polynomial time a b-coloring for G with k−1 colors. Notice that the
converse is not necessarily true, i.e., if we have a b-coloring of G using k < χb(G)
colors, we do not know how to compute in polynomial time a b-coloring for G
with k + 1 colors. Indeed, we will prove in the next section that the problem
of computing the b-chromatic number of a graph with stability at most two is
NP-complete, even restricted to the smaller class of co-bipartite graphs.

We now turn to the b-monotonicity of graphs of stability at most two.

Theorem 2. Graphs of stability at most two are b-monotonic.

Proof. (Sketch). The class of graphs of stability at most two is closed under
taking induced subgraphs. Thus we only have to prove that χb is monotonously
decreasing under the deletion of a vertex. In view of Lemma 1, it is sufficient
to show that given a graph G of stability 2 and some vertex v ≥ V (G) the
following holds: If there is a strongly maximal matching of G − v of size k, then
there is a strongly maximal matching of G of size at most k + 1. This implies
χb(G) ≤ χb(G − v). �∀

4 NP-Hardness Result for Co-Bipartite Graphs

As mentioned in Sect. 1, Havet, Linhares-Sales and Sampaio [8] proved that the
problem of determining if a tight co-bipartite graph G has χb(G) = m(G) is
polynomial-time solvable. However, the computational complexity of χb in the
class of co-bipartite graphs was left open. In the next theorem, we prove that
b-coloring general co-bipartite graphs is a hard problem.

Theorem 3. Given a co-bipartite graph G and a natural number t, it is NP-
complete to decide whether G admits a b-coloring with at least t colors.

Proof. By Lemma 1, it suffices to prove that it is NP-complete to decide whether
a bipartite graph G admits a strongly maximal matching containing at most k
edges, when G and k are given input.

Our reduction is from the minimum maximal matching problem which is to
decide whether a given graph admits a maximal matching of at most k edges,

b-Coloring is NP-Hard on Co-Bipartite Graphs 105

for given k. This problem is NP-complete even if the instances are restricted to
bipartite graphs, as shown by Yannakakis and Gavril [15].

Given a bipartite graph G with m edges, we define a new graph HG as follows.
For each edge uv ≥ E(G) we introduce a set of new vertices

Xuv = {x1
uv, x2

uv, x3
uv, x4

uv, x1
vu, x2

vu, x3
vu, x4

vu}

and edges

Fuv = {ux1
uv, x1

uvx2
uv, x2

uvx3
uv, x3

uvx4
uv, x1

uvx1
vu, x1

vux2
vu, x2

vux3
vu, x3

vux4
vu, vx1

vu}.

Note that Xuv = Xvu and Fuv = Fvu. Then HG is defined by

V (HG) = V (G) ∃
⋃

uv∈E(G)

Xuv,

E(HG) =
⋃

uv∈E(G)

Fuv.

Clearly, HG can be computed in polynomial time. Moreover, HG is bipartite
since G is. For each edge uv ≥ E(G), we define the following auxiliary sets of
edges in HG:

F∈
uv = {ux1

uv, x2
uvx3

uv, x2
vux3

vu, vx1
vu} and F /∈

uv = {x1
uvx1

vu, x2
uvx3

uv, x2
vux3

vu}

We claim the following:

Claim. There exists a minimum strongly maximal matching M of HG such that

x3
uvx4

uv /≥ M for each edge uv ≥ E(G).

Moreover, M can be obtained from any minimum strongly maximal matching
of HG in polynomial time.

In order to prove this claim, we proceed by contradiction. Assume that every
minimum strongly maximal matching of HG contains at least an edge x3

uvx4
uv

for some edge uv ≥ E(G), and let M be a minimum strongly maximal matching
of HG having a minimum number of edges of the form x3

uvx4
uv. Note that the

choice of M implies that for every edge uv ≥ E(G) we have that

(i) x3
uvx4

uv ≥ M if and only if x1
uvx2

uv ≥ M . If x1
uvx2

uv ≥ M then x3
uvx4

uv ≥ M ,
otherwise, M is not maximal. If x3

uvx4
uv ≥ M then x1

uvx2
uv ≥ M , otherwise,

we could replace x3
uvx4

uv by x2
uvx3

uv in M (the resulting matching is strongly
maximal as M is), contradicting the choice of M .

(ii) If the edges x3
uvx4

uv and x1
uvx2

uv are in M , then we have that vertices u
and x1

vu are each matched by M . Otherwise, if u is unmatched, we can
replace x1

uvx2
uv, x3

uvx4
uv ≥ M with the edges x2

uvx3
uv, ux1

uv. This again yields
a strongly maximal matching (since u has no neighbors unmatched by M),
contradicting the choice of M . We can use the same argument in the case
x1

vu is unmatched.

106 F. Bonomo et al.

These are also some of the steps in order to transform any minimum strongly
maximal matching into the desired one.

Now, let uv be an edge in the graph G such that x3
uvx4

uv ≥ M . By (i) and
(ii), we can deduce that |M ⇒ Fuv| = 4. Consider the matching

M̃ := (M\Fuv) ∃ F /∈
uv

We claim that M̃ is strongly maximal. As M̃ is smaller than M , we thus obtain
the desired contradiction. So assume M̃ is not strongly maximal. Then, as u is
matched, there is an augmenting path P of length 1 or 3 starting at v.

Now, observe that all neighbors of v are of the form x1
vw (for some w ≥ V (G)),

and thus, as neither x1
vwx2

vw nor x1
vwx2

vwx3
vwx4

vw is an augmenting path for the
strongly maximal matching M , all neighbors of v are matched by M .

So, P has length 3, and it is easy to see that P has to end in some (unmatched)
vertex w ≥ V (G)\{u, v} (by the maximality of M , every vertex x3

wz is matched
by M , and by the choice of M , every vertex x2

wz is matched by M). By (i) and
(ii), we know that Fvw ⇒ M = F /∈

vw. Consider the matching

(M̃\F /∈
vw) ∃ F∈

vw.

It can be seen that this matching is strongly maximal, and has fewer edges of
the form x3

uvx4
uv, contradicting the choice of M . (And this is the remaining step

in order to transform any minimum strongly maximal matching into the desired
one.) This ends the proof of this claim.

Therefore, by the previous claim, we have that there is a minimum strongly
maximal M ′ in HG that verifies either Fuv ⇒ M ′ = F∈

uv or Fuv ⇒ M ′ = F /∈
uv for

each edge uv ≥ E(G). Next we show that if M is a minimum maximal matching
of G and M ′ is a minimum strongly maximal matching of HG, |M | = |M ′|−3 m.
As explained above, this completes the proof.

Let M be a minimum maximal matching of G. Using the auxiliary sets F∈
uv

and F /∈
uv, we define a strongly maximal matching M ′ of HG by

M ′ =
⋃

uv∈M

F∈
uv ∃

⋃

uv/∈M

F /∈
uv.

Note that |M ′| = |M | + 3|E(G)|.
Now, let M ′ be a minimum strongly maximal matching of HG that verifies

either Fuv ⇒ M ′ = F∈
uv or Fuv ⇒ M ′ = F /∈

uv for each edge uv ≥ E(G). We define
a maximal matching M of G by setting

M = {uv : uv ≥ E(G), Fuv ⇒ M ′ = F∈
uv}.

Clearly, |M | = |M ′| − 3|E(G)|, which completes the proof. �∀

5 b-Coloring Co-Trees and Tree-Cographs

5.1 Co-Trees

Theorem 4. In the class of co-trees, χb can be computed in polynomial time.

b-Coloring is NP-Hard on Co-Bipartite Graphs 107

Proof. According to Lemma 1, the problem is equivalent to finding a minimum
strongly maximal matching (msmm) in a tree. We will find such a matching by
dynamic programming. In order to do so, we will define five functions Fi(r, s),
i = 1, . . . , 5, for a nontrivial tree Trs rooted at a leaf r with neighbor s. As
we will apply them to the subtrees of a tree, we will assume that r can have
neighbors outside Trs.

– F1(r, s): cardinality of an msmm of Trs such that r is unmatched, and ∅ if it
does not exist.

– F2(r, s): cardinality of an msmm of Trs that uses the edge rs and such that s
may or may not have an unmatched neighbor (this case will apply when r has
no unmatched neighbor outside Trs), and ∅ if it does not exist.

– F3(r, s): cardinality of an msmm of Trs that uses the edge rs and such that
s does not have an unmatched neighbor (this case will apply when r has
already an unmatched neighbor outside Trs, so an unmatched neighbor of s
will complete an augmenting path of length 3 in the whole tree), and ∅ if it
does not exist.

– F4(r, s): cardinality of an msmm of Trs such that the vertex s is matched
with some vertex different from r and the vertex r is considered as “already
matched” (this case will apply when r is already matched with a vertex outside
Trs), and ∅ if it does not exist.

– F5(r, s): cardinality of anmsmm of Trs such that the vertex s remains unmatched
and the vertex r is considered as “already matched”, and ∅ if it does not exist.

With these definitions, for the base case in which V (Trs) = {r, s}, we have

– F1(r, s) = ∅ (if r is unmatched and s has no further neighbors, the matching
will never be maximal)

– F2(r, s) = 1 (precisely, the edge rs)
– F3(r, s) = 1 (precisely, the edge rs)
– F4(r, s) = ∅ (it is not feasible because s has no further neighbors)
– F5(r, s) = 0

For the case in which s has children v1, . . . , vk, we have

– F1(r, s) = mini=1,...,k{F3(s, vi) +
∑

j=1,...,k;j ∗=i min{F4(s, vj), F5(s, vj)}}. In
order to obtain a maximal matching, we need to match s with one of its children,
say vi. Since r will be unmatched, vi should not have an unmatched neighbor,
in order to prevent an augmenting path of length 3. When considering the trees
Tsvj

for j �= i, the vertex s will have the status of “already matched”. Further-
more, since we are already assuming that s has an unmatched neighbor, we do
not need to care about the vertices vj being matched or not.

– F2(r, s) = 1 +
∑

i=1,...,k min{F4(s, vi), F5(s, vi)}. We will use the edge rs, and
then when considering the trees Tsvi

for i = 1, . . . , k, the vertex s will have
the status of “already matched”. Furthermore, since s may or may not have
an unmatched neighbor, we can take the minimum over F4 and F5 for each of
the trees Tsvi

.

108 F. Bonomo et al.

– F3(r, s) = 1 +
∑

i=1,...,k F4(s, vi). This case is similar to the previous one, but
now the vertex s cannot have unmatched neighbors, so we will just consider
F4 for each of the trees Tsvi

.
– F4(r, s) = min{mini=1,...,k{F2(s, vi) +

∑
j=1,...,k;j ∗=i F4(s, vj)},

mini=1,...,k{F3(s, vi)+
∑

j=1,...,k;j ∗=i min{F4(s, vj), F5(s, vj)}}}. As in the first
case, we need to match s with one of its children, say vi. But now, since r
is assumed to be matched, s may or may not have an unmatched neighbor,
depending on the matching status of the vertices vj with j �= i. So we will take
the minimum among allowing vi to have an unmatched neighbor and forcing
vj , j �= i, to be matched, or forbidding vi to have an unmatched neighbor and
allowing vj , j �= i, to be either matched or not.

– F5(r, s) =
∑

i=1,...,k F1(s, vi). This last case is quite clear.

In this way, in order to obtain the cardinality of a minimum strongly maximal
matching of a nontrivial tree T , we can root it at a leaf r whose neighbor is s
and compute min{F1(r, s), F2(r, s)}. By keeping some extra information, we can
also obtain in polynomial time the matching itself. �∀

5.2 Tree-Cographs

A graph is a tree-cograph if it can be constructed from trees by disjoint union
and complement operations. Tree-cographs have been introduced by Tinhofer
[14] as a generalization of trees and cographs. Let G1 = (V1, E1) and G2 =
(V2, E2) be two graphs with V1 ⇒ V2 = ∅. The union of G1 and G2 is the graph
G1 ∃G2 = (V1 ∃V2, E1 ∃E2), and the join of G1 and G2 is the graph G1 ⊂G2 =
(V1 ∃ V2, E1 ∃ E2 ∃ V1 × V2). Note that G1 ⊂ G2 = G1 ∃ G2. Tree-cographs can
be recursively defined as follows: a graph G is a tree-cograph if and only if

(i) G is a tree or a co-tree, or
(ii) G is the union of two tree-cographs G1 and G2, or
(iii) G is the join of two tree-cographs G1 and G2.

Notice that if (i) in the above definition is replaced by “G is a single vertex”
then, the obtained graph is a cograph. The notion of dominance sequence has
been introduced in [3] in order to compute the b-chromatic number of P4-sparse
graphs and, in particular, cographs. Formally, given a graph G, the dominance
sequence domG ≥ Z

N≥α(G), is defined such that domG[t] is the maximum number
of distinct color classes admitting dominant vertices in any coloring of G with
t colors, for every t ≤ χ(G). Note that it suffices to consider this sequence
until t = |V (G)|, since domG[t] = 0 for t > |V (G)|. Therefore, in the sequel
we shall consider only the dominance vector (domG[χ(G)], . . . ,domG[|V (G)|]).
Notice that a graph G admits a b-coloring with t colors if and only if domG[t] = t.
Moreover, it is clear that domG[χ(G)] = χ(G). The following results given in [3]
are very important in order to compute the b-chromatic number of graphs that
can be decomposed recursively in modules via disjoint union or join operations.

b-Coloring is NP-Hard on Co-Bipartite Graphs 109

Theorem 5 [3]. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ⇒ V2 = ∅. If G = G1 ∃ G2 and t ≤ χ(G), then

domG[t] = min{t,domG1 [t] + domG2 [t]}.

Theorem 6 [3]. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ⇒ V2 = ∅. Let G = G1 ⊂ G2 and χ(G) ∈ t ∈ |V (G)|. Let a = max{χ(G1), t −
|V (G2)|} and b = min{|V (G1)|, t − χ(G2)}. Then a ∈ b and

domG[t] = max
a≤j≤b

{domG1 [j] + domG2 [t − j]}.

In order to compute the dominance vector of a tree-cograph and its corre-
sponding b-chromatic number, by Theorems 5 and 6, it is sufficient to compute
the dominance vector for both trees and co-trees.

Dominance Vector for Trees. Irving and Manlove [11] shown that the b-
chromatic number of any tree T is equal to m(T)−1 or m(T), depending on the
existence of a unique vertex in T called a pivot. A vertex v of T is called dense
if d(v) ≤ m(T) − 1. Based on Irving and Manlove’s results, we are able to prove
the following result.

Theorem 7. If G is tree, then domG can be computed in polynomial time.

Dominance Vector for Co-Trees. Let G be a graph and M be a matching
of it. Let S1(G,M) be the number of unmatched vertices that have at least one
unmatched neighbor and let S2(G,M) be the number of edges of M that are the
center of an augmenting path of length 3 for M . Let F (G, k) be the minimum
value of S1(G,M) + S2(G,M) over all matchings M of G with |M | = k.

Now, let G be a graph with stability at most two and consider a coloring of
it. Let M be the matching of G corresponding to that coloring. The number of
color classes without a dominant vertex are exactly S1(G,M) + S2(G,M). So,
for χ(G) ∈ i ∈ |V (G)|, domG[i] = i − F (G, |V (G)| − i). We will show how to
compute F (T, k) for a tree T and a nonnegative integer k in polynomial time.

Theorem 8. If G is a co-tree, then domG can be computed in polynomial time.

Proof. (Sketch) As we noticed above, the problem is equivalent to computing
F (G, k). We use dynamic programming. In order to do so, and in a similar
fashion as in Theorem 4, we will define seven functions Fi(r, s, k), i = 1, . . . , 7,
for a nontrivial tree Trs rooted at a leaf r with neighbor s and a nonnegative
integer k. As we will apply them to the subtrees of a tree, we will assume that r
can have neighbors outside Trs. Nevertheless, we will count for S2 just the edges
of M ⇒ E(Trs) and for S1 the vertices of V (Trs), with the exception of r when
it is unmatched but has already an unmatched neighbor outside Trs, in order to
avoid double counting.

For i = 1, . . . , 7, Fi(r, s, k) will be the minimum of S1(Trs,M) + S2(Trs,M)
over all the matchings M with |M | = k such that:

110 F. Bonomo et al.

– F1(r, s, k): r is unmatched and s is matched by M with some vertex different
from r.

– F2(r, s, k): M uses the edge rs and r has no unmatched neighbor outside Trs.
– F3(r, s, k): M uses the edge rs and r has an unmatched neighbor outside Trs.
– F4(r, s, k): the vertex s is matched by M with some vertex different from r

and the vertex r is already matched with a vertex outside Trs.
– F5(r, s, k): the vertex s remains unmatched and the vertex r is already matched

with a vertex outside Trs.
– F6(r, s, k): r is unmatched, s remains unmatched, and r has no unmatched

neighbor outside Trs.
– F7(r, s, k): r is unmatched, s remains unmatched, and r has an unmatched

neighbor outside Trs (we will not count r for S1 as we assume it is already
counted).

In all cases, the value will be ∅ if no such M does exist.
Notice that as the values of the functions Fi are bounded by the number of

vertices of the corresponding tree, and k is also bounded by that number, taking
the minimum over k1+ · · ·+kφ = k of some combination of these Fi is equivalent
to solving a polynomially bounded number of knapsack problems where both the
weights and the utilities are polynomially bounded as well, so this can be done
by dynamic programming in polynomial time [4].

In this way, in order to obtain F (T, k) for a nontrivial tree T , we can root it at
a leaf r whose neighbor is s and compute min{F1(r, s, k), F2(r, s, k), F6(r, s, k)}.
By keeping some extra information, we can also obtain in polynomial time the
matching itself. �∀

b-Continuity and b-Monotonicity of Tree-Cographs. The following result
was proved for union and join of graphs.

Lemma 4 [3]. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ⇒ V2 = ∅. If G1 and G2 are b-continuous, then G1 ∃ G2 and G1 ⊂ G2 are
b-continuous.

As a corollary of the lemma, Theorem 1, and the b-continuity of chordal
graphs [6,12], we have the following result.

Theorem 9. Tree-cographs are b-continuous.

Concerning the b-monotonicity, the following results are known for general
graphs and for union and join of graphs.

Lemma 5 [3]. Let G be a graph. The maximum value of domG[t] is attained in
t = χb(G).

Lemma 6 [3]. Let G1 = (V1, E1) and G2 = (V2, E2) be two b-continuous graphs
such that V1 ⇒ V2 = ∅, and let G = G1 ∃ G2 (resp., let G = G1 ⊂ G2). Assume
that for every t ≤ χ(Gi) and every induced subgraph H of Gi we have domH [t] ∈
domGi

[t], for i = 1, 2. Then, for every t ≤ χ(G) and every induced subgraph H
of G, domH [t] ∈ domG[t] holds.

b-Coloring is NP-Hard on Co-Bipartite Graphs 111

In order to prove the b-monotonicity of tree-cographs, we need the following
two lemmas.

Lemma 7. Let T be a tree and H an induced subgraph of T . Then for every
t ≤ 2, domH [t] ∈ domT [t].

Lemma 8. Let G be a graph with stability at most two and H an induced sub-
graph of G. Then for every t ≤ χ(G), domH [t] ∈ domG[t].

So, we can conclude the following.

Theorem 10. Tree-cographs are b-monotonic.

References

1. Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. U.S.A. 43, 842–844
(1957)

2. Bodlaender, H.L.: Achromatic number is NP-complete for cographs and interval
graphs. Inf. Process. Lett. 31, 135–138 (1989)

3. Bonomo, F., Durán, G., Maffray, F., Marenco, J., Valencia-Pabon, M.: On the
b-coloring of cographs and P4-sparse graphs. Graphs Comb. 25(2), 153–167 (2009)

4. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266–277 (1957)
5. Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)
6. Faik, T.: La b-continuité des b-colorations: complexité, propriétés structurelles et

algorithmes. Ph.D. thesis, L.R.I., Université Paris-Sud, Orsay, France (2005)
7. Harary, F., Hedetniemi, S.: The achromatic number of a graph. J. Comb. Theor.

8, 154–161 (1970)
8. Havet, F., Linhares-Sales, C., Sampaio, L.: b-coloring of tight graphs. Discrete

Appl. Math. 160(18), 2709–2715 (2012)
9. Hoàng, C.T., Kouider, M.: On the b-dominating coloring of graphs. Discrete Appl.

Math. 152, 176–186 (2005)
10. Hoàng, C.T., Linhares Sales, C., Maffray, F.: On minimally b-imperfect graphs.

Discrete Appl. Math. 157(17), 3519–3530 (2009)
11. Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discrete Appl.

Math. 91, 127–141 (1999)
12. Kára, J., Kratochv́ıl, J., Voigt, M.: b-continuity. Technical report M 14/04, Tech-

nical University Ilmenau, Faculty of Mathematics and Natural Sciences (2004)
13. Kratochv́ıl, J., Tuza, Z., Voigt, M.: On the b-Chromatic number of graphs. In:

Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 310–320. Springer, Heidelberg
(2002)

14. Tinhofer, G.: Strong tree-cographs are Birkoff graphs. Discrete Appl. Math. 22(3),
275–288 (1989)

15. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math.
38(3), 364–372 (1980)

Proactive Reactive Scheduling in Resource
Constrained Projects with Flexibility
and Quality Robustness Requirements

Mario Brčić(B), Damir Kalpić, and Marija Katić

Faculty of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia

{mario.brcic,damir.kalpic,marija.katic}@fer.hr

Abstract. This paper presents a new approach to proactive reactive
scheduling of stochastic resource-constrained project scheduling prob-
lems with known probability distributions of activity durations. To facil-
itate the search for cost-flexible proactive schedules that are adjustable
and incur lower expected cost of future rescheduling, a new family of cost-
based flexibility measures is introduced. Under these measures, cost is
incurred on each rescheduling while taking into account the temporal dis-
tance of changes in the baseline schedule. We propose a new model that
describes the integrated approach using the proposed cost-based flexi-
bility measures where, in each stage, reactive scheduling can adjust the
baseline schedule to accommodate flexibility and quality requirements.
The model is based on bounded stochastic shortest path with finite state
and action spaces. The commonly used schedule stability measure is put
in the context of proposed family of flexibility measures and contrasted
to them in the terms of project execution system properties.

Keywords: Project scheduling · Risk · Proactive reactive scheduling ·
Stochastic dynamic programming · Cost-based flexibility

1 Introduction

Stochastic Resource Constrained Project Scheduling Problem (SRCPSP) is a
generalization of the classical family of deterministic scheduling problems with
complete information [1]. It introduces uncertainty by using random variables to
model some of its data. In this paper, we shall focus on uncertain activity dura-
tions with known probability distributions. There are three main approaches to
solving SRCPSP: predictive, reactive and proactive procedures [1] and combina-
tions of the main approaches.

Predictive approach ignores stochasticity of the problem and uses point esti-
mations, most usually expectation or median, instead of random variables. This
has been shown to underestimate project cost/duration [2]. Reactive procedures
make scheduling decisions during the project run-time. They can work with
baseline schedule, as schedule repair procedures, and without baseline schedule
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 112–124, 2014.
DOI: 10.1007/978-3-319-09174-7 10

Proactive Reactive Scheduling in Resource Constrained Projects 113

as completely online procedures. In the latter case they see the project as a
multi-stage decision making process and dynamically create schedule in stages,
using policies. Proactive project scheduling for SRCPSP is interested in creating
a baseline schedule of increased robustness to unexpected outcomes (according
to the used robustness measure explained below) such as longer than anticipated
activity duration. In such a way, it can remain feasible under various conditions.
The two most commonly used notions of robustness in proactive scheduling are:
quality and stability robustness. Quality robustness pertains to maximizing the
probability of completing the project on time. Stability robustness aims to make
schedule stable with respect to possible disruptions, so it does not change much
during the execution. Solution robustness or schedule stability is justified by
examples where several separate entities cooperate on the project and need to
synchronize their actions. Also, in cases with in-house project running, schedule
stability increases the setup efficiency. Quality and stability are most commonly
two competing criteria and problems containing both are bi-objective. However,
they are implicitly converted to single-objective problems by parameterization
into monetary costs, scalarizing the two objectives into one. If the monetary cost
is the only interest, then such approach is valid and we can continue our work
with that assumption.

Although protected against some future disruptions, proactive baseline sched-
ule can become infeasible during the execution due to unanticipated distur-
bances. In that case rescheduling needs to be done. At this point, reactive
schedule repair procedures are used [3]. Such a combination of proactive and
reactive procedures to SRCPSP is called a proactive-reactive approach. Cur-
rent rescheduling procedures mostly focus on restoring the schedule feasibility
by starting activities with the least rescheduling cost w.r.t. the first baseline
and/or they do not produce proactive schedules that are hedged against future
unexpected outcomes in the same way as it is done for the baseline schedule [4].
This paper explores the problem of proactive-reactive scheduling of SRCPSP
where changes to baseline schedule can be made in advance at a lesser cost than
if being done at the activity start, hence yielding a new proactive baseline using
all the information available up to that moment.

The main contributions of the paper are:

– A new family of flexibility measures based on realistic assumptions on cost
functions. Total idleness is shown to be potentially optimal behaviour in cer-
tain situations. A bound is put on the worst-case performance of optimal
policy, which ensures the termination.

– A model capturing the aspects of the general problem is presented.
– Commonly used stability measure is put into the relation with the model and

compared to our family of flexibility measures.

The organization of this paper is as follows: in Sect. 2, we lay out the overview
of the related work done in this area. Section 3 shortly presents the problem
and Sect. 4 presents the family of flexibility measures. In Sect. 5, we present the

114 M. Brčić et al.

stochastic dynamic programming model and in Sect. 6 we put commonly used
stability measure into the relation to our model. Finally, Sect. 7 gives conclusions
and future work.

2 Related Work

Authors in [1] have offered the survey of resource-constrained project schedul-
ing under uncertainty. In this section we describe related work in pure reactive
approaches based on stochastic dynamic programming and proactive-reactive
approaches.

The most influential work on pure reactive based methods is given by Möhring
et al. [5,6]. They modelled a general stochastic scheduling problem with regular
performance measures (measures that are non-decreasing in activity comple-
tion times) as a stochastic dynamic program. Their theoretical results are built
on the fact that the total idleness is non-optimal behaviour for their problem.
Stork, based on [5,6], dealt with different scheduling policy families in [7]. There
are several works on pure reactive scheduling [8–10] that use Markov Decision
Process (MDP). Tai in [8] used dynamic programming and authors in [9,10]
used reinforcement learning to find solutions. The work listed above focused on
regular performance measures and do not use baseline schedules.

Of proactive-reactive approaches, Leus and Herroelen [11] proposed stability
measure expressed as the weighted sum of absolute differences between baseline
and realized schedule activity start times. This measure is used in the majority
of the project scheduling literature [3], including the works listed below. Van
de Vonder et al. in [12] describe Starting Time Criticality + Descent (STC+D)
heuristic with surrogate measure and simplifying assumptions in approximations
for generation of proactive schedules with time buffering on locked resource flows
and predefined policy family. Van de Vonder et al. in [4] used robust schedule
generation schemes with priority lists in basic sampling approach and with time
windows, where point estimates of duration times were used. Deblaere et al. in
[13], based on ideas in STC+D, proposed a family of proactive policies that use
activity priority list and release times in parameterization. The final schedule is
not necessarily resource-feasible, but it minimizes the combination of expected
deviation and due date exceeding costs. In all the works above, the policies used
are starting activities in every stage of schedule creation, using variants of paral-
lel/serial scheduling schemes, and perform only just-in-time rescheduling of the
activities that are about to be run. Lambrechts in his PhD thesis [14] developed
a tabu-search based method that does bi-objective optimization for proactive
rescheduling with respect to uncertainty of resource availability. The method is,
at the same time, keeping the new schedule close to the schedule obtained in
the previous phase using the deviation measure. The author used scalarization
to transform bi-objective into a single objective problem. This method achieved
moderate results [3].

Although there are various interesting approaches to the problem or resource
constrained project scheduling under uncertainty, there is no approach that con-
siders scheduling where rescheduling can be done in advance with smaller cost

Proactive Reactive Scheduling in Resource Constrained Projects 115

than if done at activity start times. In this paper we give such a proposal where
we approach to the problem as a stochastic dynamic program in a similar way
as Möhring et al. [5,6]. However, in order to model proactiveness we allow for
a special family of performance measures (not guaranteed to be regular) on
SRCPSP.

3 The Problem Definition

The problem under consideration in this paper is the single mode non-preemptive
stochastic resource-constrained project scheduling problem with quality and flex-
ibility robustness requirements, uncertain activity durations and with known
probability distribution of activity durations. Let H be the space of all such
problems. Each h ∈ H is a combinatorial optimization problem defined as a
tuple (V,E, p,R,B,D, δ, c). V = {0, ...n + 1} is a set of n + 2 activities where
0 and n + 1 are dummy activities that represent project beginning and end
respectively. Let V ′ = V \ {0, n + 1}. Precedence relation between activities
is defined as transitive closure of relation E ≤ V × V , where 0 precedes and
n + 1 succeeds all other activities in V . Precedence relation must be asymmet-
ric. Let Δ(INn+2

0) be the space of all discrete probability distributions defined
over INn+2

0 with bounded support. p ∈ Δ(INn+2
0) is a joint probability distri-

bution of activity durations represented by a random vector d, where p0 and
pn+1, marginal distributions for dummy activities, have all the mass on dura-
tion of 0. Also, ≥a ∈ V either pa(0) = 1 or pa(0) = 0. R = {R1, ..., Rr} defines
a set of r renewable resources and B ∈ INr is a vector of resource availabilities.
Activity demands on resources are given in the matrix D ∈ IN(n+2)×r

0 , where
(≥i ∈ {a ∈ V |pa(0) = 1}), (≥r ∈ R)Di,r = 0 and (≥r ∈ R)(≥i ∈ V)Di,r ≤ Br.
δ ∈ IN0 is the project due date. Before defining the objective function c, we need
to define some necessary intermediate objects.

Let S be the countable space of all project states, where each state x ∈
S stores all relevant information about the project during the execution. This
information includes the global project time (the time elapsed from the start
of the project execution), statuses of activities, durations of finished activities
and the current schedule. Schedule is a vector in INn+2

0 , where i-th component
is the scheduled start time of activity i. The start time of activity 0 is in each
schedule equal to 0. In order to extract the schedule from the state, let us define
the schedule extraction function L : S → INn+2

0 . Let C be the countable space
of all controls (decisions) that control project’s execution. Controls start the
execution of activities, change the current baseline schedule or do nothing, at
any control point of project. As this is a dynamic optimization problem where the
objective function c will be defined as expected total cost, where the next project
state and stage cost depend only on current state and control, the solution is
a randomized Markov policy μ∈ : S → Δ(C) [15] in policy space Ξrand. Let
Ξdet ≤ Ξrand be the space of all deterministic Markov policies μ : S → C. In the
rest of the paper we shall focus on deterministic Markov policies.

Let N : INn+2
0 × Ξdet → N0, i.e. N(γ, μ) for realized activity duration vector

(scenario) γ and policy μ, be the number of stages where decisions take place

116 M. Brčić et al.

before the end of project execution. When it is clear from the context, we omit
the dependency and only write N. For each stage k = 1..N(γ, μ) let xγ,μ

k ∈ S be
the project state reached under duration vector γ and policy μ and let x

γ,μ|t
k ∈

IN0 be the global project time of that state. Let sγ,μ,i
k ∈ IN0 be the scheduled

start time of activity i in the schedule L(xγ,μ
k). Let Π ≤ Ξdet be the space of

admissible policies, i.e. all policies that respect 0-lag precedence, resource, non-
anticipativity, non-retroactiveness, non-prematureness constraints and condition
of project terminability defined below. We search for the solution in the space
Π. Let Z : Π → IN0 be the worst-case schedule duration given the problem
h ∈ H and policy μ ∈ Π, i.e. Z(μ) = maxγ∗supp(p) sγ,μ,n+1

N . 0-lag precedence
constraints are defined as:

sγ,μ,j
N ∀ sγ,μ,i

N + γi,≥(i, j) ∈ E,≥μ ∈ Π,≥γ ∈ supp(p) .

The set of concurrent activities at timepoint t ∈ IN0 under policy μ with the
vector of activity durations γ is:

Λt,γ,μ = {i ∈ V |t − sγ,μ,i
N < γi} .

Using the set of concurrent activities, resource constraints are defined as:
∑

i∗Λt,γ,μ

Dij ≤ Bj ,≥t ∀ 0,≥Rj ∈ R,≥μ ∈ Π,≥γ ∈ supp(p) .

Non-anticipativity ensures that for all scenarios γ ∈ INn+2
0 , policies μ ∈ Π,

and all timepoints t ∈ IN0, the behaviour of policy μ at any stage k depends only
on the history of γ w.r.t. μ up to t. These constraints are formally described
in [5]. Non-retroactiveness constraints for all timepoints t disallow reschedul-
ing of activities started at any timepoints t′ < t. Also, starting activities at
any timepoint t′ < t or rescheduling starts of not yet started activities to any
timepoint t′ < t is forbidden. Non-prematureness constraint ≥t < 0,≥i ∈ V
prohibits start of activity i at timepoint t. Terminability condition means that
(≥μ ∈ Π)(∃M ∈ IN)(≥γ ∈ supp(p)) project execution finishes at least until M
under μ and γ. Let Πrand ≤ Ξrand be the set of admissible randomized Markov
policies with similar constraints as described above, generalized to the case of
randomized policies.

Definition 1. Function cd : IN0 → IR+ is the quality robustness penalty. It is
defined as cd(x) = βd · max(0, x − δ), βd > 0, incurred in stages as stage-cost
cd,s(x) = βd · 1x>δ.

Function cs : INn+2
0 × INn+2

0 × IN → IR+ is a rescheduling cost function
defined in the next section as part of a cost-based flexibility measure.

The objective function is c : S × Π → IR+:

c(x−1, μ) = E
μ
d≤p

⎡

⎣
N(d,μ)∑

k=1

(
cs(L(xd,μ

k−1), L(xd,μ
k), xd,μ|t

k−1) + cd,s(x
d,μ|t
k−1)
)
⎤

⎧ (1)

Proactive Reactive Scheduling in Resource Constrained Projects 117

where x−1 is the initial empty state at the timepoint −1 and xμ
0 is the initial

running schedule state that contains baseline schedule created by the policy μ
offline at stage −1 from the empty schedule in state x−1, at no cost. The effects
of applied policy control at stage k are first visible in the state at the next stage.

4 Family of Cost-Based Flexibility Measures

Introduction of Cost-based Flexibility (CBF) measure enables modelling situa-
tions where rescheduling in advance might be opportunistic due to lower costs.
This enables search for flexible proactive schedules that are adjustable and incur
minimal total costs for rescheduling and due date exceeding.

Let, ≥i ∈ V ′, cs,i : IN0 × IN0 × IN0 → IR+, cs,i(x, y, t), be the activ-
ity rescheduling cost function defined on each point of the domain. It is
monotonically non-decreasing in |x − y| for each constant min(x, y) − t and for
each constant |x− y| it is monotonically non-increasing in positive min(x, y)− t,
i.e. the distance of the schedule change from the current timepoint t. Also,
≥i≥t (x = y ⇒ cs,i (x, y, t) = 0).

Rescheduling cost function cs : INn+2
0 × INn+2

0 × IN → IR+ measures the
difference between two successive schedules L(xγ,μ

k−1) and L(xγ,μ
k):

cs

(
L
⎪
xγ,μ

k−1

⎨
, L (xγ,μ

k) , x
γ,μ|t
k−1

)
=
∑

i∗V ∗
cs,i(s

γ,μ,i
k−1 , sγ,μ,i

k , x
γ,μ|t
k−1) .

Definition 2. Cost-based flexibilitymeasure is the function cf : Π×INn+2
0 →

IR+ of the form:

cf(μ, γ) =
N(γ,μ)∑

k=1

cs

(
L
⎪
xγ,μ

k−1

⎨
, L (xγ,μ

k) , x
γ,μ|t
k−1

)
. (2)

Lemma 1. (≥h ∈ H)(≥μ′ ∈ Πrand)(∃μ ∈ Π)c(x−1, μ) ≤ c(x−1, μ
′)

Definition 3. ≥h ∈ H,≥t ∈ IN0 period [t, t + 1) is total idleness period under
policy μ and vector of activity durations γ if and only if Λt,γ,μ = ∅.
Lemma 2. ∃h ∈ H such that for μ∈ ∈ Π,∃γ ∈ supp(p) where there is at least
one total idleness period.

Lemma 2 causes the departure from previous theoretical results laid in [5,6].
We build results that put bound on the amount of total idleness in optimal
policy. That enables the creation of model that can be solved using standard
methods.

Theorem 1. For arbitrary problem h ∈ H, ∃μr ∈ Π such that c(x−1, μr) =
cd
⎪⎩

i∗V max(supp(pi))
⎨
. Also,

(≥μ ∈ Π)
(

c(x−1, μ) ≤ c(x−1, μr) ⇒ cd (Z (μ)) ≤ cd(
∑

i≤V max(supp(pi)))
mind≤supp(p) p(d)

)

.

118 M. Brčić et al.

Corollary 1. In the case δ <
⎩

i∗V max(supp(pi)), the bound ζ on the worst
case project duration Z(μ∈) under optimal policy μ∈ can be uniquely inferred from
the cost bound given in Theorem 1 due to the properties of cd. Otherwise, the
solution to the problem is trivial and the bound ζ is set to

⎩
i∗V max(supp(pi)).

Corollary 2. For non-trivial values of δ, we can search for optimal policy only
in the set {μ ∈ Π|(≥γ ∈ supp(p))sγ,μ,n+1

N ≤ ζ}. Optimal policy μ∈ ∈ Π exists.

The proofs of Lemmas 1, 2, Theorem 1 and Corollary 2 are given in the appen-
dix. The bound in Theorem 1 is loose, depending on the continuous parameter
of probability distribution. Stricter bounds can be found using more information
about SRCPSP instance at hand. Relying on the Corollary 2, we can model the
problem using finite horizon dynamic programming (DP). Also, using finiteness
of the worst case performance of the optimal policy, we can model the prob-
lem as a stochastic shortest path with finite state and control spaces, using the
undiscounted objective function (1) and infinite horizon DP theory.

5 The Model

In this section, we introduce a new stochastic dynamic programming model for
the defined problem based on theoretical results from the previous section. The
given problem is modelled as a stochastic shortest path (SSP) problem [16] and
it is a Markov Decision Process (MDP) with variable number of stages as is the
case in the project scheduling.

Definition 4. Finite Markov Decision Process is a 7-tuple (S, C, W, U, P, f, g)
where S is the finite discrete state space, C is the finite discrete control space,
W is the finite sample space modelling elementary random information we can
receive, U : S → 2C is the control availability function. P (ω ∈ 2W |x ∈ S, u ∈
C) is the distribution of random information conditioned on the last state and
applied control. f : S × C × W → S is the state transition function, and g :
S×C → IR is the immediate cost function. Transition probabilities Ti,u,j between
the states i, j ∈ S under applying control u ∈ U(i) can be obtained by using the
transition function f : Ti,u,j = P {{ω ∈ W |f (i, u, ω) = j} |i, u} .

To make the state and the control space finite, we are using the upper bound
on duration of project execution, Θ. Θ can be determined heuristically, or a
conservative upper bound based on Corollary 1 can be used. In the rest of the
paper we assume conservative upper bound. Let O = {i ∈ IN0|i ≤ Θ}.

Let F : S → 2V define the set of resource and precedence feasible activities
that have not been started yet. Let F s(xk) ≤ 2F (xk) be the set of sets of resource
and precedence feasible combinations of activities for each state xk ∈ S.

Proactive Reactive Scheduling in Resource Constrained Projects 119

State Space. Each state xk ∈ S is a tuple (v,K, b, t).

– v - r-tuple (v1, ..., vr) containing resource availabilities at state xk, ≥j ∈ R
– K - state information about project activities; (≥a ∈ V \{0}) Ka = (φa, sa, da).

Information for activity 0 are not stored as it is under all policies always
started at timepoint 0.
• φa ∈ {‘inactive’,‘started’, ‘finished’} - the status of activity a
• sa - start time of activity a in the current schedule. If the activity has not

been started yet, sa is predicted/scheduled start time.
• da realized duration of activity a, known only if the activity is completed.

Otherwise, it is 0 and has no meaning. This information is useful only for
activities whose activity durations are not independent.

– b ∈ ‘bounded’, ‘non-bounded’} - the status of project state used to terminate
all executions of projects surpassing duration of Θ

– t - the current time of the project global clock, measured in discrete units.

Each element of state xk is marked using the superscript notation, for exam-
ple xφa

k is the status of activity a in state xk. The terminal state xk ∈ S is the
one in which x

φn+1
k =‘finished’ or xb

k =‘bounded’. The initial state x−1 has all
resources free, all activities inactive, their scheduled start times set to 0, state
marked as non-bounded and the global project time set to -1.

Control Space and Available Controls. C ≤ (O ∪ {‘start’,‘empty’})n+1 is
the set of controls that present decisions for rescheduling of activity scheduled
start times and for starting any set of activities. (≥μ ∈ Π)(≥xk ∈ S)μ(xk) ∈
U(xk), where set of available controls in each state has to satisfy next conditions:

1. (≥xk ∈ S)U(xk) = {[u1, ..., un+1]|{i|ui = ‘start’} ∈ F s(xk)}
2. (≥i ∈ V \ {0})(≥xk ∈ S)

(
xφi

k ⊂= ‘inactive’ ⇒ ui(xk) = ‘empty’
)

3. (≥i ∈ V \ {0})(≥xk ∈ S) (ui (xk) /∈ {‘start’, ‘empty’} ⇒ ui(xk) ∀ xt
k)

4. (≥xk ∈ S) (xt
k < 0 ⇒ (≥i ∈ V \ {0})ui(xk) ⊂= ‘start’) .

Random Information. The timing of the next stage is tk+1 := tk +1. Sample
space is defined as W = supp(p). Random information distribution function P
is based on activity duration probability distribution p, with the probabilities
of random information conditioned on durations of finished activities and on
current execution times of running activities. All of the information that the
conditioning is done upon is contained in the state and last applied control.
Non-anticipativity of policies is ensured by the fact that after (state, action)
pair (x, u) we receive information only on running activities in [xt, xt +1) where
some subset of activities is finished at timepoint xt + 1 and the rest continues
with execution, in a similar way as in [5].

120 M. Brčić et al.

Transition Function. The model uses a notion of post-decision state. The
transition function f is a composition f = σ ⊕ ψ of the post-decision transition
function ψ : S×C → S and the stochastic transition function σ : S×W → S. The
post-decision transition function ψ updates the state with the applied control,
but without receiving new random information. The state we transition to after
applying ψ is the post-decision state, and no control can be applied to it. The
stochastic transition function σ updates the post-decision state with the random
information. The result is a new pre-decision state at the next timepoint at
which we can apply the new control. Transition function f = σ ⊕ ψ is defined
algorithmically as:

function φ(xk, uk)

if x
φn+1
k = ‘finished’ ∈ xb

k = ‘bounded’ then return xk

xuk
k ≤ copy(xk)

if xt
k = Θ ≥ x

φn+1
k �= ‘finished’ ≥ uk,n+1 �= ‘start’ then

xuk,b
k ≤ ‘bounded’

return xu
k

for all i ∈ {i|uk,i = ‘start′} do
Take up resources in x

uk
k for activity i

x
uk,si
k ≤ x

uk,t
k , x

uk,φi
k ≤ ‘started’

for all i ∈ {i|uk,i = ‘start′ ≥ pi(0) = 1} do x
uk,φi
k ≤ ‘finished’

for all i ∈ {i|uk,i ∈ O} do x
uk,si
k ≤ uk,i

return x
uk
k

function σ(x
uk
k , ωk)

if x
uk,φn+1
k = ‘finished’ ∈ x

uk,b
k = ‘bounded’ then return x

uk
k

xk+1 ≤ copy(x
uk
k), xt

k+1 ≤ xt
k + 1

for all i ∈ {i|i finishes in xt
k+1 according to ωk} do

release resources in xk+1 for i
xφi

k+1 ≤ ‘finished’, xdi
k+1 ≤ xt

k+1 − xsi
k+1

return xk+1

Cost Function

g(xk, uk) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if x
φn+1
k = ‘finished’

∈xb
k = ‘bounded’

cs(L(xk), L(ψ(xk, uk)), xt
k) + cd,s(x

t
k), if xt

k ≈ 0

M, if xt
k = Θ ≥ uk,n+1 �= ‘start’

0, otherwise

where M is a sufficiently large penalty for not terminating the project before
exceeding the bound Θ. Cost bound from Theorem 1 can be used as a conserv-
ative basis for setting M.

Proactive Reactive Scheduling in Resource Constrained Projects 121

The proposed model proceeds through all unit timesteps and at each stage
searches for optimal controls in high dimensional discrete space, where the
dimension depends on the number of activities. Similarly to [13], resource feasi-
bility is not explicitly enforced in the non-started part of schedule. In our model
the same holds for precedence feasibility as well.

Since the proposed model is SSP with finite state and control spaces with all
admissible policies terminating (some are artificially made proper by bounding
and penalizing), there is a unique optimal cost-to-go function J∈ : S → IR+ that
satisfies Bellman’s optimality equations [16]:

J∈(x) = min
u∗U(x)

Eω≤W (x,u) [g(x, u) + J∈ (f (x, u, ω))] , ≥x ∈ S . (3)

Standard methods for solving MDP such as value iteration, policy iteration
or linear programming converge to the solution for this model [16] and can
generally be used for solving. The proposed model is nearly acyclic and the
solution can be found using simple adaptation to the shortest path algorithm
for Directed Acyclic Graphs (DAG). Such an adaptation sets optimal costs-to-go
value of terminal states to 0, resolving the only cycles in the graph, and uses
expectations in calculations of distances in stochastic transitions.

6 Stability vs. Cost-Based Flexibility

The research based on the schedule stability measure as defined by [11] a pri-
ori assumes that the baseline schedule is static and that changes on scheduled
activity start times between the creation of the baseline and the realized activity
start times are forbidden or of no benefit and are ignored. We consider that the
costs due to (in)stability have their root in inflexibilities in the project executing
system and that these costs should be lower with increased temporal distance
of changes from the current timepoint. That gives us the incentive to switch the
baseline schedule in order to reduce anticipated costs. Here we present the con-
ditions under which CBF reduces to the stability measure and when the search
for the optimal policy can be done in simpler policy subspace.

Definition 5. ≥h ∈ H, Πst ≤ Π is the space of policies that offline, before the
start of project execution, create a baseline schedule while online, ≥γ ∈ supp(p),
in each stage only perform rescheduling of activities at their start and leave the
non-started part of the schedule unchanged.

Lemma 3. ≥h ∈ H it holds:

(≥μ ∈ Πst)(≥γ ∈ supp(p))

⎟

cf (μ, γ) =
∑

i∗V ∗
cs,i(s

γ,μ,i
0 , sγ,μ,i

N , sγ,μ,i
N)

)

.

Theorem 2. ≥h ∈ H, minμ∗Πc(x−1, μ) = minμ∗∗Πst
c(x−1, μ

′) if
(≥i ∈ V ′)cs,i(x, y, t) have the following properties:

122 M. Brčić et al.

1. (≥x, y)mint cs,i(x, y, t) = cs,i(x, y,min(x, y)) ,
2. (≥x, y, z) [cs,i(x, y,min(x, y)) + cs,i(y, z,min(y, z)) ∀ cs,i(x, z,min(x, z))] ,
3. (≥x, y) [x ≤ y ⇒ (cs,i(x, y, x) = cs,i(x, y, y))] .

The proofs of Lemma 3 and Theorem 2 are given in the appendix.

Corollary 3. Let h ∈ H be such that the expression for cf under Lemma 3,
cf,st, has the form of Leus and Herroelen’s stability measure. Let h′ be the
problem identical to h except that cf in the objective function of h′ is replaced
by cf,st. If h satisfies conditions of the Theorem 2 then minμ∗Π c(x−1, μ) =
minμ∗∗Πst c′(x−1, μ

′).

Corollary 3 shows that a priori decision on search in Πst and using stability
measure results in no loss of optimality if there is obviously no advantage in
rescheduling in advance and if the project executing system is fairly inflexible.

Let τ(x, y, t) = max{0,min(x, y)−t}. An example of CBF measure is defined
by the following rescheduling cost function:

cs

(
L(xd,μ

k−1), L(xd,μ
k), xd,μ|t

k−1

)
=
∑

i∗V ∗
biα

τ(sd,μ,i
k−1 ,sd,μ,i

k ,x
d,μ|t
k−1)

i · |sd,μ,i
k−1 − sd,μ,i

k | (4)

where bi ∈ IR is the activity-specific basic cost of rescheduling while αi ∈ (0, 1]
is activity-specific discount factor. αi does not model the economic discounting,
but the inflexibility of the project execution system included in execution of that
activity. For example, the system is inflexible if the discount factor is very close
to 1 as there is small or no benefit to reschedulings with advance notice. Obvi-
ously, under minimization of the problem that has rescheduling cost function (4)
with ≥i ∈ V ′(αi > 1) we can restrict the search for the solution to Πst. Using
Corollary 3, the solution to the problem h ∈ H with the rescheduling cost func-
tion (4), where ≥i ∈ V ′(αi = 1), can be found by solving the problem h′ with
the flexibility cost of the form of stability measure, with restriction to search in
Πst.

7 Conclusions and Future Work

In this paper, a new approach to proactive-reactive scheduling in SRCPSP
has been introduced. To the best of our knowledge, this is the first work that
approaches modelling of proactive scheduling with proactive reschedules. There
are three main contributions discussed. Firstly, a new family of cost based flexi-
bility measures is proposed in order to measure flexibility robustness. Flexibility
measures are integrated into the sequential decision making procedure in order to
obtain reactive approach with proactive reschedules. Furthermore, we presented
a bounded stochastic shortest path based model with factored state representa-
tions that captures important aspects of the given problem. The model is finite
MDP with variable number of stages. Standard solving methods, including sim-
ple adaptation to the shortest path algorithm for DAGs, could be applied to it

Proactive Reactive Scheduling in Resource Constrained Projects 123

using Bellman’s optimality equation. Optimal solutions can be obtained only for
small projects. The proactive-reactive optimization is done within a single frame-
work of dynamic programming. Our third contribution refers to the commonly
used stability measure. We compared it with the proposed family of flexibility
measures in the context of proactive scheduling. Schedule stability is shown to
be attained under special conditions on the flexibility measure when the project
execution system does not show more flexibility with the advance notice or even
forbids the advance notice.

Possible future work refers to finding better upper bounds on the worst case
schedule duration for optimal policies with bounds depending on discrete para-
meters of the project. Characterizing the trade-off between the expected perfor-
mance and different imputed worst case bounds is important for the development
of solving procedures. The creation of approximation methods, possibly exploit-
ing near-acyclicity, in order to scale the application scope onto bigger projects
is viable venue. For example, approximate dynamic programming can be used
on the model with heuristically determined bound on the worst case schedule
duration. Finding rescheduling cost function, i.e. sub-elements of flexibility mea-
sure, between the consecutive schedules that would balance realistic modelling
and computational costs of solving is also an interesting research topic. Finally,
research into policy families that would be appropriate for solving problems with
special classes of cost-based flexibility measures, could bring the results closer
to the application domain.

References

1. Brcic, M., Kalpic, D., Fertalj, K.: Resource constrained project scheduling under
uncertainty: a survey. In: Proceedings of the 23rd Central European Conference
on Information and Intelligent Systems, pp. 401–409 (2012)

2. Klingel, A.R.: Bias in PERT project completion time calculations for a real net-
work. Manag. Sci. 13(4), 194–201 (1966)

3. Demeulemeester, E., Herroelen, W.: Robust Project Scheduling. Now Publishers,
Boston (2011)

4. Van de Vonder, S., Ballestin, F., Demeulemeester, E., Herroelen, W.: Heuristic
procedures for reactive project scheduling. Comput. Ind. Eng. 52(1), 11–28 (2007)

5. Möhring, R.H., Radermacher, F.J., Weiss, G.: Stochastic scheduling problems I
general strategies. Z. Oper. Res. 28(7), 193–260 (1984)

6. Möhring, R.H., Radermacher, F.J.: Introduction to stochastic scheduling prob-
lems. In: Neumann, P.D.K., Pallaschke, P.D.D. (eds.) Contributions to Operations
Research. Lecture Notes in Economics and Mathematical Systems, vol. 240, pp.
72–130. Springer, Heidelberg (1985)

7. Stork, F.: Stochastic resource-constrained project scheduling. Ph.D. thesis, Tech-
nical University at Berlin, Berlin, Germany (2001)

8. Tai, C.H.C.: A stochastic project scheduling problem with resource constraints.
Ph.D. thesis, University of Missouri-Columbia (1997)

9. Choi, J., Realff, M.J., Lee, J.H.: A Q-learning-based method applied to stochastic
resource constrained project scheduling with new project arrivals. Int. J. Robust
Nonlinear Control 17(13), 1214–1231 (2007)

124 M. Brčić et al.

10. Csáji, B., Monostori, L.: Adaptive stochastic resource control: a machine learning
approach. J. Artif. Intel. Res. 32(1), 453–486 (2008)

11. Leus, R., Herroelen, W.: Stability and resource allocation in project planning. IIE
Trans. 36(7), 667–682 (2004)

12. Van de Vonder, S., Demeulemeester, E., Leus, R., Herroelen, W.: Proactive-reactive
project scheduling trade-offs and procedures. In: Jzefowska, J., Weglarz, J. (eds.)
Perspectives in Modern Project Scheduling, vol. 92, pp. 25–51. Springer, New York
(2006)

13. Deblaere, F., Demeulemeester, E., Herroelen, W.: Proactive policies for the sto-
chastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 214(2),
308–316 (2011)

14. Lambrechts, O.: Robust project scheduling subject to resource breakdowns. Ph.D.
thesis, Faculty of Business and Economics, Katholieke Universiteit Leuven, Leuven,
Belgium (2007)

15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley-Interscience, New York (1994)

16. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1, 3rd edn.
Athena Scientific, Belmont (2005)

Active Set Methods with Reoptimization
for Convex Quadratic Integer Programming

Christoph Buchheim and Long Trieu(B)

Fakultät für Mathematik, Technische Universität Dortmund,
Dortmund, Germany

{christoph.buchheim,long.trieu}@math.tu-dortmund.de

Abstract. We present a fast branch-and-bound algorithm for solving
convex quadratic integer programs with few linear constraints. In each
node, we solve the dual problem of the continuous relaxation using an
infeasible active set method proposed by Kunisch and Rendl [10] to get
a lower bound; this active set algorithm is well suited for reoptimiza-
tion. Our algorithm generalizes a branch-and-bound approach for uncon-
strained convex quadratic integer programming proposed by Buchheim,
Caprara and Lodi [4] to the presence of linear constraints. The main
feature of the latter approach consists in a sophisticated preprocessing
phase, leading to a fast enumeration of the branch-and-bound nodes.
Experimental results for randomly generated instances are presented.
The new approach significantly outperforms the MIQP solver of CPLEX
12.4 for instances with a small number of constraints.

1 Introduction

We consider integer optimization problems with strictly convex quadratic objec-
tive functions and linear constraints,

min f(x) = x�Qx + L�x + c

s.t. Ax ∈ b (QIP)
x ≤ Z

n,

where Q ≤ R
n×n is positive definite, L ≤ R

n, c ≤ R, A ≤ R
m×n and b ≤ R

m.
All approaches discussed in this paper can be generalized to the presence of
additional linear equations in a straightforward way. Quadratic Integer Pro-
gramming (QIP) is a special case of Integer Nonlinear Programming. While
convex Quadratic Programming (QP) can be handled efficiently by the ellip-
soid method [9], adding integrality makes the problem NP-hard. In fact, Prob-
lem (QIP) remains NP-hard even in the unconstrained case [13], or in the case
where the objective function is linear. Up to now, very few publications consider
exact solution methods for (QIP); a survey is given by Volkovich, Roshchin,
and Sergienko [14]. However, numerical experiments by Fletcher and Leyffer [6]
showed that branch-and-bound is the most effective approach out of all the
common methods for solving (QIP), because the QP relaxation is very easy to
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 125–136, 2014.
DOI: 10.1007/978-3-319-09174-7 11

126 C. Buchheim and L. Trieu

solve. Standard solvers that can handle (QIP) include CPLEX [1], SCIP [2] and
BONMIN [3].

Many optimization problems in real world applications can be formulated as
quadratic integer programs with few linear constraints, e.g., the classical Mean-
Variance Optimization (MVO) for the selection of portfolios of assets [5].

1.1 Basic Ideas

The main idea of our approach is to use a fast branch-and-bound scheme, enu-
merating nodes very quickly. By fixing the branching order in advance, we lose
the possibility of choosing sophisticated branching strategies but gain the advan-
tage of shifting expensive computations into the preprocessing phase. Each node
is explored using a specialized active set method to solve the continuous relax-
ation in order to determine the local lower bound. Another key ingredient of our
algorithm is that we solve the dual problem of the continuous relaxation, which
again is a convex QP, while we keep branching on the primal variables. Since all
constraints of the continuous relaxation of (QIP) are affine, strong duality holds
if the primal problem is feasible. Furthermore, the dual has only non-negativity
constraints; this allows us to use the tailored active set method proposed by
Kunisch and Rendl [10]. By considering the dual problem, it suffices to find an
approximate solution, as each feasible solution yields a valid lower bound. We
can thus prune the branch-and-bound node as soon as the current upper bound
is exceeded by the lower bound and the current iterate is feasible in the active
set process. Finally, we make use of warmstarts: after each fixing we use the
optimal active set from the parent node as an initial guess for the optimal active
set in the child nodes. In our algorithm, the overall running time per node is
linear in the dimension n if the number of constraints is fixed, it can therefore
be seen as an extension of the algorithm devised by Buchheim et al. [4].

1.2 Organization of the Paper

Section 2 presents an outline of the new algorithm, starting with some recapit-
ulation of the main ideas of general active set methods for solving standard
convex QPs. Section 2.2 discusses the advantages of considering the correspond-
ing dual problem instead of the primal one. In Sect. 2.3, we explain the idea
of reoptimization, using warmstarts within the branch-and-bound scheme. The
next Sect. 2.4 deals with some tricks to speed up the algorithm by using incre-
mental computations and preprocessing. In the last part of Sect. 2 the active set
method of Kunisch and Rendl [10] is described. In Sect. 3 we present computa-
tional results and compare the performance of the proposed algorithm, applied
to randomly generated instances, to the MIQP solver of CPLEX 12.4. To point
out the benefits of the different ingredients of the algorithm, we also compared it
to several versions of our implementation, which differ only in the consideration
of the primal or dual relaxation and in the use of warmstarts.

AS Methods with Reoptimization for Convex QIP 127

2 Active Set Methods within Branch-and-Bound

For a better understanding of the branch-and-bound algorithm, we shortly sum-
marize its key ingredients; some ideas are taken from [4] where the unconstrained
case is addressed. Consider the convex quadratic integer program (QIP). As our
branch-and-bound scheme aims at a fast enumeration of the nodes, we focus on
bounds that can be computed quickly. A straightforward choice for determining
lower bounds is to solve the continuous relaxation of (QIP). For this, we use
an active set method presented by Kunisch and Rendl [10], shortly described
in Sect. 2.5. Instead of applying it to the relaxation directly, we solve its dual
formulation, which again is a convex QP. The solution can be used as a lower
bound for f over all feasible integer points and is as strong as the lower bound
obtained by solving the primal problem, since strong duality holds. As an initial
upper bound, we simply compute an integer point which is feasible, i.e., some
x ≤ Z

n satisfying Ax ∈ b. This can be done by using a phase-1 approach, similar
to the linear programming case. Note that this poor upper bound gets improved
very quickly, because we use a depth-first branching strategy.

In our branch-and-bound scheme, we branch by fixing the primal variables
in increasing distance to their values in the solution of the continuous relax-
ation. For a scalar a ≤ R, let ≥a� denote the integer value closest to a. Then by
exploiting the convexity of f and its symmetry with respect to the continuous
minimizer x̄, all consecutive lower bounds obtained by fixing xi to integer values
in increasing distance to ≥xi� are non-decreasing. Thus, we can cut off the current
node of the tree and all its siblings as soon as we fix a variable to some value for
which the resulting lower bound exceeds the current best known upper bound.
Using these ingredients we get a straightforward branch-and-bound algorithm,
sketched in Algorithm 1. Using a predetermined branching order, some of the
expensive calculations can be moved into a preprocessing phase, as described in
Sect. 2.4.

2.1 Basic Active Set Strategy for Quadratic Programming

The continuous relaxation of (QIP) is the QP

min f(x) = x�Qx + L�x + c

s.t. Ax ∈ b (QP)
x ≤ R

n.

Essentially two classes of algorithmic approaches have been developed for solv-
ing convex quadratic programs of the form (QP), namely active set methods
(ASM) [7] and interior point methods (IPM) [8,11]. For a detailed comparison,
we refer to [12]. In practice, active set methods are preferable to interior point
methods if the number of constraints is rather small, so we will focus on ASM
in the following.

128 C. Buchheim and L. Trieu

Algorithm 1. Basic Branch-and-Bound Scheme
input : a strictly convex function f : Rn ∈ R, x∗Qx + L∗x + c, A ∗ R

m×n, b ∗ R
m

output: integer minimizer x≤ of f such that Ax ≤ b

determine a variable order x1, . . . , xn; set d := 0, ub := ∞;
while d ≥ 0 do

define f̄ : Rn−d ∈ R by f̄(x) := f(r1, . . . , rd, x1, . . . , xn−d);

compute L̄ and c̄ such that f̄(x) = x∗Qdx + L̄∗x + c̄;
// compute lower bound
construct and solve the dual problem (2)
reconstruct x̄ from (1) and set lb := f̄(x̄);
// compute upper bound and update solution
set rj := 	x̄j−d
 for j = d + 1, . . . , n to form r ∗ Z

n;
if Ar ≤ b and f̄(rd+1, . . . , rn) < ub then

set r≤ = r;
set ub = f̄(rd+1, . . . , rn);

// prepare next node
if lb < ub then

// branch on variable xd+1
set d := d + 1;
set rd := 	x̄1
;

else
// prune current node
set d := d − 1;
if d > 0 then

// go to next node
increment rd by increasing distance to the continuous relaxation;

The main idea of active set methods is to solve a sequence of equality con-
strained quadratic programs by just considering the active constraints at the
current iterate. The active and inactive set for some iterate xk are denoted by

A(xk) := {i ≤ {1, . . . , m} | a�
i xk = bi} and I(xk) := {1, . . . , m} \ A(xk).

For any A ⊆ {1, . . . , n} and x ≤ R
n we write xA for the components of x indexed

by A, i.e. xA := (xi)i∗A. For a matrix Q and two index sets A, I ⊆ {1, . . . , n},
QA,I denotes the submatrix of Q consisting of the rows indexed by A and columns
indexed by I. The basic idea of general ASM for convex QP relies on the following
observation: if x∗ is the minimizer of (QP), we have

x∗ = argmin q(x) s.t. Ax ∈ b

= argmin q(x) s.t. a�
i x = bi ∀i ≤ A(x∗).

The approach starts by choosing a subset Wk ⊆ {1, . . . , m} and computes

xk+1 = argmin q(x) s.t. a�
i x = bi ∀i ≤ Wk.

If the new iterate xk+1 is not the minimizer of (QP), the set Wk is replaced by
a new guess Wk+1 essentially using KKT-conditions and the updated equality
constrained QP is solved again. This iterative process is repeated until an optimal
solution to (QP) is obtained.

It is common to distinguish between primal and dual ASM. While a primal
ASM ensures primal feasibility of all iterates, a dual ASM ensures dual feasibility.

AS Methods with Reoptimization for Convex QIP 129

2.2 Dual Approach

In the following, we derive the dual problem of (QP) and point out some advan-
tages when using the dual approach in the branch-and-bound framework. The
dual can be computed by first forming the Lagrangian

L (x, λ) = x�Qx + L�x + c + λ�(Ax − b)

and then, for fixed λ, minimizing L with respect to the primal variables x. As Q
is assumed to be positive definite, the unique minimizer can be computed from
the first order optimality condition

∃xL (x, λ) = 2Qx + L + A�λ = 0 ⇒∅ x = −1
2
Q−1(L + A�λ). (1)

Inserting this into the Lagrangian L yields the following dual function

L (λ) = λ�(− 1
4
AQ−1A�)

λ − (
b� +

1
2
L�Q−1A�)

λ − 1
4
L�Q−1L + c.

Defining Q̃ := 1
4AQ−1A�, L̃ := 1

2AQ−1L + b and c̃ := 1
4L�Q−1L − c, we can

thus write the dual of (QP) as

−min λ�Q̃λ + L̃�λ + c̃

s.t. λ ≥ 0 (2)
λ ≤ R

m.

Note that (2) is again a convex QP, since Q̃ is positive semidefinite. The first
crucial difference in considering the dual problem is that its dimension changed
from n to m, which is beneficial if m ⊂ n. The second one is that λ = 0 is always
feasible for (2). Finally, note that having the optimal solution λ∗ ≤ R

m of (2), it
is easy to reconstruct the corresponding optimal primal solution x∗ ≤ R

n using
the first order optimality condition (1).

Within a branch-and-bound framework, a special feature of the dual approach
is that we can stop the iteration process and prune the node as soon as the current
iterate λk is feasible and its objective function value exceeds the current upper
bound, since each dual feasible solution yields a valid bound. As feasibility in
the dual problem is equivalent to non-negativity of the variables, this can be
checked quickly. The additional time spent to evaluate the objective function for
bound comparison is little when m is small. Note however that, in case we cannot
prune, an optimal solution of the dual problem is required, since it is needed for
the computation of the corresponding primal solution x∗ which in turn is needed
to decide the enumeration order in the branch-and-bound scheme.

2.3 Reoptimization

At every node of the branch-and-bound tree, we use an active set algorithm for
solving (2). A crucial advantage of ASM is the possibility of using warmstarts,

130 C. Buchheim and L. Trieu

i.e., of passing information on the optimal active set from a parent node to its
children. In the dual approach the dimension of the subproblems is always m,
independently of the depth d in the branch-and-bound tree. When fixing a vari-
able, only the objective function changes, given by the adapted data Q̃, L̃ and c̃.
So instead of choosing A = {1, . . . , m} as the starting guess in a child node, we
start with A = A(λ∗), i.e., we use the active set of the optimal solution λ∗ of
the parent node.

This approach also works in the primal setting. However, as our experimental
results show, it seems that warmstarting is only effective for the dual approach,
since maintaining primal feasibility requires solving an LP at each branch-and-
bound node for finding some starting point x satisfying

a�
i x = bi ∀i ≤ A(x∗)

a�
i x ∈ bi ∀i ≤ I(x∗),

where x∗ denotes the optimal solution of the primal QP in the parent node. On
the other hand, in the dual approach, any feasible solution λ∗ of the parent node
remains feasible for the child nodes and it corresponds to the same active set.

2.4 Incremental Computations and Preprocessing

A remarkable speed-up can be achieved by exploiting the fact that the sub-
problems enumerated in the branch-and-bound tree are closely related to each
other. Let d ≤ {0, . . . , n − 1} be the current depth in the branch-and-bound
tree and recall that after fixing the first d variables, the problem reduces to the
minimization of

f̄ : Zn−d ⊕ R, x �⊕ x�Qdx + L̄�x + c̄

over the feasible region F̄ = {x ≤ Z
n−d | Adx ∈ b̄}, where Qd � 0 is obtained by

deleting the corresponding d rows and columns of Q and L̄ and c̄ are adapted
properly; see [4]. Similarly, Ad is obtained by deleting the corresponding d
columns of A and the reduced right hand side b̄ is updated according to the
current fixing. In particular, since we predetermine the order in which variables
are fixed, the reduced matrices Qd and Ad only depend on the depth d, but
not on the specific fixings. Similarly to the reduced matrix Qd, the quadratic
part of the reduced dual objective function Q̃d and its inverse Q̃−1

d can also be
computed in the preprocessing phase, because they only depend on Qd and Ad.

Concerning the linear part L̃ and the constant part c̃ of the dual reduced
problem, it is possible to compute both of them incrementally in linear time per
node: let r = (r1, . . . , rd) ≤ Z

d be the current fixing at depth d. By definition
of L̃, we have

L̃(r) =
1
2
AdQ

−1
d L(r) + b(r),

where the suffix (r) always denotes the corresponding data after fixing the first d
variables to r.

AS Methods with Reoptimization for Convex QIP 131

Theorem 1. After a polynomial time preprocessing, the vector L̃(r) can be con-
structed incrementally in O(n − d + m) time per node.

Proof. Defining y(r) := − 1
2Q−1

d L(r), we have

1
2
AdQ

−1
d L(r) = −Ad · y(r).

Note that y(r) is the unconstrained continuous minimizer of f(r). In [4], it was
shown that y(r) can be computed incrementally by

y(r) := [y(r′) + αzd−1]1,...,n−d ≤ R
n−d

for some vector zd−1 ≤ R
n−d+1 and α := rd−y(r′)d ≤ R, where r′ = (r1, . . . , rd−1)

is the fixing at the parent node. This is due to the observation that the continuous
minima according to all possible fixings of the next variable lie on a line, for which
zd−1 is the direction. The vectors zd−1 only depend on the depth d and can be
computed in the preprocessing [4]. Updating y thus takes O(n − d) time. We now
have

L̃(r) = −Ad[y(r′) + αzd−1]1,...,n−d + b(r)

= −Ad[y(r′)]1,...,n−d − αAd[zd−1]1,...,n−d + b(r)

= −(Ad−1y(r′) − y(r′)n−d+1 · A•,n−d+1) − αAd[zd−1]1,...,n−d + b(r).

In the last equation, we used the fact that the first part of the computation
can be taken over from the parent node by subtracting column n − d + 1 of A,
scaled by the last component of y(r′), from Ad−1y(r′), which takes O(m) time.
The second part Ad[zd−1]1,...,n−d can again be computed in the preprocessing.
The result then follows from the fact that also b(r) can easily be computed
incrementally from b(r′) in O(m) time. ��
Lemma 1. After a polynomial time preprocessing, the scalar c̃(r) can be con-
structed incrementally in O(n − d) time per node.

Proof. Recalling that

c̃(r) =
1
4
L(r)�Q−1

d L(r) − c(r),

this follows from the fact that y(r) = − 1
2Q−1

d L(r) and c(r) can be computed
in O(n − d) time per node [4]. ��
Corollary 1. After a polynomial time preprocessing, the dual problem (2) can
be constructed in O(n − d + m) time per node.

Besides the effort for solving the QP with the active set method, computing the
optimal solution of the primal problem from the dual solution is the most time
consuming task in each node. The following observation is used to speed up its
computation.

132 C. Buchheim and L. Trieu

Theorem 2. After a polynomial time preprocessing, the optimal primal solu-
tion x∗(r) can be computed from the optimal dual solution λ∗(r) in O(m ·(n−d))
time per node.

Proof. From (1) we derive

x∗(r) = −1
2
Q−1

d

(
m∑

i=1

λ∗(r)iai + L(r)

)

= y(r) +
m∑

i=1

λ∗(r)i

(

−1
2
Q−1

d ai

)

.

The first part can again be computed incrementally in O(n−d) time per node. For
the second part, we observe that − 1

2Q−1
d ai can be computed in the preprocessing

phase for all i = 1, . . . , m. ��
The above results show that the total running time per node is linear in n−d

when the number m of constraints is considered a constant: the construction of
the dual problem takes O(n−d+m) time, the running time for solving the dual
problem is constant as its dimension is m, and the optimal primal solution can
be obtained from the dual solution in O(m · (n − d)) time.

2.5 Infeasible Primal-Dual Active Set Method

The ASM we discuss in this section is an infeasible primal-dual active set method,
meaning that given a primal-dual pair (x, s) ≤ R

n ×R
m, neither primal nor dual

feasibility is required during the iterations but only the first order optimality
condition and the complementary slackness conditions have to be satisfied in
the KKT system. The active set is adjusted until (x, s) is feasible. Kunisch and
Rendl [10] have derived sufficient conditions for the algorithm to stop in a finite
number of steps with an optimal pair (x∗, s∗). From their computational exper-
iments, they concluded that their approach requires only a few (less than 10)
iterations on average to find the optimal solution.

The main advantage of this algorithm is the opportunity to change more
than one active/inactive constraint per iteration to quickly reach the optimal
active set, while standard active set methods usually just add or delete one
single constraint from the current active set.

It is well known that the KKT system corresponding to (2) is

2Q̃λ + L̃ − s = 0 (3)
−siλi = 0 ∀i = 1, . . . , m (4)

−λ ∈ 0 (5)
s ≥ 0 (6)

and a pair (λ∗, s∗) is a solution of that system if and only if λ∗ is a global min-
imizer of (2). The active set method of [10] starts by relaxing the constraints

AS Methods with Reoptimization for Convex QIP 133

(5) and (6) and choosing λA = 0 and sI = 0. This a valid choice for the non-
linear Eq. (4), so that a system of linear equations remains. By partitioning (3)
according to the active and inactive variables, we get

(
2Q̃A,A 2Q̃A,I

2Q̃I,A 2Q̃I,I

)(
λA

λI

)

+

(
L̃A

L̃I

)

+
(−sA

−sI

)

= 0. (7)

Then we solve this system for λI and sA, yielding

λI = −1
2
Q̃−1

I,I L̃I (8)

and

sA = L̃A + 2Q̃A,IλI .

Before resolving the updated reduced system (7), we compute a new guess for
the active set A+ as follows:

A+ = {i ≤ {1, . . . , m} | (λi < 0) ∨ (si > 0)}.

The choice of A+ can be justified by the following reasoning. On the one hand,
if si > 0, the solution is dual feasible, so our previous choice i ≤ A is confirmed
and we keep the index in the subsequent active set. On the other hand, if λi < 0,
the solution is primal infeasible and we add the index to our subsequent active
set. For the starting guess of A, we can choose A = {1, . . . , m}, which gives λ = 0
and s = L̃. Alternatively, we could use A = ∅, such that s = 0 and λ = −1

2 Q̃−1L̃,
or simply choose A randomly.

As the starting guess A can be chosen arbitrarily, this method is very well-
suited for reoptimization within a branch-and-bound scheme. Even in a primal
approach, the active set of the parent node can be used to initialize the active set
method in the children nodes. However, this approach only allows non-negativity
constraints, so that we can only apply it to our dual problem (2). It cannot
be adapted directly to QPs with linear equations Bx = d, since the resulting
system (7) may not be solvable, even if B has full rank. In particular, modeling
general linear inequalities by slack variables is also not possible. Nevertheless,
if (QIP) contains also linear equations, the dual of its continuous relaxation is
again a QP of the form (2) with an additional vector of unrestricted multipliers,
preserving the simple structure of the dual problem.

Note that in a single iteration of this algorithm the main computational
effort consists in the solution of a system of linear equations of dimension |I| for
computing λI according to (8). For a more detailed description of the algorithm
and convergence results, see [10].

3 Experimental Results

To show the potential of our algorithm, called CQIP, we implemented it in C++
and compared it to CPLEX 12.4 [1] and four other algorithms based on ASM:

134 C. Buchheim and L. Trieu

(P) The branch-and-bound Algorithm 1 with a standard ASM for solving
the QP relaxations

(P+w) as (P) but with reoptimization, as described in Sect. 2.3
(D) as (P) but considering the dual problems of the QP relaxations, as

described in Sect. 2.2
(D+w) as (D) but with reoptimization

For both (P) and (D), we implemented a standard ASM; see e.g. [12]. Whenever
applicable, the incremental computations described in Sect. 2.4 have been used
in all approaches. The difference between (D+w) and (CQIP) consists in the
fact that (CQIP) uses the infeasible ASM discussed in Sect. 2.5. All experiments
were carried out on Intel Xeon processors running at 2.60 GHz.

We randomly generated 200 instances for Problem (QIP), namely 10 for each
combination of n ≤ {50, 55, 60, 65, 70} and m ≤ {1, 5, 10, 15}. For generating
the positive definite matrix Q, we chose n eigenvalues λi uniformly at random
from [0, 1] and orthonormalized n random vectors vi, each chosen uniformly at
random from [−1, 1]n, then we set Q =

∑n
i=1 λiviv

�
i . All entries of L, b, and A

were chosen uniformly at random from [−1, 1], moreover we set c = 0. The time-
limit for each instance was set to three cpu-hours for each algorithm and we used
an absolute optimality tolerance of 10−6. The results for these instances can be
found in Table 1. Running times are measured in cpu seconds.

From the results we can see that instances with up to five linear inequali-
ties and up to 65 variables can be effectively solved to optimality by the dual
approach using the tailored active set method, while the simple primal app-
roach as well as CPLEX both suffer from the increasing number of variables. As
expected, for larger number of inequalities the running times of our algorithm
increase rapidly, it is generally outperformed by CPLEX for m ≥ 10. In Table 1,
we left out the results for the algorithm (P+w), i.e. the primal approach with
a standard active set method including reoptimization, because there was no
improvement in running times compared to (P), see Sect. 2.3.

By comparing the running times of (P), (D), (D+w), and (CQIP), one can
observe the stepwise improvement obtained by considering the dual problem,
by reoptimization, and by using the special active set method of Kunisch and
Rendl. It is also worth to mention that the average number of systems of linear
equations needed to be solved at each node stays very small, independently of n
and m. Again, a decrease in the number of such systems to be solved is observed
in each of the improvement steps.

Note that the average number of branch-and-bound nodes in our dual app-
roach is approximately 30 times greater than that needed by CPLEX. Never-
theless the overall running times of our approach are much faster for moderate
sizes of m, emphasizing both the quick enumeration process within the branch-
and-bound tree and the benefit of using reoptimization.

AS Methods with Reoptimization for Convex QIP 135

T
a
b
le

1
.
N

u
m

b
er

s
o
f
in

st
a
n
ce

s
so

lv
ed

w
it

h
in

th
e

ti
m

e
li
m

it
,
av

er
a
g
e

ru
n
n
in

g
ti

m
es

,
av

er
a
g
e

n
u
m

b
er

s
o
f
li
n
ea

r
eq

u
a
ti

o
n

sy
st

em
s

p
er

n
o
d
e

so
lv

ed
a
n
d

av
er

a
g
e

n
u
m

b
er

s
o
f
b
ra

n
ch

-a
n
d
-b

o
u
n
d

n
o
d
es

o
n

ra
n
d
o
m

ly
g
en

er
a
te

d
in

st
a
n
ce

s
o
f
ty

p
e

(Q
IP

).
A

ll
av

er
a
g
es

a
re

ta
k
en

ov
er

th
e

se
t

o
f
in

st
a
n
ce

s
so

lv
ed

w
it

h
in

th
e

ti
m

e
li
m

it
.

in
st

A
ct

iv
e

S
et

B
a
se

d
M

et
h
o
d
s

C
P

L
E

X
1
2
.4

C
Q

IP
P

D
D

+
w

n
m

#
ti

m
e

sl
e

n
o
d
e

n
o
d
es

#
ti

m
e

sl
e

n
o
d
e

n
o
d
es

#
ti

m
e

sl
e

n
o
d
e

n
o
d
es

#
ti

m
e

sl
e

n
o
d
e

n
o
d
es

#
ti

m
e

n
o
d
es

5
0

1
1
0

9
.9

8
0
.5

0
9
.2

7
e+

6
1
0

9
2
6
.5

8
2
.9

8
9
.2

7
e+

6
1
0

4
3
.5

5
1
.4

5
9
.2

7
e+

6
1
0

2
9
.2

5
1
.0

5
9
.2

7
e+

6
1
0

5
5
.1

7
5
.5

4
e+

5
5
0

5
1
0

5
0
.0

5
1
.3

7
1
.5

7
e+

7
1
0

3
2
8
8
.7

3
5
.4

4
1
.5

7
e+

7
1
0

4
2
7
.2

5
4
.6

6
1
.5

7
e+

7
1
0

1
5
8
.0

3
1
.6

7
1
.5

7
e+

7
1
0

9
2
.1

5
8
.6

6
e+

5
5
0

1
0

1
0

2
3
8
.5

4
1
.7

2
3
.1

6
e+

7
7

5
0
5
0
.3

2
9
.7

3
1
.1

7
e+

7
9

2
1
6
5
.7

3
8
.8

5
1
.8

7
e+

7
1
0

8
7
1
.0

8
2
.6

3
3
.1

6
e+

7
1
0

1
7
0
.1

0
1
.4

7
e+

6
5
0

1
5

1
0

9
8
8
.9

8
2
.0

6
6
.7

0
e+

7
1

4
8
2
2
.7

8
1
3
.6

4
6
.6

1
e+

6
2

5
1
3
1
.8

0
1
1
.3

4
1
.6

4
e+

7
9

4
4
5
5
.0

5
3
.9

8
6
.7

0
e+

7
1
0

5
0
4
.4

3
3
.7

8
e+

6

5
5

1
1
0

3
8
.0

3
0
.6

0
3
.6

3
e+

7
9

4
3
5
3
.6

4
2
.5

8
3
.4

1
e+

7
1
0

1
6
6
.5

4
1
.6

2
3
.6

3
e+

7
1
0

1
1
3
.7

8
1
.0

2
3
.6

3
e+

7
1
0

1
6
0
.7

0
1
.4

0
e+

6
5
5

5
1
0

1
4
7
.9

1
1
.1

7
5
.6

7
e+

7
1

9
8
6
9
.3

1
6
.3

7
3
.2

4
e+

7
1
0

1
3
6
3
.3

1
3
.8

6
5
.6

7
e+

7
1
0

4
9
7
.7

0
1
.3

2
5
.6

7
e+

7
1
0

2
8
9
.7

6
2
.3

4
e+

6
5
5

1
0

1
0

1
2
4
3
.2

1
1
.5

3
1
.4

6
e+

8
1

8
2
8
9
.1

6
8
.6

1
1
.5

0
e+

7
6

4
8
1
3
.2

9
6
.9

1
5
.1

4
e+

7
9

2
1
5
0
.0

2
2
.0

2
8
.9

8
e+

7
1
0

1
1
2
3
.0

9
7
.8

9
e+

6
5
5

1
5

9
3
7
0
2
.9

2
1
.7

2
3
.0

0
e+

8
0

-
-

-
0

-
-

-
3

8
3
5
7
.1

0
2
.1

5
1
.5

4
e+

8
9

2
6
9
1
.9

1
1
.7

0
e+

7

6
0

1
1
0

7
9
.8

6
0
.2

1
9
.6

5
e+

7
5

7
6
4
2
.1

3
3
.2

2
4
.0

4
e+

7
1
0

5
5
1
4
.3

8
6
.9

3
9
.6

5
e+

7
1
0

3
1
9
.3

1
1
.0

4
9
.6

5
e+

7
1
0

4
3
1
.7

5
3
.2

2
e+

6
6
0

5
1
0

1
0
7
8
.4

3
1
.2

1
3
.2

6
e+

8
0

-
-

-
6

3
0
5
8
.9

3
4
.0

2
1
.2

1
e+

8
1
0

2
6
8
9
.9

6
1
.3

5
3
.2

6
e+

8
1
0

1
5
8
1
.3

2
1
.1

0
e+

7
6
0

1
0

7
3
7
8
6
.0

0
1
.6

2
4
.8

3
e+

8
0

-
-

-
1

5
5
1
4
.3

8
6
.9

3
6
.0

7
e+

7
4

7
4
3
3
.3

6
2
.4

3
2
.7

0
e+

8
8

4
0
3
6
.9

1
2
.4

7
e+

7
6
0

1
5

4
6
8
0
6
.8

6
1
.7

7
5
.6

9
e+

8
0

-
-

-
0

-
-

-
0

-
-

-
8

4
7
3
8
.5

1
2
.6

2
e+

7

6
5

1
1
0

4
5
5
.8

2
0
.4

1
4
.1

6
e+

8
2

7
0
1
6
.4

4
2
.3

8
3
.9

0
e+

7
1
0

1
8
5
7
.8

2
1
.3

5
4
.1

6
e+

8
1
0

1
3
8
4
.0

8
1
.0

5
4
.1

6
e+

8
1
0

1
8
3
0
.8

3
1
.1

7
e+

7
6
5

5
1
0

9
6
5
.1

8
1
.2

7
3
.6

2
e+

8
0

-
-

-
7

4
8
0
5
.1

0
3
.8

4
2
.2

9
e+

8
1
0

3
4
7
0
.1

6
1
.5

1
3
.6

2
e+

8
9

1
4
8
0
.9

4
9
.2

7
e+

6
6
5

1
0

6
5
8
3
4
.2

1
1
.4

6
1
.0

8
e+

9
0

-
-

-
0

-
-

-
0

-
-

-
4

5
5
0
2
.6

9
3
.0

2
e+

7
6
5

1
5

4
4
6
0
0
.2

8
1
.5

4
6
.2

8
e+

8
0

-
-

-
0

-
-

-
0

-
-

-
5

6
2
6
1
.8

4
3
.1

9
e+

7

7
0

1
1
0

1
3
3
0
.6

8
0
.5

0
1
.2

9
e+

9
0

-
-

-
8

3
9
8
1
.4

8
1
.4

8
8
.9

7
e+

8
9

3
4
5
5
.9

3
1
.0

3
1
.0

5
e+

9
8

5
1
1
4
.0

2
2
.8

4
e+

7
7
0

5
6

5
6
0
2
.5

7
1
.3

2
1
.7

5
e+

9
0

-
-

-
0

-
-

-
1

1
0
1
0
1
.1

9
1
.4

3
1
.0

4
e+

9
4

7
5
3
1
.6

9
4
.0

9
e+

7
7
0

1
0

1
1
0
3
9
1
.8

3
1
.2

4
2
.9

2
e+

9
0

-
-

-
0

-
-

-
0

-
-

-
1

9
7
0
9
.1

3
6
.1

1
e+

7
7
0

1
5

0
-

-
-

0
-

-
-

0
-

-
-

0
-

-
-

0
-

-

136 C. Buchheim and L. Trieu

References

1. IBM ILOG CPLEX Optimizer 12.4 (2013). http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/

2. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

3. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird,
C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2),
186–204 (2008)

4. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for
convex quadratic integer programming. Math. Program. 135, 369–395 (2012)

5. Cornuéjols, G., Tütüncü, R.: Optimization Methods in Finance. Mathematics,
Finance, and Risk. Cambridge University Press, Cambridge (2006)

6. Fletcher, R., Leyffer, S.: Numerical experience with lower bounds for MIQP branch-
and-bound. SIAM J. Optim. 8(2), 604–616 (1998)

7. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly
convex quadratic programs. Math. Program. 27(1), 1–33 (1983)

8. Goldfarb, D., Liu, S.: An O(n3L) primal interior point algorithm for convex
quadratic programming. Math. Program. 49(1–3), 325–340 (1990)

9. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex
quadratic programming. USSR Comput. Math. Math. Phys. 20(5), 223–228 (1980)

10. Kunisch, K., Rendl, F.: An infeasible active set method for quadratic problems
with simple bounds. SIAM J. Optim. 14(1), 35–52 (2003)

11. Mehrotra, S., Sun, J.: An algorithm for convex quadratic programming that
requires O(n3.5L) arithmetic operations. Math. Oper. Res. 15(2), 342–363 (1990)

12. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)
13. Van Emde Boas, P.: Another NP-complete problem and the complexity of comput-

ing short vectors in a lattice. Technical report 81–04, Department of Mathematics,
University of Amsterdam (1981)

14. Volkovich, O.V., Roshchin, V.A., Sergienko, I.V.: Models and methods of solution
of quadratic integer programming problems. Cybern. 23, 289–305 (1987)

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

Fixed-Parameter Algorithms for Scaffold Filling

Laurent Bulteau1, Anna Paola Carrieri2, and Riccardo Dondi3(B)

1 Department of Software Engineering and Theoretical Computer Science,
Technische Universität Berlin, Berlin, Germany

l.bulteau@gmail.com
2 Dipartimento di Informatica, Sistemistica e Comunicazione,

Università degli Studi di Milano-Bicocca, Milano, Italy
annapaola.carrieri@disco.unimib.it

3 Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo,
Bergamo, Italy

riccardo.dondi@unibg.it

Abstract. In this paper we consider two combinatorial problems related
to genome comparison. The two problems, starting from possibly incom-
plete genomes produced from sequencing data, aim to reconstruct the
complete genomes by inserting a collection of missing genes. More pre-
cisely, in the first problem, called One-sided scaffold filling, we are given
an incomplete genome B and a complete genome A, and we look for
the insertion of missing genes into B with the goal of maximizing the
common adjacencies between the resulting genome B′ and A. In the sec-
ond problem, called Two-sided scaffold filling, we are given two incom-
plete genomes A, B, and we look for the insertion of missing genes into
both genomes so that the resulting genomes A′ and B′ have the same
multi-set of genes, with the goal of maximizing the common adjacencies
between A′ and B′. While both problems are known to be NP-hard, their
parameterized complexity when parameterized by the number of com-
mon adjacencies of the resulting genomes is still open. In this paper, we
settle this open problem and we present fixed-parameter algorithms for
the One-sided scaffold filling problem and the Two-sided scaffold filling
problem.

1 Introduction

Genome comparison is a fundamental problem in bioinformatics, and it aims to
identify differences and similarities among genomes, with the goal of understand-
ing their function and evolutionary history. In this context several interesting
combinatorial problems have been introduced (see for example [10]).

The introduction of new sequencing techniques (Next Generation Sequencing
technologies, NGS) has led to a huge increase of the amount of DNA/RNA and
protein sequences available for genomic and trascriptomic analyses [4]. These
high-throughput sequencing technologies produce millions of short DNA/RNA
reads that are joined together into longer sequences by means of assembly
algorithms.
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 137–148, 2014.
DOI: 10.1007/978-3-319-09174-7 12

138 L. Bulteau et al.

However, due to limitations of the NGS technologies, the cost of finishing
a genome is still high compared to the cost of sequencing, hence most of the
released genomes are unfinished and incomplete [4].

The use of incomplete draft genomes (called scaffolds) in genomic analyses
may introduce errors. Hence, a relevant combinatorial problem is to fill the scaf-
folds with missing genes in order to obtain complete genomes that are as similar
as possible to a given reference genome. Recently in [14] it has been introduced
the One-sided scaffold filling problem that consists of filling a scaffold B in order
to obtain a complete genome B′ such that the Double-Cut and Join (DCJ)
distance [16] (the minimum number of allowed rearrangement operations trans-
forming one genome into the other) between B′ and the reference genome A
is minimized. Moreover, Jiang et al. in [11] considered the Two-sided scaffold
filling problem, where the second genome A (on which the comparison is based)
is incomplete as well.

In this paper we consider a different similarity measure, that is the maximum
number of common adjacencies between two genomes, which has been introduced
for the One-sided/Two-sided scaffold filling problems in [5]. Both problems are
NP-hard under this similarity measure [12]. However, it has been shown that
both problems admit constant factor approximation algorithms. In [12] it has
been given a factor 4

3 approximation algorithm for the One-sided scaffold filling
problem and a factor 2 approximation algorithm for the Two-sided scaffold filling
problem. The former approximation factor has been recently improved in [13],
where it has been presented an approximation algorithm of factor 5

4 for the
One-sided scaffold filling problem.

In this paper, we focus on the parameterized complexity of the two scaffold
filling problems. Parameterized complexity aims to characterize the complexity
of a problem with respect to interesting parameters, with the goal of understand-
ing if the exponential explosion of an exact algorithm can be confined only to
the considered parameters. For an introduction to parameterized complexity we
refer the reader to [8,15].

A first step in the analysis of the parameterized complexity of the One-sided
scaffold filling problem has started in [12]. The authors presented two Fixed
Parameter Tractable (FPT) algorithms for two special cases of the One-sided
scaffold filling problem. In the first case, the number k of common adjacencies
between a filled genome B′ and a reference genome A, and the maximal number
d of occurrences of a gene are considered as parameters, and it is presented an
FPT algorithm of time complexity O((2d)2kpoly(|A||B|)). In the second case, the
authors consider, as parameters, the number k of common adjacencies between
a filled genome B′ and a reference genome A and the size c of the set of symbols
(genes) and they give an FPT algorithm that runs in time O(c2kpoly(|A||B|)).
However, the parameterized complexity of the One/Two-sided scaffold filling
problems, when parameterized only by the maximum number of common adja-
cencies k, has been left open in [12].

Our Contribution. In this paper we present two FTP-algorithms for both
problems, thus answering an open question in [12]. More precisely, we present

Fixed-Parameter Algorithms for Scaffold Filling 139

an algorithm of time complexity 2O(k)poly(|A||B|) for One-sided scaffold filling
and an algorithm of time complexity 2O(k·log k)poly(|A||B|) for Two-sided scaffold
filling.

The rest of the paper is organized as follows. First, in Sect. 2 we introduce
some preliminary definitions and we formally define the two combinatorial prob-
lems we are interested in. Then, in Sect. 3, we describe the FPT algorithm for the
One-sided case, while in Sect. 4 we present the FPT algorithm for the Two-sided
case. We conclude the paper with some open problems. Some of the proofs are
omitted due to page limit.

2 Preliminaries

Let φ be a non-empty finite set of symbols. An (unsigned) unichromosomal
genome A is represented as a string over an alphabet φ, where the symbols in
A (that are genes) form a multiset [A] on φ. For example A = abcdabcdaa with
φ = {a, b, c, d} and [A] = {a, a, a, a, b, b, c, c, d, d}. We write A[i] for the symbol
of A in i-th position, and we write A[i . . . j] for the substring of A between
positions i and j.

Given a string A, an adjacency is an unordered pair of consecutive elements
of A (A[i]A[i+1] or A[i+1]A[i]). A position i induces an adjacency ab, if either
A[i] = a, A[i + 1] = b or A[i] = b and A[i + 1] = a. The endpoints of A, are the
first and the last position of A.

We write [[A]] for the multi-set of adjacencies of A (i.e., if A = abcdabcdaa,
then [[A]] = {aa, ab, ab, ad, ad, bc, bc, cd, cd}).

In order to deal with endpoints of the two strings, we assume that given a
string A, with |A| = n, A[1] = A[n] = σ, where σ is a dummy symbol. The
dummy symbols are not considered when defining the set of adjacencies [[A]], i.e.
σA[1] and A[n]σ are not in [[A]].

Comparing two strings A and B, we denote by X = [A] \ [B] the multi-set
of symbols of A missing in B, and by Y = [B] \ [A] the multi-set of symbols of
B missing in A. Given a multi-set of symbols [G] over alphabet φ, a scaffold is
a string on [G] with some missing elements.

The two scaffold filling problems we will deal with are based on the definition
of common adjacency between two genomes (strings).

Definition 1. Consider two strings A, B on alphabet φ. The multi-set of com-
mon adjacencies between A, B is defined as [[A]] ∈ [[B]]. A matching M of the
adjacencies of A and the adjacencies of B is a relation between the positions of
A and the positions of B such that:

– for each position i of A or B, there exists at most one pair in M containing i;
– for each position i of A and j of B, (i, j) ≤ M if and only if position i and

position j induces the same adjacency;
– each position that induces a common adjacency belongs to some pair of M .

A position of A or B is matched, if it belongs to a pair of M . Informally, M
relates the positions inducing common adjacencies.

140 L. Bulteau et al.

Given a scaffold B and a multi-set of symbols X, a string B′ is a filling of
B with X if (1) [B′] = [B] ≥ X, and (2) B is a subsequence of B′ such that the
first and last symbols of B′ are respectively the first and last symbols of B.

In the following we give the definitions of the two Scaffold Filling problems
(parameterized versions) investigated in this paper.

One-sided Scaffold Filling to Maximize the Number of common
String Adjacencies (One-sided SF-MNSA)
Input: Two strings A and B, such that [B] ⊆ [A].
Output: A filling B′ of B with X = [A] \ [B] such that A and B′ have at least k
common adjacencies.
Parameter: k.

Two-sided Scaffold Filling to Maximize the Number of common
String Adjacencies (Two-sided SF-MNSA)
Input: Two strings A and B.
Output: A filling B′ of B with X = [A]\[B] and a filling A′ of A with Y = [B]\[A]
such that A′ and B′ have at least k common adjacencies.
Parameter: k.

Notice that the restriction of Two-sided SF-MNSA with Y = ∅ is exactly the
One-sided SF-MNSA problem.

Now, we discuss some properties that will be useful to design our FPT-
algorithms. First, we present the following property for the parameter k, proved
in [12].

Lemma 1 [12]. Let A and B two strings on an alphabet φ, X = [A] \ [B], and
Y = [B]\ [A]. Let k be the optimal number of common adjacencies for Two-sided
SF-MNSA between two fillings A′ and B′. Then |X|, |Y | ∀ k.

Notice that Lemma 1 holds also for One-sided SF-MNSA, that is when Y = ∅,
it holds |X| ∀ k.

Let A and B be two strings of symbols over an alphabet φ, which are input
of One-sided SF-MNSA or Two-sided SF-MNSA. Consider now the set AD of
common adjacencies between A and B. Notice that we can assume that |AD| <
k, otherwise we already know that One-sided SF-MNSA/Two-sided SF-MNSA
admits a solution consisting of at least k common adjacencies. Now, we can
compute a partition of AD into two subsets as follows:

– the set ADpr ⊆ AD of common adjacencies that are preserved after the filling
of B and/or A;

– the set ADbr ⊆ AD of common adjacencies that are broken by inserting
symbols of X = [A] \ [B] (of Y = [B] \ [A] respectively) into B (into A
respectively).

Then the following easy property holds.

Property 1. Let A and B be two strings of symbols over alphabet φ and let
AD be the set of common adjacencies between A and B. Then, if there exists
a solution for the One-sided SF-MNSA/Two-sided SFMNSA that partitions the
set AD into the sets ADpr, ADbr, we can compute the partition of AD into the
two subsets ADpr and ADbr in time O(2k).

Fixed-Parameter Algorithms for Scaffold Filling 141

This property is implicitly used in the two fixed-parameter algorithms to
guess which adjacencies of the set AD will be preserved, that is those adjacencies
induced by positions where no insertion is possible when computing a filling of
an input string. Hence, in what follows, we assume that when a string is inserted
into A or B, then it is not inserted in a position associated with an adjacency
in ADpr.

Color Coding. The FPT-algorithms we present are mainly based on the color-
coding technique and on the perfect family of hash functions [1]. Color-coding
is a well-known technique for designing fixed-parameter algorithms, and it has
been applied to several combinatorial problems, for example for the longest path
problem [1], for the graph motif problem [2,6,7,9] and for problems on strings [3].

Informally, given a set U of size n, color-coding aims to identify a subset
S ⊆ U of size k by coloring the elements of U with k colors, so that each element
in S is associated with a distinct color. While enumerating the subsets having
size k of U takes time O(nk), by means of the coloring and using combinatorial
properties of the problem, in some cases it is possible to compute whether a
solution of size k exists in time f(k)poly(n), thus leading to an FPT algorithm.

We now introduce the definition of a perfect family of hash functions, which
are used to compute the coloring.

Definition 2. Let I be a set, a family F of hash functions from I to {c1, . . . , ck}
is called perfect if for any subset I ′ ⊆ I, with |I ′| = k, there exists a function
f ≤ F which is injective on I ′.

A perfect family F of hash functions from I to {c1, . . . , ck}, having size
O(log |I|2O(k)), can be constructed in time O(2O(k)|I| log |I|) [1].

3 An FPT Algorithm for One-Sided SF-MNSA

In this section we present an FPT algorithm for One-sided SF-MNSA parame-
terized by k, the number of common adjacencies between the input string A and
the filling B′ of B with the multi-set X of symbols of A missing in B. Recall that,
by Lemma 1, it holds |X| ∀ k. Furthermore, we assume that we have already
computed the subset ADpr of AD (the common adjacencies of A, B) where no
insertion is possible during the filling (see Property 1).

Let CA = {c1, . . . , ck} be a set of colors. Consider a family F of perfect hash
functions from the positions inducing the adjacencies of A in ADbr to colors in
CA. Informally, the coloring is used to identify a matching of the positions of
A and the positions of B that induce new adjacencies due to the insertion of
symbols in X.

In the following, we assume that the coloring of the positions of A is induced
by some injective function f ≤ F . Given a string S, S is colorful for CA if there
exist {sc | c ≤ CA} ⊆ [[S]] such that for each c ≤ CA there is a position of A
colored by c which induces the adjacency sc. Our objective is thus to compute
a filling of B colorful for CA.

142 L. Bulteau et al.

We first focus on inserting a set of elements at one given position of B. Given
j a position in B, Xj ⊆ X and Cj ⊆ CA, define Insj (Xj , Cj) as follows:

Insj (Xj , Cj) =


⎡

⎣

1 if there exists a filling of B[j − 1, j] with Xj which is
colorful for Cj ,

0 else.

Using dynamic programming, Ins can be computed in time O(22kk2) yielding
the following lemma.

Lemma 2. Let Xj ⊆ X, Cj ⊆ CA, such that |Xj |, |Cj | ∀ k and j be an integer
s.t. j ∀ |B|. Then we can compute Insj (Xj , Cj) in time O(22kk2).

We now define a table Fillj (X ′, C ′
A) computed by the following recurrence.

The objective, as stated in Lemma 3, is to determine whether a prefix of B can
be filled with any given subset of X so as to be colorful for any given subset
of CA.

Recurrence 1. Let X ′ ⊆ X, C ′
A ⊆ CA.

– For j = 1, let Fill1 (X ′, C ′
A) = Ins1 (X ′, C ′

A).
– For all j ∃ 2, let:

Fillj (X ′, C ′
A) = max

Xj∈X′,Cj∈C′
A

{
Fillj−1 (X ′ \ Xj , C

′
A \ Cj)

⇒ Insj (Xj , Cj)

In the following, we prove that Fill|B| (X,CA) allows us to determine whether
B admits a filling with k common adjacencies.

Lemma 3. Let (A,B) be an instance of One-sided Scaffold Filling, X = [A] \
[B], k be an integer, CA be a set of k colors, and F be a perfect family of hash
functions from the positions of A to CA. Then the following propositions are
equivalent:
(i) There exists a filling B′ of B with X such that A and B′ have k common
adjacencies;
(ii) There exists a coloring f ≤ F for which Fill|B| (X,CA) = 1.

Next, we show how the recurrence described in Recurrence 1 yields a dynamic
programming algorithm to solve One-sided SF-MNSA.

Theorem 1. Let A, B be two strings of symbols on an alphabet φ and let X =
[A] \ [B] be the multiset of symbols missing in B. It is possible to compute a
solution of One-sided SF-MNSA in time O(2O(k)poly(|A| + |B|)).
Proof. Recurrence 1 yields a dynamic programming algorithm: for each j from 1
to n + 1, compute the entry Fillj (X ′, C ′

A) for each set X ′ ⊆ X and C ′
A ⊆ CA.

Then, by Lemma 3, there exists a filling B′ of B creating |CA| = k common
adjacencies if and only if Fill|B| (X,CA) = 1.

Now, we consider the time complexity of the algorithm. Write n = |A| + |B|.
First, a perfect family of hash functions that color-codes the positions of A

Fixed-Parameter Algorithms for Scaffold Filling 143

can be computed in time 2O(k)poly(n). Once the family is computed, there
are 2O(k) log(n) color codings to iterate through. For each color coding, the
table Fillj (X ′, C ′

A) is computed in time O(22kk2n) (see Lemma 2). Then the
O(22kn) entries of table Fillj (X ′, C ′

A) are computed, where each entry requires
O(22k) look-ups, depending on the choice of Xj and Cj . Thus Recurrence 2
requires O(24kn) to compute table Fillj (X ′, C ′

A). Finally, the overall complex-
ity is indeed 2O(k)poly(n). ∅�

4 An FPT Algorithm for Two-Sided SF-MNSA

In this section, we consider the Two-sided SF-MNSA problem and we give a
fixed-parameter tractable algorithm for it. As for the One-sided case, the algo-
rithm is based on color-coding and dynamic programming. However, new chal-
lenges appear which make the problem more complicated. First, there exist a
new kind of common adjacencies: with adjacencies that are created in the fill-
ings although they never appear as such in the input strings. Also, unlike the
One-sided case, it is not known a priori whether a given adjacency may be used
in a common adjacency or should be split to insert a substring. We deal with
the first issue by bounding (and enumerating) the possible arrangements of such
rare adjacencies, and with the second by introducing “insertion” colors, where
corresponding adjacencies can only be used to insert a substring, not to create
a common adjacency.

Given two strings A and B over alphabet φ, denote by k the number of
common adjacencies between two fillings A′ and B′ of A, B respectively. Let
X = [A]\ [B] be the multi-set of symbols of A missing in B and let Y = [B]\ [A]
be the multi-set of symbols of B missing in A, where X,Y ⊂= ∅ (otherwise the
problem is equivalent to One-sided SF-MNSA) and X

⋂
Y = ∅ (by the definition

of sets X and Y for the Two-sided SF-MNSA).
Recall that, by Lemma 1, the following property holds: |X|, |Y | ∀ k. Fur-

thermore, as in the previous section, we assume that we have already computed
the subset ADpr of [[A]] ∈ [[B]], that is those common adjacencies of A, B, that
must be preserved during the filling (see Property 1).

Before giving the details of the FPT-algorithm, we present an (informal)
overview. A filling B′ (A′ respectively) of B (of A respectively) consists of insert-
ing substrings over alphabet X (over alphabet Y respectively) into B (into A
respectively). In the first step, the algorithm “guesses” how these inserted strings
are formed from X and Y (since |X|, |Y | ∀ k, the number of cases to try depends
only on a function of k, see Property 2).

We now identify two kinds of common adjacencies for two fillings A′, B′. In
the first kind, one adjacency appears already in [[A]] or [[B]]: this case can be dealt
with as in the one-sided algorithm. In the second kind, both adjacencies have
been created during the filling, using one element from X in B′ and one from
Y in A′. They are called (X,Y)-adjacencies. Since X ∈ Y = ∅, such adjacencies
use exactly one element of X and Y , hence they consist of an endpoint of an
inserted string as well as a letter already present in the original strings A and B.

144 L. Bulteau et al.

The second step of the algorithm consists in identifying and matching the end-
points of strings which correspond to such (X,Y)-adjacencies (see Definition 4
and Property 3).

In Step 3 the algorithm opportunely color-codes the positions of A and B in
order to (i) match non (X,Y)-adjacencies (like in the previous algorithm), and
(ii) identify the positions of A and B where an insertion is possible (we will show
that the number of these positions is bounded by k in Property 2). This allows,
in Step 4, to finally insert the strings into A and B by dynamic programming
while creating the remaining adjacencies (see Recurrence 2).

We can now present the details of the algorithm.

Step 1: Compute inserted strings.
Let SX and SY be the two multi-sets of strings over the multi-sets X and

Y that have to be inserted in B and A respectively in an optimal solution. The
algorithm simply iterates through all such pairs (SX , SY) of multi-sets of strings
over (X,Y): in some iteration, the correct pair (SX , SY) is clearly considered.
The following property bounds both the number of possible pairs (SX , SY) and
the number of positions where strings can be inserted in A and B.

Property 2. Let X, Y be two multi-sets of symbols to be inserted into the
strings B and A respectively. Then (1) the number of positions in each of A,
B where a string of SY , SX is inserted is bounded by k and (2) the number of
possible multi-sets SX and SY of strings over X, Y to be inserted into B and A
respectively is bounded by O(k2k).

Step 2: Identify (X,Y)-adjacencies.
We first define formally the concept of (X,Y)-adjacency (see Fig. 1 for an

example).

Definition 3. Consider a filling B′ of B with X and a filling A′ of A with Y .
A common adjacency z ≤ [[A′]] ≥ [[B′]] is an (X,Y)-adjacency if it is induced by
positions i, j of A′, B′ respectively, and either A′[i] or A′[i + 1] is the endpoint
of an inserted string sx ≤ SX , and either B′[j] or B′[j +1] is the endpoint of an
inserted string sy ≤ SY .

Fig. 1. An instance of the Two-sided SFMNA problem. Given two scaffolds A and
B, we obtain the filled genomes A′ and B′ by inserting symbols X in B and Y in A
(inserted symbols are in red). Lines connect common adjacencies, dotted lines connect
(X,Y)-adjacencies (Color figure online).

Fixed-Parameter Algorithms for Scaffold Filling 145

Notice that, since X∈Y = ∅, it follows that any new common adjacency of A′

(of B′ respectively) is either not involved in an insertion (hence, in one string, it
is induced by a position where no string is inserted), or it is an (X,Y)-adjacency.

Now, the algorithm defines which endpoints of the strings in SX , SY induce a
common (X,Y)-adjacency. Denote by EX (EY respectively), the set of endpoints
of the strings in set SX (in set SY respectively). We consider a procedure, called
number assignment, that associates with each endpoint in EX and EY a number
which identifies the (X,Y)-adjacency, if any, which uses this endpoint.

Definition 4. A number assignment for the strings in SX ≥SY is the data of an
integer k′ and of a function from EX ≥ EY to {0, 1, . . . , k′}, where each number
{1, . . . , k′} is assigned to exactly one endpoint in EX and one endpoint in EY .

Consider a solution, a corresponding number assignment is obtained as follows.
Let k′ be the number of (X,Y)-adjacencies. Consider an endpoint ez ≤ EX ≥EY ,
then:

– Endpoint ez is associated with 0 iff it is not involved in an (X,Y)-adjacency;
– Endpoint ez is associated with a number i ≤ {1, . . . , k′} iff it is involved in the

i-th (X,Y)-adjacency.

The set E′
X ⊆ EX (E′

Y ⊆ EY) denotes the set of endpoints of EX (of EY

respectively) associated with a positive number.
The following property gives an easy upper bound on the number of such

assignments.

Property 3. There are at most (2k)k+1 number assignments.

Hence, in what follows assume that the algorithm guesses the correct number
assignment to EX ≥ EY . Now, we show how we can bound the possible symbols
that are adjacent to an endpoint in E′

X ≥ E′
Y . First, we introduce the following

definition.

Definition 5. Consider a string sx ≤ SX (sy ≤ SY respectively). Let ex ≤ E′
X

(ey ≤ E′
Y respectively) be an endpoint of sx (of sy respectively). Then, v(ex)

(v(ey) respectively) is the symbol of Y (of X respectively) adjacent to ex in B′

(to ey in A′ respectively).

Notice that the number assignment immediately defines the values v(ex), v(ey),
for each ex ≤ E′

X , ey ≤ E′
Y . Indeed, if ex ≤ E′

X and ey ≤ E′
Y are associated with

the same number i, then v(ex) must be the symbol contained in sy[ey], while
v(ey) must be the symbol contained in sx[ex].

Remark 1. A number assignment uniquely determines the value v(eZ) for ez ≤
E′

X ≥ E′
Y .

Using this value, the algorithm creates the following table which tells whether
or not, according to (X,Y)-adjacencies, a string can be inserted at a certain

146 L. Bulteau et al.

position. Let Z be an input string among A, B, s ≤ SZ , and j ≤ {1, . . . , |Z|}.
Write sl and sr for the left and right endpoints of s respectively:

XY − Fitsj (Z, s) =


⎤⎡

⎤⎣

0 if (sl ≤ E′
Z and Z[j − 1] ⊂= v(sl))

or (sr ≤ E′
Z and Z[j] ⊂= v(sr))

1 otherwise.

Step 3: Color-code the positions in A and B.
We are now able to define the color-coding of the positions of A and B.

Consider a coloring f of the positions of A and B with a set C of z, z ∀ 2k,
colors. Moreover, we partition C into disjoint subsets CM,A, CM,B , CI,A, CI,B

defined as follows:

– Let CM,B (CM,A respectively) be a set of colors associated with positions of
B (of A respectively) that matches positions of A′ (of B′ respectively). Notice
that in a position colored by CM,A (CM,B respectively) a string of SX (of SY

respectively) cannot be inserted.
– Let CI,B (CI,A respectively) be a set of colors assigned to positions in B (in A

respectively) where insertions of strings of SX (of SY respectively) are allowed.

Note that, since SX , SY and the number assignment with k′ (X,Y)-adjacencies
are fixed, we only consider partitions where |CI,A| = |SY |, |CI,B | = |SX |, and
|CM,A| + |CM,B | + k′ = k.

There are k values of z to test. For each z, there are O(2O(z) log n) colorings
[1], and for each coloring, 4z ways of partitioning C into CM,A, CM,B , CI,A,
CI,B . Overall, there are thus O(2O(k) log n) cases to consider.

Step 4: Insert strings by dynamic programming.
Now, we can define the dynamic programming recurrence. Similarly to the

One-sided case, we define InsZ,j (s, CM,j), where C ′
M,j ⊆ CM,W and W,Z are

different strings of {A,B}, as follows:

InsZ,j (s, CM,j) =


⎤⎡

⎤⎣

1 if XY − Fitsj (Z, s) = 1 and the string Z[j − 1]sZ[j]
is colorful for CM,j ,

0 otherwise.

Similary to Property 2, any entry InsZ,j

⎧
s, C ′

M,W

⎪
can be computed in time

O(22kn).

Lemma 4. Let C ′
M,W ⊆ CM,W , and j be an integer s.t. j ∀ |W |. Then we can

compute InsZ,j

⎧
s, C ′

M,W

⎪
in time O(22kn).

We can now compute a filling of B satisfying all the above constraints.
We define the following table Fill − Bj

⎧
S′
X , C ′

M,A, C ′
I,B

⎪
for each S′

X ⊆ SX ,
C ′

M,A ⊆ CM,A, C ′
I,B ⊆ CI,B and 0 ∀ j ∀ |B|.

Fixed-Parameter Algorithms for Scaffold Filling 147

Recurrence 2. Let S′
X ⊆ SX , C ′

M,A ⊆ CM,A, C ′
I,B ⊆ CI,B

– For j = 0, Fill − Bj
⎧
S′
X , C ′

M,A, C ′
I,B

⎪
= 1 iff S′

X = C ′
M,A = C ′

I,B = ∅.
– For all j ∃ 1, Fill − Bj

⎧
S′
X , C ′

M,A, C ′
I,B

⎪
= 1 iff one of the following is true:

– Fill − Bj−1

⎧
S′
X , C ′

M,A, C ′
I,B

⎪
= 1.

– f(j) ≤ C ′
I,B and ⊕sx ≤ S′

X , CM,j ⊆ C ′
M,A such that

⎨
Fill − Bj−1

⎧
S′
X \ {sx}, C ′

M,A \ CM,j , C
′
I,B \ {f(j)}⎪

⇒ InsB,j (sx, CM,j)

A filling of A is computed using a table Fill − Aj (S′
Y , CM,B , CI,A) defined

similarly.

Lemma 5. Let (A,B) be an instance of One-sided Scaffold Filling, X = [A] \
[B], Y = [B] \ [A], k be an integer, C be a set of colors, and F be a perfect
family of hash functions from the positions of A and B to C. Then the following
propositions are equivalent:
(i) There exists a filling A′ of A with Y and a filling B′ of B with X such that
A′ and B′ have k common adjacencies;
(ii) There exist two multi-sets of strings SX and SY over X, Y , a number assign-
ment, a color-coding f ≤ F and a partition C = CM,A ≥ CM,B ≥ CI,A ≥ CI,B

such that Fill − A|A| (SY , CM,B , CI,A) = Fill − B|B| (SX , CM,A, CI,B) = 1.

We present now the main result of this section.

Theorem 2. Let A, B be two strings over alphabet φ and let X = [A] \ [B]
be the multiset of symbols of A missing in B and Y = [B] \ [A] the multiset of
symbols of B missing in A. It is possible to compute a solution of Two-sided
SFMNSA over instance (A,B) in time 2O(k log k)poly(n).

Proof. The correctness of the algorithm is directly given by Lemma 5: once a
perfect family of hash functions F is fixed and two multi-sets of strings SX and
SY over X, Y , a number assignment, a color-coding f ≤ F and a partition C =
CM,A≥CM,B≥CI,A≥CI,B are selected by exhaustive branching, it suffices to com-
pute the entries Fill − A|A| (SY , CM,B , CI,A) and Fill − B|B| (SX , CM,A, CI,B),
and return the corresponding fillings of A and B if both entries are equal to 1.

The time complexity of the algorithm is dominated by the iteration over all
possible pairs (SX , SY) and of the number assignment. The number of possi-
ble sets SX , SY is bounded by k2k from Property 2. By Property 3 there are
O(2kk+1) number assignments to iterate through. The dynamic programming
recurrence requires time O(24kn). Since a family of perfect hash function of size
O(2O(k)poly(n)) can be computed in time O(2O(k)poly(n)) [1], and the possible
partitions of C into sets CM,A, CM,B , CI,A, CM,B are less than 24k (including the
constraint |CM,A|+ |CM,B |+ k′ = k), it follows that the overall time complexity
of the algorithm is bounded by O((2k)2k+12O(k)poly(n)) = 2O(k log k)poly(n). ∅�

5 Conclusion

In this paper we presented two FPT algorithms for the One-sided SF-MNSA
problem and the Two-sided SF-MNSA problem. There are some interesting

148 L. Bulteau et al.

open problems from an algorithmic perspective. First, it would be interesting
to improve upon the time complexity of the algorithms we presented. Moreover,
the approximation complexity of the Scaffold Filling problems, in particular of
the Two-sided case, should be further investigated. An interesting open problem
in this direction is whether it is possible to design an approximation algorithm
for Two-sided SF-MNSA with approximation factor better than 2.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Betzler, N., van Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.:

Parameterized algorithmics for finding connected motifs in biological networks.
IEEE/ACM Trans. Comput. Biology Bioinform. 8(5), 1296–1308 (2011)

3. Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Variants of constrained
longest common subsequence. Inf. Process. Lett. 110(20), 877–881 (2010)

4. Chain, P., Grafham, D., Fulton, R., Fitzgerald, M., Hostetler, J., Muzny, D., Ali, J.,
et al.: Genome project standards in a new era of sequencing. Science 326, 236–237
(2009)

5. Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., Zhu, B.: Non-breaking similarity of
genomes with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS,
vol. 4580, pp. 119–130. Springer, Heidelberg (2007)

6. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pat-
tern matching. J. Discrete Algorithms 9(1), 82–99 (2011)

7. Dondi, R., Fertin, G., Vialette, S.: Finding approximate and constrained motifs in
graphs. Theor. Comput. Sci. 483, 10–21 (2013)

8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
9. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for

finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4),
799–811 (2011)

10. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of
Genome Rearrangements. The MIT Press, Cambridge (2009)

11. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint
distance. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 83–92.
Springer, Heidelberg (2010)

12. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and
related distances. IEEE/ACM Trans. Comput. Biology Bioinform 9(4), 1220–1229
(2012)

13. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An improved approximation algorithm for
scaffold filling to maximize the common adjacencies. In: Du, D.-Z., Zhang, G.
(eds.) COCOON 2013. LNCS, vol. 7936, pp. 397–408. Springer, Heidelberg (2013)

14. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold
filling, contig fusion and gene order comparison. BMC Bioinform. 11, 304 (2010)

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

16. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346
(2005)

Finding Totally Independent Spanning Trees
with Linear Integer Programming

Alexandre Salles da Cunha1 and Fernanda Sumika Hojo de Souza2(B)

1 Departamento de Ciência da Computação,
Universidade Federal de Minas Gerais,

Belo Horizonte, Brazil
acunha@dcc.ufmg.br

2 Departamento de Ciência da Computação,
Universidade Federal de São João del-Rei,

São João del-Rei, Brazil
fsumika@ufsj.edu.br

Abstract. Two spanning trees of an undirected graph are totally inde-
pendent if they are edge disjoint and if the unique paths that connect
any pair of vertices in these trees are also node disjoint. Accordingly,
K ≥ 2 spanning trees are totally independent if they are pairwise totally
independent. The problem of finding K totally independent spanning
trees (KTIST) or proving that no such trees do exist is NP-Complete.
We investigate KTIST and an optimization problem which consists of
finding K totally independent spanning trees with the minimum pos-
sible number of central nodes. Both problems have applications in the
design of interconnection networks. We propose an integer programming
formulation, valid inequalities and a Branch-and-cut algorithm to solve
them. We also present an experimental evaluation of such an algorithm.

Keywords: Combinatorial optimization · Totally independent spanning
trees · Packing connected dominating sets · Branch-and-cut algorithms

1 Introduction

Let G = (V,E) be a connected and undirected graph with n = |V | vertices and
m = |E| edges. Two spanning trees T 1 = (V,E1) and T 2 = (V,E2) of G are
r-independent if the paths that connect r ∈ V to any v ∈ V \ {r} in (V,E1) and
in (V,E2) are internally edge and vertex disjoint, i.e., the paths do not share
edges or vertices other than r and v. Trees T 1 and T 2 are totally independent
if they are r-independent for any choice of r ∈ V and if they are edge disjoint.
Accordingly, K spanning trees are totally independent if they are pairwise totally
independent. The problem of deciding whether or not a general graph has K ≤ 2
totally independent spanning trees, denoted here KTIST, is NP-complete [14].

This research is partially funded by CNPq grants 477863/2010-8, 305423/2012-6,
471464/2013-9 and FAPEMIG grant PPM-VII-00164-13.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 149–160, 2014.
DOI: 10.1007/978-3-319-09174-7 13

150 A.S. da Cunha and F.S.H. de Souza

Spanning trees are fundamental structures used to disseminate information
in several types of communication networks [5]. Quite often, requirements other
than connectivity need to be imposed on network topologies such that they
guarantee a certain level of quality of service parameters like system reliability,
latency, throughput and many others. Multi-trees [17] are one of the possible
approaches to overcome drawbacks found in networks based solely on single
(constrained or not) spanning trees. Totally independent spanning trees find
thus applications in the design of communication networks based on multi-
trees, for example, in fault tolerant broadcasting networks in parallel computing
[13–15]. The idea is that K copies of a message are sent from a processor r to the
others, through r-independent spanning trees. Even if K − 1 processors do not
work properly, the message is still received by the others. Totally independent
spanning trees also inherit applications from closely related problems like finding
edge disjoint spanning trees [21,25,29] and packing dominating trees [1,2].

In this paper, we discuss an integer programming formulation and a Branch-
and-cut algorithm for KTIST and for an optimization version of it, denoted
K-Packing Totally Independent Spanning Trees (KPTIST). The latter seeks
for a packing of G into K totally independent spanning trees, whose set of
central nodes has minimum cardinality. In this sense, KPTIST also relates to
the Minimum Connected Dominating Set Problem (MCDS) [4,9,12,26] and the
Max-Leaf Spanning Tree Problem (MLST) [7,8,20].

Our aim is to conduct a polyhedral investigation of the convex hull of K
totally independent spanning trees and to use valid inequalities for that polytope
in a Branch-and-cut algorithm to solve KTIST and KPTIST. To the best of our
knowledge, there are no exact algorithms addressing KTIST or KPTIST; the
later being actually introduced here. The remaining of the paper is organized
as follows. In Sect. 2, we point out some of the most important results and
applications of totally independent spanning trees and related structures. An
integer programming formulation along with some valid inequalities are discussed
next, in Sect. 3. A Branch-and-cut algorithm is introduced in Sect. 4. Preliminary
computational results for that algorithm are discussed in Sect. 5. We close the
paper in Sect. 6, indicating future steps of our research.

2 Literature Review

The applications reported in [13–15] bring KTIST close to combinatorial opti-
mization problems where network survivability is a primary goal. One example
is the generalized Steiner problem [31]. Given an edge weighted undirected graph
G = (V,E) and a symmetric |V |×|V | matrix R = [rst], the goal is to find a min-
imum cost subgraph of G such that rst node (edge) disjoint paths are required
to connect every pair of vertices s and t of V . Another closely related problem
was proposed in [10] and imposes that, connecting two vertices s, t, there must
be at least rst node (edge) disjoint paths, after the deletion of any node subset
of cardinality kst, where the later is also a given design parameter. In a third
type of survivability model, nodes are divided in a hierarchical way, according to

Totally Independent Spanning Trees 151

their importance to the network. For every node i ∈ V , a connectivity parameter
ρi ∈ Z+ denotes the hierarchical level of that node. The connectivity require-
ments impose that min{ρs, ρt} node (edge) disjoint paths must be selected to
connect every pair of nodes s, t in the network. For an in-depth review of these
and related problems, we quote references [3,11,19,24,27] and those therein.

Because of their applications in interconnection networks, independent and
totally independent spanning trees have deserved the attention of several studies.
Examples of studies whose aim is to characterize the existence and algorithms
for finding such trees in particular types of graphs could be found in [15], for
torus networks, in [32], for hypercubes, in [18], for chordal rings, and finally, in
[16,32], for de Bruijn and Kautz graphs.

The problem of finding edge disjoint spanning trees has also been investigated
for quite a long time, in both weighted [25] and non-weighted [21,29] versions.
The former, which seeks for a minimum cost set of K edge disjoint spanning
trees of an edge weighted graph, was proven to be polynomially solvable in
O(m log m+k2n2) time, by a greedy matroid algorithm introduced in [25]. Close
to it is the Minimum Congestion Spanning Tree Problem [30], which looks for a
minimum cost set of K spanning trees, not necessarily edge disjoint, penalizing
the cost whenever an edge appears in more than one tree.

A well known result due to Nash-Williams [21] states that every 2K edge
connected graph has K edge disjoint spanning trees. Based on that, Hasunuma
[14] conjectured that a 2K connected graph has K totally independent span-
ning trees. The conjecture was proven correct for maximal planar graphs [14].
Recently, Péterfalvi [23] has shown K-connected graphs, for any K ≤ 2, that do
not have two totally independent spanning trees, proving thus that Hasunuma’s
conjecture does not hold true in general. More recently, Pai et al. [22] has shown
other types of graphs, for which the conjecture is true. More precisely, it was
proven that there are ≥n

2 � completely independent spanning trees in complete
graphs with n ≤ 4 and in complete bipartite graphs with at least four vertices in
each partition. In addition, they have shown the existence of ≥n1+n2

2 � completely
independent spanning trees in complete tripartite graphs, where n1 and n2 are
the number of vertices in the two smallest partitions.

The following nice and useful characterization of totally independent span-
ning trees was given by Hasunuma [13]:

Property 1. [Theorem 2.1 in [13]] {T k = (V,Ek) : k = 1, . . . , K} are K totally
independent spanning trees of G if and only if: (a) they are edge-disjoint, and,
(b) given any vertex i ∈ V , there is at most one spanning tree T k such that
|δ(i) ∩ Ek| > 1, i.e., no vertex is a central node in more than one tree.

Another application for KTIST and KPTIST, different from those reported
in [13–15], follows from the fact that, due to Property 1, totally independent
spanning trees are very closely related to connected dominating set of G [1,2].
A dominating set of G is a set S ∀ V such that every vertex of V either belongs
to S or has a neighbor in it. A connected dominating set is a dominating set
that implies a connected subgraph of G. Accordingly, a connected dominating

152 A.S. da Cunha and F.S.H. de Souza

set packing of size K (KCDSP) is a collection of K disjoint connected dominat-
ing sets. According to [2], packings of dominating sets generalize edge disjoint
spanning trees, in the context of vertex connectivity.

It should be clear that, given K totally independent spanning trees, one can
easily obtain a KCDSP, by simply removing their leaves. The resulting sets of
vertices are disjoint, connected and dominating. However, the opposite does not
always hold true, since K totally independent spanning trees must not share
edges. As an example, assume that G is defined by V = {1, . . . , 4} and E =
{{1, 2}, {2, 3}, {3, 4}, {1, 4}}. While C1 = {2, 3} and C2 = {1, 4} form a 2CDSP,
they do not lead two totally independent spanning trees.

Multi-trees whose internal nodes form a KCDSP are important structures in
synchronous communication networks, where message coding is not employed
[1,2]. In such networks, nodes send their own messages and forward those they
receive, without packing them into larger ones. During each time interval, each
node can send a message (of a bounded size) to all its neighbors. It was shown in
[2] that the network throughput is maximized when communications are orga-
nized in terms of the largest size of a connected dominating set packing of G. In
other words, when the maximum size of a connected dominating set packing is
used, the throughput is maximized.

KTIST can thus be seen as a constrained version of KCDSP, where aiming
at reducing network congestion, one imposes that tree edges must be disjoint.
Finally, when one seeks for a KTIST solution with the minimum number of
central nodes, the network latency decreases, since the number of hops between
any two pairs, in any of the trees, tend to be small.

3 Integer Programming Formulation

Property 1 allows KPTIST and KTIST to be formulated using any spanning
tree representation along with leaf defining decision variables. The formulation
discussed next makes use of directed cutsets to impose connectivity on each
spanning tree. As such, the formulation requires a specific vertex r as the root
of the K arborescences.

In order to present the model, consider the following notation used in the
remaining of the paper. Given a set S ∀ V , its complement in V is denoted
S. The set of edges of E with both endpoints in S is denoted E(S). For any
disjoint sets of vertices S and W , let δ(S,W) ∀ E denote the edges in E with
one endpoint in S and another in W . For simplicity, we denote δ(S, V \ S) by
δ(S). Whenever S has a single vertex, say i, we replace δ({i}) by δ(i).

The formulation discussed next is based on orientations of edges in E. Thus,
we denote by D = (V,A) the directed graph obtained by orienting the edges of
E, i.e., A = {(i, j) ∃ (j, i) : {i, j} ∈ E}. Sets δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ S}
and δ−(S) = {(i, j) ∈ A : i ∈ S, j ∈ S} respectively denote the arcs pointing
outwards and inwards of S ⇒ V . Whenever S has a single vertex i, we also
replace δ−({i}) and δ+({i}) respectively by δ−(i) and δ+(i). For any real valued
function f : Q ∅ R defined over a finite domain Q, f(Q′) denote

∑
q∈Q∗ fq.

Consider the following decision variables:

Totally Independent Spanning Trees 153

– {yk
i ∈ B : i ∈ V, k = 1, . . . , K} to indicate whether or not vertex i is a leaf in

tree T k. In case i is a leaf, yk
i = 1. Otherwise, yk

i = 0.
– {xk

ij ∈ B : (i, j) ∈ A} to indicate whether or not arc (i, j) is included in the
the k-th arborescence. In case it is included, xk

ij = 1. Otherwise, xk
ij = 0.

Now, consider the polyhedral region Pd defined by (1), (2) and (3):

xk(A) = n − 1, k = 1, . . . , K (1a)

xk(δ−(i)) = 1, k = 1, . . . , K, i ∈ V \ {r} (1b)

xk(δ+(S)) ≤ 1, k = 1, . . . , K, S ⇒ V, r ∈ S (1c)

xk
ij ≤ 0, k = 1, . . . , K, (i, j) ∈ A (1d)

xk(δ+(i)) ≤ (|δ(i)| − K)(1 − yk
i), k = 1, . . . , K, i ∈ V \ {r} (2a)

xk(δ+(r)) ≤ (|δ(r)| − K)(1 − yk
r) + 1, k = 1, . . . , K (2b)

yk
i + xk(δ+(i)) ≤ 1, k = 1, . . . , K, i ∈ V \ {r} (2c)

yk
i ≤ 0, k = 1, . . . , K, i ∈ V (2d)

yk
i ≤ 1, k = 1, . . . , K, i ∈ V (2e)

K∑

k=1

(xk
ij + xk

ji) ≤ 1, {i, j} ∈ E (3a)

K∑

k=1

yk
i ≤ K − 1, i ∈ V (3b)

Constraints (1a) provide the convex hull of spanning arborescences of D [28].
Constraints (1b) guarantee that precisely one arc of D is incident to i. Cutset
constraints (1c) guarantee that there is a path connecting the root r to every
other node in each arborescence.

Constraints (2c) enforce that either i ∈ V \{r} is a leaf or at least one arc must
point outwards of it in arborescence k. Constraints (2a) impose that, whenever a
non-root vertex i is a leaf, no arc can point outwards of i in arborescence k. For
spanning arborescences in general, at most |δ(i)| − 1 arcs are allowed to point
outwards of a central node i ⊂= r. Note, however, that (2a) enforce that at most
|δ(i)|−K arcs may leave i. That applies, since if more than |δ(i)|−K edges were
incident to i in T k, at least one of them would certainly be included in another
tree. Similar conditions are enforced by (2b), for the root vertex r. However,
since no arcs point inwards of r, the right-hand-side of (2b) is increased by one.
Finally, inequalities (3a) enforce that the spanning trees are edge disjoint while
(3b) guarantee that no vertex can be a central node twice or more times.

Define X := {(x, y) ∈ (B2Km × B
Kn) : (x, y) ∈ Pd} and let conv(X) denote

the convex hull of solutions in X . KTIST consists of deciding whether or not
X ⊂= ⊕. Accordingly, a formulation for KPTIST is

154 A.S. da Cunha and F.S.H. de Souza

min

{
K∑

k=1

∑

i∈V

(1 − yk
i) : (x, y) ∈ Pd ∩ (B2Km × B

Kn)

}

. (4)

3.1 Valid Inequalities for X Coming from the Max-Leaf Spanning
Tree and Minimum Connected Dominating Set Polytopes

Formulation Pd can be strengthened by exploiting different structures found in
solutions in X . The first set of valid inequalities used to that aim are stated in
(5) and come from the MLST polytope [6,8].

xk
ij + yk

i ≤ 1, k = 1, . . . , K, (i, j) ∈ A, i ⊂= r (5a)

xk
rj + yk

r + yk
j ≤ 2, k = 1, . . . , K, (r, j) ∈ δ+(r) (5b)

∑

{i,j}∈F

(xk
ij + xk

ji) + (|F | − 1)yk
i ≤ |F |, k = 1, . . . , K, i ∈ V, F ∀ δ(i), |F | ≤ 2. (5c)

Constraints (5a) enforce that i ∈ V \{r} cannot be a leaf node if any arc (i, j)
pointing outwards of it is included in arborescence k. For the root, (5b) guarantee
that r and j cannot simultaneously be leaves in the same arborescence, if arc
(r, j) is included in that arborescence. These inequalities proved quite important
to reinforce the MLST linear programming upper bounds in [20].

Constraints (5c) state that, whenever i is a leaf in arborescence k, at most
one arc out of the orientations of edges in F ∀ δ(i) : |F | ≤ 2 can be included in
that arborescence. Undirected versions of (5c) were shown to be facet defining
for the MLST polytope [8].

Another set of valid inequalities comes from the fact that no solution in X
may involve a star of G. Thus, at least one neighbor on each vertex must be a
central node. Such observation translates to

∑

j:{i,j}∈δ(i)

yk
j ≤ |δ(i)| − 1, ∀i ∈ V, ∀k = 1, . . . , K. (6)

Although such an idea was already explored in (2a)–(2b), constraints (6)
indeed help strengthening Pd. An inequality similar to (6) was used in the MCDS
solution approaches in [9], to rule out minimum connected dominating sets of
cardinality one, whose existence in G could be evaluated in polynomial time.

3.2 Lifted Node Cutset Constraints

Since (V,
⋃K

k=1 Ek) is a uniform K node and edge connected subgraph of G [27],
lower bounds for KPTIST can be reinforced with valid inequalities for those
polytopes. One of such valid inequalities are node cutsets [27]:

K∑

k=1

∑

{i,j}∈δ(S,V \(S∗U))

(xk
ij+xk

ji) ≤ K−|U |, S ⇒ (V \U), S ⊂= ⊕, U ⇒ V, |U | ≤ K. (7)

Totally Independent Spanning Trees 155

They enforce that (V,
⋃K

k=1 Ek) must remain K − |U | connected after removing
vertices in U : |U | ≤ K and edges in δ(U) ∃ E(U) from it. Since our formulation
is indexed by k and uses leaf-defining variables, inequalities (7) can be made
stronger. To that aim, let {Sk : k = 1, . . . , K} denote K subsets of vertices such
that Sk1 ∩ Sk2 ⊂= ⊕ and (V \ (Sk1 ∃ U)) ∩ (V \ (Sk2 ∃ U)) ⊂= ⊕, for any pair
k1, k2 ∈ {1, . . . , K}, such that k1 ⊂= k2. Then we have:

K∑

k=1

∑

{i,j}∈δ(Sk,V \(Sk∗U))

(xk
ij + xk

ji) ≤ K − |U |. (8)

Validity of (8) comes from the fact that any s ∈ ⋂K
k=1 Sk and t ∈ ⋂K

k=1(V \
(Sk ∃ U)) must remain K − |U | connected after removing U and δ(U) ∃ E(U)
from (V,

⋃K
k=1 Ek). Since no vertex can be a central node in more than one

tree, removing U cannot disconnect s and t in more than |U | trees. Thus, the
connectivity of (V,

⋃K
k=1 Ek) can only drop from K to K minus the number of

vertices in U that are central nodes in one of the K trees. Such an observation
actually allows one to lift node cutset constraints to the stronger form:

K∑

k=1

∑

{i,j}∈δ(Sk,V \(Sk∗U))

(xk
ij + xk

ji) ≤ K −
K∑

k=1

∑

i∈U

(1 − yk
i) (9)

3.3 Symmetry Breaking Constraints

One drawback of formulation Pd is its symmetry. As an attempt to go around the
negative computational side effects of that, we impose the following symmetry
breaking constraints:

yk
i = 1, i = 1, . . . , K − 1, k = i + 1, . . . , K. (10)

Since no vertex can be central in two or more spanning trees, constraints (10)
simply define the indices of the trees for which K vertices are allowed to be
central nodes. According to (10), node i = 1 is forbidden of being a central node
in those trees of index k ≤ 2. Likewise, vertex i = 2, is necessarily a leaf node
in trees from index k = 3 up to k = K. Such a vertex is allowed to be a central
node either in the same tree of vertex 1 or else in the subsequent tree, of index
k = 2. Similar reasonings define the indices of trees where the remaining K − 2
nodes are allowed to be central. For the use of constraints (10), we assume that
V = {1, . . . , n} and that |δ(1)| ≤ |δ(2)| ≤ · · · ≤ |δ(n)|.

The main motivation behind the use of symmetry breaking constraints like
(10) in linear programming (LP) based Branch-and-bound algorithms is to avoid
the investigation of enumeration tree branches that essentially lead to the same
optimal solutions. However, as we shall see in the computational results, con-
straints (10) also improved the LP bounds provided by our model.

156 A.S. da Cunha and F.S.H. de Souza

4 Branch-and-Cut Algorithm for KPTIST

Our Branch-and-cut algorithm (BC) first solves the LP relaxation
min{∑K

k=1

∑
i∈V (1−yk

i) : (x, y) ∈ P}, where P is implied by (1a),(1b),(1d),(2),
(3),(5a),(5b), (6) and (10). Let (x, y) = (x1, . . . , xK , y1, . . . , yK) be the solution
to such a LP. If (xk, yk) ∈ B

2m+n for every k = 1, . . . , K and if each of these
vectors imply arborescences of D, (x, y) also solves KPTIST. Otherwise, we look
for violated directed cutset constraints (1c) and Fujie’s inequalities (5c) to rein-
force P .

Cutset constraints (1c) are separated in O(Kn4) time complexity as follows.
For a given k ∈ {1, . . . , K}, let D

k
= (V,A

k
) (A

k
:= {(i, j) ∈ A : xk

ij > 0}) be
the support directed graph associated to (xk, yk). For each i ∈ V \ {r}, compute
a minimum cut δ+(S) : r ∈ S, i ∈ S, that separates r and i in the network
given by D

k
and arc capacities {xk

ij : (i, j) ∈ A
k}. If xk(δ+(S)) < 1, a cutset (1c)

is violated and is appended in the relaxation. The exact separation of directed
cutset constraints is conducted for every k = 1, . . . , K.

Attempting to speed-up the cutset separation procedure above, we settled for
computing the min-cut separating r and i ∈ V \ {r} only when i is not included
in any set S associated with a previously identified violated cutset inequality, for
the particular network D

k
at hand. This strategy guarantees that at least one

violated cutset inequality separating r and every i ⊂= r, for each k, is appended
to the relaxation, provided they exist. One possible advantage of using such a
procedure is that it also attempts to reduce the number of violated inequalities
being used and the number of calls of the min-cut algorithm.

For identifying violated Fujie’s cuts (5c), we use the exact separation pro-
cedure introduced in [20], that works as follows. For each k and i ∈ V , we
compute zk

ij := xk
ij + xk

ji : {i, j} ∈ δ(i). Then, we sort the edges in δ(i) in a
non-increasing order of the values zk

ij . Assume that δ(i) = {e1, e2, . . . , e|δ(i)|}
and that zk

e1
≤ zk

e2
≤ · · · ≤ zk

e|δ(i)| . For every l = 2, . . . , |δ(i)|, whenever
∑l

p=1 zk
ep

> l+(1−l)yk
i , a violated Fujie’s cut defined for i, k and F = {e1, . . . , el}

is violated and appended into the LP relaxation.
The separation of (1c) and (5c) is carried out until no violated cuts are found.

At that moment, if the solution to the relaxation is not integer feasible, BC
branches on variables. BC was implemented with calls to XPRESS Mixed Integer
Programming solver (23.01.06) callback routines. The node selection policy was
set to depth-first. Apart from the heuristics, cut generation and pre-processing
procedures that were turned off, all other default XPRESS settings were used.

Lifted node cutset constraints (9) can also be exactly separated in polynomial
time, by solving O(nK−1) max-flow problems, in conveniently defined networks
(see [27] for details). Despite the fact they are not redundant with respect to Pd,
even after valid inequalities (5), (6) and (10) are appended to that polytope, BC
does not separate (9). We decided to do so since our computational experience
indicated that the LP relaxations for the instances in our test bed did not vio-
late them. Our experience also indicated that these inequalities are likely to be
violated for LP relaxations of edge weighted versions of KTIST.

Totally Independent Spanning Trees 157

5 Preliminary Computational Experiments

Since no instances are available in the KTIST literature, we used MLST instances
introduced in [20], in order to evaluate BC. Instances in [20] were generated by a
two-step procedure, as follows. For a given instance size n, the first set of edges
included in G are those in a Hamiltonian path, built by randomly choosing
a permutation of the vertices of the input graph, and connecting consecutive
vertices in the permutation. Additional edges are included in G, according to a
uniform probability, until a desired a priori defined graph density is achieved.

Depending of the values of n ∈ {30, 50, 70, 100, 120, 150, 200}, instances in
[20] have graph densities in the interval between 5 % and 70 %. In our compu-
tational study, only a subset of the instances in [20] were actually tested. Some
instances in [20] were left out of our experiments because they are not K con-
nected and because they are out of reach for the current implementation of BC.
In total, our test bed consists of 23 instances, with values of n ∈ {30, 50, 70, 100}
for K = 2 and n ∈ {30, 50, 70} for K = 3. Instances in [20] whose graph densities
are greater than 50 % were not considered here.

All algorithms were implemented in C and all computational results reported
here were obtained with an Intel XEON E5645Core TMi7-980 hexa-core machine,
running at 2.4GHz, with 24 GB of shared RAM memory. No multi-threading was
allowed. A time limit of 1 CPU hour was imposed on the execution of BC.

In Table 1, we report on computational results for all instances considered
here. Each one is indicated in the first column of the table, by a word that starts
with n, followed by d and then by the graph density (in % figures). For example,
30 d50 is the instance in [20] with n = 30 and d = 50% graph density. In the
second column, we report the value of K ∈ {2, 3} considered for each instance.

The next five columns in the table provide KPTIST LP lower bounds; the
first of them being the bound implied by formulation Pd. Subsequent lower
bounds in the table are those obtained when polytope Pd is reinforced with each
set of valid inequalities: logical constraints (5a)–(5b), Fujie’s cuts (5c), stars
preventing inequalities (6) and, finally, symmetry breaking constraints (10). For
the computation of each of the four last lower bounds, each of these groups of
inequalities are sequentially added to the previous formulation, one group at a
time, according to this order. For example, the second lower bound is obtained
when constraints (5a)–(5b) are appended to Pd. For the the third, Pd was also
reinforced with (5c). Therefore, for the fifth lower bound indicated in the table,
all inequalities were taken into account. The bounds presented here are not
symmetrical with respect to the vertex that acts as the root of the arborescences.
All of them were evaluated with r = 1 as the root.

In the last columns of the table, BC results are given: the best lower (BLB)
and upper (BUB) bounds found after the search was finished or when the CPU
time limit was hit, the number of enumeration tree nodes investigated, followed
by t(s), the total CPU time (in seconds) needed to conclude the search. The
last column in the table gives tf (s), the time (also in seconds) needed to find
the first integer feasible solution. Values presented for BLB in the table are the
best lower bounds rounded up. Whenever an instance was not solved to proven
optimality, an indication “-” is given for the corresponding CPU time entries.

158 A.S. da Cunha and F.S.H. de Souza

Table 1. Linear programming and Branch-and-cut results.

LP lower bounds Branch-and-cut results

Instance K Pd Pd strengthened with BLB BUB nodes t(s) tf (s)

(5a)–(5b) (5) (5)–(6) (5)–(6)

+(10)

30 d30 2 6.127 6.632 6.659 6.844 7.070 9 9 91 2.6 0.8

30 d50 2 3.454 4.000 4.000 4.024 4.033 6 6 118 2.1 0.8

50 d10 2 22.633 24.614 24.743 24.743 24.754 28 28 14185 1059.0 2.7

50 d20 2 7.803 10.541 10.552 10.554 10.758 14 14 457 21.8 1.5

50 d30 2 5.443 6.813 6.813 6.913 6.998 10 10 1225 145.6 2.0

50 d50 2 3.265 4.020 4.020 4.095 4.095 6 6 139 19.8 2.5

70 d10 2 17.893 22.640 22.667 22.879 23.001 26 29 2594 - 6.7

70 d20 2 8.275 10.293 10.294 10.588 10.664 13 15 2954 - 11.1

70 d30 2 5.050 6.706 6.706 6.749 6.749 9 11 1749 - 2.9

70 d50 2 3.129 4.055 4.055 4.155 4.198 6 6 263 41.3 3.8

100 d5 2 48.083 49.894 50.080 50.104 50.129 52 64 5355 - 34.0

100 d10 2 16.395 21.744 21.753 21.835 21.971 23 33 219 - 1144.9

100 d20 2 7.629 10.491 10.491 10.694 10.721 12 16 880 - 8.5

100 d30 2 5.509 6.756 6.756 6.862 6.875 8 12 1019 - 212.7

100 d50 2 3.412 4.213 4.213 4.246 4.248 6 8 1202 - 51.3

30 d30 3 11.238 11.480 11.491 11.571 11.759 15 15 2924 365.1 3.6

30 d50 3 5.780 6.143 6.143 6.184 6.252 9 9 1763 92.7 2.1

50 d20 3 13.956 17.126 17.136 17.136 17.436 20 23 3372 - 16.4

50 d30 3 9.101 10.281 10.281 10.374 10.683 13 16 3692 - 5.9

50 d50 3 5.190 6.042 6.042 6.146 6.176 8 10 6107 - 4.2

70 d20 3 13.659 15.859 15.859 16.041 16.185 17 26 568 - 511.2

70 d30 3 8.167 10.059 10.059 10.124 10.253 11 18 109 - 14.1

70 d50 3 4.935 6.083 6.083 6.232 6.336 8 11 1968 - 7.6

Computational results indicated in the table suggest that constraints (5a)–
(5b) were the most important in strengthening the lower bounds. Another inter-
esting result is that symmetry breaking constraints (10) also helped in improving
the formulation. Despite the lower bound improvements we report in the table,
KTIST and KPTIST are still very difficult to solve. Certificates for the feasibil-
ity problem KTIST were obtained in all 23 cases, sometimes after several CPU
minutes. For only 9 out of 23 cases, optimality certificates were provided for
KPTIST. Quite often, duality gaps obtained at the end of the imposed CPU
time limit go beyond 50 %.

6 Conclusions and Future Research

In this paper, we proposed an integer programming formulation, valid inequal-
ities and a Branch-and-cut algorithm to find K totally independent spanning
trees. Our aim is to proceed with the polyhedral investigation of the prob-
lem, attempting to better approximate the convex hull of K totally independent

Totally Independent Spanning Trees 159

spanning trees of a graph. From an algorithmic point of view, we also plan to
investigate other exact solution approaches, like Combinatorial Benders Decom-
position, that provided good results for related problems (see [9], for instance).

We are also currently studying the problem of finding the maximum value of
K such that G has K totally independent trees. For such a problem, an integer
programming formulation that involves one binary decision variable for each
spanning tree of G is considered. The formulation naturally leads to a Branch-
and-price algorithm, whose pricing problem consists in finding a minimum weight
spanning tree, where weights, assigned to edges and to the central nodes in the
tree, respectively come from the dual variables assigned to constraints (3a) and
(3b) in the restricted linear programming master. Preliminary computational
results provided by such a method confirm our claim that finding K totally
independent spanning trees is indeed very difficult in practice.

References

1. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: Distributed connectivity decomposition.
Technical report, Cornell University Library (2013). arXiv:1311.5317

2. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: A new perspective on vertex connectivity.
In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (2014)

3. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Orientation-based models for
0,1,2-survivable network design: theory and practice. Mathe. Program. 124, 413–
439 (2010)

4. Dai, F., Wu, J.: On constructing k-connected k-dominating set in wireless Ad hoc
and sensor networks. J. Parallel Distrib. Comp. 66, 947–958 (2006)

5. England, D., Veeravalli, B., Weissman, J.: A robust spanning tree topology for data
collection and dissemination in distributed environments. IEEE Trans. Parallel
Distrib. Syst. 18(5), 608–620 (2007)

6. Fernandes, M., Gouveia, L.: Minimal spanning trees with a constraint on the num-
ber of leaves. Eur. J. Oper. Res. 104, 250–261 (1998)

7. Fujie, T.: An exact algorithm for the maximum leaf spanning tree problem. Com-
put. Oper. Res. 30(13), 1931–1944 (2003)

8. Fujie, T.: The maximum-leaf spanning tree problem: formulations and facets. Net-
works 43(4), 212–223 (2004)

9. Gendron, B., Lucena, A., da Cunha, A., Simonetti, L.: Benders decomposition,
Branch-and-cut and hybrid algorithms for the minimum connected dominating set
problem. INFORMS J. Comp. (2013). http://dx.doi.org/10.1287/ijoc.2013.0589,
http://pubsonline.informs.org/page/terms-and-conditions

10. Grötschel, M., Monma, C.: Integer polyhedra associated with certain network
design problem with connectivity constraints. SIAM J. Discrete Math. 3, 502–523
(1990)

11. Grötschel, M., Monma, C., Stoer, M.: Design of survivable networks. In: Ball,
M., Magnanti, T., Monma, C. (eds.) Network Models, Handbooks in Operations
Research and Management Science, vol. 7, pp. 617–672. Elsevier, Amsterdam
(1995)

12. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20(4), 374–387 (1998)

http://arxiv.org/abs/1311.5317
http://dx.doi.org/10.1287/ijoc.2013.0589
http://pubsonline.informs.org/page/terms-and-conditions

160 A.S. da Cunha and F.S.H. de Souza

13. Hasunuma, T.: Completely independent spanning trees in the underlying graph of
a line digraph. Discrete Math. 234, 149–157 (2001)

14. Hasunuma, T.: Completely independent spanning trees in maximal planar graphs.
In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 235–245. Springer, Heidelberg
(2002)

15. Hasunuma, T., Morisaka, C.: Completely independent spanning trees in torus net-
works. Networks 60, 59–69 (2012)

16. Hasunuma, T., Nagamochi, H.: Independent spanning trees with small depths in
iterated line digraphs. Discrete Appl. Math. 10, 189–211 (2001)

17. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks.
Inform. Comput. 79, 43–59 (1984)

18. Iwasaki, Y., Kajiwara, Y., Obokata, K., Igarashi, Y.: Independent spanning trees
of chordal rings. Inf. Process. Lett. 69, 155–160 (1999)

19. Kerivin, H., Mahjoub, A.: Design of survivable networks: a survey. Networks 46,
1–21 (2005)

20. Lucena, A., Maculan, N., Simonetti, L.: Reformulation and solution algorithms
for the maximum leaf spanning tree problem. Comput. Manag. Sci. 7(3), 289–311
(2010)

21. Nash-Williams, C.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math.
Soc. 36, 445–450 (1961)

22. Pai, K., Tang, S., Chang, J., Yang, J.: Completely independent spanning trees
on complete graphs, complete bipartite graphs and complete tripartite graphs.
Advances in Intelligent Systems & Applications. SIST, vol. 20, pp. 107–113.
Springer, Heidelberg (2013)

23. Péterfalvi, F.: Two counterexamples on totally independent spanning trees. Dis-
crete Math. 312, 808–810 (2012)

24. Raghavan, S.: Formulations and algorithms for network design problems with con-
nectivity requirements. Ph.D. thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology (1994)

25. Roskind, J., Tarjan, R.: A note on finding minimum cost edge-disjoint spanning
trees. Math. Oper. Res. 10(4), 701–708 (1985)

26. Simonetti, L., da Cunha, A.S., Lucena, A.: The minimum cConnected dominating
set problem: formulation, valid inequalities and a branch-and-cut algorithm. In:
Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 162–169.
Springer, Heidelberg (2011)

27. Stoer, M.: Design of survivable networks. Lecture Notes in Mathematics, vol. 1531.
Springer, Berlin, New York (1992)

28. Magnanti, T.L., Wolsey, L.: Optimal trees. In: Ball, M.O. (ed.) Handbooks in OR
and MS, vol. 7, pp. 503–615. North-Holland, Amsterdam (1995)

29. Tutte, W.: On the problem of decomposing a graph into n connected factors. J.
Lond. Math. Soc. 36, 445–450 (1961)

30. Werneck, R., Setubal, J., da Conceição, A.: Finding minimum congestion spanning
trees. J. Exper. Algor. 5 (2000)

31. Winter, P.: Steiner problem in networks: a survey. Networks 17, 129–167 (1987)
32. Yang, J., Tang, S., Chang, J., Wang, Y.: Parallel construction of optimal indepen-

dent spanning trees on hypercubes. Parallel Comput. 33, 73–79 (2007)

Coupled-Tasks in Presence of Bipartite
Compatibilities Graphs

Benoit Darties1(B), Gilles Simonin2, Rodolphe Giroudeau3,
and Jean-Claude König3

1 LE2I-CNRS-UMR 6306-8, Rue Alain Savary, 21000 Dijon, France
benoit.darties@u-bourgogne.fr

2 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
3 LIRMM-CNRS-UMR 5506-161, rue Ada, 34090 Montpellier, France

Abstract. We tackle the makespan minimization coupled-tasks prob-
lem in presence of incompatibility constraints. In particular, we focus
on stretched coupled-tasks, i.e. coupled-tasks having the same sub-tasks
execution time and idle time duration. We study several problems in
the framework of classic complexity and approximation for which the
compatibility graph is bipartite (star, chain, . . .). In such context, we
design efficient polynomial-time approximation algorithms according to
different parameters of the scheduling problem.

1 Introduction

We consider a non-preemptive coupled-tasks scheduling problem in presence
of incompatibility constraint on a single processor. From the point of view of
scheduling theory, the problem is also defined as a scheduling problem with
exact delays on single machine. In this article, we will show the close relationship
between coupled-task in presence of incompatibility constraint and the classic
bin packing problem in the framework of complexity and approximation.

The coupled-tasks model, was first introduced by Shapiro [13] in order to
model some data acquisition processes i.e. radar sensors: a sensor emits a radio
pulse (first sub-task), and finally listen for an echo reply (second sub-task).
Between these two instants (emission and reception), clearly there is an idle time
due to the propagation, in both sides, of radio pulse. Therefore, a coupled-task is
constituted by the triplet: the two sub-tasks and the idle between them. Thus, in
order to minimise the makespan (schedule length), it is necessary to execute one
or several different sub-tasks during the idle time of a coupled-task. Therefore,
the aim is to find a best packing of coupled-tasks in which the sum of idle times
is minimised. Notice that in the basic model, all coupled-tasks may be executed
in each other according to processing time of sub-tasks and the duration of the
idle time. Hereafter, we consider a relaxation of the previous model in which for
a fixed coupled-task A there are only a subset of coupled-tasks compatible to be
processed in the idle time of A. This model is motivated by the problem of data
acquisition in presence of incompatibility constraint in a submarine torpedo.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 161–172, 2014.
DOI: 10.1007/978-3-319-09174-7 14

162 B. Darties et al.

A collection of sensors acquires data for the torpedo. The incompatibility con-
straint is expressed to prevent interference issues caused by tasks using sensors
working at the same frequency. So, the constraints are represented by a compati-
bility graph in which vertices are the coupled-tasks and edges represent compati-
bility between two tasks. In this article the variation of the complexity according
to severals structural parameters are considered and some efficient polynomial-
time approximation results on NP-hard instances are presented without omit-
ting the relationship to bin packing problems.

Above all, we will show the close relationship between the studied problem
and four packing-related problems, for which known approximation will be used
as routine for scheduling coupled-tasks problem:

1. The subset sum (ss) problem: given a set S of n positive values and v ∈ IN,
the aim is to find a subset S∗ ≤ S such that

∑
i∈S∗ i = v. This problem is

known to be NP-complete (see [8]). The optimization version is sometimes
viewed as a knapsack problem, where each item profit and weight coincide
to a value in S, the knapsack capacity is v, and the aim is to find the set of
packable items with maximum profit.

2. The multiple subset sum (mss) problem: variant of bin packing in which
a number of identical bins are given and one aims to maximize the overall
weight of the items packed in the bins without violating the constraint on the
capacity of each bin. The problem is a special case of the Multiple knap-
sack problem in which all knapsacks have the same capacity and the item
profits and weights coincide. mss admits a PT AS [2] and a 3

4−approximation
algorithm [3], but does not admit a FPT AS even for only two knapsacks.

3. multiple subset sum with different knapsack capacities (mssdc) [1]
is an extension of mss considering different bin capacities. mssdc also admits
a PT AS [1].

4. As a generalization of mssdc, multiple knapsack assignment restric-
tion (mkar) problem consists in packing weighted items into non-identical
capacity-constrained bins, with the additional constraint that each item can
be packed into some bins only. Each item as a profit, the objective here is to
maximize the sum of profits of packed items. Considering that the profit of
each item is equal to its weight, [5] proposed a 1

2 -approximation.

2 Presentation of Coupled-Tasks and Related Work

We model a task Ai with a triplet (ai, Li, bi), where ai (resp. bi) is the duration
of the first (resp. second) sub-task, and Li the idle time to respect between the
execution of sub-tasks. We note A the set of tasks, and describe the incompat-
ibility constraint between tasks with a graph Gc = (A, E). There is an edge
(Ai,Aj) ∈ E iff a (or both) sub-task from Ai may be scheduled during the idle
time of Aj or reciprocally. In a valid schedule, we said that Ai is packed into
Aj if the entire task Ai is scheduled during the idle time of Aj . This is only
possible when ai + Li + bi ≥ Lj . We call stretched coupled-task a task Ai such

Coupled-Tasks in Presence of Bipartite Compatibilities Graphs 163

that ai = Li = bi = φ(Ai), where φ(Ai) is the stretch factor of task Ai. And for
any set W of tasks, we define seq(W) = 3

∑
x∈W α(x).

Due to the combinatorial nature of the parameters of the problem, we use
the Graham’s notation scheme φ|σ|α [9] (respectively the machine environment,
job characteristic and objective function) to characterize the problems related to
coupled-tasks. The job characteristics summarizes the conditions made on the
values of ai, Li, bi (independent between tasks, or equal to a constant), and
the shape of the compatibility graph G. The coupled-tasks scheduling problems
under incompatibility constraints has been studied in the framework of classic
complexity and approximation in [7,12].

3 Stretched Coupled-Task: Model and Contribution

3.1 Model

This paper focuses on stretched coupled-tasks.
In the rest of the paper, all tasks are always stretched coupled-tasks, and, for

two compatible tasks Aj and Aj to be scheduled in parallel, one of the following
conditions must hold:

1. φ(Ai) = φ(Aj): the idle time of one task is fully exploited to schedule a sub-
task from the other (i.e. bi is scheduled during Lj , and aj is scheduled during
Li), and the completion of the two tasks is done without idle time.

2. 3φ(Ai) ≥ φ(Aj): task Ai is fully executed during the idle time Lj of Aj .

From this observation, one can obtain from the compatibility graph G =
(A, E) a directed compatibility graph Gc = (A, Ec) by assigning a direction to
each edge E from the task with the lowest stretch factor to the task with the
highest one. If two compatible tasks x and y have the same stretch factor, then
Ec contains both the arc (x, y) and the arc inverted (y, x). Remark that if for
any pair of compatible tasks x and y we have φ(x) �= φ(y), then Gc is a directed
acyclic graph.

We note NG(v) the neighbourhood of v in G. We note dG(v) = |N(x)| the
degree of v in G, and λG the maximum degree of G. As we focus our work
on bipartite graphs, we recall that a k-stage bipartite graph is a digraph G =
(V0 ∪ · · · ∪ Vk, E1 ∪ · · · ∪ Ek) where V0 . . . Vk are disjoint vertex sets, and each
arc in Ei is from a vertex in Vi to a vertex in Vi+1. The vertices of Vi are said to
be at rank i, and the subgraph Gi = (Vi−1 ∪ Vi, Ei) is called the i-th stage of G.
For clarity, 1-stage bipartite graphs can be referred as triplet (X,Y,E) instead
of (V0, V1, E).

4 Computational Complexity

In this section, we present several NP−complete and polynomial results. We
first show the problem is NP-hard even when the compatibility graph is a star
(Theorem 1), but solvable with an O(n3) time complexity algorithm when G is

164 B. Darties et al.

a chain (Theorem 2). Then we focus our analysis when Gc is a 1-stage bipartite
graph. We prove the problem is solvable with an O(n3) polynomial algorithm if
λG = 2 (Theorem 3), but becomes NP-hard when λG = 3 (Theorem 4).

Theorem 1. The problem 1|ai = Li = bi = φ(Ai), G = star|Cmax is
– polynomial if the central node admits at least one outcoming arc.
– NP-hard if the central node admits only incoming arcs.

Proof. If there exists at least one outgoing arc (x, y) ∈ Gc from the central
node x, then the optimal solution consists in executing the x-task into the y-
task, then in processing sequentially the remaining tasks after the completion of
the y-task.

In the case where the central node admits only incoming arcs, first one can
easily see that 1|φ(Ai) = ai = Li = bi, G = star|Cmax is NP. Second, we
propose the following polynomial construction from an instance of ss to an
instance of our problem: ∀i ∈ S we add a coupled-task x with φ(x) = i; let
T be the set of these tasks; we add a task y with φy = ay = Ly = by =
3 × v; we define an incompatibility constraint between each task x ∈ T and y
modelled by the compatibility graph G. In brief, G is a star with y as the central
node. From this transformation, one can easily show the reduction between both
problems. �

Theorem 2. The problem 1|ai = Li = bi = φ(Ai), G = chain|Cmax admits a
polynomial-time algorithm.

Sketch of proof. Due to space limitation, we give only the main idea of the
proof. Nevertheless, one can find the entire proof in the technical report [4].

The proof consists first in simplifying the original instance by defining some
elements of an optimal solution, in order to obtain a sub-instance where in
any solution at most one task can be packed in another. This new instance
of the problem can be solved in polynomial time by reducing it to the search
of a minimum weighted perfect matching. Basically, this reduction consists in
duplicating the compatibility graph G, then in linking each node to its clone with
an edge. From this new graph, we add for each edge {x, y} a weight w({x, y})
corresponding to half the execution time of these two tasks, and to the processing
time of x if y is the clone of x. Then we perform a minimum weighted perfect
matching in O(n2m) by [6].

In following, we study the variation of the complexity in presence of a 1-stage
bipartite graph according to the different values.

Theorem 3. The problem of deciding whether an instance of 1|ai = Li = bi =
φ(Ai), Gc =1−stage bipartite,λGc

= 2|Cmax is polynomial.

Proof. Let Gc = (X,Y,E) be a 1-stage bipartite compatibility graph. Y -tasks
will always be scheduled sequentially. The aim is to fill their idle time with a
maximum of tasks of X, while the remained tasks will be executed after the
Y -tasks. We just have to minimize the length of the remained tasks. Note that
dGc

(y) ≥ 2. The algorithm use three steps:

Coupled-Tasks in Presence of Bipartite Compatibilities Graphs 165

1. for each task y ∈ Y such that 3 × φ(x1) + 3 × φ(x2) ≥ φ(y) where x1 and
x2 are the only two neighbors of Y , we add y to the schedule and execute x1
and x2 sequentially during the idle time of y. Then we remove y, x1 and x2

from the instance.
2. Each remaining task y ∈ Y admits at most two incoming arcs (x1, y) and/or

(x2, y). We add a weight φ(x) to the arc (x, y) for each x ∈ N(y), then
perform a maximum weight matching on Gc in order to minimize the length
of the remained tasks of X. Thus, the matched coupled-tasks are executed,
and these tasks are removed from Gc.

3. Then, remaining tasks from X are allotted sequentially after the other tasks.

The complexity of an algorithm is O(n3).

Theorem 4. The problem of deciding whether an instance of 1|ai = Li = bi =
φ(Ai), Gc =1−stage bipartite,λGc

= 3|Cmax has a schedule of length at most
54n is NP-complete with n the number of tasks.

Proof. It is easy to see that our problem is in NP. Our proof is based on a
reduction from one-in-(2, 3)sat(2, 1̄): does there exist an assignment of a set V
of n boolean variables with n mod 3 ∃ 0, a set of n clauses of cardinality two
and n/3 clauses of cardinality three such that:

– Each clause of cardinality 2 is equal to (x ⇒ ȳ) for some x, y ∈ V with x �= y.
– Each of the n literals x (resp. of the literals x̄) for x ∈ V belongs to one of the

n clauses of cardinality 2, thus to only one of them.
– Each of the n (positive) literals x belongs to one of the n/3 clauses of cardi-

nality 3, thus to only one of them.
– Whenever (x ⇒ ȳ) is a clause of cardinality 2 for some x, y ∈ V, then x and y

belong to different clauses of cardinality 3.

Fig. 1. A partial compatibility graph for the NP-completeness of the scheduling prob-
lem 1|bipartite of depth one, d(Gc) ≤ 3, αi = ai = Li = bi|Cmax

We construct an instance Λ of our problem in following way (see Fig. 1):

1. For all x ∈ V, we introduce four variable-tasks: x, x∗, x̄ and x̄∗ with (ai, Li, bi) =
(1, 1, 1),∀i ∈ {x, x∗, x̄, x̄∗}. This variable-tasks set is noted VT .

166 B. Darties et al.

2. For all x ∈ V, we introduce three literal-tasks Lx, Cx and C̄x with Lx =
(2, 2, 2);Cx = C̄x = (6, 6, 6). The set of literal-tasks is denoted LT .

3. For all clauses with a length of three, we introduce two clause-tasks Ci and
C̄i with Ci = (3, 3, 3) and C̄i = (6, 6, 6).

4. For all clauses with a length of two, we introduce one clause-task Ci with
Ci = (3, 3, 3). The set of clause-tasks is denoted CT .

5. The following arcs model the incompatibility constraints:
(a) For all boolean variables x ∈ V, we add the arcs (Lx, Cx) and (Lx, C̄x)
(b) For all clauses with a length of three denoted Ci = (y ⇒ z ⇒ t), we add the

arcs (y, Ci), (z, Ci), (t, Ci) and (ȳ∗, C̄i), (z̄∗, C̄i), (t̄∗, C̄i).
(c) For all clauses with a length of two denoted Ci = (x⇒ ȳ), we add the arcs

(x∗, Ci) and (ȳ, Ci).
(d) Finally, we add the arcs (x,Cx), (x∗, Cx) and (x̄, C̄x) and (x̄∗, C̄x).

This transformation can be computed clearly in polynomial time. The proposed
compatibility graph is 1-stage bipartite and dGc

(x) ≥ 3,∀x ∈ VT ∪ LT ∪ CT .
In follows, we say that a task x is merged to a task y, if it exists a incom-

patibility constraint from x to y; i.e. the coupled-task x may be executed during
the idle of coupled-task y.

∅ Let us first assume that there is a schedule with length of 54n at most.
We prove that there is a truth assignment I : V → {0, 1} such that each clause
in C has exactly one true literal. We make some essentials remarks:
1. The length of the schedule is given by an execution time of the coupled-tasks

admitting only incoming arcs, and the value is 54n = 3φCT |CT |+φLT (|LT |−
|{Lx, x ∈ V}|) = 9|{Ci ∈ CT of length 2 and 3}| + 18|{C̄i ∈ CT }| + 18|{Cx

and C̄x ∈ LT }| = 9 × 4n
3 + 18 × n

3 + 18 × 2n.
Thus, all tasks from VT ∪ {Lx, x ∈ V} must be merged with tasks from
CT ∪ (LT − {Lx, x ∈ V}).

2. By the construction, at most three tasks can be merged together.
3. Lx is merged with Cx or C̄x.
4. The allocation of coupled-tasks from CT ∪ (LT − {Lx, x ∈ V}) leads to 18n

idle time. The length of the variable-tasks VT and Lx equals 18n (in these
coupled-tasks there are 6n idle times).

5. If the variable-tasks x and x∗ are not merged simultaneously with Cx, i.e. only
one of these tasks is merged with Cx, so, by with the previous discussion, it
is necessary to merge a literal-task Ly, with x �= y one variable-task (ȳ or ȳ∗)
with Cy or C̄y. It is impossible by size of coupled-tasks. In the same ways,
the variable-tasks x̄ et x̄∗ are merged simultaneously with C̄x.

6. Hence, first x and x∗ are merged with Cx or with clause-task where the
variable x occurs. Second, x̄ and x̄∗ are merged with C̄x or a clause-task.

So, we affect the value “true” to the variable l iff the variable-task l is merged
with clause-task(s) corresponding to the clause where the variable l occurs. It is
obvious to see that in the clause of length three and two we have one and only
one literal equal to “true”.

⊂ Conversely, we suppose that there is a truth assignment I : V → {0, 1},
such that each clause in C has exactly one true literal.

Coupled-Tasks in Presence of Bipartite Compatibilities Graphs 167

1. If the variable x = true then we merged the vertices Lx with Cx; x with the
clause-task Ci corresponding to the clause of length three which x occurs; x∗

with the clause-task Ci corresponding to the clause of length two which x
occurs; and x̄, x̄∗ with C̄x.

2. If the variable x = false then we merged the vertices Lx with C̄x; x̄ with the
clause-task corresponding to the clause of length two which x̄ occurs; x̄∗ with
the clause-task C̄i corresponding to the clause (C) of length three which x
occurs; and x, x∗ with Cx.

For a feasible schedule, it is sufficient to merge vertices which are in the same
partition. Thus, the length of the schedule is at most 54n.

5 Polynomial-Time Approximation Algorithms

5.1 Star Graph

Theorem 5. 1|ai =Li =bi =φ(Ai), G=star|Cmax admits a FPT AS.
Proof. We may use the solution given by the subset sum (ss) (see [10,11]).
Indeed, the schedule is follows: first the central node is executed, second during
its idle time we process the coupled-tasks chosen by an FPT AS algorithm from
ss, and finally the remaining tasks are processed after the completion of the
central node.

5.2 1−Stage Bipartite Graph

Scheduling coupled-tasks during the idle time of others tasks can be related
to packing problems, especially when the compatibility graph Gc is a bipartite
graph. In the following, we propose several approximation results when Gc is a
1−stage bipartite graph.

Lemma 1. Let P be a problem with P ∈ {mkarmssdc,mss} such that P
admits a Φ-approximation, then the following problems

1. 1|ai = Li = bi = φ(Ai), Gc = 1-stage bipartite|Cmax,
2. 1|φi = ai = Li = bi, complete 1-stage bipartite|Cmax

3. 1|φi = ai = Li = bi, complete 1-stage bipartite|Cmax where the compatibility
graph is a complete bipartite G = (X,Y), and all the tasks from Y have the
same φ(y).

are approximable to a factor 1 + (1−α)
3 .

Proof. 1. Let consider an instance of 1|φi = ai = Li = bi, Gc =1−stage
bipartite|Cmax with Gc = (X,Y,E) and a stretch factor function φ : X∪Y →
IN. In such instance, any valid schedule consists in finding for each task y ∈ Y
a subset of compatible tasks Xy ≤ X to pack into y ∈ Y , each task of x
being packed at most once. Let Xp = ∪y∈Y Xy be the union of tasks of X

168 B. Darties et al.

packed into a task from Y , and let Xp̄ be the set of remaining tasks, with
Xp̄ = X/Xp. Obviously, we have:

seq(Xp) + seq(Xp̄) = seq(X) (1)

As Y is an independent set in Gc, tasks from Y have to be scheduled sequen-
tially in any (optimal) solution. The length of any schedule S is then the
processing time of Y -tasks plus the execution time of the Xp̄-tasks. Formally:

Cmax(S) = seq(Y) + seq(Xp̄)
= seq(Y) + seq(X) − seq(Xp). (2)

We use here a reduction to mkar: each task x from X is an item having a
weight 3.φ(x), each task from Y is a bin with capacity φ(y), and each item
x can be packed on y if and only if the edge {x, y} belongs to Gc.
Using algorithms and results from the literature, one can compute the set Xp

of packed items. The cost of the solution for the mkar problem is seq(Xp).
If mkar is approximable to a factor Φ, then we have:

seq(Xp) ⊕ Φ × seq(X∗
p), (3)

where X∗
p is the set of packable items with the maximum profit. Combining

Eqs. (2) and (3), we obtain a schedule S with a length equal to:

Cmax(S) ≥ seq(Y) + seq(X) − Φ × seq(X∗
p) (4)

As X and Y are two fixed sets, an optimal solution S∗ with minimal length
Cmax(S∗) is obtained when seq(Xp) is maximum, i.e. when Xp = X∗

p .
Therefore, the ratio obtained between our solution S and the optimal one
S∗ is:

Cmax(S)

Cmax(S∗)
≤ seq(Y) + seq(X) − ρ × seq(X∗

p)

seq(Y) + seq(X) − seq(X∗
p)

≤ 1 +
(1 − ρ) × seq(X∗

p)

seq(Y) + seq(X) − seq(X∗
p)

(5)

By definition, X∗
p ≤ X. Moreover, as the processing time of X∗

p cannot
excess the idle time of tasks from Y , we obtain: seq(X∗

p) ≥ 1
3seq(Y). And

thus combined to Eq. (5), we obtain the desired upper bound:

Cmax(S)
Cmax(S∗)

≥ 1 +
(1 − Φ)

3
(6)

2. For the problem 1|φi = ai = Li = bi, complete 1−stage bipartite|Cmax, the
proof is identical using mssdc as a special case of mkar where each item
can be packed in any bin.

3. For the problem 1|φi = ai = Li = bi, complete 1−stage bipartite|Cmax

where all the tasks from Y have the same stretch factor φ(y), the proof is
identical as previously since mssdc is a generalisation of mss. �

Coupled-Tasks in Presence of Bipartite Compatibilities Graphs 169

Theorem 6. These problems admit a polynomial-time approximation algorithm:

1. The problem 1|ai = Li = bi = φ(Ai), Gc = 1-stage bipartite|Cmax is approx-
imable to a factor 7

6 .
2. The problem 1|ai = Li = bi = φ(Ai), Gc = complete 1-stage bipartite|Cmax

admits a PT AS.
3. The problem 1|ai = Li = bi = φ(Ai), Gc = complete 1-stage bipartite|Cmax,

where all the tasks from Y have the same stretch factor φ(y):
(a) is approximable to a factor 13

12 .
(b) admits a PT AS.

Proof. 1. Authors from [5] proposed a Φ = 1
2−approximation algorithm for

mkar. Reusing this result with Lemma 1, we obtain a 7
6−approximation.

2. We know that mssdc admits a PT AS [1], i.e. Φ = 1−ε. Using this algorithm
to compute such a PT AS and the Lemma 1, we obtain an approximation
ratio of 1 + φ

3 for this problem.
3. (a) Authors from [3] proposed a Φ = 3

4−approximation algorithm for mss.
Reusing this result and the Lemma 1, we obtain a 13

12−approximation.
(b) They also proved that mss admits a PT AS [2] , i.e. Φ = 1 − ε. Using

the algorithm to compute such a PT AS and the Lemma 1, we obtain
an approximation ratio of 1 + φ

3 . �

5.3 2−Stage Bipartite Graph

Theorem 7. The problem 1|ai = Li = bi = φ(Ai), Gc = 2-stage bipartite|Cmax

is approximable to a factor 13
9 .

Proof. We consider an instance of the problem with Gc = (V0∪V1∪V2, E1∪E2),
where each arc in Ei is oriented from a vertex in Vi to another one in Vi+1, for
i ∈ 1, 2.

Before presenting our heuristic and the analyse of its approximation factor,
we will give several notations, properties and equations in relation with the
specificities of this instance, in any (optimal) solution:

– ∀i = 0, 1, let Vip (p=packed), (resp. Via (a=alone)) be the set of tasks merged
(resp. remaining) into any task from Vi+1 in a solution S, and Vib (b=box)
the set of tasks scheduled with some tasks from Vi−1 merged into it. This
notation is extended to an optimal solution S∗ by adding a star in the involved
variables.

– Given any solution S to the problem and considering the specificities of the
instance, note that {V0p, V0a} is a partition of V0, Gc, {V1p, V1a, V1b} is a
partition of V1, and Gc, {V2a, V2b} is a partition of V2.

– Any solution would consists in scheduling first each task with at least one
task merged into it, then to schedule the remaining tasks (alone). Given an
optimal solution S∗, the length of S∗ is given by the following equation:

S∗ = seq(V1
∗
b) + seq(V2b) + seq(V0

∗
a) + seq(V1

∗
a) + seq(V2

∗
a)

S∗ = seq(V2) + seq(V1
∗
b) + seq(V0

∗
a) + seq(V1

∗
a) (7)

170 B. Darties et al.

One can remark that V0
∗
p and V1

∗
p are not part of the equation, as they are

scheduled during the idle time of V1
∗
b and V2

∗
b .

– Let consider an restricted instance of Gc to a sub-graph G0 = Gc[V0 ∪ V1]
(resp. G1 = Gc[V1 ∪ V2]) which is the 1-th (resp. 2-th) stage of Gc.

Let S[G0] (resp. S∗[G0]) be any (an optimal) solution on G0, V0p[G0] (resp.
V0

∗
p[G0]) is the set of tasks from V0 packed into tasks from V1 in S[G0] (resp.

S∗[G0]), and V0a[G0] (resp. V0
∗
a[G0]) the set of remaining tasks. In addition

tho these notation, let V1b[G0] be the set of tasks from V1 with at least one
task from V0 merged into them, and V1a[G0] the remaining tasks. A first
observation gives for G0:

S∗[G0] = seq(V1) + V0
∗
a[G0] (8)

– From Theorem 6, Lemma 1, and the demonstration presented in their proof
from [5], several equations can be computed for a solution S[G0]:

seq(V0p[G0]) ⊕ 1
2
seq(V0

∗
p[G0]) (9)

seq(V0
∗
a[G1])≥seq(V0

∗
a) (10)

seq(V0p[G0]) + seq(V0a[G0]) = seq(V0
∗
p[G0]) + seq(V0

∗
a[G0]) = seq(V0) (11)

seq(V0a[G0]) ≥ seq(V0
∗
a[G0]) +

1
2
seq(V0

∗
p[G0]) ≥ seq(V0

∗
a) +

1
2
seq(V0

∗
p[G0])

(12)
– We use an analog reasoning on the sub-graph G1 with equivalent notations

for V1 and V2, and we obtain:

seq(V1p[G1])⊕ 1
2
seq(V1

∗
p[G1]) (13)

seq(V1a[G1])≥seq(V1
∗
a[G1])+1/2seq(V1

∗
p[G1])≥seq(V1

∗
a)+1/2seq(V1

∗
p[G1])

(14)

From this notations and observation, we can propose a good heuristic. We
design the feasible solution S for Gc as follows:

– We compute a solution S[G1] on G1, then we add to S each task from V2 and
the tasks from V1 merged into them (i.e. V1p[G1]) in S[G1].

– Then we compute a solution S[G0] on G0, then we add to S each task v from
V1b[G0]/V1p[G1] and the tasks from V0 merged into them.

– Tasks V1a[G1]/V1b[G0] and V0a[G0] are added to S sequentially.
– We note Vconflict the set of remaining tasks, i.e. the set of tasks from V0 which

are merged into a task v ∈ V1 in S[G0], thus that v is merged into a task from
V2 in S[G1].

Coupled-Tasks in Presence of Bipartite Compatibilities Graphs 171

Remark that:

seq(V1b[G0]/V1p[G1]) + seq(V1a[G1]/V1b[G0]) = V1a[G1] (15)

Thus the cost of our solution S is

S = seq(V2) + seq(V1a[G1]) + seq(V0a[G0]) + seq(Vconflict) (16)

It is also clear that:

seq(Vconflict) ≥ 1
3
seq(V1p[G1]) ≥ 1

3
seq(V1

∗
p[G1]) (17)

Using Eqs. (12), (14) and (17) in Eq. (16), we obtain

S ≥ seq(V2) + seq(V1
∗
a) +

5
6
seq(V1

∗
p[G1]) + seq(V0

∗
a) +

1
2
seq(V0

∗
p[G0]) (18)

≥ S∗ +
5
6
seq(V1

∗
p[G1]) +

1
2
seq(V0

∗
p[G0]), using Eq. (7) (19)

We know that S∗ ⊕ seq(V2) and S∗ ⊕ seq(V1), as V1 is an independent set
of Gc. We also know that tasks from (V1

∗
p[G1]) (resp. (V0

∗
p[G0])) must be merged

into tasks from V2 (resp. V1) and cannot exceed the idle time of V2 (resp. V1),
implying that seq(V1

∗
p[G1])) ≥ 1

3seq(V2) (resp. seq(V0
∗
p[G0])) ≥ 1

3seq(V1)). One
can write the following :

5
6seq(V1

∗
p[G1])

S∗ ≥
5
6 × 1

3seq(V2)
seq(V2)

≥ 5
18

(20)

1
2seq(V0

∗
p[G0])

S∗ ≥
1
2 .13seq(V1)
seq(V1)

≥ 1
6

(21)

Finally, from Eqs. (19), (20) and (21) the proof is concluded:

S

S∗ ≥ 1 +
5
18

+
1
6

=
13
9

�

6 Conclusion

The results proposed in this paper are summarised in Table 1. New presented
results suggest the main problem of coupled tasks scheduling remains difficult
even for restrictive instances, here stretched coupled-tasks when the constraint
graph is a bipartite graph. When we consider stretched coupled-tasks, the max-
imum degree λG seems to play an important role on the problem complexity, as
the problem is already NP-Hard to solve when the constraint graph is a star.
Approximation results presented in this paper show the problem can be approx-
imated with interesting constant ratio on k−stage bipartite graphs for k = 1 or
2. The presented approach suggests a generalisation is possible for k ⊕ 3. This
part constitutes one perspective of this work. Other perspective would consists
to study coupled-tasks on other significant topologies, including degree-bounded
trees, or regular topologies like the grid.

172 B. Darties et al.

Table 1. Complexity and approximation results.

Topology Complexity Approximation

uug(Gc)=Star graph NP − C (Theorem 1) FPT AS (Theorem 5)

uug(Gc)=Chain graph O(n3) (Theorem 2)

Gc= 1-stage bipartite, Δ(Gc) = 2 O(n3) (Theorem 3)

Gc= 1-stage bipartite, Δ(Gc) = 3 NP − C (Theorem 4) 7
6
-APX (Theorem 6)

Gc= complete 1-stage bipartite NP − C (see [12]) PT AS (Theorem 6)

Gc= complete 1-stage bipartite NP − C (see [12]) PT AS (Theorem 6)

with constraint α(x) = α(y), ∀x, y ∈ X1
13
12

-APX (Theorem 6)

Gc= 2-stage bipartite NP − C (Theorem 4) 13
9
-APX (Theorem 7)

Acknowledgment. This work has been funded by the regional council of Burgundy.

References

1. Caprara, A., Kellerer, H., Pferschy, U.: A PTAS for the multiple subset sum prob-
lem with different knapsack capacities. Inf. Process. Lett. 73(3–4), 111–118 (2000)

2. Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. Siam J.
Optim. 11(2), 308–319 (2000)

3. Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple
subset sum. J. Heuristics 9(2), 99–111 (2003)

4. Darties, B., Simonin, G., Giroudeau, R., König, J.-C.: Scheduling stretched
coupled-tasks with compatibilities constraints: model, complexity and approxima-
tion results for some class of graphs. Report, February 2014

5. Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approxi-
mation algorithms for the multiple knapsack problem with assignment restrictions.
J. Comb. Optim. 4(2), 171–186 (2000)

6. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. Res. Natl.
Bur. Stand. 69B, 125–130 (1965)

7. Simonin, G., Darties, B., Giroudeau, R., König, J.C.: Isomorphic coupled-task
scheduling problem with compatibility constraints on a single processor. J. Sched.
14(5), 501–509 (2011)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

10. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

11. Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully poly-
nomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci.
66(2), 349–370 (2003)

12. König, J.-C., Simonin, G., Giroudeau, R.: Complexity and approximation for
scheduling problem for coupled-tasks in presence of compatibility tasks. In: Project
Management and Scheduling (2010)

13. Shapiro, R.D.: Scheduling coupled tasks. Naval Res. Logist. Q. 27, 477–481 (1980)

The Computational Complexity
of Stochastic Optimization

Cassio Polpo de Campos4, Georgios Stamoulis1,3, and Dennis Weyland1,2(B)

1 Università della Svizzera italiana, Lugano, Switzerland
{stamoulis.georgios,dennisweyland}@gmail.com
2 Università degli Studi di Brescia, Brescia, Italy

3 Lamsade, Université Paris Dauphine, Paris, France
4 Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland

cassio@idsia.ch

Abstract. This paper presents an investigation on the computational
complexity of stochastic optimization problems. We discuss a scenario-
based model which captures the important classes of two-stage stochas-
tic combinatorial optimization, two-stage stochastic linear programming,
and two-stage stochastic integer linear programming. This model can also
be used to handle chance constraints, which are used in many stochastic
optimization problems. We derive general upper bounds for the complex-
ity of computational problems related to this model, which hold under
very mild conditions. Additionally, we show that these upper bounds are
matched for some stochastic combinatorial optimization problems arising
in the field of transportation and logistics.

Keywords: Stochastic combinatorial optimization · Computational
complexity · Chance constraints · Stochastic vehicle routing

1 Introduction

Stochastic optimization problems have received increasing attention in recent
years. While these problems are used extensively in practice, our theoretical
understanding of their complexity is far from complete. Hardness results have
been obtained in the context of two-stage stochastic linear programming and
two-stage stochastic integer linear programming [3]. It has been shown that just
the evaluation of the objective function is already #P-hard, where #P denotes
the famous class of counting problems originally introduced in [7]. The same
hardness results could have been derived for the corresponding decision and
optimization variants. Similar lower bounds have been obtained in the context
of stochastic combinatorial optimization problems for a widely used stochastic
vehicle routing problem [8]. Analogously, it can be shown that the evaluation of
stochastic/chance constraints is #P-hard as well. On the other hand, we do not
have strong upper bounds for the computational complexity of stochastic opti-
mization problems. Some attempts have been done in [3], but the corresponding

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 173–185, 2014.
DOI: 10.1007/978-3-319-09174-7 15

174 C.P. de Campos et al.

results are controversial, since the equality of P#P and NP#P is assumed, which
is to the best of our knowledge still an open problem.

In this paper we investigate a very general scenario-based model for sto-
chastic optimization problems. This model includes, among others, the above
mentioned classes of two-stage stochastic linear programming and two-stage sto-
chastic combinatorial optimization. Our main results are general upper bounds,
which hold under very mild assumptions, and lower bounds derived for a very
plausible stochastic vehicle routing problem. We show that the evaluation of
the objective function is in FP#P [1] and that the evaluation of constraints is in
PP. Furthermore, the decision variant of such problems resides in NP#P [1] and
the optimization variant can be solved with multiple calls to the corresponding
decision variant and is therefore in FPNP#P [1]

. We then show that these bounds
are actually matched by an existing stochastic vehicle routing problem, where
the objective function is #P-hard and the decision and optimization variants
are both NP#P [1]-hard.

The remaining part of this paper is organized as follows. We start with a
discussion of the model used in this paper in Sect. 2, and explain why this model
captures many important stochastic optimization problems. In Sect. 3 we derive
general upper bounds for some computational tasks related to this model, which
hold under very mild conditions. We then continue to show that these upper
bounds are actually matched for a (non artificial) stochastic vehicle routing
problem (Sect. 4). Finally, we conclude the paper with a short discussion of the
results and their implications in Sect. 5.

2 The Stochastic Optimization Model

We discuss a scenario-based model for stochastic optimization problems that
is very general and captures, among others, two-stage stochastic combinatorial
optimization, two-stage stochastic linear programming and two-stage stochastic
integer linear programming. Additionally, this model can also handle chance
constraints which are used in many stochastic optimization problems.

The basic assumption of our model is that we can describe the objective func-
tion and the constraints in a scenario-based way. For a given problem instance,
we have a set X of solutions and a set S of scenarios. There is a mass func-
tion p : S ∈ R

+ representing the probabilities of the scenarios and a function
k : X × S ∈ R

+ representing the costs of a solution under a specific scenario.
The objective function f : X ∈ R

+ is then the expectation of the costs over the
scenarios, that is, for a given solution x ≤ X , we have f(x) =

∑
s∈S p(s)k(x, s).

Constraints representing simple predicates on the solution space are allowed and
divided into the two sets C and D. Constraints c ≤ C are computable predicates
c : X ∈ {false, true} and correspond to non-stochastic constraints. Constraints
in D are defined in a similar way as the objective function and correspond to
stochastic constraints. Each d ≤ D is associated with two functions pd : S ∈ R

+

and kd : X × S ∈ R and a bound bd ≤ R. For a given solution x ≤ X , the
predicate d is simply

∑
s∈S pd(s)kd(x, s) ≥ bd.

The Computational Complexity of Stochastic Optimization 175

For the model to be meaningful, we need the following additional assump-
tions. First of all, we assume that the input, including all the functions’ speci-
fications, is shortly encoded in the sense that the sets X and S are of at most
exponential size with respect to the input. Additionally, we require that the size
of these sets can be efficiently computed and that these two sets can be efficiently
enumerated. Furthermore, we require p and k to provide efficiently computable
numbers1. Analogously, the functions pd and kd associated with the constraints
d ≤ D are required to provide efficiently computable numbers. Finally, the pred-
icates c ≤ C are required to be computable in polynomial time.

This model is very powerful and it is easy to verify that it captures the
important classes of two-stage stochastic combinatorial optimization, two-stage
stochastic linear programming, two-stage stochastic integer linear programming
(with continuous variables in the second stage) and chance-constrained program-
ming. For more information about these classes we refer to [1].

3 General Upper Bounds

The relation between stochastic optimization problems [1] and counting problems
[7] has proven to be very useful in order to derive results about the computational
complexity of stochastic optimization problems [3,8]. In this work we use the
recently introduced framework of weighted counting [2] to derive upper bounds
for the computational complexity of our model. For the sake of clarity, we first
give an overview about the framework of weighted counting and the results which
are needed in the context of this paper. We then discuss the very mild technical
condition to our stochastic optimization model and give formulations for the
corresponding computational problems. After that, we derive upper bounds for
these computational problems using the results about weighted counting.

Weighted counting problems are a natural generalization of conventional
counting problems [2]. The computational variant and the decision variant of
weighted counting problems can be defined as follows.

Definition 1 (Weighted Counting Problem). We are given a polynomial p
and a function w : {0, 1}ε×{0, 1}ε ∈ R that can be approximated by a polynomial
time (in the size of the first two arguments and the third argument) computable
function v : {0, 1}ε × {0, 1}ε × N ∈ Z, such that |w(x, u) − v(x, u, b)/2b| ≥ 2−b

for all x ≤ {0, 1}ε, u ≤ {0, 1}ε, b ≤ N. The weighted counting problem associated
with p and w is to compute for x ≤ {0, 1}ε the function

f(x) =
∑

u∈{0,1}p(|x|)

w(x, u).

1 That means p and k have one additional input which specifies the number of output
bits that are required. In this way p and k are providing the numbers to any desired
accuracy in polynomial time with respect to the input and the number of output
bits.

176 C.P. de Campos et al.

Definition 2 (Weighted Counting Problem, Decision Variant). We are
given a weighted counting problem defined by a polynomial p and a function
w : {0, 1}ε × {0, 1}ε ∈ R as well as a threshold value t ≤ Q. The corresponding
decision problem is to decide for x ≤ {0, 1}ε whether f(x) ≥ t or not.

Here the variable x is the “input” and w is a function which assigns an effi-
ciently computable weight to each of the exponentially many values of u. At a
first glance, the relationship to our scenario-based model is apparent. The impor-
tant observation is that we are able to describe the objective function and the
stochastic constraints of stochastic optimization problems using the scenario-
based model in terms of weighted counting. In fact, the computation of the
objective function and the evaluation of the stochastic constraints can be seen
as weighted counting problems themselves. By exploiting this fact, we derive
upper bounds for the complexity of computational tasks related to stochastic
optimization problems. The (slightly adapted) results regarding weighted count-
ing [2] that are important for this work can be stated as follows.

Theorem 1. We are given a weighted counting problem defined by a polynomial
p and a function w : {0, 1}ε × {0, 1}ε ∈ R. If the size of the output (eventually
encoded as a fraction) is bounded by a polynomial q(|x|), then the given weighted
counting problem is in FP#P [1].

Theorem 2. We are given the decision variant of a weighted counting problem
defined by a polynomial p, a function w : {0, 1}ε × {0, 1}ε ∈ R and a threshold
value t ≤ Q. If the size of the output (of the computational variant, eventually
encoded as a fraction) is bounded by a polynomial q(|x|), then the problem is in
PP.

It is evident that in order to use these results we have to make an additional,
mild condition to our scenario-based model: We assume that the size of the out-
put of the objective function and the (computational variants of the) constraints
is polynomially bounded. That means that we require the output to be limited
to a polynomial number of bits and this is indeed an extremely mild condition2.
With this assumption, we can immediately obtain the following results.

Theorem 3. The following statements hold for stochastic optimization problems
using the scenario-based model.

(i) The evaluation of the objective function is in FP#P [1].
(ii) Deciding whether a given solution has costs of at most t ≤ Q is in PP.
(iii) The evaluation of a stochastic constraint is in PP.
(iv) Checking the feasibility of a given solution is in PP.

2 In fact, we can even handle problems which do not fulfill this assumption by trun-
cating the objective function and the constraints after a certain number of at most
polynomially many bits. The resulting problem is then a slight perturbation of the
original problem which should not incur any difference for practical purposes.

The Computational Complexity of Stochastic Optimization 177

(v) The task of computing the objective function in case the given solution is
feasible, or returning some arbitrarily fixed value in case the given solution
is not feasible is in FP#P [1].

Proof. (i), (ii) and (iii) follow directly from the fact that we can write the objec-
tive function and the stochastic constraints as weighted counting problems. Since
PP is closed under multiple non-adaptive/independent calls [4] and since the con-
straints can be checked independently, (iv) follows. For (v) we have to combine
the computation of the objective function and the verification of the constraints.
It is clear that we can perform this task in polynomial time with 2 calls to a
#P-oracle. Since these oracle calls are independent, they can be combined into
a single call, which shows that the task is in FP#P [1]. �∀

Using this result for the evaluation of solutions, we can derive the following
upper bounds for the optimization and decision variants of stochastic optimiza-
tion problems using the scenario-based model.

Theorem 4. We have given a stochastic optimization problem using the scenario-
based model and a bound t ≤ Q. The problem to decide whether a solution with costs
at most t exists or not is in NP#P [1].

Proof. Here the idea is to create all possible solutions for the given problem in
a nondeterministic way. According to Theorem 3 the objective function and the
constraints can be evaluated within the NP machine using only a single call to a
#P-oracle. Finally, a solution is accepted if it is feasible and has costs of at most
t. That means our NP#P [1] accepts the input if and only if there is at least one
feasible solution which obeys the cost bound. �∀
Theorem 5. We have given a stochastic optimization problem using the
scenario-based model. The task to compute an optimal solution (if it exists) or
to return some arbitrarily fixed value in the case where no feasible solution exists
can be solved in polynomial time using an oracle for the decision version. In
other words, this problem is in FPNP#P [1]

.

Proof. We have to show that we can solve the optimization variant in polynomial
time with oracle access to the decision variant. We start with a binary search to
determine the costs of an optimal solution. Since the size of the output of the
objective function is polynomially bounded, we can do this with polynomially
many oracle calls. Once we know the value of an optimal solution, we perform
a second binary search on the set of solutions. This can be done efficiently by
dividing the set of solutions that is enumerated in the NP part of the oracle
into two parts. We then continue with any of the two sets of solutions that still
contains an optimal solution. Since the number of possible solutions is at most
exponentially large, this step can also be performed with at most polynomially
many oracle calls. �∀

178 C.P. de Campos et al.

4 Hardness Results for the Dependent PTSPD

In this section we will complement the general upper bounds for our model
of stochastic optimization problems with lower bounds for a specific stochastic
vehicle routing problem. It seems fairly easy to prove such lower bounds for
artificially created stochastic optimization problems. The strength of our results
is based on the fact that we are able to show strong lower bounds for a practical
stochastic combinatorial optimization problem.

We focus on the Dependent Probabilistic Traveling Salesman Problem with
Deadlines (Dependent PTSPD, [8]). As a generalization of the Probabilistic
Traveling Salesman Problem with Deadlines, the objective function is #P-hard
[8] and therefore basically matches the lower bound derived in the previous
section. The Dependent PTSPD also inherits the #P-hardness for the deci-
sion and optimization variants from the PTSPD. We strengthen these hardness
results and show that the optimization and decision variants of the Dependent
PTSPD are both in fact NP#P [1]-hard. For this purpose we use reductions from
the NP#P [1]-complete problem E-MINORITY-SAT (explained later on). We
first give the formal definitions of the problems used in this section. After that
we present the reduction from E-MINORITY-SAT to the decision variant of the
Dependent PTSPD in detail. At the end, we show how this reduction can be
modified for the optimization variant of the Dependent PTSPD.

4.1 Problem Definitions

In [6] it has been shown that the problem E-MAJ-SAT is NP#P [1]-complete. For
this problem we have given a formula in conjunctive normal form. The variables
are partitioned into two sets. The question is if there exists an assignment for the
first set of variables such that at least half of the assignments for the second set
of variables (together with the assignment for the first set of variables) satisfy
the given formula. For our proof we use a variant of this problem called E-
MINORITY-SAT, which is defined analogously but asks for at most half of the
assignments to satisfy the formula.

Problem 1 (E-MINORITY-SAT). We have given a boolean formula over n vari-
ables x1, x2, . . . , xn in conjunctive normal form with m clauses and a number
k ≤ {0, 1, . . . , n}. The task is to decide if there exists an assignment of the first
k variables, such that at most half of the assignments of the remaining variables
(together with the assignment of the first k variables) satisfy the given formula.

E-MINORITY-SAT is NP#P [1]-complete. The proof is analogous to the one
for E-MAJ-SAT [6] and makes use of PP closure properties [4].

The formal definition of the Dependent Probabilistic Traveling Salesman
Problem (Dependent PTSPD, [8]) is more intricate. Here we refer as V a set
of n locations, including the special starting point v0 ≤ V . We have given dis-
tances / travel times between the locations which are represented by a function
d : V ×V ∈ Q

+. Deadlines for different customers are modeled using a function

The Computational Complexity of Stochastic Optimization 179

t : V ∈ Q
+ and penalty values for different customers are modeled using a

function h : V ∈ Q
+. For simplicity we also define these values for the starting

point v0, although we meet the deadline at v0 nevertheless, since we start the
tour there. Additionally, the presence of customers is modeled in a stochastic
way. We allow certain kinds of dependencies between the presence of different
customers. Two customers vi, vj ≤ V can be bonded in the following way: (1)
the presence of vi and vj is independent, (2) vi is present if and only if vj is
present, or (3) vi is present if and only if vj is absent. These dependencies can
be efficiently modeled by defining sets of paired customers and their associated
bonds. We avoid further details for the sake of clarity, since we explicitly point
out the necessary dependencies used in our reduction. The probabilities for the
customers’ presence are represented by a function p : V ∈ [0, 1]. Obviously, p is
assumed to respect the dependencies.

A solution can now be represented by a permutation τ : [n] ∈ V with
τ1 = v0. For a specific realization of the customers’ presence we use this solution
to derive a second-stage solution just by skipping customers which are absent.
The costs for the second-stage solution are then the sum of the travel times
plus the penalties for missed deadlines. We assume that a customer specific
fixed penalty of h(v) for customer v ≤ V occurs in case the deadline is missed,
independently of the actual delay. The costs for a solution τ are the expected
costs of the second-stage solutions derived from τ over the different realizations
of the customers’ presence.

Let τ : [n] ∈ V with τ1 = v0 be a solution. For all v ≤ V , let Av be a
random variable indicating the arrival time at customer v. Since the travel times
of the second-stage solutions are identical to those of the Probabilistic Traveling
Salesman Problem (PTSP, [5,9]), the costs of τ can be expressed as

fptspd(τ) = fptsp(τ) +
n∑

i=1

Pr(Aτi ≥ t(τi))h(τi).

The first part of the costs is the (polynomial time computable) objective
function of the PTSP and represents the expected travel times over the second-
stage solutions. The second part represents the penalties for missed deadlines.
With this expression for the costs of a solution, we define the decision and
optimization variants of the Dependent PTSPD in the following way.

Problem 2 (Dependent PTSPD - Decision Variant). Given a set V of size n with
a special element v0 ≤ V , a function d : V ×V ∈ Q

+, sets of pairs of V defining
the customers’ bonds, a function p : V ∈ [0, 1] respecting the dependencies
imposed by the partition, a function t : V ∈ Q

+, a function h : V ∈ Q
+, and a

bound b ≤ Q, the problem is to decide if there exists a solution τ : [n] ∈ V with
τ1 = v0 such that fptspd(τ) ≥ b.

Problem 3 (Dependent PTSPD - Optimization Variant). Given a set V of size
n with a special element v0 ≤ V , a function d : V × V ∈ Q

+, sets of pairs
of V defining the customers’ bonds, a function p : V ∈ [0, 1] respecting the

180 C.P. de Campos et al.

dependencies imposed by the partition, a function t : V ∈ Q
+ and a function

h : V ∈ Q
+, the problem is to compute a permutation τε : [n] ∈ V with τε

1 = v0
such that fptspd(τε) ≥ fptspd(τ) for any permutation τ : [n] ∈ V with τ1 = v0.

4.2 Hardness of the Decision Variant

We now present a reduction from E-MINORITY-SAT to the decision variant of
the Dependent PTSPD. First, we give the general idea behind the reduction,
and then we show step by step how for any given instance of E-MINORITY-
SAT an instance of the Dependent PTSPD can be constructed. Based on this
construction we conclude that the Dependent PTSPD is NP#P [1]-hard. Later
we show how this reduction can be modified to obtain the same hardness result
for the optimization variant of the Dependent PTSPD.

The overall idea is to construct, for a given E-MINORITY-SAT instance, a
highly restricted instance for the decision variant Dependent PTSPD. By highly
restricted we mean that deadlines are used to allow only certain paths to appear
in an optimal solution. We then simulate the NP decision process, that is, we
simulate the assignment for the first set of variables, by using a gadget for each
variable which allows an optimal solution to take one of two possible paths.
By using customers which are present with a probability of 1/2 and with prop-
erly defined dependencies, we create “copies” of these assignments. The second
set of variables from the E-MINORITY-SAT instance is modeled by customers
which are present with a probability of 1/2. In this case proper dependencies
can be used to directly create “copies” of these customers. We then build a
new collection of gadgets for the clauses of the formula. The idea is that an
assignment which satisfies the formula leads to a certain (controlled) delay. At
the end, a special customer is added. The probability for a deadline violation at
this customer in an optimal solution enables us to infer the minimum (over the
assignments of the first set of variables) number of assignments for the second
set of variables that satisfy the clauses. Finally, the cost of an optimal solution
for the constructed instance allows us to infer the probability with which the
deadline is actually violated in an optimal solution, and this solves the given
E-MINORITY-SAT instance.

Simulating the Assignment of the First k Variables. For the simulation
of the NP decision process, we use the gadget depicted in Fig. 1. The distance
function used here (and also throughout the whole instance) is the Euclidean
distance. The starting customer here is v0. The presence probabilities are 1
for all customers except x1 and x̄1. The presence probabilities for these two
customers are 1/2 and additionally x1 is present if and only if x̄1 is absent3.
By using large enough penalty values and appropriate deadlines, we can force
3 We use the following convention for all the x customers in the reduction: A group of

customers with the same label is either completely present or none of those customers
is present. Customers with a label of xi are present if and only if the customers with
the label x̄i are absent.

The Computational Complexity of Stochastic Optimization 181

v0

true, t(true) = 17 + kε

false, t(false) = 17 + kε

v1 v2

x̄1, t(x̄1) = 14 + kε

x1, t(x1) = 14 + kε
t(v0) = kε t(v1) = 10 + kε t(v2) = 30 + kε

5 5

55 13

13
3

3

4

4

Fig. 1. The gadget used to simulate the variable assignment.

a solution to take one of the following two paths: v0, true, v1, xi, x̄i, false, v2 or
v0, false, v1, xi, x̄i, true, v24. The first path corresponds to an assignment of true
for the corresponding xi from the E-MINORITY-SAT formula, while the second
corresponds to an assignment of false for xi. The goal of the stochastic customers
is to guess such chosen assignment. In case the guess is wrong, the travel time
within this gadget is by a value of d(xi, x̄i) = ε larger than if the guess would
be correct. The reason why we are guessing the chosen assignment is that we
can use dependencies between stochastic customers to create “copies” which we
require at later stages of the construction to check the clauses. The drawback is
that we have to handle the case in which the guess is wrong, but this is not an
issue as we will see soon.

It is clear that we can put k of these gadgets in a row to simulate the assign-
ment of the first k variables. Since we might have some additional delay of ε
for each of the gadgets, the deadlines all contain some sort of slack. As long as
this distance is small enough compared to the other distances in the gadget, this
does not change the overall characteristic of possible optimal paths.5

The situation now is as follows. A solution in which the gadgets are visited
one after another and in which one of the two paths is chosen for each of the
gadgets is always better (of lower cost) than a solution which does not visit the
customers in this order. This just follows from the fact that we can use sufficiently
large penalty values for the involved customers. Additionally, a realization of the
presence for the customers x1, x2, . . . , xk (and therefore also for the customers
x̄1, x̄2, . . . , x̄k) might result in a delay. If the realization correctly guesses the
assignment chosen by the path, the delay is 0, otherwise the delay is at least ε.

Verifying the Clauses. To verify the clauses’ satisfiability, we build gadgets
as depicted in Fig. 2. Here we illustrate the construction for the clause x1 ∃ x̄3 ∃
4 In fact, there are four and not two possible paths, since the order of xi and x̄i can

be changed without affecting the quality of the solution, but they are analogous.
5 Additionally, we save some travel time going from v1 over x1 / x̄1 to true / false.

Again, this does not incur in relevant changes, for the very same reasons.

182 C.P. de Campos et al.

x̄4 ∃ x7. The two customers w0 and w1 on the bottom part have to be always
visited, while the customers on the top part correspond to the literals used in this
particular clause. A separate customer is used for each literal, sharing the same
position with the other literal customers. Their presence depends on the actual
variable assignment. We set the deadlines of all the customers in such a way that
they have to be visited from left to right. In case one of the top customers is
present and requires to be visited, an additionally travel time of ε/m is required.
This corresponds to the case in which the clause is satisfied. Please note that the
realization of the x-variables might not correspond to the assignment defined by
the paths that were chosen in the first part of the constructed instance, because
it might be that the x-variables have not guessed this assignment correctly. We
will handle this case soon.

It is clear that we can put m of these gadgets next to each other to check
all the clauses given in the E-MINORITY-SAT instance. Here the deadlines
of subsequent gadgets have to be adapted accordingly. If the whole formula is
satisfied by the realization of the x-variables, we get a delay of ε/m for each of
the clauses for a total delay of ε. This means that the total delay after all clause
gadgets is at least ε if the realization of the x-variables is not correctly guessing
the assignment defined by the chosen paths, or if the guess is correct and the
x-variables satisfy the formula. Otherwise, the delay is at most ε − ε/m.

Putting Everything Together. We will now place the two sets of gadgets
next to each other. Additionally, we will add a special customer z after the
clause gadgets. Let T be the arrival time at z without any of the delays. We
now use for z a deadline of t(z) = T + ε − ε/m. In an optimal tour, z is the
last customer visited. After visiting z, the vehicle returns to the depot. z is also
the only customer whose deadline is violated in an optimal solution. We set the
penalty value for z to be h(z) = 22n.

Let us analyze the costs of a solution which does not violate any deadlines
except at customer z and which therefore corresponds to an assignment of the
first k variables of the original E-MINORITY-SAT instance. There is no need
to care about travel times, since the costs are completely dominated by the
penalty at customer z. We are late at customer z if the guess of the decisions
that have been made in the first part of the constructed instance is wrong.
This happens with a probability of 1 − 2−k. If our guess is correct, we arrive at

w0 w1

x1, x̄3, x̄4, x7

10

5 + ε
2m

5 + ε
2m

t(w0) = 2kε t(w1) = 10 + 2kε

t(x1) = t(x̄3) = t(x̄4) = t(x7) = 5 + 2kε

Fig. 2. The gadget used to verify if a clause is satisfied or not.

The Computational Complexity of Stochastic Optimization 183

the clause part without any additional delay. The deadline at customer z is then
violated if and only if all the clauses are satisfied by the correctly guessed first k
variables and the randomly assigned remaining n−k variables. Each assignment
of the remaining n − k variables occurs with the same probability of 2−n+k. Let
r denote the number of satisfying assignments of the remaining n − k variables
for the given assignment of the first k variables. We can now write the expected
penalty as (1 − 2−k + 2−k2−n+kr)h(z) = 22n − 22n−k + 2nr.

If there exists an assignment of the first k variables of the original E-
MINORITY-SAT instance such that the formula is satisfied for at most half of
the assignments of the remaining n−k variables, then there exists a solution for
the Dependent PTSPD instance with costs of at most 22n −22n−k +2n2n−k/2 =
22n − 22n−k−1. On the other hand, if no such solution exists, then every solu-
tion for the Dependent PTSPD instance has higher cost. Considering the rela-
tively small travel times, we can set the bound of the constructed instance to
22n−22n−k−1+2n−1. In this way we are able to solve the original E-MINORITY-
SAT problem with the decision version of the Dependent PTSPD.

Theorem 6. The decision version of the Dependent Probabilistic Traveling
Salesman Problem with Deadlines is NP#P [1]-hard, even for Euclidean instances.

4.3 Hardness of the Optimization Variant

To obtain the same hardness result for the optimization variant of the Dependent
PTSPD, we have to modify the construction slightly. The same technique has
been used in [8] and therefore we only describe the main ideas at this point.
Instead of a single final customer z, we add three customers z1, z2, z3. z1 is located
at the position of z and is forced to be visited immediately after the clause part
by imposing proper deadlines and penalties. The three new customers then form
an equilateral triangle. This triangle is now placed in a way such that z2 is closer
to the depot than z3. The deadline which was formerly imposed on z will now
be prolonged by the sidelength of the triangle and imposed on z2. No deadline
is imposed on z3. In this way we offer an optimal solution two choices: visiting
at the end of the tour z1, z2, z3 or z1, z3, z2. In the first case the probability
that the deadline at z2 will be violated is lower than in the second case. On the
other hand, the travel times are larger in the first case. Placing the triangle in
a proper way and using adequate sidelengths, we are able to solve the original
E-MINORITY-SAT instance by computing an optimal solution for this modified
Dependent PTSPD instance. In case the optimal solution finishes with z1, z2, z3
a solution for the E-MINORITY-SAT instance exists, if the optimal solution
finishes with z1, z3, z2, no such solution exists.

Theorem 7. The optimization version of the Dependent Probabilistic Traveling
Salesman Problem with Deadlines is NP#P [1]-hard, even for Euclidean instances.

184 C.P. de Campos et al.

5 Discussion and Conclusions

In this paper we have investigated a very powerful scenario-based model of sto-
chastic optimization problems. Using the framework of weighted counting we
prove upper bounds for the complexity of various computational tasks related
to these problems. Additionally, we show that these upper bounds are matched
for a practical existing stochastic vehicle routing problem.

Many stochastic optimization problems inherit NP-hardness from their non-
stochastic counterparts, which are usually contained as a special case. We believe
that it is possible to obtain much stronger hardness results for a large number of
these problems and we hope that our work can help in obtaining such stronger
hardness results.

It would also be very interesting to better understand which properties of
stochastic optimization problems are actually responsible for their hardness. In
particular, it would be interesting to understand if the same hardness results
can be obtained for (non artificial) stochastic optimization problems without
any dependencies among the random variables.

Our work also motivates the usage of approximation algorithms (for both,
the objective function and the optimization variant). Objective functions which
are #P-hard might still allow for efficient approximations. In this case, the class
NP would be an upper bound for the complexity of an approximative version of
the decision variant (the upper bound for the optimization variant would change
accordingly). On the other hand, inapproximability results for certain stochas-
tic optimization problems could even further strengthen the already existing
hardness results.

References

1. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer,
Berlin (1997)

2. de Campos, C., Stamoulis, G., Weyland, D.: A structured view on weighted counting
with relations to quantum computation and applications. Technical report, Elec-
tronic Colloquium on Computational Complexity, TR13-133 (2013)

3. Dyer, M., Stougie, L.: Computational complexity of stochastic programming prob-
lems. Math. Program. 106(3), 423–432 (2006)

4. Fortnow, L., Reingold, N.: PP is closed under truth-table reductions. Inf. Comput.
124(1), 1–6 (1996)

5. Jaillet, P.: A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Oper. Res. 36(6), 929–936 (1988)

6. Littman, M.L., Goldsmith, J., Mundhenk, M.: The computational complexity of
probabilistic planning. J. Artif. Intell. Res. 9(1), 36 (1998)

7. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8,
189–201 (1979)

The Computational Complexity of Stochastic Optimization 185

8. Weyland, D., Montemanni, R., Gambardella, L.M.: Hardness results for the proba-
bilistic traveling salesman problem with deadlines. In: Mahjoub, A.R., Markakis, V.,
Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 392–403. Springer,
Heidelberg (2012)

9. Weyland, D., Montemanni, R., Gambardella, L.M.: An improved heuristic for the
probabilistic traveling salesman problem with deadlines based on GPGPU. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013, Part
I. LNCS, vol. 8111, pp. 332–339. Springer, Heidelberg (2013)

A Hybrid Heuristic Approach Based
on a Quadratic Knapsack Formulation
for the Max-Mean Dispersion Problem

Federico Della Croce, Michele Garraffa(B), and Fabio Salassa

Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
michele.garraffa@polito.it

Abstract. The paper deals with the Max-Mean Dispersion Problem
(Max−MeanDP) belonging to the general category of clustering prob-
lems. The aim of such problems is to find a subset of a set which maxi-
mizes a measure of dispersion/similarity between elements. To tackle the
problem a two phases hybrid heuristic combining a mixed integer non
linear solver and a local branching procedure is developed. Computa-
tional results, performed on literature instances, show that the proposed
procedure outperforms the state-of-the-art approaches.

Keywords: Max-Mean dispersion problem · Quadratic programming ·
Matheuristics

1 Introduction

In recent years, several mathematical programming based heuristics have been
developed in order to solve complex combinatorial optimization problems. These
heuristics rely on a general purpose solver for the solution of subproblems which
can be more tractable. To this end, linear programming (LP) and mixed inte-
ger linear programming (MILP) models have been exploited so far, since they
can take advantage of the impressive effort in the improvements of the related
solvers. Moreover, there has been a significant evolution in the performances
on solving non linear programming (NLP) models, in particular in specific case
of the quadratic - quadratic integer programming (QP -QIP). In this paper,
we consider the Max-Mean Dispersion Problem (Max − MeanDP), also called
Equitable Dispersion Problem (EDP), and propose a hybrid heuristic approach
based on the solution of a QIP formulation. Max − MeanDP belongs to a gen-
eral category of clustering problems whose aim is to find a subset M of a set
N which maximizes a measure of dispersion/similarity of the elements in M .
More formally, suppose N is a set of elements with cardinality n, and D a
matrix whose components di,j indicate distance/proximity between item i ∈ N
and j ∈ N . We assume that the matrix D is symmetric, namely di,j = dj,i
≤i, j ∈ N , where the values on the diagonal are equal to 0 (di,i = 0, ≤i ∈ N).
When the measure of dispersion/similarity of the elements in M is the sum of

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 186–197, 2014.
DOI: 10.1007/978-3-319-09174-7 16

A Hybrid Heuristic Approach Based on a Quadratic Knapsack 187

the di,js between elements i, j ∈ M (that is
∑

i,j∈M di,j) and the cardinality
of subset M is given a priori (|M | = m with m predefined), then we have the
Max − SumDP [3] which is known to be strongly NP-Hard. When the mea-
sure of dispersion/similarity of the elements in M is the minimum of the di,js
between elements i, j ∈ M (that is mini,j∈M di,j) and the cardinality of subset
M is given a priori, we have the Max − MinDP [1,7], which is also known
to be strongly NP-Hard. Finally, when the measure of dispersion/similarity of
the elements in M is the average of the distances between elements i, j ∈ M

(that is
∑

i,j∗M di,j

|M |), but the cardinality of subset M is not given a priori, we
have the Max − MeanDP . It is of interest to exploit the relationship between
Max − SumDP and Max − MeanDP . Let OPTm=i(Max − SumDP) denote
the optimal solution value of Max−SumDP for m = i. The optimal solution of
Max−MeanDP can be simply computed by iteratively solving Max−SumDP

for m = 1, ..., n and subsequently taking the maximum OPTm=i(Max−SumDP)
i≤i ∈ {1, ..., n}.

This problem has a real importance in fields like architectural space planning
and analysis of social networks (as claimed in [4]), and in such domains di,js
can violate the triangular inequality di,j ≥ di,k + dk,j≤i, k, j ∈ N and the non
negativity condition di,j ≥ 0≤i, j ∈ N . To the authors’ knowledge, the state of
the art literature on Max − MeanDP is quite limited. In [6], Max − MeanDP
is shown to be strongly NP-Hard whenever di,js can take both positive and
negative values. Those authors have also presented a mixed integer non linear
programming (MINLP) formulation and an equivalent ILP formulation. In [4], a
randomized GRASP with path relinking is proposed for Max − MeanDP . The
presented computational experiments dealt with a set of real world instances
from a social network application. The authors also noted that a specific ILP
solver (CPLEX) iteratively applied to the ILP formulation of Max − SumDP
reached better performances than the same solver applied just once to the ILP
formulation of Max − MeanDP . In this paper, we propose a hybrid heuristic
procedure that exploits this feature and repeatedly solves a QIP formulation
of Max − SumDP within a matheuristic framework. The proposed approach
proved to be computationally superior to the approach proposed in [4].

2 Mathematical Formulations

Max − MeanDP has a straightforward non linear and fractional formulation,
as introduced in [6]. Define vector x ∈ {0, 1}n where, for each component xi, we
have xi = 1 if and only if element i is included in the subset M , otherwise 0.
The formulation below follows directly from the definition of Max − MeanDP :

MaxMeanDP. Trivial Formulation 1

max

∑n−1
i=1

∑n
j=i+1 di,jxixj

∑n
i=1 xi

(1)

188 F.D. Croce et al.

subject to:
n∑

i=1

xi ≥ 1 (2)

xi ∈ {0, 1}≤i ∈ N (3)

Since D is symmetric, it can be written in the following vectorial form:

min −
1
2x

TDx

uTx
(4)

subject to:
uTx ≥ 1 (5)

x ∈ {0, 1}n (6)

where uT =

n
︷ ︸︸ ︷
(1, 1, ..., 1), and, for convenience, the problem is converted into a

minimization problem where the sign of the objective is changed.
The following proposition indicates that if the integrality constraints are

relaxed, then the resulting mathematical program is not convex if no other
assumptions are given on the matrix D.

Proposition 1. The function f(x) : Γ → R:

f(x) = −
1
2x

TDx

uTx
(7)

where Γ = {x ∈ [0, 1]n : uTx ≥ 1}, is convex if and only if D ∀ 0.

Proof. Set uTx = y. The above function can be written as:

f(x, y) = −
1
2x

TDx

y

over the domain Γ∈ = {x ∈ [0, 1]n , y ∈ R : y = uTx ≥ 1}
The Hessian ∃2f(x, y) is equal to:

∃2f(x, y) = − 1
y3

[
Dy2 −Dxy

−(Dx)T y xtDx

]

= − 1
y3

D

[
y

−x

] [
y

−x

]T

Function f(x, y) is defined on the convex set Γ∈ and is convex if and only if
∃2f(x, y) ⇒ 0, thus if D ∀ 0.

With real data, the condition D ∀ 0 typically does not hold, hence the
problem given by the continuous relaxation of (4) – (6) is not convex in the
general case. NLP solvers can clearly be applied to this formulation (here we
used XPRESS-SLP by Fair-Isaac), as it is shown in Section 4, even though just
local maxima can be guaranteed.

On the other hand, the following straightforward QIP model holds for Max−
SumDP :

A Hybrid Heuristic Approach Based on a Quadratic Knapsack 189

MaxMeanDP. QIP Formulation 1

max
n−1∑

i=1

n∑

j=i+1

di,jxixj (8)

subject to:
n∑

i=1

xi = m (9)

xi ∈ {0, 1}≤i ∈ N (10)

Even if general convexity results do not hold also for the continuous relaxation
of this QIP, we note that for Max − SumDP , the formulation corresponds to a
0/1 quadratic knapsack problem (with equality constraint and unitary weights)
that has been much more tackled in the literature (see, e.g. [5]) and can be
efficiently tackled by means of QIP solvers, such as, for instance, CPLEX. In [4],
computational experiments dealt only with ILP formulations of Max−MeanDP
and Max − SumDP showing that the iterative solution of Max − SumDP was
superior to the one-shot solution of Max − MeanDP . In our preliminary tests
on Max − SumDP , we determined that CPLEX 12.5 was more efficient when
applied to QIP Formulation 2 rather than to its standard linearization indicated
in [4]. In fact, the latter required a computational time which is higher by more
than an order of magnitude on instances with n = 35. The purpose of this work
is to embed the repeated solution of the QIP formulation of Max − SumDP
into a heuristic framework for Max − MeanDP .

3 A Hybrid Heuristic Approach

In [4], it was shown that in their real world small instances the value of m associ-
ated with the optimal solution lies in an interval, such that there are high quality
solutions with values of m inside this interval. Although these promising intervals
may be disjoint in large instances, the basic conclusion is very interesting: if a set
C of good candidate values for m is selected, the use of the pseudo-polynomial
models can be restricted only to values of m in C. In the following, an interval,
i.e., the set of all possible integer values between two extreme points m1 and m2,
where m1,m2 ∈ N and 1 ≥ m1 ≥ m2 ≥ n, is indicated with [m1,m2].

The proposed hybrid algorithm for Max − MeanDP is composed by two
phases:

PHASE ONE. It consists in the selection of good candidate values of m to be
included in set C, while also providing good feasible solutions;

PHASE TWO. Given C, a matheuristic procedure is used in order to enhance
the quality of the solutions provided in PHASE ONE ≤m ∈ C.

Finally, the best solution is provided (whatever is the value of m).
PHASE ONE makes use of a decision tree with k branches (where k is a

parameter to be defined experimentally) to seek promising intervals. Since the

190 F.D. Croce et al.

subproblems with m = 1 and m = n can be solved to optimality in O(1) and
O(n), the search is restricted to [2, n − 1]. Such interval is split into k intervals
whose width differs by one unit at most, and an evaluation value is computed
for each of them. Then, the interval with the best evaluation is expanded at
each step, resulting in a best first expansion of the decision tree. The evaluation
of an interval [m1,m2] is performed by considering the quality of the solution
provided by the QIP solver after a fixed amount of time, using QIP Formulation
2 with m = m1 and m = m2. Thus, we evaluate a set of contiguous values of m
by computing two solutions at its extreme points and summing their objectives.
Call h(m) the result provided by the solver after Ts seconds. The evaluation
λ([m1,m2]) ∈ R of an interval [m1,m2] can be computed as:

λ([m1,m2]) = h(m1) + h(m2) (11)

A set S of feasible solutions for the Max − MeanDP is computed in PHASE
ONE, during the evaluations of intervals thanks to the computation of function
h. In other words, the output of PHASE ONE is not limited to the definition of
C, but for each value m∈ ∈ C a solution s with m = m∈ is computed, included
in S and provided as output.

Figure 1 shows how the decision tree is expanded during PHASE ONE, under
the assumption that gray nodes are associated to the intervals with the high-
est evaluation λ at each step. Only the initial three steps of the expansion
are depicted. Table 1 enumerates solutions computed in these steps in order
to expand nodes. These solutions are indicated with the notation x̂m≤ where m∈

is the value of m for the solution.

Table 1. Solutions computed in PHASE ONE

First step Second step Third step

x̂2 x̂120 x̂144

x̂100 x̂140 x̂148

x̂200 x̂160 x̂152

x̂300 x̂180 x̂156

x̂400

x̂499

In the example, PHASE ONE yields the following sets C and S after the
initial three steps.

C = {2, 100, 120, 140, 144, 148, 152, 156, 160, 180, 200, 300, 400, 499} (12)

S = {x̂2, x̂100, x̂120, x̂140, x̂144, x̂148, x̂152, x̂156, x̂160, x̂180, x̂200, x̂300, x̂400, x̂499}
(13)

In general, PHASE ONE ends as soon as the overall number of computed solu-
tions is greater than or equal to a constant γ, thus at its end |S| = γ.

A Hybrid Heuristic Approach Based on a Quadratic Knapsack 191

(a) First step

(b) Second step

(c) Third step

Fig. 1. An example which shows three steps of PHASE ONE

192 F.D. Croce et al.

In PHASE TWO, solutions in S are scanned in decreasing order of the objec-
tive. For each solution x̂m≤ , a local search is performed, considering as a neigh-
borhood of x̂m≤ the set Ψ(x̂m≤) of solutions whose Hamming distance from x̂m≤

is less than or equal to a parameter δ. This local search is carried out by running
the QIP solver on an extension of QIP formulation 2 for TLS seconds. Recall
that in QIP formulation 2 the value of m is fixed a priori, here m = m∈. The
following constraint is added to the formulation, in order to take into account
the Hamming distance constraint:

n∑

i=1

(xi(1 − x̂i) + x̂i(1 − xi)) ≥ 2δ (14)

At this point, the QIP solver can provide two different results:

– an improving solution x̂∗
m≤ ∈ Ψ(x̂m≤) is found and can be used as a starting

point for the subsequent local search;
– no improving solution is found in Ψ(x̂m≤).

In the first case, the enhancement procedure continues by discarding Con-
straint (14) and forcing the exploration of the remaining solution space.

To this end, the following constraint is kept:
n∑

i=1

(xi(1 − x̂i) + x̂i(1 − xi)) ≥ 2δ (15)

Accordingly, a new constraint that indicates the maximum Hamming dis-
tance from x̂∗

m≤ is added, the solver is run on the resulting model and the process
is iterated.

In the second case, Constraint (14) is replaced by:

2δ <

n∑

i=1

(xi(1 − x̂i) + x̂i(1 − xi)) ≥ 4δ (16)

and the solver is run again on the resulting model. If an improving solution
is found, the algorithm proceeds as in the first case. Otherwise, it moves to the
next initial solution in S.

This enhancing scheme takes inspiration from Local Branching algorithm by
Fischetti et al. [2]. The procedure stops when a time limit TTOT is reached, or
when the whole set S is scanned and the best solution is returned as output.
The pseudocode of the algorithm is shown in Algorithm 1.

4 Computational Experiments

We tested the proposed approach on the same instances introduced in [4]. Small
instances with n = 20, 25, 30, 35 are not considered since the QIP solver used
(CPLEX 12.5) applied to QIP Formulation 2 managed to solve them to optimal-
ity in few seconds. Thus, large instances (40 in total) where n = 150 and n = 500
are considered in the following. These instances belong to two categories:

A Hybrid Heuristic Approach Based on a Quadratic Knapsack 193

Algorithm 1. QIP Matheuristic
Compute x̂2 and x̂n by solving to optimality Max − SumDP for m = 1 and m = n
C ← {2, n − 1} S ← {x̂2, x̂n−1} S∈ ← ∅
Set I ← {[2, n − 1]}
Set counter ← 2
while counter < γ do

Extract best evaluated interval from I
Split the selected interval [m0, mk] in k intervals [m0, m1] · · · [mk−1, mk]
Compute k − 1 solutions x̂m1 · · · x̂mk−1 with m = m1 · · · mk−1 by running
the QIP solver for Ts seconds
I ← I ∪ {[m0, m1] · · · [mk−1, mk]}
C ← C ∪ {m1 · · · mk−1}
S ← S ∪ {x̂m1 · · · x̂mk−1}
counter ← counter + k − 1

end while
while S is not empty AND time limit TTOT is not reached do

Extract best solution x̂ in S
Compute x̂∈ with a Local Branching procedure starting from x̂
S∈ ← S∈ ∪ {x̂∈}

end while
Output: Best solution in S∈

Type I distances di,js are uniformly distributed in [−10, 10];
Type II distances di,js are uniformly distributed in [−10,−5] ∅ [5, 10].

Three approaches have been used to solve these instances:

– GRASP with path relinking proposed in [4];
– the QIP hybrid heuristic presented in the previous section;
– XPRESS-SLP non linear solver applied to Trivial Formulation 2.

The first approach was tested on an Intel Core Solo 1.4GHz with 3GB of
RAM, while the other two approaches were tested on an Intel Core i5-3550
3.30GHz with 4GB of RAM. The parameter settings of the hybrid heuristic
discussed in the previous section have been established after some preliminary
tests. In PHASE ONE, the number of subintervals k generated at each iteration is
set to 5. The time limit TS is set to

⌈
n

200

⌉
seconds, as this was the time typically

required by the QIP solver to find a good solution. The number of solutions
(and promising values for m) γ generated in PHASE ONE is equal to

⌈
n
10

⌉
,

such that all the most promising values for m can be selected. In PHASE TWO,
parameters are inherent to the Local Branching procedure. The parameters δ is
set to 3, while the time limit TLS for the local search steps is set to 3 second.
Finally, the overall time limit for the procedure is set to 60 seconds for instances
with n = 150 and to 600 seconds for instances with n = 500.

Table 2 and Table 3 report the results of the two phases of the algorithm, in
order to evaluate the effectiveness of the second phase. They show that PHASE
TWO leads to a sharp increase of the solution quality with respect to PHASE

194 F.D. Croce et al.

T
a
b
le

2
.
R
es
u
lt
s
o
n
[4
]’
s
in
st
a
n
ce
s

[4
]G

R
A
S
P

P
H
A
S
E

O
N
E

P
H
A
S
E

T
W

O
X
P
R
E
S
S
-S
L
P

In
st
a
n
ce
s

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

va
lu
e

(s
)

va
lu
e

(s
)

va
lu
e

(s
)

va
lu
e

(s
)

M
D
P
I1

1
5
0

4
5
,9
2

5
3

8
3

4
5
,8
9

5
9

1
9

4
5
,9
1

5
2

6
1

4
5
,5
5

5
2

5

M
D
P
I2

1
5
0

4
3
,3
3

4
1

7
2

4
3
,3
1

5
3

1
9

4
3
,3
9

4
2

6
4

4
3
,0
3

5
9

1
2

M
D
P
I3

1
5
0

3
9
,6
4

4
3

6
0

3
9
,8
9

4
6

1
9

3
9
,9
8

5
0

6
5

3
8
,3
8

5
8

1
3

M
D
P
I4

1
5
0

4
3
,7
0

5
7

7
6

4
3
,9
4

6
0

1
9

4
4
,0
4

5
8

6
1

4
3
,7
6

5
8

1
2

M
D
P
I5

1
5
0

4
2
,4
8

4
9

7
1

4
2
,4
8

4
9

1
9

4
2
,4
8

4
9

6
1

4
0
,6
3

5
5

1
1

M
D
P
I6

1
5
0

4
3
,6
7

4
0

7
3

4
3
,6
7

4
5

1
9

4
3
,7
2

4
3

6
9

4
3
,2
7

5
3

1
0

M
D
P
I7

1
5
0

4
6
,0
8

5
3

6
0

4
5
,9
9

5
1

1
9

4
6
,0
8

5
2

6
3

4
5
,4
4

5
2

8

M
D
P
I8

1
5
0

4
2
,3
9

4
5

6
1

4
2
,2
6

4
1

1
9

4
2
,4
4

4
3

6
2

4
1
,7
1

5
3

1
2

M
D
P
I9

1
5
0

4
2
,1
4

4
2

6
4

4
1
,8
2

4
9

1
9

4
1
,8
2

4
9

6
7

4
1
,4
9

5
3

2
2

M
D
P
I1
0
1
5
0

4
1
,8
0

4
1

5
5

4
1
,8
0

4
1

1
9

4
1
,8
0

4
1

5
2

4
1
,8
0

4
1

2
3

M
D
P
II
1
1
5
0

5
6
,7
2

4
9

6
2

5
7
,4
8

5
0

1
9

5
7
,4
8

5
0

6
1

5
5
,9
5

5
9

5

M
D
P
II
2
1
5
0

5
7
,8
0

4
7

6
1

5
7
,6
9

4
8

1
9

5
7
,8
2

4
6

5
9

5
6
,1
8

5
4

1
4

M
D
P
II
3
1
5
0

5
8
,2
8

4
5

5
9

5
8
,4
2

4
4

1
9

5
8
,4
2

4
4

6
5

5
7
,4
9

5
0

1
5

M
D
P
II
4
1
5
0

5
7
,3
8

4
7

5
9

5
6
,7
4

5
1

1
9

5
7
,2
9

4
8

6
4

5
5
,2
1

6
0

1
0

M
D
P
II
5
1
5
0

5
4
,2
3

4
2

4
8

5
4
,0
9

3
7

1
9

5
4
,1
4

3
5

6
2

5
1
,0
5

5
4

7

M
D
P
II
6
1
5
0

5
6
,4
4

4
9

5
8

5
6
,4
4

4
9

1
9

5
6
,4
4

4
9

6
1

5
5
,1
0

5
5

9

M
D
P
II
7
1
5
0

5
8
,8
9

4
8

6
1

5
8
,4
7

4
9

1
9

5
8
,8
8

4
9

6
4

5
7
,6
2

5
4

1
0

M
D
P
II
8
1
5
0

5
7
,9
7

5
4

6
6

5
7
,9
7

5
4

1
9

5
7
,9
7

5
4

5
9

5
7
,9
7

5
4

1
4

M
D
P
II
9
1
5
0

5
8
,3
0

4
2

5
6

5
8
,0
9

4
2

1
9

5
8
,3
0

4
2

6
6

5
5
,8
4

5
2

9

M
D
P
II
1
0
1
5
0

5
6
,9
2

3
9

5
5

5
6
,1
8

4
1

1
9

5
7
,1
8

4
1

6
2

5
4
,2
5

5
2

2
0

A Hybrid Heuristic Approach Based on a Quadratic Knapsack 195

T
a
b
le

2
.
(C

o
n
ti
n
u
ed
).

[4
]G

R
A
S
P

P
H
A
S
E

O
N
E

P
H
A
S
E

T
W

O
X
P
R
E
S
S
-S
L
P

In
st
a
n
ce
s

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

va
lu
e

(s
)

va
lu
e

(s
)

va
lu
e

(s
)

va
lu
e

(s
)

M
D
P
I1

5
0
0

7
8
,6
0

1
5
2

7
1
6

7
9
,9
2

1
5
5

1
7
1

8
1
,2
5

1
6
0

6
1
1

7
7
,2
3

1
7
5

1
3
5

M
D
P
I2

5
0
0

7
6
,8
7

1
5
0

6
8
2

7
6
,6
1

1
7
6

1
7
1

7
7
,4
5

1
5
4

6
3
8

7
5
,1
7

1
7
7

2
6
2

M
D
P
I3

5
0
0

7
5
,6
9

1
2
8

6
6
8

7
4
,6
8

1
6
5

1
7
1

7
5
,3
1

1
4
5

6
0
2

7
3
,8
6

1
7
2

1
8
2

M
D
P
I4

5
0
0

8
1
,8
1

1
6
6

6
4
7

8
1
,3
3

1
6
3

1
7
1

8
2
,2
8

1
4
6

6
0
4

7
9
,8
9

1
8
5

2
7
7

M
D
P
I5

5
0
0

7
8
,5
7

1
4
0

6
8
3

7
9
,3
0

1
4
3

1
7
1

8
0
,0
1

1
4
7

6
0
8

7
8
,7
5

1
7
0

3
3
9

M
D
P
I6

5
0
0

7
9
,6
4

1
5
6

7
3
2

8
0
,4
6

1
5
2

1
7
0

8
1
,1
2

1
4
9

6
2
4

7
7
,4
0

1
6
9

2
4
6

M
D
P
I7

5
0
0

7
5
,5
0

1
4
6

6
0
7

7
6
,8
6

1
5
9

1
7
1

7
8
,0
9

1
4
3

6
0
8

7
4
,1
8

1
8
2

2
2
1

M
D
P
I8

5
0
0

7
6
,9
8

1
5
1

6
6
6

7
8
,6
0

1
7
9

1
7
1

7
9
,0
1

1
6
8

6
1
1

7
8
,2
2

1
7
6

2
9
4

M
D
P
I9

5
0
0

7
5
,7
2

1
2
8

6
3
5

7
6
,5
1

1
5
9

1
7
1

7
6
,9
8

1
6
4

6
0
3

7
5
,4
5

1
7
5

3
1
7

M
D
P
I1
0
5
0
0

8
0
,3
8

1
3
7

8
4
9

8
0
,6
1

1
4
3

1
7
1

8
1
,2
4

1
3
7

6
1
7

8
0
,0
9

1
5
9

3
7
0

M
D
P
II
1
5
0
0

1
0
8
,1
5

1
6
5

7
6
6

1
0
8
,4
9

1
6
2

1
7
1

1
0
9
,1
6

1
7
0

6
1
2

1
0
7
,7
8

1
7
4

2
3
4

M
D
P
II
2
5
0
0

1
0
3
,2
9

1
2
1

6
5
6

1
0
3
,4
5

1
1
2

1
7
1

1
0
5
,0
6

1
5
8

6
0
8

1
0
3
,4
6

1
6
9

2
7
5

M
D
P
II
3
5
0
0

1
0
6
,3
0

1
4
0

7
1
0

1
0
6
,2
4

1
5
9

1
7
1

1
0
7
,6
4

1
5
8

6
1
3

1
0
1
,7
4

2
0
6

2
6
7

M
D
P
II
4
5
0
0

1
0
4
,6
2

1
5
4

7
2
5

1
0
3
,8
3

1
6
9

1
7
1

1
0
5
,3
7

1
6
3

6
1
1

1
0
1
,0
1

1
9
7

1
1
1

M
D
P
II
5
5
0
0

1
0
3
,6
1

1
4
9

7
0
7

1
0
5
,9
1

1
6
4

1
7
1

1
0
6
,3
7

1
6
1

6
1
4

1
0
3
,8
5

1
8
2

2
5
3

M
D
P
II
6
5
0
0

1
0
4
,8
1

1
5
8

7
1
3

1
0
4
,0
9

1
6
3

1
7
1

1
0
5
,5
2

1
7
2

6
2
3

1
0
2
,5
7

1
6
9

2
2
9

M
D
P
II
7
5
0
0

1
0
4
,5
0

1
4
8

6
2
6

1
0
4
,9
4

1
5
1

1
7
1

1
0
6
,6
1

1
4
2

6
0
7

1
0
3
,2
6

1
8
1

3
3
5

M
D
P
II
8
5
0
0

1
0
0
,0
2

1
3
5

6
0
9

1
0
3
,2
8

1
5
6

1
7
1

1
0
3
,4
1

1
5
4

6
1
7

9
9
,2
8

1
7
8

2
4
5

M
D
P
II
9
5
0
0

1
0
4
,9
3

1
3
0

6
3
6

1
0
5
,3
3

1
3
8

1
7
1

1
0
6
,2
0

1
4
2

6
0
1

1
0
4
,5
8

1
7
7

2
3
9

M
D
P
II
1
0
5
0
0

1
0
3
,5
0

1
4
4

6
4
9

1
0
2
,8
8

1
5
0

1
7
1

1
0
3
,7
9

1
5
0

6
2
3

1
0
2
,1
3

1
7
6

4
2
8

196 F.D. Croce et al.

T
a
b
le

3
.
A
v
er
a
g
e
re
su
lt
s
o
n
[4
]’
s
in
st
a
n
ce
s
g
ro
u
p
ed

b
y
si
ze

a
n
d
ty
p
e

[4
]
G
R
A
S
P

P
H
A
S
E

O
N
E

P
H
A
S
E

T
W

O
X
P
R
E
S
S
-S
L
P

In
st
a
n
ce
s

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

b
es
t

m
ti
m
e

va
lu
e

(s
)

va
lu
e

(s
)

va
lu
e

(s
)

va
lu
e

(s
)

T
y
p
e
I

6
0
,5
5

9
5
,9
0

3
7
8
,1
0

6
0
,8
0

1
0
4
,4
0

9
4
,9
5

6
1
,2
2

9
9
,6
0

3
3
7
,5
5

5
9
,7
7

1
1
3
,7
0

1
3
8
,4
5

T
y
p
e
II

8
0
,8
3

9
5
,3
0

3
6
9
,0
8

8
1
,0
0

9
9
,4
5

9
5
,0
0

8
1
,6
5

1
0
1
,4
0

3
3
7
,6
0

7
9
,3
2

1
1
7
,6
5

1
3
6
,4
3

n
=

1
5
0

5
0
,2
0

4
6
,3
0

6
3
,0
7

5
0
,1
3

4
7
,9
5

1
9
,0
0

5
0
,2
8

4
6
,8
5

6
2
,4
0

4
9
,0
9

5
3
,9
0

1
2
,0
3

n
=

5
0
0

9
1
,1
8

1
4
4
,9
0

6
8
4
,1
1

9
1
,6
6

1
5
5
,9
0

1
7
0
,9
5

9
2
,5
9

1
5
4
,1
5

6
1
2
,7
5

9
0
,0
0

1
7
7
,4
5

2
6
2
,8
6

A Hybrid Heuristic Approach Based on a Quadratic Knapsack 197

ONE. As a matter of fact, PHASE ONE of our hybrid heuristic achieves the best
heuristic solution 6 times out of 40 on this specific dataset. At the same time,
the best result is achieved 33 times out of 40 when PHASE TWO is subsequently
executed.

The solutions provided by XPRESS-SLP have a low quality, which indicates
that the solver gets generally stuck in local maxima. The GRASP with path
relinking approach proposed in [4] is dominated by our heuristic both for n = 150
and n = 500. However, Table 3 shows that the dominance increases as the
instance size grows. In fact, PHASE TWO provides the best solution in 19
instances over 20 when n = 500. Table 3 also shows that the type of the instance
does not affect the performances of the three approaches.

5 Conclusions

The paper proposed a two phase matheuristic for the Max−MeanDP . The first
phase selects a set of promising values for the cardinality of unknown subset and
generates a pool of initial solutions. The second phase enhances the quality of the
solutions provided by the previous phase. As shown above, this hybrid heuristic
globally outperforms the best heuristic in the state of the art. In our opinion, the
quality of the results indicated that QIP models and related solvers can also be
taken into consideration in the design of matheuristics for other combinatorial
optimization problems with a QIP formulation. Since the QIP solver does not
provide tight upper bounds, a future development of this work is to determine a
bounding method that allows to prune suboptimal solutions, in order to improve
the overall performances of the heuristic presented.

References

1. Della Croce, F., Grosso, A., Locatelli, M.: A heuristic approach for the max-min
diversity problem based on max-clique. Comput. Oper. Res. 36, 2429–2433 (2009)

2. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–47 (2003)
3. Ghosh, J.B.: Computational aspects of the maximum diversity problem. Oper. Res.

Lett. 19, 175–181 (1996)
4. Mart́ı, R., Sandoya, F.: GRASP and path relinking for the equitable dispersion

problem. Comput. Oper. Res. 40, 3091–3099 (2013)
5. Pisinger, D.: The quadratic knapsack problem - a survey. Discrete Appl. Math.

155, 623–648 (2007)
6. Prokopyev, O.A., Kong, N., Martinez-Torres, D.L.: The equitable dispersion prob-

lem. Eur. J. Oper. Res. 197, 59–67 (2009)
7. Resende, M.G.C., Mart́ı, R., Gallego, M., Duarte, A.: GRASP and path relinking

for the maxmin diversity problem. Comput. Oper. Res. 37, 498–508 (2010)

A Constraint Generation Approach
for the Two-Machine Flow Shop Problem

with Jobs Selection

Federico Della Croce1,2(B), Christos Koulamas3, and Vincent T’kindt4

1 D.A.I., Politecnico di Torino, Torino, Italy
2 CNR, IEIIT, Torino, Italy

federico.dellacroce@polito.it
3 College of Business, Florida International University,

Florida, USA
koulamas@fiu.edu

4 Université Francois-Rabelais, CNRS, LI EA 6300,
OC ERL CNRS 6305, Tours, France

tkindt@univ-tours.fr

Abstract. We consider a job selection problem in a two-stage flow shop.
The objective is to select the best job subset with a given cardinality to
minimize the makespan. This problem is known to be ordinary NP -
hard and the current state of the art algorithms can solve instances with
up to 3000 jobs. We introduce a constraint generation approach to the
integer linear programming (ILP) formulation of the problem according
to which the constraints associated with nearly all potential critical paths
are relaxed and then only the ones violated by the relaxed solution are
sequentially reinstated. This approach yields a new solution algorithm
capable of solving problems with up to 100000 jobs or more.

1 Introduction

We consider a job selection problem in a two-stage flow shop according to the
following specifications. There is a set of n jobs j, j = 1, ...n all of them available
at time zero; each job j must be processed non-preemptively with known integer
processing times aj , bj on two continuously available machines M1,M2 respec-
tively where the order of processing is M1 ∈ M2 for all jobs. Each machine can
process at most one job at a time and the two operations of each job cannot
overlap. The flow shop is available for some amount of time d; the goal is to
maximize the number of selected jobs to be completed while the flow shop is
available and also to minimize the length of the total availability period.

When the availability period is preset, for instance when there are preset daily
operating hours, a natural application of this problem is as follows. Since the
jobs cannot be preempted, the shop manager should ensure that an appropriate
subset of the available jobs is selected each day in order to maximize the number
of jobs completed before the shop closes. The remaining jobs become available for

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 198–207, 2014.
DOI: 10.1007/978-3-319-09174-7 17

A Constraint Generation Approach for the Two-Machine Flow 199

processing on the next day and so on. On the other hand, if the number of jobs
to be processed is given, then the problem reduces to selecting the appropriate
subset of jobs such that the length of the availability period d is minimized.

It is implicitly assumed that all jobs have comparable values. If this is not
the case, then a job-specific rejection cost should be assigned to each job and
the job selection problem becomes the corresponding scheduling problem with
job rejection. The literature on shop scheduling problems with job rejection is
reviewed by Shabtay et al. [9]. It is mentioned there that most two-stage shop
problems with job rejection are NP-hard even with the equal job rejection cost
assumption.

When the availability period d is preset, using the extended three-field nota-
tion [10], the considered flow shop problem is denoted as F2|dj = d|nT . When
the number of jobs to be selected is given in advance and the aim is to find
the minimum value of d, the considered flow shop problem is denoted F2|dj =
d, unknown d|φ(d/nT). Finally, if both the number of selected jobs must be
maximized and the length of the availability period must be minimized and the
goal is to search for the non dominated solutions, then the considered flow shop
problem is denoted as F2|dj = d, unknown d|d, nT . Jozefowska et al. [5] showed
that the F2|dj = d|nT problem is ordinary NP -hard and proposed an O(nd2)
pseudo-polynomial dynamic programming (DP) algorithm for the F2|dj = d|nT

problem (and for a more general weighted version). Della Croce et al. [3] pro-
posed a branch and bound algorithm for the F2|dj = d|nT problem. They also
observed that the problem is solvable in O(n log n) time when the jobs and the
machines are both ordered because in that case the problem resembles its single-
machine counterpart. The ordering of the machines implies that all jobs have
their smallest (largest) processing time on the same machine; the ordering of
the jobs implies that if ai < aj for any two jobs i, j, then bi < bj as well. Pan-
walkar and Koulamas [7] considered the less-restrictive case of ordered machines
(without ordered jobs) and proposed an O(n2) algorithm for the F2|dj = d|nT

problem.
It is of interest to exploit the relationship between the bi-criterion F2|dj =

d|d, nT problem and the corresponding single-objective F2|dj = d|nT problem
in which the common due date d is given. A solution for the F2|dj = d|d, nT

problem can be used to solve the F2|dj = d|nT problem for any value of d.
Alternatively, if the F2|dj = d|nT problem is NP-hard, then the F2|dj = d|d, nT

problem is also NP-hard as shown in [11]. Tkindt et al. [11] showed that the
F2|dj = d|d, nT problem is solvable in O(nD2) time by implementing the DP
algorithm for the F2|dj = d|nT problem where D denotes the makespan of the
corresponding F2||Cmax problem.

Tkindt et al. [11] proposed an integer linear programming (ILP) formulation
and a branch & bound (B&B) algorithm for the F2|dj = d, unknown d|φ(d/nT)
problem capable of solving problems with up to 3000 jobs. Then, by applying an
φ-constraint approach on the number of tardy jobs that repeatedly solved O(n)
instances of the F2|dj = d, unknown d|φ(d/nT) problem, they were able to solve
to optimality the F2|dj = d|d, nT problem with up to 500 jobs.

200 F. Della Croce et al.

The objective of this paper is to show that the knapsack-like ILP formulation
proposed in [11] for the F2|dj = d, unknown d|φ(d/nT) problem can be efficiently
tackled by means of a constraint generation approach. As mentioned in [2], in
order to solve linear programming models with a large number of constraints,
constraint generation techniques (see also [6] and [8]) are often used where a
relaxation of the formulation containing only a subset of the constraints is first
solved. Then a separation procedure is applied which adds to the relaxation
any inequality of the formulation that is violated by the current solution. The
process is iterated until no violated inequality can be found. In this work, all
linear programming formulations share the feature of having a linear number of
constraints where only a small part of these constraints is necessary to reach
the optimal solution of the original problem. The computational results reveal a
dramatic improvement in the performances with respect to the literature.

Our approach yields a new solution algorithm capable of solving problems
with up to 100000 jobs and more. It should be pointed out that, to the best of
our knowledge, the largest size of an NP-hard scheduling problem solvable by an
ILP formulation is the 1||nwT problem. According to [1], problem instances with
up to 50000 jobs can be handled by their algorithm. Our constraint generation
approach doubles the problem size in a two-stage shop environment compared
to a single machine. Correspondingly, by means of the φ-constraint approach the
limit size of the F2|dj = d|d, nT problems instances solvable to optimality is also
strongly increased.

2 ILP Formulation and a Constraint Generation
Approach

2.1 The ILP Formulation for the F2|dj = d, unknown d|α(d/nT)
Problem

Let ai (bi) denote the processing time of job i on machine M1 (M2). We recall
here the integer programming formulation of the F2|dj = d, unknown d|φ(d/nT)
problem (hereafter denoted F2 for conciseness) proposed in [11] where it is
assumed that the jobs are indexed and ordered using Johnson’s algorithm (sched-
ule first the jobs with ai ≤ bi in nondecreasing order of ai and then the jobs
with ai > bi in nonincreasing order of bi [4]). Notice that, if the set Ω of the
(n − φ) early jobs is fixed, then the optimal value of the common due date d is
given by d = Cmax(J(Ω)) where J refers to Johnson’s algorithm. Let d denote
the unknown common due date and φ denote the given number of late jobs. Let
us associate to each job i a binary variable xi.

The ILP model is as follows.

min d (1)
n∑

i=1

xi = n − φ (2)

A Constraint Generation Approach for the Two-Machine Flow 201

a1x1 +

n∑

i=1

bixi ≤ d (3)

n∑

i=1

aixi + bnxn ≤ d (4)

j∑

i=1

aixi +
n∑

i=j

bixi ≤ d ∀j = 2, ..., n − 1 (5)

xi ∈ {0, 1} ∀i ∈ 1, ..., n (6)

Here, constraint (2) implies that there are exactly φ late jobs while constraints
(3–5) are critical-path constraints which define the value of the common due date
d. Notice that d is always determined by the sum of the processing times of jobs
1, .., k on the first machine plus the sum of the processing times of jobs k, .., n
on the second machine where k depends on the selected early jobs and therefore
constraints (3–5) consider all possible values of k with 1 ≤ k ≤ n. Notice that in
the critical path constraints (3–5), we explicited constraint (3) corresponding to
k = 1 and constraint (4) corresponding to k = n. Finally constraints (6) indicate
that the xi variables are binary. We point out that the capacity constraints on
machines M1 and M2 (

∑n
i=1 aixi ≤ d and

∑n
i=1 bixi ≤ d, respectively) are

not included in the model as they are dominated by constraints (4) and (3),
respectively.

In [11], the proposed exact procedure failed to solve large size problems
mainly due to the presence of constraints (5) that generated O(n2) nonzeroes
in the constraints matrix inducing an out-of-memory status of the procedure if
problems with more than 3000 variables were considered.

In this paper, a constraint generation approach is considered where, initially,
constraints (5) are discarded. To this extent, it is of interest to determine the
relative error between the optimal solution of the above model with and with-
out constraints (5). Let OPT (F2) be the optimal solution of problem F2 and
OPT (F2rel) be the optimal solution of the relaxed problem F2rel where con-
straints (5) are omitted. The following property holds.

Proposition 1. OPT (F2)
OPT (F2rel)

≤ 2 and this ratio is asymptotically tight.

Proof. To see that the inequality holds, it is sufficient to sum up constraints (3–
4). Then, we obtain

∑n
i=1(ai + bi)xi ≤ 2d − a1x1 − bnxn, that is the sum of the

processing times on both machines of the early jobs is inferior to 2d. But then for
any feasible solution of problem F2rel with value d′, there exists a corresponding
feasible solution of problem F2 with value < 2d′, hence OPT (F2)

OPT (F2rel)
≤ 2. The

following instance with three jobs and φ = 1 provides an asymptotically tight
bound. Let a1 = b1 = σ, a2 = M , b2 = M − σ, a3 = M2 and b3 = M − 2σ with
σ << M . Then, in the optimal solution of problem F2, the selected jobs are 1, 2
with job 1 preceding job 2, hence, OPT (F2) = a1 +a2 +b2 = σ+M +(M −σ) =
2M . Also, for problem F2rel, the variables set to 1 are x1, x2. Correspondingly,

202 F. Della Croce et al.

both constraints (3) and (4) are tight with d = M +σ and OPT (F2rel) = M +σ.
Hence the ratio OPT (F2)

OPT (F2rel)
∈ 2 for very large M and small σ suitably chosen. ≥�

2.2 A Constraint Generation Approach

The model of Subsect. 2.1 presents a number of constraints which is linear in
the number of jobs. Particularly, constraints (5) induce both a linear number
of constraints and a quadratic number of nonzero elements. The ILP solvers
run out of memory whenever instance sizes exceeding 3000 jobs are considered
[11]. On the other hand, we have seen that by removing constraints (5), just a
constant number of constraints and a linear number of nonzeroes are present.
Also, the optimal solution value of the original problem (in terms of worst case
analysis) is at most twice the optimal solution value of the relaxed problem with
the related constraints removed.

We propose a constraint generation approach solving initially problem F2rel
and then considering a separation procedure adding to the relaxation any
inequality of the original formulation that is violated by the current solution.
Preliminary testing showed that it was more effective to add just one constraint
(namely the most violated) at a time rather than the violated constraints all
together. Notice that, by applying Johnson’s algorithm to the set of jobs j such
that xrel

j = 1 where xrel
j is the value of xj in the optimal solution of F2rel, we can

derive in linear time the critical job and corrrespondingly the related constraint.
Whenever the optimal solution of the relaxed problem is reached, the constraint
generation procedure checks if there is any violated constraint and in that case
adds the most violated one and iterates until no more violated constraints are
present. A pseudo-code of the approach is depicted in Algorithm 1.

Algorithm 1. A Constraint Generation Algorithm
1: End=False
2: while !End do
3: Solve the ILP of F2rel: x̄ is its solution and OPT (F2rel) its value
4: Compute d(x̄) the optimal value of the ILP of F2 with added constraints x = x̄
5: if (d(x̄) = OPT (F2rel)) then
6: End=True
7: else
8: Let C be the constraint giving d(x̄) in the ILP of F2 for x̄

// (C is the most violated constraint)
9: Add C to F2rel

10: end if
11: end while
12: return x̄ as the optimal solution of F2

A Constraint Generation Approach for the Two-Machine Flow 203

3 Computational Experiments

3.1 Experimentation Plan

A set of experimentations have been conducted to evaluate the efficiency of the
constraint generation approach for the considered flow shop problem with job
selection. We have considered two kinds of experimentations. First, for a given
number of late jobs φ we have compared the constraint generation approach,
referred to as IPCG, with state-of-the-art algorithms, whenever existing, and
the solution by a mathematical solver of the original IP models, referred to as
IP. The values of φ have been taken in the set {n − 5, n − 10, n

2 }.
Next, we focus on the enumeration of strict Pareto optima for the common due
date d and the number of late jobs nT . T’kindt et al. ([11]) showed that there are
exactly (n+1) strict Pareto optima. For the F2|dj = d, d unknown|d, nT problem,
we enumerate the set of strict Pareto optima by a simple algorithm which, for
each value φ ∈ {0, 1, ..., n}, solves the corresponding F2|dj = d, d unknown, nT

= φ|d problem by the constraint generation approach. The optimal solutions of all
these φ-constraint problems constitute the set of strict Pareto optima.

All the testings have been done on a PC Computer Intel i5 with 4 cores of
2.6 GHz and 8 GB of RAM. Whenever we solved an IP model we used CPLEX
12.2 mathematical solver.

The F2|dj = d, unknown d|φ(d/nT) problem has been solved by T’kindt et
al. ([11]) who provided a dedicated branch-and-bound algorithm, denoted by
BaB. They showed that BaB outperformed IP and that the hardest instances
are obtained for φ = n

2 for the φ-constraint problem.
A set of random instances have been generated as in [11]. All processing times
ai and bi have been drawn at random between 10 and 100 using an uniform law.
For each problem size n ∈ {10000; 20000; ...; 100000}, 30 instances have been
generated.

First, let us compare the state-of-the-art solution approaches BaB and IP
to IPCG on the hardest instances. The results are provided in Table 1. For each
algorithm, the average and maximum CPU times are given in seconds, referred
to as tavg and tmax, and the average and maximum number of nodes, referred to
as navg and nmax, explored to solve the instances. Notice that we limit ourselves
to instances with up to 3000 jobs in size since for higher instances, neither BaB
nor IP were able to find the optimal solutions. Table 1 shows that, even with
the improvement of the efficiency of mathematical solvers, BaB still outperforms
IP . However, both algorithms are strongly outperformed by IPCG: for instances
with 3000 jobs in size, BaB requires on average 42.46 seconds whilst IPCG
requires 0.1 second. Both BaB and IP failed to solve instances with 4000 jobs.
As the latter solves the IP model (1–6), the number of non-zero coefficients in
the constraints lead to a model too large in memory. For BaB, the problem is
similar since it solves the LP relaxation of model (1–6) during its processing. In
the remainder of this section we only focus on algorithm IPCG.

Now, let us turn to the evaluation of IPCG on large instances. Tables 2, 3 and
4 present the results obtained for different values of φ. The same information is

204 F. Della Croce et al.

Table 1. Solving the flowshop problem with φ = n
2
: comparison with state-of-the-art

algorithms

n IP BaB
tavg tmax navg nmax tavg tmax navg nmax

1000 4.70 10 128.26 512 1.90 4 112.53 347
2000 20.23 45 285.03 663 11.13 17 136.86 379
3000 54.06 151 439.60 978 42.46 189 403.80 4097
4000 Out of Memory Out of Memory

n IPCG
tavg tmax navg nmax

1000 0.03 1 40.13 166
2000 0.06 1 23.96 220
3000 0.10 1 34.60 202
4000 0.10 1 34.30 174

Table 2. Solving the flowshop problem with φ = n
2

n IPCG

tavg tmax navg nmax itavg itmax

10000 0.46 1 36.06 174 1.0 1

20000 0.76 2 33.96 228 1.0 1

30000 1.36 5 35.66 331 1.0 1

40000 3.03 8 75.26 330 1.0 1

50000 6.13 16 181.86 600 1.0 1

60000 5.96 12 141.03 450 1.0 1

70000 6.26 10 160.20 527 1.0 1

80000 8.26 16 161.80 442 1.0 1

90000 9.33 17 144.66 400 1.0 1

100000 11.00 27 198.46 934 1.0 1

provided as in Table 1 with the addition of columns itavg and itmax which provide
the average and maximum number of iterations performed, i.e. the number of IP
models solved. Table 2 shows that IPCG provides very good results for φ = n

2 :
for the largest tested instances the average CPU time is 11 s and less than 200
nodes are explored. Besides, columns itavg and itmax show that only 1 iteration
was necessary to solve the instances which means that no constraint has been
added: an optimal solution of the IP model with only the critical paths going
through the first and last jobs was always an optimal solution of the full IP.

A Constraint Generation Approach for the Two-Machine Flow 205

Tables 3 and 4 show the results when we impose 10 and 5 early jobs. Surpris-
ingly, these instances are even harder, for IPCG, than the case φ = n

2 . However,
they still remain solvable in less than 210 s on the average for 100000 jobs. The
average number of iterations done is, in contrast to what happened for the case
φ = n

2 , is relatively important: for φ = (n − 5) and instances with 100000 jobs,
230.90 iterations have to be done on the average. Equivalently saying, almost
230 critical path constraints have been added on the average.

Table 3. Solving the flowshop problem with φ = n − 10

n IPCG

tavg tmax navg nmax itavg itmax

10000 0.40 1 117.30 696 14.76 27

20000 1.46 4 372.63 1478 29.90 43

30000 3.80 8 678.76 2119 47.30 70

40000 8.73 16 1320.23 5011 68.80 89

50000 16.83 26 1872.10 6793 87.46 115

60000 36.10 62 3639.26 22673 116.70 149

70000 69.06 105 4513.16 26700 138.50 176

80000 107.66 140 5398.03 30913 167.63 194

90000 140.23 264 6657.63 15460 194.66 227

100000 208.33 311 9512.46 15310 219.80 253

Table 4. Solving the flowshop problem with φ = n − 5

n IPCG

tavg tmax navg nmax itavg itmax

10000 0.43 1 141.13 606 23.66 38

20000 1.23 2 383.13 842 41.43 55

30000 3.40 5 599.10 1150 63.26 84

40000 8.10 11 1108.20 2065 85.60 101

50000 16.36 23 1468.93 2842 110.66 130

60000 32.16 44 2021.63 3455 137.06 156

70000 54.73 73 2797.33 4621 160.63 182

80000 86.20 112 4168.40 7088 183.33 203

90000 133.43 190 6139.33 10678 206.76 232

100000 196.86 254 9663.96 16279 230.90 258

Regarding the enumeration of the set of strict Pareto optima, the results
are provided in Table 5. Columns tavg and tmax give the average and maximum

206 F. Della Croce et al.

Table 5. Enumeration of the strict Pareto optima for the flowshop problem

n IPCG

tavg tmax navg nmax itavg itmax Mitavg Mitmax

500 32.30 50 8475.16 10557 600.70 789 12.53 23

1000 62.86 115 22413.10 40688 1131.03 1697 19.66 39

1500 152.50 269 33811.70 39205 1647.36 1976 25.76 48

CPU time, in seconds, required to perform the enumeration. Columns navg and
nmax give the average and maximum total number of nodes explored by CPLEX
when solving all the φ-constraint problems. Similarly, columns itavg and itmax

provide the average and maximum total number of iterations done (number of
added constraints). At last, columns Mitavg and Mitmax present the average and
maximum number of iterations in the worst case: for a given instance, the worst
case is given by the value of φ leading to the maximum number of iterations
among all φ values. Then, for instance, Mitavg is the average value over all
instances of that worst case.

The results presented in Table 5 show that the enumeration of the strict
Pareto optima can be done very efficiently: for instances with 1500 jobs, about
150 seconds are required on the average. Besides, it is important to remember
that there are exactly (n + 1) strict Pareto optima. Therefore, the time spent
to enumerate them is mainly influenced by the number of such optima. From
the columns itavg and itmax we can derive that few critical path constraints
are added: for instances with 1500 jobs, in the worst case, 1976 iterations are
done. However, as 1501 φ-constraint problems are solved, we can deduce that 475
constraints have been added along the enumeration process. Columns Mitavg
and Mitmax confirm that conclusion since, for instances with 1500 jobs, at most
47 constraints have been added when solving an φ-constraint problem.

4 Conclusions

We considered a job selection problem in a two-stage flow shop with the objec-
tive of selecting the best job subset with a given cardinality to minimize the
makespan. We introduced a constraint generation approach to the ILP formu-
lation of the problem according to which the constraints associated with nearly
all potential critical paths are relaxed and then only the ones violated by the
relaxed solution are sequentially reinstated. Our approach yielded a new gener-
ation of solution algorithms capable of solving problems with up to 100000 jobs
and more. The approach seems to be extendable to the other two well known
two-stage shops, namely job shop and open shop that share with the flow shop
the characteristic of being modeled as a multidimensional knapsack-like problem.

A Constraint Generation Approach for the Two-Machine Flow 207

References

1. Baptiste, P., Della Croce, F., Grosso, A., Tkindt, V.: Sequencing a single machine
with due dates and deadlines: an ILP-based approach to solve very large instances.
J. Sched. 13, 39–47 (2010)

2. Ben-Ameur, W., Neto, J.: A constraint generation algorithm for large scale linear
programs using multiple-points separation. Math. Program. A 107, 517–537 (2006)

3. Della Croce, F., Gupta, J.N.D., Tadei, R.: Minimizing tardy jobs in a flowshop
with common due date. Eur. J. Oper. Res. 120, 375–381 (2000)

4. Johnson, S.: Optimal two and three stage production schedules with set-up time
included. Nav. Res. Logist. Q. 1, 61–68 (1954)

5. Jozefowska, J., Jurisch, B., Kubiak, W.: Scheduling shops to minimize the weighted
number of late jobs. Oper. Res. Lett. 16, 277–283 (1994)

6. Junger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane
algorithms in combinatorial optimization. In: Cook, W., Lovasz, L., Seymour, P.
(eds.) Combinatorial Optimization. DIMACS series in discrete mathematics and
theoretical computer science, pp. 111–152. American Mathematical Society, Prov-
idence (1995)

7. Panwalkar, S.S., Koulamas, C.P.: An algorithm for the variable common due
date, minimal tardy jobs bicriteria two-machine flow shop problem with ordered
machines. Eur. J. Oper. Res. 211, 7–13 (2012)

8. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1988)

9. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection.
J. Sched. 16, 3–28 (2013)

10. Tkindt, V., Billaut, J.-C.: Multicriteria Scheduling: Theory, Models and Algo-
rithms. Springer, Heidelberg (2002)

11. Tkindt, V., Della Croce, F., Bouquard, J.L.: Enumeration of Pareto optima for
a flow shop scheduling problem with two criteria. INFORMS J. Comput. 19,
64–72 (2007)

Rectilinear Shortest Path and Rectilinear
Minimum Spanning Tree with Neighborhoods

Yann Disser1, Matúš Mihalák2, Sandro Montanari2(B), and Peter Widmayer2

1 Department of Mathematics, TU Berlin, Berlin, Germany
2 Department of Computer Science, ETH Zurich, Zurich, Switzerland

sandro.montanari@inf.ethz.ch

Abstract. We consider a setting where we are given a graph G = (R, E),
where R = {R1, . . . , Rn} is a set of polygonal regions in the plane.
Placing a point pi inside each region Ri turns G into an edge-weighted
graph Gp , p = {p1, . . . , pn}, where the cost of (Ri, Rj) ∈ E is the dis-
tance between pi and pj . The Shortest Path Problem with Neighborhoods
asks, for given Rs and Rt, to find a placement p such that the cost
of a resulting shortest st-path in Gp is minimum among all graphs Gp .
The Minimum Spanning Tree Problem with Neighborhoods asks to find
a placement p such that the cost of a resulting minimum spanning tree
is minimum among all graphs Gp . We study these problems in the L1

metric, and show that the shortest path problem with neighborhoods is
solvable in polynomial time, whereas the minimum spanning tree prob-
lem with neighborhoods is APX-hard, even if the neighborhood regions
are segments.

Keywords: Neighborhoods · Minimum spanning tree · Shortest path

1 Introduction

In computational geometry we typically assume to be able to estimate locations
of objects as exact points in the plane. In many real world applications, however,
obtaining this information without uncertainty might be unrealistic because of
noise or uncertain measurements; therefore, standard techniques and algorithms
cannot be applied.

A more realistic assumption is to consider, instead of exact points, uncer-
tainty (or neighborhood) regions in which we are assured the objects will lie. In
this setting, shapes and properties of geometric structures induced by the points
(i.e., convex hulls, minimum spanning trees, etc.) will vary with their placements
inside the regions. It then becomes crucial to inspect the best and worst pos-
sible placements for the considered application. Typically, these are placements
minimizing or maximizing a certain cost function of some geometric structure
induced by the placement points. In this paper, we study minimum spanning
trees and shortest paths under the assumption that the neighborhood regions
are rectilinear polygons, and distances are measured in the L1 metric.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 208–220, 2014.
DOI: 10.1007/978-3-319-09174-7 18

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 209

Several geometric optimization problems have been studied in the setting
“with neighborhoods”, such as the Traveling Salesman Problem [4,5] , the prob-
lems of finding a convex hull [8] or enclosing circle [9], or the Minimum Spanning
Tree Problem [2,8,11]. In these variants, one searches for a placement of points
inside the neighborhood regions such that the resulting cost of the geometric
structure induced by the points of the placement is as big or as small as pos-
sible. For example, the Minimum Spanning Tree Problem with Neighborhoods
(MSTN for short) asks for a placement of points, one inside each neighborhood
region, such that the cost of a Euclidean minimum spanning tree of these points
is smallest among all such placements. Löffler and van Kreveld showed [8] this
problem to be NP-hard when the neighborhood regions are squares (not neces-
sarily disjoint). Yang et al. [11] showed that when the neighborhood regions are
disjoint unit disks, the problem admits a PTAS (i.e., it can be approximated
arbitrarily well). Dorrigiv et al. [2] later proved APX-hardness of MSTN in L2

metric when the neighborhood regions are disjoint disks. They propose to study
the setting where the regions may consist of other shapes, such as line segments
or rectangles. Our results show that even if the regions consist of vertically or
horizontally aligned segments, the problem remains hard to approximate.

Another problem considered in the setting “with Neighborhoods” is the so-
called TouringPolygons. Given a sequence of simple polygons in the plane, a
start point s, and a target point t, TouringPolygons is the problem to find a
shortest tour that starts at s, visits the polygons in the given order, and ends at
t. This problem is solvable in polynomial time whenever the polygons are convex
and disjoint [3]. If the polygons are allowed to be non-convex and intersecting,
the problem is NP-hard for any metric Lp, p ∈ 1, unless the polygons are recti-
linear regions (not necessarily convex) and distances are measured with the L1

metric [3]. For several years, the complexity for the case of general non-convex
yet disjoint polygons has been open, which motivated the design of approxima-
tion algorithms [10]. Recently, Ahadi et al. [1] proved TouringPolygons to be
NP-hard for non-convex disjoint polygons for every metric Lp, p ∈ 1, even for
degenerate polygons composed of two line segments joint at a common endpoint
whose angles with the x-axis are in {0,±φ/4, φ/2}.

In this paper we study a generalization of TouringPolygons relaxing the
requirement to visit all polygons in a natural way. In addition to the set of poly-
gons, we are given a set of allowed traversals represented as a graph defined on
the polygonal regions. Given a start and a target polygon, we search for a path
of minimum length traversing the polygons accordingly with the edges of the
underlying graph. We call this the Shortest Path Problem with Neighborhoods,
SPN for short. In general the problem remains NP-hard, since TouringPoly-
gons is a special case where the graph is the path induced by the order in which
the polygons need to be visited. Our results show that SPN is solvable in poly-
nomial time for the L1 metric in case the polygons are rectilinear regions not
necessarily convex.

210 Y. Disser et al.

2 Shortest Path with Neighborhoods

Let G = (R, E) be a directed graph defined over a set of non-overlapping recti-
linear polygons R = {R1, . . . , Rn}. Placing a point pi inside each Ri turns G into
an edge-weighted graph Gp,p = {p1, . . . , pn}, where the cost of (Ri, Rj) ≤ E is
the L1 distance between pi and pj . Given a pair s, t ≤ {1, . . . , n}, the Shortest
Path Problem with Neighborhoods, or SPN, asks for a placement p such that the
cost of a shortest path between Rs and Rt in Gp is smallest among all possible
placements. We call such a placement an optimum SPN placement.

The SPN problem can be solved trivially if (Rs, Rt) ≤ E. In this case, a
shortest st-path is the edge (Rs, Rt), and an optimum placement minimizes the
length of this edge. If (Rs, Rt) /≤ E, it is not clear a priori what sequence of
rectangles constitutes a shortest st-path, for an optimum placement p. Note
that, if we know which regions constitute a shortest st-path, and in which order,
the problem becomes the Touring Polygons Problem.

Given a finite set of points P ≥ R
2, the Hanan grid of P is induced by

imposing horizontal and vertical lines through the points in P . In the following,
we show that an optimum SPN placement lies on the intersections of the lines
of the Hanan grid induced by the corners of the regions in R. Based on this,
we provide an algorithm that computes an optimum SPN placement in time
O(n2k2 log nk+mnk3), where n = |R|, m = |E|, and k is the maximum number
of corners of a region of R. This result is a generalization of the polynomial-time
algorithm for TouringPolygons with rectilinear regions.

2.1 Properties of Optimum Solutions

Since distances between points are measured in L1 metric and the neighborhood
regions are axis-parallel, one of the most trivial approaches is to consider as
possible placement points only the corners of regions in R. It is however easy
to construct instances where every optimum placement contains at least one
point that is not a corner of a region in R. We do not have to consider many
more points other than the corners of the regions, though. Lemma 1 (below)
shows that there always exists an optimum SPN placement where all points are
points of the Hanan grid induced by the corners of the regions in R, lying on the
perimeters of those regions. To prove this, we use a property of the L1 metric
defined in terms of bounding boxes of points in R

2. Given x, y ≤ R
2, the bounding

box Bxy is the smallest axis-parallel rectangle containing x and y.

Proposition 1. For every x, y, z ≤ R
2,

z ≤ Bxy ⇐⇒ ∀xy∀ = ∀xz∀ + ∀zy∀
z /≤ Bxy ⇐⇒ ∀xy∀ < ∀xz∀ + ∀zy∀.

Lemma 1. There exists an optimum placement p such that every pi ≤ p lies on
the perimeter of Ri and is a grid point of the Hanan grid induced by the corners
of the regions in R.

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 211

Proof. Let p be an optimum placement and P a shortest st-path in Gp. We show
how to move points in p not satisfying the lemma to points of the Hanan grid
on the perimeter of the regions in a way such that the resulting placement is
still optimum. We distinguish between regions on (visited by) P and not on P .

A point in p of a region not on P not satisfying the lemma can be trivially
moved to an arbitrary corner of that region. Since the cost of P in the resulting
placement is the same as in Gp, the resulting placement is still optimum.

We first show how to move points of regions on P not satisfying the lemma
to the perimeter in a way such that the resulting placement is still optimum.
Then, we show that every remaining point still not satisfying the lemma can be
moved to a Hanan grid point on the perimeter of its region.

Note that ps of Rs lies on its perimeter, otherwise we can obtain a better
placement by moving it to a point on the perimeter of Rs closest to the point in
the successor of Rs on P . The same argument holds by simmetry for pt.

Let Rj /≤ {Rs, Rt} be a region on P , and consider pi, pk ≤ p, where Ri is the
predecessor of Rj on P and Rk is its successor. Consider the bounding box Bpipj

,
and let pc be a point on the perimeter of Rj contained in Bij . By Proposition 1
and triangle inequality, we have

∀pipj∀ + ∀pjpk∀ = ∀pipc∀ + ∀pcpj∀ + ∀pjpk∀ ∈ ∀pipc∀ + ∀pcpk∀.

Thus, moving pj to pc does not increase the cost of P . The resulting placement
is still optimum, and pj now lies on the perimeter of Rj . We can apply this
operation to every point in the interior of its region.

We now show how to move points in p to Hanan grid points on the perimeters
of their regions in such a way that the resulting placement is still optimum. By
the above, we can assume each point of p to be lying on the perimeter its region,
and that only points of regions on P may not be grid points.

Let pj = (xj , yj) ≤ p be a point on the perimeter of Rj not on the Hanan
grid. Since Rj is axis-parallel, pj lies on a line of the grid. Thus, either xj is
the x-coordinate of a grid point, or yj is the y-coordinate of a grid point. We
consider only the latter case; the former is symmetric.

Let xl be the largest x-coordinate of a grid point lying to the left of pj , and
xr be the smallest x-coordinate of a grid point lying to the right of pj . We define
the set {(x, y) ≤ R

2 |xl < x < xr} as the vertical stripe of pj .
Consider a sequence Ri, . . . , Rk of consecutive regions on P of maximal length

such that Rj is in the sequence, and every point in p of a region in the sequence
lies in the vertical stripe of pj . None of the points in the sequence is a grid point;
however, the y-coordinate of all such points are y-coordinates of grid points. We
first consider the case where Ri ∃= Rs and Rk ∃= Rt.

Let Ri′ be the predecessor of Ri on P , and Rk′ be the successor of Rk on P .
If pi′ lies to the left of the vertical stripe of pj , we move every point pi, . . . , pk
horizontally to the x-coordinate xl. Otherwise, we move them horizontally to xr.
Figure 1 illustrates an example of such a moving. The cost difference of P before
and after moving the points can be expressed as

212 Y. Disser et al.

pi

pk′

pi′

pk

pj

xl xr

pk′

pi′

xl xr

pi

pk

pj

Fig. 1. Moving points in a vertical stripe.

∑

(Ra,Rb)∈P ′
∀pa, pb∀ − ∀p∈

a, p
∈
b∀, (1)

where P ∈ is the sub-path between Ri′ and Rk′ , and p∈
a (resp. p∈

b) is the new
location of pa (pb). Since points are only moved horizontally, their y-differences
do not change. Thus, (1) can be rewritten as

∑

(Ra,Rb)∈P ′
|xa − xb| − |x∈

a − x∈
b|. (2)

Before moving them, all points pi, . . . , pk are contained in the vertical stripe of
pj ; therefore the cost of P ∈ before the moving is at least |xi′ − xi| + |xk′ − xk|.
After the moving, the x-coordinates of all pi, . . . , pk become x∈ ≤ {xl, xr}. Thus,
(2) is at least

|xi′ − xi| + |xk′ − xk| − |xi′ − x∈| − |xk′ − x∈|. (3)

If pi′ and pk′ lie on the same side of the vertical stripe of pj , the new coordinate
x∈ is closer to both xi′ and xk′ . If pi′ and pk′ lie on different sides of the vertical
stripe, then |xi′ −x∈|+ |xk′ −x∈| = |xi′ −xk′ |. In both cases, (3) is positive; that
is, the cost of P does not increase and the new placement is still optimum.

The case where Ri = Rs follows trivially from above, because we can define
pi′ to be the point pi itself. In this way, the distance between pi and pi′ is always
0, and the direction of the moving depends only on the position of pk′ . The same
holds also for the remaining cases. ⇒∅

2.2 Algorithm

We now present an algorithm that computes an optimum SPN placement by
exploiting the structural properties of optimal placements established in Lemma 1.
To do so, we create an auxiliary graph from R and E with the property that a
shortest path between two designated vertices of this graph yields a minimum SPN
placement. Such a path can be found using standard shortest path techniques,
such as Dijkstra’s algorithm. The auxiliary graph D = (VD, ED) is defined as fol-
lows. There is a vertex in VD for every point on the perimeter of a region that is

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 213

also a point of the Hanan grid induced by the corners of the regions in R, and two
additional vertices vs and vt. In the following, we say “a vertex v of region Ri” to
indicate a vertex corresponding to a point of Ri. There is an edge in ED from vs
to every vertex of Rs, and from every vertex of Rt to vt. Also, let u be a vertex
of Ri and Rj be a region such that (Ri, Rj) ≤ E. For every segment composing
the perimeter of Rj , there is an edge in ED from u to its closest vertex on that
segment. Furthermore, there is an edge in ED from u to the next vertex along the
perimeter of Ri, in both directions. We assign a cost to an edge (u, v) ≤ ED equal
to 0 if either u = vs or v = vt, and equal to ∀uv∀ otherwise. The following theo-
rem shows that a shortest path between vs and vt in D yields an optimum SPN
placement.

Theorem 1. Given a shortest path PD from vs to vt in D, let p be a placement
as follows. For each region Ri ≤ R, if Ri has vertices on PD, p contains the
first of them. Otherwise, p contains one of its corners chosen arbitrarily. The
placement p is an optimum SPN placement.

Proof. Consider the vertices on PD chosen as points of p in the order as they
appear on PD. Since the regions of these points are connected in G, PD corre-
sponds to an st-path P in G. By triangle inequality, the cost of P in Gp is at most
the cost of PD. For the sake of contradiction, suppose there exists an optimum
placement q and a shortest st-path Q in Gq with cost smaller than the cost of
P in Gp. Without loss of generality, we can assume the points in q to satisfy
Lemma 1. Thus, every point of q corresponds to a vertex of D. We construct
a path QD from vs to vt in D as follows. The first edge is (vs, qs); after that,
for every edge (Ri, Rj) on Q, consider the points qi, qj ≤ q, the bounding box
Bqiqj , and the at most two segments on the perimeter of Rj on which qj lies. By
construction, qi is connected in D to a vertex on both segments; let v be one of
them chosen arbitrarily such that v ≤ Bqiqj . We add to QD the path that from
qi goes to v, and follows the perimeter of Rj to qj . By Proposition 1, the cost of
this path is equal to ∀qiqj∀. The last edge on QD is (qt, vt). To see that the cost
of QD is equal to the cost of Q in Gq it is sufficient to notice that the first and
the last edge of QD have cost 0 and, for every edge (Ri, Rj) on Q, the sub-path
from qi to qj in QD has cost equal to ∀qiqj∀. This results in a contradiction,
because we have then found a path from vs to vt with cost smaller than PD. ⇒∅

The above theorem shows how to construct an optimum SPN placement
once a shortest path between vs and vt in D is known. Since edge costs in D
are greater or equal than 0, we can find such a path with Dijkstra’s algorithm
in time O(|VD| log |VD| + |ED|). The sizes of VD and ED depend on the number
of points on the perimeters of the regions that are the grid points of the Hanan
grid induced by the corners of R. To evaluate this number, consider a line of
the Hanan grid. Each time this line intersects (cut in two nonempty parts)
an orthogonal segment on the perimeter of a region, an additional vertex is
introduced. Conversely, each segment of the perimeter of a region can in the
worst case be intersected by every grid line orthogonal to it. If k is the maximum
number of corners of a region in R (and therefore on the number of segments of

214 Y. Disser et al.

its perimeter), and |R| = n, the number of grid lines is O(nk). Thus, the number
of grid points lying on the perimeter of one region is O(nk2), and the size of VD is
O(n2k2). To evaluate the size of ED, consider an edge (Ri, Rj) ≤ E and a vertex
v of Ri. By construction, there is an edge from v to a vertex on each of the at most
k segments on the perimeter of Rj . Furthermore, v is connected to at most two
vertices on the perimeter of Ri. If we have |E| = m edges and O(nk2) vertices in
each region, the size of ED is O(mnk3). Thus, computing a shortest path from
vs to vt in D with Dijkstra’s algorithm takes time O(n2k2 log nk + mnk3).

3 Minimum Spanning Tree with Neighborhoods

In the Minimum Spanning Tree Problem with Neighborhoods, or MSTN, we are
given a set of regions R = {R1, . . . , Rn} and an underlying graph G = (R, E).
The problem asks for a placement p such that the cost of a minimum spanning
tree in Gp is smallest among all possible placements.

It is known [2] that, if distances are measured in L2 norm and the neighbor-
hood regions are disks, the MSTN problem does not admit an FPTAS unless
P = NP. We will adapt their proof and show that MSTN does not admit an
FPTAS for the L1 metric even for non-overlapping axis-parallel segments.

The reduction is from the planar 3-SAT problem. Planar 3-SAT is a variant of
3-SAT where the graph associated with the formula is planar. The graph contains
a vertex for each variable and each clause, and there is an edge from a variable to
a clause if the clause contains a literal of that variable. Planar 3-SAT was shown
to be NP-hard by a reduction from the standard 3-SAT problem [7]. Furthermore,
it was shown that in the plane embedding used in the reduction there always
exists a so-called spinal path passing through every vertex corresponding to
a variable without crossing any edge of the graph. Knuth and Raghunathan
[6] observed that there always is a simple embedding where the variables are
arranged on a straight line (the spinal path), and the clauses are drawn as three
legged segments completely above or below them, in a way such that none of the
legs cross each other. Figure 2 shows an example of such an embedding.

The reduction starts from a plane embedding of an instance of planar 3-SAT
and constructs an instance of MSTN such that a solution to the latter indicates
whether the former is satisfiable. First, we define three types of gadgets: a gadget
for each variable, a gadget for each clause, and a gadget for the spinal path.
Then, we show how to replace each variable, clause and the spinal path with a

v1 v2 v3 v4 v5

Fig. 2. A planar 3-SAT instance on 5 variables. Dashed lines are parts of the spinal
path, solid lines are clauses.

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 215

corresponding gadget resulting in an instance of MSTN. From our construction,
it will be easy to see that the size of the resulting MSTN instance is polynomially
bounded. Finally, we provide two threshold values t1 and t2, with t1 < t2, and
we prove that an optimum solution of the constructed MSTN instance has a
cost smaller than t1 if and only if the initial 3-SAT formula is satisfiable. If the
formula is not satisfiable, the cost of an optimum solution of the MSTN instance
is at least t2. This proves that MSTN does not admit an FPTAS unless P = NP.

An important tool in the definitions of the gadgets is a so-called wire. A wire
is a set of points (i.e., regions) placed in close succession, so that any minimum
spanning tree (for any placement) will contain the edges connecting the points.
To ensure this, it is sufficient to place two consecutive points in a wire at a
suitably small distance. Since the edges between consecutive points in wires do
not form a cycle, any minimum spanning tree in any placement will contain the
edge connecting them. However, this suitably small distance must still be large
enough to guarantee that a wire can be realized with a polynomial number of
points. Since in the following construction the smallest non-zero distance between
any two regions (other than those for the wires) is at least d/2, for a constant
d := 0.25, a suitably small value for the points of a wire is, for example, d/4.

3.1 Reduction Gadgets

Variable Gadget. For each variable there are k = 6c + 6 segments of length σ,
where c is the maximum number of clauses in which the variable appears as a
literal that are completely above or below the variable vertex in the embedding.
Note that k ∈ 12, because a variable appears at least once in a clause. In the
following we specify the value of the parameter σ more precisely, and we show
it to be polynomial in the number of clauses and variables.

As illustrated in Fig. 3, the segments are placed along the perimeter of a
rectangle with sides of length 3cσ + d and 3σ + d. In its interior we place a
wire for every two segments consecutive in clockwise order. Each of these wires
ends on the line bisecting the angle formed by the corresponding segments; for
parallel segments, the endpoint is at distance d from their common point. For
perpendicular segments, the endpoint is at distance d from the intersection of
the lines passing through the segments. We connect these wires in the bounded
region in a tree-like structure as in Fig. 3. We call this arrangement of wires in
the internal region a k-tree.

A placement of points inside a variable gadget is called a configuration if, for
every two consecutive segments in clockwise order, the placement contains either
their two closest points or their two farthest points. For a variable gadget there
exist exactly two different configurations. To see this, consider two consecutive
segments in a variable gadget and a configuration placement. If the placement
contains their two closest points, we can place points in the remaining segments
in exactly one way in order to obtain a configuration. Similarly, if the placement
contains their two farthest points, we have exactly one way to place points in
the remaining segments. We associate these two possible configurations with the
two assignments to the variable.

216 Y. Disser et al.

Fig. 3. A variable gadget with k = 18. The variable appears in A with negative sign
and in B,C with positive sign. Thick lines are segments, the rest wires.

Clause Gadget. Clause gadgets are composed of at most three wires meeting
at a single point following the embedding. As in Fig. 3, each wire of a clause
gadget approaches the common point of two adjacent horizontal segments of a
variable gadget. Clauses that are located above the spinal path in the rectilinear
embedding approach variable gadgets from above, while clauses that in the rec-
tilinear embedding are located below the spinal path approach variable gadgets
from below. Furthermore, clause wires approach a variable gadget in the same
clockwise order as the edges connecting the variable vertex to the corresponding
clauses in the rectilinear embedding.

A clause wire terminates at distance 1 + 2d from the common point of the
approached segments along the vertical line passing through it. The approached
segments are chosen such that their common point is contained in a configuration
satisfying the clause. That is, an edge with cost 1 + 2d connects the clause wire
to the segments in a configuration placement satisfying the clause.

Spinal Path Gadget. The spinal path gadget consists of wires following the
embedding of the planar 3-SAT instance. As in Fig. 3, the spinal path gadget
approaches every variable gadget twice, once from the left and once from the
right. For each side, the spinal path wire is split in two parts, each approaching
two adjacent vertical segments. The point at which a part terminates is located
at distance 1 from the common point of the approached segments along the
horizontal line passing through it.

3.2 The Reduction

Given a rectilinear embedding of an instance of planar 3-SAT, we create an
instance of MSTN and provide two threshold values t1, t2, with t1 < t2. We
show that if the 3-SAT instance is satisfiable, then there is a placement with a

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 217

minimum spanning tree of cost at most t1, and if the 3-SAT instance is unsatis-
fiable, then the cost of a minimum spanning tree for any placement is at leat t2.

Theorem 2. MSTN with L1 metric and axis-parallel segments is APX-hard.

Proof. To create an instance of MSTN, replace in the given embedding every
variable, clause, and the spinal path with a gadget as explained above. The wires
forming the spinal path, the m clause gadgets and the k-trees in the internal
region of each variable gadget have a fixed cost in every MST, denoted as cwires.
The remaining cost of the spanning tree is given by connecting the segments of
the variable gadgets to the k-trees and the spinal path and clause wires.

Suppose there exists a satisfying assignment. Then, we place points in each
variable gadget in a configuration according to its value in the assignment. We
provide an upper bound t1 on the cost of a minimum spanning tree in this
placement by constructing a spanning tree and evaluating its cost. For each
pair of consecutive segments having their closest points in the placement, the
spanning tree connects them to the k-tree of the corresponding variable with cost
d. If there is a total of K segments among all variable gadgets, the spanning tree
requires a cost of (K/2)d to connect all of them to the k-trees (note that K is
even). For each clause gadget, consider a variable satisfying it in the assignment.
We connect the corresponding endpoint of the clause wire to one of the segments
it approaches with an edge with cost 1 + 2d. Overall, the cost for connecting
all the clause wires to the tree is m(1 + 2d). For each part of the spinal path
gadget approaching a variable gadget, exactly one of its endpoint approaches
a point of the placement. The spanning tree contains the 2n edges of cost 1
connecting them. Overall, the cost of an optimum MSTN solution in case a
satisfying assignment exists is therefore at most

t1 := cwires + (K/2)d + (1 + 2d)m + 2n.

If there is no satisfying assignment, we show that the cost of an optimum
MSTN solution is at least t2 := t1+d. To see this, consider an optimum placement
where every point in a segment is one of its extreme points. The existence of
such an optimum placement is guaranteed by the fact that wires approaching
variable gadgets and wires of the k-trees terminate either to the left or to the
right of horizontal segments, and above or below vertical segments.

We first provide an upper bound on the minimum spanning tree cost for
such a placement. By constructing a spanning tree and evaluating its cost in
the placement. Then, we use this upper bound to show that, in every minimum
spanning tree, clause wires are connected to the tree either with an edge from
one of the endpoints to one of the approached segments, or with an edge from
one of its endpoints to the approached k-tree endpoint. Finally, we show that
the cost of any optimum MSTN solution is at least t2.

The spanning tree contains the wires composing the spinal path, the clauses,
and all k-trees. Every segment in a variable gadget is connected to an endpoint
of the k-tree with an edge of cost d. Every part of a wire of the spinal path
approaching a variable gadget is connected to one of the approached segments

218 Y. Disser et al.

by one of its endpoints with an edge with cost 1. Similarly, an endpoint of each
clause wire chosen arbitrarily is connected to a k-tree of a variable appearing in
that clause with an edge with cost 1 + 3d. The cost of such a spanning tree is

cwires + 2n + m(1 + 3d) + Kd. (4)

We now prove that, in every minimum spanning tree, each clause is connected
to it either with an edge from one of its endpoint to an approached segment,
or with an edge from one of its endpoints to the corresponding k-tree endpoint.
Suppose this is not the case, and there is a clause whose endpoint in the MST
is connected neither to an approached segment, nor to the corresponding k-tree
endpoint. By construction, the next closest object is located at distance at least
σ, where σ is the above defined length of the segments of the variable gadgets.
Since the spinal path, clauses and k-trees wires are part of every MST, setting

σ := 2n + m(1 + 3d) + Kd + 1

we get a contradiction, because the cost of a minimum spanning tree would
then be greater than (4). Thus, in every minimum spanning tree every clause is
connected via one of its endpoints to one of the approached regions.

Finally, we show that if the formula is not satisfiable, any optimum MSTN
solution has cost greater than t2. Clearly, we cannot provide a configuration for
each variable gadget such that every clause where that variable appears can be
connected to it with an edge with cost 1 + 2d, otherwise the formula would be
satisfiable. Therefore, in an optimum solution, either at least one variable gadget
is not set in a configuration, or every variable gadget is in a configuration and
for at least one clause no wire endpoint approaches a point of the placement.

In the former case, the cost of a minimum spanning tree is at least cwires +
2n + (K/2)d + j(1 + 2d) + (m − j)α, where j is the number of clauses that
can be satisfied by the assignment corresponding to the configuration and α is
the minimum cost necessary to connect a clause that is not satisfied by the
assignment. By the above, we know that in any minimum spanning tree a clause
wire is connected to one of the approached segments or the corresponding k-tree
endpoint. Since every variable gadget is in a configuration, the smallest distance
α between a non satisfied clause wire and a point in the placement is at least
1+3d. Thus, any optimum MSTN solution where every variable gadget is set in
a configuration results in a minimum spanning tree with cost at least t2.

In the latter case, there exists at least one variable gadget that is not in a
configuration. Let then a be the overall number of segments for which the point
in the placement is not the closest or the farthest to the point in one of the
consecutive segments. Note that a is even, therefore a ∈ 2, and the cost of a
spanning tree is at least

cwires + 2n +
(K + a)

2
d + m(1 + 2d) ∈ t2.

Suppose now that there exists an FPTAS for MSTN. Given an instance
of planar 3-SAT, we construct the gadget presented above and calculate t1.

Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree 219

We then set a parameter λ < d/t1, so a (1 + λ)-approximate solution to the
MSTN problem would tell us whether the cost of the corresponding optimum
solution is smaller than t1 or greater than t2, and thus, whether there exists a
satisfying assignment for the planar 3-SAT instance. ⇒∅

4 Conclusions

We considered the Shortest Path Problem and the Minimum Spanning Tree
Problem with Neighborhoods in the L1 metric and showed that the former can
be solved efficiently if the neighborhood regions are rectilinear polygons not
necessarily convex, while the latter does not admit a PTAS unless P = NP even if
the regions are axis-parallel segments. An interesting open problem is to consider
variants of SPN and MSTN where the goal is to find placements maximizing the
cost of shortest paths and minimum spanning tree, respectively.

Acknowledgments. This work was supported by the EU FP7/2007-2013 (DG
CONNECT.H5-Smart Cities and Sustainability), under grant agreement no. 288094
(project eCOMPASS) and by the Alexander von Humboldt-Foundation.

References

1. Ahadi, A., Mozafari, A., Zarei, A.: Touring disjoint polygons problem is NP-hard.
In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp.
351–360. Springer, Heidelberg (2013)

2. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A., Seco,
D.: On minimum-and maximum-weight minimum spanning trees with neighbor-
hoods. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp.
93–106. Springer, Heidelberg (2013)

3. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons.
In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing
(STOC), pp. 473–482 (2003)

4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-
borhoods in the plane. In: Proceedings of the Twelfth Annual ACM-SIAM Sym-
posium on Discrete algorithms (SODA), pp. 38–46 (2001)

5. Elbassioni, K.M., Fishkin, A.V., Mustafa, N.H., Sitters, R.A.: Approximation
algorithms for euclidean group TSP. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1115–1126.
Springer, Heidelberg (2005)

6. Knuth, D., Raghunathan, A.: The problem of compatible representatives. SIAM
J. Discrete Math. 5(3), 422–427 (1992)

7. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

8. Löffler, M., Kreveld, M.: Largest and smallest convex hulls for imprecise points.
Algorithmica 56(2), 235–269 (2010)

9. Löffler, M., van Kreveld, M.J.: Largest bounding box, smallest diameter, and
related problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

220 Y. Disser et al.

10. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of
pairwise disjoint simple polygons. In: Proceedings of the 22nd Canadian Conference
on Computational Geometry (CCCG), pp. 175–178 (2010)

11. Yang, Y., Lin, M., Xu, J., Xie, Y.: minimum spanning tree with neighborhoods. In:
Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer,
Heidelberg (2007)

Lovász and Schrijver N+-Relaxation
on Web Graphs

Mariana Escalante(B) and Graciela Nasini

CONICET and FCEIA - Universidad Nacional de Rosario, Rosario, Argentina
{mariana,nasini}@fceia.unr.edu.ar

Abstract. In this contribution we continue the study of the Lovász-
Schrijver PSD-operator applied to the edge relaxation of the stable set
polytope of a graph. The problem of obtaining a combinatorial charac-
terization of graphs for which the PSD-operator generates the stable set
polytope in one step has been open since 1990. In an earlier publication,
we named these graphs N+-perfect. In the current work, we prove that
the only imperfect web graphs that are N+-perfect are the odd-cycles
and their complements. This result adds evidence for the validity of the
conjecture stating that the only graphs which are N+-perfect are those
whose stable set polytope is described by inequalities with near-bipartite
support. Finally, we make some progress on identifying some minimal
forbidden structures on N+-perfect graphs which are also rank-perfect.

1 Introduction

Perfect graphs were introduced by Berge in the early sixties [1]. A graph is perfect
if each of its induced subgraphs has chromatic number equal to the cardinality
of a maximum cardinality clique in the subgraph.

According to the results in [6] the family of perfect graphs constitute a class
where the Maximum Weighted Stable Set Problem (MWSSP) can be solved in
polynomial time. Some years later, the same authors proved a beautiful result
[8]: for every graph G,

G is perfect ∈ TH(G) = STAB(G) ∈ TH(G) = CLIQUE(G) ∈
STAB(G) = CLIQUE(G) ∈ TH(G) is polyhedral, (1)

where STAB(G) is the stable set polytope of G, CLIQUE(G) is its clique relax-
ation and TH(G) is the theta body of G defined by Lovász [10].

In the early nineties, Lovász and Schrijver introduced the PSD-operator N+

which, applied over the edge relaxation of STAB(G), generates the positive semi-
definite relaxation N+(G) stronger than TH(G) [11].

As it holds for perfect graphs, MWSSP can be solved in polynomial time
for the class of graphs for which N+(G) = STAB(G). We will call these graphs
N+-perfect.

Partially supported by grants PIP-CONICET 241, PICT-ANPCyT 0361, PID UNR
415, PID UNR 416.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 221–229, 2014.
DOI: 10.1007/978-3-319-09174-7 19

222 M. Escalante and G. Nasini

Our main goal is to obtain a characterization of N+-perfect graphs similar to
the one given in (1) for perfect graphs. More precisely, we would like to find an
appropriate polyhedral relaxation of STAB(G) playing the role of CLIQUE(G)
in (1). Following this line, in a recent publication [3], we proposed the following
conjecture:

Conjecture 1. The stable set polytope of every N+-perfect graph can be described
by facet inducing inequalities with near-bipartite support.

In [2] the validity of this conjecture on near-perfect graphs is established. In
fact, the following theorem is proved.

Theorem 1 [2]. Let G be an N+-perfect and a properly near-perfect graph.
Then, either G or its complement is an odd cycle.

Later, in [3] we extended its validity to fs-perfect graphs, a superclass of
near-perfect graphs defined as those graphs for which the stable set polytope is
completely described by clique constraints and a single full-support inequality.

The main contribution of this paper is to prove the validity of the conjecture
on one more infinite family of graphs, the web graphs.

2 Preliminaries

Given a graph G = (V,E) a stable set is a subset of mutually non-adjacent nodes
in G. The maximum cardinality of a stable set is denoted by α(G), the stability
number of G. The stable set polytope is the convex hull of the incidence vectors
of the stable sets in the graph G and it is denoted by STAB(G).

The polyhedron

FRAC(G) = {x ≤ [0, 1]V : xi + xj ≥ 1 for every ij ≤ E}
is the edge relaxation of STAB(G).

A clique Q is a subset of pairwise adjacent nodes in G. Every incidence
vector of a stable set must satisfy clique constraints, i.e.,

∑
i∈Q xi ≥ 1. These

constraints define the clique relaxation of the stable set polytope, CLIQUE(G).
In general, STAB(G) ⊂ CLIQUE(G). Chvatal [5] showed that perfect graphs are
exactly those graphs for which equality holds.

Minimally imperfect graphs are those graphs that are not perfect but after
deleting any node they become perfect. The Strong Perfect Graph Theorem
states that the only minimally imperfect graphs are the odd cycles and their
complements [4].

The support of a valid inequality for STAB(G) is the subgraph induced by the
nodes having positive coefficient in it. We say that an inequality is a full-support
inequality if its support is the whole graph.

In [14] Shepherd called a graph G near-perfect if its stable set polytope is
defined only by non-negativity constraints, clique constraints and the full-rank
constraint ⎡

u∈V

xu ≥ α(G).

Lovász and Schrijver N+-Relaxation on Web Graphs 223

Clearly, every node induced subgraph of a near-perfect graph is also near-
perfect [14].

Due to results of Chvátal [5] near-perfect graphs constitute a superclass of
perfect graphs. According to Padberg [13] minimally imperfect graphs are also
near-perfect graphs.

Near-bipartite graphs, defined in [15], are those graphs such that removing
all neighbours of an arbitrary node and the node itself, leaves the resulting graph
bipartite.

Given integer numbers k and n such that n ≥ 2(k + 1), the web graph,
denoted by W k

n , is the graph having node set {1, . . . , n} and such that ij is an
edge if i and j differ by at most k (mod n) and i ∀= j.

If k = 1, W 1
n is a cycle. If k ≥ 2 and n ≥ 2k + 2 W k

n is a perfect graph and
W k

2k+3 is the complementary graph of the (2k + 3)-cycle.
In [18] Wagler characterized all near-perfect web graphs:

Theorem 2 [18]. A web graph is near-perfect if and only if it is perfect, an odd
hole, the web W 2

11 or it has stability number 2.

If W k′
n′ is a node induced subgraph of W k

n then it is a subweb of W k
n . In [17]

Trotter characterized for which values of n∈ and k∈, W k′
n′ is a subweb of W k

n .

Theorem 3 [17]. If k ≥ 1 and n ≥ 2(k + 1) the graph W k′
n′ is a subweb of W k

n

if and only if
k∈

k
≥ n∈

n
≥ k∈ + 1

k + 1
.

2.1 The N+-Operator

As we have already mentioned, in this paper we focus on the behaviour of the
N+-operator defined by Lovász and Schrijver [11] on the edge relaxation of the
stable set polytope.

We denote by e0, e1, . . . , en the vectors of the canonical basis of Rn+1 (where
the first coordinate is indexed zero), 1 the vector with all components equal to
1 and S

n
+ the space of n-by-n symmetric and positive semidefinite matrices with

real entries.
Given a convex set K in [0, 1]n, let

cone(K) =
⎣(

x0

x

)

≤ R
n+1 : x = x0y; y ≤ K

⎤

.

Then, we define the polyhedral set

M(K) =
⎧
Y ≤ S

n+1
+ : Y e0 = diag(Y),

Y ei ≤ cone(K),
Y (e0 − ei) ≤ cone(K), i = 1, . . . , n} ,

where diag(Y) denotes the vector whose i-th entry is Yii, for every i = 0, . . . , n.

224 M. Escalante and G. Nasini

Projecting this polyhedral lifting back to the space R
n results in

N+(K) =
⎣

x ≤ [0, 1]n :
(

1
x

)

= Y e0, for some Y ≤ M(K)
⎤

.

In practice, we prove that a point x ≤ [0, 1]n belongs to N+(K) by showing
the existence of a symmetric PSD matrix Y of the form

Y =

⎪

⎨
⎨
⎩

1 xt

x Ȳ





⎟ (2)

where xt stands for the transpose of column vector x and Ȳ is an n × n matrix
with columns Ȳi for i = 1, . . . , n, satisfying the following conditions:

1. Ȳii = xi,
2. If xi = 0 then Ȳi = 0,
3. If xi = 1 then Ȳi = x,
4. If 0 < xi < 1 then 1

xi
Ȳi ≤ K and 1

1−xi
(x − Ȳi) ≤ K,

for every i = 1, . . . , n.
In [11], Lovász and Schrijver proved that N+(K) is a relaxation of the convex

hull of integer solutions in K.
If we let N0

+(K) = K then k-th application of the N+-operator is Nk
+(K) =

N+(Nk−1
+ (K)) for every k ≥ 1. The authors in [11] showed that Nn

+(K) =
conv(K ∃ {0, 1}n).

In this work we focus on the behaviour of a single application of the N+-
operator on the edge relaxation of the stable set polytope of a graph. Then, in
order to simplify the notation we write N+(G) = N+(FRAC(G)).

In [11] it is shown that

STAB(G) ⊂ N+(G) ⊂ TH(G) ⊂ CLIQUE(G).

Also from results in [11], we know that graphs for which every facet defin-
ing inequality of STAB(G) has a near-bipartite support is N+-perfect. Then,
Conjecture 1 establishes that these graphs are the only N+-perfect graphs.

In particular, perfect and near-bipartite graphs are N+-perfect. In addition,
it can be proved that every subgraph of an N+-perfect graph is also N+-perfect.
A graph G that is not N+-perfect is called N+-imperfect.

Using the properties of the N+-operator, if G∈ is an N+-imperfect subgraph
of G then G is also N+-imperfect.

In [7] and [9] it was proved that all the imperfect graphs with at most 6
nodes are N+-perfect graphs, except for the two imperfect near-perfect graphs
depicted in Fig. 1. The graph on the left is denoted by GLT and the other one
is denoted by GEMN .

A graph G∈ is an odd subdivision of a graph G if it is obtained by replacing
an edge of G by a path of odd length.

As a consequence of the results in [9] we have the following:

Lovász and Schrijver N+-Relaxation on Web Graphs 225

Fig. 1. The graphs GLT and GEMN .

Lemma 1. If G is N+-imperfect and G∈ is obtained after the odd subdivision of
an edge in G, then G∈ is also N+-imperfect.

This result becomes relevant in the proof of the validity of the conjecture
on web graphs since there we show that most of the web graphs have an odd
subdivision of the graph GLT as a node induced subgraph.

3 The Conjecture on Web Graphs

The fact that the conjecture holds on web graphs will follow after proving that
the only N+-perfect webs are either perfect or minimally imperfect webs.

Theorem 1 [2] asserts that every near-perfect graph satisfies the conjecture,
therefore, from Theorem 2, we only need to consider web graphs with stability
number at least three. It is known that the stability number of W k

n is α(W k
n) =⌊

n
k+1

⌋
. Then, if n ≥ 3k+2, W k

n is near-perfect and from Theorem 1 the conjecture
holds on these web graphs. Therefore, from now on we can consider web graphs
W k

n with n ≥ 3k + 3.
Now we are able to present the following result:

Theorem 4. If n ≥ 9 and n ∀= 10, W 2
n has an odd subdivision of GLT as a node

induced subgraph.

Proof. Let n ≥ 9 and {1, . . . , n} be the node set of W 2
n . Assume that we delete

the six consecutive nodes in the set {n − 5, n − 4, . . . , n}. Note that if we find a
subset T s = {v1, . . . , v2s} of {1, . . . , n − 6}, with s ≥ 1, v1 = 1, v2s = n − 6 and
such that T s induces a path in W 2

n , then T s ⇒{n− 4, n− 3, n− 2, n− 1} induces
in W 2

n an odd subdivision of GLT .
For example, in the web W 2

14 the set T 3 = {1, 2, 4, 5, 7, 8} induces a path and
T 3 ⇒ {10, 11, 12, 13} induces an odd subdivision of GLT . See Fig. 2.

Then, in order to prove the result we show the existence of such a set T s

with the above required properties for every n ≥ 9 and n ∀= 10.
We divide the rest of the proof into four different cases according to the value

of n − 6.

226 M. Escalante and G. Nasini

Fig. 2. The web graph W 2
14 and a node induced odd subdivision of GLT .

– If n − 6 = 4r + 3 for some r ≥ 0, then

T r+1 = {2t − 1 : 1 ≥ t ≥ 2r + 2}.

– If n − 6 = 4r + 2 then r ≥ 1 since n ≥ 9. In this case, we consider

T r+1 = {2t − 1 : 1 ≥ t ≥ 2r + 1} ⇒ {n − 6}.

– If n − 6 = 4r + 1 again r ≥ 1. In this case, we find

T r+1 = {2t : 1 ≥ t ≥ 2r} ⇒ {1, n − 6}.

– If n − 6 = 4r we have r ≥ 2 since n ≥ 9 and n ∀= 10. In this case we consider

T r+1 = {3 + 2t : 1 ≥ t ≥ 2r − 2} ⇒ {1, 2, 4, n − 6}.

∅�
Corollary 1. If n ≥ 8 and n ∀= 10 then W 2

n is N+-imperfect.

Proof. The web graph W 2
8 is an imperfect near-perfect graph and then it is

N+-imperfect.
Since every odd subdivision of GLT is N+-imperfect and the N+-imperfection

of a subgraph implies the N+-imperfection of the graph itself, the result follows
directly from the previous theorem. ∅�

In order to complete the analysis of the family of web graphs W 2
n we need to

prove that W 2
10 is N+-imperfect. Note that it does not have an odd subdivision

of GLT as a node induced subgraph. Instead, we make use of the definition of
N+(W 2

10).

Lemma 2. The web graph W 2
10 is N+-imperfect.

Lovász and Schrijver N+-Relaxation on Web Graphs 227

Proof. The proof is based on finding a point x̄ ≤ N+(W 2
10) \ STAB(W 2

10).
Let us consider the point x̄ = λ1 ≤ FRAC(W 2

10) for λ = 31
100 . Clearly it

violates the full-rank constraint and therefore, x̄ /≤ STAB(W 2
10).

In order to prove that x̄ ≤ N+(W 2
10) we present a matrix Y as in (2) which

represents the point in the higher dimensional space.
For this purpose we make use of the following definition.
Let T : Rn ⊂ R

n be such that T (v1, . . . , vn) = (vn, v1, . . . , vn−1). The matrix
circ(u) is the n × n-matrix whose first row is T 0(u) = u and whose j-th row is
given by T j−1(u) = T (T j−2(u)), for every j ≥ 2.

Let z = (λ, 0, 0, β, γ, δ, γ, β, 0, 0) where

γ =
853

10000
, δ =

336
10000

and β =
2234
10000

.

If Ȳ = circ(z) then it is not difficult to check that Y ≤ R
11 defined as in (2) is

PSD and it satisfies that
1
λ

Ȳi ≤ FRAC(W 2
10) and

1
1 − λ

(λ1 − Ȳi) ≤ FRAC(W 2
10).

∅�
The following result implies that Conjecture 1 holds for web graphs.

Theorem 5. If the web graph W k
n is N+-perfect then it is either a perfect or a

minimally imperfect graph.

Proof. Due to the fact that the conjecture is proved for near-perfect graphs
(Theorem 1) we only need consider those webs which are not near-perfect and
prove that none of them are N+-perfect.

If the web W k
n is not near-perfect then k ≥ 2 and n ≥ 3k + 3.

If k = 2 the result follows from Corollary 1 and Lemma 2.
Let k ≥ 3 and n ≥ 3k + 3. We will prove that every web W k

n has a subweb
of the form W 2

n′ for some n∈ ≥ 8.
After Trotter’s result (Theorem 3) W 2

n′ is a subweb of W k
n if

2n

k
≥ n∈ ≥ 3n

k + 1
.

Let Δk(n) = 3n
k+1 − 2n

k = n k−2
k(k+1) .

Observe that Δk(n) assumes its minimum value when n is minimum, i.e.
when n = 3k + 3. In this case, Δk(n) = 3(k−2)

k ≥ 1. Then, for every value of
n ≥ 3k + 3 we can find an integer n∈ satisfying

2n

k
≥ n∈ ≥ 3n

k + 1

and then W 2
n′ is a subweb of W k

n .

Moreover, since n ≥ 3k + 3 we have that
⌊

3n
k+1

⌋
≥ 9 and W k

n has a subweb

W 2
n′ for some n∈ ≥ 8.
Finally, Corollary 1 and Lemma 2 prove the result. ∅�

228 M. Escalante and G. Nasini

4 On minimally N+-imperfect subgraphs

In [2] we proved the validity of the conjecture on the family of near-perfect
graphs. Rank-perfect graphs constitute a superclass of near-perfect graphs, then
it seems natural to continue our work towards proving the conjecture on this
family. In fact, while studying the N+-perfect graphs which are also near-perfect
graphs we could identify some minimal forbidden structures on this family.

We say that a graph is minimally N+-imperfect if it is N+-imperfect but
deleting any node leaves an N+-perfect graph. The results in [2] give the min-
imally N+-imperfect graphs in the family of near-perfect graphs. In order to
present them let us introduce some more definitions.

We denote by C2k+1 the cycle having node set {1, . . . , 2k + 1} and edge set
{i(i + 1) : i ≤ {1, . . . , 2k} ⇒ {1(2k + 1)}.

In [2] we consider two families of near-perfect graphs, named Wk and Hk for
each k ≥ 2.

Let H2 = W2 = {GLT , GEMN}. For k ≥ 3, Wk is the family of graphs with
node set {0, 1, . . . , 2k + 1} such that:

– G − 0 = C2k+1;
– there is no pair of consecutive nodes (in C2k+1) with degree 2;
– the degree of node 0 is k + 2.

For k ≥ 3, Hk is the family of graphs having node set {0, 1, . . . , 2k + 1} such
that:

– G − 0 is the complement of C2k+1;
– there is no pair of consecutive nodes (in C2k+1) with degree 2k − 2;
– the degree of node 0 is at most 2k.

In Fig. 3 we have represented one of the graphs in the family W9 and one of
the graphs in the family H9.

Using the results in [2] we have the following

Fig. 3. A graph in the family W9 and H9.

Lovász and Schrijver N+-Relaxation on Web Graphs 229

Lemma 3. Let G be a minimally N+-imperfect graph. If G is a near-perfect
graph then it is an odd subdivision of a graph in Hk ⇒ Wk for some k ≥ 2.

In this contribution it was important to identify the odd subdivisions of GLT

as minimally N+-imperfect structures in the webs, except for W 2
10.

In fact, we have proved that the web W 2
10 is a minimally N+-imperfect

rank-perfect graph which is not near-perfect. This shows some advance in order
to characterize N+-perfect rank-perfect graphs and also a line for our future
research.

References

1. Berge, C.: Perfect graphs. In: Six Papers on Graph Theory, pp. 1–21. Indian Sta-
tistical Institute, Calcutta (1963)

2. Bianchi, S., Escalante, M., Nasini, G., Tunçel, L.: Near-perfect graphs with poly-
hedral N+(G). Electron. Notes Discrete Math. 37, 393–398 (2011)

3. Bianchi, S., Escalante, M., Nasini, G., Tunçel, L.: Lovász-Schrijver PSD-operator
and a superclass of near-perfect graphs. Electron. Notes Discrete Math. 44, 339–
344 (2013)

4. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006)

5. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory B 18,
138–154 (1975)

6. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

7. Escalante, M., Montelar, M.S., Nasini, G.: Minimal N+-rank graphs: progress on
Lipták and Tunçel’s conjecture. Oper. Res. Lett. 34(6), 639–646 (2006)

8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, New York (1988)

9. Lipták, L., Tunçel, L.: Stable set problem and the lift-and-project ranks of graphs.
Math. Program. 98, 319–353 (2003)

10. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. 25, 1–7 (1979)
11. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization.

SIAM J. Optim. 1, 166–190 (1991)
12. Nasini, G.: Caracterización de los grafos fs-perfectos. Reunión Anual de Comunica-

ciones Cient́ıficas de la Unión Matemática Argentina, Tucumán, Argentina (2011)
13. Padberg, M.: On the facial structure of set packing polyhedra. Math. Program. 5,

199–215 (1973)
14. Shepherd, F.B.: Near-Perfect matrices. Math. Program. 1–3(64), 295–323 (1994)
15. Shepherd, F.B.: Applying Lehman’s theorems to packing problems. Math. Pro-

gram. 71, 353–367 (1995)
16. Stauffer, G.: On the stable set polytope of claw-free graphs, Ph.D. thesis, EPF

Lausanne (2005)
17. Trotter, L.: A class of facet producing graphs for vertex packing polyhedra. Discrete

Math. 12, 373–388 (1975)
18. Wagler, A.: Relaxing perfectness: which graphs are “almost perfect”? In:

Groestchel, M.(ed.) The Sharpest Cut: The Impact of Manfred Padberg and His
Work. SIAM, Philadelphia (2002)

The Envy-Free Pricing Problem
and Unit-Demand Markets

Cristina G. Fernandes, Carlos E. Ferreira, Álvaro J.P. Franco,
and Rafael C.S. Schouery (B)

Department of Computer Science, University of São Paulo, São Paulo, Brazil
{cris,cef,alvaro,schouery}@ime.usp.br

Abstract. A common problem faced in economics is to decide the pric-
ing of products of a company, since poorly chosen prices might lead to
low profit. One important model for this is the unit-demand envy-free
pricing problem, where one considers that every consumer buys the item
that maximizes his own profit, and the goal is to find a pricing of the
items that maximizes the expected profit of the seller. This problem
is not in APX unless P = NP, but it is still interesting to be solved in
practice. So, we present four new MIP formulations for it and experimen-
tally compare them to a previous one from the literature. We describe
three models to generate different random instances for general unit-
demand auctions, that we designed for the computational experiments.
Each model has a nice economic interpretation. Our results show that our
MIP formulations are a great improvement both for solving the problem
to optimality or in order to obtain solutions with small gap.

Keywords: Pricing problem · Envy-free allocations · Unit-demand
auctions

1 Introduction

An interesting economical problem faced by companies that sell items or services
is to maximize their profit by carefully choosing the pricing of their items. An
item with low price can lead to a low profit but an item with high price can lead
to fewer sells because consumers cannot (or do not want to) buy an expensive
item. For that reason, it is necessary to account for consumers’ preferences and
affordability when deciding the pricing of the items. There is a variety of mod-
els that consider this problem [11,13,15] but, in particular, Rusmevichientong et
al. [12] introduced non-parametrical models for this problem which rely on infor-
mation about consumers’ valuations for the items to decide on the pricing, and
discussed the use of collected data (e.g., from a website) to sample consumers
preferences. In those models, the general goal is to determine a price for each

Research partially supported by CAPES (Proc. 33002010176P0), CNPq (Proc.
302736/2010-7, 308523/2012-1, and 477203/2012-4), FAPESP (Proc. 2009/00387-
7 and 2013/03447-6) and Project MaCLinC of NUMEC/USP.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 230–241, 2014.
DOI: 10.1007/978-3-319-09174-7 20

The Envy-Free Pricing Problem and Unit-Demand Markets 231

item in a way that the overall profit of the seller is maximized. However, once the
prices are defined, the consumers may behave in several ways. In the literature,
there are several models (max-buying, min-buying, and rank-buying) [1,12] that
try to capture the usual behavior of consumers in some situations.

Guruswami et al. [7] formalized one such model, suggested by Aggarwal
et al. [1], defining the envy-free pricing for combinatorial auctions. In the more
general setup, each consumer is willing to buy a bundle of items. Knowing the
valuation of every bundle of items for each consumer, the seller has to decide on
the pricing and on an allocation of the items to the consumers in an envy-
free manner, that is, in a way that every consumer is at least as happy with
the bundle of items assigned to him (which might even be empty) as with any
other bundle of items, considering the prices. The seller’s goal is to maximize his
profit. Of course, in this general form, there is an issue on the amount of infor-
mation involved, specifically for the valuations. So it is reasonable to consider,
as Guruswami et al., particular cases that avoid this issue.

A well-studied such case is the unit-demand envy-free pricing problem, in
which each consumer is willing (or is allowed) to buy at most one item, and
there is an unlimited supply of each item. Guruswami et al. presented a (2 lnn)-
approximation for this problem, where n is the number of consumers, and proved
that this problem is APX-hard (with each consumer valuation being 1 or 2 for
the items of interest). Briest [3] further analyzed the hardness of approxima-
tion, considering the uniform budget case, where each consumer equally values
all items he is interested in. Assuming specific hardness of the balanced bipar-
tite independent set problem in constant degree graphs, or hardness of refuting
random 3CNF formulas, there is no approximation for the uniform budget unit-
demand envy-free pricing problem with ratio O(lgα n) for some φ > 0. Chen and
Deng [4] showed that the unit-demand envy-free pricing problem can be solved
in polynomial time if every consumer has a positive valuation for at most two
items.

More recently, Shioda, Tunçel, and Myklebust [14] described a slightly more
general model than the one of Guruswami et al. [7], and presented a mixed-
integer programming (MIP) formulation for their model, along with heuristics
and valid cuts for their formulation.

Regarding the generation of instances for auctions, Leyton-Brown et al. [9]
proposed the well-know Combinatorial Auctions Test Suite (CATS), created to
generate random instances for auctions with realistic bidding behavior for five
real world situations. See also [5, Chap. 18]. Their generator produces instances
for auctions where the consumers are interested in buying bundles of items.

1.1 Our Results

In this paper, we focus on solving the unit-demand envy-free pricing problem
in practical cases. For this, we present new MIP formulations for this prob-
lem that can be adapted also to the model described by Shioda et al. [14]. We
compare these new formulations to the one of Shioda et al. through computa-
tional experiments that indicate that our new formulations give better results in
practice than the other one.

232 C.G. Fernandes et al.

For the computational experiments, we used six different sets of instances,
obtained from generators we designed. Since a simple adaptation of CATS for
unit-demand auctions does not preserve the economic motivations, we designed
three models to generate different random instances for unit-demand auctions,
and we implemented the three corresponding generators. Each of the three
models has a nice economic interpretation and can be used in other works on
unit-demand auctions, such as [10,14]. To our knowledge these are the first
unit-demand auctions instances generators proposed in the literature. Because
of that, we believe these instances generators are a nice contribution by them-
selves, and we made them available as open-source software at https://github.
com/schouery/unit-demand-market-models.

The paper is organized as follows. In the next section, we present some nota-
tion and describe formally the problem that we address. In Sect. 3, we present our
new MIP formulations for the problem and revise the one by Shioda et al. [14].
In Sect. 4, we present the three instances generators and describe the economical
motivation behind each one. In Sect. 5, we empirically compare our formulations
for the unit-demand envy-free pricing problem against the one by Shioda et
al. [14], using sets of instances produced by our generators. We conclude with
some final remarks in Sect. 6.

2 Model and Notation

We denote by B the set of consumers and by I the set of items. A valuation is a
non-negative rational matrix v indexed by I × B and vib represents the value of
item i to consumer b. A pricing is a non-negative rational vector indexed by I.
A (unit-demand) allocation is a binary matrix x indexed by I × B, such that, for
every consumer b, we have xib = 1 for at most one item i. Note that we consider
that the items have unlimited supply, that is, the same item can be assigned to
an arbitrary number of consumers (each one receives a copy of the item).

For a valuation v, a pricing p, and an allocation x, the utility of a consumer b,
denoted by ub, is vib−pi if consumer b receives item i, and 0 if consumer b receives
no item. Notice that vib − pi is a measure of how cheap item i is compared with
the valuation vib. An allocation x is envy-free if, for every consumer b, we have
ub ∈ 0 and ub ∈ vib − pi for every item i. In other words, for every consumer b,
there is no item that would give b a better utility, that is, b buys the “relatively
cheapest” item.

Now we are ready to state the problem. The unit-demand envy-free pricing
problem consists of, given a valuation v, finding a pricing p and an envy-free
allocation x that maximize the seller’s profit, which is the sum of the prices of
items received by the consumers (considering multiplicities).

Shioda et al. [14] considered a problem a bit more general than the envy-free
pricing problem. They considered that B represents consumers groups instead
of single consumers and that every consumers group b has a value σb used as a
tolerance when comparing the utilities provided by items, that is, if a consumers
group b receives an item i, then vib − pi ∈ vi′b − pi′ + σb for every item i′ ≤= i.

https://github.com/schouery/unit-demand-market-models
https://github.com/schouery/unit-demand-market-models

The Envy-Free Pricing Problem and Unit-Demand Markets 233

In our experiments, we noticed that the size of the consumers groups does
not impact in the running time of the formulations. Also, in Shioda et al. exper-
iments, they considered σb = 0 for every consumers group b. With this in mind,
and the fact that our formulation can be easy adapted to consider their model,
we believe that this is a fair comparison with their work.

3 MIP Formulations

Before presenting the formulations, let us introduce two notations that will be
used for “big-M” inequalities in the formulations presented in this section. For an
item i, let Ri = max{vib : b ≥ B} and, for a consumer b, let Sb = max{vib : i ≥ I}.

We start by presenting the formulation due to Shioda et al. [14] already
considering σb = 0 and one consumer per group (Nb = 1 for every consumers
group b in their notation).

Consider a valuation v. We use the following variables: a binary matrix x
indexed by I × B that represents an allocation, a rational vector p indexed
by I that represents the pricing, and a rational matrix p̂ indexed by I × B that
represents the price paid for item i by each consumer b (that is, p̂ib = 0 if b does
not receive i, and p̂ib = pi otherwise). The formulation, which we name (STM),
consists of, finding x, p, and p̂ that

(STM) max
∑

b∈B

∑

i∈I

p̂ib

s.t.
∑

i∈I

xib ≤ 1, ∀b ∈ B

∑

i∈I\{k}
(vibxib − p̂ib) ≥ vkb

∑

i∈I\{k}
xib − pk, ∀b ∈ B, ∀k ∈ I

vibxib − p̂ib ≥ 0, ∀b ∈ B, ∀i ∈ I
p̂ib ≤ pi, ∀b ∈ B, ∀i ∈ I
p̂ib ≥ pi − Ri(1 − xib), ∀b ∈ B, ∀i ∈ I

xib ∈ {0, 1}, pi ≥ 0, p̂ib ≥ 0, ∀b ∈ B, ∀i ∈ I.

(1)

From the formulation (STM), we developed a new and stronger formulation
by changing inequalities (1). We call (I) this improved formulation, which we
present below.

(I) max
∑

b∈B

∑

i∈I

p̂ib

s.t.
∑

i∈I

xib ≤ 1, ∀b ∈ B

∑

i∈I

(vibxib − p̂ib) ≥ vkb − pk, ∀k ∈ I, ∀b ∈ B

vibxib − p̂ib ≥ 0, ∀b ∈ B,∀i ∈ I
p̂ib ≤ pi, ∀b ∈ B,∀i ∈ I
p̂ib ≥ pi − Ri(1 − xib), ∀b ∈ B,∀i ∈ I

xib ∈ {0, 1}, pi ≥ 0, p̂ib ≥ 0, ∀b ∈ B,∀i ∈ I.

(2)

234 C.G. Fernandes et al.

Lemma 1. (I) is a formulation for the envy-free pricing problem. ��
Also, we noticed that inequalities (2) are unnecessary, which led us to another

formulation that we call (L) (from the word loose), consisting of formulation (I)
without inequalities (2).

Lemma 2. Every integer solution of (L) is a solution of (I). ��
Notice that it is possible that (L) is a weaker version of (I) in terms of

relaxation guarantees.
Studying formulation (L), we developed another formulation with variables x

and p as defined before, and a rational vector z indexed by B that repre-
sents the profit obtained from consumer b (that is, if consumer b receives item
i then zb = pi, and zb = 0 if b does not receive an item). One can view z
as zb =

∑
i∈I p̂ib. This formulation, which we name (P) (from the word profit),

consists of finding x, p, and z that

(P) max
∑

b∈B

zb

s.t.
∑

i∈I

xib ∀ 1, ∃b ≥ B

∑

i∈I

vibxib − zb ∈ vkb − pk, ∃k ≥ I,∃b ≥ B

∑

i∈I

vibxib − zb ∈ 0, ∃b ≥ B

zb ∈ pi − Ri(1 − xib), ∃b ≥ B,∃i ≥ I
xib ≥ {0, 1}, pi ∈ 0, zb ∈ 0, ∃b ≥ B,∃i ≥ I.

Lemma 3. (P) is a formulation for the envy-free pricing problem. ��
As one would expect, (P) is a formulation weaker than (L).
Finally, we present our last formulation that was developed changing the

focus from the price paid by a consumer to the utility that a consumer obtained.
We use the following variables: x and p as defined before, and a rational vector u
indexed by B that represents the utilities of the consumers. The formulation,
which we name (U) (from the word utility), consists of finding x, p, and u that

(U) max
∑

i∈I

∑

b∈B

vibxib −
∑

b∈B

ub

s.t.
∑

i∈I

xib ∀ 1, ∃b ≥ B

ub ∈ vib − pi, ∃i ≥ I, ∃b ≥ B
ub ∀ vibxib − pi + (1 − xib)(Ri + Sb), ∃i ≥ I, ∃b ≥ B

ub ∀
∑

i∈I

vibxib, ∃b ≥ B

xib ≥ {0, 1}, pi ∈ 0, ub ∈ 0, ∃b ≥ B,∃i ≥ I.

The Envy-Free Pricing Problem and Unit-Demand Markets 235

Lemma 4. (U) is a formulation for the envy-free pricing problem. ��
After our presentation at ISCO, we became aware of a formulation similar

to (I) proposed in the literature for another problem, the so called Network
Pricing Problem with Connected Toll Arcs [8].

For some MIP formulation (F) and a valuation v, we denote by LRF(v) the
value of an optimal solution for the linear relaxation of (F) when the instance is v.
Our next result formalizes the relaxation quality guarantees for the formulations
presented in this section.

Theorem 5. For every instance v of the unit-demand envy-free pricing problem,
LRI(v) ∀ LRSTM(v) and also LRI(v) ∀ LRL(v) ∀ LRP(v) ∀ LRU(v). More-
over, there exists an instance v where LRI(v) < LRSTM(v) and
LRI(v) = LRL(v) < LRP(v) < LRU(v). ��

The instance mentioned above was generated in one of our empirical experi-
ments. We did not find an instance v where LRI(v) < LRL(v).

Before presenting and discussing the experimental comparison of these for-
mulations, we describe the random instance generators that we used in the com-
putational experiments.

4 Multi-Item Auctions Test Suites

In this section, we propose three new models to generate different random
instances for unit-demand auctions, each of them with a nice economic inter-
pretation.

In these three models, we start by creating a bipartite graph where one side of
the bipartition represents the items and the other, the consumers. An edge of this
graph represents that the consumer gives a positive value to the corresponding
item.

4.1 Characteristics Model

In the Characteristics Model, we consider that every item has a set of charac-
teristics that are relevant to determine if a consumer has interest in such item.
For example, imagine that the items are cars and, for simplicity, that every car
has two relevant characteristics: color and engine model. In this model, every
consumer has interest in a set of colors and in a set of engine models and, poten-
tially, would buy any car that has one of the colors and one of the engine models
that such consumer is interested in.

The idea is that each item has a profile of characteristics and each consumer
desires some of these characteristics. This way, two items that have the same
profile are desired by the same consumers, and consumers desire items that do
not differ much.

It is natural that an item has a market value, and the valuations for that
item (by interested consumers) are concentrated around this value. That is, the

236 C.G. Fernandes et al.

valuations for an item should not differ too much, and valuations that are far
away from this market value are rare.

An instance of our problem, which is a valuation, will be represented by a
weighted bipartite graph as we describe in the following.

Let m be the number of items, n be the number of consumers, c be the
number of the characteristics of each item, o be the number of options for any
characteristic, p be the number of options preferred by a consumer for any char-
acteristic, α be the minimum market value of an item, h be the maximum market
value of an item, and d be the percentage of deviation used. The set of vertices
is I ⇒ B and the set of edges E is described below.

For every item i, we have a vector of size c (the characteristics of that item)
where every entry is in {1, . . . , o} chosen independent and uniformly at random.
For every consumer b, we construct a matrix A ≥ {0, 1}c×p where, for every
row, we choose independent and uniformly at random p positions to be set to 1
and o − p positions to be set to 0. For a consumer b and an item i, we have
that {i, b} ≥ E if and only if the characteristics of item i coincide with the
preferences of consumer b, that is, if the characteristic k of item i has value v
then Akv = 1 where A is the matrix of consumer b. See an example of such
characteristics and preferences in Fig. 1.

i1

[
3
1

]

i2

[
3
2

]

i3

[
2
1

]

b1

[
1 0 1
1 0 1

]

b2

[
1 0 1
1 1 0

]

b3

[
0 1 1
1 0 1

]

Fig. 1. Instance with two characteristics, each with three options. Each consumer wants
items that have one of two options (given by their matrices) in every characteristic.
Next to each item is the characteristics vector.

Finally, for every item i, we define p̄i as the market price of item i, chosen
independent and uniformly at random from the interval [α, h]. For every {i, b}
in E, we choose vib from 1.0+N (p̄i, (p̄id)2), where N (μ, λ2) denotes the Gaussian
distribution with mean μ and standard deviation λ.

4.2 Neighborhood Model

In the Neighborhood Model, we consider that items and consumers are points
in the plane and that every consumer has interest in items that are close to his
location. Imagine, for example, that consumers are buying houses in a city and
that each consumer has a favorite location to live in the city. In this model, a
consumer will not buy a house too far away from its favorite location and will
give more value for houses that are closer when comparing with farther houses.

The Envy-Free Pricing Problem and Unit-Demand Markets 237

This model selects the valuations based on a geometric relation. For this, we
adapt a random process first introduced by Gilbert [6] for generating a Random
Geometric Graph.

The idea is to distribute the items and the consumers in a 1 × 1 square W
in Q2 and define the valuations according to the distance between a consumer
and an item.

We are given the number of items m, the number of consumers n, and a
radius r. First we assign a point in W independent and uniformly at random to
each item and each consumer. In order to construct the valuation, we construct a
graph G = (I ⇒B,E) such that |I| = m and |B| = n where there is an edge {i, b}
in E if the distance between i and b in W is at most r. Figure 2 represents one
such graph.

Fig. 2. The construction of the graph used in the Neighborhood Model with 10 items,
10 consumers and radius 0.33. Black vertices represent the items and white vertices
represent the consumers.

Finally, to define the valuations, let d(i, b) denote the (Euclidean) distance
between i and b. For every consumer b, we choose a multiplier kb in [1, h], where h
is given as input. If {i, b} ≥ E, then vib = 1.0 + Mkb/d(i, b), where M is a scaling
factor also given as input.

This way, a consumer only gives a positive valuation to items sufficiently close
to his location, and the valuation decreases as the distance increases. Two con-
sumers that are at the same distance from an item still can evaluate it differently
because they might have different k multipliers.

4.3 Popularity Model

In a market where the items are alike, the preferences of the consumers might be
based on how popular a specific item is. In our case, we measure the popularity
of an item by the number of consumers that are interested in it. For this, we
consider a process where a popular item becomes more and more popular. We
also consider that every item has a quality and that the market price of such item

238 C.G. Fernandes et al.

is directly proportional to its quality and inversely proportional to its popularity
(because a company could sell this item cheaper if it is popular).

Let m be the number of items, n be the number of consumers, e be the number
of edges, Q be the maximum quality of an item, and d be a percentage of
deviation. We construct the bipartite graph as follows. We start with the empty
bipartite graph with parts I and B such that |I| = m and |B| = n. We add
edges at random (as described below) until the graph has e edges.

To add an edge, we choose a consumer uniformly at random, and choose an
item biased according to its degree. That is, an item i of current degree di has
a weight of di + 1.

This process, called Preferential Attachment, was already used in the litera-
ture by Barabási and Albert [2] to generate graphs with properties that appear in
the World Wide Web and in graphs that arise in biology, such as the interactions
of the brain cells.

This way, items that are “popular”, when we are adding an edge, have a
higher chance to be chosen than “unpopular” items. The final result is a graph
with a small number of items of large degree and a large number of items of
small degree. See Fig. 3.

(a)

i1

i2

i3

b1

b2

b3

b4

b5

(b)

i1

i2

i3

b1

b2

b3

b4

b5

Fig. 3. From (a) to (b), the 8th edge (i3, b1) was added. In (a), the probabilities of
choosing items i1, i2, and i3 are 2/10, 3/10, and 5/10, respectively.

We also use the information of the (final) degree of an item to decide on the
valuations. As in the Characteristic Model, an item i has a market price p̄i, and
we choose the valuation vib according to 1.0 + N (p̄i, (p̄id)2). But, in contrast
to the Characteristic Model, we do not choose the market value uniformly at
random in an interval. For each item i, we choose a random quality qi in (0, Q]
and we define p̄i as qi/di. This way, the market price of an item increases with
its quality and decreases with its degree. That is, an item has high desirability
if it is “cheap” or has good quality.

5 Empirical Results

In this section, we present some empirical results involving the formulations.
In our experiments, the new formulations produced better results than the pre-
viously known formulation from the literature, namely, (STM). In particular,

The Envy-Free Pricing Problem and Unit-Demand Markets 239

formulation (L) was the best for small instances, and formulation (U) was the
best for large instances (providing a small gap).

We used a computer with two Intel Xeon E5620 2.40 GHz processors, 64 GB
of RAM running Gentoo Linux 64 bit. The MIPs were solved by CPLEX 12.1.0
in single-thread mode, with work memory limited to 4 GB. The tests were run
using a time limit of one hour of CPU time.

For our tests, we generated six test sets, two for every one of our three models:
one with 20 instances with 50, 100, 150, 200, 250, and 300 consumers and items,
that we call “small instances”, and other with 20 instances with 500, 1000, 1500,
2000, 2500 and 3000 consumers and items, that we call “large instances”. Next
we describe the parameters given to the models, and we denote by n the number
of items (which is equal to the number of consumers).

For the Characteristic Model, we chose the number of options for a char-
acteristic as o = 8, the number of options preferred by a consumer for any
characteristic as p = 7, and the number of characteristics of each item as
∅log(8/n)/ log(p/o)� (this value was chosen so that the mean degree of the con-
sumers is between 7 and 8), the minimum market value of an item as α = 1, the
maximum market value of an item as h = 100, and the percentage of deviation
as d = 0.25. For the Neighborhood Model, we chose the maximum multiplier of
a consumer as h = 3, the radius as

√
8/nΛ (in this way, the mean degree of the

consumers is close to 8) and the scaling factor M = 10. Finally, for the Popu-
larity Model, we chose the number of edges as e = 8n, the maximum quality of
an item as Q = 200, and the percentage of deviation as d = 0.25. All instances,
along with the source code for the generators, can be found at https://github.
com/schouery/unit-demand-market-models.

Note that all of our instances are sparse, since we believe that in practice
dense instances would be rare. That is, we expect that, in a market with many
items, each consumer would have positive valuation usually only for a few items.

In our experiments, CPLEX had a better performance with formulation (L)
than with any other formulation for small instances. First of all, with (L),
CPLEX solved more small instances than with the other formulations. For exam-
ple, with (STM), CPLEX could not solve (within one hour) any instance of the
Popularity Model with 150 or more items. But, with (L), CPLEX solved 14
instances with 150 items and 7 instances with 200 items.

Also, for small instances that were not solved within one hour, (STM) and
(P) provided a mean final gap much worse than the ones provided by (U), (I),
and (L) (at least twice the gap for those formulations).

Even though formulation (L) was better than the others, we noticed that
formulations (U) and (I) were not so far behind from formulation (L) as one can
observe in Fig. 4.

When analyzing the mean final gap for large instances, formulation (U) seems
better than the others. Actually, (U) was able to maintain a really small mean
final gap even for instances with 3000 consumers and items (the mean final gap
was 2 % for the Characteristics model, 3 % for the Neighborhood model, and 17 %

https://github.com/schouery/unit-demand-market-models
https://github.com/schouery/unit-demand-market-models

240 C.G. Fernandes et al.

50 100 150 200 250

0

5

10

15

20

(a) Characteristics

50 100 150 200 250

0

5

10

15

20

(b) Neighborhood

50 100 150 200 250

0

5

10

15

20 (STM)

(I)

(L)

(P)

(U)

(c) Popularity

Fig. 4. Number of solutions found by each MIP formulation.

for the Popularity model). Figure 5 presents this information for the Popularity
model, where (U) proved to be much better than the other formulations.

500 1,000 1,500 2,000 2,500 3,000
0

0.2

0.4

0.6

0.8

1

|I|

M
e
a
n

F
in
a
l
G
a
p

(STM)

(I)

(L)

(P)

(U)

Fig. 5. Mean final gap for large instances for the Popularity Model not solved within
the time limit.

We believe that this result is impressive because, theoretically (from The-
orem 5), (U) is the weakest of our new formulations (we have no result that
compares (U) and (STM)). Nonetheless, (U) is a small formulation when com-
pared with (STM), (I) and (L) and, as a consequence, the linear relaxation can be
solved more quickly for this formulation (and also for formulation (P)). Since (P)
is a formulation stronger than (U) and they have the same size, we believe that
formulation (U) outperformed formulation (P) because of the heuristics used by
CPLEX to find good integer solutions.

The Envy-Free Pricing Problem and Unit-Demand Markets 241

6 Final Remarks

In this paper, we presented four new MIP formulations for the unit-demand
envy-free pricing problem along with some empirical results comparing these
formulations. Our results show that our formulations are better than the previous
formulation from the literature.

We also presented three models for generating instances of unit-demand auc-
tions. To our knowledge, these are the first tests suites for unit-demand auctions
in the literature. The corresponding instances generators are available as open-
source software.

References

1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for multi-product pric-
ing. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 72–83. Springer, Heidelberg (2004)

2. Barabãsi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

3. Briest, P.: Uniform budgets and the envy-free pricing problem. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg
(2008)

4. Chen, N., Deng, X.: Envy-free pricing in multi-item markets. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010, Part II. LNCS, vol. 6199, pp. 418–429. Springer, Heidelberg (2010)

5. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. MIT
Press, Cambridge (2006)

6. Gilbert, E.N.: Random plane networks. J. Soc. Ind. Appl. Math. 9(4), 533–543
(1961)

7. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry,
F.: On profit-maximizing envy-free pricing. In: Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1164–1173 (2005)

8. Heilporn, G., Labbé, M., Marcotte, P., Savard, G.: A polyhedral study of the
network pricing problem with connected toll arcs. Networks 55(3), 234–246 (2010)

9. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for
combinatorial auction algorithms. In: Proceedings of the 2nd ACM Conference on
Electronic Commerce, pp. 66–76 (2000)

10. Myklebust, T.G.J., Sharpe, M.A., Tunçel, L.: Efficient heuristic algorithms for
maximum utility product pricing problems. Research report, Department of Com-
binatorics and Optimization, University of Waterloo, November 2012

11. Oren, S., Smith, S., Wilson, R.: Product line pricing. J. Bus. 57(1), S73–S79 (1984)
12. Rusmevichientong, P., Roy, B.V., Glynn, P.W.: A nonparametric approach to mul-

tiproduct pricing. Oper. Res. 54(1), 82–98 (2006)
13. Sen, S.: Issues in optimal product design. In: Analytic Approaches to Product and

Marketing Planning: The Second Conference, pp. 265–274 (1982)
14. Shioda, R., Tunçel, L., Myklebust, T.G.: Maximum utility product pricing models

and algorithms based on reservation price. Comput. Optim. Appl. 48(2), 157–198
(2011)

15. Smith, S.A.: New product pricing in quality sensitive markets. Mark. Sci. 5(1),
70–87 (1986)

Mathematical Programming Models for Traffic
Engineering in Ethernet Networks Implementing

the Multiple Spanning Tree Protocol

Bernard Fortz1, Lúıs Gouveia2, and Martim Moniz1(B)

1 Départment d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
martim.moniz@ulb.ac.be

2 Centro de Investigação Operacional, Universidade de Lisboa, Lisboa, Portugal

Abstract. The Multiple Spanning Tree Protocol (MSTP), used in Eth-
ernet networks, maintains a set of spanning trees that are used for rout-
ing the demands in the network. Each spanning tree is allocated to a
pre-defined set of demands. In this paper we present two mixed integer
programming models for the Traffic Engineering problem of optimally
designing a network implementing MSTP, such that link utilization is
minimized. This is the first approach that focuses on using exact meth-
ods to solve this problem. We present tests in order to compare the two
formulations, in terms of formulation strength and computing time.

Keywords: Traffic engineering · Telecommunications · Multiple span-
ning tree protocol · Mixed-integer programming

1 Introduction

With the increasing demand for Internet and cloud computing services, the need
for large scale data centers has become paramount. Nowadays, these data cen-
ters already hold a huge number of servers (up to 10 k) and the propensity is
for that number to rise in the near future. This emphasizes the critical neces-
sity of improving the performance of telecommunication networks in these data
centers. Traffic Engineering is a wide array of optimization methods, that aims
at finding the best network configuration, in order to improve different traffic-
oriented performance measures, such as delay, delay variation, packet loss and
throughput.

Most data centers are mainly used to either perform computation or to host
Internet services. They support simultaneously multiple applications that run on
a set of virtual machines, distributed on physical servers. In these data centers,
switched Ethernet networks are becoming popular, as they are more effective in
the management of traffic.

Loops in the network’s topology can result in broadcast radiation, i.e., the
repeatedly rebroadcasting of broadcast traffic and consequential network flood-
ing. As such, Ethernet networks only activate, at a given time, a cycle-free subset

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 242–254, 2014.
DOI: 10.1007/978-3-319-09174-7 21

Models for Traffic Engineering with Multiple Spanning Tree Protocol 243

of the existing links. To ensure this, these networks implement the Institute of
Electrical and Electronics Engineers (IEEE) 802.1d standard [1], also known
as Spanning Tree Protocol. As the protocol’s name indicates, the topology of
a switched networks using 802.1d must be a spanning tree. In graph theory, a
spanning tree of a graph G is a connected, acyclic subgraph that spans all the
nodes of G. As a consequence, a spanning tree of G will only contain n−1 edges,
where n is the number of nodes in G. Note, however, that it is important to keep
redundant links to ensure automatic backup paths in case of link failure. Hence,
one of the drawbacks of the 802.1d standard is that the Ethernet network ends
up only using a small number of existing links.

The IEEE 802.1q standard [2] enables large Ethernet networks to be parti-
tioned in multiple smaller Virtual Local Area Networks (VLANs), simplifying
the Ethernet network design. This allows for isolation between different appli-
cations and/or data center costumers, as a server belonging to a given VLAN
can only communicate with other servers established in the same VLAN. The
Multiple Spanning Tree Protocol (MSTP), standardized as 802.1s [3], allows for
service providers to install different spanning trees (one per VLAN) over a sin-
gle physical topology. This is highly advantageous for the traffic performances
of Ethernet networks, as the traffic can be spread throughout a bigger number
of links.

Nevertheless, MSTP is hard to use effectively due to the huge complexity of
the problem of optimizing over multiple spanning trees in one single network.

In this paper, we study the problem of finding optimal designs for Ether-
net networks implementing MSTP. This problem consists in designing networks
with multiple VLANs, such that each VLAN is defined by a spanning tree that
meets the required traffic demand. Additionally, all the VLANs must, jointly,
verify the bandwidth capacity of the Ethernet network. The traffic oriented per-
formance measure that we consider as optimization objective in this paper is the
minimization of the worst-case link utilization in the network. The utilization
of a link is defined as the ratio between its load (i.e. the sum of traffic flowing
on it) and its bandwidth. Therefore, if the utilization of a link exceeds 1, a link
is considered to be overloaded. In this paper, two mathematical programming
models are presented and compared.

2 State of the Art

Ho [4] wrote an extensive review on the literature regarding Traffic Engineering
problems for Ethernet networks implemented MSTP. He divided the approaches
used to solve these problems in four classes. In the first approach, [5–7] proposed
optimization techniques that map a set of VLANs to a given number of span-
ning trees. Meddeb [7] developed an algorithm to generate a set of spanning trees
with a small number of links in common, and then introduced another greedy
algorithm to map each VLAN to those spanning trees, while attempting to min-
imize the number of used links. Lim et al. [6] proposed a QoS-aware mechanism
that maps VLANs with the intent of minimizing network throughput and delay.

244 B. Fortz et al.

He et al. [5] use an admission control algorithm to assign a group of VLANs to
each given spanning tree, and then map each service to a VLAN, such that it
minimizes the link load.

The second approach was used by de Sousa et al. [8] and Santos et al. [9,10]
in three different papers. They introduced heuristic schemes that aim to balance
the load in networks using MSTP by mapping a set of traffic flows to a set of
given spanning trees. Different criteria were taken into consideration, including
service disruption and network load balancing.

Santos et al. appear to be the only ones to model the problems using Mixed
Integer Programming (MIP) [9,10]. They extend the traditional multi-commodity
flow formulation, commonly used in problems with a single spanning tree [11],
to the design of networks using MSTP. However, the authors seem to use MIP
mainly as a means of measuring the quality of proposed heuristics. As such, we
believe there is plenty of room for improvement, and more efficient models for
networks using MSTP can be developed.

Third, Chen et al. [12] proposed an algorithm that defines a spanning tree
for each node sending traffic in the network, while trying to achieve a good trade
off between load balance and average delay.

The last approach was suggested by Padmaraj et al. [13] and Mirjalily [14].
In the first paper, the proposed heuristic updates weights assigned to the links in
the network, in order to find a set of spanning trees with a good load balancing.
In the second one, the suggested algorithm tries to find the best set of edge-
disjoint spanning trees, and the best mapping of VLANs to that set.

Ho [4] argumented that all these approaches were not applicable for large
networks. Hence, he proposes a local search based algorithm that aims at mini-
mizing the maximal link utilization for data center networks.

Note however that all of these proposals, including [4], are only heuristic
approaches, that do not aim at finding the optimal solution, but merely one
that is good enough. Moreover, with the exception of [9,10] no lower bounds on
the optimal value of instances solved are known, and, as such, it is difficult to
evaluate the quality of the proposed algorithms.

3 Problem Modeling

Consider a network defined on a graph G = (N,A), where N is the set of
nodes, with size n, and A is the set of links between those nodes. Link {i, j} ∈
A represents an undirected link between nodes i ∈ N and j ∈ N . Arc (i, j)
represents that same link, but directed from i to j. To each link is assigned a
capacity, denoted by C{i,j}. This capacity is considered to be symmetric, in the
sense that C{i,j} = Cij = Cji.

Also, consider S to be the set of VLANs. For each VLAN s ∈ S, ds{u, v}
represents the traffic demand between nodes u ∈ N and v ∈ N . Traffic demands
are also considered to be symmetric.

The objective of the problem considered is to find the optimal design of all
VLANs s ∈ S, such that the maximum link utilization is minimized. At the same
time, the following constraints must be verified:

Models for Traffic Engineering with Multiple Spanning Tree Protocol 245

– the topology of each VLAN is a spanning tree;
– all given traffic demands in a VLAN are routed;
– the total traffic flowing through a link respects its given capacity.

3.1 Multi-commodity Flow Formulation

It is now possible to detail the first mathematical programming model, denoted
by Multi-commodity Flow Formulation (MFF). The set of decision variables of
this model is defined as follows:

– x
{u,v},s
(i,j) = 1 if node i is the predecessor of node j ({i, j} ∈ E) on the unique

path from node u to node v, on VLAN s ∈ S; 0 otherwise;
– ws

{i,j} = 1 if link {i, j} ∈ E is used in VLAN s ∈ S; 0 otherwise;
– Umax = maximum value of link utilization.

Given this set of variables, any feasible solution for the problem must verify
the following set of constraints:

(MFF)

min
x,w

Umax (1a)

s.t
∑

j:(u,j)∈E

x
{u,v},s
(u,j) = 1, u, v ∈ V : u < v, s ∈ S, (1b)

∑

j:(i,j)∈E

x
{u,v},s
(i,j) −

∑

j:(j,i)∈E

x
{u,v},s
(j,i) = 0,

u, v, i ∈ V : u < v, i ≤= {u, v}, s ∈ S, (1c)

x
{u,v},s
(i,j) + x

{u,v},s
(j,i) ≥ ws

{i,j}, u, v ∈ V : u < v, {i, j} ∈ E, s ∈ S, (1d)
∑

{i,j}∈E

ws
{i,j} = n − 1, s ∈ S, (1e)

∑

s∈S

∑

{u,v}:u<v

ds{u, v}(x
{u,v},s
(i,j) + x

{u,v},s
(j,i)) ≥ C{i,j} U

max, {i, j} ∈ E, (1f)

x
{u,v},s
(i,j) ∈ {0, 1}, (i, j) ∈ E, u, v ∈ V : u < v, j ≤= u, s ∈ S, (1g)

ws
{i,j} ∈ {0, 1}, {i, j} ∈ E, s ∈ S, (1h)

0 ≥ Umax ≥ 1 (1i)

The objective of the model (1a) is to minimize the value of the variable Umax,
which measures the maximum link utilization observed in all the network. As
stated in the first section of this paper, link utilization is the measure of the
ratio between each link’s load and its capacity.

The flow conservation constraints (1b) and (1c) define, for each VLAN s ∈ S,
a flow path between every pair of nodes, u, v ∈ V , through which traffic between
those two switches is routed. Constraints (1d) guarantee that, in each VLAN,
the flow paths will only make use of the links used in the according VLAN.

246 B. Fortz et al.

In (1e) the number of links used in each VLAN is set to n−1, so that they form
a spanning tree.

This first group of constraints (1b–1e), along with (1g–1h), defines, for each
VLAN, a spanning tree.

The set of constraints (1f) defines the variable Umax. At the same time, (1f)
is responsible for bounding the traffic quantity flowing through each link to the
given capacity, as Umax ∈ [0, 1] (1i).

Constraints (1g) and (1h) define, respectively, the set of variables x and w
as binary.

Balakrishnan et al. [15] have suggested a set of constraints for enhancing the
linking constraints, that can be extended for the multiple spanning trees, in the
following way:

x
{u,v},s
(i,j) + x

{u,v∗},s
(j,i) ≤ ws

{i,j}, u, v, v′ ∈ V : v ≥= v′, {i, j} ∈ E, s ∈ S,

(2a)

x
{u,v},s
(i,j) + x

{u∗,v},s
(j,i) ≤ ws

{i,j}, u, u′, v ∈ V : u ≥= u′, {i, j} ∈ E, s ∈ S,

(2b)

The first set of constraints, (2a), states that when edge {i, j} is used in
a given VLAN s, then all commodities originated in a given node u, will flow
either from i to j, or from j to i. Equation (2b) describes an equivalent situation,
for all commodities flowing to a given node v.

In the following specific cases, (2a) and (2b) can be written as equalities,
instead of inequalities:

x
{u,j},s
(i,j) + x

{u,i},s
(j,i) = ws

{i,j}, u ∈ V, {i, j} ∈ E : u < j, u < i, s ∈ S,

(3a)

x
{i,v},s
(i,j) + x

{j,v},s
(j,i) = ws

{i,j}, v ∈ V, {i, j} ∈ E : i < v, j < v, s ∈ S.

(3b)

Equation (3a) assert that if edge {i, j} is used in VLAN s, this necessarily
means that either the commodity flowing between a given node u and j travels
from i to j, or the commodity flowing between u and i travels in the oppo-
site direction. (3b) describes an equivalent situation, where the common node
between the two commodities is not the origin, but the destination.

Empirical evidence have revealed that by using (2a) and (2b) along with
(3a) and (3b), in the special cases previously mentioned, strengthens the linear
programming (LP) relaxation of MFF. For future reference, the model using all
the constraints in MFF plus these valid inequalities will be denoted as MFF+.

3.2 Rooted Directed Formulation

One alternative formulation can be obtained by extending the formulation sug-
gested by Martin [16] to the modelling of multiple spanning trees (see also
[17,18]). We denote this model by Rooted Directed Formulation (RDF). The
set of decision variables is defined as follows:

Models for Traffic Engineering with Multiple Spanning Tree Protocol 247

– zu,si,j = 1 if node i is the “father” of node j, in an arborescence rooted at node
u, in VLAN s ∈ S; 0 otherwise;

– fu,s
(i,j) = traffic quantity, originated from node u, going through link (i, j) ∈ E,

in VLAN s ∈ S;
– ws

{i,j} = 1 if link {i, j} ∈ E is used in VLAN s ∈ S; 0 otherwise;
– Umax = maximum value of link utilization.

Given this set of variables, any feasible solution for the problem must verify
the following set of constraints:

(RDF)

min
z,f,w

Umax (4a)

s.t
∑

i:(i,j)∈E

zu,si,j = 1, u, j ∈ V : u ≤= j, s ∈ S, (4b)

zu,si,j + zu,sj,i = ws
{i,j}, u ∈ V, {i, j} ∈ E, ∀s ∈ S, (4c)

∑

{i,j}∈E

ws
{i,j} = n − 1, ∀s ∈ S, (4d)

∑

j:(j,i)∈E

fu,s
(j,i) −

∑

j:(i,j)∈E∧j �=u

fu,s
(i,j) = ds{u, i}, u, i ∈ V : u ≤= i, s ∈ S, (4e)

∑

i:(u,i)∈E

fu,s
(u,i) =

∑

v∈V :v �=u

ds{u, v}, u ∈ V : u, s ∈ S, (4f)

fu,s
(i,j) ≥

∑

v∈V \{u,i}
ds{u, v} zu,si,j , i, j, u ∈ V : u ≤= j, {i, j} ∈ E, s ∈ S, (4g)

∑

s∈S

∑

u∈V

(fu,s
(i,j) + fu,s

(j,i)) ≥ C{i,j}U
max, {i, j} ∈ E, (4h)

zu,si,j ∈ {0, 1}, u ∈ V, (i, j) ∈ E : j ≤= u, s ∈ S, (4i)
ws

{i,j} ∈ {0, 1}, {i, j} ∈ E, s ∈ S, (4j)
fu,s
(i,j) ≥ 0, u ∈ V, (i, j) ∈ E : j ≤= u, s ∈ S, (4k)

0 ≥ Umax ≥ 1 (4l)

Once again the objective of the formulation is to minimize Umax (4a).
In each VLAN s ∈ S, the z variables define an arborescence rooted in each

node u ∈ V . To ensure that each one of these arborescence forms a spanning
tree, constraints (4b) define, for every node on each arborescence, a “father”
node. Node i is the “father” of j, in an arborescence rooted at node u if there is
a path from u to j passing from link {i, j}, in the direction i to j. An exception
is the root node that, evidently, cannot have a “father” node. Constraint set (4c)
ensures that all arborescences, in each VLAN, use the same links. These two sets
of constraints, in conjunction with the set on the number of links used in (4d)
and (4i–4h), define the structure of each VLAN as a spanning tree.

248 B. Fortz et al.

Equations (4e) and (4f) are traffic flow conservation constraints, responsible
for defining the f variables. Note that there is a set of f variables for each
arborescence. Compared to MFF, the number of flow variables is n times smaller
as flows are aggregated by origin nodes. Equation (4e) states that the difference
between the traffic quantity originated from node u, in VLAN s, entering and
exiting a certain node i (different from u) must match, exactly, the traffic demand
between node u and i, on that same VLAN. Constraint set (4f) defines the traffic
flow quantity exiting each root node.

By constraint set (4h), traffic flow is limited to the links used in the corre-
sponding arborescence. In order to properly bound the f variables, having in
account that z variables are binary, it is necessary to multiply the right hand
side of the constraint by the maximum amount of traffic flow the corresponding
link can be expected to carry. However, as flows are aggregated by origin, it is
not possible to make this bound tight. The best estimation that can be achieved
is that the traffic quantity flowing through a directed link (i, j), in any arbores-
cence rooted in node u, and located in VLAN s, is at most equal to the sum
of the traffic demands between node u, and every other node k ∈ V , with the
exception of node i, as that commodity will evidently have been delivered just
before link (i, j). Constraints (4h), as (1f) did in MFF, have the double task
of defining variable Umax and bounding the flow quantity in each link to its
capacity.

Finally, constraint sets (4i) to (4l) define the feasible space for each of the
variables in the model.

Fernández and Luna-Mota [18] developed a set of valid inequalities to
strengthen their arborescence-based model for a single spanning tree design.
RDF was tested using an extension of these inequalities for the multiple span-
ning tree case. However, no empirical evidence was found that, in practice, they
are useful for solving the considered problem.

3.3 Comparing the LP Relaxations

It is possible to prove that the LP relaxation of MFF+ is as strong as the LP
relaxation of RDF. That is to say:

Theorem 1. Let MFP and RDP be the polyhedra defined by the set of feasible
solutions to the linear relaxations of, respectively, MFF+ and RDF . Then

MFP ⊆ RDP.

Due to space restrictions, the formal proof of Theorem 1 won’t be presented
in this paper.

Computational results given in the next section show that for some instances,
the LP relaxation of MFF+ is strictly stronger than the one of RDF.

4 Computational Experiments

In this section we present computational experiments that can help evaluate the
quality of models RDF and MFF+ to solve instances of the problem of designing

Models for Traffic Engineering with Multiple Spanning Tree Protocol 249

Table 1. Description of each class of instances.

Class ID #nodes Density #VLANs

1 4 1 1

2 4 1 5

3 6 0.8 2

4 6 0.8 4

5 8 0.4 3

6 8 0.4 6

7 8 0.6 2

8 8 0.8 2

9 8 0.8 3

10 10 0.3 2

11 10 0.3 4

12 10 0.5 2

13 10 0.5 3

14 12 0.3 4

15 14 0.3 2

16 14 0.5 3

17 16 0.4 4

18 16 0.4 5

19 20 0.2 1

20 20 0.2 2

Ethernet networks implementing MSTP. These experiments are divided in two
parts. In the first experiment, we have measured the CPU time used by CPLEX
to solve RDF and MFF+, in order to evaluate the effectiveness of the models
in solving the problems to optimality. The second experiment compares both
models’ LP relaxation results. This way it is possible to assess the quality of
each model in generating lower bounds.

These experiments were conducted using a set of randomly generated instan-
ces, with different characteristics: number of nodes, network density, and number
of spanning trees. Respecting the first two parameters, it is possible to create
the set of links, distributed randomly in the network. Each link will be randomly
given a traffic capacity value of either 0.5, 0.75 or 1. Then, for each VLAN, traffic
demands between nodes are calculated using the following formula, suggested by
Fortz and Thorup [19].

ds{u, v} = αOuDvR(u,v)e
−L2(u,v)

2Δ (5a)

For each node u, two random numbers, Ou and Dv are randomly generated in
the interval [0, 1]. These values reflect, respectively, the activeness of each node
as a sender and as a receiver. Another value, R(u,v), is generated in the same

250 B. Fortz et al.

Table 2. Time results for each class of instance.

MFF+ RDF

Class ID #solved Time avg Time std #solved Time avg Time std

1 5 0.06 0.05 5 0.04 0.05

2 5 0.07 0.01 5 0.02 0.01

3 5 2.74 1.32 5 0.43 0.16

4 5 10.84 7.10 5 0.85 0.42

5 5 3.70 2.08 5 0.27 0.17

6 5 8.33 7.05 5 0.25 0.25

7 5 498.75 368.59 5 6.26 3.80

8 5 979.84 736.79 5 48.20 53.21

9 3 307.40 173.07 5 50.61 31.36

10 5 41.41 53.71 5 0.72 1.00

11 5 126.62 138.78 5 2.65 3.09

12 2 478.17 579.58 5 140.5498 182.36

13 3 3733.48 3097.41 4 544.68 785.88

14 0 - - 3 236.40 356.00

15 1 45.70 0.00 3 1957.82 1801.02

16 0 - - 0 - -

17 0 - - 0 - -

18 0 - - 1 1307.49 0

19 0 - - 0 - -

20 0 - - 1 227.30 0

interval, for each pair of nodes. α is another parameter given as input. In these
tests, the Euclidian distance (L2) was substituted by the length of the shortest
path between each pair of nodes, with respect to the number of links. Δ is the
largest distance verified in the network.

For each class of instances, five instances were generated and tested. Table 1
describes the classes of instances tested in these experiments in terms of number
of nodes in the network (#nodes), network density, number of VLANs in the
network (#VLANs). α was given a value of 0.1 for every instance.

Each instance was tested using both models, RDF and MFF+. A time limit of
one hour was set for solving each instance’s integer program. In this sense, Table 2
indicates the number of instances, per class, that CPLEX was able to solve in
this time frame, for both formulations. Table 2 also presents the average CPU
time (Time avg) it took for instances of each class to be solved to optimality,
along with the standard deviation (Time std). Evidently, only instances solved
in one hour or less are accounted when computing these statistics.

In these experiments we also computed, for each instance, the gap between
the linear relaxation and the best known feasible solution. The gap value mea-

Models for Traffic Engineering with Multiple Spanning Tree Protocol 251

Table 3. Gap results, in percentage, for each class of instance.

MFF+ RDF

Class ID #ISF Gap avg Gap std Gap avg Gap std

1 5 51.80 7.08 54.85 9.01

2 5 30.69 13.34 30.82 13.46

3 5 46.34 5.88 47.37 6.63

4 5 37.50 11.94 38.00 12.30

5 5 12.74 9.45 13.12 9.85

6 5 1.03 1.14 1.03 1.14

7 5 49.40 3.36 49.56 3.15

8 5 57.96 5.30 58.06 5.28

9 5 58.00 21.10 58.83 20.35

10 5 5.74 12.84 5.96 13.34

11 5 0.26 0.56 0.26 0.56

12 5 32.44 20.65 32.91 21.35

13 5 23.31 15.18 23.31 15.18

14 5 3.12 2.18 3.12 2.18

15 5 16.88 17.49 16.88 17.49

16 5 64.05 12.00 64.05 12.00

17 5 67.26 11.70 67.57 12.07

18 5 40.25 30.62 40.25 30.62

19 2 73.70 14.34 74.65 14.76

20 5 43.86 27.10 43.86 27.10

sures the ratio between the solution quality of the integer program and of its
linear relaxation (see Formula 6a). In order to be able to make a valid compar-
ison between the two models, for each instance, the gap was calculated taking
into account the best integer solution found by any of the models. These results
are presented in Table 3 (Gap avg and Gap std). Only instances where at least
one integer solution was found by any of the models, within one hour, will be
considered for these statistics. In this sense, for each class of instance we also
indicate the number of instances where this condition was verified (#ISF).

Gap =
IntegerSolution − RelaxationSolution

IntegerSolution
(6a)

All the tests were performed using ILOG CLEX 12.5, on a Intel Core i7 CPU
960 @ 3.20 GHz (x8) with 12 GB of memory with 64 bits, and running Ubuntu
12.04.1 LTS (GNU/Linux 3.2.0 − 26−generic x86 64).

Table 2 shows that RDF is much faster than MFF+. Consequently, RDF is
able to go further, and solve bigger instances that MFF+ is unable to solve
within one hour (Class IDs 9, 12–15, 18, 20).

252 B. Fortz et al.

In Table 3, however, we can observe that for some classes of instances (1–5,
7–10, 12, 17, 19), MFF+ was able to produce better lower bounds than RDF,
evidenced by the smaller gap values. This way it is possible to conclude that for
these instances the LP relaxation MFF+ is, in fact, strictly stronger than the
LP relaxation of RDF.

Nevertheless, the differences between the gaps, when existing, are not all that
substantial, with the average gain being less than 1 %.

5 Summary and Conclusions

In this paper we approached the problem of finding optimal designs for Ethernet
networks implementing MSTP, with regards to link utilization. Slight variations
of this problem have been widely treated in the literature. However, research has
been focusing, almost exclusively, in heuristic methods. In fact, the only work
[9,10] that made use of exact methods, did so merely as a way of evaluating the
quality of their proposed heuristic. Therefore, in our view, it is clear that there
is still a lot of improvements that can be done using exact method approaches
to these problems.

In this paper we propose two mixed-integer programming formulations for
the considered problem. These formulations are based on models that have been
previously used for the design of single spanning trees. The first formulation,
MFF, makes use of multi-commodity flows to design the spanning trees. A set
of valid inequalities were proposed, that were able to further strengthen this
formulation. The combination of MFF and these valid inequalities was named
MFF+. The second formulation, RDF, defines multiple arborescences rooted at
each node of a VLAN, thusly ensuring the required spanning tree topology.

Various numerical experiments were made using both models implemented on
CPLEX. By observing the results it is clear that RDF is much faster than MFF+.
We were also able to conclude that the LP relaxation of MFF+ is a stronger
formulation than the LP relaxation of RDF. Nevertheless, results suggest that
MFF+ does not always produce better lower bounds than RDF. Furthermore,
when MFF+ is indeed able to do so, the gain seems to be low.

Finally, the results also show huge gap fluctuations. Moreover, there is no
evidence of a monotonous progression of the gap size. We believe that this unpre-
dictableness is a direct result of the max-min structure of problem.

We are currently working on developing other formulations for this prob-
lem, such that they may be even faster than RDF and/or stronger than MFF+.
In the future, in order to tackle larger and more realistic sized instances, we
want to use Benders’ decomposition in conjunction with the proposed models.
This can be used in a branch-and-cut framework, where Benders’ cuts are gen-
erated in each node of the branch-and-bound tree. While tests imply that RDF
is a more appropriate formulation for the optimal solving of small size instances
of this problem, MFF+ may yet prove itself useful for that framework, due to
its propensity to produce better lower bounds.

Models for Traffic Engineering with Multiple Spanning Tree Protocol 253

References

1. IEEE Computer Society: Ieee standard for information technology- telecommuni-
cations and information exchange between systems- local and metropolitan area
networks- common specifications part 3: Media access control (mac) bridges.
ANSI/IEEE Std 802.1D, 1998 Edition, i-355 (1998)

2. IEEE Computer Society: Ieee standard for local and metropolitan area networks
virtual bridged local area networks. IEEE Std 802.1Q-2005 (Incorporates IEEE
Std 802.1Q1998, IEEE Std 802.1u-2001, IEEE Std 802.1v-2001, and IEEE Std
802.1s-2002), 0 1–285 (2006)

3. IEEE Computer Society: Ieee standards for local and metropolitan area networks–
virtual bridged local area networks– amendment 3: Multiple spanning trees. IEEE
Std 802.1s-2002 (Amendment to IEEE Std 802.1Q, 1998 Edition), 0 1-211 (2002)

4. Ho, T.: Traffic engineering techniques for data center networks. Ph.D. thesis, Ecole
polytechnique de Louvain, Université catholique de Louvain (2012)

5. He, X., Zhu, M., Chu, Q.: Traffic engineering for metro ethernet based on multiple
spanning trees. In: International Conference on Networking, International Con-
ference on Systems and International Conference on Mobile Communications and
Learning Technologies (ICNICONSMCL’06), pp. 97–97. IEEE (2006)

6. Lim, Y., Yu, H., Das, S., Lee, S.S., Gerla, M.: QoS-aware multiple spanning tree
mechanism over a bridged LAN environment. In: IEEE Global Telecommunications
Conference (IEEE Cat. No. 03CH37489), GLOBECOM ’03, vol. 6, pp. 3068–3072.
IEEE (2003)

7. Meddeb, A.: Multiple spanning tree generation and mapping algorithms for carrier
class ethernets. In: IEEE Globecom 2006, pp. 1–5. IEEE (2006)

8. de Sousa, A., Soares, G.: Improving load balance and minimizing service disruption
on ethernet networks with IEEE 802.1S MSTP. In: Workshop on IP QoS and Traffic
Control, pp. 25–35 (2007)

9. Santos, D., de Sousa, A., Alvelos, F., Dzida, M., Pióro, M., Zagozdzon, M.: Traffic
engineering of multiple spanning tree routing networks: the load balancing case.
In: Next Generation Internet Networks, NGI ’09, pp. 1–8 (2009)

10. Santos, D., de Sousa, A., Alvelos, F., Dzida, M., Pióro, M.: Optimization of link
load balancing in multiple spanning tree routing networks. Telecommun. Syst.
48(1–2), 109–124 (2010)

11. Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Ball, M.O., et al. (eds.) Hand-
books in Operations Research and Management Science, vol. 7, pp. 503–615. Else-
vier Science, Amsterdam (1995)

12. Chen, W., Jin, D., Zeng, L.: Design of multiple spanning trees for traffic engi-
neering in metro ethernet. In: 2006 International Conference on Communication
Technology, pp. 1–4. IEEE (2006)

13. Padmaraj, M., Nair, S., Marchetti, M., Chiruvolu, G., Ali, M., Ge, A.: Metro
ethernet traffic engineering based on optimal multiple spanning trees . In: Second
IFIP International Conference on Wireless and Optical Communications Networks,
WOCN 2005, pp. 568–572. IEEE (2005)

14. Mirjalily, G., Sigari, F.A., Saadat, R.: Best multiple spanning tree in metro ethernet
networks. In: 2009 Second International Conference on Computer and Electrical
Engineering, pp. 117–121. IEEE (2009)

15. Balakrishnan, A., Magnanti, T.L., Wong, R.T.: A dual-ascent procedure for large-
scale uncapacitated network design. Oper. Res. 37(5), 716–740 (1989)

254 B. Fortz et al.

16. Martin, R.K.: Using separation algorithms to generate mixed integer model refor-
mulations. Oper. Res. Lett. 10(3), 119–128 (1991)

17. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial
optimization. 4OR 8(1), 1–48 (2010)

18. Fernández, E., Luna-Mota, C., Hildenbrandt, A., Reinelt, G., Wiesberg, S.: A
flow formulation for the optimum communication spanning tree. Electron. Notes
Discrete Math. 41, 85–92 (2013)

19. Fortz, B., Thorup, M.: Increasing internet capacity using local search. Comput.
Optim. Appl. 29(1), 13–48 (2004)

Graph Compact Orthogonal Layout Algorithm

Kārlis Freivalds(B) and Jans Glagoļevs

Institute of Mathematics and Computer Science, University of Latvia,
Raina Bulvaris 29, Riga LV-1459, Latvia

karlis.freivalds@lumii.lv,
jansglagolevs@gmail.com

Abstract. There exist many orthogonal graph drawing algorithms that
minimize edge crossings or edge bends, however they produce unsatis-
factory drawings in many practical cases. In this paper we present a
grid-based algorithm for drawing orthogonal graphs with nodes of pre-
scribed size. It distinguishes by creating pleasant and compact drawings
in relatively small running time. The main idea is to minimize the total
edge length that implicitly minimizes crossings and makes the drawing
easy to comprehend. The algorithm is based on combining local and
global improvements. Local improvements are moving each node to a
new place and swapping of nodes. Global improvement is based on con-
strained quadratic programming approach that minimizes the total edge
length while keeping node relative positions.

1 Background

Graph drawing algorithms provide a visually appealing way to present the struc-
ture of a graph. Several graph drawing styles are commonly used, each under-
lining some property of the graph suitable for a particular application. We deal
with the orthogonal drawing style where edges are represented by chains of hor-
izontal and vertical line segments connecting the nodes. The goal is to obtain
an aesthetically pleasing drawing of a given graph. Common aesthetic crite-
ria include alignment of nodes, small area, few bends and crossings, short edge
length. Overlaps of objects are not allowed.

Most of prior work on orthogonal drawing algorithms is dedicated to pro-
ducing drawings of some provable quality aspect. This is the case of the popular
topology-shape-metric approach [5,9,17] where the number of bends is mini-
mized respecting some planar embedding. See [6] for an experimental evaluation
of these algorithms. There are a number of works achieving proven area bounds,
or bounds on the number of bends or both [1–3]. Unfortunately these are worst
case bounds and often a given particular graph can be laid out much better as
these algorithms produce. Most of the current orthogonal drawing algorithms
perform poorly in a practical setting. Even simple heuristics often yield a signif-
icant improvement of the drawing quality [8,16].

Supported in part by project No. 2013/0033/2DP/2.1.1.1.0/13/APIA/VIAA/027.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 255–266, 2014.
DOI: 10.1007/978-3-319-09174-7 22

256 K. Freivalds and J. Glagoļevs

We explore the orthogonal drawing problem from a practical point of view
where the goal is to produce nice-looking layouts of typical graphs. To achieve
this, crossings, bends, area, etc. should be minimized together in some propor-
tion for each particular graph so that the user cannot spot obvious ways of
improvement. Such goal is aimed in [3] where the layout process is divided in
three phases – node placement, edge routing and port assignment. Unfortunately
their node placement phase is weak – each node is placed in a new row and col-
umn thus producing large area and long edges. We generally follow this strategy,
but implement each phase in a different way.

In this paper we present an orthogonal layout algorithm which produces good
drawings for many practical graphs. At first, the algorithm assigns positions to
nodes by putting them on a grid while minimizing the total edge length. Edges
are routed afterwards by using standard techniques from integrated circuit lay-
out [14] and minimally adjusting the node placement [10]. Minimizing the total
edge length also helps to keep the number of crossings and bends low, although
they are not directly minimized. Placing nodes on the grid is an essential ingre-
dient of the algorithm that ensures non-overlapping and nice alignment of nodes
characteristic to the orthogonal style.

2 Overview of the Algorithm

We consider the drawing model where nodes are represented by rectangles of a
given minimum size, edges are represented with orthogonal polylines connecting
the associated nodes. Overlaps between nodes or between nodes and edges are
not allowed and some minimum distance δ between them has to be ensured.
Only point-wise crossings of edges are allowed (no overlaps of segments of the
same direction). We allow nodes to stretch to accommodate adjacent edges but
excessive stretching should be minimized. We do not require strict grid place-
ment of nodes and edges but include alignment as an aesthetic criterion to be
maximized.

Similarly to [3], the layout process is divided into three phases - node place-
ment, edge routing and normalization (see Fig. 1). Node placement is the main
phase since it influences the drawing quality the most and other phases depend
on it. Then comes edge routing which finds routes for edges that are short and
with few bends [14]. Our employed routing algorithm does not minimize cross-
ings, although some local crossing minimization heuristics can be easily incor-
porated in the routing algorithm. After routing, there can be overlaps of edge
segments and the minimum distance requirement is violated. The third phase
performs mental map preserving layout adjustment [7,10] to remove overlaps
while minimizing the node movement.

The quality of the obtained drawings is mostly influenced by the node place-
ment phase which is the main contribution of this paper. Edge routing and
overlap removal phases will not be described any further since good solutions
exist in the given references. In the node placement phase nodes are placed in
a two-dimensional rectangular grid each node occupying one or more grid cells.

Graph Compact Orthogonal Layout Algorithm 257

(a) (b) (c)

Fig. 1. Graph obtained after each of the 3 phases: (a) node placement; (b) edge
routing; (c) normalization.

Fig. 2. Situation where compaction is needed to improve layout.

Node placement is divided into two stages. In the first stage all nodes are treated
to be of the same size occupying exactly one grid cell. In the second stage a node
can take several grid cells proportional to its given size. The second stage could
be used alone, but obtaining an initial approximation with the unit size nodes
often results in better layouts.

Similarly to [3], we formalize the node placement as an optimization prob-
lem to minimize the total edge length subject to constraints that no two nodes
cover the same grid cell. The basis of our algorithm is inspired by the simulated
annealing idea. We perform a greedy optimization that iteratively moves a nodes
to a better place or swaps two nodes. This process is augmented with some ran-
dom displacement. The idea of using a grid for node placement (although for
straight-line drawings) together with simulated annealing is used in drawing of
biochemical networks [12,13,15]. But in our algorithm we extend it with repeated
global compaction steps that allow to escape from the many local minima of the
optimization problem. Figure 2 shows a simple example where no node can be
moved to improve the layout but the compaction step of our algorithm in vertical
direction produces the optimal layout. In such small examples random displace-
ments helps to find the optimum, but similar cases when groups of nodes have
to be shifted often occur in larger graphs where randomization is too weak.

3 Detailed Description

In the input to the node placement algorithm we are given a graph G = (V,E)
with a node set V and edge set E to be laid out and the minimum width wi and
height hi of each node. In output the algorithm gives the top-left corner (xi, yi)
of each node.

258 K. Freivalds and J. Glagoļevs

To deal with nodes of different sizes (relevant only in the second stage of the
algorithm) we need to calculate the size of a grid cell. We assume the grid cell
to be a square of side length c which is calculated as

c =


⎡

⎣

Lmax if Lmax < 3Lmin
3Lmin

2 if 3Lmin ∈ Lmax < 15Lmin
Lmax

30 if 15Lmin ∈ Lmax

, (1)

where Lmin = min(min(wi + δ),min(hi + δ)) and Lmax = max(max(wi +
δ),max(hi + δ)). The main case of c is the middle one. The first case is cho-
sen when all nodes are of a similar size and we define c such that all boxes take
only one grid cell for more pleasant results. The third case prevents excessive
memory usage in case of widely different node sizes.

When nodes are placed in the grid, they are given integer coordinates and
sizes. The top-left corner of a node vi in the grid will be denoted by (x′

i, y
′
i). Its

width in the grid w′
i is calculated as ≤wi+δ

c ≥. Its height in the grid h′
i is calculated

as ≤hi+δ
c ≥.

We can use different functions for the edge length to be minimized. Com-
mon examples include Euclidean or Manhattan distance. To deal with nodes of
different sizes better, we use a distance function d(vi, vj) between two nodes vi

and vj defined as follows:

d(vi, vj) = de(vi, vj) +
1
20

min

(
|xc

i − xc
j |

w′
i + w′

j

,
|yc

i − yc
j |

h′
i + h′

j

)

, (2)

where de(vi, vj) is the Euclidean distance between the node rectangle borders
and xc

i = x′
i + 1/2w′

i and yc
i = y′

i + 1/2h′
i are center coordinates of the nodes.

The second addend helps to align node centers when the distance between their
borders is approximately equal. The constant 1/20 was chosen experimentally to
balance the need for short edges with alignment of node centers.

3.1 Compaction

An essential step of the proposed layout algorithm is compaction, which performs
global layout improvements and simultaneously creates new empty places in the
grid. We use a quadratic programming approach [7,10] where compaction in one
dimension is expressed as minimization of a quadratic function subject to two-
variable linear constraints. The function is constructed to minimize the total
edge length but constraints keep the minimum distances between nodes and
maintain their relative ordering.

Compaction is done separately in horizontal and vertical directions. Let us
consider the horizontal direction; the vertical one is similar. The relative ordering
is expressed as a visibility graph. A visibility graph is a directed graph with the
same set of nodes V but with a different set of edges S. There is a directed
edge (i, j) ∈ S in the visibility graph if and only if x′

j > x′
i and it is possible to

connect nodes vi and vj with a horizontal line segment without overlapping any

Graph Compact Orthogonal Layout Algorithm 259

other node. The visibility graph can be constructed with a sweep-line algorithm
in time |V | log |V | but in our case we can extract it directly from the grid in time
proportional to the number of grid cells.

We construct the following optimization problem

minimize
⎤

(i,j)∈E

(zi + 1/2w′
i − (zj + 1/2w′

j))
2 (3)

subject to zj − zi ≥ dij , (i, j) ∈ S

where dij = γ · w′
i and γ ≥ 1 is a coefficient that defines how much empty

space will be left between nodes. To obtain the maximum compaction we should
set γ = 1. Such setting is desirable at the final few iterations of the algorithm but
otherwise using γ > 1 leaves some empty places between nodes giving additional
freedom for node movement to find a better solution.

To perform compaction, the visibility graph is constructed from the current
node positions, the optimization problem is constructed and its minimum is
found by using the solver described in [10]. The node positions are calculated as
x′

i = ∀zi∃. Since w′
i are integer and γ ≥ 1, the rounded values satisfy x′

j − x′
i ≥

w′
i and non-overlapping of nodes is ensured. The rounded solution may not be

optimal with respect to the integer variables x′
i but is good enough for our

purposes. Note that compaction uses a quadratic edge length function but node
swapping uses a linear distance defined by Eq. (2). In our case such mismatch
does not create obvious bad effects since (2) is used when swapping nodes and
compaction respects the obtained ordering via the constraint graph.

Compaction is used also to switch from the first stage of the algorithm where
all nodes are of a unit size to the second stage with the real node sizes. The
switch is done by simply compacting with dij calculated from the new node
sizes. An example of horizontal compaction with different γ values is shown in
Fig. 3.

(a) (b) (c)

Fig. 3. An example graph of four nodes with their horizontal visibility graph (dashed).
(a) before compaction; (b) after compaction with γ = 1; (c) after compaction with
γ = 2.

3.2 Algorithm Pseudocode

The pseudocode for the node placement is shown in Algorithm 1. As the first
steps, the grid of size 5

⎧|V | × 5
⎧|V | is initialized and nodes are randomly

placed in the grid. The first stage of the algorithm (lines 6–20) treats each node

260 K. Freivalds and J. Glagoļevs

of size 1. The grid is dynamically expanded during layout, if required. The algo-
rithm works in iterations and the number of iterations iterationCount is taken
proportional to

⎧|V |. At each iteration, local optimization is performed that
decreases the total edge length. The optimization process is based on the sim-
ulated annealing idea. It requires the notion of temperature T which influences
how much node positions are perturbed by randomness. The starting temper-
ature T is set equal to 2

⎧|V | to allow nodes to be placed almost everywhere
initially. The temperature is smoothly reduced by a cooling coefficient k until
it reaches the lowest temperature Tmin; we take Tmin equal to 0.2. The cooling
coefficient k is calculated in line 5 such that T reaches Tmin in iterationCount
iterations.

To perform local optimization, every node is moved to a location that mini-
mizes the total length of its adjacent edges. We use a heuristic to calculate this
location approximately. Calculating the optimal location is expensive and actu-
ally is not needed since the added random displacement disturbs it anyway. We
calculate an initial estimate to node’s position (x,y) that minimizes the Man-
hattan distance to the adjacent nodes. Such point is found as a median of the
neighbors’ centers. A random displacement proportional to the temperature T
is added to that point.

Then we search the closest place to (x,y), where vj can be put (line 10).
We calculate the Manhattan distance d of the closest free place to (x,y). Then
we check all cells within Manhattan distance d + 1 from (x,y) and choose the
position with the least total edge length according to (2) to place vj . If this
place is different from the location of vj from the previous iteration, we leave
the node there. Otherwise, we try to swap it with the nodes nearby. We do this
by checking the nodes residing in adjacent grid cells to vj . For each of these we
calculate the gain of the total edge length if we swap the adjacent node with vj .
If the gain is positive we swap the nodes.

Compaction is performed every 9-th iteration each time changing direction
(lines 15–18). The variable compactionDir defines direction in which compaction
is be performed, true for horizontal direction false for vertical. Compaction is
performed by function compact (boolean horDirection, float γ, boolean expand)
described in Sect. 3.1. The parameter expand is true if boxes need to be expanded
to it’s real sizes, otherwise it is false. In line 16 compaction is done with γ = 3
and direction is changed after every compaction (line 17). The temperature T is
reduced at the end of the iteration (line 19).

In lines 21 and 22 switching from the first stage to the second is done by
performing compaction with the new node sizes. The second stage (lines 23–37)
is similar to the first one, only all boxes are treated with their prescribed sizes.
Searching for a place for a node has to check if all grid cells under a larger node
are free. This modification influences node swapping – there may be cases when
adjacent nodes of different sizes cannot be swapped. This is the main motivation
why the first stage with unit node sizes is beneficial. In line 33 compaction is
done with gradually decreasing γ which becomes 1 in the last 3 compactions.

Graph Compact Orthogonal Layout Algorithm 261

In this way the available free space for node movement is gradually reduced
giving more emphasis to node swapping.

1 Initialize the grid of size 5
√|V | × 5

√|V | Put nodes randomly into grid (treat
them all 1 × 1 sized);

2 compactionDir=true;

3 iterationCount=90
√|V |;

4 T=2
√|V | ;

5 k=(0.2/T)1/iterationCount;
6 for (i=0; i<iterationCount/2; i++) do
7 for (j=1; j ≤ |V |; j++) do
8 x=neighboursMedianX(vj) + random(−T, T);
9 y=neighboursMedianY(vj) + random(−T, T);

10 Put vj near (x,y);
11 if vj has not changed it’s place from the previous iteration then
12 Try to swap vj with nodes nearby;
13 end

14 end
15 if iterationCount mod 9 == 0 then
16 compact(compactionDir, 3, false);
17 compactionDir=!compactionDir;

18 end
19 T=T·k;

20 end
21 compact(true, 3, true);
22 compact(false, 3, true);
23 for (i=iterationCount/2+1; i<iterationCount; i++) do
24 for (j=1; j ≤ |V |; j++) do
25 x=neighboursMedianX(vj) + random(−T·w∈

j , T·w∈
j);

26 y=neighboursMedianY(vj) + random(−T·h∈
j , T·h∈

j);
27 Put vj near (x,y);
28 if vj has not changed it’s place from the previous iteration then
29 Try to swap vj with nodes nearby;
30 end

31 end
32 if iterationCount mod 9 == 0 then

33 compact
(

compactionDir, max
(
1, 1 + 2(iterationCount−i−30)

0.5iterationCount

)
, false

)
;

34 compactionDir=!compactionDir;

35 end
36 T=T·k;

37 end

Algorithm 1. Main algorithm

262 K. Freivalds and J. Glagoļevs

3.3 Other Starting Layouts

The algorithm described above starts with assigning random positions to the
nodes and later it needs relatively many iterations to find a good layout. We
consider two other initial layouts for increased speed or quality – force directed
placement and arrangement by breadth first search (BFS). The constants of the
algorithm have to be adjusted depending on the chosen initial layout.

One possibility is to use force directed placement for the initial positions of
nodes. Fast methods [11] are known for the force directed placement. Node coor-
dinates in the grid are initialized from the rounded results of the force directed
placement. Since force-directed placement gives a good approximation to the
minimum edge length, iterationCount can be set constant and we made it equal
to 100. Compaction is done at every 3-rd iteration. The starting temperature
should be small, we set T = 3.

Another possibility for the starting layout is to use incremental placement
where nodes are added one by one. We execute a breadth-first search starting
from some arbitrary chosen node and add nodes to the grid in this order. The
position for each node is chosen as a free place that minimizes the total distance
to already placed nodes. We found that BFS placement gives good results with
small graphs or graphs with a small degree. For this starting layout we chose
coefficients as follows: iterationCount = 10

⎧|V |, T = 0.2
⎧|V |. Compaction is

done after every 3-rd iteration.

4 Results

We have tested our algorithm on many artificial and real world graphs. Figure 8
shows some examples. The algorithm produces pleasant drawings with small
area and low number of crossings and edge bends. For small graphs like these,
all three proposed initial placement methods produce similar results.

(a) (b) (c)

Fig. 4. Examples of the tested graphs. (a) partial grid graph; (b) tree graph; (c) random
graph.

Graph Compact Orthogonal Layout Algorithm 263

To test the quality and performance of our algorithm we run it on three
automatically generated graph classes – partial grids, random trees and random
graphs, see Fig. 4. Three modifications of the algorithm with different initial
placements were tested for each class, the time for initialization is included in
the measurement. For each class of graphs random instances were generated of
progressively increasing size, 10 instances for each size. The running time and
the average number of crossings per edge were calculated. To be independent of
the routing algorithm, edges were treated as straight line segments connecting
the node centers for the crossing calculation. The results were averaged over the
10 generated instances.

The running time measurements are similar for all three graph classes. The
running time mostly depends on the number of iterations chosen in each case of
initialization, random case being the slowest and force-directed case the fastest.
The measurements indicate that the time for initial placement does not add
much overhead.

The results for the partial grid graphs are shown in Fig. 5. A partial grid
graph is a square grid with the specified number of nodes where 10 % of nodes
are randomly removed. The results show that the algorithm with all the initial
placement methods produce a planar layout of small instances (up to about 1000
nodes) but further only force-directed initialization is able to recover the graph
structure correctly, BFS initialization being the worst. It has to be mentioned
that, if we increase the number of iterations of the BFS case to match the
random case, we obtain drawings of similar quality. But our intention for the
BFS method was to check whether we can improve running time with a better
initialization. Tests showed that BFS initialization does not give any advantage
over the random one.

The quality on tree graphs is similar for all three modifications (Fig. 6). None
is able to produce completely planar drawings of larger instances, although the
crossing count is small. The BFS method has slightly more crossings than the
other two.

Random graphs are generated by including randomly chosen node pairs as
edges in the graph with density |E| = 1.2|V |. The quality on random graphs
is similar for all three methods (Fig. 7). That is expected since random graphs
cannot be drawn with significantly less crossings than any of these methods
produce.

Overall, the best initialization method is force-directed, which produce the
best drawing quality in the least running time. Of course, this option depends
on the quality and performance of the available force-directed placement imple-
mentation.

264 K. Freivalds and J. Glagoļevs

(a) (b)

Fig. 5. The running time and crossing count depending on node count of partial grid
graphs. (a) running time; (b) crossing count.

(a) (b)

Fig. 6. The running time and crossing count depending on node count of tree graphs.
(a) running time; (b) crossing count.

(a) (b)

Fig. 7. The running time and crossing count depending on node count of random
graphs. (a) running time; (b) crossing count.

Graph Compact Orthogonal Layout Algorithm 265

(a) (b)

(c) (d)

Fig. 8. Examples of layouts produced with the proposed algorithm. (a) the graph
presented in [13]; (b) the graph presented in [6]; (c) the graph presented in [4]; (d) a
graph with nodes of different sizes.

266 K. Freivalds and J. Glagoļevs

References

1. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

2. Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings.
In: Burkard, R., Woeginger, G. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52.
Springer, Heidelberg (1997)

3. Biedl, T.C., Madden, B.P., Tollis, I.G.: The three-phase method: a unified approach
to orthogonal graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353,
pp. 391–402. Springer, Heidelberg (1997)

4. Bridgeman, S., Fanto, J., Garg, A., Tamassia, R., Vismara, L.: Interactivegiotto:
an algorithm for interactive orthogonal graph drawing. In: DiBattista, G. (ed.) GD
1997. LNCS, vol. 1353, pp. 303–308. Springer, Heidelberg (1997)

5. Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and Quasi-
upward drawings with vertices of prescribed size. In: Kratochv́ıl, J. (ed.) GD 1999.
LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)

6. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Comput. Geom. 7(5),
303–325 (1997)

7. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg
(2006)

8. Fößmeier, U., Heß, C., Kaufmann, M.: On improving orthogonal drawings: the
4M-Algorithm. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 125–137.
Springer, Heidelberg (1999)

9. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer,
Heidelberg (1996)

10. Freivalds, K., Kikusts, P.: Optimum layout adjustment supporting ordering con-
straints in graph-like diagram drawing. In: Proceedings of Latvian Academy of
Sciences, Section B, No. 1, pp. 43–51 (2001)

11. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for drawing
general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843,
pp. 235–250. Springer, Heidelberg (2006)

12. Kojima, K., Nagasaki, M., Miyano, S.: Fast grid layout algorithm for biological
networks with sweep calculation. Bioinformatics 24(12), 1433–1441 (2008)

13. Kojima, K., Nagasaki, M., Miyano, S.: An efficient biological pathway layout algo-
rithm combining grid-layout and spring embedder for complicated cellular location
information. BMC Bioinformatics 11, 335 (2010)

14. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley
and Sons Inc., New York (1990)

15. Li, W., Kurata, H.: A grid layout algorithm for automatic drawing of biochemical
networks. Bioinformatics 21(9), 2036–2042 (2005)

16. Six, J.M., Kakoulis, K.G., Tollis, I.G., et al.: Techniques for the refinement of
orthogonal graph drawings. J. Graph Algorithms Appl. 4(3), 75–103 (2000)

17. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

State Space Reduced Dynamic Programming
for the Aircraft Sequencing Problem
with Constrained Position Shifting

Fabio Furini1, Martin Philip Kidd2(B),
Carlo Alfredo Persiani3, and Paolo Toth2

1 LAMSADE, Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny, 75775 Paris, France

fabio.furini@dauphine.fr
2 DEI, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

{martin.kidd,paolo.toth}@unibo.it
3 ENAV S.p.A, Italian Agency for Air Navigation Services,

Via Salaria 716, Roma, Italy
carlo.persiani@enav.it

Abstract. In this paper we present state space reduction techniques for
a dynamic programming algorithm applied to the Aircraft Sequencing
Problem (ASP) with Constrained Position Shifting (CPS). We consider
the classical version of the ASP, which calls for determining the order
in which a given set of aircraft should be assigned to a runway at an
airport, subject to minimum separations in time between consecutive
aircraft, in order to minimize the sum of the weighted deviations from
the scheduled arrival/departure times of the aircraft. The focus of the
paper is on a number of ways of improving the computation times of the
dynamic programming algorithm proposed. This is achieved by using
heuristic upper bounds and a completion lower bound in order to reduce
the state space in the dynamic programming algorithm. We compare our
algorithm to an approach based on mixed integer linear programming,
which was adapted from the literature for the case of CPS. We show using
real-world air traffic instances from the Milan Linate Airport that the
dynamic programming algorithm significantly outperforms the MILP.
Furthermore, we show that the proposed algorithm is capable of solving
very large instances in short computation times, and that it is suitable
for use in a real-time setting.

Keywords: Aircraft sequencing problem · Dynamic programming ·
Integer programming · Completion bounds · Constrained position shifting

1 Introduction

In this paper we consider the aircraft sequencing problem (ASP) [1–4], which
can be formally defined as follows. As input we are given the set A of aircraft
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 267–279, 2014.
DOI: 10.1007/978-3-319-09174-7 23

268 F. Furini et al.

that are scheduled to use the runway at an airport (either arriving or departing)
during a certain time-window, and as output a time xi ∈ T should be assigned
to each aircraft i ∈ A for using the runway, as defined by a discrete set T of time
instants. The assigned time xi is restricted to fall within a time window [ei, φi]
for all i ∈ A, where ei ∈ T denotes the earliest time and φi ∈ T the latest time for
i using the runway. Aircraft i is also associated with a scheduled (target) time
ti ∈ T for using the runway, and the cost incurred by i for using the runway at
some time t ∈ T is given by

c(i, t) = gi max(0, ti − t) + hi max(0, t − ti),

where gi and hi are weights associated with i using the runway before and after
its target time, respectively. If an aircraft j ∈ A is scheduled to use the runway
directly after an aircraft i ∈ A, it cannot use the runway earlier than xi + sij ,
where sij denotes a minimum separation in time that has to be maintained
between i and j for safety reasons.

We also consider so-called Constrained Position Shifting (CPS) [2,5]. The
motivation behind CPS is to ensure that a degree of fairness is maintained among
the various airlines requesting usage of the runway, by restricting deviations
from the first-come-first-serve (FCFS) sequence of the aircraft. Let fi denote
the position of aircraft i ∈ A in the FCFS sequence of the aircraft (in which
the elements of A are sorted according to increasing values of ti for all i ∈ A).
CPS restricts the position of aircraft i ∈ A in the final sequence (in which the
elements of A are sorted according to increasing values of xi for all i ∈ A) to
fall within the range [fi − p−

i , fi + p+i], where p−
i denotes the maximum position

shift of aircraft i to an earlier position in the sequence and p+i to a later position
in the sequence. CPS is often used in practice and the values of p−

i and p+i are
usually equal to a small constant such as 1, 2 or 3 [3]. The objective of the ASP
with CPS (ASP-CPS) is to determine a vector x = [xi] of arrival/departure
times for the aircraft so as to minimize the cost function

∑

i∈A

c(i, xi),

subject to all the constraints mentioned above.

Preprocessing steps. Some preprocessing steps may be performed in order to
reduce the complexity of the problem without affecting the optimal solution.
The first step is time window tightening [4]. Given an upper bound zUB to the
optimal solution value of the ASP, the size of the time window [ei, φi] for aircraft
i ∈ A may be decreased by updating the values of ei and φi to

ei = max[ei, ti − zUB/gi]

and
φi = min[φi, ti + zUB/hi].

The second step, called position shift tightening, is to determine a reduced
set of positions to which an aircraft may be assigned in a feasible solution.

State Space Reduced Dynamic Programming for the ASP-CPS 269

Let P denote the set of ordered pairs of aircraft (i, j) where either φi < ej +sji or
fi+p+i ≤ fj−p−

j . Hence P contains ordered pairs of aircraft (i, j) where i cannot
use the runway after j without violating the maximum delay constraints, the
maximum shift constraints or the minimum separation constraints. Furthermore,
let P+

i = |{j : (i, j) ∈ P}|, i.e. the minimum number of aircraft using the runway
after aircraft i in any feasible solution, and P−

i = |{j : (j, i) ∈ P}|, the minimum
number of aircraft using the runway before aircraft i in any feasible solution.
A set of potential feasible positions for aircraft i ∈ A may then be defined as

F(i) = {k : P−
i < k < |A| − P+

i and fi − p−
i ≤ k ≤ fi + p+i }.

In order to simplify notation in the discussions that follow, we further define

Fmin(i) = min[k : k ∈ F(i)]

and
Fmax(i) = max[k : k ∈ F(i)]

as the first and last possible positions, respectively, in which aircraft i may be
scheduled in a feasible solution.

Literature review. In this paper the focus is on exact approaches to the ASP.
A survey of approaches and problems in the context of landing and take-off
scheduling at airports was recently presented by Bennel et al. [6]. These problems
have been subdivided into static and dynamic cases. In the static case it is
assumed that complete information on the set of aircraft is known, while in
the dynamic case the solution is revised each time new aircraft are introduced
into the system. In this paper we consider the static case. Mixed integer linear
programming (MILP) approaches are presented by Beasley et al. [4] and Abela
et al. [7]. In [4] the authors consider the ASP for landings only and without
considering CPS, while in [7] the authors proposed a MILP formulation for
the dynamic ASP, and developed a branch-and-bound algorithm as a solution
approach. An alternative formulation of the ASP was presented by Beasley and
Pinol [8], where two objective functions were considered, one linear and one
nonlinear. Dynamic programming approaches to the ASP-CPS were proposed by
Psaraftis [9], Trivizas [10] and Balakrishnan and Chandran [3]. The algorithms
presented in [9] and [10] considered the ASP-CPS without time windows, and
in [9] it is assumed that all aircraft of the same type are identical. Balakrishnan
and Chandran [3] present dynamic programming approaches for a number of
different variants of the ASP-CPS, also providing complexity analyses of their
algorithms.

Paper contribution. We focus in particular on developing a fast dynamic pro-
gramming algorithm for solving the ASP-CPS with average maximum position
shift values. We propose a dynamic programming approach with a recursion
which extends the one proposed in [3] for discrete time models with aircraft
dependent cost functions (i.e. such as minimizing the weighted delay of the air-
craft). However, in [3] the dynamic programming algorithm is solved over a

270 F. Furini et al.

so-called CPS network, whereas our dynamic programming algorithm is applied
directly to the ASP. Furthermore, in [3] results are obtained for a different objec-
tive function and also for cases of the ASP with precedence constraints (pairs
of aircraft with a fixed relative order), a constraint which is not strictly neces-
sary in the real world cases considered in this paper. Furthermore, we propose
a number of new ways by which the computation time required by the dynamic
programming algorithm may be improved, such as using heuristic upper bounds
and completion lower bounds in order to reduce the state space. These tech-
niques enables us to consider larger values of the maximum shift compared to
the ones considered in [3]. Finally we compare the improved dynamic program-
ming approach to the MILP proposed in [4] by using instances from that paper
as well as real-world instances from the Milan Linate Airport (proposed in [1]).

2 Mixed-Integer Programming Formulation

A MILP formulation for the ASP was presented by Beasley et al. [4]. This
formulation is extended in Model (1)–(11) below for the ASP-CPS. Here σij
is a binary decision variable such that

σij =
{

1 if aircraft i ∈ A uses the runway before aircraft j ∈ A,
0 otherwise,

and αi and λi are decisions variables such that αi = max(0, ti − xi) and λi =
max(0, xi − ti) for aircraft i ∈ A. As mentioned before xi is a decision variable
denoting the time assigned to aircraft i for using the runway.

Min
∑

i∈A

(giαi + hiλi) (1)

s. t. ei ≤ xi ≤ φi i ∈ A (2)
σij + σji = 1 i, j ∈ A, i ≥= j (3)

xi + sij − M(1 − σij) ≤ xj i, j ∈ A, i ≥= j (4)
αi ≥ ti − xi i ∈ A (5)

0 ≤ αi ≤ ti − ei i ∈ A (6)
λi ≥ xi − ti i ∈ A (7)

0 ≤ λi ≤ φi − ti i ∈ A (8)
ti − αi + λi = xi i ∈ A (9)

Fmin(i) ≤
∑

j∈A\{i}
σji + 1 ≤ Fmax(i) i ∈ A (10)

σij ∈ {0, 1} i, j ∈ A, i ≥= j (11)

where M is a large positive constant.
The objective function (1) aims at minimizing the total cost due to the

weighted delay of the aircraft in the sequence. Constraints (2) ensure that the

State Space Reduced Dynamic Programming for the ASP-CPS 271

delay of each aircraft i respects its lower and upper bounds, while Constraints
(3) ensure that either aircraft i uses the runway before aircraft j, or vice versa,
for any two aircraft i and j. Constraints (4) imposes the minimum separation
between aircraft while Constraints (5)–(9) ensure that αi = max(0, ti − xi) and
λi = max(0, xi − ti) holds. Finally, Constraints (10) ensure that the maximum
position shift constraint is satisfied for all aircraft.

The parameter M in Constraints (4) may be replaced by φi + sij − ej (as
proposed in [4]), simplifying these constraints to

xi + sijσij − (φi − ej)σji ≤ xj , i, j ∈ A, i ≥= j. (12)

Constraints (4) may be strengthened by defining the sets described below.
These sets were proposed in [4] only taking into account the maximum delay
constraints. Here, however, the sets also take into account the maximum shift
constraints.

Let P ∈ be a subset of the set P (introduced in the previous section) such that
it contains the ordered pairs of aircraft (i, j) where j may be delayed by i due to
the minimum separation constraints, in other words where fi +p+i ≥ fj −p−

j −1
and φi+sij > ej . Furthermore, let Q denote the set of all ordered pairs of aircraft
(i, j) such that neither (i, j) nor (j, i) are in P .

Constraints (4) may then be replaced by Constraints (13)–(15) below.

σij = 1 (i, j) ∈ P (13)
xi + sij ≤ xj (i, j) ∈ P ∈ (14)

xi + sijσij − (φi − ej)σji ≤ xj (i, j) ∈ Q (15)

A number of valid inequalities were also proposed in [4], given by Constraints
(16)–(18) below. Here Q∈ is the subset of Q where ti ≤ tj for any ordered pair
(i, j) ∈ Q, and Q∈∈ is the subset of Q∈ where ti + sij > tj for any ordered pair
(i, j) ∈ Q∈.

∑

i∈A

∑

j∈A\{i}
σij = |A| (|A| − 1) /2 (16)

σij ≥ 1 − λi + αj

tj − ti
(i, j) ∈ Q∈ (17)

(ti + sij − tj)σij + (tj + sji − ti)σji ≤ αi + λi + αj + λj (i, j) ∈ Q∈∈ (18)

3 Dynamic Programming Approach

As mentioned before, the recursion of the dynamic programming algorithm pre-
sented below is similar to expression (2) by Balakrishnan and Chandran [3]. In
the following sections the recursion, the pseudocode of the algorithm, and the
computation of bounds used for state pruning are discussed in detail.

272 F. Furini et al.

3.1 Recursion

A state in the dynamic programming algorithm is defined by three parameters,
namely a subset S ⊂ A of aircraft, an aircraft i ∈ A\S such that |S| + 1 ∈ F(i)
and a time instant t ∈ [ei, φi]. The state (S, i, t) represents the partial solution to
the ASP-CPS where aircraft i uses the runway at time t after all of the aircraft
in S have used the runway in an optimal way. The value of the state (S, i, t),
denoted by D(S, i, t), is therefore defined as the optimal solution value, if one
exists, of the ASP-CPS when considering the set of aircraft S∀{i}, and imposing
the additional constraints xi = t and xj ≤ xi for all j ∈ S. If no such solution
exists then D(S, i, t) = ∃.

A recursion is easily established between the values of the states, namely

D(S, i, t) = min
(i∗,t∗)∈S×T : t∗t∗+si∗,i

[D(S\{i∈}, i∈, t∈) + c(i, t)] . (19)

The set of pairs (i∈, t∈) considered in the minimization is, however, quite
large and its size can be reduced in the following way. First of all, it is easy
to verify that if aircraft i directly precedes aircraft j in the optimal sequence,
then xj = xi + si,j if xj > tj (where xj is the optimal time assigned for j to
use the runway). Hence it will not be fruitful to consider values of t∈ such that
t > t∈ + si∗,i. Noting further that t∈ ∈ [ei∗ , φi∗] and |S| ∈ F(i∈) should hold, the
set S ×T can be substituted in (19) by the set T (S, i, t) ⇒ S ×T which, for each
i∈ ∈ S such that |S| ∈ F(i∈) and each t∈ ∈ [ei∗ , φi∗], contains the pair (i∈, t∈) if and
only if

t = t∈ + si∗,i if t > ti
t ≥ t∈ + si∗,i otherwise.

An improved recursion is therefore

D(S, i, t) = min
(i∗,t∗)∈T (S,i,t)

[D(S\{i∈}, i∈, t∈) + c(i, t)] . (20)

As initial values to this relation we have D(∅, i, ti) = 0 if 1 ∈ F(i), and by
introducing a dummy aircraft i≤ where ti≤ = maxi∈I φi and sii≤ = 0 for all i ∈ A,
the optimal solution to the ASP-CPS for the input set A of aircraft is given by
D(A, i≤, ti≤).

3.2 State Space Reduction Techniques

By applying the following state space reduction techniques, it may be shown that
some states in the set T (S, i, t) do not have to be considered in the recursion.
This may be achieved by means of an upper bound zUB to the optimal solution
(as found, for instance, by a heuristic) and a completion bound C(S, i, t) for a
state (S, i, t). The completion bound is defined such that D(S, i, t) + C(S, i, t) is
a lower bound to the optimal solution value, if one exists, of the ASP-CPS when
considering the set of aircraft I, and imposing the additional constraints xi = t
and xj ≤ x∈

j for any j ∈ S and j∈ ∈ I\S. Hence a completion bound is a lower
bound on the additional weighted delay which will be added to D(S, i, t) for
any complete solution (S, i, t) may eventually lead to. Therefore, if D(S, i, t) +
C(S, i, t) > zUB , there is no need to consider the state (S, i, t) in the recursion.

State Space Reduced Dynamic Programming for the ASP-CPS 273

Completion bound. Given that some set S of aircraft uses the runway before
aircraft i ∈ A\S does, let Λ(i, S) = max(fi − p−

i − |S|, 1), i.e. Λ(i, S) represents
the earliest possible position in which aircraft i can use the runway when taking
the maximum shift constraints into consideration. The completion bound is then
defined, for any state (S, i, t), by

C(S, i, t) =
∑

j∈A\(S∞{i})
c(j,max [tj , t + sminΛ(j, S ∀ {i})]),

which is the sum of the weighted delays of the aircraft in A\S assuming that
each one is assigned to its earliest possible position, where smin = mini,j∈A sij .

Heuristic upper bound. In order to obtain an upper bound zUB as discussed
above we propose a tabu search heuristic. A solution in the tabu search heuristic
is defined by a permutation of the given set of aircraft, and the runway times are
calculated by assigning the aircraft to runway time slots in this order while taking
the minimum separation constraints into consideration. A neighbour solution of
a given feasible solution is defined as the solution obtained by performing a swap,
i.e. exchanging the positions of two aircraft in the given solution. A swap may
only be performed if both aircraft still are in feasible positions in the neighbour
solution (with respect to the maximum position shift p). During each iteration
of the tabu search heuristic the tabu-list (updated in a first-in-first-out fashion)
contains pairs of aircraft representing the swaps performed within a predefined
number of previous iterations (the tabu tenure). The neighbour solutions of
the current solution (initially the FCFS order) obtained by performing swaps
not forbidden by the tabu list are evaluated in the order in which the aircraft
appear in the current sequence. Then either the first neighbour that improves the
current solution, or otherwise the overall best non-improving neighbour, replaces
the current solution in the next iteration. The search continues until a predefined
number of iterations is reached and the best overall solution found is given as
output.

3.3 Dynamic Programming Algorithm

The pseudocode of the dynamic programming algorithm is given in Algorithms
1 (for initialization) and 2 (for the recursion). In Algorithm 1 preprocessing
calculations are performed. This includes calculating the sets F(i) for each i ∈ A
in Step 5 and calculation of sets Uk and Vk for 2 ≤ k ≤ |A| in Steps 7–9. Here
Uk is the set of all aircraft that can be assigned to position k and Vk is the set
of aircraft that cannot be assigned to a position larger than k. These sets are
later used in Steps 3–7 of Algorithm 2 in order to avoid states that cannot lead
to any feasible solution. This is achieved by determining the set of all remaining
aircraft which cannot be assigned to any position after the current one. If the
cardinality of this set is larger than 1, then the current state cannot lead to a
feasible solution and the state is pruned. If it is exactly equal to 1, then this
aircraft has to be assigned the current position, and if the set is empty then it

274 F. Furini et al.

poses no additional restrictions. Finally in Steps 10–16 of Algorithm 1 the values
of the initial states are set.

In Algorithm 2, a pre-existing state (S∈, i∈, t∈) is identified in Steps 1–2 and
in Steps 3–11 all possible pairs (i, t) such that (i∈, t∈) ∈ T (S, i, t) where S =
S∈ ∀ {i∈} are determined. The algorithm then considers D(S∈, i∈, t∈) + c(i, t) as a
new possible value for D(S, i, t) according to (20).

The completion bound is calculated in Step 15, and it is only necessary to
do this once for each state independent of the value of the state. In order to
achieve this the algorithm remembers whether a state has been considered or
not. If D(S, i, t)+C(S, i, t) ≥ zUB then this value of the state does not have to be
considered in the algorithm, and the current value of the state is set to infinity
instead in Step 19 of Algorithm 2 (yet allowing the state to attain a finite value
again in future steps of the algorithm).

Algoritmo 1. Initialization
Input : An input set A of aircraft and an upper bound zUB .
Output: The sets Uk, Vk and F(i), the values D(∅, i, ti) and updated values of

ei and φi.

1 Uk ∈ ∅, Vk ∈ ∅ for k = 2 . . . |A|;
2 for all i ≤ A do
3 ei ∈ max[ei, ti − zUB/gi];
4 φi ∈ min[φi, ti + zUB/hi];
5 Determine F(i);
6 for all k ≤ F(i) do Uk ∈ Uk ≥ {i};
7 k ∈ the largest element of F(i);
8 Vk ∈ Vk ≥ {i};
9 if 1 ≤ F(i) then

10 for all t ≤ [ei, ti] do
11 D(∅, i, t) = c(i, t);
12 Calculate completion bound C(∅, i, t);
13 if D(∅, i, t) + C(∅, i, t) ≥ zUB then D(∅, i, t) = ∞
14 end

15 end

16 end

4 Computational Experiments

For the purpose of performing computational experiments we consider three
different sets of instances. The first set (presented in [1]) consists of 12 real
air traffic instances of 60 aircraft each from Milan Linate Airport, the largest
single runway airport in Italy. The second set consists of 7 instances of 10–44
aircraft presented in [4]. These two sets are used to compare the performances

State Space Reduced Dynamic Programming for the ASP-CPS 275

Algoritmo 2. Dynamic programming algorithm
Input : An input set A of aircraft with updated time windows, an upper

bound zUB , the sets Uk, Vk and F(i), and the values D(∅, i, ti).
Output: The optimal arrival/departure time xi of each aircraft i ≤ A.

1 for k = 2 . . . |A| do
2 for all states (S′, i′, t′) where |S′| = k − 2 and D(S′, i′, t′) ≈= ∞ do
3 W ∈ A\S′ ∩ Uk;
4 if |W ∩ Vk| > 1 then W ∈ ∅;
5 else if |W ∩ Vk| = 1 then W ∈ W ∩ Vk;
6 for all i ≤ W do
7 tmin = max(t′ + si∗,i, ei);
8 tmax = min(t′ + si∗,i, ti);
9 for tmin ≤ t ≤ tmax do

10 d = D(S′, i′, t′) + c(i, t);
11 S = S′ ≥ {i′};
12 if (S, i, t) is considered for the first time then
13 Calculate completion bound C(S, i, t);
14 end
15 if d < D(S, i, t) then
16 D(S, i, t) = d;
17 if D(S, i, t) + C(S, i, t) ≥ zUB then D(S, i, t) = ∞
18 end

19 end

20 end

21 end

22 end

of the dynamic programming algorithm and the MILP formulation. A direct
comparison with the performance of the dynamic programming algorithm pro-
posed in [3] for discrete time models is not possible, since in the computational
section of that paper only results are presented on the version of the ASP which
minimizes makespan. The third set consists of merging the 12 instances from
Milan Linate Airport into a large sequence of 173 aircraft, and sampling from
this sequence instances consisting of 100–160 aircraft. The third set is used to
show the effects of the heuristic upper bounds and the completion bound on
the performance of the dynamic programming algorithm, and also to show the
capability of this algorithm to solve large instances in very short computation
times. These instances are larger than the realistic cases, and we also use a larger
maximum shift value than that used in practice in order to enable the effects
of using the various bounds to be more clear (since the computation times are
small for realistic instances). In what follows p−

i = p+i = p for all i ∈ A, as is
customary in practice. All code was written in C in Linux Ubuntu on executed
on an Intel(R) Core(TM)2 Duo CPU clocked at 2.33 GHz with 2 GB of RAM,
and version 12.5 of CPLEX was used to solve the MILP. All computation times
are presented in seconds.

276 F. Furini et al.

Table 1. Results on the average time required by the exact dynamic programming
algorithm using various bounding procedures. In each row the left-most value is given
in seconds, while the preceding values in that row is given as a percentage of the first
value. For each value of p and |A|, five instances were considered, and in cases where
the algorithm exceeded the memory limit no result is given.

No completion bound With completion bound
p |A| No pruning FCFS Tabu search FCFS Tabu search

4 100 1.73 96 % 116 % 86 % 76 %
110 2.06 96 % 116 % 89 % 76 %
120 2.62 96 % 114 % 85 % 72 %
130 3.00 95 % 115 % 87 % 74 %
140 3.79 90 % 108 % 82 % 68 %
150 4.36 90 % 109 % 82 % 69 %
160 4.68 95 % 114 % 86 % 74 %

5 100 9.65 94 % 90 % 82 % 47 %
110 11.49 94 % 91 % 85 % 48 %
120 14.45 95 % 91 % 83 % 46 %
130 16.60 95 % 91 % 84 % 48 %
140 19.81 94 % 90 % 83 % 47 %
150 21.41 96 % 88 % 50 %
160 23.01 93 % 53 %

6 100 31.39 65 %
110 25.96
120 29.75

In Tables 1 and 2 a comparison is made of the computation times and the
number of states required by the dynamic programming algorithm when using
various bounding procedures compared to the basic configuration where no prun-
ing of states is done. For a heuristic upper bound we used either the FCFS value,
or the value of the solution found by the tabu search with a tabu tenure of 50 and
1000 iterations. Results are also given with and without use of the completion
bound. Furthermore, a memory limit of 1 GB was imposed, and where this limit
was exceeded no result is given. For p = 6 and n ≥ 120 all the configurations of
the dynamic programming algorithm exceeded the memory limit.

It can be seen from these results that in all cases the use of the comple-
tion bound improves the performance of the dynamic programming algorithm.
Moreover, if the completion bound is not used, using the tabu search value as an
upper bound slightly reduces the number of states, but does not reduce, on aver-
age, the computation time. However, using the tabu search and the completion
bound together significantly outperforms the other configurations, especially for

State Space Reduced Dynamic Programming for the ASP-CPS 277

Table 2. Results on the average number of states required by the exact dynamic
programming algorithm using various bounding procedures. In each row the left-most
value is given as a number of states, while the preceding values in that row is given as a
percentage of the first value. For each value of p and |A|, five instances were considered,
and in cases where the algorithm exceeded the memory limit no result is given.

No completion bound With completion bound
p |A| No pruning FCFS Tabu search FCFS Tabu search

4 100 182795.8 96 % 89 % 75 % 41 %
110 201753.2 97 % 90 % 78 % 43 %
120 235135.4 96 % 90 % 75 % 40 %
130 252977.6 96 % 90 % 78 % 42 %
140 285062.6 96 % 89 % 77 % 41 %
150 308930.4 96 % 90 % 77 % 41 %
160 328962.8 96 % 89 % 77 % 42 %

5 100 867619.6 96 % 87 % 73 % 36 %
110 948986.8 97 % 89 % 77 % 39 %
120 1116559.8 96 % 88 % 74 % 36 %
130 1200858.2 96 % 88 % 76 % 39 %
140 1349463.6 96 % 88 % 75 % 37 %
150 1399297.4 92 % 79 % 40 %
160 1358824.0 87 % 51 %

6 100 2098792.0 66 %
110 1656792.8
120 1725284.0

the largest instances. In fact, this configuration avoids exceeding the memory
limit in more cases that the other configurations.

As mentioned before, realistic values of p are in the range from 1 to 3, and so
for the comparison of the two exact approaches these values are used. In Table 3
the required computation times for the dynamic programming algorithm and
the MILP formulation are given for each of the real-world instances we consider.

For the instances from [4] (BKSA) both algorithms require low computation
times. This behaviour may be attributed to the fact that these instances consist
of relatively small numbers of aircraft. However, in the majority of these cases
the dynamic programming algorithm is able to outperform the MILP formu-
lation. For the real-world Milan Linate Airport instances from [1] (FPT), the
dynamic programming algorithm outperforms the MILP formulation by a sig-
nificant margin. The computation times vary much for the MILP formulation,
however for the dynamic programming algorithm the times are consistent, and
increases as the maximum shift value increases. This is to be expected as the

278 F. Furini et al.

Table 3. The required computation times for the dynamic programming (DP) algo-
rithm and the MILP formulation where p = 1, 2, 3, for the 7 instances from [4] (BKSA)
and the 12 instances from [1] (FPT). For the MILP formulation a time limit of one
hour was imposed, and the time limit was reached in these two cases indicated by ‘TL.’

p = 1 p = 2 p = 3
Instance |A| DP MILP DP MILP DP MILP

BKSA1 10 0.00 0.01 0.01 0.02 0.03 0.02
BKSA2 15 0.02 0.02 0.03 0.13 0.13 0.16
BKSA3 20 0.04 0.02 0.17 0.04 0.52 0.03
BKSA4 20 0.03 0.11 0.12 0.91 0.39 3.73
BKSA5 20 0.03 0.13 0.11 4.92 0.31 23.93
BKSA6 30 0.00 0.00 0.01 0.01 0.03 0.01
BKSA7 44 0.03 0.20 0.08 0.27 0.08 0.27
FPT1 60 0.00 0.85 0.08 257.44 0.17 27.59
FPT2 60 0.00 1.12 0.07 TL 0.16 TL
FPT3 60 0.00 0.74 0.07 866.89 0.17 1153.95
FPT4 60 0.00 5.57 0.08 2396.44 0.17 324.79
FPT5 60 0.00 1.90 0.08 175.61 0.18 496.18
FPT6 60 0.00 0.48 0.08 9.73 0.17 12.58
FPT7 60 0.00 0.55 0.08 2.33 0.17 12.80
FPT8 60 0.00 0.37 0.08 2.28 0.17 2.51
FPT9 60 0.00 0.26 0.08 1.53 0.18 3.25
FPT10 60 0.00 0.53 0.08 1.33 0.18 3.90
FPT11 60 0.00 0.64 0.08 11.60 0.18 107.23
FPT12 60 0.00 0.14 0.08 0.91 0.18 1.88

complexity of the dynamic programming approach increases as the maximum
shift value increases.

5 Conclusion

In this paper we proposed a dynamic programming algorithm which is capable of
solving real-world air traffic instances in very short computation times, making
it suitable for use in a real-time setting. We were able to utilize heuristic upper
bounds and a completion lower bound in order to speed up the performance of
the dynamic programming algorithm, and showed that this enabled us to solve
very large instances in short computation times. Moreover, we compared the
performance of the algorithm to that of a MILP formulation and concluded that
it is a more effective approach to use for the real-world instances we considered.

State Space Reduced Dynamic Programming for the ASP-CPS 279

For future work it could be fruitful to investigate, both from a theoretical and
computational point of view, the effects on the dynamic programming algorithm
of larger time windows, larger maximum shift values, and also maximum shift
values that vary among the aircraft.

References

1. Furini, F., Persiani, C.A., Toth, P.: Aircraft sequencing problems via a rolling
horizon algorithm. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.)
ISCO 2012. LNCS, vol. 7422, pp. 273–284. Springer, Heidelberg (2012)

2. Dear, R.G., Sherif, Y.S.: The dynamic scheduling of aircraft in high density termi-
nal areas. Microelectron. Reliab. 29(5), 743–749 (1989)

3. Balakrishnan, H., Chandran, B.G.: Algorithms for scheduling runway operations
under constrained position shifting. Oper. Res. 58(6), 1650–1665 (2010)

4. Beasley, J., Krishnamoorthy, M., Sharaiha, Y., Abramson, D.: Scheduling aircraft
landing – the static case. Transp. Sci. 34, 180–197 (2000)

5. de Neufville, R., Odoni, A.R.: Airport Systems: Planning, Design and Management.
McGraw-Hill, New York (2003)

6. Bennel, J., Mesgarpour, M., Potts, C.: Airport runway scheduling. 4OR 9, 115–138
(2011)

7. Abela, J., Abramson, D., Krishnamoorthy, M., De Silva, A., Mills, G.: Comput-
ing optimal schedules for landing aircraft. In: Proceeding 12th National ASOR
Conference, Adelaide, Australia, pp. 71–90 (1993)

8. Beasley, J., Pinol, H.: Scatter search and bionomic algorithms for the aircraft
landing problem. Eur. J. Oper. Res. 127(2), 439–462 (2006)

9. Psaraftis, H.N.: A dynamic programming approach for sequencing groups of iden-
tical jobs. Oper. Res. 28(6), 1347–1359 (1980)

10. Trivizas, D.A.: Optimal scheduling with maximum position shift (MPS) con-
straints: a runway scheduling application. J. Navig. 51(2), 250–266 (1998)

Decomposition Algorithm for the Single
Machine Scheduling Polytope

Ruben Hoeksma, Bodo Manthey, and Marc Uetz(B)

Department of Applied Mathematics, University of Twente,
Enschede, The Netherlands

{r.p.hoeksma,b.manthey,m.uetz}@utwente.nl

Abstract. Given an n-vector p of processing times of jobs, the single
machine scheduling polytope C arises as the convex hull of completion
times of jobs when these are scheduled without idle time on a single
machine. Given a point x ∈ C, Carathéodory’s theorem implies that
x can be written as convex combination of at most n vertices of C.
We show that this convex combination can be computed from x and
p in time O(n2), which is linear in the naive encoding of the output.
We obtain this result using essentially two ingredients. First, we build
on the fact that the scheduling polytope is a zonotope. Therefore, all
of its faces are centrally symmetric. Second, instead of C, we consider
the polytope Q of half times and its barycentric subdivision. We show
that the subpolytopes of this barycentric subdivison of Q have a simple,
linear description. The final decomposition algorithm is in fact an imple-
mentation of an algorithm proposed by Grötschel, Lovász, and Schrijver
applied to one of these subpolytopes.

1 Introduction and Contribution

Given any point x in a d-dimensional polytope P , Carathéodory’s theorem
implies that x can be written as convex combination of at most d + 1 vertices
of P . We are interested in an algorithmic version of Carathéodory’s theorem
for a specific polytope, namely the polytope C that arises as the convex hull of
completion times of n jobs when these are sequenced non-preemptively without
idle time on a single machine. More specifically, we are given a vector of posi-
tive processing times p ∈ R

n
+ and some x ∈ C, and our goal is to compute an

explicit representation of x by at most n vertices vi of C, such that x =
∑

i φiv
i

for φi ≤ 0 for all i and
∑

i φi = 1. We refer to this problem as decomposition
problem.

The polytope C, also known as the single machine scheduling polytope, is
well understood [13]. In particular, it is known to be a polymatroid, and the
separation problem for C can be solved in O(n log n) time. Therefore, the exis-
tence of a polynomial time decomposition algorithm follows from the ellipsoid
method [5]. A generic approach to compute a decomposition has been described

For a full version of this extended abstract including all proofs, see Ref. [7].

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 280–291, 2014.
DOI: 10.1007/978-3-319-09174-7 24

Decomposition Algorithm for the Single Machine Scheduling Polytope 281

P

f
v x

x∈

Fig. 1. Illustration of the decomposition algorithm by Grötschel, Lovász, and Schrijver.
From some vertex v ∈ P , extend a half-line from v in direction x − v until it intersects
a lower dimensional face f of P in a point x∈. The point x can be written as a convex
combination of v and x∈. Recurse with this face f and the intersection point x∈ to
obtain a convex combination of vertices of f that yields x∈.

by Grötschel, Lovász, and Schrijver [6]. We call this the GLS method in the
following. Figure 1 depicts the idea behind the GLS method.

Yet, already Cunningham [3] remarked that it is interesting to find efficient
combinatorial decomposition algorithms for specific polymatroids and that it is
in general not straightforward to do so, even if the underlying optimization prob-
lem is well understood and can be solved efficiently. Decomposition of feasible
points into vertices also plays an important role in algorithms for submodular
function minimization, starting with work by Cunningham [2,3] and including
the strongly polynomial time algorithms of Schrijver [15] and Iwata et al. [9].

Apart from this general motivation, the decomposition problem arises in the
design of efficient mechanisms for optimization problems in private information
settings [1,8]. In such problems, feasible points correspond to so-called interim
(expected) allocations, which are computed as solutions to linear programming
formulations. The decomposition is needed to translate these interim allocations
back into actual implementations of the mechanism.

Let us sketch the state-of-the-art of the question to decompose a given point
in the scheduling polytope C into vertices of C. An O(n9) algorithm follows
directly from work by Fonlupt and Skoda [4] on the intersection of a line with a
(general) polymatroid using the GLS method. However, a closer look reveals that
an O(n3 log n) implementation is also possible [8]. Still, this result is unsatisfac-
tory in the following sense. For the permutahedron, Yasutake et al. suggested
an O(n2) decomposition algorithm [16]. The permutahedron is precisely the sin-
gle machine scheduling polytope for the special case where all processing times
are 1. Hence, the natural question is if their O(n2) algorithm can be generalized
to the scheduling polytope.

In this paper, we answer this question in the affirmative. Essentially, we show
two things. First, we show that there is an O(n2) decomposition algorithm for the
single machine scheduling polytope. The core of our algorithm remains the GLS
method. However, we apply the algorithm to a specific subpolytope of a polyhe-
dral subdivision of the polytope Q of half times, i.e., Q is obtained by shifting
C by half the processing times of the jobs: Q = C − p/2. Second, we augment
the algorithm by Yasutake et al. [16] by a simple, geometric interpretation. In

282 R. Hoeksma et al.

particular, this shows that also their algorithm is in fact an implementation of
the GLS method.

It should be mentioned that the idea of using half times, also referred to as
midpoints, is not new in scheduling. It has proven to be helpful particularly for
the design and analysis of approximation algorithms. Phillips et al. [12] were
probably the first to use half times to analyze an approximation algorithm, and
Munier et al. [11] were the first to use half times explicitly in the design of
approximation algorithms.

The crucial ingredient to get our results is to exploit that the scheduling
polytope is a zonotope. This means that all its faces are centrally symmetric. As
each of the centers of a given face has a representation by two vertices, it suffices
to decompose a given point into (certain) centers. To decompose a given point
into centers, we consider the polyhedral subdivision of the scheduling polytope
that is induced by these centers. This is also called a barycentric subdivision [10].
For the polytope of half times, we can show that this subdivision has a simple,
linear description, which we can exploit algorithmically.

We believe that our results are interesting due to the following reasons. First,
consider applying the GLS method directly to the scheduling polytope. In order
to obtain an O(n2) implementation, one would have to compute a face f and the
intersection point of the halfline through v and x with f in O(n) time in each
iteration. We do not see how to do this. Second, considering a naive, unit-cost
encoding of the output, the O(n2) implementation is only linear in the output
size. Third, our structural results shed new light on a well-studied object in
polyhedral combinatorics, the single machine scheduling polytope.

2 The Single Machine Scheduling Polytope

Consider a set N of n jobs. Job j ∈ N has processing time pj ∈ R+. Non-
preemptive schedules of jobs on a single machine are usually represented by
vectors of either starting times sj or completion times cj . For any non-preemptive
schedule without idle time, the starting time of job j is sj =

∑
k<j pk, where

k < j denotes that job k is scheduled before job j. Then the completion time of
job j is cj = sj + pj . For all sets K ≥ N of jobs, let

g(K) :=
1
2

⎡

⎣
∑

j∈K

pj



⎤

2

.

Queyranne [13] defined the single machine scheduling polytope using comple-
tion time vectors c and showed that it is described by the following system of
inequalities:

∑

j∈K

cjpj ≤ g(K) +
1
2

∑

j∈K

p2j for all K ⊂ N and (1)

∑

j∈N

cjpj = g(N) +
1
2

∑

j∈N

p2j . (2)

Decomposition Algorithm for the Single Machine Scheduling Polytope 283

If pj > 0 for all j ∈ N , none of these inequalities is redundant, and the
dimension is n−1 [13]. Note that, for the degenerate case where pk = 0 for some
jobs k, we would have to add constraints 0 ≤ ck ≤∑j∈N pj in order to describe
the convex hull of schedules. However, for all algorithmic purposes that we can
think of, this degenerate case does not add anything interesting, since we can
simply eliminate such jobs and reintroduce them afterwards. In particular, this
is true for the problem we address here. Thus, we assume that pj > 0 for all jobs
j ∈ N from now on.

In this paper, it is convenient to represent a schedule by h, the vector of half
times, instead of by a vector of completion times. The half time of a job is the
time at which the job has finished half of its processing. We have

hj = sj +
1
2
pj = cj − 1

2
pj .

Equivalent to Queyranne’s description, the single machine scheduling poly-
tope in half times is completely described by

∑

j∈K

hjpj ≤ g(K) for all K ⊂ N (3)

∑

j∈N

hjpj = g(N) , (4)

which is simply the scheduling polytope in completion times shifted by the vector
−p/2. Let Q denote the single machine scheduling polytope in half times. The
polytope Q is the set of all h ∈ R

n that fulfil (3) and (4).
The face lattice of the single machine scheduling polytope is well understood

[13]. Every (n − k)-dimensional face f of Q corresponds one-to-one with an
ordered partition of N into k sets. With an ordered partition, we mean a tuple
(S1, . . . , Sk) with Si ∀ Sj = ∃ for all i ⇒= j, i, j ∈ {1, . . . , k}, and

⎧k
i=1 Si = N .

The intended meaning is that inequalities (3) are tight for all Ti := S1 ∅ . . . ∅
Si, i ∈ {1, . . . , k}. This corresponds to convex combinations of all schedules
where jobs in Ti are scheduled before jobs in N \ Ti, for all i ∈ {1, . . . , k}.
The schedules correspond to the ordered partitions ({σ(1)}, . . . , {σ(n)}) for all
permutations σ. Each such ordered partition corresponds to a vertex of Q as
follows: let ({σ(1)}, . . . , {σ(n)}) be an ordered partition and v the vertex it
corresponds to, then

vα(j) =
1
2
pα(j) +

j−1∑

i=1

pα(i) for all j ∈ N . (5)

3 Zonotopes

In this paper, we make heavy use of the fact that the scheduling polytope is a
zonotope.

284 R. Hoeksma et al.

Definition 1 (centrally symmetric polytope, zonotope). Let P ≥ R
n be

a polytope. P is centrally symmetric if it has a center c ∈ P , such that c+x ∈ P
if and only if c − x ∈ P . If all faces of P are centrally symmetric, then P is
called a zonotope.

An equivalent definition of centrally symmetric is that there is a center c ∈ P
such that for all x ∈ P also 2c − x ∈ P .

Also zonotopes have alternative definitions. They are exactly the images of
(higher-dimensional) hypercubes under affine projections, and they are exactly
the Minkowski sum of line segments [17]. The standard textbook [17] example for
zonotopes is the permutahedron, which is the scheduling polytope in completion
times when all processing times are 1.

The scheduling polytope with arbitrary processing times is a zonotope, too.
This can be seen in several ways. For example, the scheduling polytope can be
obtained as affine transformation from a hypercube in dimension

⎪
n
2

⎨
via linear

ordering variables as follows [14, Theorem 4.1]: let the variable αij for i, j ∈ N ,
i < j be ordering variables. The intended meaning that αij = 1 if and only if job
i is processed before job j. Then the vertices of this

⎪
n
2

⎨
-dimensional hypercube

correspond one-to-one with all permutations, and the halftime hj of any job j
can be computed by

hj =
1
2
pj +
∑

i<j

αijpi +
∑

i>j

(1 − αji)pi .

We summarize this brief discussion with the following Theorem.

Theorem 2 (Queyranne and Schulz [14, Theorem 4.1]). The scheduling
polytope is a zonotope.

With respect to the centers of the faces of the scheduling polytope in half-
times, we have the following lemma.

Lemma 3. Consider an arbitrary face f of Q, defined by the ordered partition
(S1, . . . , Sk), then the barycenter (or center of mass) c(f) of f is given by

c(f)j =
i−1∑

φ=1

∑

h∈Sγ

ph +
1
2

∑

h∈Si

ph for all j ∈ Si . (6)

Given that a face f of Q corresponds to some ordered partition (S1, . . . , Sk),
this is not difficult to verify. For a formal proof, we refer to the full version of
this paper [7]. In particular, observe that all j ∈ Si have the same value, and
the center of Q is the point c where all values ci coincide, i.e., c1 = . . . = cn.
Note that this is no longer true if we consider the scheduling polytope in start
or completion times. The property that all faces of a zonotope are centrally
symmetric, as well as the simple description of these centers by Lemma 3, will
be important for the design of the decomposition algorithm in Sect. 5.

Decomposition Algorithm for the Single Machine Scheduling Polytope 285

4 Barycentric Subdivision

Consider the following, polyhedral subdivision of the scheduling polytope Q. For
any vertex v of Q, define polytope Qc

v as the convex hull of all barycenters c(f)
of faces f that contain v:

Qc
v := conv{c(f) | v ∈ f} .

Then we have Q =
⎧

v Qc
v. By construction, v is the only vertex of Q that is

also a vertex of Qc
v. The subdivision thus obtained is also known as barycentric

subdivision [10].
Another polyhedral subdivision of the scheduling polytope Q is obtained by

subdividing the polytope according to orders as follows.

Definition 4. Let P ≥ R
n be a polytope. We define a relation ∼ on P as

follows: for two points x, y ∈ P , we have x ∼ y if there exists a permutation
σ : {1, . . . , n} ⊂ {1, . . . , n} such that both xα(1) ≤ . . . ≤ xα(n) and yα(1) ≤ . . . ≤
yα(n).

Based on this definition, define for any vertex v ∈ Q the polytope

Qα
v := {x ∈ Q | x ∼ v} .

Because every permutation σ is represented by a vertex of Q, we have Q =⎧
v Qα

v , and v is the only vertex of Q that is also a vertex of Qα
v .

The following two lemmas encode the core and geometric intuition behind
the decomposition algorithm that we develop in Sect. 5. They show that the
two above polyhedral subdivisions are in fact equivalent. Thereby, we obtain an
explicit description of the barycentric subdivision in terms of vertices and facets.

Lemma 5. Let Q be the single machine scheduling polytope in half times, let v
be an arbitrary vertex of Q and let σ denote a permutation such that vα(1) ≤
. . . ≤ vα(n). Then Qα

v has the following, linear description:

hα(j) ≤ hα(j+1) for all j ∈ {1, . . . , n − 1} , (7)

k∑

j=1

hα(j)pα(j) ≤ 1
2

⎡

⎣
k∑

j=1

pα(j)



⎤

2

for all k ∈ {1, . . . , n − 1} , and (8)

∑

j∈N

hjpj =
1
2

⎡

⎣
∑

j∈N

pj



⎤

2

. (9)

Proof. Since Qα
v ≥ Q, (8) and (9) are satisfied for every point in Qα

v . Since σ
is the only permutation with vα(1) ≤ . . . ≤ vα(n), we have that h satisfies (7) if
h ∼ v. Therefore, (7) holds for any point in Qα

v .
It remains to be shown that (7), (8), and (9) imply h ∈ Qα

v . Let h satisfy
(7), (8) and (9). For simplicity of notation and without loss of generality, let all

286 R. Hoeksma et al.

vectors be sorted such that hi ≤ hj if and only if i ≤ j. Then, for each j, we
have ⎩

j∑

i=1

pi

)

hj ≤
j∑

i=1

pihi ≤ 1
2

⎩
j∑

i=1

pi

)2

.

Thus, hj ≤ 1
2

∑j
i=1 pi for all j. Now suppose h satisfies (7), (8), and (9), but

h /∈ Q. Then there is a set K of minimal cardinality, such that (3) is not satisfied.
This means that

∑

i∈K

pihi <
1
2

⎩
∑

i∈K

pi

)2

.

But then, for j = maxk∈K k, we have

∑

i∈K\{j}
pihi =

∑

i∈K

pihi − pjhj <
1
2

⎩
∑

i∈K

pi

)2

− pjhj

≤ 1
2

⎩
∑

i∈K

pi

)2

− pj
1
2

⎩
j∑

i=1

pi

)

≤ 1
2

⎩
∑

i∈K

pi

)2

− pj
1
2

⎩
∑

i∈K

pi

)

=
1
2

⎡

⎣
∑

i∈K\{j}
pi



⎤

2

.

This contradicts that K is a set of minimal cardinality that does not satisfy (3).
So (7), (8), and (9) imply h ∈ Q.

Now suppose h ∈ Q \ Qα
v , then h ∈ Qα

v′ for some other vertex v∈ ∈ Q, which
would imply that (7) is not valid for h. Hence, h ∈ Qα

v . ⊕�
Lemma 6. Let Q be the single machine scheduling polytope in half times. Then,
for all vertices v of Q, we have

Qc
v = Qα

v .

Proof. Lemma 3 implies that the vertices of Qc
v are given by (6) for all f � v.

From (6), we have q ∼ v for any vertex q of Qc
v. It follows that Qc

v ≥ Qα
v .

Now, by Lemma 5, any vertex of Qα
v is obtained by having n − 1 tight con-

straints among (7) and (8). Consider any such vertex q of Qα
v .

Let λ ∈ {1, . . . , n − 1}. If (8) is tight for q for k = λ, then (7) cannot be tight
for q for j = λ. This is because if (8) is tight for q and k = λ, then jobs 1, . . . , λ
are scheduled before jobs λ + 1, . . . , n. Therefore,

qφ+1 ≤ 1
2
pφ+1 +

φ∑

j=1

pj

and

qφ ≤ 1
2
pφ +

φ−1∑

j=1

pj .

Decomposition Algorithm for the Single Machine Scheduling Polytope 287

v123

v213 v231

v321

v312v132

1
2
v123 + 1

2
v213

1
2
v123 + 1

2
v132

1
2
v213 + 1

2
v231

Fig. 2. Barycentric subdivision of a scheduling polytope with three jobs. vijk denotes
the vertex corresponding to the order i, j, k

Thus, qφ < qφ+1 since all processing times are assumed to be positive. This
implies that for any λ ∈ {1, . . . , n − 1}, we have that q satisfies exactly one of
the following: (8) is tight for k = λ or (7) tight for j = λ. The inequalities (8)
that are tight for q induce an ordered partition (S1, . . . , Sk) that corresponds to
a face f � v. The inequalities (7) that are tight for q ensure that qj = qj+1 for
all j ∈ Si and any i ∈ {1, . . . , k}.

It follows that q = c(f) and, thus, q is a vertex of Qc
v. Since this holds for

any vertex of Qα
v , we have Qα

v ≥ Qc
v. Thus, Qα

v = Qc
v. ⊕�

For simplicity of notation, we define Qv := Qc
v (= Qα

v).
Figure 2 illustrates the barycentric subdivision of the scheduling polytope.

It shows the scheduling polytope for three jobs together with its barycentric
subdivision (indicated by dashed lines). The subpolytope containing vertex v213
contains all vectors h ∈ Q for which h2 ≤ h1 ≤ h3. Its vertices are v213, and all
centers of faces on which v213 lies. Its facets are defined by h1p1 +h2p2 +h3p3 =
(p1 + p2 + p3)2 together with one of the following equalities:

h1p1 + h2p2 = (p1 + p2)2 ,

h2p2 = (p2)2 ,

h2 = h1 ,

h3 = h1 .

288 R. Hoeksma et al.

v1 = q1

v3

v2

h3 = c(Q)
h1

q2

h2

f2

Fig. 3. Visualization of the decomposition algorithm on a single machine scheduling
polytope for three jobs

5 Decomposition Algorithm for the Single Machine
Scheduling Polytope

Based on Lemma 5, we next develop a decomposition algorithm for the schedul-
ing polytope that runs in time O(n2). This algorithm can be seen as a gen-
eralization of an algorithm recently proposed by Yasutake et al. [16] for the
permutahedron. We argue here that this algorithm is in fact an application of
the GLS method [6, Theorem 6.5.11]. Before giving the pseudo code for the
decomposition algorithm, we describe the high level idea.

We know that any point h ∈ Q lies in a subpolytope Qv of the barycentric
subdivision of Q, namely for a vertex v for which v ∼ h according to Definition 4.1

Moreover, Qv is described by inequalities (7) and (8), and the vertices of Qv

consist of the points v+v′
2 for all vertices v∈ of Q. This means that a decomposition

of h into vertices of Qv also yields a decomposition into vertices of Q.
The idea of the algorithm is as follows: We find a decomposition of h into

vertices of Qv by using the GLS method [6, Theorem 6.5.11]. The idea of this
algorithm is illustrated in Fig. 3: Given h = h1 ∈ Qv (we have v = v1), we extend
the difference vector h1 − v1 towards the intersection with a lower dimensional
face of Qv (this will be a facet of Qv, unless we accidentally hit a face of even
lower dimension). Then recurse with this intersection point and the face on
which it lies. To arrive at the claimed computation time, it is crucial that both
the intersection point and the face(t) on which it lies can be computed in time
O(n). This is indeed possible because of Lemma 5. As the number of iterations
is bounded by the dimension of Qv, which is equal to the dimension of Q, this
1 In case of ties, h lies on the intersection of several of such subpolytopes, namely

those corresponding to vertices v with v ≤ h. We can break such ties arbitrarily.

Decomposition Algorithm for the Single Machine Scheduling Polytope 289

gives an O(n2) implementation. Finally, by the fact that all vertices of Qv can
be written as v+v′

2 for vertices v∈ of Q, we obtain a decomposition of h into at
most n vertices of Q.

In order to describe the technical details of the algorithm, we use the following
notation.

v: vertex of Q corresponding to the permutation 1, 2, . . . , n; we have v = v1;
J t: set of indices associated with a face f t of Qv;
f t: face of Qv associated with J t such that xj = xj+1 for all x ∈ f t and all

j ∈ {1, . . . , n − 1} \ J t;
qt: vertex of f t;
vt: vertex of Q such that qt = 1

2 (v + vt);
ht: point in f t;
Λ̃t: scalar such that ht = Λ̃tq

t + (1 − Λ̃t)ht+1;
Λt: scalar corresponding to qt in the convex combination h =

∑
t Λtq

t.
φt: scalar corresponding to vt in the convex combination h =

∑
t φtv

t.

Moreover, for ease of notation and without loss of generality, we assume that
the given point h ∈ Q satisfies h1 ≤ . . . ≤ hn.2

Algorithm 1. Decomposition Algorithm
input : processing times p, point h ∈ Q with h1 ≥ . . . ≥ hn

output: at most n vertices vt of Q and coefficients κt ∈ [0, 1]
1 t := 1, h1 := h, J1 := {i ∈ {1, . . . , n − 1} | h1

i < h1
i+1};

2 let v be the vertex with v1 ≥ . . . ≥ vn;
while J t �= ∅ do

3 qt := VERTEX(J t);
4 vt := 2qt − v;
5 κ̃t := minj∧Jt(ht

j+1 − ht
j)/(qt

j+1 − qt
j);

6 ht+1 := (ht − κ̃tq
t)/(1 − κ̃t);

7 J t+1 := {i ∈ J t | ht+1
i < ht+1

i+1};

8 κt := (1 −∑t−1
τ=1 κτ)κ̃t;

9 t := t + 1;

10 qt := ht;
11 vt := 2qt − v;

12 κt := 1 −∑t−1
τ=1 κτ ;

13 λ1 := 1
2

+ 1
2
κ1;

for τ ∈ {2, . . . , t} do
14 λτ := 1

2
κτ ;

The subroutine VERTEX(J t) computes the vertex corresponding to the face
associated with J t as follows: Let J t(i) denote the i-th element in J t and define
2 This comes at the expense of sorting, which costs O(n log n) time and falls within

the O(n2) time complexity of the proposed algorithm.

290 R. Hoeksma et al.

J t(0) = 1. Then, for j ∈ {J t(i), . . . , J t(i + 1) − 1}, we compute

qt
j =

Jt(i)−1∑

k=1

pk +
1
2

Jt(i+1)−1∑

k=Jt(i)

pk.

Note that vertex qt can be computed in linear time per iteration by just com-
puting P t

i :=
∑Jt(i+1)−1

k=Jt(i) pk for all i, in time O(n). Then, qt
1 = 1

2P t
1 , and for

j ∈ {J t(i), . . . , J t(i + 1) − 1} and k ∈ {J t(i + 1), . . . , J t(i + 2) − 1}, the values
for qt are computed iteratively as qt

k = qt
j + 1

2 (P t
i + P t

i+1).

Theorem 7. For any h ∈ Q, Algorithm 1 computes a convex combination of
vertices of Q for h in O(n2) time.

Proof (sketch). By lines 5 and 7 of the algorithm, the cardinality of J t strictly
decreases in each iteration. None of the steps within each of at most n − 1
iterations takes more than O(n) time, so the total computation time of the
algorithm is indeed O(n2). It remains to be shown that the pseudo code given in
Algorithm 1 indeed computes a correct convex combination for h. For a formal
proof of this claim, we refer to the full version of this paper [7]. ⊕�

6 Conclusions

The obvious question is if our algorithm can be generalized for zonotopes. In
order to do that, we would have to find explicit expressions for the centers of
symmetry, as well as the faces of the resulting barycentric subdivision that is
induced by these centers.

Acknowledgements. We thank Maurice Queyranne for pointing us to the paper
by Yasutake et al. [16], and Marc Pfetsch and Michael Joswig for helpful remarks
concerning zonotopes.

References

1. Cai, Y., Daskalakis, C., Weinberg, S.M.: Optimal multi-dimensional mechanism
design: reducing revenue to welfare maximization. In: Proceedings of 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 130–139.
IEEE (2012)

2. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory
B 36, 161–188 (1984)

3. Cunningham, W.H.: On submodular function minimization. Combinatorica 5, 186–
192 (1985)

4. Fonlupt, J., Skoda, A.: Strongly polynomial algorithm for the intersection of a line
with a polymatroid. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in
Combinatorial Optimization, pp. 69–85. Springer, Heidelberg (2009)

5. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

Decomposition Algorithm for the Single Machine Scheduling Polytope 291

6. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization: Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988)

7. Hoeksma, R., Manthey, B., Uetz, M.: Decomposition algorithm for the single
machine scheduling polytope. Technical Report TR-CTIT-13-25, CTIT, Univer-
sity of Twente. http://eprints.eemcs.utwente.nl/24630/

8. Hoeksma, R., Uetz, M.: Two dimensional optimal mechanism design for a sequenc-
ing problem. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp.
242–253. Springer, Heidelberg (2013)

9. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial time
algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

10. Lee, C.W.: Subdivisions and triangulations of polytopes. In: Handbook of Discrete
and Computational Geometry, chapter 17, 2nd edn. Chapman & Hall/CRC, Beca
Raton (2004)

11. Munier, A., Queyranne, M., Schulz, A.S.: Approximation bounds for a general class
of precedence constrained parallel machine scheduling problems. In: Bixby, R.E.,
Boyd, E.A., Ŕıos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 367–382.
Springer, Heidelberg (1998)

12. Phillips, C., Stein, C., Wein, J.: Scheduling jobs that arrive over time. In: Sack,
J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp.
86–97. Springer, Heidelberg (1995)

13. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program.
58(1), 263–285 (1993)

14. Queyranne, M., Schulz, A.S.: Polyhedral approaches to machine scheduling.
Preprint 408–1994, TU Berlin (1994)

15. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theory B 80, 346–355 (2000)

16. Yasutake, S., Hatano, K., Kijima, S., Takimoto, E., Takeda, M.: Online linear opti-
mization over permutations. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe,
O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 534–543. Springer, Heidelberg (2011)

17. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematic, vol. 152.
Springer, New York (1995)

http://eprints.eemcs.utwente.nl/24630/

Subexponential Fixed-Parameter Algorithms
for Partial Vector Domination

Toshimasa Ishii1, Hirotaka Ono2(B), and Yushi Uno3

1 Graduate School of Economics and Business Administration, Hokkaido University,
Sapporo 060-0809, Japan

ishii@econ.hokudai.ac.jp
2 Department of Economic Engineering, Faculty of Economics, Kyushu University,

Fukuoka 812-8581, Japan
hirotaka@econ.kyushu-u.ac.jp

3 Department of Mathematics and Information Sciences, Graduate School of Science,
Osaka Prefecture University, Sakai 599-8531, Japan

uno@mi.s.osakafu-u.ac.jp

Abstract. Given a graph G = (V,E) of order n and an n-dimensional
non-negative vector d = (d(1), d(2), . . . , d(n)), called demand vector, the
vector domination (resp., total vector domination) is the problem of find-
ing a minimum S ⊆ V such that every vertex v in V \ S (resp., in V)
has at least d(v) neighbors in S. The (total) vector domination is a
generalization of many dominating set type problems, e.g., the dominat-
ing set problem, the k-tuple dominating set problem (this k is different
from the solution size), and so on, and subexponential fixed-parameter
algorithms with respect to solution size for apex-minor-free graphs (so
for planar graphs) are known. In this paper, we consider maximization
versions of the problems; that is, for a given integer k, the goal is to
find an S ⊆ V with size k that maximizes the total sum of satisfied
demands. For these problems, we design subexponential fixed-parameter
algorithms with respect to k for apex-minor-free graphs.

1 Introduction

Given a graph G = (V,E) of order n and an n-dimensional non-negative vector
d = (d(1), d(2), . . . , d(n)), called demand vector, the vector domination (resp.,
total vector domination) is the problem of finding a minimum S ∈ V such that
every vertex v in V \ S (resp., in V) has at least d(v) neighbors in S. These
problems were introduced by [17], and they contain many existing problems,
such as the minimum dominating set and the k-tuple dominating set problem
(this k is different from the solution size) [18,19], and so on. Indeed, by setting
d = (1, . . . , 1), the vector domination becomes the minimum dominating set
forms, and by setting d = (k, . . . , k), the total vector dominating set becomes

This work is partially supported by KAKENHI No. 23500022, 24700001, 24106004,
25104521 and 25106508, the Kayamori Foundation of Informational Science
Advancement and The Asahi Glass Foundation.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 292–304, 2014.
DOI: 10.1007/978-3-319-09174-7 25

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination 293

the k-tuple dominating set. If in the definition of total vector domination, we
replace open neighborhoods with closed ones, we get the multiple domination. In
this paper, we sometimes refer to these problems just as domination problems.
Table 1 of [7] summarizes how related problems are represented in the scheme
of domination problems. Many variants of the basic concepts of domination and
their applications have appeared in [19,20].

Since the vector or multiple domination includes the setting of the ordi-
nary dominating set problem, it is obviously NP-hard, and the parameterized
complexity is considered. It is well-known that the ordinary dominating set
problem is W [2]-complete; it is unlikely FPT with respect to the solution size.
For treewidth as another parameter, it is shown that the vector domination
problem is W [1]-hard with respect to treewidth [2]. This result and Courcelle’s
meta-theorem about MSOL [9] imply that the MSOL-based algorithm is not
applicable for the vector domination problem. Very recently, a polynomial-time
algorithm for the vector domination of graphs with bounded clique-width has
been proposed [5]. Since cw(G) ≤ 3 · 2tw(G)−1 holds where tw(G) and cw(G)
respectively denote the treewidth and clique-width of graph G [8], their
polynomial-time algorithm implies the polynomial-time solvability of the
vector domination problem for graphs of bounded treewidth. Also, polynomial-
time algorithms for the domination problems of graphs with bounded branch-
width are independently proposed in [21,22]. It is known that max{bw(G), 2} ≤
tw(G)+1 ≤ max{3bw(G)/2, 2}, where bw(G) denotes the branchwidth of graph
G [24]. Due to the linear relation of treewidth and branchwidth, the above results
imply the polynomial-time solvability of all the domination problems (i.e., vec-
tor domination, total vector domination and multiple domination) for graphs of
bounded treewidth. Furthermore, by extending the algorithms, we can show that
these for apex-minor-free graphs are subexponential fixed-parameter tractable
with respect to the size of the solution k∗, that is, there is an algorithm whose
running time is 2O(

∈
k∗ log k∗)nO(1). Note that the class of apex-minor-free graphs

includes planar graphs.
In this paper, we consider the parameterized complexity of maximization

variants of the domination problems for apex-minor-free graphs. For a given
integer k, the goal is to find an S ∈ V with size k that maximizes the total sum
of satisfied demands. We call the maximization problems partial domination
problems, that is, partial vector domination, and so on. As the parameter, we
adopt the given k itself. In the case of the ordinary dominating set, there is
a 2O(

∈
k∗)nO(1)-time algorithm for planar graphs (or apex-minor-free graphs),

where k∗ is the size of a dominating set of G. This subexponential running
time is obtained by combining the following results [16]: (1) The branchwidth
of planar graph G is O(

≥
k∗) (this also holds for apex-minor-free graphs). (2)

There is an algorithm whose running time is O(33bw(G)/2 |E|). This idea can
be extended to the domination problems, and there are subexponential fixed-
parameter algorithms with respect to solution size for the domination problems
of apex-minor-free graphs, as mentioned above [21,22].

294 T. Ishii et al.

In the case of partial domination problems, however, it might be difficult to
bound the branchwidth of G itself by using k, because k could be much smaller
than k∗. Instead, we try to choose a special S among all the optimal solutions.
Roughly speaking, in this strategy, S and its neighbors are localized so that the
branchwidth of the subgraph of G induced by S and its neighbors is bounded
by O(

≥
k). Then, we can expect a similar speeding-up effect; the points become

(i) how we localize S, and (ii) the design of a fixed-parameter algorithm whose
exponent is linear of bw(G). This scheme is proposed by [15], and they have
succeeded to design subexponential fixed-parameter algorithms with respect to
k for the partial dominating set and the partial vertex cover of apex-minor-free
graphs.

In this paper, we present subexponential fixed-parameter algorithms with
respect to k for the partial domination problems, i.e., the partial vector domina-
tion, the partial total vector domination and the partial multiple domination, of
apex-minor-free graphs. Their running times are all 2O(

∈
k logmin{d∗+1,k+1})nO(1),

where d∗ = max{d(v) | v ∈ V }. Namely, we show that the results of [15] can
be extended to vector versions. This subexponential fixed-parameter running
time is obtained by a similar way as above; (i) the localization of S and (ii) the
design of 2O(bw(G) logmin{d∗+1,k+1})nO(1)-time algorithms, whose parameters of
are not only bw(G) but also k and d∗. It is different from the case of the par-
tial (ordinary) dominating set, but it eventually yields the subexponential fixed-
parameter running time. It should be noted that the running time for the partial
vector domination or the partial multiple domination generalizes the result of
the partial (ordinary) dominating set, because the dominating set is included
in the case of d∗ = 1. In fact, the partial dominating set problem is equivalent
to the partial vector dominating set or the partial multiple dominating set for
d = (1, 1, . . . , 1).

1.1 Related Work

The dominating set problem itself is one of the most fundamental graph opti-
mization problems, and it has been intensively and extensively studied from
many points of view. In the sense that the vector or multiple domination con-
tains the setting of not only the ordinary dominating set problem but also many
variants, there are an enormous number of related studies. Here we pick some
representatives up.

As a research of the domination problems from the viewpoint of the algorithm
design, Cicalese, Milanic and Vaccaro gave detailed analyses of the approximabil-
ity and inapproximability [6,7]. They also provided some exact polynomial-time
algorithms for special classes of graphs, such as complete graphs, trees, P4-free
graphs, and threshold graphs.

For graphs with bounded treewidth (or branchwidth), the ordinary domi-
nation problems can be solved in polynomial time. As for the fixed-parameter
tractability, it is known that even the ordinary dominating set problem is W[2]-
complete with respect to solution size k∗; it is unlikely to be fixed-parameter

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination 295

tractable [14]. In contrast, it can be solved in O(211.98
∈

k∗
k∗ + n3) time for

planar graphs, that is, it is subexponential fixed-parameter tractable [13]. The
subexponent part comes from the inequality bw(G) ≤ 12

≥
k∗ + 9. Behind the

inequality, there is a unified property of parameters, called bidimensionality.
Namely, the subexponential fixed-parameter algorithm of the dominating set for
planar graphs (more precisely, H-minor-free graphs) is based on the bidimen-
sionality.

Partial Dominating Set is the problem of maximizing the number of vertices
to be dominated by using a given number k of vertices, and our problems are
considered as its generalizations. In [1], it was shown that partial dominating
set problem is FPT with respect to k for H-minor-free graphs. Later, [15] gives
a subexponential FPT with respect to k for apex-minor-free graphs. Although
partial dominating set is an example of problems to which the bidimensionality
theory cannot be applied, they develop a technique to reduce an input graph so
that its treewidth becomes O(

≥
k).

For the (not partial) vector domination, a polynomial-time algorithm for
graphs of bounded treewidth has been proposed very recently [5]. In [23], it is
shown that the vector domination for φ-degenerated graphs can be solved in
kO(ρk∗2)nO(1) time, if d(v) > 0 holds for ∀v ∈ V (positive constraint). Since any
planar graph is 5-degenerated, the vector domination for planar graphs is fixed-
parameter tractable with respect to solution size, under the positive constraint.
Furthermore, the case where d(v) could be 0 for some v can be easily reduced
to the positive case by using the transformation discussed in [2], with increasing
the degeneracy by at most 1. It follows that the vector domination for planar
graphs is FPT with respect to solution size k∗. For the total vector domination
and multiple vector domination, [22] presents first polynomial time algorithms
for graphs of bounded treewidth (or bounded branchwidth). The same paper
presents first subexponential fixed-parameter algorithms with respect to k∗ for
apex-minor-free graphs for all the domination problems (i.e., vector, total vector,
and multiple domination problems). See also [21].

Other than these, several generalized versions of the dominating set problem
are also studied. (k, r)-center is the problem that asks the existence of set S of
k vertices satisfying that for every vertex v ∈ V there exists a vertex u ∈ S
such that the distance between u and v is at most r; (k, 1)-center corresponds
to the ordinary dominating set. The (k, r)-center for planar graphs is shown to
be fixed-parameter tractable with respect to k and r [10]. For σ, φ ∈ {0, 1, 2, . . .}
and a positive integer k, ∀[σ, φ]-dominating set is the problem that asks the exis-
tence of set S of k vertices satisfying that |N(v) ∃ S| ∈ σ holds for ∀v ∈ S and
|N(v) ∃ S| ∈ φ for ∀v ∈ V \ S, where N(v) denotes the open neighborhood of v.
If σ = {0, 1, . . .} and φ = {1, 2, . . .}, ∀[σ, φ]-dominating set is the ordinary dom-
inating set problem, and if σ = {0} and φ = {0, 1, 2, . . .}, it is the independent
set. In [4], the parameterized complexity of ∀[σ, φ]-dominating set with respect
to treewidth is also considered.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
some basic notations, problem definitions and then explain the branch
decomposition. Section 3 is the main part of the paper. We present fixed-parameter

296 T. Ishii et al.

algorithms with respect to the branchwidth and k and show how we can localize
S. Then we obtain subexponential fixed-parameter algorithms with respect to k
for apex-minor-free graphs.

2 Preliminaries

A graph G is an ordered pair of its vertex set V (G) and edge set E(G) and
is denoted by G = (V (G), E(G)). We assume throughout this paper that all
graphs are undirected, and simple, unless otherwise stated. Therefore, an edge
e ∈ E(G) is an unordered pair of vertices u and v, and we often denote it by
e = (u, v). Two vertices u and v are adjacent if (u, v) ∈ E(G). For a graph G,
the (open) neighborhood of a vertex v ∈ V (G) is the set NG(v) = {u ∈ V (G) |
(u, v) ∈ E(G)}, and the closed neighborhood of v is the set NG[v] = NG(v)⇒{v}.

For a graph G = (V,E), let d = (d(v) | v ∈ V) be an n-dimensional non-
negative vector called a demand vector, where n = |V (G)|. Then, we call a set
S ∈ V of vertices a d-vector dominating set (resp., d-total vector dominating
set) if |NG(v) ∃ S| ∅ d(v) holds for every vertex v ∈ V \ S (resp., v ∈ V). We
call a set S ∈ V of vertices a d-multiple dominating set if |NG[v] ∃ S| ∅ d(v)
holds for every vertex v ∈ V . We may drop d in these notations if there are no
confusions.

In this paper, we consider the partial domination problems defined as follows.

Partial domination problem: Given a graph G = (V,E), a demand vector
d, and an integer k ∅ 0, find a set S of vertices with cardinality at most
k which maximizes the total sum g(S) of demands satisfied by S.

In the setting of the partial vector domination problem, the function g(S) is
defined as

g(S) =
∑

v∗S

d(v) +
∑

v∗V \S

min{d(v), |NG(v) ∃ S|},

since each vertex v ∈ S contributes not only 1 to the demand for each neighbor
of v but also d(v) to the demand for v. On the other hand, in the setting of the
partial total vector domination problem (resp., the partial multiple domination
problem), each vertex v ∈ S contributes nothing (resp., only 1) to the demand
for v, and hence the function g(S) is defined as

g(S) =
∑

v∗V

min{d(v), |NG(v) ∃ S|} (resp.,
∑

v∗V

min{d(v), |NG[v] ∃ S|}).

Notice that for each of these domination problems, if d(v) = 1 for all v ∈ V ,
then g(S) is equal to the number of vertices to be dominated by S. Hence, the
partial vector domination problem and partial multiple domination problem are
both generalizations of the partial dominating set problem.

A graph is called planar if it can be drawn in the plane without generating a
crossing by two edges. A graph G has a graph H as a minor if a graph isomorphic
to H can be obtained from G by a sequence of deleting vertices, deleting edges,

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination 297

or contracting edges. A graph class C is minor-closed if for each graph G ∈ C,
all minors of G belong to C. A minor-closed class C is H-minor-free for a fixed
graph H if H /∈ C. It is known that a graph is planar if and only if it has neither
K5 nor K3,3 as a minor. An apex graph is a graph with a vertex v such that the
removal of v leaves a planar graph. A graph class is apex-minor-free if it excludes
some fixed apex graph. Notice that a planar graph is apex-minor-free and an
apex-minor-free graph is H-minor-free.

2.1 Branch Decomposition

A branch decomposition of a graph G = (V,E) is defined as a pair (T =
(VT , ET), α) such that (a) T is a tree with |E| leaves in which every non-leaf
node has degree 3, and (b) α is a bijection from E to the set of leaves of T .
Throughout the paper, we shall use the term node to denote an element in VT

for distinguishing it from an element in V .
For an edge f in T , let Tf and T \ Tf be two trees obtained from T by

removing f , and Ef and E \ Ef be two sets of edges in E such that e ∈ Ef if
and only if α(e) is included in Tf . The order function w : E(T) → 2V is defined
as follows: for an edge f in T , a vertex v ∈ V belongs to w(f) if and only if
there exist an edge in Ef and an edge in E \ Ef which are both incident to
v. The width of a branch decomposition (T, α) is max{|w(f)| | f ∈ ET }, and
the branchwidth of G, denoted by bw(G), is the minimum width over all branch
decompositions of G.

In general, computing the branchwidth of a given graph is NP-hard [25]. On
the other hand, Bodlaender and Thilikos [3] gave a linear time algorithm which
checks whether the branchwidth of a given graph is at most k or not, and if so,
outputs a branch decomposition with minimum width, for any fixed k. Also, as
shown in the following lemma, for H-minor-free graphs, there exists a polynomial
time algorithm for computing a branch-decomposition with width O(bw(G)) for
any fixed H.

Lemma 1. ([11]) LetG be anH-minor-free graph. Then, a branch-decomposition
of G with width O(bw(G)) can be computed in polynomial time for any fixed H.⊂⊕
This lemma follows from the constant-factor approximation algorithm of [11] for
computing a tree-decomposition of minimum width in H-minor-free graphs and
the property that a tree-decomposition width w can be converted to a branch-
decomposition with width at most w + 1 [24].

Here, we introduce the following basic properties about branch decomposi-
tions, which will be utilized in the subsequent sections (see e.g., [21,22, Lemma
2] for its proof).

Lemma 2. Let (T, α) be a branch decomposition of G. For a tree T , let x be a
non-leaf node and fi = (x, xi), i = 1, 2, 3, be an edge incident to x (note that
the degree of x is three). Then, w(fi) \ (w(fj) ⇒ w(fk)) = ∅ for every {i, j, k} =
{1, 2, 3}. Hence, w(fi) ∈ w(fj) ⇒ w(fk).

298 T. Ishii et al.

3 Subexponential Algorithm for Apex-Minor-Free
Graphs

In this section, for apex-minor-free graphs,we give subexponential fixed-parameter
algorithms, parameterized by k, for the partial vector domination problem, the
partial total vector domination problem, and the partialmultiple domination prob-
lem; namely, we show the following theorem.

Theorem 1. Let G = (V,E) be an apex-minor-free graph with n = |V |. The par-
tial vector domination problem, the partial total vector domination problem, and
the partial multiple domination problem can be solved in 2O(

∈
k logmin{d∗+1,k+1})

nO(1) time, where d∗ = max{d(v) | v ∈ V }.
As mentioned in the following lemma, all of these three problems can be

solved in 2O(w logmin{d∗+1,k+1})nO(1) time, if a branch decomposition of G with
width w is given (note that the problems maximizing g1, g2, and g3, defined
in Lemma 3, correspond to the partial vector domination problem, the partial
total vector domination problem, and the partial multiple domination problem,
respectively, as observed in Sect. 2). These properties follow from slightly modi-
fying the algorithms of [21,22] based on a branch decomposition of a given graph
for the vector domination problem, the total vector domination problem, and the
multiple domination problem.

Lemma 3. Let G = (V,E) be a graph, d be a demand vector, and k be a non-
negative integer. If a branch decomposition of G with width w is given, then we
can compute in 2O(w logmin{d∗+1,k+1})nO(1) time a set S of vertices with cardi-
nality at most k which maximizes a function gi(S;G) on S defined as follows for
each i = 1, 2, 3.

(i) g1(S;G) =
∑

v∗S d(v) +
∑

v∗V \S min{d(v), |NG(v) ∃ S|}.
(ii) g2(S;G) =

∑
v∗V min{d(v), |NG(v) ∃ S|}.

(iii) g3(S;G) =
∑

v∗V min{d(v), |NG[v] ∃ S|}.

Proof. We consider only the case of the partial vector domination problem, i.e.,
the case of g1(S;G) (the partial total vector domination problem and the partial
multiple domination problem can be treated similarly). We here show how to
modify the algorithm of [21,22] based on a branch decomposition of a given
graph for computing a minimum d-vector dominating set in 2O(w log (d∗+1))nO(1)

time so that it can be applied to the partial vector domination.
We first sketch the algorithm of [21,22] based on a branch decomposition

(T, α) of G = (V,E). Let w : E(T) → 2V be the corresponding order function.
We regard T with a rooted tree by choosing a non-leaf node as a root. For
an edge f = (y1, y2) ∈ E(T) such that y1 is the parent of y2, let Ef = {e ∈
E | α(e) ∈ V (T (y2))}, and Gf be the subgraph of G induced by Ef , where
T (x) denotes the subtree of T rooted at x ∈ V (T). The algorithm proceeds
bottom-up in T , while computing Af (c) satisfying the following (*) for all vectors
c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)| on w(f) for each edge f in T .

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination 299

(*) Af (c) is the cardinality of a minimum set Df (c) ∈ V (Gf) such that
the demand of all v ∈ V (Gf)\w(f) is satisfied by Df (c)(i.e., v ∈ Df (c) or∣
∣NGf

(v) ∃ Df (c)
∣
∣ ∅ d(v)), every vertex v ∈ w(f) with c(v) = � belongs

to Df (c), and every vertex v ∈ w(f) with c(v) = i ∈ {0, 1, . . . , d(v)}
satisfies

∣
∣NGf

(v) ∃ Df (c)
∣
∣ ∅ d(v) − i if Df (c) exists, and Af (c) = ∞

otherwise. (Intuitively, Df (c) is a minimum vector dominating set in Gf

under the assumption that the demand of every vertex in w(f) satisfied
by Df (c) is restricted to c.)

Let f be a non-leaf edge of T and f1 and f2 are two edges of T which are chil-
dren of f , i.e., three edges f , f1, and f2 are incident to a common node y and f1
and f2 are contained in T (y). By Lemma 2, we have w(f) ∈ w(f1) ⇒ w(f2)
and w(f1) \ w(f) = w(f2) \ w(f), and the value Af (c) is computed based
on Af1(c1) and Af2(c2) for a pair of vectors c1 ∈ {�, 0, 1, 2, . . . , d∗}|w(f1)|

on w(f1) and c2 ∈ {�, 0, 1, 2, . . . , d∗}|w(f2)| on w(f2) such that for each ver-
tex v ∈ w(f1) \ w(f)(= w(f2) \ w(f)), we have c1(v) = c2(v) = � (i.e.,
v ∈ Df1(c1) ∃ (w(f1) \ w(f)) if and only if v ∈ Df2(c2) ∃ (w(f1) \ w(f))) or
c1(v)+ c2(v) = d(v). Roughly speaking, since the possible number of vectors c ∈
{�, 0, 1, 2, . . . , d∗}|w(f)| is at most (d∗ + 2)|w(f)| = 2|w(f)| log (d∗+2) for each edge
f ∈ E(T), computing Af (c) for all vectors c on w(f) takes 2O(w log (d∗+1))nO(1)

time (notice that log (d∗ + 2) = O(log (d∗ + 1)) by d∗ ∅ 1); the total running
time turns out to be 2O(w log (d∗+1))nO(1) by |V (T)| = O(|E(G)|).

We modify this algorithm mainly in the following points (a) and (b) so that
it can be applied to the partial vector domination.

(a) For each f ∈ E(T), we compute A≤
f (c, λ) satisfying the following (**) for

all vectors c on w(f) such that c(v) ∈ {�,max{0, d(v) − k},max{0, d(v) − k +
1}, . . . , d(v)} for v ∈ w(f) and all nonnegative integers λ ≤ k.

(**) Let Sf (c, λ) ∈ V (Gf) be a set of vertices with cardinality λ which
maximizes g1(Sf (c, λ);Gf), under the assumption that every vertex v ∈
w(f) with c(v) = � belongs to Sf (c, λ), and every vertex v ∈ w(f) with
c(v) = i ∈ {max{0, d(v) − k},max{0, d(v) − k + 1}, . . . , d(v)} satisfies∣
∣NGf

(v) ∃ Sf (c, λ)
∣
∣ ∅ d(v) − i (note that due to the constraint that |S|

is at most k, the satisfied demand for v /∈ Sf (c, λ) is at most k and
we need not consider the case of c(v) ≤ d(v) − k − 1). Let A≤

f (c, λ) =
g1(Sf (c, λ);Gf) if Sf (c, λ) exists, and A≤

f (c, λ) = −∞ otherwise.

(b) Let f be a non-leaf edge of T and f1 and f2 are two edges of T which are
children of f . The value A≤

f (c, λ) is computed based on A≤
f1

(c1, λ1) and A≤
f2

(c2, λ2)
for a pair of vectors c1 on w(f1) and c2 on w(f2) such that for each vertex
v ∈ w(f1) \ w(f)(= w(f2) \ w(f)), we have c1(v) = c2(v) = � or c1(v) + c2(v) ∈
{d(v), d(v)+1, . . . , 2d(v)}, and λ1+λ2−|w(f1) ∃ w(f2) ∃ Sf1(c1, λ1) ∃ Sf2(c2, λ2)|
= λ (note that in the setting of the partial domination, all demands for a vertex
are not satisfied and hence we need to consider the case of c1(v)+ c2(v) > d(v)).

We analyze the time complexity of this modified algorithm. Let f be an edge
in E(T). The possible number of vectors c on w(f) is at most (min{d∗, k} +
2)|w(f)| since c(v) ∈ {�,max{0, d(v)−k},max{0, d(v)−k +1}, . . . , d(v)} for v ∈

300 T. Ishii et al.

w(f); hence the term d∗ in the time complexity of the original algorithm (for the
vector domination) is replaced with min{d∗, k}. For computing A≤

f (c, λ), we need
to consider all possible cases of (λ1, λ2, |w(f1) ∃ w(f2) ∃ Sf1(c1, λ1) ∃ Sf2(c2, λ2)|)
for a fixed pair c1 and c2; this part takes O(k3) = O(n3) times the computation
for the corresponding part in the original algorithm. Also, we need to consider
all possible cases of (c1(v), c2(v)) with d(v) ≤ c1(v) + c2(v) ≤ 2d(v) instead of
c1(v)+c2(v) = d(v) for v ∈ (w(f1)\w(f))\Sf1(c1, λ1); the number of such pairs
(c1(v), c2(v)) is O(min{d∗, k}2) because each of c1(v) and c2(v) takes a value
between max{0, d(v)−k} and d(v) as observed above. In the original algorithm,
the number of such pairs (c1(v), c2(v)) is at most d(v) + 1, and hence in this
part, the term d∗ in the time complexity of the original algorithm is replaced
with O(min{d∗, k}2). Thus, we can observe that the modified algorithm can be
implemented to run in 2O(w logmin{d∗+1,k+1})nO(1) time. ⊂⊕

Let G be an apex-minor-free graph. If bw(G) = O(
≥

k) holds, then Lemma 3
proves Theorem 1, since a branch-decomposition with width O(bw(G)) can be
computed in polynomial time by Lemma 1. Otherwise we will remove a set I of
irrelevant vertices from G so that at least one optimal solution is a subset of V \I
and optimal also for the problem in G[V \I], and we have bw(G[V \I]) = O(

≥
k);

by applying Lemma3 to G[V \ I], we obtain Theorem 1. In order to identify a
set of irrelevant vertices, we focus on a lexicographically smallest solution. These
ideas follow from the ones given by Fomin et al. for solving the partial vertex
cover problem or partial dominating set problem [15].

Definition 1. Given an ordering σ = v1, v2, . . . , vn of V and two subsets X1

and X2 of V , we say that X1 is lexicographically smaller than X2, denoted by
X1 ≤σ X2, if V i

σ ∃ X1 = V i
σ ∃ X2 and vi+1 ∈ X1 \ X2 for some i ∈ {0, 1, . . . , n},

where V i
σ = {v1, v2, . . . , vi} for i ∈ {1, 2, . . . , n} and V 0

σ = ∅. For a problem P , a
set S ∈ V is called a lexicographically smallest solution for P if for any other
solution S≤ for P , we have S ≤σ S≤.

We will complete a proof of Theorem 1 by showing how to define an ordering σ
of V and identify a set I of irrelevant vertices for the partial vector domination
problem (resp., the partial total vector domination problem and the multiple
domination problem) in Subsect. 3.1 (resp., 3.2).

3.1 Vector Domination

We consider the partial vector dominating set problem. Let σ = v1, v2, . . . , vn of
V be an ordering of V such that

d(v1) + |NG(v1) \ V0| ∅ d(v2) + |NG(v2) \ V0| ∅ · · · ∅ d(vn) + |NG(vn) \ V0| ,

where V0 = max{v ∈ V | d(v) = 0}. Let Sσ = {vi1 , vi2 , . . . , vik} be a lexico-
graphically smallest solution for the problem where i1 < i2 < · · · < ik. Since
each vertex v ∈ S contributes to demands in NG[v], we have g1(Sσ;G[V ik

σ ⇒
NG(V ik

σ)]) = g1(Sσ;G) (note that g1 is defined in the statement of Lemma 3).

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination 301

That is, Sσ is an optimal solution also for the partial vector dominating set in
G[V ik

σ ⇒ NG(V ik
σ)]; Sσ is a set of vertices with cardinality at most k maximiz-

ing g1 also in G[V ik
σ ⇒ NG(V ik

σ)]. Thus, we have only to treat a smaller instance,
instead of the original instance. Below, we consider how to find such an instance.

Now we can observe that Sσ is a (k, 3)-center in G[V ik
σ ⇒ NG(V ik

σ)] (recall
that a (k, r)-center of a graph H is a set W of vertices of H with size k such
that any vertex in H is within distance r from a vertex of W).

Lemma 4. Sσ is a (k, 3)-center in G[V ik
σ ⇒ NG(V ik

σ)].

Proof. Let G≤ = G[V ik
σ ⇒ NG(V ik

σ)]. For proving the lemma, we will show that
N2

G≤ [v] ∃ Sσ �= ∅ holds for all v ∈ V ik
σ , where N2

H [v] denotes the set of vertices
within distance 2 from a vertex v in a graph H.

Assume for contradiction that there exists a vertex vj with j < ik such that
N2

G≤ [vj] ∃ Sσ = ∅. Since G has no path with length at most 2 connecting vj and
any vertex in Sσ which goes through a vertex in V \ (V ik

σ ⇒ NG(V ik
σ)), it follows

that N2
G[vj] ∃ Sσ = ∅ also holds. Consider the set S≤ = Sσ ⇒ {vj} \ {vik}. Note

that |S≤| = |Sσ|. Then, we claim that g1(S≤;G) ∅ g1(Sσ;G) holds, i.e., S≤ is also
optimal, which contradicts that Sσ is a lexicographically smallest solution.

This claim can be proved as follows. Observe that by deleting vik from Sσ,
the total sum g1(Sσ;G) of satisfied demands is decreased by at most d(vik) +
|NG(vik) \ V0|. On the other hand, by N2

G[vj] ∃ Sσ = ∅, an addition of vj to
Sσ \ {vik} increases g1(Sσ \ {vik};G) by exactly d(vj) + |NG(vj) \ V0|. It follows
by the definition of σ that g1(S≤;G)−g1(Sσ;G) ∅ d(vj)+|NG(vj) \ V0|−(d(vik)+
|NG(vik) \ V0|) ∅ 0. ⊂⊕
Let G be apex-minor-free. Then, the following results about algorithms for com-
puting (k, r)-centers are known; we denote the PTAS for the problem with r = 3
in the following lemma by algorithm A.

Lemma 5. ([12, Corollary 5.1]) Let G be an apex-minor-free graph. Then, there
is a polynomial-time approximation scheme (PTAS) for the problem of finding a
minimum set W of vertices such that W is a (|W | , r)-center in G; for each fixed
constant Λ > 0, a (1 + Λ)-approximate solution for the problem can be obtained
in polynomial time.

By utilizing algorithm A in the following manner, we can find in polynomial
time a set V i≤

σ of vertices for some i≤ ∅ ik such that G[V i≤
σ ⇒ NG(V i≤

σ)] has a
((1 + Λ)k, 3)-center for a positive constant Λ:

Step 1: Let i := n.
Step 2: While G[V i

σ ⇒ NG(V i
σ)] does not have a ((1 + Λ)k,3)-center (this can be

checked by algorithm A), let i := i − 1.

Let i≤ be the value of i when this procedure halts. By i≤ ∅ ik, we have Sσ ∈ V i≤
σ

and g1(Sσ;G[V i≤
σ ⇒ NG(V i≤

σ)]) = g1(Sσ;G), and Sσ is an optimal solution also
for the problem in G[V i≤

σ ⇒ NG(V i≤
σ)]. Since G[V i≤

σ ⇒ NG(V i≤
σ)] has a ((1 + Λ)k,3)-

center, we have bw(G[V i≤
σ ⇒NG(V i≤

σ)]) = O(
√

(1 + Λ)k) = O(
≥

k) by the following
Lemma 6; V \ (V i≤

σ ⇒ NG(V i≤
σ)) can be regarded as a set I of irrelevant vertices

mentioned above.

302 T. Ishii et al.

Lemma 6. ([15, Lemma 2]) Let G be an apex-minor-free graph. If G has a
(k, r)-center, then the treewidth (branchwidth) of G is O(r

≥
k).

3.2 Total Vector Domination and Multiple Domination

We first consider the partial total vector dominating set problem. The difference
between the partial total vector domination and the partial vector domination is
that when a vertex v is selected as a member in a solution, v contributes nothing
to the demand of v for the former problem, but the demand d(v) is satisfied for
the latter problem. For this problem, by defining an ordering σ = v1, v2, . . . , vn

of V as
|NG(v1) \ V0| ∅ |NG(v2) \ V0| ∅ · · · ∅ |NG(vn) \ V0| ,

we can obtain a counterpart of Lemma 4 for the partial vector dominating set
problem; namely, a lexicographically smallest solution Sσ = {vi1 , vi2 , . . . , vik}
for the problem is a (k, 3)-center in G[V ik

σ ⇒ NG(V ik
σ)], where i1 < i2 < · · · < ik.

Lemma 7. Sσ is a (k, 3)-center in G[V ik
σ ⇒ NG(V ik

σ)].

Proof. Let G≤ = G[V ik
σ ⇒NG(V ik

σ)]. Similarly to the proof of Lemma4, it suffices
to assume that there exists a vertex vj with j < ik such that N2

G[vj] ∃ Sσ = ∅,
and derive a contradiction. Now, consider the set S≤ = Sσ ⇒ {vj} \ {vik}. Note
that |S≤| = |Sσ|. Then, we claim that g2(S≤;G) ∅ g2(Sσ;G) holds, i.e., S≤ is also
optimal, which contradicts that Sσ is a lexicographically smallest solution.

This claim can be proved as follows. Observe that by deleting vik from Sσ, the
total sum g2(Sσ;G) of satisfied demands is decreased by at most |NG(vik) \ V0|.
On the other hand, by N2

G[vj]∃Sσ = ∅, an addition of vj to Sσ \ {vik} increases
g2(Sσ \ {vik};G) by exactly |NG(vj) \ V0|. It follows by the definition of σ that
g2(S≤;G) − g2(Sσ;G) ∅ |NG(vj) \ V0| − |NG(vik) \ V0| ∅ 0. ⊂⊕
The remaining parts can be treated in a similar way to the case of the partial
vector dominating set. Also, we can treat the partial multiple vector dominating
set, by replacing NG() with NG[] for the arguments for the partial total vector
dominating set.

Summarizing the arguments given so far, we have shown Theorem1.

References

1. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial
cover problems. J. Comput. Syst. Sci. 77(6), 1159–1171 (2011)

2. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree
vertex deletion parameterized by treewidth. Discrete Appl. Math. 160(1), 53–60
(2012)

3. Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms for branch-
width. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997.
LNCS, vol. 1256, pp. 627–637. Springer, Heidelberg (1997)

Subexponential Fixed-Parameter Algorithms for Partial Vector Domination 303

4. Chapelle, M.: Parameterized complexity of generalized domination problems on
bounded tree-width graphs (2010). arXiv preprint arXiv:1004.2642

5. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded
target set selection in social networks (2013). arXiv preprint arXiv:1303.6785

6. Cicalese, F., Milanič, M., Vaccaro, U.: Hardness, approximability, and exact algo-
rithms for vector domination and total vector domination in graphs. In: Owe, O.,
Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 288–297. Springer,
Heidelberg (2011)

7. Cicalese, F., Milanic, M., Vaccaro, U.: On the approximability and exact algo-
rithms for vector domination and related problems in graphs. Discrete Appl. Math.
161(6), 750–767 (2013)

8. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

9. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter
algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algo-
rithms (TALG) 1(1), 33–47 (2005)

11. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.i.: Algorithmic graph minor
theory: decomposition, approximation, and coloring. In: 2005 46th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2005, pp. 637–646. IEEE
(2005)

12. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between fpt
algorithms and ptass. In: Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms. pp. 590–601. Society for Industrial and Applied Mathe-
matics (2005)

13. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg
(2006)

14. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness.
Cornell University, Mathematical Sciences Institute (1992)

15. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)

16. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and
exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

17. Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets
of graphs. Comb. Probab. Comput. 8, 547–553 (1999)

18. Harary, F., Haynes, T.W.: Double domination in graphs. Ars Comb. 55, 201–214
(2000)

19. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced
Topics, vol. 40. Marcel Dekker, New York (1998)

20. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker, New York (1998)

21. Ishii, T., Ono, H., Uno, Y.: (Total) vector domination for graphs with bounded
branchwidth (2013). arXiv preprint arXiv:1306.5041

22. Ishii, T., Ono, H., Uno, Y.: (Total) vector domination for graphs with bounded
branchwidth. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp.
238–249. Springer, Heidelberg (2014)

23. Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized dom-
ination. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165,
pp. 116–126. Springer, Heidelberg (2008)

http://arxiv.org/abs/1004.2642
http://arxiv.org/abs/1303.6785
http://arxiv.org/abs/1306.5041

304 T. Ishii et al.

24. Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-
decomposition. J. Comb. Theor. Ser. B 52(2), 153–190 (1991)

25. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

Efficient Approximation Schemes
for the Maximum Lateness Minimization

on a Single Machine with a Fixed Operator
or Machine Non-Availability Interval

Imed Kacem1(B), Hans Kellerer2, and Maryam Seifaddini1

1 LCOMS EA 7306, Université de Lorraine, 57000 Metz, France
imed.kacem@univ-lorraine.fr

2 ISOR, University of Graz, Graz, Austria

Abstract. In this paper we consider the single machine scheduling prob-
lem with one non-availability interval to minimize the maximum lateness
where jobs have positive tails. Two cases are considered. In the first
one, the non-availability interval is due to the machine maintenance. In
the second case, the non-availability interval is related to the operator
who is organizing the execution of jobs on the machine. The contribu-
tion of this paper consists in an improved FPTAS for the maintenance
non-availability interval case and the elaboration of the first FPTAS for
the operator non-availability interval case. The two FPTAS are strongly
polynomial.

Keywords: Scheduling ·Non-availability constraint · Lateness · FPTAS

1 Introduction

In this paper we consider the single machine scheduling problem with one non-
availability interval to minimize the maximum lateness where jobs have positive
tails. Two cases are considered. In the first one, the non-availability interval is
due to the machine maintenance. In the second case, the non-availability interval
is related to the operator who is organizing the execution of jobs on the machine.
An operator non-availability period is a time interval in which no job can start,
and neither can complete. The main difference between machine non-availability
(MNA) and operator non-availability (ONA) consists in the fact that a job can
be processed but cannot start neither finish during the ONA period. However,
the machine non-availability interval is a completely forbidden period. Rapine
et al. [14] have described the applications of this problem in the planning of a
chemical experiments as follows: Each experiment is performed by an automatic
system (a robot), during a specified amount of time, but a chemist is required
to control its start and completion. At the beginning, the chemist launches the
process (preparation step). The completion step corresponds to the experimental

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 305–314, 2014.
DOI: 10.1007/978-3-319-09174-7 26

306 I. Kacem et al.

analysis, which is to be done in a no-wait mode to stop chemical reactions.
Here, the automatic system is available all the time, where the chemists may
be unavailable due to planned vacations or activities. This induces operator
(chemist) non-availability intervals when experiments (jobs) can be performed
by the automatic system (machine), but cannot neither start nor complete.

The MNA case of this type of problems has been studied in the literature
under various criteria (a sample of these works includes Lee [11], Kacem [8],
Kubzin and Strusevich [10], Qi et al. [12,13], Schmidt [15], He et al. [6]). However,
few papers studied the problem we consider in this paper. Lee [11] explored the
Jackson’s sequence JS and proved that its deviation to the optimal makespan
cannot exceed the largest processing time, which is equivalent to state that
JS is a 2-approximation. Recently, Yuan et al. developed an interesting PTAS
for the studied problem [17]. Kacem [8] presented a Fully Polynomial Time
Approximation Scheme (FPTAS) for the maximum lateness minimization. That
is why this paper is a good attempt to design more efficient approximation
heuristics and approximation schemes to solve the studied problem.

For the ONA case, few works have been published. Brauner et al. [1] consid-
ered the problem of single machine scheduling with ONA periods. They analyzed
this problem on a single machine with the makespan as a minimization crite-
rion and they showed that the problem is NP-hard with one ONA period. They
also considered the problem with K ONA periods such that the length of each
ONA period is no more than 1

λ times the total processing time of all jobs. They
introduced a worst-case ratio smaller than 1+ 2K

λ for algorithm LS (list schedul-
ing). They presented an approximation algorithm with a worst-case ratio close
to 2 + K−1

λ . The natural case of periods where the duration of the periods is
smaller than any processing time of any job, has been considered by Rapine et
al [14]. They proved the problem can be solved in polynomial time, where there
exists only one ONA period and they showed the problem is NP-hard if one has
K ∈ 2 small non-availability periods and the worst-case ratio of LS is no more
than K+1

2 and the problem does not admit an FPTAS for K ∈ 3 unless P = NP.
Recently, Chen et al. [3] considered the single machine scheduling with one ONA
period to minimize the total completion time. The problem is NP-hard even if
the length of the ONA period is smaller than the processing time of any job.
They have also presented an algorithm with a tight worst-case ratio of 20

17 . They
showed that the worst-case ratio of SPT is at least 5

3 .
The contribution of this paper consists in an improved FPTAS for the main-

tenance non-availability interval case and the elaboration of the first FPTAS for
the ONA interval case. The two FPTAS are strongly polynomial. These contri-
butions can be summarized in Table 1 for the two cases.

The paper are organized as follows. Section 2 describes the exact formula-
tion of the maintenance non-availability interval case and the improved FPTAS.
Section 3 is devoted to the operator non-availability interval case and to the pre-
sentation of the proposed FPTAS. Finally, Sect. 4 gives some concluding remarks.

Single Machine Scheduling Under Non-Availability Constraint 307

Table 1. Summary of results

Result Reference

MNA 2-approximation (Jackson’s Rule) Lee [11]

MNA PTAS: O(n ln(n) + n.21/ε) Yuan [17]

MNA FPTAS: O(n3/ε2) Kacem [8]

MNA PTAS: O(n ln(n) + (1/ε) 21/ε) This paper

MNA FPTAS: O(n ln(n) + min{n, 1/ε}3/ε2) This paper

ONA PTAS: O(n(lnn)/ε + (n/ε2)21/ε) This paper

ONA FPTAS: O((n/ε) ln(n) + nmin{n, 1/ε}3/ε3) This paper

2 Case Under MNA Interval

Here, the studied problem (P) can be formulated as follows. We have to schedule
a set J of n jobs on a single machine, where every job j has a processing time
pj and a tail qj . The machine can process at most one job at a time and it is
unavailable between T1 and T2 (i.e., [T1, T2) is a forbidden interval). Preemption
of jobs is not allowed (jobs have to be performed under the non-resumable sce-
nario). All jobs are ready to be performed at time 0. With no loss of generality,
we consider that all data are integers and that jobs are indexed according to
Jackson’s rule [2] (i.e., jobs are indexed in nonincreasing order of tails). There-
fore, we assume that q1 ∈ q2 ∈ ... ∈ qn. The consideration of tails is motivated
by the large set of scheduling problems such that jobs have delivery times after
their processing [4]. Let Cj (S) denote the completion time of job j in a feasible
schedule S for the problem and let ϕS(P) be the maximum lateness yielded by
schedule S for instance I of (P):

ϕS(I) = max
1≤j≤n

(Cj (S) + qj) (1)

The aim is to find a feasible schedule S by minimizing the maximum lateness.
Due to the dominance of Jackson’s order, an optimal schedule is composed of
two sequences of jobs scheduled in nondecreasing order of their indexes.

If all the jobs can be inserted before T1, the instance studied (I) has obviously
a trivial optimal solution obtained by Jackson’s rule. We therefore consider only
the problems in which all the jobs cannot be scheduled before T1. Moreover, we
consider that every job can be inserted before T1 (i.e., pj ≤ T1 for every j ≥ J).

In the remainder of this paper ϕ∈(I) denotes the minimal maximum lateness
for instance I.

2.1 New Simplifications and PTAS

Now, let us describe our FPTAS. It uses a simplification technique based on
merging small jobs [9].

308 I. Kacem et al.

1st STEP:
First, we simplify the instance I as follows. Given an arbitrary ε > 0. We
assume that 1/ε is integer. We split the interval [0,maxj∗J{qj}] in 1/ε equal
length intervals and we round up every tail qj to the next multiple of εqmax

(qmax = maxj∗J{qj}). The new instance is denoted as I ≤.

Proposition 1. The obtained instance I ≤ can be obtained in O(n) time and it
can be done with no (1 + ε)-loss.

Proof. The modification can be done by setting qj := �qj/εqmax�εqmax for every
j ≥ J . Then, it can be done in O(n) time. Moreover, since �qj/εqmax�εqmax ≤
qj + εqmax then, ϕ∈(I ≤) ≤ ϕ∈(I) + εqmax ≤ (1 + ε)ϕ∈(I) since qmax is a lower
bound on the optimal maximum lateness.

2nd STEP:
J is divided into at most 1/ε subsets J(k) (1 ≤ k ≤ 1/ε) where jobs in J(k)
have identical tails of kεqmax. The second modification consists in reducing the
number of small jobs in every subset J(k). Small jobs are those having processing
times < εP/2 where P = p1 + p2 + ... + pn. The reduction is done by merging
the small jobs in each J(k) so that we obtain new greater jobs having processing
times between εP/2 and εP . The small jobs are taken in the order of their index
in this merging procedure. At most, for every subset J(k), a single small job
remains. We re-index jobs according to nondecreasing order of their tails. The
new instance we obtain is denoted as I ≤≤. Clearly, the number of jobs remaining
in the simplified instance I ≤≤ is less than 3/ε.

Proposition 2. This reduction in the 2nd step cannot increase the optimal solu-
tion value of I ≤ by more than (1 + ε)-factor. It can be done in O(n) time.

Proof. The proof is based on the comparison of a lower bound lb for ϕ∈(I ≤) and a
feasible solution σ for instance I ≤≤. We will demonstrate that ϕσ(I ≤≤) ≤ (1 + ε) lb
which implies that ϕ∈(I ≤≤) ≤ ϕσ(I ≤≤) ≤ (1 + ε) lb ≤ (1 + ε) ϕ∈(I ≤).

The lower bound lb is the maximum lateness of the optimal solution σr of
a special preemptive version of problem I ≤ where the large jobs are supposed
to be assigned (before or after the non-availability interval) as in the optimal
solution of I ≤. The principle of this lower bound is based on the splitting idea
presented in [8]. Indeed, we split the small jobs so that the obtained pieces have
an identical length of 1 and they keep their tails. It can be demonstrated that
the pieces associated to the small jobs must be scheduled in σr according to the
Jackson’s order. At most, one piece of a certain job g will be preempted by the
non-availability period. For more details on this lower bound, we refer to [8].

It is easy to transform such a relaxed solution σr to a close feasible solution σ
for I ≤≤. Indeed, we can remark that the small jobs of every subset J(k) (1 ≤ k ≤
1/ε), except the subset k(g) containing job g, are scheduled contiguously before
of after the non-availability period. Hence, the associated merged jobs (in I ≤≤) for
these small ones (in I ≤) will take the same order in sequence σ. The great jobs
are common in the two instances and they will keep the same assignments in

Single Machine Scheduling Under Non-Availability Constraint 309

σ. The only possible difference between σ and σr will consist in the positions of
small jobs (from I ≤) belonging to subset k(g). For these small jobs, we construct
the same associated merged jobs as in I ≤≤ by scheduling them in σ as close in σr

as possible. As a consequence, some small jobs (from I ≤ and belonging to subset
k(g)) will be moved after the non-availability period. Thus, it is easy to deduce
that ϕσ(I ≤≤) ≤ lb+ εP ≤ (1 + ε) lb.

Theorem 1. Problem P has a Polynomial Time Approximation Scheme (PTAS)
with a time complexity of O(n ln(n) + (1/ε) 21/ε).

Proof. The proof is based on the two previous propositions. The Jackson’s order
can be obtained in n ln(n). We construct the optimal solution of I ≤≤ by an exhaus-
tive search in O((1/ε) 21/ε). Then, we derive a feasible solution for I, which can
be done in O(n).

Remark 1. The new PTAS has a lower time complexity compared to the one
proposed by Yuan et al. [17] for which the time complexity is O(n ln(n)+n.21/ε).

2.2 Improved FPTAS

Our FPTAS is similar to the one proposed by Kacem [8]. It uses the same
technique but exploits also the modification of the input (I ∀ I ≤≤). First, we
use the Jackson’s sequence JS obtained for the modified instance I ≤≤. Then, we
apply the modified dynamic programming algorithm APS≤

ε introduced in Kacem
[8] on instance I ≤≤.

The main idea of APS≤
ε is to remove a special part of the states generated by

a dynamic programming algorithm. Therefore, the modified algorithm becomes
faster and yields an approximate solution instead of the optimal schedule (see
Appendix 1). First, we define the following parameters:

n = min{n, 3/ε},

ω1 =
⌈

2n

ε

⌉

,

ω2 =
⌈

n

ε

⌉

,

δ1 =
ϕJS (I ≤≤)

ω1

and
δ2 =

T1

ω2
.

We split [0, ϕJS (I ≤≤)) into ω1 equal subintervals I1m = [(m − 1)δ1,mδ1)1≤m≤ω1
.

We also split [0, T1) into ω2 equal subintervals I2s = [(s − 1)δ2, sδ2)1≤s≤ω2
of length

δ2. Moreover, we define the two singletons I1ω1+1 = {ϕJS (I ≤≤)} and I2ω2+1 = {T1}.
Our algorithm APS≤

ε generates reduced sets X#
j of states [t, f] where t is the total

310 I. Kacem et al.

processing time of jobs assigned before T1 in the associated partial schedule and
f is the maximum lateness of the same partial schedule. It can be described as
follows:

Algorithm APS≤
ε

(i). set X#
1 = {[0, T2 + p1 + q1] , [p1, p1 + q1]}.

(ii). For j ≥ {2, 3, ..., n},
X#

j =Ø.
For every state [t, f] in X#

j−1:

(1) Put
[
t,max

{
f, T2 +

∑j
i=1 pi − t + qj

}]
in X#

j

(2) Put [t + pj ,max {f, t + pj + qj}] in X#
j if t + pj ≤ T1.

Remove X#
j−1

Let [t, f]m,s be the state in X#
j such that f ≥ I1m and t ≥ I2s with the

smallest possible t (ties are broken by choosing the state of the smallest
f).
Set X#

j =
{

[t, f]m,s |1 ≤ m ≤ ω1 + 1, 1 ≤ s ≤ ω2 + 1
}

.
(iii). ϕAPS′

ε
(I ≤≤) = min[t,f]∗X#

n
{f}.

Theorem 2. Given an arbitrary ε > 0, Algorithm APS≤
ε yields an output

ϕAPS′
ε
(I ≤≤) such that:

ϕAPS′
ε
(I ≤≤) − ϕ∈ (I ≤≤) ≤ εϕ∈ (I ≤≤) . (2)

Proof. The proof is similar to [8].

Lemma 1. Given an arbitrary ε > 0, algorithm APS≤
ε can be implemented in

O
(
n log n + n3/ε2

)
time.

Proof. The proof is presented at the conference.

The schedule obtained by APS≤
ε for instance I ≤≤ can be easily converted into

a feasible one for instance I. This can be done in O (n) time. From the previous
lemma and the proof of Theorem 2, the main result is proved and the following
theorem holds.

Theorem 3. APS≤
ε is an FPTAS and it can be implemented in O (n log n + min

{n, 1/ε}3/ε2
)
time.

3 Case Under Operator Non-availability Interval

Here, the studied problem (Π) can be formulated as follows. An operator has to
schedule a set J of n jobs on a single machine, where every job j has a processing
time pj and a tail qj . The machine can process at most one job at a time if the
operator is available at the starting time and the completion time of such a job.
The operator is unavailable during (T1, T2). Preemption of jobs is not allowed

Single Machine Scheduling Under Non-Availability Constraint 311

(jobs have to be performed under the non-resumable scenario). All jobs are ready
to be performed at time 0. With no loss of generality, we consider that all data
are integers and that jobs are indexed according to Jackson’s rule and we assume
that q1 ∈ q2 ∈ ... ∈ qn. Let Cj (S) denote the completion time of job j in a
feasible schedule S (Cj (S) /≥]T1, T2[and Cj (S) − pj /≥ (T1, T2)) and let ϕS(I)
be the maximum lateness yielded by schedule S for instance I of (Π):

ϕS(I) = max
1≤j≤n

(Cj (S) + qj) (3)

The aim is to find a feasible schedule S by minimizing the maximum lateness.
If all the jobs can be inserted before T1, the instance studied (I) has obviously

a trivial optimal solution obtained by Jackson’s rule. We therefore consider only
the problems in which all the jobs cannot be scheduled before T1. Moreover, we
consider that every job can be inserted before T1 (i.e., pj ≤ T1 for every j ≥ J).

In the remainder of this paper ϕ∈(I) denotes the minimal maximum lateness
for instance I.

Proposition 3. If pj < T2 − T1 for every j ≥ J , then problem (Π) has an
FPTAS.

Proof. In this case, it is easy to remark that Problem Π is equivalent to Problem
P for which we can apply the FPTAS described in the previous section.

In the remainder, we consider the hard case where some jobs have processing
times greater than T2 − T1. Let K be the subset of these jobs. In this case, two
scenarios are possible:

– Scenario 1: there exists a job s ≥ K such that in the optimal solution it starts
before T1 and completes after T2 (s is called the stradling job).

– Scenario 2: there is no stradling job in the optimal solution.

It is obvious that Scenario 2 is equivalent to Problem P for which we have
an FPTAS. Thus, the last step necessary to prove the existence of an FPTAS
for Problem Π is to construct a special scheme for Scenario 1. Without loss of
generality, we assume that the stradling job s is known (indeed, it can be guessed
among jobs of K). The following proposition determines the time-window of the
starting time of job s in the optimal solution.

Proposition 4. Let t∈s be the starting time of s in the optimal schedule. The
following relation holds: t∈s ≥ [T2 − ps, T1].

Proof. Obvious since the stradling job s has to cover the operator non-availability
period in the optimal schedule.

Proposition 5. Scenario 1 has an FPTAS.

312 I. Kacem et al.

Proof. The stradling job s is assumed to be known. Given an arbitrary ε > 0,

we divide the interval [T2 − ps, T1] in �1/ε� equal-length sub-intervals
∞1/ε�⋃

h=1

Dh

where

Dh = [T2 − ps + (h − 1)
T1 − T2 + ps

�1/ε� , T2 − ps + h
T1 − T2 + ps

�1/ε�].

We consider a set of �1/ε�+1 instances {I1, I2, ..., I∞1/ε�+1} of Problem P where
in Ih the stradling job starts at time

ths = T2 − ps + (h − 1)
T1 − T2 + ps

�1/ε�
which is equivalent to an instance of Problem P with a set of jobs J − {s} and
a MNA period Δh:

Δh = (T2 − ps + (h − 1)
T1 − T2 + ps

�1/ε� , T2 + (h − 1)
T1 − T2 + ps

�1/ε�).

For every instance from {I1, I2, ..., I∞1/ε�+1}, we apply the FPTAS described in
the previous section for Problem P and we select the best solution among all
the �1/ε� + 1 instances. It is easy to see that if t∈s ≥ [ths , th+1

s) then, delaying s
and the next jobs in the optimal schedule of Ih+1 (h = 1, 2, ..., �1/ε�) by setting
t∈s = th+1

s will not cost more than

T1 − T2 + ps

�1/ε� ≤ ε (T1 − T2 + ps)

≤ εps

Thus, the solution Ωh+1 obtained by APS≤
ε for Ih+1(h = 1, 2, ..., �1/ε�) is suf-

ficiently close to optimal schedule for Scenario 1 if s is the stradling job and
t∈s ≥ [ths , th+1

s). As a conclusion, Scenario 1 has an FPTAS.

Theorem 4. Problem Π admits an FPTAS and this scheme can be implemented
in O

(
n (lnn) /ε + nmin{n, 3/ε}3/ε3

)
time.

Proof. The proof is a direct deduction from all the cases mentioned in this
section.

Remark 2. By applying the same approach, a PTAS can be elaborated for Prob-
lem Π and it can be implemented in O(n(ln n)/ε + (n/ε2)21/ε) time.

4 Conclusion

In this paper, we considered the non-resumable case of the single machine schedul-
ing problem with a non-availability interval. Our aim is to minimize the maxi-
mum lateness when every job has a positive tail. Two cases are considered. In the

Single Machine Scheduling Under Non-Availability Constraint 313

first one, the non-availability interval is due to the machine maintenance. In the
second case, the non-availability interval is related to the operator who is orga-
nizing the execution of jobs on the machine. The contribution of this paper con-
sists in an improved FPTAS for the MNA interval case and the elaboration of the
first FPTAS for the operator non-availability interval case. The two FPTAS are
strongly polynomial.

As future perspectives, we aim to consider other criteria for the single-
machine problem as well as the study of multiple operator non-availability
periods.

Acknowledgement. This work has been funded by the CONSEIL GENERAL DE
LORRAINE: “opération réalisée avec le concours financier du Conseil Régional de
Lorraine”.

References

1. Brauner, N., Finke, G., Kellerer, H., Lebacque, V., Rapine, C., Potts, C., Strusevich,
V.: Operator non-availability periods. 4 OR-Q. J. Oper. Res. 7, 239–253 (2009)

2. Carlier, J.: The one-machine sequencing problem. Eur. J. Oper. Res. 11, 42–47
(1982)

3. Chen, Y., Zhang, A., Tan, Z.: Complexity and approximation of single machine
scheduling with an operator non-availability period to minimize total completion
time. Inf. Sci. 251, 150–163 (2013)

4. Dessouky, M.I., Margenthaler, C.R.: The one-machine sequencing problem with
early starts and due dates. AIIE Trans. 4(3), 214–222 (1972)

5. Gens, G.V., Levner, E.V.: Fast approximation algorithms for job sequencing with
deadlines. Discret. Appl. Math. 3, 313–318 (1981)

6. He, Y., Zhong, W., Gu, H.: Improved algorithms for two single machine scheduling
problems. Theor. Comput. Sci. 363, 257–265 (2006)

7. Ibarra, O., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22, 463–468 (1975)

8. Kacem, I.: Approximation algorithms for the makespan minimization with positive
tails on a single machine with a fixed non-availability interval. J. Comb. Optim.
17(2), 117–133 (2009)

9. Kacem, I., Kellerer, H.: Approximation algorithms for no idle time scheduling on
a single machine with release times and delivery times. Discret. Appl. Math. 2011
(2010). doi:10.1016/j.dam.2011.07.005

10. Kubzin, M.A., Strusevich, V.A.: Planning machine maintenance in two machine
shop scheduling. Oper. Res. 54, 789–800 (2006)

11. Lee, C.Y.: Machine scheduling with an availability constraints. J. Global Optim.
9, 363–384 (1996)

12. Qi, X.: A note on worst-case performance of heuristics for maintenance scheduling
problems. Discret. Appl. Math. 155, 416–422 (2007)

13. Qi, X., Chen, T., Tu, F.: Scheduling the maintenance on a single machine. J. Oper.
Res. Soc. 50, 1071–1078 (1999)

14. Rapine, C., Brauner, N., Finke, G., Lebacque, V.: Single machine scheduling with
small operator-non-availability periods. J. Sched. 15, 127–139 (2012)

http://dx.doi.org/10.1016/j.dam.2011.07.005

314 I. Kacem et al.

15. Schmidt, G.: Scheduling with limited machine availability. Eur. J. Oper. Res. 121,
1–15 (2000)

16. Sahni, S.: Algorithms for scheduling independent tasks. J. ACM 23, 116–127 (1976)
17. Yuan, J.J., Shi, L., Ou, J.W.: Single machine scheduling with forbidden intervals

and job delivery times. Asia Pac. J. Oper. Res. 25(3), 317–325 (2008)

A Multi-period Bi-level Stochastic
Programming with Decision Dependent

Uncertainty in Supply Chains

Yohanes Kristianto(&)

Department of Production, University of Vaasa, 65101 Vaasa, Finland
ykristiantonugroho@gmail.com

Abstract. The closed loop supply chain faces some challenges related to the
complexity of setting production capacity, maximizing the product architecture
modularity and operations scheduling when remanufacturing is included in the
supply chain networks. A multi-period bi-level stochastic programming
framework is used by setting product architecture modularity design is inte-
grated with supply chain networks design at the upper level and multi-period
operations scheduling at the lower level. The result show that supply chain
tends to postpone the product architecture modularization until the end of
product life is imminent. The bi-level optimization is proven to be good
approach to get global optimum of the closed loop supply chain.

Keywords: Bi-level optimization � Operations scheduling � Product archi-
tecture modularity � Supply chain networks

1 Introduction

The implementation of product architecture modularity has its own key challenges in
forward-to reverse logistics as follows.

1.1 Time to Introduce Product Architecture Modularization
for Easy Recyclability

Product architecture modularity benefits to improve product recyclability. The level of
recyclability can be improved by changing materials or physical layout without
changing components interfaces. A contribution of [1] insists on the benefit of
modularity to increase demands by allowing return policy. The more modular a
product, the lower degree of interdependency among components [2] and the more
components can be recycled, dis-assembled, recovered, and finally reused at the next
cycle of product life. While modularity allows manufacturing and remanufacturing to
be done without the explosion in costs from design, processing, inventory, and pro-
duction that have been common [3, 4], it is necessary to decide on when the modu-
larization is most beneficial to be launched.

� Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 315–324, 2014.
DOI: 10.1007/978-3-319-09174-7_27

1.2 The Implication of Modularization for Closed Loop Supply Chain
Total Costs

While forward and reverse logistics promises the economics of production and the
economics of recycling, it has challenges for instances (1) the conflicts of operational
goals among supply chain members, (2) there is a lack of appropriate models for use
as tools to manage the corresponding logistics flows associated with forward and
reverse logistics, and (3) there is a lack of interest to return cores to their original
equipment manufacturer (OEM) [5]. The implications for effectively closing the
supply chain loop must be assessed toward economic benefit [6] and the increased
customer wants for after life service and recyclable products [7]. Therefore the well
function of reverse logistic networks aims to calculate the total collecting costs [8],
minimize the remanufacturing cost [9] and to estimate the effect of return complexity
for capacity planning in the remanufacturing operations [10].

1.3 Operations Scheduling for Forward–Reverse Manufacturing
Systems in the Supply Chain

The hybrid manufacturing-remanufacturing supply chain considers recovery rates and
part uniqueness as two factors that leads to stochastic routings and processing times.
Furthermore the MRP would not effectively implemented in this kind of situation. The
supply chain has to be designed by considering the process yields uncertainty [11, 12].
One reason is that component yield affects on the prices of new components [13].
Therefore, it is important to consider the re-scheduling and production capacity
planning for remanufacturing at each time period and each processing facilities that
are capable of damping the stochasticity of production rates due to remanufacturing
process.

2 Research Questions (RQs)

Considering the mentioned challenges, the following research questions are raised.
(RQ1) How do product architecture modularity and capacity planning are linked to
operations scheduling? (RQ2) What solution method can efficiently optimize the both
objectives?

3 Solution Methodology

We consider the following simple example of six sites supply chain networks. For
each period t, product development investment for site j, Mj tð Þ is calculated based on
product architecture modularity mit and its unit cost hjt according to the following
equation:

Mj tð Þ ¼ hjtmjt j 2 J; t 2 T ð1Þ

316 Y. Kristianto

3.1 GDP Formulation for Product Modularity-Supply Chain
Integration (RQ1)

Considering the superstructure of supply chain networks (Fig. 1), the MILP is better
presented in disjunctive formulation of generalized disjunctive programs (GDP),
which consists of a linear program with disjunctions, but no Boolean variables. A
particular logic operation in disjunctive programming that helps to generate a tighter
formulation than other methods (i.e., hierarchical relaxations (HR) and big M) of the
problem is the so-called Basic Step. Basic step symbolizes the interconnection
between two sites of supply chain by logical relations for the Boolean variables X(Y).
The X(Y) is expressed as propositional logic in terms of the different operators, as a
set of linear equality and inequality constraints. The GDP can be used to solve the
both of product modularity-supply chain integration and operations scheduling.

One block in Fig. 1 stands for one site with several number of production units
that process several modules or components. For each period t, each integer variable
Yjt 2 y11t; y12tð Þ for y11t; y12t signifies active/inactive state for module 1, Yjt 2 0; 1ð Þ. If
it is active, a set of continuous decision variables such as production capacity xitð Þ and
therefore direct costs of production and transportation are covered in it, indirect
production cost cit (i.e., administration, paper works, import duty, etc.) and the level of
product modularity Mi tð Þ are optimized. The GDP formulation of the integration is
presented below:

minZ ¼
X

i
cit þ f mjt; xit

� �
ð2aÞ

s:t: g xð Þ� 0 ð2bÞ

Pro-
cess 1&2

Main
supplier

Pro-
cess 3&4

Module
1 OR

module 2

Module
3 OR

module 4

Final
assy+dis-assy

Customer

Module
1 OR

module 2

Module
3 OR

module 4

Fig. 1. Multi-period product architecture modularity and supply chain networks planning with
remanufacturing capacity for period t

A Multi-period Bi-level Stochastic Programming 317

Yjt

kjt m; xð Þ� 0
cjt ¼ cjt

Schedulingequationð4Þ

2
664

3
775
_ aYjt

Bjt m; xð Þ ¼ 0
cit ¼ 0

2

4

3

5i 2 D i 2 I; j 2 J; t 2 T ð2cÞ

X Yð Þ ¼ True; x;m 2 Rn; t; c� 0; Y 2 True;Falsef gn ð2dÞ

Equation (2a) optimizes a Boolean Yjtvariable (whether the module j is being
operated at period t or not) according to scenario s and continuous variable xit of
production capacity at stream i and time t. The global constraint g xð Þ� 0 (2b) is
employed for component transfer from one site to the next site, irrespective of the
discrete choice of site allocation Yjt (whether the site is operated or not). Yjt may
involve linear and nonlinear terms (i.e., mass balance and product specifications) and
production scheduling (production starting time and changeover cost). The disjunctive
constraint (2c) is applied if the module unit j at period t, Yjt (i.e., Yjt ¼ true) is exist. A
fixed charge of unit j at period t, cjt ¼ cjt is enforced to link Boolean variable Yj and
continuous production capacity variables xit, if only if Yjt ¼ True and therefore all of
those parts are set to zero for otherwise (Yjt ¼ False).

3.2 GDP Formulation for Operations Scheduling and Remanufacturing
Capacity Planning (RQ 2 and 3)

Modular product architecture requires that a module (new or remanufactured) can be
processed by a flexible machine for handling more than one operation per module, at a
given processing time. This leads to a modified version of Job Shop Scheduling (JSS)
called the flexible JSS (FJSS). Our problem example is a JSS based on the following
job order (Fig. 2). While the product family contains 3 variants then the scheduling
has three scenarios of operations scheduling.

In order to solve the JSS problem and relate it to product modularity, Fig. 2 is
supposed as an entire manufacturing graph G, the notations of the disjunctive graph is
D = (N; Z; W) for D 2 G where N is the set of nodes that represents machines (the
machines i; jð Þ and jobs sequences i; kð Þare prescribed), Z is the set of conjunctive arcs
(for instance arcs P1! P3) and W is the set of disjunctive arcs (for instance arcs
P1$ P2). We use properties of disjunctive graph as defined by [14] as follows: (1)
there must be a path from 1 to j (predecessor node) and from j to other node n within
graph G, (2) there is no other path to connect i to j for i; jð Þ 2 W , (3) The objective is
to find any selection Sk (any disjunctive arc) in clique Zk; Z ¼ [Zk : k 2 Mð Þ for M is
a set of machine for instance M ¼ [P6; P7; P8ð Þ in such a way that the total make
span (MS) is at minimum.

3.3 Multi-period Stochastic Operations Scheduling
and Remanufacturing Capacity Planning

For multi-stage stochastic programming (SP) Models, it is necessary to track decisions
at each node of the scenario tree. So, for Multi-stage SP, we will track decisions by

318 Y. Kristianto

node number and formulate the stochastic programming for T time periods and sce-
nario tree S as follows [15]:

minRs2sSps

X

i

cit þ f mjt;wi;ts; xi;t

� �
ð3aÞ

s:t:�Cit þ ptixits i 2 I; s; s
0

� �
2 S; t 2 T ð3bÞ

wi;ts 2 Wi;s i 2 I; s; s
0

� �
2 S; t 2 T ð3cÞ

wi;ts ¼ wi;ts0 i 2 I; s; s
0

� �
2 S; t 2 T ð3dÞ

ni;tswi;ts�mj;txi;t i 2 I; j 2 J; t 2 T ; s 2 S ð3eÞ

mj;ts� ni;ts i 2 I; j 2 J; t 2 T ; s 2 S ð3fÞ

mLB
j;ts�mj;ts j 2 J; s 2 S; t 2 T ð3gÞ

J 1

J 2

J 3

J 4

tool
group 1

Y1t

tool
group 2

Y2t

tool
group 3

Y3t

P1

P2

P3

P4

P5 P6

tool
group 4

Y3t

End

pt1
pt4

P7

P8

P9

P10

P11 P0

Site 1 Site 2

x1t

x3t

J4

J2 J3

J1

order

Site 4 Site 3

Fig. 2. An example of the relationship among order, jobs (J), operations (P), and tool group
(TG)

A Multi-period Bi-level Stochastic Programming 319

Pi;kts;s0

Cits þ
P

p2J ið Þ
p� j

pti�Ckts þ
P

p2J kð Þ
p� j

ptkxkts

wk;ts ¼ wk;ts0

wi;ts ¼ wi;ts0

bj; tþ1ð Þs ¼ bj; tþ1ð Þs0

2
666664

3
777775
8

Pk;its;s0

Ckts þ
P

p2J kð Þ
p� j

ptk �Cits þ
P

p2J ið Þ
p� j

ptixits

wi;ts ¼ wi;ts0

wk;ts ¼ wk;ts0

bj; tþ1ð Þs ¼ bj; tþ1ð Þs0

2
666664

3
777775

ð3hÞ

Equation (3a) represents the objective of minimizing the expectation of some
economic criterions, i.e., the probability of scenario s, ps, production rate for manu-
facturing and remanufacturing of component i, xit;wi;ts for time period t in scenario
s. Following the upper level objective function, Constraint (3b) is a period-linking
constraint for a particular scenario. Constraint (3c) represents integrality and bound
restrictions on variables xits. The non-anticipatory constraint (NAC) (3d) link deci-
sions for different scenarios at certain period t. Constraint (3e) states that the pro-
duction capacity of module i is bounded and has to anticipate endogenous production
yield uncertainty, ni;ts at time t. Constraint (3e) consists of bilinear terms mj;txi;t and
therefore the constraint is non-convex. Constraint (3f) states that the product modu-
larity cannot less than ni;ts. The mLB

j;ts is a lower bound (LB) for product architecture
modularity of module j and is used as cut variables of the lower level (Constraint 3g).
The disjunctive constraint (3h) states that after the indistinguishable scenarios s; s

0
has

been made for two consecutive jobs i and k, in period t, Pi;kts;s0 , the both scenarios
must exist for the resolution of production scheduling just after revealing the exog-
enous uncertainty ni;ts at time t + 1 on facility j, Yjt 2 0; 1f g.

While we have two levels (upper and lower) levels optimization, the linking
between those two levels requires integer cuts for choosing supply chain configuration
and continuous cuts for constraining the level of production capacities and product
architecture modularity. Integer cuts are used to exclude subsets and supersets of
previously obtained feasible configurations and to exclude infeasible configurations
from future calculations. Continuous cuts are used to force values of state variables in
upper level (mUL

jt ; x
UL
it) to be greater than or equal to their values in the lower level

(mLL
jt ; x

LL
it) and thus the lower bound is improved at each iterations until upper and

lower bounds are equal or their gaps are at allowable tolerance (Fig. 3).

4 Results

(RQ1) How do product architecture modularity and capacity planning are linked to
operations scheduling?

Product modularity and capacity planning decision follows the upper level deci-
sion. The results show that the decision of opening or closing a facility does not
depend solely on the product development or production cost (Table 1). Indeed, plant
capacity and the level of product modularity are two decision variables for making
capacity investment decision.

320 Y. Kristianto

The operations scheduling follows the lower level decision as follows:
An analysis of the scheduling results in Table 2 unveils that the stochastic solu-

tions reported for Period 2 and 3 are not better than the one found for period 1. The
discrepancy may be due to an additional in the number of time slots predefined for
every processing unit in order to adjust the make span according to the remanufac-
turing capacity.

Transformation from non-convex GDP
(bilinear term) to convex GDP using convex

envelope

Applying basic step to strengthen relaxation
for producing tighter convex GDP

Solve the upper level optimization ZULof Eq.
(2) according to E1 (update the upper bound

of mit,xit, Yjt).

Pre-processing

For scenario 1 to S and period 1 to T. Get value of the LB and
solve the lower level optimizationZLL of Eq. (8) according to E2

(update the lower bound LB of mit,xit, Yjt) and produce
operations scheduling

mits
UB−mits

LB ,λits
UB- λits

LB, xits
UB

-xits
LB≤tolerance

set ZUL = ∞

Solution: mits, λits,xits

Y

N
Add continuous cuts
mit≥mits

LB and integer
cutsλits

LB, xits
LB

≤ λits
UB,xits

LB

for t=1 to T

t <T Y

update UB&LB

for s=1 to S

for t=1 to T

t <T

s < S

N

N

N

Y

Y

Fig. 3. The solution algorithm of the bi-level multi-period stochastic programming

A Multi-period Bi-level Stochastic Programming 321

(RQ2) What solution method can efficiently optimize the both objectives?
The basic steps and convex envelope are applied to the bi-level programming with

stochastic process during branch and bound iterations. The convex envelope increases
significantly the number of lower level variables and eventually the computational
time. The best feasible solution proposed by the algorithm is guaranteed to be within
2.9 % optimality gap, and the proposed big M relaxation with basic steps required
3,5 s. The optimal MILNP by using non-relaxation way without big M and basic steps
requires more iterations and time (10 s). However, the computational time for the
lower level decreased significantly where the relaxed solution requires 15 s, compared
to optimal MINLP requires 42 s. Table 3 compares the two snapshots of the iterations,
of the original MINLP and relaxed MINLP.

Figure 4 depicts the process of obtaining MINLP solution after getting the relaxed
optimal solution. It is shown that basic steps cut the B-B steps by clustering some
feasible facilities into one path. However, the stochastic yields make the solution time
of lower level becomes longer and the gap between optimal and relaxed becomes
wider (Table 3). Further investigation on the use of stronger relaxation of hierarchical
relaxation (HR) is necessary by considering the reality that HR provides stronger
relaxation than big M for nonlinear problems.

Table 1. Optimal design product architecture modularity and supply chain networks

Product modularity Period Operational status Period

1 2 3 1 2 3

Module 1 in site 1 0 0 1 Facility 1 On On On

Module 2 in site 2 0 0,09 0,9 Facility 2 On Off Off

Module 3 in site 2 0 0 1 Facility 3 Off On On

Module 4 in site 3 0,29 0,43 0,29 Facility 4 On Off Off

Module 5 in site 3 0,29 0,43 0,29 Facility 5 Off On On

Module 6 in site 4 0,25 0,5 1 Facility 6 On On On

Table 2. Operations scheduling from period 1 to 3 and under scenario 1 (High yield at period 2
and low yield at period 3)

Lead times

Without
remanufacturing
(period 1)

With remanufacturing
(period 2)

With remanufacturing
(period 3)

Stage 1 36 58 58

Stage 2 44 78 78

Stage 3 175 242 242

322 Y. Kristianto

5 Concluding Remarks

This paper has given a general overview of bi-level stochastic programming appli-
cation for optimizing the integration of product architecture modularity and supply
chain networks planning by considering the operations constraints in terms of process
scheduling and the opportunity of expanding the plant capacity. An example in supply
chains networks planning with four locations and ten processing facilities has been
presented to illustrate how GDP greatly facilitates the modeling of these problems.
Furthermore, big-M relaxation and basic steps reformulations have been presented as
two major mixed-integer algebraic models that can be systematically derived from a
GDP model. The combination results in stronger continuous relaxations, and hence

Table 3. Results from the six facilities supply chains

Big-M after basic steps

Upper level Lower level

Optimal solution 408,6 488,6

Relaxation 354,8 381,76

Number of constraints 253 723

Number of variables 115 483

Number of binaries 72 135

Number of nodes 14 14

Solution time (s) 3 9

ZUL=354,8
ZLL=440,8

ZUL=367,4
ZLL=461,8

ZUL=373,4
ZLL=463,8

ZUL=366,4
ZLL=467,8

ZUL=363,4
ZLL=461,8

ZUL=395,6
ZLL=471,8

ZUL=407,6
ZLL=477,8

ZUL=407,6
ZLL=467,8

ZUL=401,6
ZLL=475,8

ZUL=408,6
ZLL=488,8

ZUL=410,6
ZLL=477,8

ZUL=410,6
ZLL=482,8

ZUL=408,6
ZLL=475,8

Facili es
Facili es

Facili es Facili es

Facili es
Facili es

Facili es Facili es

Facili es
Facili es

Facili es
Facili es

Period I

Period II

Period III

Fig. 4. Branch and Bound (B-B) method for the relaxation of Big M with basic steps

A Multi-period Bi-level Stochastic Programming 323

stronger lower bounds, which may potentially translate into a more efficient solution
times, although this is not still satisfactory since the big M relaxation is weaker than
Hierarchical Relaxation (HR) in handling non-convex and nonlinear problems. The
application of basic steps following some basic rules strengthen the B-B method could
be reduced in terms of its nodes and computational time.

Acknowledgments. The authors are most grateful to the two anonymous reviewers, who
provided helpful comments on the presentation of this paper. This research is supported by the
postdoctoral research funding from the Academy of Finland under decision number 269693 and
project number 2700041211.

References

1. Mukhopadhyay, S.K., Setoputro, R.: Optimal return policy and modular design for build-
to-order products. J. Oper. Manage. 23, 496–506 (2005)

2. Baldwin, C.Y., Clark, K.B.: Managing in an age of modularity. Harvard Bus. Rev. 75(5),
84–93 (2005)

3. Pine, J.: Mass Customization. Harvard Business School Press Boston, New York (1993)
4. Lee, H.L., Billington, C.: The evolution of supply chain models and practice at Hewlett-

Packard. Interfaces 25(5), 42–63 (1995)
5. Sheu, J.B., Chou, Y.H., Hu, C.C.: An integrated logistics operational model for green-

supply chain management. Trans. Res. Part E: Logist. Trans. Rev. 41, 287–313 (2005)
6. Zhu, Q., Sarkis, J., Lai, K.L.: Green supply chain management implications for ‘‘closing

the loop’’. Trans. Res. Part E: Logist. Trans. Rev. 44, 1–18 (2008)
7. Ellinger, A.E., Daugherty, P.J., Gustin, C.M.: The relationship between integrated logistics

and customer service. Trans. Res. Part E: Logist. Trans. Rev. 33(2), 129–138 (1997)
8. Kara, S., Rugrungruang, F., Kaebernick, H.: Simulation modelling of reverse logistics

networks. Int. J. Prod. Econ. 106(1), 61–69 (2007)
9. Kim, K., Song, I., Kim, J., Jeong, B.: Supply planning model for remanufacturing system in

reverse logistics environment. Comput. Ind. Eng. 51(2), 279–287 (2006)
10. Vlachos, D., Georgiadis, P., Iakovou, E.: A system dynamics model for dynamic capacity

planning of remanufacturing in closed-loop supply chains. Comput. Oper. Res. 34(2),
367–394 (2006)

11. Chiu, M.C., Okudan, G.: An integrative methodology for product and supply chain design
decisions at the product design stage. J. Mech. Des. 133, 1–15 (2011)

12. Chiu, M.C., Okudan, G.: An investigation on the impact of product modularity level on
supply chain performance metrics: an industrial case study. J. Intell. Manuf. (2012). doi:10.
1007/s10845-012-0680-3

13. Bakal, I., Ekcali, E.: Effects of random yield in remanufacturing with price-sensitive supply
and demand. Prod. Oper. Manage. 15(3), 407–420 (2006)

14. Balas, E.: Disjunctive Programming and a hierarchy of relaxations for discrete optimization
problems. SIAM J. Alg. Disc. Math. 6, 466–486 (1985)

15. Tarhan, B., Grossmann, I.E.: A multistage stochastic programming approach with strategies
for uncertainty reduction in the synthesis of process networks with uncertain yields.
Comput. Chem. Eng. 32, 766–788 (2008)

324 Y. Kristianto

http://dx.doi.org/10.1007/s10845-012-0680-3
http://dx.doi.org/10.1007/s10845-012-0680-3

{k}-Packing Functions of Graphs

Valeria Alejandra Leoni1,2(B) and Erica G. Hinrichsen1

1 Depto. de Matemática, Escuela de Formación Básica, Facultad de Ciencias Exactas,
Ingenieŕıa y Agrimensura, Universidad Nacional de Rosario, Rosario, Argentina

{ericah,valeoni}@fceia.unr.edu.ar
2 CONICET, Buenos Aires, Argentina

Abstract. Given a positive integer k and a graph G, a k-limited packing
in G (2010) is a subset B of its vertex set such that each closed neighbor-
hood has at most k vertices of B. As a variation, we introduce the notion
of a {k}-packing function f of G which assigns a non-negative integer to
the vertices of G in such a way that the sum of f(v) over each closed
neighborhood is at most k. For fixed k, we prove that the problem of find-
ing a {k}-packing function of maximum weight ({k}PF) can be reduced
linearly to the problem of finding a k-limited packing of maximum cardi-
nality (kLP). We present an O(|V (G)|+ |E(G)|) time algorithm to solve
{k}PF on strongly chordal graphs. We also use monadic second-order
logic to prove that both problems are linear time solvable for graphs
with clique-width bounded by a constant.

1 Introduction

The notion of a k-limited packing in a graph was introduced by Gallant et al. in
2010 as a generalization of a 2-packing in a graph [10]. Given a simple undirected
graph G with vertex set V (G) and a positive integer k, a set B ∈ V (G) is
a k-limited packing in G if each closed neighborhood has at most k vertices
of B. Observe that a k-limited packing in G can be considered as a function
f : V (G) ≤ {0, 1} such that

∑
w∈NG[v] f(w) ≥ k for all v ∈ V (G), where NG[v]

denotes the closed neighborhood of vertex v. The maximum possible size of a
k-limited packing in G is denoted by Lk(G).

When k = 1, a k-limited packing in G is a 2-packing in G and Lk(G) is the
well-known number ρ(G).

This concept is a good model for many utility location problems in operations
research. In most of them, the utilities are necessary but probably obnoxious.
That is why it is of interest to place the maximum number of utilities in such
a way that no more than a given number of them is near each agent in a given
scenario.

The above definition induces the study of the following optimization problem,
already introduced (as a decision problem) in [5]:

Partially supported by grantsPICT ANPCyT 0482 (2011–2013) and 1ING 391
(2012–2014).

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 325–335, 2014.
DOI: 10.1007/978-3-319-09174-7 28

326 V.A. Leoni and E.G. Hinrichsen

k -LIMITED PACKING (kLP), for fixed positive integer k.
Given a graph G, find a k-limited packing in G of size Lk(G).

The study of the computational complexity of kLP was started in [5]. Regard-
ing NP-complete results, on the one hand, it is known that kLP is NP-complete
even for instances given by split graphs [5], and also for bipartite graphs [6].
On the other hand, kLP is polynomial time solvable for strongly chordal graphs
[5]. Regarding graph classes defined by forbidding subgraphs with “too many”
induced path with four vertices, kLP is known to be polynomial time solvable
for P4-tidy graphs (that include cographs and P4-sparse graphs) [5].

In view of other applications, in this paper we consider that in each vertex
of the graph we are allowed to locate more than one utility. We introduce the
notion of a {k}-packing function (defined in Sect. 3) and consider for a fixed
positive integer k, the optimization problem concerning the existence of a {k}-
packing function of maximum weight in a given graph ({k}PF). We introduce
the study of the computational complexity of {k}PF. Specifically, in Sect. 4 we
show that {k}PF can be reduced in linear time to kLP. The reduction is based
on the strong product of graphs. Using this reduction, we derive that {k}PF is
polynomial time solvable on strongly chordal graphs. Based on this result, in
Sect. 5 we present an O(|V (G)| + |E(G)|) time algorithm for solving {k}PF on
strongly chordal graphs. Using the same reduction and monadic second-order
logic (MSOL), in Sect. 6 we prove that both problems can be solved in linear
time for graphs that have clique-width bounded by a constant. As a by-product,
we generalize existing results concerning polynomial time solvable instances of
kLP.

2 Notation and Background

2.1 Graphs, p-Graphs and Clique-Width

In this paper we use the term graph for a simple (without self loops or multiple
edges) undirected graph. We use the term labeled graph for a graph having labels
which are associated with its vertices, such that each vertex has exactly one label.
A p-graph is a labeled graph with vertex labels in {1, . . . , p}. An unlabeled graph
is considered as a 1-graph such that all its vertices are labeled by 1.

For a graph G, V (G) and E(G) denote respectively its vertex and edge sets,
and for v ∈ V (G), NG[v] the closed neighborhood of v in G.

Kn denotes the complete graph on n vertices, i.e. the graph with |V (Kn)| = n
and E(G) containing all the edges between two distinct vertices from V (Kn).

A chord of a cycle C in a graph G is an edge (u, v) not in C such that u and
v lie in C. A graph G is chordal if it does not contain an induced chordless cycle
on n vertices for any n ≥ 4. A graph G is strongly chordal if it is chordal and
every cycle of even length in G has an odd chord, i.e. a chord that connects two
vertices that are at odd distance apart from each other in the cycle.

Given G1 and G2 two graphs, the strong product G1 ∀ G2 is defined on the
vertex set V (G1) × V (G2), where two vertices u1v1 and u2v2 are adjacent if

{k}-Packing Functions of Graphs 327

and only if u1 = u2 and (v1, v2) ∈ E(G2), or v1 = v2 and (u1, u2) ∈ E(G1), or
(v1, v2) ∈ E(G2) and (u1, u2) ∈ E(G1).

Given G1 and G2 two disjoint graphs and v ∈ V (G1), we denote G1[G2/v]
the graph H obtained by the substitution in G1 of G2 for v, i.e. V (H) = V (G1)∃
V (G2) − {v} and

E(H) = E(G2) ∃ {e : e ∈ E(G1), e is not incident to v}

∃{(u,w) : u ∈ V (G2), w ∈ V (G1) and w is adjacent to v in G1}.

With every p-graph G, an algebraic expression built using the following oper-
ations can be associated [3]:

– creation of a vertex with label i,
– disjoint union,
– renaming label i to label j,
– connecting all vertices with label i to all vertices with label j, for i ⇒= j.

If all the labels in the expression of G are in {1, . . . , q} for positive integer
q, the expression is called a q-expression of G. It is clear to see that there is a
|V (G)|-expression which defines G, for every graph G. For a positive integer q,
C(q) denotes the class of p-graphs which can be defined by q-expressions. The
clique-width of a p-graph G, denoted by cwd(G), is defined by cwd(G) = min{q :
G ∈ C(q)}.

Some important classes of graphs have clique-width bounded by a constant.
For example, C(1) is the class of edgeless graphs, C(2) the class of cographs (cf.
[4]), trees have clique-width at most 3 and P4-tidy graphs have clique-width at
most 4 [4].

A useful property concerning the clique-width of a graph is the following:

Lemma 1 [4]. Given two disjoint graphs G1 and G2 and v ∈ V (G1), it follows
that cwd(G1[G2/v]) = max{cwd(G1), cwd(G2)}.

Clique-width is a measure of the difficulty of decomposing a graph in a kind
of tree-structure that yields efficient graph algorithms.

2.2 Graphs as Logical Structures and Monadic Second-Order Logic

The vocabulary {E} consisting of one binary relation symbol E is denoted by τ1.
For a graph G, G(τ1) denotes the presentation of G as a τ1-structure <V,E>,
where V is the domain of the logical structure (V (G)) and E is the binary
relation corresponding to the adjacency matrix of G.

Regarding graph properties, if a formula can be defined using

– vertices and sets of vertices of a graph,
– the logical operators OR, AND, NOT, (denoted by ∅, ∧, ¬),
– the logical quantifiers ⊂ and ⊕ over vertices and sets of vertices,
– the membership relation ∈, to check whether an element belongs to a set,

328 V.A. Leoni and E.G. Hinrichsen

– the equality operator = for vertices and
– the binary adjacency relation adj, where adj(u, v) holds if and only if vertices

u and v are adjacent,

the formula can be said to be expressible in τ1-monadic second-order logic,
MSOL(τ1) for short.

An optimization problem P is a LinEMSOL(τ1) optimization problem over
graphs, if it can be defined in the following form: Given a graph G presented as
a τ1-structure and functions f1, . . . , fm associating integer values to the vertices
and edges of G, find an assignment z to the free variables in θ such that

⎡

1 ∈ i ∈ l
1 ∈ j ∈ m

aij |z(Xi)|j =

= max

⎣


⎤

⎡

1 ∈ i ∈ l
1 ∈ j ∈ m

aij |z∗(Xi)|j : θ(X1, . . . , Xl) is true for G and z∗

⎧
⎪

⎨

,

where θ is an MSOL(τ1) formula having free set variables X1, . . . , Xl, aij : 1 ≥
i ≥ l, 1 ≥ j ≥ m are integer numbers and |z(Xi)|j :=

∑
a∈z(Xi)

fj(a). More
details on the definition of MSOL(τ1) and LinEMSOL(τ1) can be found for
example in [1,2,7,13].

It has been shown that MSOL(τ1) is particularly useful when combined with
the concept of the graph parameter clique-width as the following theorem —first
stated in [1] and then reinforced in [12]— shows:

Theorem 1 [1,12]. Let q be a constant and C be a class of graphs of clique-width
at most q (i.e. C ∈ C(q)). Then every LINMSOL(τ1) problem on C can be solved
in linear time.

3 {k}-Packing Functions

In this section we introduce formally the notion of a {k}-packing function of a
graph.

For a given graph G and a function f : V (G) ≤ R we denote f(A) =∑
v∈A f(v), where A ∈ V (G). The weight of f is f(V (G)).

Definition 1. Given a graph G and a positive integer k, a {k}-packing function
of G is a function f : V (G) ≤ Z

+
0 such that for all v ∈ V (G),

f(NG[v]) ≥ k.

The maximum possible weight of a {k}-packing function of G is denoted by
L{k}(G).

{k}-Packing Functions of Graphs 329

Fig. 1. A graph G with L3(G) = 4 and L{3}(G) = 6.

Fig. 2. L3(K3) = L{3}(K3) = 3.

Since any k-limited packing in G can be seen as a {k}-packing function of G
(Figs. 1, 2), it is clear to see that

Lk(G) ≥ L{k}(G).

In this paper we introduce the study of the computational complexity of the
following optimization problem:

{k}-PACKING FUNCTION ({k}PF), for fixed positive integer k.
Given a graph G, find a {k}-packing function of G of weight L{k}(G).

4 Linear Time Reduction of {k}PF to kLP

We begin this section by considering the graph transformation defined in the
following way. Given a graph G and a positive integer k, T k(G) denotes the
graph obtained from G by performing the strong product of G with the complete
graph on k vertices Kk, i.e. T k(G) = G ∀ Kk (Fig. 3).

We can prove:

Theorem 2. {k}PF can be reduced in linear time to kLP.

Proof. Given a graph G and a positive integer k, consider the transformation
T k(G) defined above and let V (G) = {u1, . . . , un} and V (Kk) = {v1, . . . , vk}.

Let f be a {k}-packing function of G and define the set B ∈ V (T k(G)) in
the following way:

B := {ujvr : 1 ≥ r ≥ f(uj), j = 1, . . . , n}.

From the way B was built, it is clear to see that B is a k-limited packing in
T k(G).

330 V.A. Leoni and E.G. Hinrichsen

Fig. 3. Transformation T k(G) for the graph G in the left and k = 3.

Conversely, let ⎩B be a k-limited packing in T k(G). This implies

|NTk(G)[w] ∩ ⎩B| ≥ k, for each w ∈ V (T k(G)). (1)

Notice that if w = uivj is any vertex in V (T k(G)), then

NTk(G)[w] = {uivr : r = 1, . . . , k} ∃ {usvr : (ui, us) ∈ E(G), r = 1, . . . , k}. (2)

Let us define f over V (G) in the following way:

f(ui) := |{uivj : j = 1, . . . , k} ∩ ⎩B|, for each i = 1, . . . , n.

From (1) and (2) follows that f is a well-defined {k}-packing function
of G. ��
Remark 1. L{k}(G) = Lk(T k(G)), for every graph G and positive integer k.

On the one hand, from Theorem 2 it is clear that finding NP-complete
instances of {k}PF is a way to determine NP-complete instances of kLP.

On the other hand, given a positive integer k and two graph classes R and T
such that if G ∈ R then T k(G) ∈ T , it is clear to see that provided that kLP is
polynomial time solvable for T , then {k}PF is polynomial time solvable for R.
For instance, if we consider strongly chordal graphs, it is not difficult to prove
that if G is a strongly chordal graph, then T k(G) also is, for every fixed positive
integer k. Therefore, as kLP is polynomial time solvable on strongly chordal
graphs [5], then we derive that {k}PF also is. In the next section we present an
O(|V (G)| + |E(G)|) time algorithm to solve {k}PF on strongly chordal graphs.

5 An O(|V (G)| + |E(G)|) Time Algorithm for {k}PF
on Strongly Chordal Graphs

The algorithm that we present in this section follows some ideas given in [11] in
the context of Y -dominating functions.

{k}-Packing Functions of Graphs 331

We first recall a known characterization of strongly chordal graphs [9]. A
vertex v of a graph G is called simplicial in G if NG[v] is a clique in G, i.e.
a subset of pairwise adjacent vertices in G. A strong elimination ordering of a
graph G is an ordering (v1, . . . , vn) of its vertices such that:

1. vi is simplicial in the subgraph Gi induced by {vi, vi+1 . . . , vn}, and
2. for i ≥ j ≥ k, if vj and vk belong to NGi

[vi] then NGi
[vj] ∈ NGi

[vk].

A graph is strongly chordal if and only if it has a strong elimination ordering.
In the remainder, we present a simple algorithm that takes G and a positive

integer k as inputs, where G represents a strongly chordal graph with strong
elimination ordering (v1, v2, . . . , vn), and finds in O(|V (G)| + |E(G)|) time, a
maximum {k}-packing function of G.

Algorithm MP(G, k)
Initialization

1. for i = 1 to n do
2. f(vi) = 0
3. endfor

Increasing the weight of the function

4. for i = 1 to n do
5. M = min{k − f(NG[v]) : v ∈ NG[vi]}
6. f(vi) = M
7. endfor
8. return function f .

Lemma 2. Let G and k be respectively a strongly chordal graph and a positive
integer k. Algorithm MP(G, k) solves {k}PF for G in O(|V (G)| + |E(G)|)-time,
if the strong elimination ordering of G is given.

Proof. Consider the function returned by Algorithm MP(G, k). Clearly, the func-
tion f at the beginning of the first iteration of Steps 4–7 is a {k}-packing function
of G. We assume that the function f of i-th iteration of Steps 4–7 is a {k}-packing
function of G for 1 ≥ i ≥ n. For each v ∈ NG[vi], since M ≥ k − f(NG[v]), then
f(NG[v])+M ≥ k, which implies that the new function f obtained by changing
the value of f(vi) in Step 6 is still a {k}-packing function of G, for 1 ≥ i ≥ n.
Therefore, the function returned by the Algorithm at Step 8 is a {k}-packing
function of G.

In the following, we show that the function f returned from Algorithm
MP(G, k) is a maximum {k}-packing function of G.

Let h be a maximum {k}-packing function of G such that the cardinality
of W = {v ∈ V : f(v) ⇒= h(v)} is minimum. We claim that W = ∅. Suppose
that W ⇒= ∅ and let t be the smallest index such that vt ∈ W . Notice that
h(vx) = f(vx) if x < t.

332 V.A. Leoni and E.G. Hinrichsen

Case 1. h(vt) > f(vt). At t-th iteration of Steps 4–7, h(vx) ≥ 0 = f(vx) for
x > t. At Step 5, let vc ∈ NG[vt] such that M = k − f(NG[vc]). We have

h(NG[vc]) = h(NG[vc] − {vt}) + h(vt) ≥ f(NG[vc] − {vt}) + h(vt) >

f(NG[vc] − {vt}) + f(vt) ≥ k − M + M = k,

which contradicts the assumption that h is a {k}-packing function of G.

Case 2. h(vt) < f(vt). Let P = {v ∈ NG[vt] : h(NG[v]) + f(vt) − h(vt) > k}. We
will prove that P ⇒= ∅. If not, h(NG[v]) + f(vt) − h(vt) ≥ k for every v ∈ NG[vt]
and the function g defined by g(vt) = f(vt) and g(v) = h(v) otherwise, is a
{k}-packing function of G with g(V (G)) > h(V (G)), a contradiction to the
assumption that h is a maximum {k}-packing function of G.

Since for every vertex v ∈ P , h(NG[v]) + f(vt) − h(vt) > k ≥ f(NG[v]), then
h(NG[v]) − h(vt) > f(NG[v]) − f(vt). Thus, NG[v] ∩ {vx ∈ W : t < x, h(vx) >
f(vx)} ⇒= ∅, for every v ∈ P .

Let s be the smallest index of vertices in P and b be the smallest index of
vertices in NG[vs] ∩ {vx ∈ W : t < x, h(vx) > f(vx)}. There exist two positive
integers c1 and c2 such that f(vt) = h(vt) + c1 and h(vb) = f(vb) + c2. Let
c = min{c1, c2}. We define h∗ as follows: h∗(vt) = h(vt) + c, h∗(vb) = h(vb) − c
and h∗(v) = h(v) otherwise. Clearly h(V (G)) = h∗(V (G)) and |{v ∈ V (G) :
f(v) = h∗(v)}| ≥ |{v ∈ V (G) : f(v) = h(v)}| + 1.

Notice that P ∈ NG[vt] and let us prove that P ∈ NG[vb]. For this purpose,
we analyze the two possible cases:

– s ≥ t. Then s ≥ t < b. Since vt and vb belong to NGs
[vs] then, by definition of

the strong elimination ordering, we have NGs
[vt] ∈ NGs

[vb]. Since P ∈ NGs
[vt]

then P ∈ NGs
[vb].

– t < s. Take any vk ∈ P , thus t < s ≥ k. Since vs and vk belong to NGt
[vt],

by definition of the strong elimination ordering, NGt
[vs] ∈ NGt

[vk] for every
vertex v ∈ P . Since vb ∈ NGt

[vs], then vb ∈ NGt
[vk]. In other words, we have

P ∈ NG[vb].

In order to prove that h∗ is a {k}-packing function of G, it is enough to prove
that h∗(NG[v]) ≥ k for each v ∈ NG[vt].

If v ∈ NG[vt] and v /∈ NG[vb], we have h∗(NG[v]) = h∗(NG[v] − {vt}) +
h∗(vt) = h(NG[v] − {vt}) + h(vt) + c = h(NG[v]) + c ≥ h(NG[v]) + c1 ≥ k since
h(NG[v]) + f(vt) − h(vt) ≥ k.

If v ∈ NG[vt]∩NG[vb], then h∗(NG[v]) = h∗(NG[v]−{vt, vb})+h∗(vt)+h∗(vb) =
h(NG[v] − {vt, vb}) + h(vt) + c + h(vb) − c = h(NG[v]) ≥ k.

We conclude that h∗ is a maximum {k}-packing function of G such that
|{v ∈ V : f(v) ⇒= h∗(v)}| < |{v ∈ V : f(v) ⇒= h(v)}|, a contradiction to the
assumption that |W | is minimum.

The initialization in Steps 1–4 can be done in O(|V (G)|) time. At i-th
iteration of Steps 4–7, M can be computed in O(|NG[vi]|) time by verifying
k − f(NG[v]) for every vertex v ∈ NG[vi]. Hence, the running time of Algorithm
MP(G, k) is O(

∑
v∈V |NG[v]|) = O(|V (G)| + |E(G)|). ��

{k}-Packing Functions of Graphs 333

6 {k}PF and kLP for Bounded Clique-Width Graphs

In this section, we combine monadic second-order logic in the context of k-limited
packings with the reduction performed in Theorem 2 to find linear time solvable
instances for both problems. We first have:

Proposition 1. For each fixed positive integer k, kLP is a LinEMSOL(τ1) opti-
mization problem.

Proof. Let k be a fixed positive integer. Following the notation of Sect. 2.2, kLP
can be expressed as follows: Given a graph G presented as a τ1-structure G(τ1)
and one evaluation function (the constant function that associates 1’s to the
vertices of G) and denoting by X(v) the atomic formula indicating that v ∈ X,
find an assignment z to the free set variable X in θ such that

|z(X)|1 = max{|z∗(X)|1 : θ(X) is true for G and z∗},

where θ(X) is following the MSOL(τ1) formula

θ(X) = ⊂v ¬



⎟

1∈r∈k+1

Ar(X, v, u1, . . . , ur)



 ,

with
A1(X, v, u1) := ⊕u1 [X(u1) ∧ (adj(v, u1) ∅ v = u1)]

and for each r > 1

Ar(X, v, u1, . . . , ur) := ∃ur

⎡

⎧X(ur) ∧ (adj(v, ur) ∨ v = ur) ∧
⎪

1≤i≤r−1

¬(ur = ui)

⎨

⎩ .

��
Now, by Theorem 1 and Proposition 1, we obtain the following result:

Theorem 3. Let q be a constant and C be a class of graphs of clique-width at
most q (i.e. C ∈ C(q)). Then kLP can be solved in linear time on C.

Theorem 3 applies for instance to P4-tidy graphs, a graph class already con-
sidered in [5] when studying the complexity of kLP. Hence, that result in [5]
follows now from Theorem 3.

Next, notice that given a graph G and a positive integer k, we can obtain
equivalently T k(G) by performing a substitution in G on each of its vertices by
Kk. Taking into account Lemma 1 together with the fact that cwd(Kk) ≥ 2,
we remark that, for every positive integer k and any constant q ≥ 2, if G is a
graph in C(q), then T k(G) is in C(q). Therefore, if we recall the observations
given below Theorem 2, we have proved:

Theorem 4. Let q be a constant and C be a class of graphs of clique-width at
most q (i.e. C ∈ C(q)). Then {k}PF can be solved in linear time on C.

334 V.A. Leoni and E.G. Hinrichsen

7 Final Remarks

In this paper, we have introduced a new concept in graphs ({k}-packing function)
as a variation of a k-limited packing, for each positive integer k. In this way, we
have expanded the set of utility location problems that can be modeled using
packings in graphs.

By relating the problems of finding a maximum {k}-packing function with
the one of finding a maximum k-limited packing, we have opened another way
of research that can be used to continue with the study of the computational
complexity of kLP.

As already mentioned in Sect. 1, up to our knowledge, the only other known
graph class in which kLP is polynomial time solvable is the class of P4-tidy
graphs [5]. We remark that it is not true that for every P4-tidy graph G, T k(G)
is a P4-tidy graph. Actually, we solved in Sect. 6 the complexity of {k}PF in
a superclass of P4-tidy graphs. Besides, concerning kLP, the results in Sect. 6
improve and generalize the result in [5] related to P4-tidy graphs.

We close this paper with the question of deciding if the algorithm in Sect. 5
can be modified to answer the complexity of {k}PF for other proper subclasses
of chordal graphs that are characterized by certain elimination ordering.

Acknowledgments. We are grateful to H. Freytes for the discussions held with us
around first- and second-order logics.

References

1. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
nite graphs. Inf. Comput. 85(1), 12–75 (1990)

2. Courcelle, B., Mosbah, M.: Monadic second-order evaluation on tree-decomposable
graphs. Theoret. Comput. Sci. 109, 49–82 (1993)

3. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46, 218–270 (1993)

4. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique width. Theory Comput. Syst. 33, 125–150 (2000)

5. Dobson, M.P., Leoni, V., Nasini, G.: The k-limited packing and k-tuple domination
problems in strongly chordal, P4-tidy and split graphs. Electron. Notes Discrete
Math. 36, 559–566 (2010)

6. Dobson, M.P., Leoni, V., Nasini, G.: The multiple domination and limited packing
problems in graphs. Inf. Process. Lett. 111, 1108–1113 (2011)

7. Ebbinghaus, H., Flum, J.: Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Berlin (1995)

8. Fagin, R.: Generalized RST-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7,
pp. 27–41. SIAM, Philadelphia (1974)

9. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–
189 (1983)

10. Gallant, R., Gunther, G., Hartnell, B., Rall, D.: Limited packings in graphs. Dis-
crete Appl. Math. 158(12), 1357–1364 (2010)

{k}-Packing Functions of Graphs 335

11. Lee, C.M., Chang, M.S.: Variations of Y -dominating functions on graphs. Discrete
Math. 308, 4185–4204 (2008)

12. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combi-
nat. Theory Ser. B 96, 514–528 (2006)

13. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Longman,
Reading (1994)

Robust Shift Scheduling in Call Centers

Sara Mattia1, Fabrizio Rossi2, Mara Servilio2(B), and Stefano Smriglio2

1 Istituto di Analisi dei Sistemi ed Informatica,
Consiglio Nazionale delle Ricerche, Rome, Italy

sara.mattia@cnr.iasi.it
2 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,

Università di L’Aquila, L’Aquila, Italy
{fabrizio.rossi,mara.servilio,stefano.smriglio}@univaq.it

Abstract. We propose a robust optimization model for shift scheduling
in call centers. The model is designed to react to the deviations that
often occur between the planned staffing levels and the actual number
of employees that would be necessary to guarantee the desired level of
service. Different perturbation patterns are considered giving rise to dif-
ferent uncertainty sets, and the corresponding algorithmic implications
are discussed. A case study from an Italian Public Agency is finally pre-
sented, which shows how the proposed methodology improves the quality
of the schedules. Interestingly, although the methodology is fairly sophis-
ticated, it perfectly fits in a quite common managers current practice.

Keywords: Integerprogramming ·Shift scheduling ·Robustoptimization

1 Introduction

Workforce management (WFM) in call centers is a complex process which receives
historic data on call volumes as input and returns agent schedules as output. Tra-
ditionally, WFM is split into a sequence of almost separate steps: forecasting call
volumes, determining the required staffing levels (that is, the number of agents
required on duty in each time slot of a day in order to guarantee the desired level
of service), translating them into agents work shifts (shift scheduling) and, finally,
monitoring schedule inadherence at operational level and reacting accordingly (we
refer to [1,7] for a comprehensive description of WFM). This decomposition has
some drawbacks, as the actual deviations from the planned operations are only
revealed and managed at short term level. This typically overcharges real-time
operations managers, who exploit all available options to keep safe the required
level of service. A recent stream of research in this context is devoted to overcome
the problems caused by the separation between the staffing stage and the shift
scheduling stage. The first receives in input the call volume estimates and trans-
lates them into staffing levels; the second determines an allocation of work shifts
which guarantees a satisfactory trade-off between coverage of the staffing levels
and personnel costs. Investigating options to smooth the separation between this
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 336–346, 2014.
DOI: 10.1007/978-3-319-09174-7 29

Robust Shift Scheduling in Call Centers 337

two stages is well-known to be relevant in practice, and it is interesting from a
mathematical viewpoint as well. In fact, it basically amounts to integrate queueing
theory techniques with integer programming models. A survey of papers follow-
ing such a direction can be found in [1]. More recent studies introduce stochastic
programming and robust optimization models [2,9,10].

A new robust optimization model is here presented, defined and validated
along several joint projects with large Italian Telecommunications Companies
and Public Agencies. In these experiences, call center managers reported to
us the fact that too often the computed staffing levels do not cope with the
actual demand. Our idea is then to design a robust optimization model for
the shift scheduling stage which reacts to deviations in the staffing levels. It is
important to remark that approximations in the staffing levels can derive from
errors in the call volume estimates (often a quite difficult task) as well as from
approximations made at the staffing stage. The LATTERS typically arise when
applying queueing models to multi-queue/multi-skill systems, in which several
assumptions of the standard models are violated (see, e.g. [8]).

We look at two possible patterns of staffing levels deviations, giving rise to
different definitions of the uncertainty set, and discuss the related algorithmic
issues. We finally present a case study showing that the resulting methodology
provides high quality schedules which protect the system against unplanned
deviations at quite reasonable cost. Interestingly, it also perfectly fits in a quite
common practice, based on moving personnel from back to front office in order
to manage schedule inadherence.

2 The Deterministic Model

We consider a discrete planning horizon T = {1, . . . , m}, where time intervals
typically correspond to 15 or 30 min. For each t ∈ T , let bt the staffing level at
period t, i.e. a positive integer representing the required number of agents on
duty in period t. Work shifts can be part-time with duration 4 or 6 h or full-time
with duration 8 h, and do not include breaks (which are assumed to be managed
at real-time level). Let us denote by J the set of all possible shifts, and by cj a
cost associated to shift j.

The shift scheduling problem consists in determining the number of agents
to assign to each shift in order to satisfy the staffing levels at minimum cost.

A basic integer programming model for this problem was introduced by Segal
[16]. Let us define the shift matrix S ∈ {0, 1}m×n with stj = 1 if shift j covers
period t and 0 otherwise, and denote by xj the number of agents assigned to
shift j ∈ J . The problem writes

min
∑

j∈J

cjxj (1)

∑

j∈J

stjxj ≥ bt t ∈ T

xj ≥ 0, integer j ∈ J

338 S. Mattia et al.

Observe that, since shifts do not include breaks, each column has consecutive
ones. This property allows to reformulate the problem as a minimum cost flow
problem [16].

One major criticism to this model, that we experienced in practical contexts,
is that it enforces a full coverage of the staffing levels. On the other hand, in some
cases allowing understaffing at some periods may result in a significant saving.
Furthermore, an understaffing cost can be included in the model, to represent
alternative agents recruitment options at operational level, such as taking them
from the back office or asking for some overtime. A more “hidden” cost is also
taken in great care by the managers, the one associated to overstaffing, arising
when an excess of employees occurs (see, e.g., [19] for further insights).

Let us now introduce these amendments in the Segal model. Denote by ot, ut ∈
R+ the number of employees in excess (overstaffing) resp. defect (understaffing)
at period t; let wo, wu the corresponding costs (assumed time-independent). For-
mulation (1) can be revised by introducing such variables acting as surplus and
slack variables:

min
∑

j∈J

cjxj +
∑

t∈T

(woot + wuut) (2)

∑

j∈J

stjxj + ut − ot = bt t ∈ T

ot, ut ≥ 0 t ∈ T

xj ≥ 0, integer j ∈ J

3 The Robust Model

Recall that the staffing levels, i.e., the demand vector b in (1) and (2), result
from a complex process involving two major steps: (i) the call volumes estimation
from historic call center data and (ii) the translation into agents requirements,
often realized by exploiting Erlang-like queueing models (we refer the reader to
[1,7] as starting points for the huge literature concerning this topic). Call volume
estimation is intrinsically hard in practice. Furthermore, most of the analytical
staffing methods are based on assumptions that are often invalid in practice
(see, e.g. [8]), and require the additional use of simulation, especially in complex
multi-queue/multi-skill systems (see again [7]). Among these assumptions, it is
worth to recall that the staffing level expected for period t is typically considered
independent from the staffing levels of the other time periods.

For these reasons, let us now suppose that the staffing levels bt for t ∈ T
are uncertain and let us denote by U the uncertainty set including all possible
realizations. We will refer to the problem with uncertainty as the robust problem
and to the problem where b is fixed as the nominal (deterministic) problem.

Robust solutions are mostly computed using either stochastic programming
or robust optimization. A stochastic programming approach [14] assumes that
probability distributions for the uncertain parameters are given and it computes

Robust Shift Scheduling in Call Centers 339

a solution with a given probability to be feasible for all the realizations. A tra-
ditional robust optimization method [3,5,17] finds a solution that is feasible for
all possible realizations of the parameters in the given uncertainty set. In both
cases the same solution is used for all the realizations (static solution). Usually,
if the probability distributions for the parameters are reliable, stochastic pro-
gramming produces less conservative solutions, but robust optimization models
are computationally easier to solve. In particular, when the uncertainty affects
only the right-hand-sides, a robust solution can be computed solving a deter-
ministic problem with suitable values for the right-hand-sides [12]. To reduce
the conservatism, the solution can be computed in stages (dynamic solution),
that is, it can be computed in two or more steps using the partial informa-
tion on the uncertainty that becomes available at every step. This approach
is also called optimization with recourse and it makes the problem more diffi-
cult to solve. The complexity of multi-stage stochastic programming is inves-
tigated in [15], where it is discussed why a multi-stage linear problem with
recourse is computationally intractable. Two-stage robust optimization (a.k.a.
adjustable robust optimization) was introduced in [4], where it is proved that
two-stage robust programming with unrestricted second stage (for each realiza-
tion of the uncertainty it is possible to choose second stage variables arbitrarily)
is computationally intractable. For this reason, the second stage IS often limited
using so-called affine policies [6]. In [13] it is proved that, even with uncertainty
on right-hand-sides only and with an LP nominal problem, the two-stage robust
problem is NP-hard if the uncertainty set is a polyhedron, even for very simple
polyhedra (e.g. a single knapsack constraint). Applications of two-stage opti-
mization (both restricted and unrestricted) can be found in network design [11],
production planning and inventory management [13].

A static approach is not applicable for our problem. Model (2) includes only
equality constraints, therefore if we suppose to have uncertain right-hand-sides
and to compute a static robust solution, this would lead to an infeasible robust
problem. Moreover, a static solution does not correspond to what is done in
practice, where it happens that the staffing levels computed before the realiza-
tion of the uncertainty are adjusted by the operators when the real demand
b becomes available. This naturally leads to a two-stage problem, where part
of the solution (the staffing levels x) is computed before the realization of the
uncertainty and the rest (overstaffing/understaffing [u, o]) is computed after. In
this way we obtain a dynamic solution, i.e., a solution that can be (partially)
changed according to the realization of the uncertainty.

The two-stage formulation for the robust shift scheduling problem with under-
staffing/overstaffing is the following:

min
x∈X

⎡
⎣



∑

j∈J

cjxj + max
b∈U

min
[u,o]∈R(x,b)

∑

t∈T

(woot + wuut)


⎤

⎧
(3)

The set X contains the feasible x vectors that can be chosen in the first stage. To
control the price of robustness, we require that the staffing cost of the computed

340 S. Mattia et al.

robust solution (i.e., the cost related to the x variables) cannot exceed a given
percent increase τ of the optimal planning cost C = cT x∈ of the nominal problem:

X = {x ∈ Z
|J|
+ :
∑

j∈J

cjxj ≤ (1 + τ)C} (4)

Now, if we do not restrict in any way the value of the second stage (unrestricted
second stage), the problem of computing the worst-case realization and the cor-
responding overstaffing/understaffing values reads:

[Primal Second Stage problem]

max
b∈U

min
[u,o]∈R(x,b)

∑

t∈T

(woot + wuut) (5)

where R(x, b) is the set of the feasible [o, u] pairs, given realization b and staff
allocation x.

3.1 Solving the Robust Problem

Given a staff allocation x̄ computed in the first stage and a realization b̄, the
corresponding understaffing/overstaffing levels are ot = max{0,−dt} and ut =
max{0, dt}, where dt = b̄t −⎪j∈J sjtx̄j , for a resulting cost of

⎪
t∈T (woot +

wuut). This can be expressed by the following LP:

min
∑

t∈T

(woot + wuut)

(yt) ut − ot = b̄t −
∑

j∈J

stj x̄j t ∈ T (6)

o, u ≥ 0

where, for every slot t, ot and ut cannot be both positive in the optimal solution
due to the objective costs. The dual of (6) is:

max
∑

t∈T

(b̄t −
∑

j∈J

sjtx̄j)yt

(ot) −yt ≤ wo t ∈ T (7)
(ut) yt ≤ wu t ∈ T

Also (7) can be easily solved by inspection. Hence the second stage problem (5)
can be alternatively formulated as:

[Dual Second Stage problem]

max
b∈B,y∈Y

∑

t∈T

(bt −
∑

j∈J

stjxj)yt (8)

Robust Shift Scheduling in Call Centers 341

where Y is the feasible region of (7). This allows to reformulate the robust
problem (3) as:

min
x∈X

⎡
⎣



∑

j∈J

cjxj + max
b∈U,y∈Y

∑

t∈T

(bt −
∑

j∈J

stjxj)yt


⎤

⎧
(9)

that can be rewritten as:

min
∑

j∈J

cjxj + γ

γ ≥
∑

t∈T

(bt −
∑

j∈J

stjxj)yt b ∈ U, y ∈ Y (10)

x ∈ X

Problem (10) can be solved by dynamically generating the constraints:

γ ≥
∑

t∈T

(bt −
∑

j∈J

stjxj)yt b ∈ U, y ∈ Y.

Namely, given a solution [x̄, γ̄] of (10), the associated separation problem is
the Dual Second Stage problem (8). Let [b∈, y∈] be the corresponding optimal
solution: if γ̄ ≤ ⎪t∈T (b∈

t −⎪j∈J stj x̄j)y∈
t , then no violated inequality exists,

otherwise [b∈, y∈] provides a violated inequality that can be added to the current
formulation.

In general, the Dual Second Stage problem (8) is difficult to solve. A way to
compute a solution is to use the Primal Second Stage problem (5) instead, that
can be formulated as follows:

max
∑

t∈T

(woot + wuut)

ut − ot = bt −
∑

j∈J

stj x̄j t ∈ T (11)

ot ≤ Mαt t ∈ T

ut ≤ M(1 − αt) t ∈ T

b ∈ U, o, u ≥ 0, α ∈ {0, 1}|T |

Binary variables α are required to ensure that, for each t, at most one between
ot and ut is positive. In fact, differently from (6) this is necessary as the problem
is in maximization form. Once the solution [u∈, o∈, α∈, b∈] of (11) is known, we
can use values [u∈, o∈], to compute the corresponding optimal solution y∈ of (7)
that will provide a violated inequality (if any).

Solving (10) to optimality requires the embedding of the cutting plane algo-
rithm into a branch-and-cut framework. However, in Sect. 4 we show that round-
ing down the optimal solution of the linear relaxation of (10) returns good quality
solutions at cheap computational cost.

342 S. Mattia et al.

3.2 Uncertainty Set Structure

A key point in the above procedure is the solution of problem (11), that is in
general NP-hard. In this context, we compare two different structures of the
uncertainty set. Let bt be the true value of the demand at period t. Uncertainty
can be defined as:

U = {b : bt = b̃t + Dtzt, |zt| ≤ 1, t ∈ T ; z ∈ R
T } (12)

where b̃t represents the nominal value of the staffing level at period t, zt are
variables indicating the percentage (positive or negative) of perturbation of the
demand due to the uncertainty, Dt = (bmax

t − bmin
t)/2 and bmax

t , bmin
t are the

maximum and minimum values that the variation can take for t ∈ T .
A classical restriction that is added to the uncertainty set to avoid system

overprotection, consists in limiting the number of variations from the nominal
values that can happen at the same time. If Γ is the number of time periods
whose demand can deviate, binary variables ζ can be used to compute the num-
ber of demands with deviation, i.e.:

UΓ = {b : bt = b̃t + Dtzt, |zt| ≤ ζt, t ∈ T ;
∑

t∈T

ζt ≤ Γ ; z ∈ R
T , ζ ∈ {0, 1}T } (13)

It is shown in [18] that UΓ can lead to an easy solvable problem (11). However,
in our case, it is unlikely that variations in consecutive time periods are com-
pletely unrelated. Correlation between consecutive time periods can be modeled
by adding to the uncertainty set the following constraints:

|Dtzt − Dt−1zt−1| ≤ Δ(t) t ∈ T (14)

where Δ(t) indicates the maximum possible difference between the perturbations
of two consecutive time periods. The uncertainty set UΔ reads:

UΔ = {b : bt = b̃t + Dtzt,

|Dtzt − Dt−1zt−1| ≤ Δ(t), |zt| ≤ ζt, t ∈ T ;
∑

t∈T

ζt ≤ Γ ; z ∈ R
T , ζ ∈ {0, 1}T } (15)

Unfortunately, UΔ complicates the solution of (11), but in the next Section will
show that the computational burden is limited.

4 Case Study

4.1 Instances Description

We deal with data extracted from a call center of a Public Italian Agency. Call
center operating hours are from 7:00 a.m. to 11:00 p.m. The working period is
divided into 64 time slots of 15 min length. Agents may have a full-time shift,

Robust Shift Scheduling in Call Centers 343

Fig. 1. Space U of possible realizations of b

made by 8 (32) consecutive working hours (slots), or a part-time shift, consisting
of 4 (16) or 6 (24) consecutive working hours (slots). A workshift can start at
any time period in the day but must terminate before 11.00 p.m. The shift cost
depends on the contract type: a 4-h part-time shift has a cost of 72 e, a 6-h
part-time shift has a cost of 96 e and a 8-h full-time shift has a cost of 112
e. The understaffing cost wu is fixed at 120 e, while the overstaffing cost is
wo = 20 e.

We discuss two possible scenarios: the first considers only part-time agents
(instance I-4-6) while in the second one all possible shifts are considered (instance
I-4-6-8). Figure 1 represents the demand variation, i.e., the continuous line repre-
sents the nominal values b̃t and the dotted lines represent respectively bmax and
bmin. One can observe that the (worst) realized staffing values either increase or
decrease of an amount varying from the 5% to the 15% of the nominal value.

In defining UΓ and UΔ we arranged with call center managers Γ = 16 and
Δ(t) = 20 for all t ∈ T . Finally, we fix the value τ in (4) to 0.1 (10% planning
budget increase allowed).

4.2 Results

Tables 1 and 2 report the costs obtained by the nominal vs the robust model
evaluated with the two different uncertainty sets UΓ and UΔ. From the figures
one can observe that the increase in workshifts costs request by robust models
never exceeds 9% of the workshifts cost of the nominal model. On the contrary,

344 S. Mattia et al.

Fig. 2. Instance I-4-6: comparison among planned levels

robust models are obviously able to considerably decrease the cost needed to
cope with the worst realization.

To better understand the added values of robust models, one can observe the
slot-by-slot planned levels reported in Figs. 2 and 3. The planned level by the
nominal solution is represented by the large dashed line, while the continuous
(small dashed) one is associated with the UΔ-robust (UΓ -robust) planning. Both
robust models are able to follow the demand variations, and the model UΔ

Table 1. Uncertainty set UΓ : nominal model vs robust model

Instance Workshifts costs Worst-case costs Cutting plane CPU

Nominal Robust UΓ Nominal Robust UΓ Iterations Time (s)

I-4-6 96,168 104,424 198,960 101,822 634 491

I-4-6-8 88,992 93,362 202,700 96,691 642 544

Table 2. Uncertainty set UΔ: nominal model vs robust model

Instance Workshifts costs Worst-case costs Cutting plane CPU

Nominal Robust UΔ Nominal Robust UΔ Iterations Time (s)

I-4-6 96,168 98,859 93,360 50,845 468 597

I-4-6-8 88,992 89,437 97,760 51,718 333 675

Robust Shift Scheduling in Call Centers 345

Fig. 3. Instance I-4-6-8: comparison among planned levels

appears very promising because smoothly follows the demand curve at a very
low additional planning cost (about 2 % increase). It is also worth to mention
that the computational burden of the robust model UΔ appears negligible.

In conclusion, the computational experience shows that using a robust app-
roach can lead to a relevant improvement with respect to the approach used in
practice, consisting in computing a static solution and then in adapting it to the
real value of the demand on the fly.

References

1. Aksin, Z., Armony, M., Mehrotra, V.: The modern call center: a multi-disciplinary
perspective on operations management research. Prod. Oper. Manage. 16(6), 665–
688 (2007)

2. Atlason, J., Epelman, M.A., Henderson, S.G.: Optimizing call center staffing using
simulation and analytic center cutting plane methods. Manage. Sci. 54(2), 295–309
(2008)

3. Ben-Tal, A., Nemirowski, A.: Robust convex optimization. Math. Oper. Res. 23,
769–805 (1998)

4. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solu-
tions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

5. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. Ser. B 98, 49–71 (2003)

6. Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable
robust counterparts. Oper. Res. 57(6), 1469–1482 (2009)

346 S. Mattia et al.

7. Koole, G.: Call Center Mathematics. A scientific method for understanding and
improving contact centers. MG books, Amsterdam (2013). ISBN 9789082017908

8. Koole, G., Mandelbaum, A.: Queueing models of call centers: an introduction. Ann.
Oper. Res. 113, 41–59 (2002)

9. Liao, S., Koole, G., Van Delft, C., Jouini, O.: Staffing a call center with uncertain
non-stationary arrival rate and flexibility. OR Spectr. 34, 691–721 (2012)

10. Liao, S., Van Delft, C., Vial, J.P.: Distributionally robust workforce scheduling in
call centres with uncertain arrival rates. J. Optim. Meth. Softw. 28(3), 501–522
(2013)

11. Mattia, S.: The robust network loading problem with dynamic routing. Comput.
Optim. Appl. 54(3), 619–643 (2013)

12. Minoux, M.: Robust LP with right-handside uncertainty, duality and applications.
In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn, pp.
3317–3327. Springer, New York (2009)

13. Minoux, M.: On 2-stage robust LP with RHS uncertainty: complexity results and
applications. J. Global Optim. 49, 521–537 (2011)

14. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming:
Modeling and Theory. MPS/SIAM Series on Optimization. SIAM, Philadelphia
(2009)

15. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems.
Continuous Optim. Appl. Optim. 99, 111–146 (2005)

16. Segal, M.: The operator-scheduling problem: a network-flow approach. Oper. Res.
22(4), 808–823 (1974)

17. Soyster, A.: Convex programming with set-inclusive constraints and applications
to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)

18. Thiele, A., Terry, T., Epelman, M.: Robust Linear Optimization With
Recourse, Optimization Online (2010). http://www.optimization-online.org/DB
FILE/2009/03/2263.pdf

19. NextStep Workforce Planning. http://www.nextstepwfp.com/2012/01/
how-much-is-over-staffing-costing-your-contact-centre

http://www.optimization-online.org/DB_FILE/2009/03/2263.pdf
http://www.optimization-online.org/DB_FILE/2009/03/2263.pdf
http://www.nextstepwfp.com/2012/01/how-much-is-over-staffing-costing-your-contact-centre
http://www.nextstepwfp.com/2012/01/how-much-is-over-staffing-costing-your-contact-centre

A Tabu Search Heuristic
for the Equitable Coloring Problem

Isabel Méndez Dı́az3, Graciela Nasini1,2, and Daniel Seveŕın1,2(B)

1 Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura,
Universidad Nacional de Rosario, Rosario, Argentina

{nasini,daniel}@fceia.unr.edu.ar
2 CONICET, Rosario, Argentina

3 Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina

imendez@dc.uba.ar

Abstract. The Equitable Coloring Problem is a variant of the Graph
Coloring Problem where the sizes of two arbitrary color classes differ in
at most one unit. This additional condition, called equity constraints,
arises naturally in several applications. Due to the hardness of the prob-
lem, current exact algorithms can not solve large-sized instances. Such
instances must be addressed only via heuristic methods.

In this paper we present a tabu search heuristic for the Equitable Col-
oring Problem. This algorithm is an adaptation of the dynamic TabuCol
version of Galinier and Hao. In order to satisfy equity constraints, new
local search criteria are given.

Computational experiments are carried out in order to find the best
combination of parameters involved in the dynamic tenure of the heuris-
tic. Finally, we show the good performance of our heuristic over known
benchmark instances.

Keywords: Equitable coloring · Tabu search · Combinatorial
optimization

1 Introduction

The Graph Coloring Problem (GCP) is a very well-studied NP-Hard problem
since it models many applications such as scheduling, timetabling, electronic
bandwidth allocation and sequencing problems.

Given a simple graph G = (V,E), where V is the set of vertices and E is
the set of edges, a k-coloring of G is a partition of V into k sets V1, V2, . . . , Vk,
called color classes, such that the endpoints of any edge lie in different color
classes. The GCP consists of finding the minimum number k such that G admits
a k-coloring, called the chromatic number of G and denoted by χ(G).

Some applications impose additional restrictions. For instance, in scheduling
problems, it may be required to ensure the uniformity of the distribution of
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 347–358, 2014.
DOI: 10.1007/978-3-319-09174-7 30

348 I. Méndez Dı́az et al.

workload employees. Suppose that a set of tasks must be assigned to a set of
workers so that pairs of tasks may conflict each other, meaning that they should
not be assigned to the same worker. The problem is modeled by building a graph
containing a vertex for every task and an edge for every conflicting pair of tasks.
Workers are represented by colors. Then, in order for a coloring of this graph to
represent a valid assignment of tasks to workers, the same number of tasks must
be assigned to each worker. Since this is impossible when the number of tasks
is not divisible by the number of workers, one can ask for the number of tasks
assigned to two arbitrary workers can not differ by more than one. It is called
equity constraint and the resulting problem is called Equitable Coloring Problem
(ECP).

ECP was introduced in [1], motivated by an application concerning garbage
collection [2]. Other applications of the ECP concern load balancing problems in
multiprocessor machines [3] and results in probability theory [4]. An introduction
to ECP and some basic results are provided in [5].

Formally, an equitable k-coloring (or just k-eqcol) of a graph G is a k-coloring
satisfying the equity constraint, i.e. the size of two color classes can not differ
by more than one unit. The equitable chromatic number of G, χeq(G), is the
minimum k for which G admits a k-eqcol. The ECP consists of finding χeq(G)
which is an NP-Hard problem [5].

There exist some differences between GCP and ECP that make the latter
harder to solve. It is known that the chromatic number of a graph is greater than
or equal to the chromatic number of any of its induced subgraphs. Unfortunately,
in the case of ECP, this property does not hold. For instance, if G is the graph
shown in Fig. 1, by deleting v5 from G, χeq(G) increases from 2 to 3.

As far as we know, there are few approximate and exact algorithms available
in the literature related to ECP.

It was proved that, for any graph G, Δ(G) + 1 is an upper bound of χeq(G)
[6], where Δ(G) is the maximum degree of vertices in G. Based on this fact, a
polynomial time algorithm for obtaining a k-eqcol of a graph G with k ∈ Δ(G)+1
is described in [7].

Two constructive heuristics called Naive and SubGraph are given in [5]
to generate greedily an equitable coloring of a graph. There also exist heuristic
algorithms for constructing colorings that are “nearly” equitable [8,9], making

Fig. 1. An example.

A Tabu Search Heuristic for the Equitable Coloring Problem 349

emphasis on achieving a small difference between the sizes of the biggest class
and the smallest one, although the equity constraint still might be violated.

The authors of [10] propose a tabu search heuristic to initialize an exact
algorithm that solves ECP via Integer Linear Programming (ILP) techniques.
Other exact algorithms for solving ECP are given in [11] and [12]. The first one
also uses IPL techniques and the second one is based on a DSATUR enumeration
scheme.

In this work, we propose a new heuristic based on the dynamic TabuCol
version of Galinier and Hao [13], one of the best tabu search algorithms for GCP
[14]. Then, computational experiments are carried out in order to find the best
combination of parameters involved in the dynamic tenure of our heuristic and
to show the good performance of it over known benchmark instances.

The paper is organized as follows. In Sect. 2, we present TabuCol and the
dynamic variant of Galinier and Hao. In Sect. 3, we give our variant for ECP
which we call TabuEqCol. Finally, in Sect. 4 we report computational experi-
ences and conclusions.

2 TABUCOL and its Variants

Tabu search is a metaheuristic method proposed by Glover [15] that guides a
local search algorithm equipped with additional mechanisms that prevent from
visiting a solution twice and getting stuck in a local optimum.

Let S be the solution space of the problem and f : S ≤ R be the objective
function. The goal is to obtain a solution s ≥ S such that f(s) is minimum.

For each solution s ≥ S, consider a neighborhood N(s) ⊂ S with two desirable
(but not exclusionary) properties: (1) two solutions s and s′ are neighbors when it
is easy (from the computational point of view) to obtain s′ from s, and to obtain
f(s′) from f(s) (for instance, in constant time), and (2) for any s, s′ ≥ S, there
exists a path s = s1, s2, . . . , sm = s′ such that si+1 ≥ N(si) for i = 1, . . . , m − 1.

In general, neighbor solutions are very similar in some sense, and the dif-
ference between them can be seen as features that both solutions do not share.
Consider a set of features P and a set R ⊂ S ×P such that (s, p) ≥ R if solution
s presents a feature p.

Starting from an initial solution s0 ≥ S, tabu search consists of generating
a sequence of solutions s1, s2, . . . such that si+1 = arg mins∈N ∗(si)f(s), where
N ′(si) is a subset of N(si) described below. In each iteration of this algorithm,
a movement from si to si+1 is performed and some feature of si is stored in a tabu
list L ⊂ P . This list indicates whether a movement is allowed or forbidden: a
solution s can be reached in the future only if s does not present any feature from
L (this rule avoids from visiting a solution previously visited), except when s is
better than the best solution found so far. This exception is called aspiration and
the aspiration criterion is usually to check if the objective value of s is less than
the value of currently-known best solution. Now, the set of allowed movements
from si, N ′(si), is defined as

350 I. Méndez Dı́az et al.

N ′(s) = {s′ ≥ N(s) : f(s′) < f(s∗) ∨ (s′, p) /≥ R ∀ p ≥ L},

where s∗ is the best solution found so far.
However, after several iterations, old features are no longer needed and it is

better to remove them from the tabu list. This mechanism is usually implemented
by assigning a “time of live” to each feature of the tabu list. Consider live : L ≤
Z and let live(p) be the number of remaining iterations that p belongs to L.
When a new feature p is inserted into L, live(p) is assigned a value referred to
as tabu tenure t. Then, in each iteration, the value of live(p) is decreased by one
unit until it reaches zero and p is removed from L. Above, we sketch a generic
tabu search algorithm.

Data: initial solution s0
Result: best solution found s∈

begin
L ← ∅

s, s∈ ← s0
while stopping criterion is not met do

for p ∈ L do
live(p) ← live(p) − 1
if live(p) = 0 then L ← L\{p}

end
N ∧(s) ← {s∧ ∈ N(s) : f(s∧) < f(s∈) ∨ (s∧, p) /∈ R ∀ p ∈ L}
choose a feature p ∈ P such that (s, p) ∈ R
L ← L ∪ {p}
live(p) ← t
s ← arg mins∗∈N∗(s)f(s∧)
if f(s) < f(s∈) then s∈ ← s

end

end
Algoritmo 1. TabuSearch

In order to implement a tabu search algorithm, some decisions must be taken:
neighborhood of a solution, features of a solution, stopping criterion, how to
choose the feature p to be stored in the tabu list and how to compute the tabu
tenure t. In particular, the value of tabu tenure directly impacts diversification
of the algorithm. A tabu search with low tenures behaves as a standard local
search, where it frequently get trapped in local minima. On the other hand, a
tabu search with high tenures tends to wander across solution space without
converging towards the optimal solution.

TabuCol, the first tabu search algorithm designed for solving GCP, was
proposed by Hertz and de Werra [16]. For a given graph G = (V,E) and number
k ≥ {1, . . . , n}, where n = |V |, the goal of this algorithm is to find a k-coloring
of G. In order to obtain a coloring that uses as few colors as possible, it is usual
to embed TabuCol in a routine that, once a k-coloring is found, the algorithm
can be restarted with k ∃ k − 1 and so on, until some criterion is met. Details
of TabuCol are given below:

A Tabu Search Heuristic for the Equitable Coloring Problem 351

– Search space and objective function. A solution s is a partition (V1, V2, . . . , Vk)
of the set of vertices. Let E(Vi) be the set of edges of G with both endpoints
in Vi. The objective function is defined as

f(s) =
k∑

i=1

|E(Vi)|.

Clearly, s is a k-coloring if and only if f(s) = 0.
– Stopping criterion. The algorithm stops when f(s) = 0 or when a maximum

number of iterations is reached. Sometimes, a time limit is imposed.
– Initial solution. It is generated randomly. A suitable procedure given in [17] is

the following. Start with empty sets V1, V2, . . . , Vk and, at each step, choose a
non-considered vertex v randomly and put it into Vi with the smallest possible
i such that E(Vi) is not incremented. If it is not possible, choose a random
number j ≥ {1, . . . , k} and put v into Vj .

– Set of features. It is P = V × {1, . . . , k}. A solution s presents a feature (v, i)
if and only if v ≥ Vi, i.e. if v is assigned color i.

– Neighborhood of a solution. Let C(s) be the set of conflicting vertices of a
solution s, i.e.

C(s) = {v ≥ V : v is incident in some edge of E(V1) ⇒ E(V2) ⇒ . . . ⇒ E(Vk)}.

From a solution s = (V1, V2, . . . , Vk), a neighbor s′ = (V ′
1 , V ′

2 , . . . , V ′
k) is gen-

erated as follows. Choose a conflicting vertex v ≥ C(s). Let i be the color of
v in s. Next, choose a color j ≥ {1, . . . , k}\{i} and set

V ′
j = Vj ⇒ {v}, V ′

i = Vi\{v}, V ′
l = Vl ∀ l ≥ {1, . . . , k}\{i, j}.

In other words, s′ is a copy of s except that v is moved from class color Vi to
Vj . We denote such operation with s′ = s(i v−≤ j). Note that objective value
can be computed in linear time from f(s):

f(s′) = f(s) + |{vw ≥ E : w ≥ Vj}| − |{vw ≥ E : w ≥ Vi}|.
Note also that searching all the neighbors of s requires exploring (k−1)|C(s)|
solutions. Original TabuCol only explores a random subset of N(s) while
newer versions explore N(s) completely.

– Selection of feature to add in the tabu list. Once a movement from s to s(i v−≤ j)
is performed, p = (v, i) is stored on tabu list and live(p) is set to a fixed tabu
tenure t = 7.

Later, Galinier and Hao [13] improved TabuCol by using a dynamic tabu
tenure that depends on the quality of the current solution, encouraging diver-
sification of the search when solution is far from optimal. They proposed to
assign a tenure of t = α|C(s)| + Random(β) where Random(β) returns an inte-
ger randomly chosen from {0, . . . , β − 1} with uniform distribution. Based on
experimentation, they suggest to use α = 0.6 and β = 10. Other variants of
TabuCol are discussed in [14,17].

352 I. Méndez Dı́az et al.

3 TABUEQCOL: A Tabu Search for ECP

In this section, we present a new tabu search algorithm for ECP based on
TabuCol with dynamic tabu tenure, which we call TabuEqCol.

Given a graph G = (V,E) and a number k ≥ {1, . . . , n}, where n = |V |, the
goal of TabuEqcol is to find a k-eqcol of G.

Solution space consists of partitions of V into k sets V1, V2, . . . , Vk such that
they satisfy the equity constraint, i.e. for any pair of classes Vi and Vj ,

∣
∣|Vi| −

|Vj |
∣
∣ ∅ 1. Objective function f is the same as in TabuCol, so any solution s

such that f(s) = 0 is indeed an equitable coloring. Also, set of features P is the
same as in TabuCol.

Stopping criterion depends on the experiment carried out. Usually, a time
limit is imposed.

Let s ≥ S. Denote W+(s) = {i : |Vi| = �n/k⊂ + 1} and W−(s) = {i :
|Vi| = �n/k⊂}, where Vi are the color classes of s. Since s satisfies the equity
constraint, we have that W+(s) and W−(s) determine a partition of {1, . . . , k}
and, in particular, |W+(s)| = r where r = n − k�n/k⊂. From now on, we just
write W+ and W−. These sets will be useful in the development of the algorithm.

We propose two greedy procedures for generating initial solution s0.

Procedure 1. Start with empty sets V1, V2, . . . , Vk and an integer r̃ ∃ 0 (this value
will have the cardinal of W+). At each step, define set I = {i : |Vi| ∅ M − 1},
where M is the maximum allowable size of a class:

M =

{
�n/k⊂ + 1, if r̃ < r

�n/k⊂, if r̃ = r

(once we already have r class of size �n/k⊂ + 1, the size of the remaining classes
must not exceed �n/k⊂). Then, choose a non-considered vertex v randomly and
put it into a class Vi such that i ≥ I is the smallest possible and E(Vi) is not
incremented. If it is not possible, i is chosen ramdomly from I. To keep r̃ up
to date, each time a vertex is added to a set Vi such that |Vi| = �n/k⊂, r̃ is
incremented by one unit.

The previous procedure works fine for generating initial solutions from scratch.
However, at this point it is common to know a (k + 1)-eqcol (i.e. in the cases
where we previously ran tabu search with k + 1 and reached an equitable col-
oring) and we can exploit this coloring in order to improve the quality of the
initial solution as follows.

Procedure 2. Let p : {1, . . . , k +1} ≤ {1, . . . , k +1} be a bijective function (i.e. a
random permutation) and let V ∗

1 , V ∗
2 , . . . , V ∗

k , V ∗
k+1 be the color classes of the

known (k + 1)-eqcol. Set Vi = V ∗
p(i) for all i ≥ {1, . . . , k}, and r̃ = |W+|. Then,

run Procedure 1 to assign a color to the remaining vertices which are those
belonging to V ∗

p(k+1).
Regarding neighborhood of a solution s ≥ S notice that, if n does not divide

k, W+ ⊕= ∅ and it is possible to move a vertex from a class of W+ to W−, keeping
equity. That is, for all v ≥ ⇒i∈W+Vi and all j ≥ W−, we have s(i v−≤ j) ≥ S.

A Tabu Search Heuristic for the Equitable Coloring Problem 353

However, the number of allowed movements is rather limited when r is very low
(for instance, r = 1) or very high (r = k − 1), so we need to add supplementary
movements. Swapping the colors of two vertices simultaneously seems to work
fine and as well can be used when n divides k.

From a solution s = (V1, V2, . . . , Vk), a neighbor s′ = (V ′
1 , V ′

2 , . . . , V ′
k) is

generated with two schemes:

– 1-move (only applicable when n does not divide k). Choose a conflicting vertex
v ≥ C(s) ∩ (⇒i∈W+Vi). Let i be the color of v in s. Next, choose a color
j ≥ W−. We have s′ = s(i v−≤ j). Searching all the neighbors of s with this
scheme requires exploring (k − r)|C(s) ∩ (⇒i∈W+Vi)| solutions.

– 2-exchange. Choose a conflicting vertex v ≥ C(s). Let i be the color of v in
s. Next, choose another vertex u such that either i < j or u /≥ C(s), where
j is the color of u in s (the condition imposed to u prevents from evaluating
2-exchange on u and v twice). Then, set

V ′
j = (Vj\{u})⇒{v}, V ′

i = (Vi\{v})⇒{u}, V ′
l = Vl ∀ l ≥ {1, . . . , k}\{i, j}.

Note that objective value can be computed in linear time from f(s):

f(s′) = f(s) + |{uw ≥ E : w ≥ Vi\{v}}| − |{uw ≥ E : w ≥ Vj}|
+ |{vw ≥ E : w ≥ Vj\{u}}| − |{vw ≥ E : w ≥ Vi}|.

Searching all the neighbors of s with this scheme requires exploring a quadratic
number of solutions.

Now, let s′ be the next solution in the sucession; s′ is obtained by applying
either 1-move or 2-exchange to s, where vertex v ≥ Vi in s and v /≥ V ′

i in s′. In
both schemes, p = (v, i) is stored on tabu list and live(p) is set to a dynamic
tabu tenure t = α|C(s)| + Random(β) where α and β are parameters to be
determined empirically. This is one of the purposes of the next section.

4 Computational Experiments and Conclusions

This section is devoted to perform and analyze computational experiments. They
were carried out on an Intel i5 CPU 750@2.67Ghz with Ubuntu Linux O.S. and
Intel C++ Compiler. We considered graphs from [18], which are benchmark
instances difficult to color.

First, we test different combinations of values for parameters α and β from
the dynamic tabu tenure in order to determine the combination that makes
TabuEqCol perform better. Then, we report the behaviour of TabuEqCol
over known instances by using the best combination previously found. We also
compare its performance against tabu search algorithm given in [10].

Tuning parameters
We run TabuEqCol over 16 instances with a predetermined value of k and an
initial solution s0 generated with Procedure 1. The same initial solution is used
in all executions of TabuEqCol for the same instance.

354 I. Méndez Dı́az et al.

Results are reported in Table 1. First column is the name of the graph G.
Second and third columns are the number of vertices and edges of G. Fourth
and fifth columns are known lower and upper bound of χeq(G) (obtained by
other means). The remaining columns are the time elapsed in seconds by the
execution of TabuEqCol when a k-eqcol is found within the term of 1 hour,
for each combination. In the case TabuEqCol is not able to find a k-eqcol,
f(s∗) is displayed between braces where s∗ is the best solution found. Three
last rows indicate the sum of objective function f(s∗) over non-solved instances,
percentage of instances TabuEqCol solved successfully and the average time
elapsed for these instances to be solved.

For the sake of simplicity, we refer to each combination with a capital letter.
Note that combination D has the least average time, however it has solved

less instances than other combinations and the sum of objective values is also
worse. We discard A, B, C, D, E and H with this criterion. By comparing the
three remaining combinations, we have that G is faster than the other two.
Even if we restrict the comparison to those 11 instances the 3 combinations
solve simultaneously, we have 807 s for F, 562 s for G and 730 s for I, so G is still
better.

We consider combination G (α = 0.9 and β = 5) for TabuEqCol.

Testing tabu search heuristic
For each instance, the following process is performed. First, execute Naive algo-
rithm (described in [5]) in order to find an initial equitable coloring c of the cur-
rent instance. Suppose that k + 1 is the number of colors of c. Then, obtain an
initial solution s0 of k color classes generated from c with Procedure 2, and run
TabuEqcol with parameters α = 0.9 and β = 5. If a k-eqcol is found, start over
the process with k − 1 color classes by running Procedure 2 and TabuEqcol
again. This process is repeated until 1 hour is elapsed or a χeq-eqcol is reached,
and the best coloring found so far is returned.

In Table 2 we report results over 76 benchmark instances with at least 50
vertices (75 from [18] and one Kneser graph used in [10]). First 5 columns have
the name of the graph G, number of vertices and edges, and best known lower
and upper bound of χeq(G). Sixth column displays the number of colors of the
initial equitable coloring c. Seventh and eighth columns display the value k of
the best k-eqcol found after 30 s of execution of our algorithm and the time
elapsed in seconds until such k-eqcol is reached. If the coloring is optimal, k is
displayed in boldface. Next two columns show the same information after 1 h of
execution, but if the best coloring is found within the first 30 s, these columns
are left empty.

Time spent by Naive is not considered in the computation. However, Naive
rarely spent more than 1 s (and never more than 4 s).

Last two columns show the same information for the tabu search described in
[10]. If such information is not available, these columns are left empty. We recall
that the values provided in [10] were computed on a different platform (1.8 Ghz
AMD-Athlon with Linux and GNU C++ compiler).

A Tabu Search Heuristic for the Equitable Coloring Problem 355

T
a
b
le

1
.
E

x
ec

u
ti

o
n

o
f
T
a
b
u
E
q
C
o
l

w
it

h
d
iff

er
en

t
co

m
b
in

a
ti

o
n

o
f
va

lu
es

α
=

0
.3

α
=

0
.6

α
=

0
.9

In
st

a
n
ce

|V
|

|E
|

χ
e
q

k
β

=
5

β
=

1
0

β
=

1
5

β
=

5
β

=
1
0

β
=

1
5

β
=

5
β

=
1
0

β
=

1
5

A
B

C
D

E
F

G
H

I

D
S
J
R
5
0
0
.
1

5
0
0

3
5
5
5

1
2

1
2

{3
}

1
1

1
1

1
1

1
1

D
S
J
R
5
0
0
.
5

5
0
0

5
8
8
6
2

1
2
0

1
3
1

{1
4
}

{3
}

{1
}

{8
}

{3
}

3
2
4
2

{5
}

{3
}

{1
}

D
S
J
R
5
0
0
.
1
c

5
0
0

1
2
1
2
7
5

1
2
6

1
9
5

{4
}

{1
}

4
2
7

{3
}

7
8

7
4
7

6
6

8
1
1

D
S
J
C
5
0
0
.
1

5
0
0

1
2
4
5
8

5
1
3

{2
}

5
5

4
1

3
8

6
3

4
7

3
9

8
3

5
7

D
S
J
C
5
0
0
.
5

5
0
0

6
2
6
2
4

1
3

6
2

6
1

5
3
0

{1
}

{1
}

{1
}

{2
}

{1
}

{2
}

{1
}

D
S
J
C
5
0
0
.
9

5
0
0

1
1
2
4
3
7

1
0
1

1
4
8

{1
}

1
0
6

1
0
4

9
4

9
1

8
0

1
0
0

9
0

1
2
1

D
S
J
C
1
0
0
0
.
1

1
0
0
0

4
9
6
2
9

5
2
2

7
6
7

4
1
1

5
0
9

5
5
1

4
2
3

8
5
8

7
1
0

6
9
1

1
0
5
9

D
S
J
C
1
0
0
0
.
5

1
0
0
0

2
4
9
8
2
6

1
5

1
1
2

5
4
3

9
6
8

6
2
3

5
1
8

9
9
9

{2
}

1
8
5
3

{2
}

{1
}

D
S
J
C
1
0
0
0
.
9

1
0
0
0

4
4
9
4
4
9

1
2
6

2
6
8

1
8
5
0

1
7
5
1

1
8
2
2

1
9
2
6

1
7
2
5

1
2
5
0

1
8
0
8

1
7
2
3

9
8
3

i
n
i
t
h
x
.
i
.
1

8
6
4

1
8
7
0
7

5
4

5
4

{8
}

{8
}

{8
}

{8
}

{7
}

{7
}

{8
}

{8
}

{7
}

l
a
t
i
n
s
q
u
a
r
e
1
0

9
0
0

3
0
7
3
5
0

9
0

1
3
1

1
1
8
2

1
0
8
0

1
0
1
3

7
9
6

7
8
2

9
4
6

8
9
5

1
2
9
8

7
7
8

f
l
a
t
3
0
0
2
8
0

3
0
0

2
1
6
9
5

1
1

3
7

2
3
8

{1
}

{1
}

1
4
3

{1
}

{1
}

{1
}

{2
}

{2
}

f
l
a
t
1
0
0
0
7
6
0

1
0
0
0

2
4
6
7
0
8

1
4

1
1
2

2
2
8

5
4
8

1
2
5
5

1
5
4

6
0
0

1
6
8
1

2
4
5

7
8
0

3
2
9
8

a
b
b
3
1
3
G
P
I
A

1
5
5
7

5
3
3
5
6

8
9

{2
7
}

{4
4
}

{1
5
}

{2
}

{1
0
}

2
8
0
1

1
7
9
6

{1
}

1
3
0
4

q
g
.
o
r
d
e
r
4
0

1
6
0
0

6
2
4
0
0

4
0

4
0

2
6

3
1

1
7

2
5

2
6

2
0

2
4

2
5

2
6

w
a
p
0
1
a

2
3
6
8

1
1
0
8
7
1

4
1

4
7

{2
1
}

4
7
7

5
0
1

{6
}

4
5
1

4
4
6

4
9
9

7
4
4

3
9
7

S
u
m

o
f
o
b
je

ct
iv

e
va

lu
es

8
0

5
7

2
6

2
8

2
2

1
2

1
5

1
8

1
2

S
u
cc

es
s

5
0

%
6
9

%
6
9

%
6
3

%
6
9

%
7
5

%
7
5

%
6
3

%
6
9

%

A
v
er

a
g
e

T
im

e
6
1
2

5
4
2

5
7
4

4
2
5

4
7
6

1
0
1
0

6
7
0

5
4
4

7
3
0

356 I. Méndez Dı́az et al.

Table 2. Execution of TabuEqCol over benchmark instances

≤ 30 sec. ≤ 1 hour [10]
Instance |V | |E| χeq χeq Naive k Time k Time k Time

miles750 128 2113 31 31 33 31 0.0 35 13
miles1000 128 3216 42 42 47 43 0.1 49 13
miles1500 128 5198 73 73 74 73 0.0 77 13
zeroin.i.1 211 4100 49 49 51 51 0.0 74 22
zeroin.i.2 211 3541 36 36 51 51 0.0 95 22
zeroin.i.3 206 3540 36 36 49 49 0.0 97 21
queen8 8 64 728 9 9 18 9 1.2 10 7
jean 80 254 10 10 10 10 0.0 10 3
anna 138 493 11 11 11 11 0.0 13 14
david 87 406 30 30 40 30 0.0 30 9

games120 120 638 9 9 9 9 0.0 11 6
kneser9 4 126 315 3 3 4 3 0.0 6 2

2-FullIns 3 52 201 5 5 9 5 0.0 8 1
3-FullIns 3 80 346 6 6 7 6 0.0 9 2
4-FullIns 3 114 541 7 7 12 7 0.1 11 5
5-FullIns 3 154 792 8 8 9 8 0.0 13 8
2-FullIns 5 852 12201 4 7 15 7 2.5
3-FullIns 5 2030 33751 5 8 13 8 25
4-FullIns 4 690 6650 6 8 14 8 0.4
4-FullIns 5 4146 77305 6 9 21 14 20 9 254

1-Insertions 6 607 6337 3 7 14 7 0.2
2-Insertions 5 597 3936 3 6 6 6 0.0
3-Insertions 5 1406 9695 3 6 8 6 1.2

homer 561 1628 13 13 13 13 0.0
huck 74 301 11 11 11 11 0.0

latin square 10 900 307350 90 130 460 169 30 130 1301
DSJC125.1 125 736 5 5 8 5 0.8
DSJC125.5 125 3891 9 18 27 19 0.1 18 788
DSJC125.9 125 6961 42 45 66 45 0.4
DSJC250.1 250 3218 4 8 13 9 0.1 8 32
DSJC250.5 250 15668 11 32 65 33 7.2 32 69
DSJC250.9 250 27897 63 83 136 83 1.2
DSJR500.1 500 3555 12 12 12 12 0.0
DSJR500.5 500 58862 120 131 135 133 0.1
DSJR500.1c 500 121275 126 195 349 257 0.3
DSJC500.1 500 12458 5 13 23 14 3.5 13 33
DSJC500.5 500 62624 13 62 128 63 11
DSJC500.9 500 112437 101 148 284 182 0.7
DSJC1000.1 1000 49629 5 22 38 26 26 22 500
DSJC1000.5 1000 249826 15 112 265 128 27 112 2261
DSJC1000.9 1000 449449 126 268 575 329 20
flat300 20 0 300 21375 11 34 81 38 9.2 34 463
flat300 28 0 300 21695 11 36 65 39 3.3 36 3222
flat1000 76 0 1000 246708 14 112 223 127 24 112 1572
fpsol2.i.1 496 11654 65 65 85 78 0.1
fpsol2.i.2 451 8691 47 47 62 60 0.0
fpsol2.i.3 425 8688 55 55 80 79 0.0
inithx.i.1 864 18707 54 54 70 66 0.1
inithx.i.2 645 13979 30 93 158 93 7.2
le450 15b 450 8169 15 15 17 16 0.3 15 107
le450 15d 450 16750 15 16 30 22 9.6 16 599
le450 25b 450 8263 25 25 25 25 0.0
le450 25d 450 17425 25 27 31 27 29
le450 5b 450 5734 5 5 12 7 7.2
le450 5d 450 9757 5 8 18 8 15
mug100 25 100 166 4 4 4 4 0.0
mug88 25 88 146 4 4 4 4 0.0

mulsol.i.1 197 3925 49 49 63 50 0.0
mulsol.i.2 188 3885 31 48 58 48 0.1
myciel6 95 755 7 7 11 7 0.0
myciel7 191 2360 8 8 12 8 0.1

qg.order40 1600 62400 40 40 64 42 22 40 47
qg.order60 3600 212400 60 60 64 64 0.0 60 267
queen8 12 96 1368 12 12 20 12 0.1
queen9 9 81 1056 10 10 15 10 9.2

queen10 10 100 1470 10 11 18 12 0.1 11 143
school1 385 19095 15 15 49 15 12

school1 nsh 352 14612 14 14 40 14 14
wap01a 2368 110871 41 46 48 46 15
wap02a 2464 111742 40 44 49 47 18 44 83
wap03a 4730 286722 40 50 58 57 18 50 464

abb313GPIA 1557 53356 8 9 17 13 28 10 283
ash331GPIA 662 4181 3 4 8 4 2
ash608GPIA 1216 7844 3 4 10 4 12
ash958GPIA 1916 12506 3 4 10 5 11 4 41
will199GPIA 701 6772 7 7 9 7 2.2

A Tabu Search Heuristic for the Equitable Coloring Problem 357

Note that our approach reaches optimality in 29 instances and a gap of one
unit between χeq and the best solution in 7 instances. In other words, it reaches
a gap of at most one unit in roughly a half of the evaluated instances. Note also
that TabuEqcol improves the initial solution given by Naive in most cases
(precisely, 63 instances).

On those instances the value of the best solution given by tabu search of
[10] is known, our algorithm gives the same value or a better one. Despite the
difference between platforms, it seems that our approach also runs faster.

An interesting fact is that each execution of TabuEqCol needs no more than
500000 iterations to reach the best value since the largest number of iterations
performed was 493204 and took place when TabuEqcol found a 18-eqcol of
DSJC125.5.

In the same sense, TabuEqCol needs no more than 30000 iterations in each
execution and the overall process needs no more than 30 s to reach the best value
on 56 instances; justly those ones such that columns 9 and 10 are empty. On
these instances, the largest number of iterations performed was 28791 and took
place when TabuEqcol found a 10-eqcol of queen9 9.

Conclusion
The Equitable Coloring Problem is a variation of the Graph Coloring Problem
that naturally arises from several applications where the cardinality of color
classes must be balanced. Just like Graph Coloring, the need to solve applications
associated to this new NP-Hard problem justifies the development of exact
algorithms and heuristics. On large instances, known exact algorithms are unable
to address them and heuristics such as Naive delivers poor solutions. Our tabu
search heuristic based on TabuCol has shown to improve these solutions and
presented a fairly good performance, even if a limit of 30 s is imposed.

Acknowledgements. This work is partially supported by grants UBACYT
20020100100666, PICT 2010-304, PICT 2011-817, PID-UNR ING416 and PIP-
CONICET 241.

References

1. Meyer, W.: Equitable coloring. Amer. Math. Mon. 80, 920–922 (1973)
2. Tucker, A.: Perfect graphs and an application to optimizing municipal services.

SIAM Rev. 15, 585–590 (1973)
3. Das, S.K., Finocchi, I., Petreschi, R.: Conflict-free star-access in parallel memory

systems. J. Parallel Distrib. Comput. 66, 1431–1441 (2006)
4. Pemmaraju, S.V.: Equitable coloring extends Chernoff-Hoeffding bounds. In:

Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX-
RANDOM 2001. LNCS, vol. 2129, p. 285. Springer, Heidelberg (2001)

5. Furmanczyk, H., Kubale, M.: Equitable coloring of graphs. In: Kubale, M. (ed.)
Graph Colorings, pp. 35–53. American Mathematical Society, Providence (2004)

6. Hajnal, A., Szemerédi, E.: Proof of a conjecture of P. Erdös. Combin. theory and
its app. 2, 601–623 (1970)

358 I. Méndez Dı́az et al.

7. Kierstead, H., Kostochka, A., Mydlarz, M., Szemerédi, E.: A fast algorithm for
equitable coloring. Combinatorica 30, 217–224 (2010)

8. Brélaz, D., Nicolier, Y., de Werra, D.: Compactness and balancing in scheduling.
Math. Methods Oper. Res. 21, 65–73 (1977)

9. Sulong, G.B.: Some balanced colouring algorithms for examination timetabling.
Jurnal Teknologi 19, 57–63 (1992)

10. Bahiense, L., Frota, Y., Noronha, T.F., Ribeiro, C.: A branch-and-cut algorithm
for the equitable coloring problem using a formulation by representatives. Discrete
Appl. Math. 164(1), 34–46 (2014)

11. Méndez Dı́az, I., Nasini, G., Seveŕın, D.: A polyhedral approach for the equitable
coloring problem. Discrete Appl. Math. 164(2), 413–426 (2014)

12. Méndez Dı́az, I., Nasini, G., Seveŕın, D.: An exact DSatur-based algorithm for the
equitable coloring problem. Electron. Notes Discrete Math. 44, 281–286 (2013)

13. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J.
Comb. Optim. 3(4), 379–397 (1999)

14. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Com-
put. Oper. Res. 33(9), 2547–2562 (2006)

15. Glover, F., McMillan, C., Novick, B.: Interactive decision software and computer
graphics for architectural and space planning. Ann. Oper. Res. 5(3), 557–573 (1985)

16. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)

17. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and
a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)

18. Graph Coloring Benchmark Instances. http://www.cs.hbg.psu.edu/txn131/
graphcoloring.html

http://www.cs.hbg.psu.edu/txn131/graphcoloring.html
http://www.cs.hbg.psu.edu/txn131/graphcoloring.html

Linear Arrangement Problems
and Interval Graphs

Alain Quilliot1(&) and Djamal Rebaine2

1 LIMOS, UMR CNRS, Université Blaise Pascal,
6158 Clermont Ferrant, France

alain.quilliot@isima.fr
2 Département d’Informatique et Mathématique,

Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
Djamal_Rebaine@uqac.ca

Abstract. We present in this paper new results on the Linear Arrangement
Problem (LAP) for interval graphs. We first propose a new lower bounding
scheme, which links LAP with the Max-Cut Problem, and then show that this
lower bound is tight for unit interval graphs. Next, we focus on arbitrary
interval graphs, and derive a polynomial time approximation algorithm.

Keywords: Interval graphs � Linear ordering � Linear arrangement

1 Introduction

Let G = (X, E) be a non-oriented graph where X and E respectively denote the
vertices and edges sets of G. The Linear Arrangement Problem (LAP) consists in
finding a one-to-one mapping / from X to {1, …, |X|} that minimizes

f ðG;/Þ ¼
X

ðx;yÞ2E

/ðyÞ � /ðxÞj j: ð1Þ

The corresponding decision LAP was first shown to be NP-complete for arbitrary
graphs [8, 9], and, next, for restricted graphs such as interval graphs [5] and bipartite
graphs [9]. However, polynomial time algorithms were also designed for other spe-
cial graphs such as trees [4]), unit interval graphs [6], paths, cycles, complete bipartite
graphs, grid graphs [11], and restricted series-parallel graphs [1]. A survey is pre-
sented in [3].

Since LAP is NP-hard, the heuristic approach is therefore well justified to solve
this problem. This paper mainly aims at providing tools for the design of approxi-
mation algorithms while focusing on interval graphs. It is organized as follows.
Section 2 introduces notations and a linear ordering based reformulation of LAP.
In Sect. 3, we propose a general lower bound, which links LAP with the well-known
Max-Cut Problem. In the remaining sections, we first derive a very simple linear
algorithm for the unit interval graph, and then we undertake the worst-case analysis of
a heuristic algorithm that we propose. To do so, we proceed as follows. In Sects. 4
and 5, we introduce a restricted version CLAP of LAP and solve it in an exact way,

� Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 359–370, 2014.
DOI: 10.1007/978-3-319-09174-7_31

through local resolutions of its related Max-Cut problem. In Sect. 6, we derive an
upper bound on the gap between the optimal value of LAP and CLAP. Finally, in
Sect. 7, we present our concluding remarks. An appendix is included for those results
left without a proof in the main text.

2 Preliminaries

A simple (non-oriented) graph with no loop is denoted by G ¼ X; Eð Þ : X Eð Þ is the
node (edge) set of G. We denote by (x, y) an edge with end-nodes x and y in X. If
A � X, then GA is the sub-graph induced by A from G. If x [X, then CGðxÞ ¼ fy 2
X such that (x, y) [E} is the neighbourhood set. The complementary graph Gc = (X,
Ec) of G is defined by Ec = {(x, y) such that (x, y) 62E and x 6¼ y}. A triangle of G is a
clique with 3 nodes. An anti-edge is a pair e = (x, y) = (y, x), with x 6¼ y and
(x, y) 62 E. A fork with root x is a (non-oriented) triple f = {x, y, z} with (x, y),
(x, z) [E, and (y, z) 62 E. An anti-fork with root z is any triple f = {x, y, z} such that
(x, y) [E and (x, z), (y, z) 62 E. (Fig. 1)

LAP Reformulation: A linear ordering of a set X is a binary order relation r such
that, for any pair x, y in X, x 6¼ y, we either have (x r y) or (y r x). Given are a graph
G = (X, E) and a linear ordering r of X. For any edge e = (x, y) [E, we denote by
BE(e, z, r) the elementary break of e by z according to r. We set BE(e, z, r) = 1 if
(x r z r y) or (y r z r x), and 0 otherwise. We Denote by BG(G, r) the Global Break
of G according to r. We set BE(e, z, r) = Re, z BE(e, z). If /(r) is the one-to-one
mapping from X into {1, …,|X|} which derives from r. It then follows

f G;/ðrÞð Þ ¼
X

x;yð Þ2E
/ yð Þ�/ xð Þj j ¼ BGðG;rÞ þ Ej j ¼ Re;zBEðe; z;rÞ þ Ej j:

Therefore, solving LAP turns out to be the problem of seeking a linear ordering r
that minimizes the Global Break BG(G, r). We denote by LAP(G) the optimal Global
Break defined as LAP(G) = Infr B(G, r).

3 A General Lower Bound

The problem of seeking a good linear ordering r of the vertices of a given graph
G = (X, E) is the same as efficiently deciding, for any x in X, which vertices of the
neighbourhood set CG(x) are located before x according to r. This local decision
process is linked to the well-known Max-Cut Problem [2, 7, 10] defined as follows:

Fig. 1. Triangles, Forks and Anti-Forks

360 A. Quilliot and D. Rebaine

Max-Cut Problem: Let H = (Z, F) be a simple graph, and x C 0 an F-indexed
vector. We denote by Z = A [Ex B a partition of Z into two disjoint subsets. The
Max-Cut Problem is to find a partition Z = A [Ex B that maximizes
Rx2A;y2B; x;yð Þ2Fx x;yð Þ. We denote by Max-Cut(H, x) the corresponding optimal value.

Let us now consider graph G = (X, E). We denote by Tr(G) the number of
triangles of G. For any vertex x in X, we define the following:

– H(x) is the complementary graph of the sub-graph of G which is induced by CGðxÞ.
Note that x is not a node of the graph H(x), since G has no loop;

– m(x) is the number of edges of H(x); V(x) = m(x) - Max-Cut(H(x), 1).

Theorem 1. For any graph G = (X, E), we have LAP(G) C Tr(G) + Rx V(x).

Proof. Let us consider a linear ordering r of G, and introduce the following notation:

– Fk(G, r) denotes number of forks f = {x, y, z} of G, f with root x, such that

x r yð Þ ^ x r zð Þð Þ _ y r xð Þ ^ z r xð Þð Þ:

– AFk(G, r) is the number of anti-forks f = {x, y, z} of G, f with root z, such that

x r z ryð Þ _ y r z r xð Þ:

Let us first check that

BGðG;rÞ ¼ Tr Gð Þ þ Fk G;rð Þ þ AFk G;rð Þ: ð2Þ

In order to do so, let us consider an edge e = (x, y), and a node z, different from x and
y. While counting BE(e, z, r), we distinguish three cases:

Case 1: x, y and z define a triangle. Then, BE(e, z, r) = 1 if either (x r z r y) or (y r
z r x). In such a case no quantity BE((x, z), y, r), BE((z, y), x, r) is equal to 1. So, if
x, y, z define a triangle, there exists exactly one node t in{x, y, z} such that BE(e(t), t,
r) = 1, where e(t) is the edge defined by {x, y, z} - t. We then get

Re¼ x;yð Þ; z such that x;y;zð Þ is a triangleBE e; z;rð Þ ¼ Tr Gð Þ:

Case 2: f = {x, y, z} is a fork with root x. It follows BE((x, y), z, r) = 1 if either (x r
z r y) or (y r z r x), and then BE((x, z), y, r) = 0. Conversely, BE((x, z), y, r) = 1
if either (x r y r z) or (z r y r x), and then BE((x, y), z, r) = 0. So, (x, y, z) yields an
elementary break iff y and z are located on the same side of x according to r. Hence,

Re¼ x;yð Þ;z adjacent to exactly 1 extremity of eBE e; z;rð Þ ¼
RxRy;z2CG xð Þ; y;xð Þ62E;y;z located the same way with respect to x;r1 ¼ Fk G;rð Þ:

Case 3: f = {x, y, z} is an Anti-Fork with root z. Therefore, we have

Re¼ x;yð Þ;z such that ðx;zÞ62E and y;zð Þ62EBE e; z;rð Þ ¼ AFk G;rð Þ:

Linear Arrangement Problems and Interval Graphs 361

We then derive (2) from the following

Re;zBEðe; z;rÞ ¼ Re¼ x;yð Þ;z such that x;y;zð Þ is a triangleBEðe; z;rÞþ
Re¼ x;yð Þ;z adjacent to 1 extremity of eBE e; z;rð Þ þ Re¼ x;yð Þ;z adjacent to no extremity of eBE e; z;rð Þ:

For any x [X, a feasible solution A(x, r) [Ex B(x, r) of Max-Cut is defined on
H(x), with x = 1, by setting A(x, r) = {y [CG(x), such that y r x}; B(x,
r) = {y [CG(x) such that x r y}. Its value, in the Max-Cut context, is

m xð Þ � Ry;z2CG xð Þ; y;xð Þ62E;y;z located the same way with respect to x;r1�Max� Cut H xð Þ; 1ð Þ:

It then follows that, for any x [X, we have

Ry; z2CG xð Þ; y;xð Þ62E;y and z; located the same way with respect to x;r1� V xð Þ:

Then, we derive

Fk G;rð Þ ¼ RxRy; z2CG xð Þ; y;xð Þ62E;y; z located the same side with respect to x;r1�RxV xð Þ:

The result is thus established. h

Let us mention that we performed experiments which showed that this bound is
often tight, specifically in the case of chordal graphs. Still, the Max-Cut Problem,
which has been extensively studied, is NP-Hard [9], even with x = 1. So, one may
ask the question about the practical use of the above lower bound. The answer is two-
fold:

1. Even though Max-Cut is NP-Hard, it may easier to handle than LAP. Indeed, it
admits a natural quadratic {0, 1} formulation, see for e.g. [4, 11]. Furthermore,
instances related to H(x), x [X, are smaller than that of the original LAP.

2. We shall see in Sect. 4 that, in the case of interval graphs, the above bounding
scheme leads to an efficient polynomial time approximation scheme.

4 The Case of Interval Graphs

We first introduce additional definitions related to interval graphs:

– A simple graph with no loop G = (X, E) is an interval graph if it is the intersection
graph of a set [o(x), d(x)], x [X, of closed intervals in the real line. Those intervals
may be chosen such that points o(x), d(x), x [X, are distinct. We assume this
hypothesis to be always satisfied. Let us set:

– x � y if o xð Þ\o yð Þ and d yð Þ\d xð Þ;
– x\\y if d xð Þ\o xð Þ;
– x Ov y if o xð Þ\o yð Þ\d xð Þ\d xð Þ:

– In case X is an interval family with distinct endpoints, we say that a linear ordering
r of X is (Ov, \\)-consistent if it is consistent with both orderings Ov and \\.
We denote by r-can the canonical linear ordering, defined as follows:

362 A. Quilliot and D. Rebaine

x r-can y if; and only if; o xð Þ\o yð Þ:

– We say that a fork f = {x, y, z} with root x of such an interval graph G = (X, E) is
a strong fork if there exists t [{y, z} such that t , x, and that a triangle (x, y, z) is a
strong triangle if at least some node is contained in another one (for instance
z , x), as illustrated by Figs. 2, and Fig. 3, respectively.

– We say that G is a Unit Interval graph if intervals [o(x), d(x)], x [X, may be
chosen in such way that no pair (x, y) exists such that x , y.

– Finally, a subset Y of X is a Left-(Ov,\\)-Section (Right-(Ov,\\)-Section) if, for
any x, y [X such that x [Y and (y Ov x) _ (y \\ x), we have y [Y (x [Y).

4.1 A Direct Application on Unit Interval Graphs

In the case of unit interval graphs, from Theorem 1, we derive the following result:

Theorem 2. If G = (X, E) is a unit interval graph, then r-can is an optimal solution
for LAP.

Proof. Let us suppose that an elementary break (e = (x, y), z, r-can) exists, and that
x Ov y. It then follows that x r-can y. If x \\ z then y r-can z and z does not break e.
Similarly, if z \\ x then z \\ x and z does not break e. It follows that x \ z is not
empty. By the same way, y \ z is not empty and{x, y, z} forms a triangle. So, there is
a one-to-one correspondence between triangles and elementary breaks. Thus, BG(G,
r-can) = Tr(G).

4.2 A Restricted Version of LAP

In the case of general interval graphs, r-can may not be optimal. Moreover, optimal
solutions may not even be (Ov, \\)-consistent: This is illustrated by Fig. 4.

LAP(G) = 11, optimal r-opt such that y r-opt z r-opt x, while BG(G,
r-can) = 14.

Fig. 2. Strong fork f = {x, y, z} Fig. 3. Strong triangle = {x, y, z}

Fig. 4. Non consistency of (Ov, \\)

Linear Arrangement Problems and Interval Graphs 363

Still, what can be easily checked is that r-can produces a 2-approximation [5] if
we refer to the standard definition of LAP.

Proposition 1. If G = (X, E) is an interval graph with m edges, then BG(G, r-
can) B 2LOP(G) + m.

Proof: A Global Break oriented proof comes by induction on the cardinality of X. Let
x0 be the first (smallest) element of X according to r-can, and r-opt some optimal
solution of LAP. By induction, we have

Re;z 6¼x0 BE e; z;r-canð Þ�m� CG x0ð Þj j þ 2:Re;z 6¼x0 BEðe; z;r�optÞ: ð3Þ

Since all vertices of CG(x0) [{x0} are consecutive according to r-can, we get
that

Rx2CG x0ð Þ;z2XBE x0; xð Þ; z;r-canð Þ ¼ Rx;z2CG x0ð ÞBE x0; xð Þ; z;r-canð Þ
¼ CG x0ð Þj j � CG x0ð Þj j�1ð Þ=2:

On the other hand, if we refer to r-opt, we get

Rx2CG x0ð Þ;z2XBE x0; xð Þ; z; r-optð Þ�Rx;z2CG x0ð ÞBE x0; xð Þ; z; r-optð Þ�
CGðx0Þj j=2b c CGðx0Þb c � 1ð Þ=2þ CGðx0Þj j=2d e CGðx0Þj j=2d e � 1ð Þ=2:

ð4Þ

The result follows by combining (3) and (4). h

Still, experiments show that best linear orderings are more often (Ov, \\)-con-
sistent. So, we are going to study the following restriction CLAP of LAP:

(Ov, <<)-Consistent Linear Arrangement Problem (CLAP): Compute a (Ov, \\)-
consistent linear ordering r which minimizes BG(G, r).

The following result bridges CLAP with Theorem 1.

Lemma 1. If r is (Ov,\\)-consistent, then we have BG(G, r) = Tr(G) + SFk(G, r),
where SFk(G, r) is the number of strong forks f = (x, y, z), x = Root(f) such that ((x r
y) ^ (x r z)) _ (y r x) ^ (z r x)).

Extending Theorem 1 to CLAP leads to introduce a specific version of Max-Cut:
(Ov, <<)-Consistent Unit Cost Max-Cut Problem (C-Max-Cut): Given a graph
H = (Z, F), which is the complementary graph of an interval graph Hc = (Z, Fc), and
two disjoint subsets A0 and B0 of Z, such that:

– A0 (B0) is a Left-(Ov, \\)-Section Right-(Ov, \\)-Section of Hc;
– Both A0 and B0 define complete sub-graphs of Hc = (Z, Fc).

Compute a partition Z = A [Ex B such that:

1. A contains A0 and is a Left-(Ov, \\)-Section of Hc;
2. B contains B0 and is a Right-(Ov, \\)-Section of Hc;
3. the number of edges of H which connect A and B = |{(x, y) [E, x [A, y [B}|

is the largest possible;
4. A is maximal for the set inclusion order, provided points 1, 2, 3 are satisfied.

364 A. Quilliot and D. Rebaine

We denote by C-Max-Cut(H, A0, B0) the corresponding optimal value. We then
define for the interval graph G = (X, E) and for any vertex x in X the following:

– COv;�
G xð Þ is the (0v, ,)-neighbourhood set of x = {y [CG(x), y 6¼ x, such that

(y , x) or (y Ov x) or (x Ov y)};

– H(x) is the complementary graph of the sub-graph induced by COv;�
G xð Þ;

– A0(x) = {y [Z such that y Ov x}; B0(x) = {y [Z such that x Ov y};
– m(x) is number of edges of H(x); CV(x) = m(x) - C-Max-Cut(H(x), A0(x), B0(x)).

Then, we derive the following result.

Theorem 3. CLAP(G) C Tr(G) + Rx CV(x).

Proof. For every x [X, we set E*(x) = {non oriented pairs (y, z) such that:

– y 2 COv;�
G xð Þ; z 2 COv;�

G xð Þ; y; zð Þ 62 E;
– at least one of both relations y , x or z , x holds;
– relation ((x r y) ^ (x r z)) _ ((y r x) ^ (z r x)) holds.

SFk(G, r) may be written Rx2X E 	 xð Þj j. Since r is (Ov,\\)-consistent, we may
relax the ‘‘at least … y , x or z , x holds’’ constraint which characterizes E*(x). So,
for any x 2 X : E 	 xð Þj j �Ry;z2CG xð Þ; y;xð Þ62E;y;z are located the same way with respect to x;r1. For
any x 2 X, we get a feasible solution A x;rð Þ [Ex B x;rð Þ of the C-Max-Cut instance

defined by H(x), A0(x), B0(x), by setting A x;rð Þ ¼ fy 2 COv;�
G xð Þsuch that yrxg and

B x;rð Þ ¼ fy 2 COv;�
G xð Þsuch that xryg. Its value is m xð Þ � Rx;y2COv;�G xð Þ; y;xð Þ62E;y;

z located the same way with respect to x;r 1�C-Max-Cut H xð Þ;A0 xð Þ; B0 xð Þð Þ. It follows that,
for any x [X, we have E 	 xð Þj j �Rx;y2COv;�G xð Þ; y;xð Þ 62E; y; z located the same way with respect to

x;r1�CV xð Þ. Then, we get that SFk G;rð Þ ¼ Rx E 	 xð Þj j �RxCV xð Þ. Therefore, the
result is established. h

4.3 Solving C-Max-Cut and Evaluating CV(x)

The complexity of the Max-Cut problem in the case of the complementary graph of an
interval graph is still an open question. However, things are easier with C-Max-Cut.

Theorem 4. Given = (Z, F), A0 and B0 as in the definition of C-Max-Cut. Let us
define, for every vertex z [Z - (A0 [B0), the following:

– dH
�ðA0; zÞ = |{t [Z - A0 such that t \\ z }| + |{t [A0 such that t \\ z}|;

– dH
þðB0; zÞ = |{t [Z - B0 such that z \\ t }| + |{t [B0 such that z \\ t }|.

Then we solve C-Max-Cut by setting:

– A = {z [Z - (A0 [B0) such that dH
�ðA0; zÞ C dH

þðB0; zÞ} [A0;
– B = {z [Z - (A0 [B0) such that dH

�ðA0; zÞ\ dH
þðB0; zÞ} [B0.

Linear Arrangement Problems and Interval Graphs 365

Proof. For the sake of simplicity, we only consider here the case where
A0 = B0 = Nil. Clearly, (A*, B*) defines a feasible solution for C-Max-Cut. In
addition, any feasible solution (A, B) defines an oriented graph structure (Z, KA,B) on
node set Z, for which arc set KA,B is as follows:

(x, y) [KA,B if, and only if, (x [A, y [A, y \\ x) or (x [B, y [B, x \\ y).
A node z is the origin of at least InfðdH

�ðzÞ; dþðzÞÞ: arcs of this digraph

Z; KA;B

� �
: ð5Þ

On the other hand, solving C-Max-Cut means seeking a partition Z = A [Ex B
such that the number of edges of H which are not in the bipartite partial graph of H
defined by A and B, i.e. for which both extremities belong to the same set either A or
B, is the smallest possible. But, this number is equal to the number of arcs of the
oriented graph (Z, KA,B), and, from (5), we derive that it is at least equal to Rz [Z

InfðdH
�ðzÞ; dþðzÞÞ:(dH

-(z), dH
+ (z)). However, this value is achieved in the case of (A*,

B*). The result is thus established. h

Corollary 1. Let us denote by F0 the edge subset of F defined by F0 = {(x, y) [F,
such that x [A0 and y [B0}. Then, C-Max-Cut(H, A0, B0) B |(F - F0|/2.

Proof. The proof follows from the fact that C-Max-Cut(H, A0, B0) = Rz [Z

InfðdH
�ðA0; zÞ; dþðB0; zÞÞ:

Corollary 2. In Theorem 3, CV(x) = Rz [Z Inf ðdHðxÞ
�ðzÞ; dHðxÞ

þðzÞÞ, with

– dHðxÞ
�ðzÞ ¼ jft 2 COv;�

G xð Þ, such that t \\ z and t , x }|;

– dHðxÞ
þðzÞ ¼ jft 2 COv;�

G xð Þ, such that z \\ t and t , x }|.

5 An Exact Solution r-bal for CLAP

The objective of this section is to solve here CLAP in an exact way through local
resolutions of C-Max-Cut.

Lemma 2. C-Max-Cut(H, A0, B0) = C-Max-Cut(H, Nil, Nil).

Next, we construct our solution r-bal, by setting, for any pair x, y in X, x r-bal y
if, and only if, one among the following options holds:

� x \\ yð Þ or x Ov yð Þ;
� ðx � yÞ and dHðyÞ

� A0 yð Þ; xð Þ� dHðyÞ
þ B0 yð Þ; xð Þ;

� ðy � xÞ and dHðyÞ
� B0 xð Þ; yð Þ\dHðyÞ

þ A0 xð Þ; yð Þ:
ð6Þ

Example 2. Let G = (X, F) as depicted by Fig. 5.

CV(A) = 0; CV(B) = 0; CV(C) = 1; CV(D) = 0; CV(E) = 0; Tr(G) = 2;
r-bal: B r-bal A r-bal C r-bal D r-bal E; BG(G, r-bal) = 3.

366 A. Quilliot and D. Rebaine

Lemma 3. The r-bal relation is transitive.
We are now ready to state the optimality of r-bal.

Theorem 5. The relation r-bal is an optimal solution of CLAP, which satisfies:

1. BGðG;r-bal�BG G;r-canð Þ:
2. Tr Gð Þ�BGðG;r-balÞ ¼ Tr Gð Þ þ RxCV xð Þ� Tr Gð Þ þ Strong-Fork=2,

where Strong-Fork is the number of strong forks of the interval graph G.

Proof. From Lemma 1, we have that r-bal is a (\\, Ov)-consistent linear ordering.
The optimality of r-bal (and so, the fact that BG(G, r-bal) B BG(G, r-can)) with
regards to CLAP derives from Lemma 1, 2, 3, and Theorem 4. Indeed, from Lemma 1,
we have that BG(G, r-bal) = Tr(G) + SFk(G, r-bal), with SFk(G, r-bal) = Rx [X

|E*(x)|, where E*(x) is defined, for any x [X, as the set of non-oriented pairs (y, z)

such that y 2 COv;�
G xð Þ; z 2 COv;�

G xð Þ; y; zð Þ 62 E; at least one of both relations y , x
or z , x holds; the relation ((x r-bal y) ^ (x r-bal z)) _ ((y r-bal x) ^ (z r-bal x))
holds. However, from Lemma 2 and 3, (5) and (6), we deduce that, for any x [X,
|E*(x)| = m(x) - C-Max-Cut(H(x)), where m(x) and C-Max-Cut(H(x)) respectively
denote the number of edges of graph H(x) and the optimal value of the C-Max-Cut
instance defined by graph H(x). It then follows that BG(G, r-bal) = Tr(G) + SFk(G,
r-bal) = Tr(G) + Rx CV(x). Therefore, r-bal achieves the lower bound of Theorem
4, and its optimality thus follows.

In order to get inequality (2) of the above statement, we first set, for any x [X:

– F(x) is the edge set of the graph H(x) which is induced by the (0v, ,)-neigh-

bourhood set COv;�
G xð Þ;

– F0(x) = {(y, z) [F(x) such that y [A0(x), z [B0(x)}.

Corollary 2 of Theorem 4 shows that CV(x) B |F(x) - F0(x)|/2. In addition, we
see that F(x) - F0(x) = {(y, z) such that y \\ z, (x, y) [E, (x, z) [E, at least one
node t among {y, z} is such that t , x}. Then, we get a one-to-one correspondence
between F(x) - F0(x) and the set of strong forks with root x. We then establish the
result by using the fact that a fork has only one root. h

We easily deduce that this result has an algorithmic interpretation:

Corollary 3. Computing r-bal may be done in O(Arc-,) time, where Arc-, is the
number of arcs of the digraph induced on X by the , ordering.

Fig. 5. A r-bal construction

Linear Arrangement Problems and Interval Graphs 367

6 Bounding the Absolute Error

Our goal in this section is to derive an upper bound on the gap between the optimal value
of LAP and CLAP. In order to do so, we first work on Max-Cut and C-Max-Cut. So, we
consider H = (Z, F), the complementary graph of an interval graph H = (Z, Fc), together
with two disjoint subsets A0 and B0 of Z. Max-Cut(H, 1) and C-Max-Cut(H, A0,
B0) = C-Max-Cut(H, Nil, Nil) respectively denote the optimal values of the corre-
sponding Max-Cut and C-Max-Cut problems with unit costs. We also define the
following:

– X = Z - (A0 [B0);
– Fc

0 ¼ x; yð Þ 2 Fc; such that x 2 A0 and y 2 B0f g;
– Fc

1 ¼ x; yð Þ 2 Fc; such that x 2 X and y 2 Xf g;
– Fc

2 ¼ x; yð Þ 2 Fc; such that x 2 A0 [B0 and y 2 Xf g:

Then, we derive the following Lemmas.

Lemma 4. Given two graphs H1 = (Z, F1) and H2 = (Z, F1 [K). Then we have that
Max-Cut(H1, 1) B Max-Cut(H1, 1) B Max-Cut(H1, 1) + |K|.

Lemma 5. It is possible to assign, to every interval x [Z, some interval u(x) in such
a way that

– function u is one-to-one: x 6¼ y =[u(x) 6¼ u(y);
– u maintains the Ov and \\ relations: x Ov y or x \\ y =[u(x) Ov
– u(y) or u(x) \\ u(y);
– both families u(A0) = {u(x), x [A0} and u(B0) = {u(x), x [B0} define complete

sub-graphs in the sense of interval graphs;
– for any x [Z - (A0 [B0), y [Z, we have u(x) \ u(y) = Nil.

We denote by H-Nil = (u(Z), F-Nil) the graph which results from this construc-
tion. Observe that H-Nil = (u(Z), F-Nil) may be viewed as been derived from H
through withdrawal of the edges of Fc

1 [Fc
2 [Fc

0 of Hc.

Lemma 6. It is possible to assign to every interval x 2 Z an interval v(x) in such a
way:

– function v is one-to-one: x 6¼ y ¼ [vðxÞ 6¼ vðyÞ;
– v maintains the Ov and
 relations on X ¼ Z�ðA0 [B0Þ: for any x; y 2 X, the

following holds: x Ov y or x\\y ¼ [vðxÞ\\vðyÞ;
– v maintains both families A0 and B0: 8x 2 A0 [B0; vðxÞ ¼ x;
– for any x; y 2 X ¼ Z�ðA0 [B0Þ, we have vðxÞ \ vðyÞ ¼ Nil;
– for any x [X = Z - (A0 [B0), |{y [A0 [B0, such that v(x) \ y 6¼ Nil}| C

|{y [A0 [B0, such that x \ y 6¼ Nil}|/2.

We denote by H - Reduced ¼ v Zð Þ; F - Reducedð Þ the graph produced from this
construction. H-Reduced is the complementary graph of the interval graph defined by
the family v xð Þ; x 2 Z.

368 A. Quilliot and D. Rebaine

Lemma 7. The following inequalities hold:

C-Max-Cut H;A0; B0ð Þ�C-Max-Cut H-Reduced;A0;B0ð Þ�C-Max-Cut H-Nil; u A0ð Þ; u B0ð Þð Þ:

Lemma 8. The following holds: C-Max-Cut H-Nil; u A0ð Þ; u B0ð Þð Þ ¼ Max-Cut
H-Nil; 1ð Þ:

Lemma 9. The following holds: C-Max-Cut H-Reduced;A0B0ð Þ ¼ Max-Cut
H-Reduced; 1ð Þ: We are now ready to evaluate from above the gap induced by

imposing the (Ov, \\)-consistency on Max-Cut solutions:

Theorem 7. The following inequalities hold:

0�Max-Cut H; 1ð Þ�C-Max-Cut Hð Þ� Fc
1

�� ��þ Fc
2

�� ��=2:

Proof. Let us observe that, if we refer to the related edge subsets F - Reducedc
1,

F - Reducedc
2 and F - Reducedc

0 induced by the graph H-Reduced according to the
notations which were introduced at the beginning of Sect. 6, then we have that:

F - Reducedc
0 ¼ Fc

0; F - Reducedc
1 ¼ Nil; F - Reducedc

2 � Fc
2:

First, we may deduce from the last condition imposed in Lemma 6, to the construction
of H-Reduced, that F - Reducedc

2

�� ��� Fc
2=2

�� ��. From Lemma 9 we have that
Max-Cut H - Reduced; 1ð Þ ¼ C-Max-Cut H - Reduced; A0; B0ð Þ, and from Lemma 8
we also have that C-Max-CutðH-Reduced;A0; B0Þ�C-Max-CutðH; A0; B0Þ. Now,
from Lemma 4, we have that Max-Cut H; 1ð Þ�Max-Cut H - Reduced; 1ð Þ is non neg-
ative and bounded from above by Fc

1

�� ��þ Fc
2- F - Reducedc

2

�� �� ¼ Fc
1

�� ��þ Fc
2

�� ���
F - Reducedc

2

�� ��� Fc
1

�� ��þ Fc
2

�� ��=2. The result is thus established. h

From Theorem 7 we derive a bound for the gap between the optimal values of LAP
and CLAP which improves the result of Proposition 1.

Theorem 8. Let G ¼ X; Eð Þ be an interval graph as in Theorem 5, r-bal the optimal
linear ordering defined for CLAP, and LAP(G) the optimal value of the Linear
Arrangement Problem on G. We denote by Strong-Tr the number of Strong Triangles.
Then the following holds:

BGðG;r-balÞ�LOP Gð Þ� Strong-Tr:

Proof. Theorem 5 states that BGðG;r - balÞ ¼ CLOP Gð Þ ¼ Tr Gð Þ þ
P

x CV xð Þ.
Theorem 1 shows that LOP Gð Þ� Tr Gð Þ þ

P
x V xð Þ. Theorem 7 also shows that, for

any x 2 X, CV xð Þ�V xð Þ does not exceed E1 xð Þ
�� ��þ E2 xð Þ

�� ��=2, with

– E1 xð Þ ¼ y; zð Þ 2 E such that z � x; y � x; y \ z 6¼ Nilf g:
– E2 xð Þ ¼ y; zð Þ 2 E such that z � x; y \ x 6¼ Nil; Notðx � yÞf g:

If we consider now
P

x2X E1 xð Þ
�� ��, then we get an evaluation of all strong triangles

x; y; zð Þ, which are such that both y and z are included in x. We denote by Strong1 the

Linear Arrangement Problems and Interval Graphs 369

number of those strong triangles. When it comes to
P

x2X E2 xð Þ
�� ��, we see that it

enumerates all strong triangles x; y; zð Þ such that x and y overlap, while eventually
counting twice triangle x; y; zð Þ in the case we simultaneously have z � x and z � y.
Then,

P
x2X E2 xð Þ
�� ��=2 does not exceed the number Strong2 of strong triangles which

are such that x and y overlap. We thus derive

BGðG;r - balÞ � LOP Gð Þ�
X

x
CV xð Þ�V xð Þð Þ�

X
x

E1 xð Þ
�� ��þ E2 xð Þ

�� ��=2

¼ Strong1 þ
X

x
E2 xð Þ
�� ��=2� Strong1 þ Strong2 ¼ Strong� Tr:

The result is thus established. h

7 Conclusion

This paper, with theoretical focus, presents approximation results for the Linear
Arrangement problem in the case of interval graphs. Further research could be on the
extension to chordal graphs and circular graphs, and also on the design of efficient
exact algorithms.

References

1. Achouri, S., Bossart, T., Munier-Kordon, A.: A polynomial algorithm for MINDSC on a
subclass of series parallel graphs. RAIRO Oper. Res. 43(2), 145–156 (2009)

2. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Prog. 36, 157–173 (1986)
3. Charon, I., Hudry, O.: An updated survey on the linear ordering problem for weighted or

unweighted tournaments. Ann. Oper. Res. 175, 107–158 (2010)
4. Chung, F.R.K.: On optimal linear arrangement of trees. Comp. Math./Appl. 11, 43–60

(1984)
5. Cohen, J., Fomin, F.V., Heggernes, P., Kratsch, D., Kucherov, G.: Optimal linear

arrangement of interval graphs. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 267–279. Springer, Heidelberg (2006)

6. Corneil, D.G., Kim, H., Natarajan, S., Olarin, S., Sprague, A.P.: A simple linear time
algorithm of unit interval graphs. Inf. Process. Lett. 55, 99–104 (1995)

7. Chvatal, V., Ebenegger, C.: A note on line digraphs and the directed Max-Cut problem.
Discret. Appl. Math. 29, 165–170 (1990)

8. Even, S., Shiloach, Y.: NP-Completeness of Several Arrangement Problems, Technical
Report #43, Computer Science Department, The Technion, Haifa, Israel (1975)

9. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-
completeness. Freeman, New York (1979) (Computer Press)

10. Grotschel, M. (ed.): The Sharpest Cut, MPS-SIAM Series on Optimization. SIAM,
Philadelphia (2004)

11. Horton, S.B.: The optimal linear arrangement problem: algorithms and approximation.
Ph.D. Thesis, Georgia Institute of Technology (1997)

370 A. Quilliot and D. Rebaine

On the Asymmetric Connected Facility
Location Polytope

Markus Leitner1, Ivana Ljubić1, Juan-José Salazar-González2,
and Markus Sinnl1(B)

1 ISOR, University of Vienna, Vienna, Austria
{markus.leitner,ivana.ljubic,markus.sinnl}@univie.ac.at

2 DEIOC, Universidad de La Laguna, La Laguna, Spain
jjsalaza@ull.es

Abstract. This paper is concerned with the connected facility loca-
tion problem, which has been intensively studied in the literature. The
underlying polytopes, however, have not been investigated. This work
is devoted to the polytope associated with the asymmetric version of
the problem. We first lift known facets of the related Steiner arbores-
cence and of the facility location polytope. Then we describe other new
families of facet-inducing inequalities. Finally, computational results are
reported.

1 Introduction

In the last years, the connected facility location (ConFL) problem and variants of
it have received considerable attention from the operations research community
(see, e.g., [1,2] and the references therein). The problem is of practical impor-
tance, e.g., in telecommunications, to model the deployment of fiber-to-the-curb
networks, or in the design of data management networks. In this paper we are
dealing with an asymmetric ConFL (aConFL): Given an assignment graph with
connections between a set of customers and a set of potential facility locations,
and a directed graph connecting facilities with each other using a (potentially
empty) set of intermediate nodes, the goal of aConFL is to decide which facili-
ties to open, how to assign customers to facilities and how to connect all open
facilities to a dedicated root node at minimum cost.

Despite the large body of work on the ConFL, to our knowledge, there are no
results on the facial structure of the underlying polytopes of ConFL. Our work
is a first polyhedral study on aConFL. Our motivation for studying aConFL is
twofold: (1) in some practical applications traversal of an edge in two opposite
directions may involve different costs, and (2) the best performing computational
approaches to ConFL are based on directed reformulations. In this paper we
prove that some of these inequalities used in previous computational studies
are facet-defining, and derive some new families of facet-defining inequalities.
The obtained theoretical results are supported by a computational study on a
newly generated benchmark set of digraphs. Polyhedral results for the symmetric
version of the problem and a more extensive computational study are in [3].
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 371–383, 2014.
DOI: 10.1007/978-3-319-09174-7 32

372 M. Leitner et al.

The remainder of this article is organized as follows. Section 2 contains our
main results considering the facet-defining inequalities of the aConFL polytope.
In Sect. 3 we present our computational study.

More formally, in aConFL we are given a directed graph D = (V,AS , AJ)
where the node set V = S ∈ J ∈ {0} is the disjoint union of Steiner nodes
S, customer nodes J and a dedicated root node 0. Facility nodes I ≤ S can
be used to open facilities in which case facility opening costs fi ≥ 0, ∀i ∈ I,
incur. For later use, let K := S \ I denote the intermediate nodes that cannot
be used as facilities, and let K0 := K ∈ {0} and S0 = S ∈ {0}. The arc set
AS ≤ {(s, t) : s, t ∈ V \ J} represents possible connections between Steiner
nodes. The arc set AJ ≤ {(i, j) : i ∈ I, j ∈ J} represents possible assignments
of customers to facilities. In the context of telecommunication, AS represents
potential fiber optic connections in the core network, and AJ represents the
copper cables connecting the customers to the core network through facilities.
Arcs a ∈ AS are associated with establishing costs ca ≥ 0, ∀a ∈ AS , and arcs
(i, j) ∈ AJ are associated with assignment costs cij ≥ 0. The aConFL problem
consists of selecting a subset of I of open facilities, connecting them through an
arborescence rooted at 0 (that may use other Steiner nodes) and assigning each
customer to exactly one open facility at the minimum cost.

In the following, we assume that |I| ≥ 3 and |J | ≥ 3. We also assume that
subgraph (S∈{0}, AS) (also called core graph) is a complete digraph in which all
in-going arcs to the root node are removed, and that subgraph (I ∈ J,AJ) (also
called assignment graph) is complete bipartite, i.e., AJ = {(i, j) : i ∈ I, j ∈ J}.
Note that any instance of the undirected ConFL can be transformed into a
aConFL instance by replacing each undirected core edge by a pair of oppositely
directed arcs. Additionally, if no root node is given, both aConFL and ConFL can
be transformed into a rooted aConFL instance by adding an artificial root node
0 together with arcs (0, i), ∀i ∈ I, and additionally ensuring that the out-degree
of this artificial root node is one.

2 The aConFL Polytope

We model aConFL using node decision variables ys ∈ {0, 1}, ∀s ∈ S, which
indicate if node s is part of the solution and facility decision variables zi ∈ {0, 1},
∀i ∈ I, which indicate whether facility i is opened. Furthermore, arc decision
variables xa ∈ {0, 1}, ∀a ∈ AS , specify which arcs of the core graph are part of
the directed arborescence, and assignment variables aij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J ,
indicate whether facility i serves customer j. Let A = AS ∈AJ denote the union
of core and assignment arcs. For a set H ∀ V , we define δ−(H) := {(u, v) ∈
A : u ∃∈ H, v ∈ H} and δ+(H) := {(u, v) ∈ A : u ∈ H, v ∃∈ H} and for sets
H,L ∀ V , we define (H : L) := {(u, v) ∈ A : u ∈ H, v ∈ L}. Moreover, for any
vector μ ∈ {0, 1}M over a ground set M , we write μ(M ′) =

∑
m∈M ′ μm, for any

M ′ ≤ M . The aConFL problem can now be formulated as follows:

On the Asymmetric Connected Facility Location Polytope 373

min
∑

a∈AS

caxa +
∑

i∈I

fizi +
∑

(i,j)∈AJ

cijaij (1)

a(δ−(j)) = 1 ∀j ∈ J (2)
aij ⇒ zi ∀i ∈ I,∀j ∈ J (3)
zi ⇒ yi ∀i ∈ I (4)

x(δ−(s)) = ys ∀s ∈ S (5)

x(δ−(H)) ≥ ys ∀H ≤ S,∀s ∈ H (yCuts)

(x, y, z, a) ∈ {0, 1}|AS |+|S|+|I|+|AJ | (6)

Constraints (2) ensure that every customer is assigned to exactly one facility,
while constraints (3) make sure that assignment arcs can only be used if the
corresponding facility is opened. Inequalities (4) are the coupling constraints
between node and facility variables and Eq. (5) link node variables to the set of
arc variables corresponding to ingoing arcs. Together with the directed cutset
constraints (yCuts) which ensure that there is a directed path from the root
node 0 to every other node in the solution, they also ensure that the solution
cannot contain cycles. Thus, the solution is a directed arborescence rooted at 0.
Let Q denote the aConFL polytope, i.e.:

Q = conv{(x, y, z, a) ∈ {0, 1}|AS |+|S|+|I|+|AJ | | (x, y, z, a) satisfies(2)−(6)}.

2.1 Dimension of the aConFL Polytope

To establish the dimension of Q and some of its facet-inducing inequalities, we
consider the intermediate polytopes

Qy(S′) = {(x, y, z, a) ∈ Q : ys = 1, s ∈ S′} ∀S′ ≤ S.

The projection of Qy(S′) into the x space is the Steiner arborescence polytope
S(S′) with terminal set S′ which has been studied by [4] The projection of
Qy(S′) into the (z, a) space is the facility location polytope U , with facilities I
and customers J , studied in (for example) [5]. Since

Qy(S) = S(S) × {ys = 1, s ∈ S} × U ,

the facets of S(S) and the facets of U are also the facets of Qy(S). Since the
dimension of S(S) is |AS | − |S| and the dimension of U is |AJ | + |I| − |J |, we
have the following result:

Theorem 1. dim(Qy(S)) = |AS | + |AJ | + |I| − |S| − |J |.
Besides, we can show that:

Theorem 2. For all S′ ≤ S, dim(Qy(S′)) = |AS | + |AJ | + |I| − |S′| − |J |.
The dimension of Q immediately follows from Theorem 2:

374 M. Leitner et al.

Corollary 1. dim(Q) = |AS | + |AJ | + |I| − |J |.
The proof of Theorem2 also reveals that the following family of valid inequalities
is facet-inducing.

Theorem 3. Inequalities ys ⇒ 1 are facet-inducing for every s ∈ S.

Proof. The face induced by ys = 1 corresponds to S′ = {s} in the proof of
Theorem 2. �

2.2 Facets Obtained by Lifting

The proof of Theorem2 shows that removing a node from S′, S′ ≤ S, increases
the dimension of Qy(S′) by one. Thus, the facet-defining inequalities given in
this section can be obtained by lifting (see, e.g., [6]).

Theorem 4 provides facet-inducing inequalities obtained by lifting from the
facility location polytope U and using the results of [7]. Let H be a family of
injective mappings h : I ∅→ J , for |I| ⇒ |J |, i.e., i ∃= i′ ⊂ h(i) ∃= h(i′).

Theorem 4. (a) Inequalities aij ⇒ zi are facet-inducing for all i ∈ I and all
j ∈ J .

(b) Inequalities aij ≥ 0 are facet-inducing for all i ∈ I and all j ∈ J .
(c) Inequalities zi ⇒ yi are facet-inducing for all i ∈ I.
(d) Let |I| ⇒ |J | and let h ∈ H be an injective mapping. Then inequalities∑

i∈I aih(i) + zi ≥ 2 are facet-inducing.

The following facet-defining inequalities can be obtained by lifting from the
Steiner arborescence polytope S(S).

Theorem 5. (a) Inequalities xst ≥ 0 are facet-inducing for all (s, t) ∈ AS, if
s ∃= 0 or |S| ≥ 4.

(b) Inequalities x(δ−(H)) ≥ ys are facet-inducing for all H ≤ S with |H| ≥ 2,
|H ⊕ I| ⇒ |I| − 1 and s ∈ H.

(c) Inequalities x(δ−(H))≥1 are facet-inducing for all H ≤ S, |H ⊕ I|= |I|.

2.3 New Facets

For proving that some additional inequalities are facet-inducing, the following
well-known result (restated appropriately for our formulation) will be used:

Lemma 1. [6] Let (A=, b=) be the equality set of Q, denote its size with m, and
let F = {(x, y, z, a) ∈ Q : πxx + πyy + πzz + πaa = π0} be a proper face of Q.
Then the following two statements are equivalent:

1. F is a facet of Q.
2. If F ≤ G = {(x, y, z, a) ∈ Q : {αx+βy +γz +δa = λ0}, then (α, β, γ, δ, λ0) =

(s(πx, πy, πz, πa) + tA=, sπ0 + tb=), for some s ∈ R and t ∈ R
m.

On the Asymmetric Connected Facility Location Polytope 375

In the following proofs we will construct feasible solutions L ∈ F for the face
F under consideration and insert them into the equality defining G in order to
determine the coefficients of G and then use Lemma 1. We denote the left-hand
side of G, i.e., the evaluation of αx + βy + γz + δa for some L by L(L).

First, we consider the inequalities

x(δ−(H)) +
∑

i∗∈I≤H

aij ≥ 1, ∀j ∈ J,∀H ≤ S (aCuts)

These inequalities, already considered in [1] for ConFL, state that for each
customer j and any subset H of the core nodes (excluding 0), j is either served
by a facility outside of H, or there has to be an arc going into H. Note that
when |H ⊕ I| = |I|, the inequalities reduce to x(δ−(H)) ≥ 1.

Theorem 6. Inequalities (aCuts) are facet-inducing iff 2 ⇒ |H ⊕ I| ⇒ |I| − 1.

Proof. Let F = {(x, y, z, a) ∈ Q : x(δ−(H)) +
∑

i∗∈I≤H aij = 1} be the proper
face induced by (aCuts) for some j ∈ J and H ∀ S, 2 ⇒ |H ⊕ I| ⇒ |I|−1. In the
following, we describe feasible solutions as tuples Lq = (Vq ⊕ H,Vq \ H, Iq, Aq ⊕
AS , Aq ⊕ AJ). Thereby, Vq ≤ S is the set of core nodes of solution Lq, Iq ≤ I
its set of open facilities and Aq ∀ AS ∈ AJ its set of arcs. For the rest of the
proof, we will need the following feasible solutions from F , where i, i′, i1, i2 ∈ I,
s, s1, s2, t, t1, t2 ∈ S, and j′ ∈ J , j′ ∃= j. Note that in some solutions, we make
use of the assumption |H ⊕ I| ≥ 2.

– L1 = ({i1, i2}, ∅, {i1}, {(0, i1), (i1, i2)}, (i1 : J))
– L2 = ({i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)}, (i1 : J))
– L3 = ({i, s}, ∅, {i}, {(0, i), (i, s)}, (i : J))
– L4 = ({i, s}, {t}, {(0, i), (i, s), (s, t)}, (i : J))
– L5 = ({i}, ∅, {i}, {(0, i)}, (i : J))
– L6 = ({i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)}, {(i2, j′), (i1 : J \ {j′}}))
– L7 = ({i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)}, (i1 : J))
– L8 = ({i, t}, {s1}, {i}, {(0, s1), (s1, t), (t, i)}, (i : J))
– L9 = ({i, t}, {s2}, {i}, {(0, s2), (s2, t), (t, i)}, (i : J))
– L10 = ({i, t1}, {s}, {i}, {(0, s), (s, t1), (t1, i)}, (i : J))
– L11 = ({i, t2}, {s}, {i}, {(0, s), (s, t2), (t2, i)}, (i : J))
– L12 = (∅, {i′}, {i′}, {(0, i′)}, (i′ : J)) (assumption: |H ⊕ I| ⇒ |I| − 1)

We now suppose F ≤ G and determine the coefficients of G.

(a) γi = 0, ∀i ∈ I: If i ∈ H, this follows from L(L1) = L(L2). Else, it is
obtained from L(L1′) = L(L2′), where L1′ and L2′ are obtained from L1

and L2, respectively, by assuming i2 ∈ I \ H.
(b) αst = −βt, ∀s ∈ H, ∀t ∈ S \ H: Obtained from L(L3) = L(L4).
(c) αst = −βt, ∀s, t ∈ H: If |H| ≥ 3, the relation is obtained from L(L3) =

L(L4′) where L4′ is obtained from L4 by assuming t ∈ H. Else, {s, t} ≤ I
by assumption and the relation is obtained from L(L5) = L(L5′) for i = s
and where L5′ is obtained from L5 by adding node t ∈ H and arc (i, t).

376 M. Leitner et al.

(d) αst = −βt, ∀s ∈ S0 \ H, ∀t ∈ S \ H: If s ∃= 0, this is follows from L(L3′) =
L(L4′) where L3′ and L4′ are obtained from L3 and L4, respectively, by
assuming s ∈ S \H. For s = 0, compare an arbitrary solution with a variant
of it additionally considering a new node t ∈ S \ H and arc (0, t).

(e) δij′ = δHj′ , ∀i ∈ H ⊕ I, ∀j′ ∈ J : Obtained from L(L6) = L(L7)
(f) δij′ = δHj′ , ∀i ∈ I \ H, ∀j′ ∈ J , j′ ∃= j: Obtained from L(L6′) = L(L7′),

where L(L6′) and L(L7′) are obtained from L(L6) and L(L7), respectively,
by assuming i2 ∈ I \ H. Note that j′ ∃= j must hold since, neither L(L6′)
nor L(L7′) would lie on F otherwise.

(g) αs1t = αs2t, ∀s1, s2 ∈ S0 \ H, ∀t ∈ H: Obtained from L(L8) = L(L9) using
the result from (d).

(h) αst1 + βt1 = αst2 + βt2 , ∀s ∈ S0 \ H, ∀t1, t2 ∈ H: If s ∃= 0, the result follows
from L(L10) = L(L11) using the result from (c). For s = 0 consider variants
of L10 and L11 obtained by contracting arc (0, s).

(i) αst + βt = ρ, ∀s ∈ S0 \ H, ∀t ∈ H: Follows from (g) and (h).
(j) δi′j = ρ + δHj , ∀i′ ∈ I \ H: Obtained from L(L5) = L(L12) using the results

of (e), (f), and (i).

Inserting the obtained coefficients in the equation defining G, using equations (5)
and inserting an arbitrary solution from F (yielding λ0 = ρ +

∑
j∈J δIj), the

equation can be simplified to

ρ(x(δ−(H)) +
∑

i∗∈I≤H

aij) +
∑

j∈J

δHj a(δ−(j)) = ρ +
∑

j∈J

δHj

which is a linear combination of the equation defining F and Eq. (2).
To show that |H ⊕ I| ≥ 2 is also a necessary condition, observe that when
|H ⊕ I| = 1, inequalities (aCuts) are dominated by x(δ−(H)) ≥ yi. For |H ⊕ I| =
0, the inequality is the sum of trivial facets xa ≥ 0, for a ∈ δ−(H) and the
equation a(δ−(j)) = 1. �

Theorem 7. Let h ∈ H be an injective mapping and Î ∀ I. Then, the following
inequalities are valid for aConFL:

z(Î) +
∑

i∈I\Î
(yi + aih(i)) + x(K0 : Î) ≥ 2 (7)

Proof. If z(Î) ≥ 2 or y(I \ Î) ≥ 2 the theorem holds. Since at least one facility
needs to be opened, it is sufficient to consider the following two cases:

(1) z(Î) = 0 and z(I \ Î) = 1, i.e., there exists a unique facility i ∈ I \ Î with
zi = 1 to which all customers are assigned. Then, validity is implied by aih(i) = 1.
(2) z(Î) = 1 and y(I \ Î) = 0. Let i ∈ Î be the unique facility with zi = 1. Since
no nodes from I \ Î are used (y(I \ Î) = 0), validity of the inequality follows
since i must be connected to the root and thus x(K0 : Î) ≥ 1. �

Theorem 8. Inequalities (7) are facet-inducing iff Î ∃= ∅ and |I \ Î| ≥ 2.

On the Asymmetric Connected Facility Location Polytope 377

Proof. For some Î ∃= ∅, such that |I \ Î| ≥ 2, let F = {(x, y, z, a) ∈ Q : z(Î) +∑
i∈I\Î(yi + aih(i)) + x(K0 : Î) = 2} be the proper face induced by (7).

In the following, we describe feasible solutions as tuples Lq = (Vq ⊕ Î , Vq ⊕
(I \ Î), Vq ⊕ K, Iq, Aq ⊕ AS , Aq ⊕ AJ). Thereby, Vq ≤ S ∈ {0} is the set of core
nodes of solution Lq, Iq ≤ I its set of open facilities and Aq ∀ AS ∈ AJ its
set of arcs. For the proof, we will need the following feasible solutions from F ,
where i1, i2, i3 ∈ I, s1, s2, t ∈ K. For solutions in which exactly two facilities,
say i, i′ ∈ I, are open, let A = (i : J \ {h(i)}) ∈ {(i′, h(i))} be an assignment of
customers, s.t. the sum of a-variables in (7) is zero.

– L1 = ({i1}, {i2}, ∅, {i1, i2}, {(0, i2), (i2, i1)}, (i1 : J))
– L2 = ({i1}, {i2}, ∅, {i1}, {(0, i2), (i2, i1)}, (i1 : J))
– L3 = ({i1}, {i2}, ∅, {i1, i2}, {(0, i2), (i2, i1)},A)
– L4 = ({i1}, ∅, ∅, {i1}, {(0, i1)}, (i1 : J))
– L5 = ({i1}, {i2}, ∅, {i2}, {(0, i2), (i2, i1)}, (i2 : J))
– L6 = ({i1}, ∅, {s1}, {i1}, {(0, s1), (s1, i1)}, (i1 : J))
– L7 = ({i1}, ∅, {s2}, {i1}, {(0, s2), (s2, i1)}, (i1 : J))
– L8 = ({i2}, ∅, {s1}, {i2}, {(0, s1), (s1, i2)}, (i2 : J))
– L9 = (∅, {i2}, ∅, {i2}, {(0, i2)}, (i2 : J))
– L10 = (∅, {i1, i2}, ∅, {i1, i2}, {(0, i1), (0, i2)},A)
– L11 = (∅, {i1, i2}, ∅, {i1, i2}, {(0, i1), (i1, i2)},A)
– L12 = ({i1}, {i2, i3}, ∅, {i2, i3}, {(0, i2), (i2, i3), (i2, i1)},A)

We now suppose F ≤ G and determine the coefficients of G.

(a) γi = 0, ∀i ∈ I \ Î: Obtained from L(L1) = L(L2).
(b) δij = δIj , ∀i ∈ Î, ∀j ∈ J and ∀i ∈ I \ Î, j ∈ J , j ∃= h(i): From L(L1) = L(L3)

it follows that all the coefficients δij for a j ∈ J (except when j = h(i) for
i ∈ I \ Î) are the same – the coefficient is denoted by δIj .

(c) αst = −βt, ∀s ∈ S0, ∀t ∈ K: Obtained from L(Ls) = L(Lst) where Ls is an
arbitrary solution lying on F containing s ∈ S0, but not t ∈ K, and Lst is
obtained from Ls by attaching arc (s, t) to it.

(d) αi′i = −βi, ∀i′, i ∈ Î: Follows from L(Li′) = L(Li′i), where Li′ is an arbi-
trary solution lying on F containing i′ ∈ Î, but not i ∈ Î, and Li′i is
obtained from Li′ by attaching arc (i′, i) to it.

(e) δih(i) = γI + δIh(i) for i ∈ I \ Î: Obtained from L(L2) = L(L5), which gives
δi2h(i2) = γi1+δIh(i2), where we used results from step (b). This result implies

that γi1 = γi′ for i1, i
′ ∈ Î. Denote this value by γI .

(f) αsi = αI
i , ∀i ∈ Î, s ∈ K: Obtained from L(L6) = L(L7), which gives

αs1i1 = αs1i2 , where we used results from step (c). Thus, all arcs from K to
a facility i ∈ Î have the same coefficient, denote it by αI

i .
(g) α0i = αI

i , ∀i ∈ Î: Obtained from L(L4) = L(L6).
(h) αI

i + βi = ρ, ∀i ∈ Î: Obtained from L(L6) = L(L8), which gives αI
i1

+ βi1 =
αI
i2

+βi2 , where we used results from steps (b), (c) and (f). Hence, this sum
is a constant value for every node in Î – denote it by ρ.

378 M. Leitner et al.

(i) αti+βi = ρ, ∀i ∈ I\Î, ∀t ∈ K0∈Î: We demonstrate this result for t = 0, and
similar solutions can be constructed for t ∈ K ∈ Î. From L(L4) = L(L9) and
using results of (a), (e), we have: α0i1 +βi1 +γI +δIh(i2) = α0i2 +βi2 +δi2h(i2).
Using one more time the result of (e), we obtain: α0i1 + βi1 = α0i2 + βi2 for
all i1 ∈ Î and i2 ∈ I \ Î. From (h), it follows that α0i + βi = ρ, ∀i ∈ I \ Î.

(j) αi′i+βi = ρ, ∀i′, i ∈ I\Î: From L(L10) = L(L11) it follows that α0i2 = αi1i2 .
By adding βi2 to both sides and using the result from (i), the result follows.

(k) ρ = γI : From L(L12) = L(L3) and using results from (b), it follows that
γi1 = αi2i3 + βi3. From (e) and (j), we have ρ = γI . Note that for this step
we need that |I \ Î| ≥ 2.

Inserting the obtained coefficients in the equation defining G, we get

ρz(Î) +
∑

i∈Î

((ρ − βi)x(K0 : i) − βix(I : i) + βiyi) +
∑

k∈K

(−βkx(δ−(k)) + βkyk)+

∑

i∈I\Î
((ρ − βi)x(δ−(i)) + βiyi + ρaih(i)) +

∑

j∈J

δIj a(I : j) = λ0

By inserting any of the used solutions into the left-hand-side of the equation, we
get λ0 = 2ρ +

∑
j∈J δIj . Using Eq. (5), the equation can be simplified to

ρ(z(Î) + x(K0 : Î) + y(I \ Î) +
∑

i∈I\Î
aih(i)) +

∑

j∈J

δIj a(δ−(j)) = 2ρ +
∑

j∈J

δIj .

It can be seen that the equation is a linear combination of the equation defining
F and Eq. (2). Thus, (7) are facet-inducing when |I \ Î| ≥ 2, Î ∃= ∅.

To see that Î ∃= ∅ and |I \ Î| ≥ 2 is also a necessary condition, consider the
following cases:

1. For Î = I, the inequality reduces to z(I)+x(K0 : I) ≥ 2, which is dominated
by a(δ−(j) + x(K0 : I) ≥ 2. The latter is a linear combination of a facet
x(δ−(I)) ≥ 1 and an equation of type (2).

2. For Î = I\{i}, the inequality reduces to z(I\{i})+aih(i)+yi+x(K0 : I\{i}) ≥
2. Notice that this inequality is dominated by the inequality in which yi is
replaced by x(K0 : i). The latter reduces to z(I \{i})+aih(i) +x(K0 : I) ≥ 2,
which is also not facet-inducing, for the same reasons as above.

3. Finally, for Î = ∅, we obtain
∑

i∈I(yi + aih(i)) ≥ 2 which is dominated by
facet-defining constraints

∑
i∈I(zi + aih(i)) ≥ 2. �

For the next family of valid inequalities, we employ a direct proof to show
that the inequalities are facet-inducing.

Theorem 9. Let h ∈ H be an injective mapping, and let Î ∀ I, and s ∈ K.
Then, the following inequalities are valid for aConFL:

z(Î) +
∑

i∈I\Î
(yi + aih(i)) + ys + x(K0 \ {s} : Î ∈ {s}) ≥ 2 + x(s : I \ Î) (8)

On the Asymmetric Connected Facility Location Polytope 379

Proof. We will distinguish between the following cases:

(1) ys = 0: Inequality (8) corresponds to inequality (7) since ys = 0 implies that
x(s : I \ Î) = 0 and x(K0 \ {s} : Î ∈ {s}) = x(K0 : Î).
(2) ys = 1 and x(s : I \ Î) = 0: Since at least one facility must be opened we
obtain z(Î) +

∑
i∈I\Î(yi + aih(i)) ≥ 1 which trivially holds.

(3) ys = 1 and x(s : I \ Î) ≥ 1: Let I ′ = {i ∈ I \ Î | xsi = 1} and observe that∑
i∈I\Î yi ≥ ∑

i∈I′ yi ≥ x(s : I \ Î) due to (5). Further note that the path from 0

to s either contains at least one arc from the cut (K0 \ {s} : Î ∈ {s}) or at least
one node i′ ∈ I \ Î. In either case, validity of (8) follows immediately. �

Theorem 10. Inequalities (8) are facet-inducing if |I \ Î| ≥ 2 and Î ∃= ∅.
Proof. Let F be the face induced by (8) for given Î ∀ I, h ∈ H and s ∈ K.
We show how to construct |AS | + |AJ | + |I| − |J | affinely independent solutions
lying on F , which implies that F is a facet. We proceed in two steps, in the first
step, we construct solutions that do not contain s and in the second step, we
construct solutions containing s.

(1) Let D′ = (V \ {s}, A′
S , AJ) be a digraph obtained by removing s from

D. By Theorem 8, the corresponding inequality (7) (for the given h and Î) is
facet-defining, and therefore we can determine |A′

S | + |AJ | + |I| − |J | affinely
independent solutions in the associated lower dimensional space. By setting ys =
0 and x0s = xsi = xis = 0, for all i ∈ S, i ∃= s, these solutions are extended to
feasible and affinely independent solutions lying on F . Therefore, it only remains
to additionally construct |AS | − |A′

S | = 2 |S| − 1 affinely independent solutions
lying on F such that ys = 1. This is done in the next step.
(2) The constructed solutions will be described using 6-tuples as in the proof
of Theorem 8. Moreover, we will also use the assignment A defined in the same
proof.

(a) Fix some facility u ∈ Î and the arc (u, s) ∈ AS . Now, pick some facility i′ ∈
I \ Î and for each i ∈ I \ Î, i ∃= i′ build the following feasible solutions: Lsi =
({u}, {i, i′}, {s}, {i, i′}, {(0, i′), (i′, u), (u, s), (s, i)},A). Clearly, that way we
create

∣
∣
∣I \ Î

∣
∣
∣ − 1 affinely independent solutions due to the arcs (s, i). One

more affinely independent solution can be found by switching the roles of i
and i′.

(b) Consider now solutions Lis = (∅, {i, i′}, {s}, {i, i′}, {(0, i), (i, s), (s, i′)},A)
for i′ ∃= i ∈ I \ Î. These solutions are all affinely independent due to the
arcs (i, s). Again, we can also define a solution, where i and i′ switch roles
so that in total we obtain |I \ Î| more affinely independent solutions.

(c) We create now solutions Lsk, for each k ∈ K, k ∃= s, by adding arc (s, k) to
one fixed solution Lsi from step (a). That way, we obtain |K| − 1 affinely
independent solutions. Moreover, for each k ∈ K, k ∃= s, consider solutions
Lks = (∅, {i, i′}, {s, k}, {i, i′}, {(0, k), (k, s), (s, i), (s, i′)},A). We addition-
ally obtain |K| − 1 affinely independent solutions due to arcs (k, s).

380 M. Leitner et al.

(d) One more solution is constructed as: L0s = (∅, {i, i′}, {s}, {i, i′}, {(0, s), (s, i),
(s, i′)},A). This solution is affinely independent from all the previous ones
due to arc (0, s).

(e) Take the solution from step (d) and construct solutions Lsu′ for each u′ ∈ Î
by adding arc (s, u′) to L0s. We obtain |Î| affinely independent solutions
this way.

(f) Consider now solutions Lu′s = ({u′}, {i, i′}, {s}, {i, i′}, {(0, u′), (u′, s),
(s, i), (s, i′)},A) for u′ ∈ Î, u′ ∃= u, where u is the facility fixed for the
solutions constructed in step (a). We get |Î| − 1 affinely independent solu-
tions due to arcs (u′, s).

(g) Note that all 2(|I \ Î| + |K| − 1 + |Î|) = 2 |S| − 2 solutions constructed
so far are easily seen to be affinely independent, since in every solution,
a previously unused arc is involved. The last affinely independent solution
is constructed as L∞ = ({u}, I \ Î , {s}, {i, i′}, {(0, u), (u, s), (s : I \ Î)},A),
where u is the facility from step (a). This concludes the proof. �

3 Computational Results

3.1 Instances

To our knowledge, no instance sets with asymmetric costs are available for vari-
ants of ConFL or closely related problems. Thus, we generated two sets of ran-
dom instances in the following way (following procedures described in [8,9]): |V |
points, each corresponding to one node in S0 ∈J , are randomly generated in the
Euclidean plane of size 100×100. Let (ux, uy) and (vx, vy) be the coordinates of
two such nodes u, v ∈ S0 ∈ J and let Δx(uv) = vx − ux and Δy(uv) = vy − uy.
Then, arc costs are defined as cuv = ω�√Δx(uv)2 + ξΔy(uv)2�. Thereby, ω = 1
for core arcs, ω = 3 for assignment arcs, ξ = 1 if Δy ⇒ 0 and ξ = 2 if Δy > 0.
Facility opening costs fi, ∀i ∈ I are integers chosen uniformly at random from
the interval [30, 60].

The first set of instances, denoted by A, consists of 20 complete graphs with
|I| = |J | = 100 and |K| = 50. The second set of instances, denoted by B, consists
of 20 sparse graphs with |I| = |J | = 150 and |K| = 75. In the latter instances,
an arc between u and v only exists if the Euclidean distance between them is
smaller than 40% of the largest Euclidean distance between any two points in
this graph.

In addition to these randomly generated asymmetric instances, we also con-
sidered the symmetric Stein+UFL instances from [1]. The instances have |I| =
|J | = 200 or |I| = |J | = 300, while |S| ranges between 500 and 1000. Depending
on the size of |S|, we get two sets of instances, denoted by C and D. In these
instances the core network is sparse, while the assignment graph is complete
bipartite. Moreover, in these instances, the average facility opening costs are
approximately 15 times higher than the average arc costs.

On the Asymmetric Connected Facility Location Polytope 381

3.2 Separation Algorithms

It is well known that cut inequalities (yCuts) and (aCuts) can both be separated
in polynomial time using a max-flow algorithm (once for each core or customer
node, respectively). Since, all coefficients in the objective function are nonneg-
ative, we also obtain a valid model for aConFL when replacing (yCuts) by the
following, so-called (zCuts) inequalities:

x(δ−(H)) ≥ zi ∀H ≤ S,∀i ∈ H ⊕ I (zCuts)

Though (zCuts) are not facet-inducing, they performed well in practice (see [1]).

3.3 Results

The computational results have been obtained using an Intel Xeon X5500 with
2.67 Ghz and 24 GB RAM and CPLEX 12.5 as solver for the ILPs. CPLEX-cuts
have been turned off and the highest branching priority was given to facility
variables. Before starting the solution process, all polynomial-size constraints,
plus the inequalities xst + xts ⇒ ys, ∀s ∈ S, are added to the model. We have
developed a branch-and-cut approach and tested the performance of the follow-
ing settings: (1) yCuts: separating (yCuts) only; (2) aCuts: separating (aCuts)
only; (3) y+aCuts: separating (yCuts), and only if no (yCuts) are violated in a
branch-and-bound node, (aCuts) are separated; (4) zCuts: separating (zCuts)

yCuts aCuts y+aCuts zCuts

0
50

0
10

00

Settings

C
P

U
−t

im
e

[s
]

1 0 1 1

(a) Instance set A

yCuts aCuts y+aCuts zCuts

0
20

00
50

00

Settings

C
P

U
−t

im
e

[s
]

8 0 0 8

(b) Instance set B

yCuts aCuts y+aCuts zCuts

0
20

00
50

00

Settings

C
P

U
−t

im
e

[s
]

8 16 16 9

(c) Instance set C

yCuts aCuts y+aCuts zCuts

0
20

00
50

00

Settings

C
P

U
−t

im
e

[s
]

10 16 16 9

(d) Instance set D

Fig. 1. Runtimes for the different settings

382 M. Leitner et al.

only. The separation routine for a node s (facility i) is called only if the corre-
sponding LP-value on the right-hand-side is ≥ 0.5.

Figure 1a–d shows boxplots of the runtimes (in seconds) over all instances
from A, B, C and D, respectively. The star in the boxplot indicates the aver-
age solution time and the number on top of each plot indicates the number of
instances, which could not be solved within the given timelimit (two hours for
B-D and 30 min for A).

There is a clear contrast in the performance on the instances A, B and
instances C, D. For the former ones, the aCuts-setting significantly outperforms
the remaining setting. On the contrary, the aCuts-setting is the worst approach
for C, D. This can be explained by the different facility opening costs in the
two groups: for A, B instances, opening a facility costs on average as much as
establishing a link; however, it is about 15 times as expensive in groups C, D.
On average, there are about twelve open facilities in optimal solutions of A,B,
while only around four are open for C,D. Consequently, LP-solutions contain
much less non-zero z- (and y-) variables in the latter case, and therefore, less
separation calls are needed for the zCuts- and yCuts-setting. On the contrary,
the numbers of separation calls for (zCuts) and (aCuts) are comparable for
instances A, B. Therefore, the aCuts-setting is clearly beneficial, as it implies
the strongest LP-bounds (recall that (aCuts) are facet-defining).

Comparing the performance between groups A and B, we observe that the
sparsity of instances (group B) seems to deteriorate the performance of yCuts-
and zCuts-settings.

Acknowledgements. M. Leitner is supported by the Austrian Science Fund (FWF)
under grant I892-N23.

References

1. Gollowitzer, S., Ljubić, I.: MIP models for connected facility location: a theoretical
and computational study. Comput. Oper. Res. 38(2), 435–449 (2011)

2. Leitner, M., Raidl, G.R.: Branch-and-cut-and-price for capacitated connected facil-
ity location. J. Math. Model. Algorithms 10(3), 245–267 (2011)

3. Leitner, M., Ljubić, I., Salazar-González, J.J., Sinnl, M.: The connected facility
location polytope: valid inequalities, facets and a computational study. Submitted
(2014)

4. Fischetti, M.: Facets of two Steiner arborescence polyhedra. Math. Program. 51,
401–419 (1991)

5. Cornuejols, G., Thizy, J.M.: Some facets of the simple plant location polytope. Math.
Program. 23(1), 50–74 (1982)

6. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1999)

7. Guignard, M.: Fractional vertices, cuts and facets of the simple plant location prob-
lem. In: Padberg, M. (ed.) Combinatorial Optimization. Mathematical Program-
ming Studies, vol. 12, pp. 150–162. Springer, Heidelberg (1980)

On the Asymmetric Connected Facility Location Polytope 383

8. Bardossy, M.G., Raghavan, S.: Dual-based local search for the connected facility
location and related problems. INFORMS J. Comput. 22(4), 584–602 (2010)

9. Cirasella, J., Johnson, D.S., McGeoch, L.A., Zhang, W.: The asymmetric traveling
salesman problem: algorithms, instance generators, and tests. In: Buchsbaum, A.L.,
Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 32–59. Springer, Heidelberg
(2001)

Heuristic Approaches for the Robust Vehicle
Routing Problem

Elyn L. Solano-Charris1,2, Christian Prins1, and Andréa Cynthia Santos1(B)

1 ICD-LOSI, Université de Technologie de Troyes, 12, rue Marie Curie,
CS 42060, 10004 Troyes CEDEX, France

2 Universidad de La Sabana, Campus del Puente del Común,
Km. 7, Ch́ıa, Cundinamarca, Colombia

{elyn.solano charris,christian.prins,andrea.duhamel}@utt.fr

Abstract. In this article, the Robust Vehicle Routing Problem (RVRP)
with uncertain traveling costs is studied. It covers a number of impor-
tant applications in urban transportation and large scale bio-terrorism
emergency. The uncertain data are defined as a bounded set of discrete
scenarios associated with each arc of the transportation network. The
objective is to determine a set of vehicle routes minimizing the worst
total cost over all scenarios. A mixed integer linear program is proposed
to model the problem. Then, we adapt some classical VRP heuristics to
the RVRP, such as Clarke and Wright, randomized Clarke and Wright,
Sequential Best Insertion, Parallel Best Insertion and the Pilot versions
of the Best Insertion heuristics. In addition, a local search is developed
to improve the obtained solutions and be integrated in a Greedy Ran-
domized Adaptive Search Procedure (GRASP). Computational results
are presented for both the mathematical formulation and the proposed
heuristics.

Keywords: Vehicle routing · Robust optimization · Min-max objec-
tive · Heuristic · Local search · Metaheuristic

1 Introduction

The Vehicle Routing Problem (VRP) is a NP-hard problem which aims at defin-
ing routes for a fleet of vehicles, such that each vehicle starts and ends its tour at a
depot node, each customer is visited once, and vehicle loads comply with vehicle
capacity [1]. Introduced by Dantzig and Ramser [2], the VRP is one of the most
studied problems in combinatorial optimization. One of its main assumptions is
that the parameters and the data are assumed to be deterministic and known in
advance [3–5]. Therefore, a perturbation on the input data could result in subop-
timal or even infeasible solutions [6]. This assumption simplifies the problem but
makes it less realistic since uncertainties occur in most real life contexts. Thus,
a new and important trend consists in investigating extensions of the VRP with
uncertain data, both in terms of theoretical and practical issues.
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 384–395, 2014.
DOI: 10.1007/978-3-319-09174-7 33

Heuristic Approaches for the RVRP 385

In the last years, VRP problems with parameters affected by uncertainties
have been treated by using stochastic approaches, which models uncertainties
through random variables with known probability distribution [7–10]. The robust
optimization approach is an alternative to stochastic programming, designed as
a mean to protect solutions against undesirable impacts due to incomplete or
imprecise information on the data. It has been introduced in [11] and applied
to a number of applications such as portfolio optimization [12], transportation
[13], supply chain management [14] and network design problems [15].

The Robust Vehicle Routing Problem (RVRP) usually refers to uncertain
data in the given instances: time windows, traveling costs, demands etc. This
study considers the RVRP where each arc is weighted by an uncertain traveling
cost or time. This version has important applications in urban transportation
and evacuation problems such as large scale bio-terrorism emergency. The RVRP
considered in this work is defined on a connected and directed graph G = (V,A)
with a set V = {0, 1, 2...n} of n vertices (customers), including the depot (0),
and a set A = {(i, j)|i, j ∈ V, i ≤= j} of arcs. Uncertain data are modeled here as
a set of p discrete scenarios S = {1, 2, ...p}, where each scenario k ∈ S specifies
one cost ckij ∈ R to each arc (i, j) ∈ A. Moreover, a demand di is associated with
each customer i ∈ V and a fleet of identical vehicles F = {1, 2, ..m}, located at
the depot, is available. Each vehicle has capacity equal to Q. A solution is a set
of vehicle routes starting and ending at the depot, visiting each customer once
and respecting vehicles capacity. Its cost is the total cost of traversed arcs. We
consider a min-max objective: the worst cost of the solution over all scenarios
must be minimized.

This work brings the following contributions. We handle uncertain data as
a bounded set of discrete scenarios for the costs of the arcs in a directed net-
work (the VRP literature considers undirected graphs with symmetric costs).
This situation reflects for instance transit problems in urban networks. A simple
mathematical formulation is introduced for this RVRP. Then, we propose several
constructive heuristics such as the Clarke and Wright (CW), Randomized CW
(RCW), Parallel Best Insertion (PBI), Sequential Best Insertion (SBI), Pilot
Parallel Best Insertion (PPBI) and Pilot Sequential Best Insertion (PSBI). In
addition, more sophisticated strategies, such as local search and Greedy Ran-
domized Adaptive Search Procedure (GRASP) are elaborated. To the best of
our knowledge, no heuristic has been published in the literature to solve the
RVRP investigated in this study.

The remaining of this work is organized as follows: a bibliographical review
is introduced in Sect. 2, followed by a description of a mathematical formulation
in Sect. 3. Then, the proposed heuristics are detailed in Sect. 4. Finally, the com-
putational experiments and concluding remarks are respectively given in Sects. 5
and 6.

2 Related Works

Some works in the literature deal with the RVRP, mainly with uncertain data
associated with time windows, travel times, travel costs or demands. We present

386 E.L. Solano-Charris et al.

in this section the main works which either apply robust optimization tech-
niques and some entry points for research applying stochastic programming for
the RVRP. The pioneer work [16] addresses the RVRP with uncertain demands
and time windows. Analytical results on cluster-first route-second heuristics are
given for large scale RVRPs. A survey which outlines the RVRP models with
uncertainties related to demands, travel times and cost coefficients can be found
in [17]. Some issues on applying stochastic programming and robust optimiza-
tion are also discussed. Reference [18] provides a more extended review on the
RVRP.

The RVRP with uncertain demands is probably the most investigated case.
For instance, a Branch-and-Bound (B&B) algorithm is proposed by [19] which
considers the min-max optimization criterion. The authors analyze the trade-off
between robust solutions and deterministic solutions. The computational results
show that the robust solution can protect from unmet demand while incurring
a small additional cost over the deterministic optimal routes. Furthermore, a
Particle Swarm Optimization (PSO) strategy integrating a local search is pro-
posed in [6]. The PSO results are compared with the B&B proposed by [19], and
performs well when costs are affected by small perturbations. The authors in
[20] adapted the two-index and three-index VRP formulations and another one
using the Miller, Tucker and Zemlin (MTZ) subtour elimination constraints. A
Branch-and-Cut method is applied. The results demonstrate the computational
advantages of the robust rounded capacity inequality cuts for the RVRP and
the robust two-index vehicle flow formulation. Moreover, the price of robustness
using different level of uncertainties is also analyzed.

More recently, the Open Vehicle Routing Problem (OVRP) with uncertain
demands has been investigated by [21]. The OVRP differs from the VRP since
vehicles do not return to the depot. In order to trade off the unmet demands,
four heuristics strategies are considered to obtain the optimal solution when
demands are disturbed, and a differential evolutionary algorithm is proposed.
Instances with up to 199 customers have been tested.

Concerning the RVRP with uncertainties on time windows, a cutting-plane
algorithm is embedded in a B&B method and in a column generation app-
roach based on path inequalities and resource inequalities in [22]. Computational
results are presented using the budget uncertainty polytopes and the results show
that the path inequalities are almost as easy to separate as in the deterministic
VRP case.

Uncertain travel times are handled via stochastic programming in [23]. The
authors consider a two-stage recourse stochastic programming solved by a B&B.
Two strategies “here and now” and “wait and see” are investigated. For the sce-
narios, the authors restrict the number of times an uncertain travel time can have
the worst value. The results show that the approach obtains good solutions when
the penalization over the objective function is small. As far as we know, the only
work dealing with robust optimization strategies for the RVRP with uncertain
travel costs is [24]. The authors considers the RVRP with uncertain travel costs
modeled as interval data. An ant colony algorithm is introduced, where pertur-

Heuristic Approaches for the RVRP 387

bations are performed on the objective coefficients towards the upper bounds of
the interval data. This work differs from the RVRP focused here, since interval
data are considered instead of discrete scenarios. Moreover, we consider in this
paper a directed network with asymmetric costs.

Finally, the work [25] deals with the RVRP with uncertain data in travel times
and demands. The authors also consider delays. Thus, the number of acceptable
delayed segments are provided in order to determine a supported robustness. A
multiflow formulation solved by Dantzig-Wolfe decomposition scheme are pre-
sented. The solutions are compared with the solutions obtained with the Monte-
Carlo simulation and show that a robust solution can be improved with a small
penalty in the optimal value.

3 Mathematical Formulation

A Mixed Integer Linear Programming (MILP) formulation for the min-max
RVRP is given from (1) to (10). It makes use of binary variables xij which
defines if an arc (i, j) belongs to the solution (xij = 1) or not (xij = 0). Vari-
ables ti specify the vehicle load when leaving each node i ∈ V . Thus, the variable
t0 associated with the depot is considered only when vehicles leave the depot,
as a consequence t0 = 0.

min Z = δ subject to: (1)
∑

(i,j)∈A

ckijxij ≥ δ ∀k ∈ S (2)

∑

i∈V

xij = 1 ∀j ∈ V \{0} (3)

∑

j∈V

xij = 1 ∀i ∈ V \{0} (4)

∑

i∈V

x0i = m (5)

tj ≥ ti + dj − Q(1 − xij) ∀(i, j) ∈ A, i, j ≤= 0 (6)
di ≥ ti ≥ Q ∀i ∈ V (7)
xij ∈ {0, 1} ∀(i, j) ∈ A (8)
δ ≥ 0 (9)
ti ≥ 0 ∀i ∈ V (10)

The objective function (1) together with constraints (2) ensure that the worst
total cost is minimized. Equalities (3) and (4) are the classical flow conservation
constraints, which guarantee that only one vehicle arrives at each customer i and
leaves it. Constraints (5) specify that m vehicles leave the depot and return to
it, due to the flow conservation restrictions. Constraints (6) and (7) generalize
the classical MTZ constraints for the TSP [26]. Here they are based on vehicle
loads: if a vehicle visits i then j, its load increases by dj . These constraints

388 E.L. Solano-Charris et al.

prevent subtours and ensure that vehicle capacity is respected. Finally, variables
are defined from (8) to (10).

4 Heuristic Methods

Two Clarke and Wright-based heuristics, two insertion-based heuristics, and two
pilot insertion-based heuristics are described below, as well as a local search and
a GRASP. The main differences between the proposed RVRP heuristics and
the similar versions for the VRP found in the literature are mainly the use of
scenarios, the asymmetric arc costs, and a lexicographic approach to compare
decisions in a greedy heuristic and evaluate moves in the local search.

A solution (complete or being constructed) is defined by a set of feasible
routes, the total cost for each scenario k and the worst cost (maximum of these
costs). We first tried implementations that do not degrade the worst cost, but the
results were mitigated. Indeed, several decisions can lead to the same variation of
the worst cost and cannot be distinguished. Moreover, a single move in the local
search is in general not enough to decrease the worst cost: a sequence of moves
is required. The lexicographic approach consists in sorting the costs of a solution
(one per scenario) in non-increasing order, giving what we call the lexicographic
vector of a solution. Then, a solution is said to be better than another solution if
its vector is lexicographically smaller. This strategy is quite fruitful for instance,
in the local search, a sequence of moves can improve progressively the lexico-
graphic vector until the first component (the worst case) decreases. The price to
pay is a multiplication of complexity expressions by O(p log p) to sort the costs
and get the lexicographic vector. However, this extra cost is acceptable if the
number of scenarios is relatively small compared with the number of customers.
Compared to classical VRP heuristics, the algorithms are also complicated by
the directed network. For instance, the cost of a sequence of customers changes
when reversed, contrary to the undirected case.

4.1 Constructive Heuristics

Clarke and Wright-Based Heuristics. The CW heuristic or savings method
is a well-known constructive heuristic for the VRP [27]. Its general idea consists
of concatenating two routes such that the cost saving is maximized. The original
CW heuristic considers symmetric costs associated with the arcs. As mentioned
above, costs are asymmetric. Thus, there are more ways to concatenate two
routes than in the original CW for each scenario. Furthermore, since the opti-
mization criterion considered is a min-max one, edges are sorted in increasing
order of savings instead of decreasing order in the CW.

A randomized version of the CW, referred as RCW is also proposed. The
RCW is based on the CW, but when evaluating the merger of two routes, the
resulting solution cost is increased by a random percentage in the range [0, θ].
Thus, instead of selecting the best savings at each iteration, good moves, not
necessarily the best, can be done. The best concatenation at each iteration is

Heuristic Approaches for the RVRP 389

determined in O(n2), multiplied by the complexity of the sorting algorithm in
O(p log p). Hence, CW runs in O(n3p log p), where p is the number of scenarios
and n is the number of customers.

Insertion-Based Heuristics. The insertion heuristics have been proposed by
[28]. The best insertion heuristics build a set of feasible routes by selecting seed
customers and inserting them in one of the partial routes already created. At
each iteration, the heuristic expands the current route by inserting the best
unserviced customer, such that the vehicle capacity is ensured. SBI and PBI
heuristics are introduced below.

SBI begins with a single route reduced to a loop on the depot. Best insertions
are performed in the current route and it stops whenever all customers are
attended, or if the new cannot be done because it exceeds the vehicle capacity.
SBI tends to assign few customers to the last vehicle, thus routes are not balanced
considering the number of customers.

PBI employs all vehicles available and fills m routes in parallel, which are
initially empty. Then, at each iteration, the heuristic evaluates all feasible inser-
tions of unrouted customers for every available routes. Since demands cannot be
splitted, PBIH can fail to use m vehicles. In this case, one extra route is created
and the heuristic performs similar steps as the SBIH.

The SBI and PBI mainly differ on the way the routes are built. In the SBI,
a client is inserted at a time, and the routes are filled one after the other. While
in the PBI heuristics, a set of routes are initially available and the customers
are inserted in parallel to each route, i.e. the first customer is assigned for each
route, only then, the second customers is set to the routes, etc. The resulting
solutions can be found in O(n2p log p) by the SBI and for the PBI heuristics in
O(mn2p log p).

Pilot Insertion-Based Heuristics. In the pilot method [29], a main heuristic
calls an auxiliary heuristic (the pilot heuristic) to guide its decisions. We derived
two pilot heuristics from SBI and PBI, called respectively PSBI and PPBI. It
requires partial solutions, generated by the insertion heuristic, and with some
customers already attended. Starting from the depot, the Pilot heuristic tests
at each iteration all possible ways of extending the emerging route, adding to
a route, one customer not visited at a time, following the PSBI. For both the
PSBI and PPBI, a copy of the solution under construction is taken to insert
the customer tested in incumbent partial solution, and the heuristic iterates
by calling the pilot heuristic. The best insertion is performed. The difference
between the PSBI and the PPBI is the way customers are included in the partial
solution, and follows the insertions strategies previously described for the SBI
and PBI. Since the pilot version of a heuristic consist in calling it as a subroutine
at each iteration, the complexity of the non-pilot version is squared, making the
pilot approach time-consuming.

390 E.L. Solano-Charris et al.

4.2 Local Search

Relocation, Interchanges, and 2-opt moves are applied in the local search proce-
dure for the RVRP. Each iteration of the local search examines all ordered pairs
of distinct routes (T,U) and evaluates the moves on one route if T = U or oth-
erwise on two routes T ≤= U . The cost of the solution obtained if the move were
performed is computed for each scenario. The current iteration stops as soon
as a move improving the lexicographic vector of the current solution is detected
(first improvement local search), or if no such move exists.

Interchanges exchanges two chains which may have 1 or 2 customers each.
The lengths of the two swapped chains can be different.

Relocations move one or two adjacent customers to a different position.
2-opt moves intra-routes try to improve a solution by inverting a subsequence

between two customers i and j (included, j must be after i). When T ≤= U , vehi-
cles capacity must be checked before computing the cost variations. A variant of
2-opt is also proposed considering the asymmetric cost when a route is inverted.
For this variant, the chains of nodes before i and after j are inverted.

Concerning complexity, the number of interchanges moves is O(n2) since
they are applied to each pair of customers. There are also O(n2) relocations,
because the n customers can be inserted in O(n) different positions. There
are also O(n2) 2-opt moves. Each move traditionally evaluated in O(1) is now
checked in O(p log p), due to the construction of the lexicographic vector of the
solution obtained by each move.

4.3 Greedy Randomized Adaptive Search Procedure

The GRASP is a multi-start metaheuristic proposed by [30]. It basically consists
in building at each iteration, an initial solution using a randomized constructive
heuristic, then in improving it by a local search. The best solution found is
kept. GRASP is especially interesting as it only requires two components (a
randomized heuristic and a local search) and very few parameters like the number
of iterations. The GRASP for the RVRP makes use of the RCW heuristic and
the local search presented in Sect. 4.2. The stopping criteria is the number of
iterations which can be fine-tuned.

5 Computational Experiments

The tests were performed on a Dell Precision M6600 with a 2.2 GHz Intel Core
i7-2720QM, 16 GB of RAM and Windows Professional. The proposed heuristics
and metaheuristics were developed in Delphi XE, and the mathematical formu-
lation was tested using GLPK (GNU Linear Programming Kit) under default
parameters. All experiments for the mathematical formulation were carried out
with a runtime limit of four hours. The goals of the experiments are to analyze
the heuristics performance and the impact of using discrete scenarios for the
RVRP.

Heuristic Approaches for the RVRP 391

Table 1. Results for the constructive and greedy heuristics

Instance name d Q GLPK Gap’(%)

LR LB UB T(s) Gap SBI PBI PSBI PPBI CW RCW

n10-m2-p10 264 150 195.5 217 *217 8.2 0.0 36.4 36.4 5.5 13.4 21.2 4.6

n10-m2-p20 264 175 250.6 284 *284 32.2 0.0 18.0 18.0 15.1 12.0 7.4 2.8

n10-m2-p30 264 200 272.1 301 *301 35.8 0.0 23.9 23.9 16.6 12.3 8.6 4.7

n15-m2-p10 346 200 320.2 346 *346 313.2 0.0 37.9 37.9 24.9 24.3 19.1 9.5

n15-m2-p20 346 230 339.3 373 *373 6,560 0.0 32.4 32.4 21.7 19.3 12.6 6.2

n15-m2-p30 346 260 368.7 398 404 - 1.5 49.0 49.0 25.1 21.4 21.4 9.5

n20-m2-p10 441 250 402.3 419 423 - 1.0 49.6 40.3 29.6 27.0 24.8 16.2

n20-m2-p20 441 300 443.3 460 470 - 2.2 48.9 37.8 26.1 24.3 16.3 9.3

n20-m2-p30 441 350 463.7 481 501 - 4.2 44.3 44.3 25.4 23.9 20.6 14.6

n10-m3-p10 264 95 227.0 255 *255 10.4 0.0 30.6 17.2 6.3 8.2 19.2 4.7

n10-m3-p20 264 105 279.5 316 *316 24.7 0.0 16.8 16.8 12.7 6.6 12.7 0.6

n10-m3-p30 264 115 302.0 337 *337 38.9 0.0 28.8 28.8 10.4 9.8 8.9 0.0

n15-m3-p10 346 120 349.1 381 *381 2,200 0.0 38.6 38.6 13.9 17.3 15.2 1.0

n15-m3-p20 346 140 365.2 399 *399 6,871 0.0 26.1 26.1 18.0 14.5 13.8 4.3

n15-m3-p30 346 160 394.4 426 433 - 1.6 36.9 36.9 22.8 16.4 11.7 5.9

n20-m3-p10 441 160 427.3 443 448 - 1.1 43.1 51.5 32.1 30.0 26.9 17.2

n20-m3-p20 441 175 466.3 481 497 - 3.3 50.3 34.1 23.3 24.9 20.6 15.0

n20-m3-p30 441 190 489.6 508 528 - 3.9 54.3 53.1 23.8 22.8 17.1 16.9

Average 1.0 37.0 34.6 19.6 18.3 16.6 8.4

For the purpose of these experiments, random instances were generated as
follows. The travel cost of each arc and the demand per client is randomly
chosen in [1,50]. The number of vehicles is either 2 or 3. The capacity of vehicles
is selected to ensure a slack of 0.2Q to 0.8Q between the total demand d and
fleet capacity mQ. The number of scenarios is either 10, 20 or 30. The file name
format of each instance is nρ-mβ-pγ, where ρ, β and γ stand respectively for the
numerical values of n, m and p.

Tables 1 and 2 summarize the results for the MILP, the greedy heuristics, the
local search and the GRASP. The MILP results in Table 1 corresponds to the five
columns LR (linear relaxation), LB (best lower bound), UB (best upper bound
(UB), Gap (percentage deviation of the optimum or the best upper bound to
LB), and T (s) (computational time in seconds) except for the instances where
the solver has attained the time limit. In this case, it is referred as “−”. The
last six columns indicate the percentage gap Gap’ between the upper bound
produced by each proposed heuristic and the lower bound achieved by GLPK.
The RCW heuristic is run 50 times with θ = 8%. Due to lack of space, running
times of greedy heuristics are not reported but here after they are commented. In
Table 2, the results produced by the GLPK are recalled, followed by the solution
values and running times for the local search and the GRASP. The local search
is applied to the solution produced by the CW heuristic. The GRASP performs
ncalls = 500 iterations, each of them calling the RCW heuristic with θ = 8%
and the local search. Optimal values are identified by asterisks “∀”.

Results in Tables 1 and 2 demonstrate that in spite of its simple definition,
the RVRP is a very hard problem to solve. In fact, the heuristics which work

392 E.L. Solano-Charris et al.

 100

 200

 300

 400

 500

 600

 700

 800

n10−m2−p10

n10−m2−p20

n10−m2−p30

n15−m2−p10

n15−m2−p20

n15−m2−p30

n20−m2−p10

n20−m2−p20

n20−m2−p30

C
os

ts
SBI
PBI

PSBI
PPBI

CW
RCW

 100

 200

 300

 400

 500

 600

 700

 800

n10−m3−p10

n10−m3−p20

n10−m3−p30

n15−m3−p10

n15−m3−p20

n15−m3−p30

n20−m3−p10

n20−m3−p20

n20−m3−p30

C
os

ts

SBI
PBI

PSBI
PPBI

CW
RCW

Fig. 1. Heuristic results respectively for the instances with m = 2 and m = 3.

well for the VRP are not able to find a good approximation. The two insertion
heuristics are the fastest (less than 1 ms on average) but lead to very poor average
gaps, 37.0 % for SBI and 34.6 % for PBI.

The pilot heuristics are able to find better solutions, with average gaps of
19.6 % for the PSBI and 18.3 % for the PPBI, and the running time reaches

Heuristic Approaches for the RVRP 393

Table 2. Results for the heuristic coupled with the local search and the GRASP

Instance name GLPK CW+ LS GRASP

LR LB UB T(s) Gap Cost Gap’ T(s) Cost Gap’ T(s)

n10-m2-p10 195.5 217 *217 8.2 0.0 247 13.8 0.00 *217 0.0 0.28

n10-m2-p20 250.6 284 *284 32.2 0.0 296 4.2 0.00 *284 0.0 0.65

n10-m2-p30 272.1 301 *301 35.8 0.0 307 2.0 0.00 *301 0.0 1.11

n15-m2-p10 320.2 346 *346 313.2 0.0 385 11.3 0.00 347 0.3 1.02

n15-m2-p20 339.3 373 *373 6,560 0.0 410 9.9 0.01 376 0.8 2.39

n15-m2-p30 368.7 398 404 - 1.5 426 7.0 0.01 406 2.0 4.21

n20-m2-p10 402.3 419 423 - 1.0 458 9.3 0.01 436 4.1 2.58

n20-m2-p20 443.3 460 470 - 2.2 508 10.4 0.01 484 5.2 6.22

n20-m2-p30 463.7 481 501 - 4.2 536 11.4 0.02 513 6.7 10.48

n10-m3-p10 227.0 255 *255 10.4 0.0 279 9.4 0.00 *255 0.0 0.22

n10-m3-p20 279.5 316 *316 24.7 0.0 333 5.4 0.00 *316 0.0 0.56

n10-m3-p30 302.0 337 *337 38.9 0.0 348 3.3 0.00 *337 0.0 0.98

n15-m3-p10 349.1 381 *381 2,200.0 0.0 396 3.9 0.00 *381 0.0 0.93

n15-m3-p20 365.2 399 *399 6,871.0 0.0 411 3.0 0.00 *399 0.0 2.25

n15-m3-p30 394.4 426 433 - 1.6 476 11.7 0.01 435 2.1 3.98

n20-m3-p10 427.3 443 448 - 1.1 514 16.0 0.01 464 4.7 2.45

n20-m3-p20 466.3 481 497 - 3.3 540 12.3 0.01 511 6.2 6.01

n20-m3-p30 489.6 508 528 - 3.9 573 12.8 0.02 541 6.5 10.16

Average 9,350.4 1.0 8.7 0.01 2.1 3.14

50 ms on average. In fact, the heuristics with best performances are the CW and
the RCW, as can be seen in Table 2 and in Fig. 1. Indeed, they find solutions
with average gaps of 16.6 % and 8.4 %, respectively. CW is quite fast (5 ms on
average) but the price to pay for RCW and its 50 iterations is an augmented
average duration (around 0.3 s).

Starting from the solution returned by CW, the average gap is lowered from
16.6 % to 8.7 % by the local search, in less than 1 s. It is noticed that the best
solutions for the RVRP were obtained with the GRASP procedure, which is able
to retrieve 8 optima out of the 10 found by GLPK, with a small average gap of
2.1 % in 3.14 s, while GLPK achieves an averaged gap of 1.0 % in 9,350.4 s. This
results show the advantages of using our local search and the GRASP to achieve
small gaps and retrieve most proven optima in competitive computational time.
This good performance probably comes from the combination of a constructive
heuristic, a local search with moves that work well on the RVRP, and the random
sampling of the local optima done by the GRASP in the solution space.

6 Conclusions

This article considers the RVRP with uncertain data associated with the costs
or travel times. In this case, the variation of travel costs in the transportation
network are considered. Constructive and greedy heuristics, a local search and

394 E.L. Solano-Charris et al.

a GRASP procedure are proposed. Such strategies have been addressed to deal
with asymmetric costs and also with a set of discrete scenarios.

The experimental results show the RVRP is a hard problem in spite of its
rather simple statement. Among the proposed heuristics, the CW-based heuris-
tics outperform the others, and the local search manages to reduce their solution
gaps. The GRASP is able to find even better solutions, including most proven
optima, in reasonable running times.

Regarding future work, the current mathematical formulation can be strength-
ened and other formulations can be explored. We are currently investigating
other metaheuristics and hybridizations for the RVRP. In addition, other opti-
mization criteria can be studied such as min-max regret and lexicographical
criterion. Finally, we are working on the design of transportation urban net-
works for which uncertainties are modeled as scenarios, to take into account the
delays produced by traffic jams.

Acknowledgements. This research is part of the project METHODI which is funded
by the Champagne-Ardenne Region.

References

1. Toth, P., Vigo, D.: Exact solution of the vehicle routing problem. In: Fleet Man-
agement and Logistics, pp. 1–31 (1998)

2. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6, 80–91
(1959)

3. Achutan, N.R., Caccetta, L., Hill, S.P.: A new subtour elimination constraint for
the vehicle routing problem. Eur. J. Oper. Res. 91, 573–586 (1996)

4. Cordeau, J., Gendreau, M., Laporte, G., Potvin, J., Semet, F.: A guide to vehicle
routing heuristics. J. Oper. Res. Soc. 53, 512–522 (2002)

5. Brandão, J.: A deterministic tabu search algorithm for the fleet size and mix vehicle
routing problem. Eur. J. Oper. Res. 19, 716–728 (2009)

6. Moghaddam, B.F., Ruiz, R., Sadjadi, S.: Vehicle routing problem with uncertain
demands: an advanced particle swarm algorithm. Comput. Ind. Eng. 62, 306–317
(2012)

7. Golden, B.L., Yee, J.R.: A framework for probabilistic vehicle routing. AIIE Trans.
11, 109–112 (1979)

8. Gendreau, M., Laporte, G., Seguin, R.: A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Oper. Res. 44, 469–477
(1996)

9. Jula, H., Dessouky, M.M., Ioannou, P.: Truck route planning in non-stationary
stochastic networks with time-windows at customer locations. IEEE Trans. Intell.
Transp. Syst. 37, 51–63 (2006)

10. Ai, J., Kachitvichyanukul, V.: A particle swarm optimization for the vehicle routing
problem with simultaneous pickup and delivery. Comput. Oper. Res. 36, 1693–1702
(2009)

11. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23,
769–805 (1998)

12. El-Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio
optimization: a conic programming approach. Oper. Res. 51, 543–556 (2003)

Heuristic Approaches for the RVRP 395

13. Erera, A.L., Morales, J.C., Savelsbergh, M.: Robust optimization for empty repo-
sitioning problems. Oper. Res. 57, 468–483 (2009)

14. Tal, A.B., Golany, B., Nemirovski, A., Vial, J.: Supplier-retailer exible commit-
ments contracts: a robust optimization approach. Manuf. Serv. Oper. Manage. 7,
248–273 (2005)

15. Atamturk, A., Zhang, M.: Two-stage robust network flow and design under demand
uncertainty. Oper. Res. 55, 662–673 (2007)

16. Bertsimas, D., Simchi-Levi, D.: A new generation of vehicle routing research: robust
algorithms, addressing uncertainty. Oper. Res. 44, 286–304 (1996)

17. Ordóñez, F.: Robust vehicle routing. INFORMS TutORials Oper. Res. 7, 153–178
(2010)

18. Solano, E., Santos, A.C., Prins, C.: An overview on solving robust vehicle routing
problem. In: 14ème congrès de la Société Française de Recherche Opérationnelle
et d’Aide à la Décision (ROADEF) 2 p. (2013)

19. Sungur, I., Ordóñez, F., Dessouky, M.: A robust optimization approach for the
capacitated vehicle routing problem with demand uncertainty. IIE Trans. 40, 509–
523 (2008)

20. Gounaris, C., Wiesemann, W., Floudas, C.A.: The robust capacitated vehicle rout-
ing problem under demand uncertainty. Oper. Res. 61, 677–693 (2013)

21. Erbao, C., Mingyong, L., Hongming, Y.: Open vehicle routing problem with
demand uncertainty and its robust strategies. Expert Syst. Appl. 41, 3569–3575
(2014)

22. Agra, A., Hvattum, L.M., Christiansen, M., Figuereido, R., Poss, M., Requejo, C.:
The robust vehicle routing problem with time windows. Comput. Oper. Res. 40,
856–866 (2013)

23. Han, J., Lee, C., Park, S.: A robust scenario approach for the vehicle routing
problem with uncertain travel times. Transp. Sci. 63, 1294–1306 (2013)

24. Toklu, N., Montemanni, R., Gambardella, L.M.: An ant colony system for the
capacitated vehicle routing problem with uncertain travel costs, pp. 32–39 (2013)

25. Lee, C., Lee, K., Park, S.: Robust vehicle routing problem with deadlines and travel
time/demand uncertainty. J. Oper. Res. Soc. 63, 1294–1306 (2012)

26. Miller, C., Tucker, A., Zemlin, R.: Integer programming formulations and traveling
salesman problems. J. ACM 7, 326–329 (1960)

27. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of
delivery points. Oper. Res. 12, 568–581 (1964)

28. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problem with
time window constraints. Oper. Res. 35, 254–265 (1987)

29. Duis, C.W., Voss, S.: The pilot method: a strategy for heuristic repetition with
application to the steiner problem in graphs. Networks 34, 181–191 (1999)

30. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set
covering problem. Oper. Res. Lett. 8, 67–71 (1989)

A Fast Large Neighborhood Search
for Disjunctively Constrained Knapsack

Problems

Mhand Hifi, Sagvan Saleh, and Lei Wu(B)

EPROAD EA 4669, Univercité de Picardie Jules Verne,
7 rue du Moulin Neuf, 80039 Amiens, France

{mhand.hifi,sagvan.saleh,lei.wu}@u-picardie.fr

Abstract. In this paper, we propose a heuristic based upon the large
neighborhood search for the disjunctively constrained knapsack problem
(DCKP). The proposed method combines a two-phase procedure and a
large neighborhood search. First, the two-phase procedure is applied in
order to provide a starting feasible solution for the large neighborhood
search. The first phase serves to determine a feasible solution by succes-
sively solving two subproblems: the weighted independent set and the
classical binary knapsack. The second phase tries to improve the quality
of the solutions by using a descent method which applies both degrad-
ing and re-optimizing strategies. Second, a large neighborhood search
is introduced in order to diversify the search space. Finally, the perfor-
mance of the proposed method is computationally analyzed on a set of
benchmark instances of the literature where its provided results are com-
pared to those reached by Cplex solver and some recent algorithms. The
provided results show that the method is very competitive since it is able
to reach new solutions within small runtimes.

Keywords: Heuristic · Knapsack · Neighborhood · Re-optimisation

1 Introduction

In this paper we investigate the use of the large neighborhood search for solving
the Disjunctively Constrained Knapsack Problem (DCKP). DCKP is character-
ized by a knapsack of fixed capacity c, a set I of n items, and a set E of incom-
patible couples of items, where E ∈

{
(i, j) ≤ I × I, i < j

⎡
. Each item i ≤ I is

represented by a nonnegative weight wi and a profit pi. The goal of the DCKP
is to maximize the total profit of items that can be placed into the knapsack
without exceeding its capacity, where all items included in the knapsack must
be compatible. Formally, DCKP can be defined as follows:

(PDCKP)max
⎣

i∈I

pixi

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 396–407, 2014.
DOI: 10.1007/978-3-319-09174-7 34

A Fast Large Neighborhood Search for DCKPs 397

s.t.
⎣

i∈I

wixi ≥ c (1)

xi + xj ≥ 1 ∀ (i, j) ≤ E (2)
xi ≤ {0, 1} ∀ i ≤ I,

where xi, ∀ i ≤ I, is equal to 1 if the i-th item is included in the knapsack (solu-
tion); 0 otherwise. Inequality (1) denotes the knapsack constraint with capacity
c and inequalities (2) represent the disjunctive constraints which ensure that
all items belonging to a feasible solution must be compatible. We can observe
that the solution domain of a knapsack problem can be characterized by (i) the
inequality (1), (ii) the integral constraints xi ≤ {0, 1}, ∀i ≤ I, and, (iii) those
corresponding to the weighted independent set problem obtained by combining
both inequalities (2) and (3). Without loss of generality, we assume that (i) all
input data c, pi, wi,∀ i ≤ I, are nonnegative integers and (ii)

∑
i∈I wi > c for

avoiding trivial solutions.
The remainder of the paper is organized as follows. Section 2 reviews some

previous works on the DCKP. Section 3 discusses the two-phase procedure that
provides a starting solution for PDCKP . Section 4 describes the large neighbor-
hood search-based heuristic for the DCKP. Section 5 evaluates the performance
of the proposed method on a set of benchmark instances taken from the litera-
ture. Finally, Sect. 6 summarizes the contents of the paper.

2 Background

The DCKP is an NP-hard combinatorial optimization problem. It reduces to
the maximum weighted independent set problem (Garey and Johnson [1]) when
the knapsack capacity constraint is omitted and to the classic knapsack problem
when E = ∅. It is easy to show that DCKP is a more complex extension of the
multiple choice knapsack problem which arises either as a stand alone problem
or as a component of more difficult combinatorial optimization problems. Its
induced structure in complex problems allows the computation of upper bounds
and the design of heuristic and exact methods for these complex instances. For
example, DCKP was used in Dantzig-Wolfe’s decomposition formulation for the
two-dimensional bin packing problem (Pisinger and Sigurd [10]). It served as a
local optimization subproblem for the pricing problem which consists in find-
ing a feasible packing of a single bin verifying the smallest reduced cost. The
same problem has been also used in Sadykov and Vanderbeck [12] as the pricing
problem for solving the bin packing with conflicts.

Due to the complexity and hardness of the DCKP, most results on this topic
are based on heuristics although exact methods have been proposed. Among
papers addressing the resolution of DCKP, we found that of Yamada et al. [14,15]
in which the problem was tackled with approximate and exact methods. The
approximate heuristic generates an initial feasible solution, and improves it using
a 2-opt neighborhood-search. The exact algorithm starts its search from the
solution obtained by the approximate algorithm, and undertakes an implicit
enumeration combined with an interval reduction technique.

398 M. Hifi et al.

Hifi and Michrafy [3] proposed three exact algorithms in which reduction
strategies, an equivalent model and a dichotomous search cooperate to solve
DCKP. The first algorithm reduces the size of the original problem by start-
ing with a lower bound and successively solving relaxed DCKPs. The second
algorithm combines a reduction strategy with a dichotomous search in order to
accelerate the search process. The third algorithm tackles instances with a large
number of disjunctive constraints using two cooperating equivalent models.

Hifi and Michrafy [4] proposed a three-step reactive local search. The first
step of the algorithm starts by determining an initial solution using a greedy pro-
cedure. The second step is based on an intensification procedure which removes
an item from the solution and inserts other ones. It adopts a memory list that
stores swaps and/or the hashing function; thus, forbids cycling. The third step
diversifies the search process by accepting to temporarily degrade the quality of
the solution in hope to escape from local optima.

Pferschy and Schauer [9] presented pseudo-polynomial algorithms for special
cases of the disjunctively knapsack problem which are mainly based on a graph
representation: trees, graphs with bounded tree-width and chordal graphs. The
authors extended their algorithms for establishing fully polynomial time approx-
imation schemes (FPTAS).

Hifi et al. [7] investigated the use of the rounding solution procedure and
an effective local branching. The method combines two procedures: (i) a round-
ing solution procedure and (ii) a restricted exact solution procedure. Hifi and
Otmani [5] investigated the use of the scatter search for approximately solving
the DCKP. The approach tried to explore some characteristics of two problems in
order to tackle the DCKP: the independent set problem and the single knapsack
problem. The performance of the approach was evaluated on the same instances
as considered in [7] and showed that such approach was able to improve the
solution quality of some instances. Hifi and Otmani [6] adapted the same app-
roach as in [5], but by considering an equivalent model of the DCKP already
proposed by Hifi and Michrafy [4]. The equivalent model was solved by applying
a first level scatter search in which the model was refined by injecting some valid
constraints.

Finally, Hifi [2] investigates an iterative rounding search-based algorithm.
The method can be viewed as an alternate to both approaches considered in
Hifi et al. [5,7] where three strategies were combined: (i) the variable-fixing
technic using the rounding method applied to the linear relaxation of DCKP,
(ii) the injection of successive valid constraints with bounding the objective
function, and (iii) a neighbor search around solutions characterizing a series
of reduced subproblems. The aforementioned steps are iterated until satisfying
some stopping criteria.

3 A Two-Phase Solution Procedure

This section describes an efficient algorithm for approximately solving the DCKP
by alternatively running two solution procedures. The first procedure is applied

A Fast Large Neighborhood Search for DCKPs 399

in order to determine a feasible solution and then, the second one tries to improve
the solution at hand. For the rest of the paper, we assume that all items are
ranked in decreasing order of their profits.

3.1 The First Phase

The first phase determines a feasible solution of the DCKP by solving two opti-
mization problems:

– A weighted independent set problem (noted PWIS), extracted from PDCKP , is
first solved in order to determine an Independent Set solution, noted IS.

– A classical binary knapsack problem (noted PK) associated to both IS and
the corresponding capacity constraint (i.e.,

∑
i∈IS wixi ≥ c) is solved in order

to provide a feasible solution for the PDCKP .

Let SIS = (s1, . . . , sn) be a feasible solution of PWIS , where si is the binary
value assigned to xi, ∀ i ≤ I. Let IS ∈ I be the restricted set of items denoting
items of SIS whose values are fixed to 1. Then, linear programs referring to both
PWIS and PK may be defined as follow:

(PWIS)


⎤⎤⎧

⎤⎤⎪

max
⎣

i∈I

pixi

s.t. xi + xj ≥ 1, ∀(i, j) ≤ E
xi ≤ {0, 1}, ∀ i ≤ I,

(PK)


⎤⎤⎤⎤⎧

⎤⎤⎤⎤⎪

max
⎣

i∈IS

pixi

s.t.
⎣

i∈IS

wixi ≥ c,

xi ≤ {0, 1}, ∀ i ≤ IS.

Algorithm 1. Compute a feasible solution for PWIS

Require: An instance I of PDCKP .
Ensure: A feasible solution (independent set) IS for PWIS .
1: Initialization:

Set IS = ∈ and I = {1, . . . , n}.
2: while I ≤= ∈ do

3: Let i = argmax
{

pi | pi ≥ pk, k ∈ I
}

.

4: Set IS = IS ∪ {i}.
5: Remove i and all items j such that (i, j) ∈ E from I.
6: end while
7: return IS as a feasible solution of PIS .

On the one hand, we can observe that the solution domain of PWIS includes
the solution domain of PDCKP . On the other hand, an optimal solution of
PWIS is not necessary an optimal solution of PDCKP . Therefore, in order to
search a quick solution IS, the following procedure is applied (as described in
Algorithm 1):

Set IS to an empty set (a trivial solution of PWIS) and, fill iteratively the
set IS with the items belonging to I. At each iteration (of Algorithm1), the

400 M. Hifi et al.

item realizing the greatest profit is selected and inserted into IS. The chosen
item with its incompatible neighbors are then removed from I. Such a process is
iteratively performed until no more items can be added to the current solution
IS. Finally, the algorithm stops and exits with a feasible solution IS for PWIS .

Algorithm 2. Compute a feasible for PDCKP

Require: IS, an independent set of PWIS , and I, an instance of PDCKP .
Ensure: SDCKP , a DCKP’s feasible solution.
1: Initialization:

Let PK be the resulting knapsack problem constructed according to items belonging
to IS.

2: if SIS satisfies the capacity constraint (1) of PDCKP then
3: Set SDCKP = SIS ;
4: else
5: Let SDCKP be the resulting solution of PK .
6: end if
7: return SDCKP as a feasible solution of PDCKP .

As mentioned above, IS may violate the capacity constraint of PDCKP .
Then, in order to provide a feasible solution for PDCKP , the knapsack problem
PK is solved. Herein, PK is solved using the exact solver of Martello et al. [8].
Algorithm 2 describes the main steps used for determining a feasible solution of
PDCKP .

3.2 The Second Phase

In order to improve the quality of the solution provided by the first phase (i.e.,
the feasible solution SDCKP returned by Algorithm2), a local search is per-
formed. The used local search can be considered as a descent method that tends
to improve a solution by alternatively calling two procedures: degrading and re-
optimizing procedures. The degrading procedure serves to build a k-neighborhood
of SDCKP by dropping k fixed items from SDCKP while the re-optimizing proce-
dure tries to determine an optimal solution regarding the current neighborhood.
The descent procedure is stopped when no better solution can be reached.

Algorithm 3 shows how an improved solution can be computed by using a
descent method. Let SDCKP be the current feasible solution obtained at the
first phase and α be a constant, where α ≤ [0, 100]. Then, α |I| represents the
number of the unassigned variables of SDCKP . The main loop (cf., lines 2–7)
of the descent method serves to alternatively yield and explore a neighborhood
issue from a local optimum. At line 3, the best solution found so far, namely
Sα

DCKP , is updated with the solution SDCKP reached at the last iteration. Line 4
removes α |I| variables regarding the current solution SDCKP , where the related
items with the highest degree are favored. Let i be an item realizing the highest
degree; that is, an item i whose variable xi is fixed to 1 in SDCKP . Then, set xi

A Fast Large Neighborhood Search for DCKPs 401

Algorithm 3. A descent method
Require: SDCKP , a feasible solution of DCKP.
Ensure: Sδ

DCKP , a local optimal solution of DCKP.
1: Set Sδ

DCKP as an initial feasible solution, where all variables are fixed to 0.
2: while SDCKP is better than Sδ

DCKP do
3: Update Sδ

DCKP with SDCKP .
4: Set α|I| fixed variables of SDCKP as free.
5: Define the corresponding neighborhood of SDCKP .
6: Determine the optimal solution in the current neighborhood and update SDCKP .
7: end while
8: return Sδ

DCKP .

as free variable and also for its incompatible variables xj , such that (i, j) ≤ E
and (j, k) /≤ E, where k, k ∀= i, corresponds to the index of the variables whose
values are equal to 1 in SDCKP . At line 6, SDCKP , is replaced by the best
solution found in the current neighborhood. Finally, the process is iterated until
no better solution can be reached (in this case, Algorithm3 exits with the best
solution Sα

DCKP).

Algorithm 4. Remove β|I| variables of SDCKP

Require: SDCKP , a starting solution of PDCKP .
Ensure: An independent set IS and a reduced instance Ir of PDCKP .
1: Set counter = 0, Ir = ∈ and IS to the set of items whose decision variable are

fixed to 1 in SDCKP .
2: Range IS in non decreasing order of their profit per weight.
3: while counter < β|I| do
4: Let r be a real number randomly generated in the interval [0, 1] and i = |IS|×rΔ .

5: Set IS = IS \ {i}, Ir = Ir ∪ i and increment counter = counter + 1.
6: for all items j such that (i, j) ∈ E do
7: if item j is compatible with all items belong to IS then
8: Set Ir = Ir ∪ {j} and counter = counter + 1.
9: end if

10: end for
11: end while
12: return IS and Ir.

Note that, on the one hand, the runtime of Algorithm3 may increase when
α tends to 100. Because dropping a large percentage of items involves that the
reduced DCKP is closest to the original one. On the other hand, Algorithm3 is
called at each iteration of the large neighborhood search (cf., Sect. 4), a large size
reduced DCKP can cause the large neighborhood search slow down. Therefore,
we favor the achievement of a fast algorithm which is able to converge towards
a good local optimum. This is why our choice is oriented to moderate the values
of α, as shown in the experimental part (cf., Section 5).

402 M. Hifi et al.

4 A Large Neighborhood Search

Large Neighborhood Search (LNS) is a heuristic that has proven to be effective
on wide range of combinatorial optimization problems. A simplest version of LNS
has been presented in Shaw [13] for solving the vehicle routing problem (cf., also
Pisinger and Ropke [11]). LNS is based on the concepts of building and exploring
a neighborhood; that is, a neighborhood defined implicitly by a destroy and a
repair procedure. Unlike the descent methods, which may stagnates in local
optima, using large neighborhoods makes it possible to reach better solutions
and explore a more promising search space.

For instance, the descent method discussed in Sect. 3.2 (cf., Algorithm3) may
explore some regions and stagnates in a local optimum because either degrading
or re-optimizing considers a mono-criterion. In order to enlarge the chance of
reaching a series of improved solutions or to escape from a series of local optima,
a random destroying strategy, which depends on the value of the profit per
weight of items, is applied. Algorithm5 summarizes the main steps of LNS (noted
LNSBH) which uses Algorithm 4 for determining the neighborhood of a given
solution.

Algorithm 5. A large neighborhood search-based heuristic
Require: SDCKP , a starting solution of PDCKP .
Ensure: Sδ

DCKP , a local optimum of PDCKP .
1: Set Sδ

DCKP as a starting feasible solution, where all variables are assigned to 0.
2: while the time limit is not performed do
3: Call Algorithm 4 in order to find IS and Ir according to SDCKP .
4: Call Algorithm 1 with an argument Ir to complete IS.
5: Call Algorithm 2 with an argument IS for reaching a new solution SDCKP .
6: Improve SDCKP by applying Algorithm 3.
7: Update Sδ

DCKP with the best solution.
8: end while
9: return Sδ

DCKP .

5 Computational Results

This section evaluates the effectiveness of the proposed Large Neighborhood
Search-Based Heuristic (LNSBH) on two groups of instances (taken from the lit-
erature [4] and generated following the schema used by Yamada et al. [14,15]).
The first group contains twenty medium instances with 500 items, a capacity
c = 1800 and different densities (assessed in terms of the number of disjunc-
tive constraints). The second group contains thirty large instances, where each
instance contains 1000 items, with c taken in the discrete interval {1800, 2000}
and with various densities. The proposed LNSBH was coded in C++ and run
on a PC Intel Pentium Core i5-2500 with 3.3 Ghz.

A Fast Large Neighborhood Search for DCKPs 403

The performance of LNSBH depends on certain parameters, like the percent-
age α of the unassigned items considered in the descent method, the percentage
β of items to be removed when applying Algorithm4 (according to the large
neighborhood search), the constant γ used by Algorithm 4 and Algorithm5’s
runtime limit t. In what follows, we show how the aforementioned parameters
can be experimentally fixed in order to provide good performance for LNSBH.

5.1 Effect of Both Degrading and Re-optimizing Procedures

This section evaluates the effect of the descent method based upon degrading
and re-optimizing procedures (as used in Algorithm3) on the starting solution
realized by Algorithm 2. We recall that the re-optimization procedure tries to
solve a reduced PDCKP which contains a small number of items. These problems
are optimally solved using the Cplex solver (version 12.4).

Table 1 shows the variation of Av. Sol., the average value of solutions pro-
vided by the considered algorithm over all treated instances and Av. T ime,
the average runtime needed by each algorithm for finishing the descent search.
One can observe that, for the descent method (cf., Algorithm3), the results are
obtained by performing Algorithm3 with different settings of α, where the value
of α is varied in the discrete interval {5, 10; 15; 20}.

From Table 1, we can observe that the best average solution value is realized
for the value α = 15%, but it needs an average runtime of 19.72 s. Note that
LNSBH’s runtime depends on the descent method’s runtime. Therefore, accord-
ing to the results displayed in Table 1, one can observe that the value of 5%
favors a quick resolution (0.15 s) with an interesting average solution value of
2129.98. Because our aim is to propose a fast efficient LNSBH, we then set
α = 5% for the rest of the paper.

5.2 Behavior of LNSBH on both Groups of Instances

Remark that, according to the results shown in Shaw [13], when γ varies over
the range of the integer interval [5, 20], the LNS works reasonably well. In our
test, we set γ = 20 for Algorithm 4. Therefore, in order to evaluate the per-
formance of LNSBH, we focus on both parameters β and t; that are used in
Algorithm 5. The study is conducted by varying the value of β in the discrete
interval {10, 15, 20, 25, 30} and t in the interval {25, 50, 100, 150, 200} (measured

Table 1. Effect of the descent method on the starting DCKP’s solution.

Algorithms 1–2 The descent method

α =

5 % 10 % 15 % 20 %

Av. Sol. 2014.62 2129.98 2188.80 2232.36 2217.04

Av. T ime ≈0.001 0.15 2.03 19.72 118.30

404 M. Hifi et al.

Table 2. The quality of the average values when varying the values of the couple (β, t).

Variation of β

�
��t
β

10% 15% 20% 25% 30%

25 2395.38 2394.48 2392.5 2391.14 2389.06
50 2397.52 2397.44 2394.74 2393.34 2391.18
100 2399.16 2398.98 2396.36 2394.2 2393.9
150 2399.28 2399 2397.82 2395.62 2394.58
200 2400.22 2399.62 2398.76 2396.8 2395.74

in seconds). Table 2 displays the average solution values realized by LNSBH using
the different values of (β, t).

From Table 2, we observe what follows:

– Setting β = 10% provides the best average solution value. Further, the solu-
tion quality increases when the runtime limit is extended.

– All other variations of β induce smaller average values than those of β = 10%
in 200 s.

According to the results displayed in Table 2, the objective value of the solu-
tions determined by setting (β, t) = (10%, 100) and (10%, 200) are displayed
in Table 3. In our computational study, ten random trials of the LNSBH are
performed on the fifty literature instances and each trial is stopped respectively
after 100 and 200 s.

Table 3 shows objective values reached by LNSBH and Cplex when compared
to the best solutions of the literature (taken from Hifi and Otami [2,6]). Column 1
of Table 3 displays the instance label, column 2 reports the values of the best
solutions (denoted VCplex) reached by Cplex v12.4 after one hour of runtime
and column 3 displays the solutions provided by the most recent algorithm of
the literature, denoted VIRS. Finally, column 4 (resp. 5) reports Max.Sol. (resp.
Av.Sol) denoting the maximum (average) solution value obtained by LNSBH
over ten trials for the first runtime limit of 100 s and columns 6 and 7 display
those of LNSBH for the second runtime limit of 200 s.

From Table 3, we observe what follows:

1. First, we can observe the inferiority of the Cplex solver because it realizes
an average value of 2317.88 compared to that realized by LNSBH (2390.40).
In this case, Cplex matches 5 instances over 50, representing a percentage of
10% of the best solutions of the literature.

2. Second, for both runtime limits (100 and 200 s), the mean value (Mean.Sol.)
of the average objective values (Av.Sol) reached by LNSBH over ten trials
(2393.63 and 2395.94) are better then the mean value of the best objectives
values reached by VIRS (2390.40).

3. Third and last, according to the best solutions realized by LNSBH over ten tri-
als with the first runtime limit (100 s), one can observe that LNSBH is able to

A Fast Large Neighborhood Search for DCKPs 405

Table 3. Performance of LNSBH vs Cplex and IRS on the benchmark instances of the
literature.

Instance VCplex VIRS LNSBH

β = 10 and t = 100 β = 10 and t = 200

Max.Sol. Av.Sol. Max.Sol. Av.Sol.

1I1 2567 2567 2567 2564.2 2567 2564.6

1I2 2594 2594 2594 2594 2594 2594

1I3 2320 2320 2320 2319 2320 2319

1I4 2298 2303 2310 2310 2310 2310

1I5 2310 2310 2330 2328 2330 2329

2I1 2080 2100 2117 2116.1 2118 2117

2I2 2070 2110 2110 2110 2110 2110

2I3 2098 2128 2119 2110.2 2132 2118.1

2I4 2070 2107 2109 2106.9 2109 2108.2

2I5 2090 2103 2110 2109.7 2114 2111.2

3I1 1667 1840 1845 1788.4 1845 1814

3I2 1681 1785 1779 1759.9 1779 1769.2

3I3 1461 1742 1774 1759.3 1774 1762.9

3I4 1567 1792 1792 1792 1792 1792

3I5 1563 1772 1775 1751.6 1775 1759.2

4I1 1053 1321 1330 1330 1330 1330

4I2 1199 1378 1378 1378 1378 1378

4I3 1212 1374 1374 1374 1374 1374

4I4 1066 1353 1353 1352.7 1353 1353

4I5 1229 1354 1354 1336.4 1354 1336.4

5I1 2680 2690 2690 2684 2690 2686

5I2 2690 2690 2690 2683.9 2690 2685.9

5I3 2670 2689 2680 2675.7 2690 2679.7

5I4 2680 2690 2698 2683.2 2698 2689.2

5I5 2660 2680 2670 2668 2670 2669.9

6I1 2820 2840 2850 2850 2850 2850

6I2 2800 2820 2830 2823.9 2830 2827.7

6I3 2790 2820 2830 2819.9 2830 2821.9

6I4 2790 2800 2820 2817 2822 2820.2

6I5 2800 2810 2830 2823.7 2830 2825.6

7I1 2700 2750 2780 2771.9 2780 2773

7I2 2720 2750 2770 2769 2770 2770

7I3 2718 2747 2760 2759 2760 2760

406 M. Hifi et al.

Table 3. (Contined).

Instance VCplex VIRS LNSBH

β = 10 and t = 100 β = 10 and t = 200

Max.Sol. Av.Sol. Max.Sol. Av.Sol.

7I4 2728 2773 2800 2791 2800 2793

7I5 2730 2757 2770 2763 2770 2765

8I1 2638 2720 2720 2719.1 2720 2719.1

8I2 2659 2709 2720 2719 2720 2720

8I3 2664 2730 2740 2733 2740 2734

8I4 2620 2710 2710 2708.7 2719 2709.9

8I5 2644 2710 2710 2709 2710 2710

9I1 2589 2650 2676 2670.9 2677 2671.3

9I2 2580 2640 2665 2661.5 2665 2663

9I3 2580 2635 2670 2665.8 2670 2668.6

9I4 2540 2630 2660 2659.8 2660 2659.9

9I5 2594 2630 2669 2663.5 2670 2664.9

10I1 2500 2610 2620 2616.7 2620 2619.7

10I2 2549 2642 2630 2627.5 2630 2629.9

10I3 2527 2618 2620 2617.1 2627 2620.5

10I4 2509 2621 2620 2617 2620 2618.6

10I5 2530 2606 2620 2619.3 2625 2620.5

Mean.Sol. 2317.88 2390.40 2399.16 2393.63 2400.22 2395.94

improve the best solutions of the literature on 30 cases, matches 14 instances
and fails in 6 occasions. On the other hand, by extending the runtime limit
to 200 s, the best solutions reached by LNSBH over ten trials become more
interesting. Indeed, in this case, LNSBH realizes 33 new solutions, matches
13 solutions and fails in 4 occasions.

6 Conclusion

In this paper, we proposed a fast large neighborhood search-based heuristic for
solving the disjunctively constrained knapsack problem. The proposed method
combines a two-phase procedure and a large neighborhood search. First, the
two-phase procedure is applied in order to reach a starting feasible solution.
This solution is obtained by combining the resolution of two complementary
problems: the weighted independent set and the classical binary knapsack. Sec-
ond, a descent method, based upon degrading and re-optimization strategies,
is applied in order to improve the solution provided by the first phase. Once a
local optimal solution is reached, the large neighborhood search is used in order

A Fast Large Neighborhood Search for DCKPs 407

to diversify the search space. Finally, the computational results show that the
proposed algorithm is very competitive when compared to both Cplex solver and
one of the most recent algorithm of the literature.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman and Company, San Francisco (1979)

2. Hifi, M.: An iterative rounding search-based algorithm for the disjunctively con-
strained knapsack problem. Eng. Optim. doi:10.1080/0305215X.2013.819096 (Pub-
lished online: 19 Sep 2013)

3. Hifi, M., Michrafy, M.: Reduction strategies and exact algorithms for the disjunc-
tively constrained knapsack problem. Comput. Oper. Res. 34, 2657–2673 (2007)

4. Hifi, M., Michrafy, M.: A reactive local search algorithm for the disjunctively con-
strained knapsack problem. J. Oper. Res. Soc. 57, 718–726 (2006)

5. Hifi, M., Otmani, N.: An algorithm for the disjunctively constrained knapsack
problem. Int. J. Oper. Res. 13, 22–43 (2012)

6. Hifi, M., Otmani, N.: An algorithm for the disjunctively constrained knapsack
problem. In: IEEE - International Conference on Communications, Computing
and Control Applications, pp. 1–6 (2011)

7. Hifi, M., Negre, S., Ould Ahmed Mounir, M.: Local branching-based algorithm
for the disjunctively constrained knapsack problem. In: IEEE Proceedings of the
International Conference on Computers and Industrial Engineering, pp. 279–284
(2009)

8. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for
the 0-1 knapsack problem. Manage. Sci. 45, 414–424 (1999)

9. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13, 233–249 (2009)

10. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint program-
ming for solving the two-dimensional bin-packing problem. INFORMS J. Comput.
19, 36–51 (2007)

11. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-
Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research
& Management Science, vol. 146, pp. 399–419. Springer, New York (2010)

12. Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price
algorithm. INFORMS J. Comput. 25(2), 244–255 (2013)

13. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

14. Yamada, T., Kataoka, S., Watanabe, K.: Heuristic and exact algorithms for the
disjunctively constrained knapsack problem. Inf. Process. Soc. Jap. J. 43, 2864–
2870 (2002)

15. Yamada, T., Kataoka, S.: Heuristic and exact algorithms for the disjunctively con-
strained knapsack problem. In: EURO 2001, Rotterdam, The Netherlands, pp.
9–11 (2001)

http://dx.doi.org/10.1080/0305215X.2013.819096

Approximating the k-Set Packing Problem
by Local Improvements

Martin Fürer and Huiwen Yu(B)

Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA, USA

{furer,hwyu}@cse.psu.edu

Abstract. We study algorithms based on local improvements for the
k-Set Packing problem. The well-known local improvement algorithm by
Hurkens and Schrijver [14] has been improved by Sviridenko and Ward
[15] from k

2
+ φ to k+2

3
, and by Cygan [7] to k+1

3
+ φ for any φ > 0. In this

paper, we achieve the approximation ratio k+1
3

+ φ for the k-Set Packing
problem using a simple polynomial-time algorithm based on the method
by Sviridenko and Ward [15]. With the same approximation guarantee,
our algorithm runs in time singly exponential in 1

δ2
, while the running

time of Cygan’s algorithm [7] is doubly exponential in 1
δ
. On the other

hand, we construct an instance with locality gap k+1
3

for any algorithm

using local improvements of size O(n1/5), where n is the total number
of sets. Thus, our approximation guarantee is optimal with respect to
results achievable by algorithms based on local improvements.

Keywords: k-set packing · Tail change · Local improvement · Color
coding

1 Introduction

Given a universe of elements U and a collection S of subsets with size at most k
of U , the k-Set Packing problem asks to find a maximum number of disjoint sets
from S. The most prominent approach for the k-Set Packing problem is based on
local improvements. In each round, the algorithm selects p sets from the current
packing and replaces them with p + 1 sets such that the new solution is still a
valid packing. It is well-known that for any φ > 0, there exists a constant p, such
that the local improvement algorithm has an approximation ratio k

2 + φ [14]. In
quasi-polynomial time, the result has been improved to k+2

3 [11] and later to
k+1
3 + φ for any φ > 0 [8] using local improvements of size O(log n), here n is the

size of S. In [8], the algorithm looks for any local improvement of size O(log n),
while in [11], only sets which intersect with at most 2 sets in the current solution
are considered and the algorithm looks for improvements of a binocular shape.

Research supported in part by NSF Grant CCF-0964655 and CCF-1320814.

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 408–420, 2014.
DOI: 10.1007/978-3-319-09174-7 35

Approximating the k-Set Packing Problem by Local Improvements 409

One can obtain a polynomial-time algorithm which looks for local improve-
ments of logarithmic size using the color coding technique [7,15]. The algorithm
in [15] looks for local improvements similar to [11] and has an approximation
ratio k+2

3 . In [7], local improvements of bounded pathwidth are considered and
an approximation ratio k+1

3 + φ, for any φ > 0 is achieved.
In this paper, we obtain an approximation ratio k+1

3 +φ for the k-Set Packing
problem, for any φ > 0. On the other hand, we improve the lower bound given
in [15] by constructing an instance that any algorithm using local improvements
of size O(n1/5) has a performance ratio at least k+1

3 . Thus, our result is optimal
with respect to the performance guarantee achievable by algorithms using local
improvements. Our algorithm extends the types of local improvements consid-
ered in [11,15] by first looking for a series of set replacements which swap some
sets in the current packing A with a same number of disjoint sets T which are not
in A. We then look for local improvements which can be decomposed into cycles
and paths, from sets in S \ (A∈T) which intersect with at most 2 sets in A. We
also use the color-coding technique [2,9] to ensure a polynomial time complexity
when the local improvement has logarithmic size. Our algorithm is more efficient
as it runs in time singly exponential in 1

α2 , while the running time of Cygan’s
algorithm [7] is doubly exponential in 1

α . We believe that our approach makes
an important step towards a practical algorithm for the k-Set Packing problem.

Related works. The Set Packing problem has been studied for decades. Hastad
has shown that the general Set Packing problem cannot be approximated within
N1−α unless NP ≤ ZPP [12]. Here N is the size of the universe U . The bounded
Set Packing problem assumes an upper bound of the size of the sets. In the
unweighted case, i.e. the k-Set Packing problem, besides algorithms based on
local improvements [7,8,11,14,15], Chan and Lau have shown that the standard
linear programming algorithm has an integrality gap k − 1 + 1/k [5]. They have
also constructed a polynomial-sized semi-definite program with integrality gap
k+1
2 , but no rounding strategy is provided. The problem is also known to have a

lower bound σ(k
log k) [13]. In the weighted case, Chandra and Halldórsson have

given a nontrivial approximation ratio 2(k+1)
3 [6]. The result was improved to

k+1
2 + φ by Berman [3], which remains the best so far.

The paper is organized as follows. In Sect. 2, we review previous local search
algorithms and define useful tools for analysis. In Sect. 3, we introduce the new
local improvement and analyze its performance guarantee. In Sect. 4, we give
an efficient implementation of our algorithm and a tight example of algorithms
based on local improvements. Omitted proofs and analysis can be found in the
full version [10].

2 Preliminaries

2.1 Local Improvements

Let S be a collection of subsets of size at most k of the universe U and the size
of S is n. Let A be the collection of disjoint sets chosen by the algorithm. In this

410 M. Fürer and H. Yu

paper, we are interested in the unweighted k-set packing problem. We assume
without loss of generality that every set is of uniform size k. Otherwise, we could
add distinct elements to any set until it is of size k. In the following context,
we use calligraphic letters to represent collections of k-sets and capital letters to
represent sets of vertices which correspond to k-sets.

The most widely used algorithm for the k-Set Packing problem is local search.
The algorithm starts by picking an arbitrary maximal packing. If there exists a
collection of p + 1 sets P which are not in A and a collection of p sets Q in A,
such that (A \ Q) ∈ P is a valid packing, the algorithm will replace Q with P.
We call it a (p + 1)-improvement.

With p being a constant which depends on φ, it is well-known that this local
search algorithm achieves an approximation ratio k

2 + φ, for any φ > 0 [14].
Halldórsson [11] and later Cygan et al. [8] show that when p is O(log n), the
approximation ratio can be improved at a cost of quasi-polynomial time com-
plexity. Based on the methods of [11], Sviridenko and Ward [15] have obtained a
polynomial-time algorithm using the color coding technique [2]. We summarize
their algorithm as follows. Let A be the packing chosen by the algorithm and
C = S \ A. Construct an auxiliary multi-graph GA as follows. The vertices in
GA represent sets in A. For any set in C which intersects with exactly two sets
s1, s2 ≥ A, add an edge between s1 and s2. For any set in C which intersects
with only one set s ≥ A, add a self-loop on s. The algorithm searches for local
improvements which can be viewed as binoculars in GA. They call them canonical
improvements [15]. A binocular can be decomposed into paths and cycles. The
color coding technique [2] and the dynamic programming algorithm are employed
to efficiently locate paths and cycles of logarithmic size. This algorithm has an
approximation ratio at most k+2

3 .
Cygan [7] has shown that an approximation ratio k+1

3 + φ can be obtained
in polynomial time by restricting the local improvements from anything of size
O(log n) [8] to local improvements of bounded pathwidth. Namely, let G(A,C)
be the bipartite conflict graph where A and C = S \ A represent one part of
vertices respectively. For any u ≥ A, v ≥ C, if the corresponding sets are not
disjoint, we put an edge between u and v. For any disjoint collection P ≤ C, if
the subgraph induced by P and the neighbors of P , N(P) in A have bounded
pathwidth, a set replacement of P with N(P) is called a local improvement of
bounded pathwidth. The color coding technique is also employed for efficiently
locating such an improvement.

Theorem 1 [7]. For any φ > 0, there exists a local search algorithm which runs
in time 2O(kr)nO(pw) with an approximation ratio k+1

3 + φ of the k-Set Packing
problem. Here r = 2(k + 1)

1
γ log n is the upper bound of the size of a local

improvement, pw = 2(k + 1)
1
γ is the upper bound of pathwidth.

2.2 Partitioning the Bipartite Conflict Graph

Consider a bipartite conflict graph G(A,B) where one part of the vertices A
representing sets A chosen by the algorithm and the other part B representing

Approximating the k-Set Packing Problem by Local Improvements 411

an arbitrary disjoint collection of sets B. We assume without loss of generality
that B ∩ A = ∅. The collection B can be thought of an optimal solution. It is
only used for analysis.

Given φ > 0, let ck = k − 1, b = |B|, we further partition G(A,B) iteratively
as follows. Let B1

1 be the set of vertices in B with degree 1 to A. Denote the
neighbors of B1

1 in A by A1
1. If |B1

1 | < φb, stop the partitioning. Otherwise, we
consider B2

1 which is the set of vertices whose degree drops to 1 if we remove
A1

1. Denote the neighbors of B2
1 in A \ A1

1 by A2
1. If |B1

1 ∈ B2
1 | < ckφb, stop

the partitioning. In general for any j ∀ 2, let Bj
1 be the set of vertices with

their degree dropping to 1 if the vertices in ∈j−1
l=1 Al

1 are removed, and let Aj
1

be the neighbors of Bj
1 which are not in ∈j−1

l=1 Al
1. If | ∈j

l=1 Bl
1| < cj−1

k φb, we
stop. Otherwise continue the partitioning. Let i be the smallest integer such
that | ∈i

l=1 Bl
1| < ci−1

k φb. This integer i exists as ci−2
k φb ∃ |∈i−1

l=1 Bl
1| ∃ b, we have

i ∃ 2 + logck

1
α . Let B≤j

1 (A≤j
1) be the set union ∈j

l=1B
l
1 (∈j

l=1A
l
1), for j ∀ 1.

3 Canonical Improvements with Tail Changes

In this section, we present a local search algorithm based on [15], and show that
it achieves an approximation ratio k+1

3 + φ for any φ > 0.

3.1 The New Local Improvement

In this section, we introduce a new type of local improvements. Let A be a
packing chosen by the algorithm, and let C = S \ A. We create the bipartite
conflict graph G(A,C) as in Sect. 2.1. Recall that only those sets in C which
intersect with at most 2 sets in A are considered in [15]. Our approach tries to
include sets of higher degree in a local improvement by swapping p sets in A
with p sets in C. In this way, if the degree of a vertex in C drops to 2, it could
be included in a local improvement.

Definition 1 (Tail change). Consider any vertex v ≥ C of degree at least 3,
we call a swapping of p sets U in A with p disjoint sets V in C a tail change
associated with an edge (v, u) of v if the following three requirements are satisfied:
(1) v /≥ V . (2) u is the unique neighbor of v in U . (3) The neighbors of V in A
are exactly U . The size of this tail change is defined to be p.

We denote a tail change associated with e which swaps U with V by Te(U, V).
We say that two tail changes Te(U, V), Te′(U ∈, V ∈) of vertices v, v∈ respectively
are consistent, if either v ⇒= v∈ and ({v} ∈ V) ∩ ({v∈} ∈ V ∈) = ∅, or v = v∈, e ⇒= e∈

and V ∩ V ∈ = ∅. Moreover we require that the degrees of v, v∈ after the tail
changes remain at least 2. Therefore, for any vertex v ≥ C of degree d ∀ 3, we
could perform at most d − 2 tail changes for v.

We are now ready to introduce the new local search algorithm. We first
consider an algorithm that runs in quasi-polynomial time. Given parameter φ >
0, in each iteration, the algorithm starts by performing local improvements of

412 M. Fürer and H. Yu

constant size O(k
α). If no such local improvement is present, the algorithm starts

looking for improvements of size O(log n). Construct the bipartite conflict graph
G(A,C). For any set I of at most 4

α log n vertices in C, let I3 ≤ I be the set
of vertices of degree at least 3 in G(A,C). The algorithm checks if there exists
a collection of consistent tail changes each of size at most 2(k−1)

α for I3, which
together replace U ≤ A with V ≤ C, such that V ∩ I = ∅, and after the
replacement the degree of every vertex in I3 drops to 2. If so, the algorithm goes
on checking in the auxiliary multi-graph GA where edges are constructed from
vertices in I assuming the swapping of U with V is performed, whether there
is a subgraph which is one of the following six types: (1) two disjoint cycles
connecting by a path, (2) two cycles intersecting at a single point, (3) two cycles
with a common arc, (those three types are binoculars), (4) a path, (5) a cycle,
(6) a path and a cycle intersecting at a single point. Let U ∈ be the vertices in
this subgraph, and V ∈ be the edges. The algorithm checks if a replacement of
U ∈ U ∈ with V ∈ V ∈ is an improvement. We call this new local improvement the
canonical improvement with tail changes, and this quasi-polynomial time
algorithm, Algorithm LI (LI stands for local improvement). We will explain
the parameter settings in Algorithm LI in the next section.

Before showing how to efficiently locate a canonical improvement with tail
changes, we first show that the approximation ratio of Algorithm LI is k+1

3 + φ.

3.2 Analysis

Given a packing A chosen by Algorithm LI and for an arbitrary packing B,
consider the bipartite conflict graph G(A,B) defined in Sect. 2.2. The notations
in this section are taken from Sect. 2.2. First, we remark that since we make
all O(k

α)-improvements at the beginning of Algorithm LI, for any set V ≤ B

of size O(k
α), there are at least |V | neighbors of V in A. In G(A,B), we make

every vertex a in A full degree k by adding self-loops of a which we call null
edges. We define a surplus edge which is either a null edge, or an edge incident
to some vertex in B which is of degree at least 3. We first show that there exists
a one-to-one matching from almost all vertices in B1

1 to surplus edges with the
condition that after excluding the matched surplus edges of any vertex in B,
the degree of this vertex remains at least 2. We define such a matching in the
following matching process.

The matching process. Pick an arbitrary order of vertices in B1
1 . Mark all

edges and vertices as unmatched. Try to match every vertex with a surplus edge
in this order one by one. For any vertex v1 ≥ B1

1 , starting from v1, go to its
neighbor u1 ≥ A1

1. If u1 has an unmatched null edge, match v1 to it, mark this
null edge as matched and stop. Otherwise, if u1 has a neighbor v in B, such that
the degree of v is at least 3, (u1, v) is unmatched and v is unmatched, match
v1 to (u1, v) and mark this edge as matched. If the degree of v drops to 2 by
excluding all matched edges of v, mark v as matched. If u1 does not have a
neighbor satisfying the requirement, try every neighbor v2 (except v1) of u1 and
continue the process from v2. In general, suppose we are at a vertex vj ≥ Bj

1

Approximating the k-Set Packing Problem by Local Improvements 413

and it has a neighbor uj ≥ Aj
1. We try to match v1 with a null edge of uj , or

a surplus edge of an unmatched neighbor of uj . If no matching edge is found,
continue by trying every neighbor of uj in Bj1

1 for j1 > j, until either v1 is
matched, or j > 2 + logck

1
α . In the latter case, we mark v1 as unmatched.

A

B

B1
1 B1

2 B1
3

v1 v2 v3 v4 v5 v6 v7 v8

u1 u2 u3 u4 u5 u6 u7

Fig. 1. The bipartite conflict graph. k = 3.

We give an example of the matching process illustrated in Fig. 1. We match
v1 to the null edge (dotted line) of its neighbor u1. v2 is matched to a surplus
edge (u2, v5) of v5. After that, the degree of v5 drops to 2 by excluding the edge
(u2, v5) and v5 is marked as matched. For v3, we go on to u3, v5, u5, v6, u6, then
v8 with a surplus edge (u6, v8). We match v3 to this edge.

Lemma 1. For any φ > 0, there exists a set of surplus edges E1, such that
except for at most φ|B| vertices, B1

1 can be matched to E1 one-to-one. Moreover,
every endpoint of E1 in B has degree at least 2 after excluding E1.

Proof. It is sufficient to prove that at most φ|B| vertices in B1
1 are unmatched.

Let v be an unmatched vertex in B1
1 . The neighbor of v in A, u has no null edges

and thus has degree k, and none of the neighbors of u have an unmatched surplus
edge. The matching process runs in exactly i−1 = 1+logck

1
α iterations for v and

has tried k−1+(k−1)2 + · · ·+(k−1)i−1 = (k−1)i−(k−1)
k−2 vertices in B≤i

1 . Notice
that for two different vertices v, v∈ ≥ B1

1 which are marked unmatched, the set of
vertices the matching process has tried in B≤i

1 must be disjoint. Otherwise, we
can either find a matching for one of them, or there exists a local improvement
of size O(k

α). Suppose there are num unmatched vertices in B1
1 . Recall that

|B≤i
1 | ∃ ci−1

k φ|B|. Therefore, num(1 + (k−1)i−(k−1)
k−2) ∃ |B≤i

1 | ∃ ci−1
k φ|B|. We

have num ∃ φ|B|, where ck = k − 1. ∅�
Consider any surplus edge e = (u, v) matching to w ≥ B1

1 , we can obtain a
tail change Te(U, V) associated with e by viewing the matching process reversely.
Assume u ≥ Ai

1, for i < 2+logck

1
α . Let Ui = {u} and Vi be the neighbor of Ui in

Bi
1. In general, let Vj be the set of neighbors of Uj in Bj

1, we define Uj−1 to be the

414 M. Fürer and H. Yu

neighbors of Vj excluding Uj . This decomposition ends when j = 1 and V1 ≤ B1
1 .

As w is matched to e, we know that w ≥ V1. Let U = ∈i
j=1Uj , V = ∈i

j=1Vj , then
a swapping of U with V is a tail change associated with edge e. First, we have
|Vj | = |Uj | for 1 ∃ j ∃ i, otherwise there exists a O(k

α)-improvement. Hence
|U | = |V |. Secondly, the set of neighbors of V is U by the construction. And u
is the only neighbor of v in U , otherwise w will be matched to another surplus
edge. As an example in Fig. 1, U = (u6, u5, u3, u2), V = (v6, v5, v3, v2) is a tail
change associated with edge (u6, v8) which is matched to v3.

We estimate the size of such a tail change. Since every vertex in U has at
most k neighbors, there are at most

∑i
j=1(k − 1)j−1 = (k−1)i−1

k−2 vertices in V .

Let i = 2 + logk−1
1
α . Then the size of this tail change is at most 2(k−1)

α .
Let TS be the collection of tail changes associated with the surplus edges

which are not null edges as defined above. Assume those tail changes together
replace U ≤ A with V ≤ B. Let BL = B1

1∩V . Let BN ≤ B1
1 be the set of vertices

which are matched to null edges. By Lemma 1, we know that |B1
1 \ (BL ∈BN)| ∃

φ|B|. Moreover, we show in the following Corollary that a consistent collection
of tail changes with the same property can be extracted from TS .

Corollary 1. There exists a subcollection Tc of consistent tail changes from TS,
which together replace a set Uc ≤ A with Vc ≤ B, such that Vc ∩ B1

1 = BL.

Proof. We consider the tail changes associated with the surplus edges one by
one. Tc is initialized to be empty. If the tail change Tei

(Ui, Vi) is consistent
with every tail change in Tc, we include it in Tc. If there exists any tail change
Tej

(Uj , Vj) such that Vi ∩ Vj ⇒= ∅, assume ej = (uj , vj) is matched with the
vertex wj and ei = (ui, vi) with wi, we know that at the time the matching for
wi tries the edges of vj , vj has been marked as matched. Hence, Vj ≤ Vi. We
discard Tej

(Uj , Vj) and include Tej
(Uj , Vj) in Tc. ∅�

Theorem 2. For any φ > 0, Algorithm LI has an approximation ratio k+1
3 + φ.

Before proving the theorem, we state the following result from [15] which is
derived from a lemma in [4]. The lemma in [4] states that when the density of a
graph is greater than a constant c > 1, there exists a subgraph of size O(log n)
with more edges than vertices. If the underlying graph is the auxiliary multi-
graph GA defined in Sect. 2.1 and this condition holds, we know from [15] that
there exists a binocular of size O(log n).

Lemma 2 [15]. For any integer s ∀ 1 and any undirected multigraph G = (V,E)
with |E| ∀ s+1

s |V |, there exists a binocular of size at most 4s log n − 1.

Proof (Theorem2). For a given φ, let φ∈ = 2k+5
3 φ > 3φ. Let A be the packing

returned by Algorithm LI with parameter φ and for any other packing B, we
show that (k+1

3 + φ)|A| ∀ |B|. In the following, we use the corresponding small
letter of a capital letter (which represents a set) to represent the size of this set.

In Corollary 1, the collection of consistent tail changes Tc together replace
a set of at vertices At in A with bt = at vertices Bt in B. We exclude theses

Approximating the k-Set Packing Problem by Local Improvements 415

vertices from the original bipartite conflict graph G(A,B). Denote the remaining
graph by G(A∈, B∈). We add null edges to vertices in A∈ until every vertex in A∈

has degree k. There are ka∈ edges counting from A∈.
Let B∈

N = BN ∩ B∈ and b1n = |B∈
N |. We can also think of that there is a

null edge at each vertex in B∈
N when we count the number of edges from B∈. By

Lemma 1, there are at most φ∈b unmatched vertices in B1
1 . We further partition

the vertices in B∈ as follows. Let B2
3 (B2′

3) be the set of vertices in B∈ whose
degree drops to 2 after performing the tail changes in Tc, and for any vertex
v ≥ B2

3 (v∈ ≥ B2′
3), there is at least one (no) tail change in Tc associated with v.

Let B2
2 be the set of vertices in B∈ with degree 2 in G(A∈, B∈) and no neighbors

in At. Let B1
2 (B1

3) be the set of vertices in B∈ whose degree drops from 2 (at
least 3) in G(A,B) to 1 in G(A∈, B∈). Let B3

3 be the set of vertices in B∈ with
degree at least 3 in G(A∈, B∈). Moreover, there is no vertex in G(A∈, B∈) of degree
0, otherwise, there exists a local improvement.

By Lemma 1, the number of edges in G(A∈, B∈) is at least 2b1n + φ∈b + b12 +
2b22 + 2b23 + 3b33 + 2b2

′
3 + b13. Therefore,

k(a − at) ∀ 2b1n + φ∈b + b12 + 2b22 + 2b23 + 3b33 + 2b2
′

3 + b13. (1)

Next, we show that b1n + b12 + b22 + b23 ∃ (1 + φ∈)(a − at). Suppose the set
of neighbors of B∈

N , B2
2 , B

1
2 , B

2
3 in A∈ is A2. Construct an auxiliary multi-graph

GA2 as in Sect. 2.1, where the vertices are A2, every vertex in B∈
N , B1

2 creates a
self-loop, and every vertex in B2

2 , B
2
3 creates an edge. Assume GA2 has at least

(1 + φ∈)|A2| edges, implied by Lemma 2, there exists a binocular of size at most
4
α′ log |A2| − 1 in GA2 .

Let GA be the auxiliary multi-graph with vertices being A, every degree-1
vertex in B creates a self-loop, every degree-2 vertex in B creates an edge, and
every vertex v with degree dropping to 2 by performing some consistent tail
changes of this vertex in Tc creates an edge between the two neighbors u1, u2

of v, where (u1, v), (u2, v) are not associated with any tail change in Tc. (Notice
that contrary to the auxiliary multi-graph considered in [15], here some vertices
in B might simultaneously create an edge in GA and involve in tail changes.)
We have the following claim for sufficiently large n (n > (k

α)O(α)).

Claim 1. If there is a binocular of size p ∃ 4
α′ log |A2| − 1 in GA2 , there exists a

canonical improvement with tail changes in GA of size at most 12
α′ log n.

Implied by the claim, we know that there exists a canonical improvement with
tail changes in GA of size 12

α′ log n < 4
α log n, which can be found by Algorithm

LI. Therefore

(1 + φ∈)(a − at) ∀ (1 + φ∈)|A2| ∀ b1n + b12 + b22 + b23. (2)

Combining (1) and (2), we have

(k + 1 + φ∈)(a − at) ∀ 3b1n + φ∈b + 2b12 + 3b22 + 3b23 + 3b33 + 2b2
′

3 + b13

= 3(b − bt − φ∈b) − b12 − b2
′

3 − 2b13 + φ∈b. (3)

416 M. Fürer and H. Yu

Hence, (3 − 2φ∈)b ∃ (k + 1 + φ∈)a − (k − 2 + φ∈)at + b12 + b2
′

3 + 2b13.
Since every vertex in At can have at most k − 2 edges to B∈, we have b12 +

b2
′

3 + 2b13 ∃ (k − 2)at. Therefore, (3 − 2φ∈)b ∃ (k + 1 + φ∈)a. As φ∈ = 2k+5
3 φ, we

have b ∃ (k+1
3 + φ)a. ∅�

The proof of Claim 1 helps understand why we consider three more types
of local improvements in addition to binoculars and helps explain the algorithm
design in the next section.

Proof (Claim 1). Consider any binocular I in GA2 . If there is no edge in I which
is from B1

2 , we have a corresponding improvement I ∈ in GA by performing tail
changes for any edge from B2

3 in I. Otherwise, we assume that there is one
self-loop in I from v ≥ B1

2 . By definition, one neighbor u1 of v lies in At and
the other neighbor u2 in A∈. Suppose u1 belongs to a tail change in Tc which is
associated with w ≥ B2

3 . If w ≥ I, we associate w with tail changes in GA. In
GA, we remove the self-loop on u2 and add edge (u1, u2). In this way, we have
a path together with the other cycle in I which form an improvement in GA,
assuming the other cycle in I is not a self-loop from B1

2 . If the other cycle in I is
also a self-loop from v∈ ≥ B1

2 , let u∈
1 be a neighbor of v∈ in At and u∈

2 be the other
neighbor of v∈ in A∈. If u∈

1 belongs to the tail change associated with w∈ ≥ B2
3 and

w∈ ≥ I, the path between u2, u
∈
2 in I together with the edges (u1, u2), (u∈

1, u
∈
2)

form an improvement. If u1 = u∈
1, we have an improvement in GA as a cycle.

Other cases can be analyzed similarly. ∅�

4 The Algorithm and Main Results

In this section, we give an efficient implementation of Algorithm LI using the
color coding technique [2] and dynamic programming. Let U be the universe of
elements and K be a collection of kt colors, where t = 4

α log n · 2(k−1)
α · (k −

2) ∃ 4
α log n · 2k2

α . We assign every element in U one color from K uniformly at
random. If two k-sets contain 2k distinct colors, they are recognized as disjoint.
Applying color coding is crucial to obtain a polynomial-time algorithm for finding
a logarithmic-sized local improvement.

4.1 Efficiently Finding Canonical Improvements with Tail Changes

In this section, we show how to efficiently find canonical improvements with tail
changes using the color coding technique. Let C(S) be the set of distinct colors
contained in sets in S. We say a collection of sets is colorful if every set contains
k distinct colors and every two sets contain different colors.

Tail changes. We say a tail change Te(U, V) of a vertex v is colorful if V is
colorful, and the colors in C(V) are distinct from C(v). A surplus edge can be
associated with many tail changes. Let Tv(e) be all colorful tail changes of size at
most 2(k−1)

α which are associated with an edge e of v. We enumerate all subsets
of S \ A of size at most 2(k−1)

α and check if they are colorful, and if they are tail

Approximating the k-Set Packing Problem by Local Improvements 417

changes associated with e. The time to complete the search for all vertices is at
most nO(k/α).

The next step is to find all colorful groups of tail changes associated with v
such that after performing one group of tail changes, the degree of v drops to 2.
Notice that the tail changes in a colorful group are consistent. For every two edges
ei, ej of v, we can compute a collection of colorful groups of tail changes which
associate with all edges of v except ei, ej by comparing all possible combinations
of tail changes from E(v)\{ei, ej}. There are at most (nO(k/α))k−2 combinations.
For every group of colorful tail changes which together replace V with U , we
explicitly keep the information of which vertices are in U, V and the colors of
V . It takes at most nO(k2/α) space. To summarize, the time of finding colorful
groups of tail changes for every vertex of degree at least 3 is nO(k2/α).

Canonical improvements with tail changes. After finding all colorful tail
changes for every vertex of degree at least 3, we construct the auxiliary multi-
graph GA. For vertices a1, a2 in GA, we put an edge e(a1, a2) between a1 and
a2 if first, there is a set b ≥ C = S \ A intersecting with only a1, a2, or secondly,
there is a set b ≥ C of degree db ∀ 3 intersecting with a1, a2, and for other edges
of b, there exists at least one group of db − 2 colorful tail changes. In the first
case, we assign the colors of b to e(a1, a2). In the second case, we add as many
as nO(k2/α) edges between a1 and a2, and assign to each edge the colors of b
together with the colors of the corresponding group of db − 2 tail changes. The
number of edges between two vertices in GA is at most n ·nO(k2/α). The number
of colors assigned to each edge is at most 2k3

α (Notice that the number of colors

on an edge is at most k(1+ (k−1)2/α−1
k−2)(k − 2). This is at most 2k3

α for φ < k +5,
which is usually the case.) Moreover, we add a self-loop for a vertex a in GA

if there exists a set b ≥ C such that b intersects only with set a and assign the
colors of b to this self-loop.

We use the dynamic programming algorithm to find all colorful paths and
cycles of length p = 4

α log n in GA. A path/cycle is colorful if all the edges contain
distinct colors. If we did not consider improvements containing at most one cycle,
we could use a similar algorithm as in [15]. In our case, when extending a path
by an edge e by dynamic programming, we would like to keep the information
of the vertices replaced by the tail changes of e in this path. This would take
quasi-polynomial time when backtracking the computation table. By Claim 1, it
is sufficient to check for every path with endpoints u, v, if there is an edge of this
path containing a tail change Te(U, V), such that u ≥ U or v ≥ U . We sketch
the algorithm as follows. For a given set of colors C, let P(u, v, j, C, qu, qv) be an
indicator function of whether there exists a path of length j from vertex u to v
with the union of the colors of these edges equal C. qu(qv) are indicator variables
of whether there is a tail change Te(U, V) of some edge in the path such that
u ≥ U(v ≥ U). The computation table can be initialized as P(u, u, 0, ∅, 0, 0) = 1
and P(u, v, 0, ∅, 0, 0) = 1, for every u, v ≥ A. In general, for a fixed set of colors C
and integer j ∀ 1, P(u, v, j, C, qu, qv) = 1 if there exists a neighbor w of v, such
that P(u,w, j − 1, C ∈, qu, qw) = 1, C ∈ ∈ C((w, v)) = C and C ∈ ∩ C((w, v)) = ∅.

418 M. Fürer and H. Yu

If C((w, v)) > k (i.e., there are tail changes), we check every edge between w and
v which satisfies the previous conditions. If there exists an edge associated with
a tail change Te(U, V) such that u, v ≥ U , we mark qu = 1, qv = 1. Otherwise, if
there exists an edge associated with a tail change Te(U, V) such that u ≥ U , we
mark qu = 1. To find colorful cycles, we query the result of P(u, u, j, C, qu, qu)
for j ∀ 1. Recall that we use kt many colors, where t ∃ p · 2k2

α . The running time
of finding all colorful paths and cycles is O(n3kp2kt), which is nO(k3/α2).

The final step is to find canonical improvements with tail changes by combin-
ing colorful paths and cycles to form one of the six types defined in Sect. 3.1 by
enumerating all possibilities. The running time of this step is nO(k3/α2). We omit
the details of the time complexity analysis. In conclusion, the total running time
of finding colorful tail changes, colorful paths/cycles, and canonical improve-
ments with tail changes is nO(k3/α2). We call this color coding based algorithm
Algorithm CITC (canonical improvement with tail changes).

4.2 Main Results

In this section, we present our main results. We first present a randomized local
improvement algorithm. The probability that Algorithm CITC succeeds in find-
ing a canonical improvement with tail changes if one exists can be calculated
as follows. The number of sets involved in a canonical improvement with tail
changes is at most 2k2

α · 4 log n
α . The probability that an improvement with i sets

having all ki elements of distinct color is
(
kt
ki

)
(ki)!

(kt)ki
=

(kt)!
(kt − ki)!(kt)ki

∀ (kt)!
(kt)kt

> e−kt ∀ n−8k3/α2 . (4)

Let N = n8k3/α2 ln n. We run Algorithm CITC 2N times and each time with
a fresh random coloring. From (4), we know that the probability that at least one
call of CITC succeeds in finding an improvement is at least 1−(1−n−8k3/α2)2N ∀
1 − exp(n−8k3/α2 · 2n−8k3/α2 ln n) = 1 − n−2.

Since there are at most n local improvements for the problem, the probability
that all attempts succeed is at least (1 − n−2)n ∀ 1 − n−1 −⊂ 1 as n −⊂ ⊕.
Hence this randomized algorithm has an approximation ratio k+1

3 + φ with high
probability. We call this algorithm Algorithm RLI (R for randomized). The
running time of the algorithm is 2N · nO(k3/α2), which is nO(k3/α2).

We can obtain a deterministic implementation of Algorithm RLI, which
always succeeds in finding a canonical improvement with tail changes if one
exists. We call this deterministic algorithm Algorithm DLI (D for determin-
istic). The general approach is given by Alon et al. [1]. The idea is to find a
collection of colorings K, such that for every improvement there exists a coloring
K ≥ K that assigns distinct colors to the sets involved in this improvement.
Then Algorithm CITC can be implemented on every coloring until an improve-
ment is found. The collection of colorings satisfying this requirement can be
constructed using perfect hash functions as in [1]. In our case, we need nO(k3/α2)

Approximating the k-Set Packing Problem by Local Improvements 419

hash functions, therefore a total nO(k3/α2) runs of dynamic programming to find
an improvement.

Theorem 3. For any φ > 0, Algorithm DLI achieves an approximation ratio
k+1
3 + φ of the k-Set Packing problem in time nO(k3/α2).

Theorem 4. For any t ∃
(

3e3n
k

)1/5

, there exist two disjoint collections of k-
sets A and B with |A| = 3n and |B| = (k +1)n, such that any collection of t sets
in B intersect with at least t sets in A.

Theorem 4 gives a tight example of Algorithm DLI. The construction is as
follows. We index the sets in A from 1 to 3n. Every set in B induced on A is a
2-set or a 3-set. There are b2 = 3n 2-sets and b3 = (k−2)n 3-sets in B. We index
the 2-sets in B from 1 to 3n. The i-th 2-set intersects with the (i − 1)-th and
the i-th set in A (the 0-th set is the n-th set in A). The 3-sets are constructed
by partitioning the elements not covered by 2-sets in U into groups of three
uniformly at random. The proof of Theorem4 is omitted. This lower bound
matches the performance guarantee of Algorithm DLI. This indicates that this
is possibly the best result that can be achieved by a local improvement algorithm
for the k-Set Packing problem.

References

1. Alon, N., Naor, M.: Derandomization, witnesses for boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16(4/5), 434–449 (1996)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw

free graphs. Nord. J. Comput. 7(3), 178–184 (2000)
4. Berman, P., Fürer, M.: Approximating maximum independent set in bounded

degree graphs. In: SODA, pp. 365–371 (1994)
5. Chan, Y., Lau, L.: On linear and semidefinite programming relaxations for hyper-

graph matching. In: SODA, pp. 1500–1511 (2010)
6. Chandra, B., Halldórsson, M.: Greedy local improvement and weighted set packing

approximation. In: SODA, pp. 169–176 (1999)
7. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-

width local search. In: FOCS, pp. 509–518 (2013)
8. Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: the hypermatch-

ing assignment problem. In: SODA, pp. 342–351 (2013)
9. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U.,

Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for
matching and packing problems. Algorithmica 52(2), 167–176 (2008)

10. Fürer, M., Yu, H.: Approximating the k-set packing problem by local improve-
ments. http://arxiv.org/abs/1307.2262

11. Halldórsson, M.: Approximating discrete collections via local improvements. In:
SODA, pp. 160–169 (1995)

12. H̊astad, J.: Clique is hard to approximate within n1−δ. In: FOCS, pp. 627–636
(1996)

http://arxiv.org/abs/1307.2262

420 M. Fürer and H. Yu

13. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20–39 (2006)

14. Hurkens, C.A., Shrijver, J.: On the size of systems of sets every t of which have an
SDR, with an application to the worst-case ratio of heuristics for packing problems.
SIAM J. Discrete Math. 2(1), 68–72 (1989)

15. Sviridenko, M., Ward, J.: Large neighborhood local search for the maximum set
packing problem. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 792–803. Springer, Heidelberg (2013)

Multi-Objective Cuckoo Search
with Leader Selection Strategies

Kamel Zeltni1,2(B) and Souham Meshoul1

1 College of NTIC, Computer Science and its Applications Department,
Constantine 2 University, Constantine, Algeria

2 MISC Laboratory, Constantine, Algeria
kamel.zeltni@gmail.com, smeshoul@umc.edu.dz

Abstract. Cuckoo Search has been recently added to the pool of nature
inspired metaheuristics. Its promising results in solving single objective
optimization motivate its use in multiobjetive context. In this paper
we describe a Pareto based multiobjective Cuckoo search algorithm.
Like swarm based metaheuristics, the basic algorithm needs to spec-
ify the best solutions in order to update the population. As the best
solution is not unique in multiobjective optimization, this requires the
use of a selection strategy. For this purpose, we propose in this paper
investigation of five leader selection strategies namely random selec-
tion, sigma method, crowding distance method, hybrid selection method
and MaxiMin method. Performance of the proposed algorithm has been
assessed using benchmark problems from the field of numerical optimiza-
tion. Impact of selection strategies on both convergence and diversity of
obtained fronts has been studied empirically. Experimental results show
in one hand the great ability of the proposed algorithm to deal with mul-
tiobjective optimization and in other hand no strategy has been shown
to be the best in all test problems from both convergence and diversity
points of view. However they may impact significantly the performance
of the algorithm in some cases.

Keywords: Cuckoo search · Multiobjective optimization · Convergence ·
Diversity · Leader selection · Pareto dominance

1 Introduction

In many areas of science and business and even in our daily life, selecting the
best element with regard to some objectives from a set of available alternatives
is a common problem. This later is essentially an optimization task. During the
last decades optimization became an essential tool in different domains ranging
from engineering, telecommunications to bioinformatics and business to name
just few. Optimization problems can be of different types with regard to some
classification criteria. A good encyclopedia on optimization can be found in [5]. In
most cases, it is rare for any real world decision problem to require optimization

c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 421–432, 2014.
DOI: 10.1007/978-3-319-09174-7 36

422 K. Zeltni and S. Meshoul

of only one objective. Usually decision problems are complex and involve many
tradeoffs because many objectives that are often conflicting need to be taken into
account. Such problems are known as Multi-Objective Problems (MOPs). Basi-
cally, a MOP consists in finding solutions to problems in a way to optimize a set
of objectives while satisfying a set of constraints. In the literature, multiobjective
optimization has been performed in different ways [6]. Methods for multiobjec-
tive optimization fall into four main classes depending on the way objectives
are handled during the optimization process. These classes include aggregation
methods, lexicographic ordering based methods, Pareto based methods and non-
pareto based mothods. Pareto based methods are particularly interesting because
they offer a suitable way namely the dominance concept to deal with the con-
flicting relationship between objectives that makes amelioration of one objective
causes deterioration of another. According to dominance relation, a solution is
said to dominate another one if it is as good as it in all objectives and if it
is strictly better than it in at least one objective. Therefore, solving a MOP
using Pareto dominance concept consists in identifying the set of non domi-
nated solutions that represent the possible tradeoffs between objectives. With
this regard, nature inspired metaheuristics and especially population based ones
offer an attractive way to solve MOPs as they are able to find a set of solutions
in a single run. Genetic Algorithm (GA) [9] and Particle Swarm Optimization
methods (PSO) [11] have been largely investigated in the field of multiobjective
optimization. Many Evolutionary Algorithms have been proposed like NSGAII
[7], SPEA2 [24] and PAES [12]. Also there have been diverse Multiobjective
algorithms based on PSO called MOPSO [14]. However, recent metaheuristics
like Cuckoo Search (CS) need to be studied in the context of multiobjective
optimization.

CS is a population based metaheuristic recently developed by Xin-She Yang
et al. in 2009 [21,22]. It is based on the cuckoo parasitism, by laying their eggs
in the nests of other birds. CS is based on two fundamental concepts namely
the reproductive behavior of cuckoos and levy flight rather than simple random
walk. Recent studies have shown the competitiveness of CS compared to GA
and PSO in single-objective optimization. Therefore, its extension to MOPs is
a natural progression. To the best of our knowledge, only two papers have been
published [18,20] in which authors proposed an application of a multiobjective
CS to design optimizationan and a real-world manufacturing process respec-
tively. According to the dynamics of the basic CS as proposed in [21,22], best
solutions are used to update the current generation in order to compute the new
generation. Translating this fact to multiobjective context imposes the use of
a leader selection strategy. In both papers [18,20] it is not mentioned how this
task has been performed. In this paper, we propose investigating the impact of
leader selection strategies to study the extent to which they may improve the
performance of a CS algorithm in multiobjective optimization. Two performance
measures have been used for this purpose namely convergence and diversity of
obtained Pareto fronts.

Multi-Objective Cuckoo Search with Leader Selection Strategies 423

The remainder of the paper is organized as follows. In Sect. 2, the basic
concepts related to multiobjective optimization are given. Section 3 provides a
description of the basic single objective CS algorithm. Section 4 is devoted to the
proposed multiobjective CS algorithm with leader selection strategies. In Sect. 5,
experimental results using benchmark functions are given and discussed. Finally,
conclusions and perspectives are drawn.

2 Multiobjective Optimization: Basic Concepts
and Related Work

2.1 Basic Concept

A MOP is defined by a decision space S ∈ Rn, a set of objectives F and a set
of constraints. It aims at determining the decision vector X∗ ≤ S that optimizes
objectives in F. As it is not possible to optimize all objectives simultaneously,
several decision vectors may be solution candidates and form the so called Pareto
optimal set the image of which in the objective space is known as the Pareto
front. Mathematically a MOP can be formulated as:

Minimize (Maximize)
−≥
F (

−≥
X) = (f1(

−≥
X), . . . , fm(

−≥
X))

Subject to (g1(
−≥
X), . . . , gk(

−≥
X)) � 0 (inequality constraints)

and (h1(
−≥
X), . . . , hk(

−≥
X)) = 0 (equality constraints)

where
−≥
X = (x1, . . . , xn) ≤ S

where
−≥
X is the decision vector and

−≥
F the objective vector.

Comparing solutions in multiobjective context is based on dominance rela-
tion. A vector

−≥
U in the decision space is said to dominate a vector

−≥
V denoted

by
−≥
U � −≥

V if and only if (when considering a minimization task)

∀i ≤ [1, n], fi(
−≥
U) � fi(

−≥
V) and ∀j fj(

−≥
U) < fj(

−≥
V)

A solution
−≥
U is said to be Pareto optimal if and only if it is not dominated by

any other solution
−≥
V in S

2.2 Related Work

Like evolutionary algorithms, much interest has been devoted to swarm based
metaheuristics to solve multiobjective optimization problems during the last few
years. This class of metaheuristics is also inspired by nature, but instead by evolu-
tion, their development has been motivated by the flocking and swarm behavior
of birds like particle swarm optimization (PSO) and insects like artificial bee
colony optimization (ABC) [19]. These approaches operate on a population of
candidate solutions that are updated within an iterative process. Generally, such
updates are done by taking into account the self performance of each member of

424 K. Zeltni and S. Meshoul

the swarm as well as the global performance within the swarm. In another way,
search is guided by two mechanisms related to the influence of self performance
and the influence of global performance. Therefore, the use of these metaheuris-
tics for multiobjective optimization raises an issue about the selection of the
global guide or leader as it is not unique in this case. To deal with this issue sev-
eral techniques and strategies have been proposed in the literature with the aim
to obtain a good approximation of the optimal Pareto set. The simplest way to
choose a global leader is random selection. Mostaghim and Teich [15] proposed a
leader selection method for a MOPSO based on a density measure called Sigma
method. Its principle is to select as a leader for a particular particle the member
of the external archive (i.e. the set of nondominated solutions) that is close to
the particle in terms of sigma values computed for the particle and each mem-
ber of the external archive. Crowding distance has been also used as a leader
selection strategy. Originally, it has been proposed by Deb et al. for NSGAII [7]
to promote diversity of the obtained Pareto fronts. The mechanism of crowding
distance computation was incorporated into a PSO algorithm for global best
selection in [16]. Since, this strategy is largely used in context of MOP for select-
ing leaders. Its principle is to favor selection of members that are located in less
crowded regions. Baling was the first to propose the use of the Maximin fitness
for Multiobjective Evolutionary optimization [2] for archiving a set of optimal
solutions. Later it has been applied to select leader in a maximinPSO algorithm
[13]. More recently a hybrid method that combines Sigma and Crowding dis-
tance has been proposed in [1]. It consists in determining the k neighbors of
each particle in terms of sigma values then to select the leader among these k
candidates using crowding distance. Other strategies were recently reported like
density estimation [10] and Step by step Rejection SR [4].

3 Basic Cuckoo Search Algorithm

Cuckoos are species with amazing reproduction strategy. They do not build their
own nests, but they engage the obligate brood parasitism by laying their eggs in
the nest of other birds, though some cuckoos species may remove others∈ eggs to
increase a survival probability of their own eggs [3]. Sometimes, the egg of cuckoo
in the nest is discovered by host bird, in this case the host bird will either throw
away the alien eggs or simply abandon the nest and build a new nest elsewhere.
To develop the standard Cuckoo Search algorithm by Yang and Deb [21,22] the
authors supposed the following three idealized rules:

– Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
– The best nests with high quality of eggs (solutions) will carry over to the next

generations.
– The number of available host nests is fixed, and a host can discover an alien

egg with probability pα ≤ [0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest to build a completely new nest in a new
location. This can be approximated by a fraction pα of the n nests being
replaced by new nests (with new random solutions at new locations).

Multi-Objective Cuckoo Search with Leader Selection Strategies 425

Knowing that a nest represent a potential solution, the three previous rules have
been inplemented as follows: The first rule can be applied using randomization
process, where the new solution xt+1 is generated randomly by using Lévy flight
equation (1).

xt+1
i = xt

i + α ∃ levy (β) (1)

Lévy flights essentially provide a random walk while their random steps are
drawn from a Lévy distribution for large steps which has an infinite variance
with an infinite mean.

The Second rule corresponds to elitism where the best solutions are passed
onto the next generation. The third rule can be considered as a mutation oper-
ation where the fraction pα in solutions dimension is replaced by new generated
one according to a probability.

4 Proposed Multiobjective Cuckoo Search with Leader
Selection

Motivated by the success and promising results of single objective CS algorithm,
we propose in this section its use for multiobjective optimization. For this pur-
pose two issues need to be addressed. The first one is related to the way to keep
and manage non-dominated solutions that are found during the search process
and the second one is related to the strategy to use in order to select leaders
to update solutions. Like other multiobjective evolutionary algorithms, using an
archive to serve as a repository of nondominated solutions is adopted in our work
to solve the first issue. As for the second one, we propose investigating several
leader selection strategies namely random selection, sigma method, crowding
distance method, a hybrid selection strategy and MaxiMin method. The pro-
posed multiobjective CS algorithm with leader selection is outlined below in
Algorithm 2.

Algorithm 1. Select Best(X, A, Sigma)
Input : X: current solution

A: current archive
Output: leader

n = |A|
X.σ= Sigma(X.objective vector)
For each non dominated solution j in A

A(j).σ = Sigma(A(j).objective vector)
A(j).distance=calcdist(X.σ, A(j).σ)

endFor
Sort distance according to A.distance in ascending order
leader = A(1)

426 K. Zeltni and S. Meshoul

Algorithm 2. CSMO
Step 1: Initialization

– 1.1. t=0
– 1.2. Pt=create a population of N candidate solutions
– 1.3. For each solution Xi in Pt objectives vectort

i = evaluate(X
(t)
i) endFor

– 1.4. At= Create initial global archive

Step 2: Iteration search process

– 2.1. Pt+1 = {}
– 2.2. For each solution X

(t)
i (i = 1..N) in Pt // get new solution according to

equation 1
• 2.2.a. Besti = Select Best(Xi, Ai, SelectStrategy)
• 2.2.b. Step=Compute step according to lévy flight distribution
• 2.2.c. Step size= f ∈ step ∈ (X

(t)
i − Besti)

• 2.2.d. X
(t+1)
i = X

(t)
i + Step size ∈ randn(size(X

(t)
i))

• 2.2.e. objective vectort
i = evaluate(X

(t)
i)

• 2.2.f. Update solution Xi

If X
(t+1)
i dominates X

(t)
i in the objective space Then

Pt+1 = Pt+1 ≤ {X
(t+1)
i }

else

Pt+1 = Pt+1 ≤ {X
(t)
i }

endIf
– 2.3. At =Updade global archive

endFor
– 2.4. For each solution Xi in Pt+1

• 2.4.a. newi= apply mutation on fraction Pα of solution dimention;
• 2.4.b. Update solution Xi

If newi dominates Xi in the objective space then
Xi = newi

endIf
endFor

– 2.5. At =Updade global archive
– 2.6. t=t+1
– 2.7. Check stopping criterion

If stopping criterion not satisfied
go to step 2

else
stop search and output At−1

endIf

As shown in the Algorithm2, the process starts with an initialization phase
step (1) during which a population of N candidate solutions are generated ran-
domly according to the domain of each problem dimension (1.2). A solution
corresponds to a nest in the biological metaphor. Then these solutions are eval-
uated in order to get their vector of objectives’ values (1.3). Using dominance

Multi-Objective Cuckoo Search with Leader Selection Strategies 427

relation, non-dominated solutions within the initial population are determined
to create the initial archive (1.4). Then the search process undergoes an iterative
phase where the population is updated according to a specific dynamics Step 2.
At each iteration, each solution in the current population is modified as follows
(2.2). First, a guide or leader is selected from the current archive (2.2.a). This
is done using a leader selection strategy. The investigated strategies are outlined
in Algorithms 3, 1 and 4 . Then a step size is calculated based on a factor f,
a step drawn from Levy flights distribution and the gap between the current
solution and its selected leader (2.2.c). The factor f is related to the typical step
size of flights. Whenever the current solution is equal to its leader it remains
unchanged.

The new solution is compared to the old one based on dominance relation.
The nondominated one among them is kept in the new population (2.2.f). Once
all solutions are processed in this manner, the global archive is updated based on
the current nondominated solutions and the new population (2.3). After these
steps, the new population undergoes a mutation operation (2.4). A mutated
solution is allowed to join the new population only if it dominates the original
one. In this case, this later is removed from the current population and the global
archive is updated again (2.5). At this stage (2.7), if the stopping criterion
is satisfied the current global archive is given as the output of the algorithm
otherwise the process undergoes a new iteration.

Algorithm 3. Select Best(X, A, Crowding Distance)
Input : X: current solution

A: current archive
Output: leader

n = |A| // Archive size

For each non dominated solution i in A
A(i).distance = 0

endFor
For each objective j

A = sort(A.objective vector(j))
A(1).distance = ∞
A(n).distance = ∞
For i = 2 to (n − 1)

A(i).distance = A(i).distance+
[A(i+1).objective vector(j)−A(i−1).objective vector(j)]

[A(n).objective vector(j)−A(1).objective vector(j)

endFor
endFor
sort A according to A.distance in descending order
leader = A(1)

428 K. Zeltni and S. Meshoul

Algorithm 4. Select Best(X, A, Maximin)
Input : X: current solution

A: current archive
Output: leader

For each member i in A
For each member j in A j ≥= i

For each objective m
temp(j) = A(i).objective vector(m) − A(j).objective vector(m)

endFor
Minimum(i) = min(temp)

endFor
maximin = max(Minimum)

endFor
leader = max(Maximin)

5 Experimental Result

The performance of the proposed algorithm have been assessed using two metrics
that measure convergence and diversity of obtained Pareto fronts [7]. Conver-
gence metric shows the extent to which an obtained Pareto front is close to the
optimal front. It is described by the following equation:

Υ =

n∑

i=1

min
j=1...m

(eucldist(Fi,Hj))

n
(2)

where H is known set of pareto-optimal solutions with m solutions, F is the set
of non-dominated solutions found by the algorithm with n solutions and eucldist
is the euclidean distance between two given solutions.

Diversity metric gives an indication about the uniformity of distribution of
solutions along the Pareto front. It is given by the following equation

�=
df + dl +

N−1∑

i=1

∣
∣di − d

∣
∣

df + dt + (N − 1)d
(3)

where, df and dl are the euclidean distance between the extreme solution in
the Pareto-optimal set, di is the ith solution in the obtained non-dominated set
and d is the avrage of all distances. Smaller values of these two metrics indicate
better convergence and diversity.

In our experiments, five benchmark problems related to numerical optimiza-
tion have been considered. ZDT1 3 from the ZDT serie proposed by Ziztler et
al. [23], Fonseca and Flemings study (FON) [8] and Schaffers study (SCH) [17],
All problems have two objective functions without constraints.

Multi-Objective Cuckoo Search with Leader Selection Strategies 429

Fig. 1. Experimental result: (a) Obtained fronts, (b) Convergence results, (c) Diversity
results.

430 K. Zeltni and S. Meshoul

Table 1. Complementary statistics of convergence and diversity metrics

ZDT1 ZDT2 ZDT3 SCH FON

Convergence Mean Random 0,01714 0,02401 0,00953 0,00429 0,00552

Sigma 0,02588 0,03740 0,01117 0,00379 0,00813

Crowding 0,01938 0,02448 0,00941 0,00438 0,00610

Sigma CD 0,01964 0,02576 0,00880 0,00422 0,00711

Maximin 0,01929 0,03032 0,00909 0,00340 0,00621

StdDev Random 0,00347 0,00758 0,00272 0,00029 0,00094

Sigma 0,00557 0,01117 0,00210 0,00026 0,00118

Crowding 0,00316 0,00707 0,00169 0,00029 0,00099

Sigma CD 0,00295 0,00556 0,00116 0,00024 0,00078

Maximin 0,00331 0,00694 0,00159 0,00021 0,00060

Diversity Mean Random 0,56217 0,64163 0,83166 1,07838 0,61327

Sigma 0,58484 0,64014 0,85490 0,95290 0,57588

Crowding 0,54721 0,64271 0,83785 1,03345 0,63503

Sigma CD 0,54071 0,47555 0,83201 0,38964 0,59993

Maximin 0,53539 0,63750 0,82632 0,79129 0,60852

StdDev Random 0,06044 0,08209 0,04214 0,06987 0,05022

Sigma 0,08165 0,07450 0,03689 0,05253 0,04173

Crowding 0,05350 0,08122 0,04595 0,05709 0,08650

Sigma CD 0,05019 0,06307 0,04708 0,05055 0,05667

Maximin 0,05122 0,07327 0,03749 0,06304 0,05617

In all tests, the number of iterations is set to 500 and population size to 150.
The fraction pα used for mutation has been set to 0.25 as recommended in the
literature [21].

Figure 1(a) shows the obtained fronts for each test problem against the true
optimal fronts. Clearly, we can see that the algorithm succeeded in achieving
good Pareto fronts.

In order to study the impact of selection strategies the following experiment
has been conducted. For each test problem, the proposed multiobjective opti-
mization algorithm with a specific selection strategy has been run 50 times.
Convergence and diversity results have been gathered and they are shown as
boxplots on Fig. 1(b) and (c) respectively. Complementary statistics are given
on Table 1.

The following remarks can be made based on these results. From convergence
point of view, the algorithm performs poorly with sigma method on ZDT1 prob-
lem while the other strategies achieves competitive results. For ZDT2 all strate-
gies are competitive with a slight advantage for crowding distance method in
terms of median value and stability. Once again sigma method gave worst results
in this case although it was able to find the best convergence value in one of the

Multi-Objective Cuckoo Search with Leader Selection Strategies 431

runs. With ZDT3, results reveal that sigma method is the worst both in terms
of median and best value. The others strategies have nearly similar convergence
with little advantage to the hybrid method in term of stability. Concerning FON
and SCH the results are almost similar or competitive. Sigma method achieves
the worst results and MaxiMin has been found to be slightly better in SCH case.

From diversity point of view, the hybrid method is significantly better than
the other strategies on ZDT2 and SCH test problems. For example, the worst
value achieved for ZDT2 is in the neighborhood of the median of the other
strategies. MaxiMin and hybrid method seem to be relatively better in terms
of median and best value on ZDT3 problem. For ZDT1, better results have
been obtained with MaxiMin. in other cases, results are competitive. In the
light of these results, we can say that compared to a random selection, the other
strategies may impact significantly the performance of the algorithm. No strategy
has been shown to be the best in all test problems from both convergence and
diversity points of view.

6 Conclusion and Perspectives

In this paper a multiobjective Cuckoo Search algorithm has been proposed.
Updating candidate solutions during the search process requires selection of a
leader. To handle this issue properly, leader selection strategies have been incor-
porated in the proposed algorithm. Experimental results using benchmark prob-
lems have shown the ability of the proposed algorithm to solve MOPs. Although
no strategy has been found to be the best in all cases, it is worth mentioning
that they may impact significantly the performance of the algorithm in terms of
convergence and diversity.

References

1. AlBaity, H., Meshoul, S., Kaban, A.: On extending quantum behaved particle
swarm optimization to multiobjective context. In: proceedings of the 2012 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)

2. Balling, R.J.: The maximin fitness function for multiobjective evolutionary opti-
mization. In: Parmee, I.C., Hajela, P. (eds.) Optimization in Industry, pp. 135–147.
Springer, London (2002)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

4. Cheng, S., Chen, M.-Y., Hu, G.: An approach for diversity and convergence
improvement of multi-objective particle swarm optimization. In: Yin, Z., Pan,
L., Fang, X. (eds.) Proceedings of The Eighth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA), 2013. AISC, vol. 212,
pp. 495–503. Springer, Heidelberg (2013)

5. Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization: With 247 Tables.
Springer, New York (2009)

6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

432 K. Zeltni and S. Meshoul

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197
(2002)

8. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint
handling with evolutionary algorithms. i. a unified formulation. IEEE Trans. Syst.
Man Cybern. Part A Syst. Humans 28, 26–37 (1998)

9. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley, Reading (1988)

10. Hu, W., Yen, G.G.: Density estimation for selecting leaders and maintaining archive
in MOPSO. In: Proceedings of the 2013 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 181–188 (2013)

11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
1995 IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

12. Knowles, J., Corne, D.: The Pareto archived evolution strategy: a new baseline
algorithm for Pareto multiobjective optimisation. In: Proceedings of the 1999
Congress on Evolutionary Computation, CEC 99 (1999)

13. Li, X.: Better spread and convergence: particle swarm multiobjective optimization
using the maximin fitness function. In: Deb, K., Tari, Z. (eds.) GECCO 2004.
LNCS, vol. 3102, pp. 117–128. Springer, Heidelberg (2004)

14. Mohankrishna, S., Maheshwari, D., Satyanarayana, P., Satapathy, S.C.: A compre-
hensive study of particle swarm based multi-objective optimization. In: Satapathy,
S.C., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the InConINDIA 2012.
AISC, vol. 132, pp. 689–701. Springer, Heidelberg (2012)

15. Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective
particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, SIS’03, pp. 26–33 (2003)

16. Raquel, C.R., Naval, P.C. Jr.: An effective use of crowding distance in multiobjec-
tive particle swarm optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 257–264 (2005)

17. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algo-
rithms. In: Proceedings of the 1st International Conference on Genetic Algorithms,
pp. 93–100. L. Erlbaum Associates Inc, (1985)

18. Syberfeldt, A.: Multi-objective optimization of a real-world manufacturing process
using cuckoo search. In: Yang, X.-S. (ed.) Cuckoo Search and Firefly Algorithm.
SCI, vol. 516, pp. 179–193. Springer, Heidelberg (2014)

19. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Chichester
(2009)

20. Yang, X.-S., Deb, S.: Multiobjective cuckoo search for design optimization. Com-
put. Oper. Res. 40, 1616–1624 (2006–2013)

21. Yang, X.-S., Deb, S. Cuckoo search via lévy flights. In: Proceedings of the World
Congress on Nature and Biologically Inspired Computing, NaBIC 2009, December
2009, India, pp. 210–214. IEEE Publications, USA (2009)

22. Yang, X.-S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math.
Model. Numer. Optim. 1, 330–343 (2010)

23. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. In: Proceeding of the Evolutionary Computation, vol. 8,
pp. 173–195, (summer 2000)

24. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-
lutionary algorithm. Eidgenssische Technische Hochschule Zrich (ETH), Institut
für Technische Informatik und Kommunikationsnetze (TIK) (2001)

Vulnerability Assessment of Spatial Networks:
Models and Solutions

Eduardo Álvarez-Miranda1,2(B), Alfredo Candia-Véjar2, Emilio Carrizosa3,
and Francisco Pérez-Galarce2

1 DEI, Università di Bologna, Bologna, Italy
e.alvarez@unibo.it

2 DMGI, Universidad de Talca, Talca, Chile
{ealvarez,acandia,franperez}@utalca.cl

3 Faculdad de Matemáticas, Universidad de Sevilla, Seville, Spain
ecarrizosa@sevilla.es

Abstract. In this paper we present a collection of combinatorial
optimization problems that allows to assess the vulnerability of spatial
networks in the presence of disruptions. The proposed measures of vul-
nerability along with the model of failure are suitable in many applica-
tions where the consideration of failures in the transportation system is
crucial. By means of computational results, we show how the proposed
methodology allows us to find useful information regarding the capacity
of a network to resist disruptions and under which circumstances the
network collapses.

1 Introduction

Shortest path problems correspond to an old and very known class of problems
in combinatorial optimization. A variant of one of these basic problem consists
on analyzing the effects of removing arcs from a network. In [14] the problem of
removing k arcs that cause the greatest decrease in the maximum flow from a
source to a sink in a planar network is studied. This problem is a special case
of a broad class of network optimization problems known as interdiction prob-
lems. Applied to the shortest s, t-path problem, the interdiction problem can
be defined in the following way. Given a graph G = (V,E) with a non-negative
length function on its arcs l : E → R and two terminals s, t ∈ V , the goal is to
destroy all (or the best) paths from s to t in G by optimally eliminating as many
arcs of A as possible (usually respecting a so-called interdiction budget). Inter-
diction problems are often used to measure the robustness of solutions of network
optimization problems. In [9] several versions of these problems are studied; they
consider the case of total limited interdiction when a fixed number of k arcs can
be removed, and node-wise limited interdiction (for each node v ∈ V a fixed
number k(v) of out-going arcs can be removed). For a complete survey on early
interdiction problems with different underlying network properties the reader is
referred to [2]. For a more general discussion regarding network vulnerability
approaches we suggest to see [10].
c© Springer International Publishing Switzerland 2014
P. Fouilhoux et al. (Eds.): ISCO 2014, LNCS 8596, pp. 433–444, 2014.
DOI: 10.1007/978-3-319-09174-7 37

434 E. Álvarez-Miranda et al.

Based on a well-known network interdiction model we formulate a framework
of combinatorial optimization problems whose solutions can be used for assess-
ing the vulnerability of spatial networks in the case of disruptions. We design
a flexible model of network disruption based on the geometric characteristics of
spatial networks. This model incorporates the nature of the disruptions present
in different situations such as military planning [5,8], terrorist attacks [12] or
emergency control of infectious disease spreading [1]. The proposed problems,
along with the model of disruption, span several realizations of network interdic-
tion providing a useful tool to characterize network vulnerability. Our aim is to
propose a methodology that uses network optimization problems to characterize
the robustness of a network in the presence of multiple failures.

In Sect. 2 we present the optimization framework for vulnerability assessment;
in Sect. 3 we report computational results on realistic instances; these results
show the versatility of the proposed models to characterize the robustness of the
network infrastructure. Finally, in Sect. 4 we draw final conclusions and propose
paths for future work.

2 Vulnerability Measures as Optimization Problems

Notation. Let G = (V,E) be a spatial network such that |V | = n and |E| = m.
Let s, t ∈ V be a source and a target node respectively; le, ∀e : {i, j} ∈ E, be
the cost of edge e (distance between i and j); and φ be the cost of the shortest
s, t-path on G with edge costs given by le, ∀e ∈ E.

Let X ⊂ R
2 be an arbitrary sub-region of R2. An element x ∈ X is a point in

X ; for a given point x and a given edge e, let d(x, e) be the minimum distance
between x and the line segment defined by e (recall that e : {i, j} links node i
with node j, whose positions are given). For a given R ∈ R

>0 and a given x ∈ X ,
let Ex = {e ∈ E | d(e, x) > R} and Ēx = {e ∈ E | d(e, x) ≤ R}. In other words,
Ex is the set of edges that are not reached by the disk of radius R centered at x
(the disruption disk σ(x,R)), and Ēx is the set of disrupted or interdiced edges.
We will refer to Gx = (V,Ex) as the operating network with respect to σ(x,R).
Note that Gx might be disconnected.

The model of failure represented by σ(x,R) embodies a characteristic of dis-
ruption produced by many different sources: instead of having isolated failures,
we have a set of failures all of them circumscribed within a delimited area. This
naturally occurs in the application contexts that we have already mentioned.

2.1 The Max-Cost Single-Failure Shortest Path Problem

Let us assume that X is a finite set of points x in R
2 and that R can take values

in R which is a finite subset of R>0. Given a radius R ∈ R and a discrete set
X , we are interested in knowing what is the maximum length α of a shortest
s, t-path across all possible locations x ∈ X of the disruption disk σ(x,R).

Knowing α is threefold: (i) It tells us how severe a disruption can be by
comparing the value of α with respect to φ; in other words, the increase of the

Vulnerability Assessment of Spatial Networks: Models and Solutions 435

Fig. 1. Example of a network G = (V, E), nodes s and t, a region X and different
interdiction cases. (a) No failure disk, (b) A disk ρ(x1, R1), (c) Two disks ρ(x1, R1)
and ρ(x2, R2).

transportation time between s and t induced by a failure located in the worst
location x∗ = argx∈X {α}. (ii) From the tactical point of view, preventive actions
can be taken in order to reduce the chances that a failure can be produced at x∗

or the edges Ēx∗ can be reinforced to increase their reliability. And (iii) we can
know whether the network is so vulnerable that s and t might be disconnected,
which can be verify if α = ∞.

The problem of calculating α will be called the Max-Cost Single-Failure
Shortest Path Problem (MCSFSPP). Therefore, the MCSFSPP is an optimiza-
tion problem whose objective function value is a vulnerability measure of the
network on which it is solved. Intuitively, the MCSFSPP can be solved as fol-
lows. For a given x ∈ X , let φx be the cost of the shortest s, t-path on Gx

with edge costs lxe defined as lxe = le if e ∈ Ex and lxe = M if e ∈ Ēx, with
M = O(m maxe∈E le); therefore, α = maxx∈X φx. If α > M then there is at
least one x for which s and t cannot be connected.

In Fig. 1(a) it is shown a network G = (V,E) where s and t correspond to
the nodes represented with triangles and X is represented by a grid of 8 × 7
points in the background of part of G; an optimal s, t-path is shown with bold
edges. In Fig. 1(b) we show the case where a disruption disk σ(x1, R1) interdicts
the network such that an alternative (an more expensive) s, t-path has to be
established (α < M). And in Fig. 1(c) a more complex situation is shown; here
two disruption disks, σ(x1, R1) and σ(x2, R2), are simultaneously interdicting
the network. In the latter case all possible s, t-paths (one of them is shown in
bold dashed lines) have at least one interdicted edge, i.e., α > M .

The MCSFSPP is closely related with the network interdiction problems
studied in [3–5,7,8,11]. In the following, we will use this basic definition to
construct generalizations addressing different, but complementary, measures of
vulnerability under different models of failure.

436 E. Álvarez-Miranda et al.

Mixed Integer Programming Formulation for the MCSFSPP. Let f ∈
[0, 1]m be a vector of [0, 1]-flow variables. An s, t-path p in G is induced by a
given allocation of flows f if the following constraints are satisfied:

∑

k∈V |e:{j,k}∈E

fj,k −
∑

i∈V |e:{i,j}∈E

fi,j =

⎡
⎣

⎣

1, if j = s

0, if j ∈ V \ {s, t}
−1, if j = t.

(SP.1)

For a given x ∈ X , the problem of finding φx can be defined as

φx = min

⎤
∑

e∈E

lxe fe | (SP.1) and f ∈ [0, 1]m
⎧

. (φx)

Let y ∈ {0, 1}|X | be a vector of binary variables such that yx = 1 if the
failure disc is centered at x and yx = 0 otherwise. Now, let z ∈ {0, 1}m be a set
of binary variables such that ze = 1 if edge e is operative and ze = 0 otherwise
for any given x ∈ X . Variables y and z are related as follows

yx + ze ≤ 1, ∀e ∈ E | d(e, x) ≤ R, ∀x ∈ X (YZ.1)
∑

x∈X|d(e,x)>R

yx − ze ≤ 0, ∀e ∈ E. (YZ.2)

Constraints (YZ.1) and (YZ.2) state that, for any x ∈ X , an edge e has to be
operative (ze = 1) if is not reached by the disruption disk σ(x,R). Since a single
disruption disk affects the network, we have that

∑

x∈X
yx = 1. (YZ.3)

Using (YZ.1) and (YZ.2), for a given x ∈ X the edge costs lxe can be written as
lxe = leze + (1 − ze)M, ∀e ∈ E. Hence, the MCSFSPP is as follows

α = max
x∈X

⎪
φx | (YZ.1), (YZ.2), (YZ.3) and (y, z) ∈ {0, 1}m+|X |

⎨
. (α)

Problem (α), as it is, is non-linear. To linearize it, we will convert the max min
objective into a pure max one; to do so, let us consider the dual of (φx), which
is given by

φx = max {λt − λs | λj − λi ≤ lijzij + (1 − zij)M, ∀e : {i, j} ∈ E and γ ∈ R
n} .
(Λ)

Embedding (Λ) into (α), we get the next Mixed Integer Programming Formula-
tion (MILP) formulation for the MCSFSPP:

α = max λt − λs (MCSF.1)
s.t (YZ.1), (YZ.2), and (YZ.3) (MCSF.2)

λj − λi ≤ lijzij + (1 − zij)M, ∀e : {i, j} ∈ E (MCSF.3)

(y, z) ∈ {0, 1}m+|X | and γ ∈ R
n. (MCSF.4)

Vulnerability Assessment of Spatial Networks: Models and Solutions 437

Note that in our approach we assume that σ(x,R) can be located in any
point x ∈ X without any stochastic characterization. That is, any point x ∈ X
is likely to “host” the center of the failure.

In the proposed setting we assume that if an edge e is disrupted by at least
one failure disk σ(x,R), then it becomes inoperative. However, one can easily
extend this to a more general case by defining a coefficient de ≥ 0 ∀e ∈ E
representing the delay on edge e in case of interdiction (in our setting de = M
∀e ∈ E). The MCSFSPP can be redefined by replacing constraint (MCSF.3)
with

λj − λi ≤ lij + (1 − zij)dij , ∀e : {i, j} ∈ E. (MCSF.3b)

The Shortest-Path Network Interdiction problem presented in [8] is very sim-
ilar to the definition of the MCSFSPP using (MCSF.3b) instead of (MCSF.3). In
that problem, edges can be interdicted without any geometrical pattern among
them; instead, they consider interdiction costs so that any feasible disruption
of the network should not cost more than a given interdiction budget. Later we
formally define these concepts and adapt them to our setting.

2.2 The Multiple Failures Case

As described above, in the MCSFSPP only a single failure σ(x,R) occurs. How-
ever, there are applications in which this characteristic does not hold and, instead,
multiple failures occur simultaneously. More precisely, we now have that k failure
disks σ(x1, R), . . . , σ(xk, R) of radius R are located in X , resulting in an opera-
tive network Gxk = (V,Exk) where Exk = {e ∈ E | minx∈{x1,...,xk} d(e, x) ≤ R}.
Under these conditions, finding the maximum cost, across all possible
{x1, . . . , xk} ∈ X k, of the shortest s, t-path on Gxk can be done by modifying
MCSFSPP as follows. Instead of (YZ.3), we have

∑

x∈X
yx = k. (YZ.3k)

Besides, constraint (YZ.2) should be now adapted in order to impose that ze = 1
if none of the k failure disks reaches e; the new constraint is

∑

x∈X|d(e,x)>R

yx − ze ≤ 1 −
∑

x∈X
yx, ∀e ∈ E, (YZ.2k)

clearly if k = 1, then (YZ.2k) corresponds to (YZ.2). Therefore, the Max-Cost
Multiple-Failure Shortest Path Problem (MCMFSPP) can be formulated as

αk = max {λs − λt | (YZ.1), (YZ.3k), (YZ.2k), (MCSF.3) and (MCSF.4)}
(MCMF)

Note that in formulation (MCMF) it is assumed that R ∈ R is known in
advance.

438 E. Álvarez-Miranda et al.

Maximal Disruption for an interdiction budget. Similar as in [3,7,8], let
us consider that associated with each point x ∈ X there is a disruption cost
cx > 0. Assume that the interdictors have a budget B of interdiction resources,
so that they can disrupt the network using several disks σ(x,R) as long as the
total cost does not exceed B. Formally, the interdiction-budget constraint is
given by

∑

x∈X
cxyx ≤ B; (IB)

so the Budget Constrained MCMFSPP is formulated as

αk = max{λs − λt | (YZ.1), (YZ.2k), (IB), (MCSF.3) and (MCSF.4)} (B)

By solving (B) we can know how vulnerable the network is if the interdictors are
able to optimally use their resources to disrupt it. Models as the one presented
in [7,8] are particular cases of (B) in which X coincides with the midpoint of
every edge e ∈ E and R = Φ (Φ being infinitesimally small).

Minimum Simultaneity for Complete Vulnerability: Critical k. One
might be interested in knowing the minimum number of failures (the critical
k or kc) that should occur simultaneously in order to have at least one set
σ(x1, R), . . . , σ(xk, R) that damages the network so that s and t cannot be con-
nected anymore or the shortest length between them is greater than a thresh-
old ε.

The value kc and the corresponding collection {x1, . . . , xkc} will enable a
decision maker to perform more general preventive actions to endure the network
not in a single but a in several areas. In many practical contexts, the possibility
of multiple and synchronized failures might be the rule, so knowing kc might
play a strategical role. Clearly, for a given R, the larger kc is the more robust
the network is. Mathematically, one can formulate the search for kc as

kc = min {k | (YZ.1), (YZ.2K), (YZ.3K), (MCSF.3), (MCSF.4) , (kc)
λs − λt ≥ ε and k ∈ Z∗0 }

If ε = M , then (kc) aims at finding the minimum k such that allocating k disks
produces a disconnection between s and t. A similar model is presented in [7] in
the context of interdiction in stochastic networks.

If instead of kc one is interested in knowing the minimum cost needed to pro-
duce a damage represented by ε, model (kc) can be easily modified by replacing
the objective function of (kc) with Cc = min

⎩
x∈X cxyx.

3 Computational Results

3.1 Instance Benchmark and Solver Setting

Instance Benchmark. For our experiments we consider three sets of instances:
ND, US and Bangladesh.

Vulnerability Assessment of Spatial Networks: Models and Solutions 439

Fig. 2. Representation of the instances used for computations.

In the first set, the instances are generated as follows: (i) n points are ran-
domly located in a unit Euclidean square; (ii) a minimum spanning tree connect-
ing all points is calculated; (iii) τ ×n additional edges are added to the network
such that an edge is added if lij (euclidean distance) satisfies lij ≤ ρ/

√
n and the

planarity of the network is still preserved; (iv) the set X is created by randomly
located K points within the are area defined by points (x1, y1), (x2, y1), (x1, y2)
and (x2, y2).

For experiments we have considered n ∈ {500, 1000}, τ = 1.5, ρ = 1.6,
(x1, x2, y1, y2) = (0.3, 0.7, 0.0, 1.0) (X1) and (x1, x2, y1, y2) = (0.1, 0.9, 0.1, 0.9)
(X2), and K = 100.

In Fig. 2(a) it is shown an example of an instance with 500 nodes and X
contained in (0.3, 0.0), (0.7, 0.0), (0.3, 1.0) and (0.7, 1.0).

In the case of groups US and Bangladesh we consider the geographical coor-
dinates of the most populated cities in each case (see [13]) to define the set V .
Then, we used an approximation of their highway and interurban road system
with the information available in [6] to approximate the set of edges E. The set
X is created by randomly located K points within the are area defined by points
(x1, y1), (x2, y1), (x1, y2) and (x2, y2). In Fig. 2(b) and (c) we show the networks
used to generate the instances US and Bangladesh respectively. In the case of US,
the area X is given by placing 100 points in the so-called south area. With this
we intend to represent possible cases of failure produced by hurricanes and other
natural disasters. For the Bangladesh instances, we have created X by placing
100 points in squared area in the very center that covers around the 15 % of the
total area.

In the case of instances ND, nodes s and t are selected as those with the longest
euclidean distance. In the case of instances US we have used s ∈ {NY:New York,
CH:Chicago} and t ∈ {LA:Los Ángeles, HS:Houston}; likewise, in the case of
instances Bangladesh we have used s = Rajshahi and t = Silhat.

Solver Setting. Models (MCSF.1)–(MCSF.4), (MCMF) and (kc) were solved
using CPLEX 12.5 (all CPLEX parameters were set to their default values).
The experiments were performed on a Intel Core i7-3610QM machine with 8 GB
RAM.

440 E. Álvarez-Miranda et al.

Table 1. Solutions for the MCSFSPP considering different values of R (Instances ND)

n = 500 n = 1000

X1 X2 X1 X2

R Δ%Ω t[sec] R Δ%Ω t[sec] R Δ%Ω t[sec] R Δ%Ω t[sec]

0.01 2.17 38.92 0.01 0.00 32.93 0.01 2.48 115.39 0.01 0.14 144.66

0.02 3.93 46.46 0.02 1.64 36.83 0.02 2.93 153.58 0.02 0.69 215.16

0.03 3.93 65.63 0.03 1.64 49.73 0.03 5.38 235.95 0.03 1.52 240.88

0.04 5.15 80.79 0.04 1.64 63.06 0.04 7.31 258.85 0.04 1.52 265.00

0.05 5.15 103.01 0.05 1.64 79.67 0.05 7.17 395.46 0.05 1.52 259.80

0.10 5.15 97.83 0.10 1.64 112.76 0.10 8.69 917.78 0.10 3.87 373.61

0.15 - 53.70 0.15 10.64 111.65 0.15 9.93 587.27 0.15 6.19 843.45

3.2 Vulnerability Assessment of Spatial Networks: Solutions

From the operative perspective, the value of R corresponds to the intensity of
a disruption. If we consider the MCSFSPP or the MCMFSPP we would expect
that a vulnerable network is such that α increases quickly (up to M) when R
increases marginally. On the other hand, a reliable network is such that the cost
of the shortest s, t-path does not change too much even if R increases consider-
ably.

In Table 1 we report solutions for the MCSFSPP for instances of group ND
considering different values of n, different compositions of set X and different
values of R (columns 1, 4, 7 and 10). In columns η%α is reported the relative
increase of α, for a given X and a given R, with respect to cost of the shortest
s, t-path without any failure. In this column, “-” means that all paths have been
disrupted. In columns t[sec] are reported the running times in seconds needed to
reach optimality. One can observe from this table that when the area where the
failure can occur, X , is such that covers a stripe on the network (as X1) then it is
more vulnerable (see the values η%α for different R) than a network in which
the failure area, although larger, still leaves corridors where s, t-paths can be
constructed, as for X2. In a warfare context, if we were to be the enemies, this
analysis would suggest us that is better to concentrate our resources in a narrower
area potentially spanning a complete stripe of the network than in a larger area
(which might be more expensive) that does not properly covers the network. On
the other hand, who wants to protect the network should concentrate the efforts
in protecting at least one corridor connecting s and t.

In Tables 2 and 3, results for (MCMF) and (kc), respectively, are reported.
The analysis is similar as for Table 1. From Table 2 we can see that the increase
of η%α (due to a larger k), is greater for X1 than for X2. Along the same lines,
we see from Table 3 that the minimum resources needed to disconnect s and t
(see columns kc) are greater for X2 than for X1. In Table 3, when results for a
given R are not reported (e.g., R = 0.01 for n = 500 and X1) is because not even
|X | failure disks are enough to make the s, t connectivity collapse. This applies
for all the remaining Tables.

From the algorithmic point of view, we can notice in Tables 1, 2 and 3 that
the search for an alternative path in a disrupted network is not for free. In all

Vulnerability Assessment of Spatial Networks: Models and Solutions 441

Table 2. Solutions for the MCMFSPP considering different values of R and k
(Instances ND)

500 1000

X1 X2 X1 X2

R k Δ%Ω t[sec] R k Δ%Ω t[sec] R k Δ%Ω t[sec] R k Δ%Ω t[sec]

0.01 1 2.17 24.15 0.01 1 0.00 22.51 0.01 1 2.48 88.16 0.01 1 0.01 88.64

2 3.93 25.07 2 0.00 21.96 2 3.03 94.80 2 0.09 96.35

3 4.74 25.02 3 0.00 22.11 3 3.03 93.90 3 1.63 93.57

4 5.56 24.87 4 0.00 22.21 4 3.03 95.08 4 1.63 95.08

5 6.79 24.52 5 0.00 22.14 5 3.03 94.15 5 1.63 94.4

0.1 1 5.15 59.94 0.1 1 1.64 69.61 0.1 1 8.68 889.61 0.1 1 3.87 222.36

2 - 26.43 2 13.82 142.93 2 17.89 3448.93 2 8.16 1012.06

3 - 98.05 3 13.92 297.95 3 21.24 75319.9 3 12.45 5434.01

4 - 526.47 4 - 63.01 4 28.14 26123.3 4 21.99 13130.3

5 - 147.39 5 - 149.54 5 - 16576.5 5 - 742.63

Table 3. Solutions of (kc) considering different values of R (Instances ND)

n X R kc t[sec] n X R kc t[sec]

500 X1 0.10 2 170.76 1000 X1 0.10 5 628.76

0.15 1 43.09 0.15 2 805.32

X2 0.03 10 39.05 X2 0.02 19 219.38

0.04 9 109.70 0.03 13 621.60

0.05 7 161.06 0.04 11 933.85

0.10 4 274.20 0.05 8 1759.32

0.15 3 162.47 0.10 5 1277.24

0.15 3 1214.14

cases we see an increase of the algorithmic effort (time) needed to find such a
path (if exists). This is due to the high combinatorial nature of the problem
when more edges are subject to be interdicted (when R increases and/or when
k is either greater than 1 or when it is a variable).

In the case of USA Instances, we report in Table 4 results of the MCSFSPP
considering different pairs of s and t and different values of R. In this case, we
can see that different combinations of s and t yield to different levels of vulner-
ability in the system. For instance, the network is considerably more vulnerable
when it is intended to host a path from Chicago to Los Ángeles than when
the path should be established from Chicago to Houston. This is due to the
fact that, in our instance, the system of roads connecting the north of the Mid-
west with the south of the West Coast is composed by relatively few elements.
Hence, a single disruption disk (that is optimally placed) is enough to inter-
rupt the communication between the cities. In this case the values of η%α are

442 E. Álvarez-Miranda et al.

Table 4. Solutions for the MCSFSPP considering different values of R (Instances USA)

{NY, LA} {CH, LA} {NY, HS} {CH, HS}
R Δ%Ω t[sec] R Δ%Ω t[sec] R Δ%Ω t[sec] R Δ%Ω t[sec]

0.01 9.00 17.22 0.01 0.00 17.43 0.01 13.00 17.25 0.01 0.00 17.22

0.02 10.00 21.42 0.02 20.00 25.05 0.02 13.00 26.83 0.02 2.00 20.12

0.03 10.00 24.77 0.03 20.00 33.17 0.03 15.00 22.25 0.03 2.00 35.27

0.04 10.00 23.57 0.04 20.00 31.29 0.04 18.00 23.07 0.04 2.00 28.31

0.05 10.00 25.30 0.05 20.00 35.51 0.05 19.00 25.04 0.05 8.00 36.15

0.10 30.00 34.16 0.10 - 33.67 0.10 45.00 42.31 0.10 - 30.67

0.15 - 40.22 0.15 - 28.41 0.15 - 29.69 0.15 - 28.17

0.20 - 28.00 0.20 - 48.14 0.20 - 27.16 0.20 - 37.13

Fig. 3. Solutions for the MCMFSPP for different k and R (Instances USA), (a)k = 0,
(b)k = 5 and R = 0.01, (c)k = 1 and R = 0.1

particularly important from the tactic point of view; if it is up to the decision
maker to decide where to establish both the source and the target of the trans-
portation system, then it might preferable to have New York - Houston than, for
instance, Chicago - Los Ángeles. However, this analysis is valid only when a sin-
gle failure occurs. For an approximate equivalence to real distances in kilometers,
R should be multiply by 1700.

In Fig. 3(a) we show the solution of the shortest path problem between New
York and Houston when there is no disruption. In Fig. 3(b) is shown the solution
of the MCMFSPP when 5 disruption disks with R = 0.01 are optimally located.
In Fig. 3(b) is shown the solution of the MCMFSPP with k = 1 and R = 0.10.
These figures show how different the optimal s, t-paths can be when the network
is disrupted by failures of different magnitude.

Finally, in Table 5 we report results for the Instances Bangladesh. From
the solutions of the MCSFSPP (reported in columns 1–3) we can see that the
relatively dense road system of this country is able to resist (small values of
η%α), reasonably well the optimal location of a single failure disk up to R =
0.05. For greater values, the network can be dramatically damaged. This later
observation is reinforced by the results reported in columns 4–6 in the same
table: a critical k can be found only if R ≥ 0.05. When looking at the results

Vulnerability Assessment of Spatial Networks: Models and Solutions 443

Table 5. Solutions for MCSFSPP, MCSFMPP and kc, s =Rajshahi and t =Silhat
(Instances Bangladesh)

R = 0.01 R = 0.1

R Δ%Ω t[sec] R kc t[sec] k Δ%Ω t[sec] k Δ%Ω t[sec]

0.01 3.76 8.72 0.05 3 10.06 1 3.76 7.69 1 24.17 8.11

0.02 2.93 7.44 0.10 2 28.52 2 5.48 8.75 2 - 38.28

0.03 3.76 8.99 0.15 1 24.01 3 5.48 8.42 3 - 26.75

0.04 3.76 9.53 4 5.48 8.41 4 - 28.32

0.05 4.78 19.03 5 5.48 7.64 5 - 10.55

0.10 24.17 36.97

0.15 - 11.19

of the MCSFMPP (columns 7–9 for R = 0.01 and 10–12 for R = 0.1) we can
see that the network resists well (η%α ≈ 5%) several failures with R = 0.01;
however, if R = 0.1 then the network collapses even if k = 2.

4 Conclusions and Future Work

We have presented a collection of combinatorial optimization problems that in
combination allow to measure the vulnerability of a network. Vulnerability is
represented by the relative increase of the cost of a s, t-shortest path when part
of the network is disrupted. By analyzing the solutions of these problems for
different instances, we have highlighted how different aspects of both the failure
and the network yield to different levels of vulnerability.

Two main paths of future work can be identified. First, we should consider
the case in which X is not given by a discrete set of points, but rather as
continuous area. Second, at the light of the large computational effort needed
to solve some of the instance considered here, we think it is important to design
and implement more sophisticated algorithmic techniques such as decomposition
approach in order to be able to consider larger and more complex instances.

Acknowledgements. This research was supported by Fondecyt Project #1121095,
CONICYT, Ministerio de Educación, Chile. Eduardo Álvarez-Miranda thanks the Insti-
tute of Advanced Studies of the Università di Bologna from where he is a PhD Fellow.

References

1. Assimakopoulos, N.: A network interdiction model for hospital infection control.
Comput. Biol. Med. 17(6), 413–422 (1987)

2. Church, R., Scaparra, M., Middleton, R.: Identifying critical infrastructure: the
median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3),
491–502 (2004)

444 E. Álvarez-Miranda et al.

3. Cormican, K., Morton, D., Wood, R.: Stochastic network interdiction. Oper. Res.
46(2), 184–197 (1998)

4. Fulkerson, D., Harding, G.: Maximizing the minimum source-sink path subject to
a budget constraint. Math. Program. 13(1), 116–118 (1977)

5. Golden, B.: A problem in network interdiction. Nav. Res. Logist. Q. 25(4), 711–713
(1978)

6. Google. Google Maps (2013)
7. Hemmecke, R., Schültz, R., Woodruff, D.: Interdicting stochastic networks with

binary interdiction effort. In: Woodruff, D. (ed.) Network Interdiction and Sto-
chastic Integer Programming. Operations Research/Computer Science Interfaces
Series, vol. 22, pp. 69–84. Springer, New York (2003)

8. Israeli, E., Wood, R.: Shortest-path network interdiction. Networks 40(2), 97–111
(2002)

9. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G.,
Zhao, J.: On short paths interdiction problems: total and node-wise limited inter-
diction. Theor. Comput. Syst. 43(2), 204–233 (2008)

10. Murray, A.: An overview of network vulnerability modeling approaches. GeoJour-
nal 78(2), 209–221 (2013)

11. Phillips, C.: The network inhibition problem. In: Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, STOC’93, pp. 776–785. ACM
(1993)

12. Salmeron, J., Wood, K., Baldick, R.: Worst-case interdiction analysis of large-scale
electric power grids. IEEE Trans. Power Syst. 24(1), 96–104 (2009)

13. United Nations Statistics Division. UNSD Statistical Databases (2013)
14. Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)

Author Index

Álvarez-Miranda, Eduardo 433
Amaldi, Edoardo 1
Argiroffo, Gabriela 13

Baffier, Jean-François 26
Baïou, Mourad 38
Barahona, Francisco 38
Bartolini, Sandro 50
Baumann, Frank 62
Bender, Marco 75
Bianchi, Silvia 13
Bogue, Eduardo T. 87
Bonomo, Flavia 100
Brčić, Mario 112
Buchheim, Christoph 62, 125
Bulteau, Laurent 137

Candia-Véjar, Alfredo 433
Carrieri, Anna Paola 137
Carrizosa, Emilio 433
Casini, Iacopo 50
Coniglio, Stefano 1

Darties, Benoit 161
da Cunha, Alexandre Salles 149
de Campos, Cassio Polpo 173
de Souza, Cid C. 87
de Souza, Fernanda Sumika Hojo 149
Della Croce, Federico 186, 198
Detti, Paolo 50
Disser, Yann 208
Dondi, Riccardo 137

Escalante, Mariana 221

Fernandes, Cristina G. 230
Ferreira, Carlos E. 230
Fortz, Bernard 242
Franco, Álvaro J.P. 230
Freire, Alexandre, S. 87
Freivalds, Kārlis 255
Fürer, Martin 408
Furini, Fabio 267

Garraffa, Michele 186
Giroudeau, Rodolphe 161
Glagol�evs, Jans 255
Gouveia, Luís 242

Hifi, Mhand 396
Hinrichsen, Erica G. 325
Hiraishi, Hidefumi 26
Hoeksma, Ruben 280

Ilyina, Anna 62
Imai, Hiroshi 26
Ishii, Toshimasa 292

Kacem, Imed 305
Kalpić, Damir 112
Katić, Marija 112
Kellerer, Hans 305
Kidd, Martin Philip 267
König, Jean-Claude 161
Koulamas, Christos 198
Kristianto, Yohanes 315

Leitner, Markus 371
Leoni, Valeria Alejandra 325
Ljubić, Ivana 371

Manthey, Bodo 280
Mattia, Sara 336
Méndez Díaz, Isabel 347
Meshoul, Souham 421
Mihalák, Matúš 208
Moniz, Martim 242
Montanari, Sandro 208

Nasini, Graciela 221, 347

Ono, Hirotaka 292

Pérez-Galarce, Francisco 433
Persiani, Carlo Alfredo 267
Prins, Christian 384

Quilliot, Alain 359

Rebaine, Djamal 359
Rossi, Fabrizio 336

Salassa, Fabio 186
Salazar-González, Juan-José 371
Saleh, Sagvan 396
Santos, Andréa Cynthia 384
Schaudt, Oliver 100
Schouery, Rafael C.S. 230
Seifaddini, Maryam 305
Servilio, Mara 336
Severín, Daniel 347
Simonin, Gilles 161
Sinnl, Markus 371
Smriglio, Stefano 336
Solano-Charris, Elyn L. 384
Stamoulis, Georgios 173
Stein, Maya 100
Suppakitpaisarn, Vorapong 26

Taccari, Leonardo 1
T’kindt, Vincent 198
Toth, Paolo 267
Trieu, Long 125

Uetz, Marc 280
Uno, Yushi 292

Valencia-Pabon, Mario 100

Wagler, Annegret 13
Westphal, Stephan 75
Weyland, Dennis 173
Widmayer, Peter 208
Wu, Lei 396

Xavier, Eduardo C. 87

Yu, Huiwen 408

Zeltni, Kamel 421

446 Author Index

	Preface
	Organization
	Contents
	Maximum Throughput Network Routing Subject to Fair Flow Allocation
	1 Introduction
	2 Related Work
	3 Problem Versions and Complexity
	4 Single-Level MILP Path Formulations
	5 Branch-and-Price
	6 Some Computational Results
	References

	Study of Identifying Code Polyhedra for Some Families of Split Graphs
	1 Introduction
	1.1 Preliminary Definitions

	2 Identifying Code Polyhedra of Some Split Graphs
	2.1 Thick Headless Spiders
	2.2 Thin Headless Spiders
	2.3 Complete Suns

	3 Concluding Remarks
	References

	Parametric Multiroute Flow and Its Application to Robust Network with k Edge Failures
	1 Introduction
	2 Preliminaries
	2.1 Multiroute Flow
	2.2 Max-MLA-Robust Flow and Max-MLA-Reliable Flow [6]

	3 Route-Parametric Multiroute Flow Problem
	3.1 Parametric Function F
	3.2 Non-integer Parametric Multiroute Flow

	4 Applications to Max-Flow with k Edge Failures
	5 Edge-Parametric Multiroute Flow Problem
	6 Conclusion and Future Works
	References

	The Dominating Set Polytope via Facility Location
	1 Introduction
	2 Definitions and Notations
	3 The Characterization of UFLP'(BICn)
	3.1 The Proof of Theorem 1

	4 Application to the Dominating Set Polytope
	5 Algorithmic Consequences
	References

	Solving Graph Partitioning Problems Arising in Tagless Cache Management
	1 Introduction and Problem Description
	2 Literature Review
	3 Problem Definition and Formulations
	3.1 Integer Linear Programming Formulations

	4 Constraint Reduction and Strengthening and Variable Redefinition
	4.1 Constraint Reduction and Strengthening
	4.2 Variable Redefinition

	5 Numerical Results
	6 Conclusions and Future Research
	References

	Lagrangean Decomposition for Mean-Variance Combinatorial Optimization
	1 Introduction
	2 A Lagrangean Decomposition Approach
	3 Uncorrelated Ellipsoidal Uncertainty
	3.1 An Efficient Algorithm for the Unconstrained Problem
	3.2 A Mixed-Integer SOCP Formulation

	4 Applications
	4.1 The Shortest Path Problem with Ellipsoidal Uncertainty
	4.2 The Knapsack Problem with Ellipsoidal Uncertainty

	References

	Maximum Generalized Assignment with Convex Costs
	1 Introduction
	1.1 Problem Definition
	1.2 Previous Work

	2 Complexity
	3 Polynomially Solvable Cases
	3.1 A Round-Robin Algorithm for wij w, pij = pi, cj = c
	3.2 A Minimum-Cost Flow Algorithm for wij = wj

	4 Approximation Algorithm for the General Case
	4.1 A Configuration Based Formulation
	4.2 The Randomized Rounding Procedure
	4.3 Obtaining a Feasible Solution

	5 Open Problems
	References

	An Integer Programming Formulation for the Maximum k-Subset Intersection Problem
	1 Introduction
	2 Notation and Definitions
	3 Formulation and Preliminary Polyhedral Study
	4 Implementation Issues
	5 Computational Experiments
	6 Concluding Remarks and Future Work
	References

	b-Coloring is NP-Hard on Co-Bipartite Graphs and Polytime Solvable on Tree-Cographs
	1 Introduction
	2 b-Colorings and Matchings
	3 b-Continuity and b-Monotonicity of Graphs with Stability at most Two
	4 NP-Hardness Result for Co-Bipartite Graphs
	5 b-Coloring Co-Trees and Tree-Cographs
	5.1 Co-Trees
	5.2 Tree-Cographs

	References

	Proactive Reactive Scheduling in Resource Constrained Projects with Flexibility and Quality Robustness Requirements
	1 Introduction
	2 Related Work
	3 The Problem Definition
	4 Family of Cost-Based Flexibility Measures
	5 The Model
	6 Stability vs. Cost-Based Flexibility
	7 Conclusions and Future Work
	References

	Active Set Methods with Reoptimization for Convex Quadratic Integer Programming
	1 Introduction
	1.1 Basic Ideas
	1.2 Organization of the Paper

	2 Active Set Methods within Branch-and-Bound
	2.1 Basic Active Set Strategy for Quadratic Programming
	2.2 Dual Approach
	2.3 Reoptimization
	2.4 Incremental Computations and Preprocessing
	2.5 Infeasible Primal-Dual Active Set Method

	3 Experimental Results
	References

	Fixed-Parameter Algorithms for Scaffold Filling
	1 Introduction
	2 Preliminaries
	3 An FPT Algorithm for One-Sided SF-MNSA
	4 An FPT Algorithm for Two-Sided SF-MNSA
	5 Conclusion
	References

	Finding Totally Independent Spanning Trees with Linear Integer Programming
	1 Introduction
	2 Literature Review
	3 Integer Programming Formulation
	3.1 Valid Inequalities for X Coming from the Max-Leaf Spanning Tree and Minimum Connected Dominating Set Polytopes
	3.2 Lifted Node Cutset Constraints
	3.3 Symmetry Breaking Constraints

	4 Branch-and-Cut Algorithm for KPTIST
	5 Preliminary Computational Experiments
	6 Conclusions and Future Research
	References

	Coupled-Tasks in Presence of Bipartite Compatibilities Graphs
	1 Introduction
	2 Presentation of Coupled-Tasks and Related Work
	3 Stretched Coupled-Task: Model and Contribution
	3.1 Model

	4 Computational Complexity
	5 Polynomial-Time Approximation Algorithms
	5.1 Star Graph
	5.2 1-Stage Bipartite Graph
	5.3 2-Stage Bipartite Graph

	6 Conclusion
	References

	The Computational Complexity of Stochastic Optimization
	1 Introduction
	2 The Stochastic Optimization Model
	3 General Upper Bounds
	4 Hardness Results for the Dependent PTSPD
	4.1 Problem Definitions
	4.2 Hardness of the Decision Variant
	4.3 Hardness of the Optimization Variant

	5 Discussion and Conclusions
	References

	A Hybrid Heuristic Approach Based on a Quadratic Knapsack Formulation for the Max-Mean Dispersion Problem
	1 Introduction
	2 Mathematical Formulations
	3 A Hybrid Heuristic Approach
	4 Computational Experiments
	5 Conclusions
	References

	A Constraint Generation Approach for the Two-Machine Flow Shop Problem with Jobs Selection
	1 Introduction
	2 ILP Formulation and a Constraint Generation Approach
	2.1 The ILP Formulation for the F2 | dj = d, unknown d | (d/nT) Problem
	2.2 A Constraint Generation Approach

	3 Computational Experiments
	3.1 Experimentation Plan

	4 Conclusions
	References

	Rectilinear Shortest Path and Rectilinear Minimum Spanning Tree with Neighborhoods
	1 Introduction
	2 Shortest Path with Neighborhoods
	2.1 Properties of Optimum Solutions
	2.2 Algorithm

	3 Minimum Spanning Tree with Neighborhoods
	3.1 Reduction Gadgets
	3.2 The Reduction

	4 Conclusions
	References

	Lovász and Schrijver N+-Relaxation on Web Graphs
	1 Introduction
	2 Preliminaries
	2.1 The N+-Operator

	3 The Conjecture on Web Graphs
	4 On minimally N+-imperfect subgraphs
	References

	The Envy-Free Pricing Problem and Unit-Demand Markets
	1 Introduction
	1.1 Our Results

	2 Model and Notation
	3 MIP Formulations
	4 Multi-Item Auctions Test Suites
	4.1 Characteristics Model
	4.2 Neighborhood Model
	4.3 Popularity Model

	5 Empirical Results
	6 Final Remarks
	References

	Mathematical Programming Models for Traffic Engineering in Ethernet Networks Implementing the Multiple Spanning Tree Protocol
	1 Introduction
	2 State of the Art
	3 Problem Modeling
	3.1 Multi-commodity Flow Formulation
	3.2 Rooted Directed Formulation
	3.3 Comparing the LP Relaxations

	4 Computational Experiments
	5 Summary and Conclusions
	References

	Graph Compact Orthogonal Layout Algorithm
	1 Background
	2 Overview of the Algorithm
	3 Detailed Description
	3.1 Compaction
	3.2 Algorithm Pseudocode
	3.3 Other Starting Layouts

	4 Results
	References

	State Space Reduced Dynamic Programming for the Aircraft Sequencing Problem with Constrained Position Shifting
	1 Introduction
	2 Mixed-Integer Programming Formulation
	3 Dynamic Programming Approach
	3.1 Recursion
	3.2 State Space Reduction Techniques
	3.3 Dynamic Programming Algorithm

	4 Computational Experiments
	5 Conclusion
	References

	Decomposition Algorithm for the Single Machine Scheduling Polytope
	1 Introduction and Contribution
	2 The Single Machine Scheduling Polytope
	3 Zonotopes
	4 Barycentric Subdivision
	5 Decomposition Algorithm for the Single Machine Scheduling Polytope
	6 Conclusions
	References

	Subexponential Fixed-Parameter Algorithms for Partial Vector Domination
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Branch Decomposition

	3 Subexponential Algorithm for Apex-Minor-Free Graphs
	3.1 Vector Domination
	3.2 Total Vector Domination and Multiple Domination

	References

	Efficient Approximation Schemes for the Maximum Lateness Minimization on a Single Machine with a Fixed Operator or Machine Non-Availability Interval
	1 Introduction
	2 Case Under MNA Interval
	2.1 New Simplifications and PTAS
	2.2 Improved FPTAS

	3 Case Under Operator Non-availability Interval
	4 Conclusion
	References

	A Multi-period Bi-level Stochastic Programming with Decision Dependent Uncertainty in Supply Chains
	Abstract
	1 Introduction
	1.1 Time to Introduce Product Architecture Modularization for Easy Recyclability
	1.2 The Implication of Modularization for Closed Loop Supply Chain Total Costs
	1.3 Operations Scheduling for Forward--Reverse Manufacturing Systems in the Supply Chain

	2 Research Questions (RQs)
	3 Solution Methodology
	3.1 GDP Formulation for Product Modularity-Supply Chain Integration (RQ1)
	3.2 GDP Formulation for Operations Scheduling and Remanufacturing Capacity Planning (RQ 2 and 3)
	3.3 Multi-period Stochastic Operations Scheduling and Remanufacturing Capacity Planning

	4 Results
	5 Concluding Remarks
	Acknowledgments
	References

	{k}-Packing Functions of Graphs
	1 Introduction
	2 Notation and Background
	2.1 Graphs, p-Graphs and Clique-Width
	2.2 Graphs as Logical Structures and Monadic Second-Order Logic

	3 {k}-Packing Functions
	4 Linear Time Reduction of {k}PF to kLP
	5 An O(|V(G)|+|E(G)|) Time Algorithm for {k}PF on Strongly Chordal Graphs
	6 {k}PF and kLP for Bounded Clique-Width Graphs
	7 Final Remarks
	References

	Robust Shift Scheduling in Call Centers
	1 Introduction
	2 The Deterministic Model
	3 The Robust Model
	3.1 Solving the Robust Problem
	3.2 Uncertainty Set Structure

	4 Case Study
	4.1 Instances Description
	4.2 Results

	References

	A Tabu Search Heuristic for the Equitable Coloring Problem
	1 Introduction
	2 TABUCOL and its Variants
	3 TABUEQCOL: A Tabu Search for ECP
	4 Computational Experiments and Conclusions
	References

	Linear Arrangement Problems and Interval Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 A General Lower Bound
	4 The Case of Interval Graphs
	4.1 A Direct Application on Unit Interval Graphs
	4.2 A Restricted Version of LAP
	4.3 Solving C-Max-Cut and Evaluating CV(x)

	5 An Exact Solution sigma -bal for CLAP
	6 Bounding the Absolute Error
	7 Conclusion
	References

	On the Asymmetric Connected Facility Location Polytope
	1 Introduction
	2 The aConFL Polytope
	2.1 Dimension of the aConFL Polytope
	2.2 Facets Obtained by Lifting
	2.3 New Facets

	3 Computational Results
	3.1 Instances
	3.2 Separation Algorithms
	3.3 Results

	References

	Heuristic Approaches for the Robust Vehicle Routing Problem
	1 Introduction
	2 Related Works
	3 Mathematical Formulation
	4 Heuristic Methods
	4.1 Constructive Heuristics
	4.2 Local Search
	4.3 Greedy Randomized Adaptive Search Procedure

	5 Computational Experiments
	6 Conclusions
	References

	A Fast Large Neighborhood Search for Disjunctively Constrained Knapsack Problems
	1 Introduction
	2 Background
	3 A Two-Phase Solution Procedure
	3.1 The First Phase
	3.2 The Second Phase

	4 A Large Neighborhood Search
	5 Computational Results
	5.1 Effect of Both Degrading and Re-optimizing Procedures
	5.2 Behavior of LNSBH on both Groups of Instances

	6 Conclusion
	References

	Approximating the k-Set Packing Problem by Local Improvements
	1 Introduction
	2 Preliminaries
	2.1 Local Improvements
	2.2 Partitioning the Bipartite Conflict Graph

	3 Canonical Improvements with Tail Changes
	3.1 The New Local Improvement
	3.2 Analysis

	4 The Algorithm and Main Results
	4.1 Efficiently Finding Canonical Improvements with Tail Changes
	4.2 Main Results

	References

	Multi-Objective Cuckoo Search with Leader Selection Strategies
	1 Introduction
	2 Multiobjective Optimization: Basic Concepts and Related Work
	2.1 Basic Concept
	2.2 Related Work

	3 Basic Cuckoo Search Algorithm
	4 Proposed Multiobjective Cuckoo Search with Leader Selection
	5 Experimental Result
	6 Conclusion and Perspectives
	References

	Vulnerability Assessment of Spatial Networks: Models and Solutions
	1 Introduction
	2 Vulnerability Measures as Optimization Problems
	2.1 The Max-Cost Single-Failure Shortest Path Problem
	2.2 The Multiple Failures Case

	3 Computational Results
	3.1 Instance Benchmark and Solver Setting
	3.2 Vulnerability Assessment of Spatial Networks: Solutions

	4 Conclusions and Future Work
	References

	Author Index

