

B. Murgante et al. (Eds.): ICCSA 2014, Part V, LNCS 8583, pp. 707–720, 2014.
© Springer International Publishing Switzerland 2014

Big Data Clustering: A Review

Ali Seyed Shirkhorshidi1, Saeed Aghabozorgi1,
Teh Ying Wah1, and Tutut Herawan1,2

1 Department of Information Systems
Faculty of Computer Science and Information Technology

University of Malaya
50603 Pantai Valley, Kuala Lumpur, Malaysia

2 AMCS Research Center, Yogyakarta, Indonesia
shirkhorshidi_ali@siswa.um.edu.my,

{saeed,tehyw,tutut}@um.edu.my

Abstract. Clustering is an essential data mining and tool for analyzing big data.
There are difficulties for applying clustering techniques to big data duo to new
challenges that are raised with big data. As Big Data is referring to terabytes
and petabytes of data and clustering algorithms are come with high computa-
tional costs, the question is how to cope with this problem and how to deploy
clustering techniques to big data and get the results in a reasonable time. This
study is aimed to review the trend and progress of clustering algorithms to cope
with big data challenges from very first proposed algorithms until today’s novel
solutions. The algorithms and the targeted challenges for producing improved
clustering algorithms are introduced and analyzed, and afterward the possible
future path for more advanced algorithms is illuminated based on today’s
available technologies and frameworks.

Keywords: Big Data, Clustering, MapReduce, Parallel Clustering.

1 Introduction

After an era of dealing with data collection challenges, nowadays the problem is
changed into the question of how to process these huge amounts of data. Scientists
and researchers believe that today one of the most important topics in computing
science is Big Data. Social networking websites such as Facebook and Twitter have
billions of users and they produce hundreds of gigabytes of contents per minute, retail
stores continuously collect their customers’ data, You Tube has 1 billion unique users
which are producing 100 hours of video each an hour and its content ID service scans
over 400 years of video every day [1], [2]. To deal with this avalanche of data, it is
necessary to use powerful tools for knowledge discovery. Data mining techniques are
well-known knowledge discovery tools for this purpose [3]–[9]. Clustering is one of
them that is defined as a method in which data are divided into groups in a way that
objects in each group share more similarity than with other objects in other groups
[1]. Data clustering is a well-known technique in various areas of computer science
and related domains. Although data mining can be considered as the main origin of

708 A.S. Shirkhorshidi et al.

clustering, but it is vastly used in other fields of study such as bio informatics, energy
studies, machine learning, networking, pattern recognition and therefore a lot of re-
search works has been done in this area [10]–[13]. From the very beginning research-
ers were dealing with clustering algorithms in order to handle their complexity and
computational cost and consequently increase scalability and speed. Emersion of big
data in recent years added more challenges to this topic which urges more research for
clustering algorithms improvement. Before focusing on clustering big data the ques-
tion which needs to be clarified is how big the big data is. To address this question
Bezdek and Hathaway represented a categorization of data sizes which is represented
in table 1 [14].

Table 1. Bezdek and Hathaway categorization for big data

 Big data
Bytes 106 108 1010 1012 10>12

“Size” Medium Large Huge Monster Very large

Challenges of big data have root in its five important characteristics [15]:

• Volume: The first one is Volume and an example is the unstructured data stream-
ing in form of social media and it rises question such as how to determine the re-
levance within large data volumes and how to analyze the relevant data to produce
valuable information.

• Velocity: Data is flooding at very high speed and it has to be dealt with in reasona-
ble time. Responding quickly to data velocity is one of the challenges in big data.

• Variety: Another challenging issue is to manage, merge and govern data that
comes from different sources with different specifications such as: email, audio,
unstructured data, social data, video and etc.

• Variability: Inconsistency in data flow is another challenge. For example in social
media it could be daily or seasonal peak data loads which makes it harder to deal
and manage the data specially when the data is unstructured.

• Complexity: Data is coming from different sources and have different structures;
consequently it is necessary to connect and correlate relationships and data linkag-
es or you find your data to be out of control quickly.

Traditional clustering techniques cannot cope with this huge amount of data because
of their high complexity and computational cost. As an instance, the traditional K-
means clustering is NP-hard, even when the number of clusters is k=2. Consequently,
scalability is the main challenge for clustering big data.

The main target is to scale up and speed up clustering algorithms with minimum
sacrifice to the clustering quality. Although scalability and speed of clustering algo-
rithms were always a target for researchers in this domain, but big data challenges
underline these shortcomings and demand more attention and research on this topic.
Reviewing the literature of clustering techniques shows that the advancement of these
techniques could be classified in five stages as shown in Figure 1.

 Big Data Clustering: A Review 709

Fig. 1. Progress of developments in clustering algorithms to deal with big data

In rest of this study advantages and drawbacks of algorithms in each stage will be
discussed as they appeared in the figure respectively. In conclusion and future works
we will represent an additional stage which could be the next stage for big data clus-
tering algorithms based on recent and novel methods.

Techniques that are used to empower clustering algorithms to work with bigger da-
tasets trough improving their scalability and speed can be classified into two main
categories:

• Single-machine clustering techniques
• Multiple-machine clustering techniques

Single-machine clustering algorithms run in one machine and can use resources of
just one single machine while the multiple-machine clustering techniques can run in
several machines and has access to more resources. In the following section algo-
rithms in each of these categories will be reviewed.

2 Big Data Clustering

In general, big data clustering techniques can be classified into two major categories:
single-machine clustering techniques and multiple-machine clustering techniques.
Recently multiple machine clustering techniques has attracted more attention because
they are more flexible in scalability and offer faster response time to the users. As it is
demonstrated in Fig. 2 single-machine and multiple-machine clustering techniques
include different techniques:

• Single-machine clustering
o Sample based techniques
o Dimension reduction techniques

• Multiple-machine clustering
o Parallel clustering
o MapReduce based clustering

In this section advancements of clustering algorithms for big data analysis in catego-
ries that are mentioned above will be reviewed.

710 A.S. Shirkhorshidi et al.

Fig. 2. Big data clustering techniques

2.1 Single-Machine Clustering Techniques

2.1.1 Sampling Based Techniques
These algorithms were the very first attempts to improve speed and scalability of
them and their target was dealing with exponential search space. These algorithms are
called as sampling based algorithms, because instead of performing clustering on the
whole dataset, it performs clustering algorithms on a sample of the datasets and then
generalize it to whole dataset. This will speed up the algorithm because computation
needs to take place for smaller number of instances and consequently complexity and
memory space needed for the process decreases.

Clustering Large Applications based on Randomized Sampling (CLARANS)
Before introducing CLARANS [16] let us take a look at its predecessor Clustering
Large Applications (CLARA) [17]. Comparing to partitioning around medoids
(PAM) [17], CLARA can deal with larger datasets. CLARA decreases the overall
quadratic complexity and time requirements into linear in total number of objects.
PAM calculates the entire pair-wise dissimilarity matrix between objects and store it
in central memory, consequently it consume O (n2) memory space, thus PAM cannot

 Big Data Clustering: A Review 711

be used for large number of n. To cope with this problem, CLARA does not calculate
the entire dissimilarity matrix at a time. PAM and CLARA can be regarded concep-
tually as graph-searching problems in which each node is a possible clustering solu-
tion and the criteria for two nodes for being linked is that they should be differ in 1
out of k medoids.

PAM starts with one of the randomly chosen nodes and greedily moves to one of
its neighbors until it cannot find a better neighbor. CLARA reduce the search space
by searching only a sub-graph which is prepared by the sampled O (k) data points.

CLARANS is proposed in order to improve efficiency in comparison to CLARA.
like PAM , CLARANS, aims to find a local optimal solution by searching the entire
graph, but the difference is that in each iteration, it checks only a sample of the neigh-
bors of the current node in the graph. Obviously, CLARA and CLARANS both are
using sampling technique to reduce search space, but their difference is in the way
that they perform the sampling. Sampling in CLARA is done at the beginning stage
and it restricts the whole search process to a particular sub-graph while in
CLARANS; the sampling is conduct dynamically for each iteration of the search pro-
cedure. Observation results shows that dynamic sampling used in CLARANS is more
efficient than the method used in CLARA [18].

BIRCH
If the data size is larger than the memory size, then the I/O cost dominates the compu-
tational time. BIRCH [19] is offering a solution to this problem which is not
addressed by other previously mentioned algorithms. BIRCH uses its own data struc-
ture called clustering feature (CF) and also CF-tree. CF is a concise summary of each
cluster. It takes this fact into the consideration that every data point is not equally
important for clustering and all the data points cannot be accommodated in main
memory.

CF is a triple <N,LS,SS> which contains the number of the data points in the clus-
ter, the linear sum of the data points in the cluster and the square sum of the data
points in the cluster, the linear sum of the data points in the cluster and the square sum
of the data points in the cluster. Checking if CF satisfies the additive property is easy,
if two existing clusters need to be merged, the CF for the merged cluster is the sum of
the CFs of the two original clusters. The importance of this feature is for the reason
that it allows merging two existing clusters simply without accessing the original
dataset.

There are two key phase for BIRCH algorithm. First, it scans the data points and
build an in memory tree and the second applies clustering algorithm to cluster the leaf
nodes. Experiments conducted in [20] reveal that in terms of time and space, BIRCH
performs better than CLARANS and it is also more tolerable in terms of handling
outliers. Fig. 3 represents a flowchart which demonstrates steps in BIRCH
algorithm.

CURE
Single data point is used to represent a cluster in all previously mentioned algorithms
which means that these algorithms are working well if clusters have spherical shape,
while in the real applications clusters could be from different complex shapes. To deal
with this challenge, clustering by using representatives (CURE) [21] uses a set of

712 A.S. Shirkhorshidi e

well-scattered data points t
rithm. Basically it considers
two existing clusters until i
selecting two clusters for m
mum distance between all
ters. Two main data structu
which is used to track the
the other is k-d tree whic
cluster.

CURE also uses samplin
ple of the input dataset and
the necessary sample size C
is very large, even after s
process will be time consum
rate the algorithm. If we co
data, then CURE will partit
a partial hierarchical cluster
or the distance between the
another clustering runs and
the final stage all non-samp
[21] represent that in comp
it maintain the privilege of r
tive points to the centroid o
flowchart of CURE algorith

2.1.2 Dimension Reductio
Although the complexity an
of instances in the dataset,
influential aspect. In fact th
it means the longer executi
they do not offer a solution

et al.

Fig. 3. BIRCH algorithm flowchart

to represent a cluster. In fact CURE is a hierarchical al
s each data point as a single cluster and continually mer
it reaches to precisely k clusters remaining. The proces
merging them in each stage is based on calculating m
possible pairs of representative points from the two cl

ures empower CURE for efficient search. Heap is the fi
distance for each existing cluster to its closest cluster

ch is used to store all the representative points for e

ng technique to speed up the computation. It draws a sa
d run mentioned procedure on the sample data. To cla
Chernoff bound is used in the original study. If the data
sampling, the data size is still big and consequently
ming. To solve this issue, CURE uses partitions to acc
onsider as the original dataset and the as the samp
tion the into partitions and within each partition it r
ring until either a predefined number of clusters is reac
e two clusters to be merged exceeds some threshold. T
d passes on all partial clusters from all the partitions.
pled data points will assign to the nearest clusters. Res
arison to BIRCH, execution time for CURE is lower wh
robustness in handling outliers by shrinking the represen
of the cluster with a constant factor. Fig. 4 demonstrate
hm.

on Techniques
nd speed of clustering algorithms is related to the num
but at the other hand dimensionality of the dataset is ot

he more dimensions data have, the more is complexity
ion time. Sampling techniques reduce the dataset size
for high dimensional datasets.

lgo-
rges
s of

mini-
lus-
irst,
and

each

am-
arify
aset
the

ele-
pled
runs
ched
Then
. At
ults
hile
nta-
the

mber
ther
and
but

Locality-Preserving Projec
In this method, after projec
space, it is desired that the p
algorithms are distance bas
jected space provide an acc
nal space. Random projecti
data matrix , which is the
() and its elements
the projection of matrix
mensions. Construction of
algorithms. Preliminary me
variance 1 for , althou
allocating values to ,
mensional space, clustering
is illustrated in [23], [24] an
tion [25].

Global Projection
In global projection the ob
jected data point to be as c
serving projection the obje
between two pairs in projec
to be and ’ be the
ize || ’ ||. Different app
such as SVD (singular valu
libri [29].

2.2 Multi-machine Clu

Although sampling and dim
ing algorithms represented
the algorithms, but nowada
and processor advancemen
and a memory cannot han

Big Data Clustering: A Review

Fig. 4. CURE flowchart

tion (Random Projection)
ting the dataset from d-dimensional to a lower dimensio
pairwise distance to be roughly preserved. Many cluster
sed, so it is expected that the clustering result in the p
ceptable approximation of the same clustering in the or
ion can be accomplished by a linear transformation of
e original data matrix. If be a and rotation ma, be independent random variables, then ’ .
in dimensional space. It means each row in ’ has
rotation matrix is different in different random project

ethods propose Normal random variables with mean 0
ugh there are studies which represent different methods
[22]. After generating the projected matrix into lower

g can be performed. Samples of algorithm implementat
nd recently a method is proposed to speed up the compu

bjective is for each data point it is desirable that the p
close as possible to original data point while in local p
ctive was to maintain pairwise distances roughly the sa
cted space. In fact if the main dataset matrix is conside

approximation of it, in global projection aim is
proaches are available to create the approximation ma

ue decomposition) [26], CX/CUR [27], CMD [28] and

ustering Techniques

mension reduction methods used in single-machine clus
in previous section improves the scalability and speed

ys the growth of data size is way much faster than mem
nts, consequently one machine with a single proces

ndle terabytes and petabytes of data and it underlines

713

onal
ring
pro-
rigi-
the

atrix
 is

 di-
tion
and
 for

r di-
tion
uta-

pro-
pre-
ame
ered
 to

atrix
Co-

ster-
d of

mory
ssor
the

714 A.S. Shirkhorshidi et al.

need algorithms that can be run on multiple machines. As it is shown in Fig. 5, this
technique allows to breakdown the huge amount of data into smaller pieces which can
be loaded on different machines and then uses processing power of these machines to
solve the huge problem. Multi machine clustering algorithms are divided into two
main categories:

• Un-automated distributing– parallel
• Automated distributing– MapReduce

Fig. 5. General concept of multi-machine clustering techniques

In parallel clustering, developers are involved with not just parallel clustering chal-
lenges, but also with details in data distribution process between different machines
available in the network as well, which makes it very complicated and time consum-
ing. Difference between parallel algorithms and the MapReduce framework is in the
comfortless that MapReduce provides for programmers and reveals them form unne-
cessary networking problems and concepts such as load balancing, data distribution,
fault tolerance and etc. by handling them automatically. This feature allows huge
parallelism and easier and faster scalability of the parallel system. Parallel and distri-
buted clustering algorithms follows a general cycle as represented below:

In the first stage, data is going to be divided into partitions and they distribute over
machines. Afterward, each machine performs clustering individually on the assigned
partition of data. Two main challenges for parallel and distributed clustering are mi-
nimizing data traffic and its lower accuracy in comparison with its serial equivalent.

Fig. 6. Gener

Lower accuracy in distribut
it is possible that different
secondly even if the same c
the divided data might cha
parallel algorithms and Ma
more advanced algorithms p

2.3 Parallel Clustering

Although parallel algorithm
worthfull because of the ma
rithms. At the following par

DBDC
DBDC [30], [31] is a distrib
clusters of arbitrary shapes
sity of points in each cluste
sity of the regions of noise
is an algorithm which obey
tering stage, it uses a define
a single machine density al
The results show that altho
parison to its serial interpre

Big Data Clustering: A Review

ral cycle for multi-machine clustering algorithms

ted algorithms could be caused by two main reasons, fi
t clustering algorithms deploy in different machines
clustering algorithm is used in all machines, in some ca

ange the final result of clustering. In the rest of this stu
apReduce algorithms will be discussed subsequently, t
proposed recently for big data will be covered.

ms add difficulty of distribution for programmers, but i
ajor improvements in scaling and speed of clustering al
rts some of them will be reviewed.

buted and density based clustering algorithm. Discovery
is the main objective of density based clustering. The d

er is much higher than outside of the cluster, while the d
is lower than the density in any of the clusters. DBDC [

ys the cycle mentioned in Figure 2 . At the individual cl
ed algorithm for clustering and then for general clusteri
lgorithm called DBSCAN is used for finalizing the resu
ough DBDC maintain the same clustering quality in co
tation, but it runs 30 times faster than that.

715

irst,
and
ases
udy,
then

it is
lgo-

y of
den-
den-
[32]
lus-
ing,
ults.
om-

716 A.S. Shirkhorshidi et al.

ParMETIS
ParMETIS [33] is the parallel version of METIS [34] and is a multilevel partitioning
algorithm. Graph partitioning is a clustering problem with the goal of finding the good
cluster of vertices. METIS contains three main steps. First step is called as coarsening
phase. In this stage maximal matching on the original graph is done and then the ver-
tices which are matched create a smaller graph and this process is iterated till the
number of vertices become small enough. The second stage is partitioning stage in
which k-way partitioning of the coarsened graph is performed using multilevel recur-
sive bisection algorithm. Finally in third un-coarsening stage, a greedy refinement
algorithm is used to project back the partitioning from second stage to the original
graph.

ParMETIS is a distributed version of METIS. Because of graph based nature of
ParMETIS it is different from clustering operations and it does not follow the general
cycle mentioned earlier for parallel and distributed clustering. An equal number of
vertices are going to distribute initially, then a coloring of a graph will compute in
machines. Afterward, a global graph incrementally matching only vertices of the same
color one at a time will be computed. In partitioning stage this graph broadcast to
machines and recursive bisection by exploring only a single path of the recursive
bisection tree performs in each machine. Finally un-coarsening stage is consisting of
moving vertices of edge-cut. Experiments represent that ParMETIS was 14 to 35
times faster than serial algorithm while maintaining the quality close to the serial
algorithm.

GPU based parallel clustering
A new issue is opened recently in parallel computing to use processing power of GPU
instead of CPU to speed up the computation. G-DBSCAN [35] is a GPU accelerated
parallel algorithm for density-based clustering algorithm, DBSCAN. It is one of the
recently proposed algorithms in this category. Authors distinguished their method by
using a graph based data indexing to add flexibility to their algorithm to allow more
parallelization opportunities. G-DBSCAN is a two-step algorithm and both of these
steps have been parallelized. The first step constructs a graph. Each object represents
a node and an edge is created between two objects if their distance is lower than or
equal to a predefined threshold. When this graph is ready, the second step is to identi-
fy the clusters. It uses breath first search (BFS) to traverse the graph created in the
first step. Results show that in comparison to its serial implementation, G-DBSCAN
is 112 times faster.

2.4 MapReduce

Although parallel clustering algorithms improved the scalability and speed of cluster-
ing algorithms still the complexity of dealing with memory and processor distribution
was a quiet important challenge. MapReduce is a framework which is illustrated in
Fig. 7 initially represented by Google and Hadoop is an open source version of it [36].
In this section algorithms which are implemented based on this framework are re-
viewed and their improvements are discussed in terms of three features:

 Big Data Clustering: A Review 717

Fig. 7. MapReduce Framework

• Speed up: means the ratio of running time while the dataset remains constant and
the number of machines in the system is increased.

• Scale up: measures if x time larger system can perform x time larger job with the
same run time

• Size up: keeping the number of machines unchanged, running time grows linearly
with the data size

MapReduce based K-means (PK-means)
PKMeans [37] is distributed version of well-known clustering algorithm K-means
[38], [39]. The aim of k-means algorithm is to cluster the desire dataset into k clusters
in the way that instances in one cluster share more similarity than the instances of
other clusters. K-means clustering randomly choose k instance of the dataset in initial
step and performs two phases repeatedly: first it assigns each instance to the nearest
cluster and after finishing the assignment for all of the instances in the second phase it
updates the centers for each cluster with the mean of the instances.
PKMeans distributes the computation between multiple machines using MapReduce
framework to speed up and scale up the process. Individual clustering which contain
the first phase happens in the mapper and then general clustering perform second
phase in the reducer.

PKMeans has almost linear speed up and also a linear size up. It also has a good
scale up. For 4 machines it represented a scale up of 0.75. At the other hand,
PKMeans is an exact algorithm, it means that it offer the same clustering quality as its
serial counterpart k-means.

MR-DBSCAN
A very recent proposed algorithm is MR-DBSCAN [40] which is a scalable MapRe-
duce-based DBSCAN algorithm. Three major draw backs are existed in parallel

Big Data Big Data

718 A.S. Shirkhorshidi et al.

DBSCAN algorithms which MR-DBSCAN is fulfilling: first they are not successful
to balance the load between the parallel nodes, secondly these algorithms are limited
in scalability because all critical sub procedures are not parallelized, and finally their
architecture and design limit them to less portability to emerging parallel processing
paradigms.

MR-DBSCAN proposes a novel data partitioning method based on computation
cost emission as well as a scalable DBSCAN algorithm in which all critical sub-
procedures are fully parallelized. Experiments on large datasets confirm the scalabili-
ty and efficiency of MR-DBSCAN.

MapReduce based on GPU
As it discussed in G-DBSCAN section, GPUs are much more efficient than CPUs.
While CPUs have several processing cores GPUs are consisted of thousands of cores
which make them much more powerful and faster than CPUs. Although MapReduce
with CPUs represents very efficient framework for distributed computing, but if
GPUs is used instead, the framework can improve the speed up and scale up for dis-
tributed applications. GPMR is a MapReduce framework to use multiple GPUs. Al-
though clustering applications are not still implemented in this framework, but the
growth of data size urge researcher to represent faster and more scalable algorithms so
maybe this framework could be the appropriate solution to fulfill those needs.

3 Conclusion and Future Works

Clustering is one of the essential tasks in data mining and they need improvement
nowadays more than before to assist data analysts to extract knowledge from terabytes
and petabytes of data. In this study the improvement trend of data clustering algo-
rithms were discussed. to sum up, while traditional sampling and dimension reduction
algorithms still are useful, but they don’t have enough power to deal with huge
amount of data because even after sampling a petabyte of data, it is still very big and
it cannot be clustered by clustering algorithms, consequently the future of clustering is
tied with distributed computing. Although parallel clustering is potentially very useful
for clustering, but the complexity of implementing such algorithms is a challenge. At
the other hand, MapReduce framework provides a very satisfying base for implement-
ing clustering algorithms. As results shows, MapReduce based algorithms offer im-
pressive scalability and speed in comparison to serial counterparts while they are
maintaining same quality. Regarding to the fact that GPUs are much powerful than
CPUs as a future work, it is considerable to deploy clustering algorithms on
GPU based MapReduce frameworks in order to achieve even better scalability and
speed.

Acknowledgments. This work is supported by University of Malaya High Impact
Research Grant no vote UM.C/625/HIR/MOHE/SC/13/2 from Ministry of Education
Malaysia.

 Big Data Clustering: A Review 719

References

1. Havens, T.C., Bezdek, J.C., Palaniswami, M.: Scalable single linkage hierarchical cluster-
ing for big data. In: 2013 IEEE Eighth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, pp. 396–401. IEEE (2013)

2. YouTube Statistic (2014),
http://www.youtube.com/yt/press/statistics.html

3. Williams, P., Soares, C., Gilbert, J.E.: A Clustering Rule Based Approach for Classifica-
tion Problems. Int. J. Data Warehous. Min. 8(1), 1–23 (2012)

4. Priya, R.V., Vadivel, A.: User Behaviour Pattern Mining from Weblog. Int. J. Data Wa-
rehous. Min. 8(2), 1–22 (2012)

5. Kwok, T., Smith, K.A., Lozano, S., Taniar, D.: Parallel Fuzzy c-Means Clustering for
Large Data Sets. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400,
pp. 365–374. Springer, Heidelberg (2002)

6. Kalia, H., Dehuri, S., Ghosh, A.: A Survey on Fuzzy Association Rule Mining. Int. J. Data
Warehous. Min. 9(1), 1–27 (2013)

7. Daly, O., Taniar, D.: Exception Rules Mining Based on Negative Association Rules. In:
Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA
2004. LNCS, vol. 3046, pp. 543–552. Springer, Heidelberg (2004)

8. Ashrafi, M.Z., Taniar, D., Smith, K.A.: Redundant association rules reduction techniques.
Int. J. Bus. Intell. Data Min. 2(1), 29–63 (2007)

9. Taniar, D., Rahayu, W., Lee, V.C.S., Daly, O.: Exception rules in association rule mining.
Appl. Math. Comput. 205(2), 735–750 (2008)

10. Meyer, F.G., Chinrungrueng, J.: Spatiotemporal clustering of fMRI time series in the spec-
tral domain. Med. Image Anal. 9(1), 51–68 (2004)

11. Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression data. Bio-
informa. 21(suppl. 1), i159–i168 (2005)

12. Iglesias, F., Kastner, W.: Analysis of Similarity Measures in Times Series Clustering for
the Discovery of Building Energy Patterns. Energies 6(2), 579–597 (2013)

13. Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion func-
tions for document clustering. Mach. Learn. 55(3), 311–331 (2004)

14. Hathaway, R., Bezdek, J.: Extending fuzzy and probabilistic clustering to very large data
sets. Comput. Stat. Data Anal. 51(1), 215–234 (2006)

15. Big Data, What is it and why it is important,
http://www.sas.com/en_us/insights/big-data/
what-is-big-data.html

16. Ng, R.T., Han, J.: CLARANS: A method for clustering objects for spatial data mining.
IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002)

17. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction on Cluster Analy-
sis. John Wiley and Sons (1990)

18. Ng, R.T., Han, J.: CLARANS: A method for clustering objects for spatial data mining.
IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002)

19. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for
very large database. In: SIGMOD Conference, pp. 103–114 (1996)

20. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for
very large database. In: SIGMOD Conference, pp. 103–114 (1996)

21. Guha, S., Rastogi, R.: CURE: An efficient clustering algorithm for large database. Inf.
Syst. 26(1), 35–58 (2001)

720 A.S. Shirkhorshidi et al.

22. Achlioptas, D., McSherry, F.: Fast computation of low rank matrix approximations. J.
ACM 54(2), 9 (2007)

23. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: A clus-
ter ensemble approach. In: ICML, pp. 186–193 (2003)

24. Dasgupta, S.: Experiments with random projection. In: UAI, pp. 143–151 (2000)
25. Boutsidis, C., Chekuri, C., Feder, T., Motwani, R.: Random projections for k-means clus-

tering. In: NIPS, pp. 298–306 (2010)
26. Golub, G.H., Van-Loan, C.F.: Matrix computations, 2nd edn. The Johns Hopkins Universi-

ty Press (1989)
27. Drineas, P., Kannan, R., Mahony, M.W.: Fast Monte Carlo algorithms for matrices III:

Computing a compressed approximate matrix decomposition. SIAM J. Comput. 36(1),
132–157 (2006)

28. Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is More: Compact Matrix Decomposition
for Large Sparse Graphs. In: SDM (2007)

29. Tong, H., Papadimitriou, S., Sun, J., Yu, P.S., Faloutsos, C.: Colibri: Fast mining of large
static and dynamic graphs. In: Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 686–694 (2008)

30. Januzaj, E., Kriegel, H.-P., Pfeifle, M.: DBDC: Density based distributed clustering. In:
Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M.,
Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 88–105. Springer, Heidelberg (2004)

31. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications (2013)
32. Ester, M., Kriegel, H.P., Sander, J., Xui, X.: A density-based algorithm for discovering

clusters in large spatial database with noise. In: KDD, pp. 226–231 (1996)
33. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning for irregular graphs. SIAM

Rev. 41(2), 278–300 (1999)
34. Karypis, G., Kumar, V.: Multilevel k-way partitining scheme for irregular graphs. J. Paral-

lel Disteributed Comput. 48(1), 96–129 (1998)
35. Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R., Rocha, L.: G-DBSCAN:

A GPU Accelerated Algorithm for Density-based Clustering. Procedia Comput. Sci. 18,
369–378 (2013)

36. Anchalia, P.P., Koundinya, A.K., Srinath, N.: MapReduce Design of K-Means Clustering
Algorithm. In: 2013 International Conference on Information Science and Applications
(ICISA), pp. 1–5 (2013)

37. Zhao, W., Ma, H., He, Q.: Parallel k-means clustering based on MapReduce. In: Cloud
Computing, pp. 674–679 (2009)

38. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan Kaufmann
(2006)

39. Mirkin, B.: Clustering for data mining a data recovery approach. CRC Press (2012)
40. He, Y., Tan, H., Luo, W., Feng, S., Fan, J.: MR-DBSCAN: a scalable MapReduce-based

DBSCAN algorithm for heavily skewed data. Front. Comput. Sci. 8(1), 83–99 (2014)

	Big Data Clustering: A Review
	1 Introduction
	2 Big Data Clustering
	2.1 Single-Machine Clustering Techniques
	2.2 Multi-machine Clu ustering Techniques
	2.3 Parallel Clustering
	2.4 MapReduce

	3 Conclusion and Future Works
	References

