

B. Murgante et al. (Eds.): ICCSA 2014, Part V, LNCS 8583, pp. 618–632, 2014.
© Springer International Publishing Switzerland 2014

Study on the Social Impact on Software Architecture
through Metrics of Modularity

Braulio Siebra1, Eudisley Anjos1,2, and Gabriel Rolim1

1 CI, Centre for Informatics,
Federal University of Paraiba, Joao Pessoa – Brasil

eudisley@ci.ufpb.br,
{braulio.siebra,gabrielsrolim}@gmail.com

2 CISUC, Centre for Informatics and Systems,
University of Coimbra, Portugal

eusis@dei.uc.pt

Abstract. Software systems have constantly increased in size and complexity.
At the same time, software architecture also grows and becomes difficult to
maintain leading to failures or abandonment of systems. According to Mirroring
Hypothesis (MH), the organizational structure of the development team is a
mirror of software architecture. So, the importance in understanding what
changes in social structure can impact in the software architecture is crucial to
avoid architectural problems. This work compares modularity metrics, applied
to open-source systems, with the structure of developers inside the organization.
The results show the relationship between the architecture and organization and
contribute to guide the evolution and maintenance of systems.

Keywords: Modularity, Social Metrics, Software Architecture.

1 Introduction

The distributed software development has taking the attention of researchers since the
1990s [1]. This occurs because organizations have changed socially, economically
and geographically, so they can distribute the resources aiming to increase
productivity, improve quality and reduce costs in software development [2] . But, the
physical distribution of teams amplifies existing problems in the system development
process. Cultural differences, language, and other factors increase the difficulty in
communication and coordination during the development process [3] , [4] .

When you have a large system, it is normal that appear several difficulties
understanding and consequently maintaining it. The definition of " divide and
conquer" used for algorithms can be used during the design process and reinforces the
thought that the use of the concept of modularity offers quick results. Dividing a large
problem into smaller problems, it requires less effort to find solutions. Thus,
modularity can be understood as a way to facilitate maintenance.

The focus on dividing the system into modules and allow concurrent development
has led researchers to compare the organization of the developers with the structure of

 Study on the Social Impact on Software Architecture through Metrics of Modularity 619

the system modules, the system architecture. In their research they found that the
structure of the product architecture was equal to the structure of the organization and
called it Conways Law or Mirrorring Hypothesis [5], [6].

Although the structure of the organization has been taken into consideration in
academia, many aspects inherent to the developer and the influence that the social
environment can have over the system have still to be researched. These aspects can
be named as: number of people who collaborate with the project , geographic location
, number of commits , etc. , tell us social information that can be related to system
modularity . In this work we use modularity metrics to understand the system
architecture and compare them to information about the development team of open-
source systems. We expect to obtain results that identify whether there is any
relationship between modularity of a system and social aspects of the contributors.
The results contribute to understand what can be done to improve the software
evolution and maintainability.

2 Conceptual Background

In this section, we present the theoretical basis relevant to understand this work. The
main topics are: software architecture, modularity, open-source software and
mirrorring hypothesis.

2.1 Software Architecture

Software systems can increase in size and complexity, and when these systems grow
it is important that the project has a good architecture. The problem of building
software also involves decisions about the structures that form the system, the overall
structure of control, communication, synchronization, and data access protocols,
assignment of functionality to elements of the system, or on physical distribution of
system elements [7]. These demonstrates the importance of understand the system
architecture. Software architecture can play an important role in at least seven aspects
of software development: Understanding Reuse, Construction, Development,
Analysis, Management and Communication [8].

2.2 Modularity

According to [9], the concept of modularity emerged in the 1960s. Developed
countries were facing a crisis due to the mismatch in the growth of hardware on the
evolution of the software, the hardware in this crisis was developing rapidly while the
technical software development progressed slowly. Since then, this concept has been
growing and becoming essential in the development of a system.

In [10], several researchers have tried to define modularity. One of the best
definitions was conceived by Michael Jackson, where he described modularity as a
property of structuring software into modules, and module as an artifact designed to
be constructed and understood separately.

620 B. Siebra, E. Anjos, and G. Rolim

Already, after Parnas, a module is independent, ie, you can change one without
affecting the other. Parnas also says that a module can be developed concurrently,
that is, one can develop while the other team is responsible. In [5], he stressed the idea
of independence of modules in the sense of both cohesion and coupling, and created a
concept about the apportionment of information that has become one of the most cited
general conceptions in software literature. This concept is the "information hiding" or
protection of information. He says that each module should keep to themselves the
information that only he matters. To be applied to systems, this concept generates a
weak coupling, because of this concealment of information.

2.3 Open Source Software

The term open source or open code was created by OSI (Open Source Initiative) and
refers to free software. OSI is an organization dedicated to promoting open source
software or free software organization. It was founded as a form of incentive for
organizations to employ that concept. Its function is to check which licenses qualify
as free software licenses, and are disseminating this concept showing the
technological and economic advantages.

The OSI determines that the open source program should ensure free distribution,
i.e., the license must not restrict the marketing or distribution of the program. The
program must include source code and must allow distribution in compiled form.

2.4 Conway’s Law and Mirrorring Hypothesis

The concept of Conway’s Law came in 1968 when the scientist and programmer
Melvin Conway said any organization that makes system design will produce a design
whose structure is a copy of the structure of the enterprise architecture [11]. That
means organizations that want to design systems or generate products that copy the
structure of how the company is organized, i.e. its architecture. It appears these days
with a new terminology known as Mirroring Hypothesis.

The Mirroring Hypothesis allows the relationship between technological
modularity and organizational structure. Fewer lines of code can result in a faster time
with fewer defects. Therefore, the reuse is important not only to write less code, but
also because it means find and fix problems quickly and at no charge.

There are other works approaching the relation between modularity and open-
source systems. In [12], for example, was made a survey showing that the open-
source systems were less coupled than proprietary systems. Besides prefer modular
systems, open source communities also invest in tools and social practices based on
openness and transparency technique.

3 Metrics of Modularity

According to [13], software metrics are designed to identify, measure and allow
controlling the main parameters that affect software development. The software

 Study on the Social Impact on Software Architecture through Metrics of Modularity 621

metrics used in this work are described below. It is important to mention that all
metrics were selected to be applied to open-source object-oriented systems.

• TLOC – Total Lines of Code: The count of lines of code is generally used
as a benchmark for other metrics. As the name implies, this metric will count
the number of rows in the code.

• NOPK - Number of Packages: Number of packages is defined as the count
of the packages in the selected scope for analysis. The metric includes all sub
packages.

• NBD - Nested Block Depth: This metric represents the maximum number of
blocks of code nested in a particular method of a class.

• CC – Cyclomatic Complexity: Developed by Thomas J. McCabe [14], the
CC measures the level of complexity of a method or function by counting the
paths in code with independent execution. This metric is largely used in
academia and industry and one of the most important to us.

• LCOM – Lack of Cohesion of Methods: According to [15], cohesion is a
qualitative indication of the degree to which a module focuses on just one
thing. This metric measures how a class is not cohesive. I.e., the higher the
number of LCOM the less cohesive is the class.

• Ca - Afferent Coupling: The measure proposed by afferent coupling in [16]
is the number of different classes that relate to the current class by means of
fields or parameters

• Ce - Efferent Coupling: Opposed to the afferent coupling, [16] also
proposed the efferent coupling metric which is the number of different
classes that the current class references through fields or parameters.

• WMC - Weighted Methods per Class: According to [17], this metric
measures the individual complexity of a single class. The number of methods
of a class and its complexities are indicators that time and effort are required
to the development and maintenance of classes.

4 Methodology

In this section we describe: the open-source systems used as case study, the tools and
methods used to collect the values of the metrics for software modularity and social
analysis, and how the tests were performed.

4.1 Open Source Systems

The open-source systems provide their code openly and work with distributed
development; therefore it is possible that contributor’s social and cultural aspects
influence the project modularity. For this reason and the fact that in open-source
systems the source code is at our disposal, these systems have been our focus for
testing.

It was necessary to compile the code for each project to obtain the numerical
values of each metric. Eight systems written in Java were selected for case study:

622 B. Siebra, E. Anjos, and G. Rolim

FindBugs, HyperSQL Database Engine, JasperReports, jEdit, JMeter, Poi, TomCat
and Vuze.

We point out that the systems choice mentioned above was also a consequence of
their presence in GitHub repository software. Projects that were not hosted on GitHub
were excluded from the scope of our research.

A version of each of the selected systems was chosen for testing. Each system and
its selected version are shown in Table 1:

Table 1. Description and version of the systems used as study cases

Open Source
Systems

Description Version

FindBugs Uses static analysis to look for
bugs in Java code.

3.0.0

HyperSQL
Database Engine

It is a basic server written
entirely in the Java language
data.

2.3.2

JasperReports
Library

It is a reporting tool that
produces documents that can be
viewed, printed or exported to
various formats (PDF, HTML,
XML, etc.)

5.5.2

JEdit It is a text editor developed in
Java.

1.6

JMeter It is a tool used for load testing
services offered by computer
systems.

2.12

Poi Provides pure Java libraries for
reading and writing files in
Microsoft Office formats such
as Word, PowerPoint and
Excel.

3.11

Tomcat It is a Java web server. The
Tomcat is a JEE application
server, but it is not a server
EJBs.

8.0

Vuze It is a Java program that allows
downloading files via the
BitTorrent protocol

5.3.0.0

4.2 Git / GitHub

Git is a version control system widely used by software development companies. Git
helps large contributors teams to keep the systems organized and documented.
Anything implemented in software or commented can be found anywhere at any time.

 Study on the Social Impact on Software Architecture through Metrics of Modularity 623

GitHub is a web hosting service designed for distributed projects that uses the Git
version control. Thus, it is used as an online repository of source code for open source
projects. Information about all commits (updates) of projects can be found there. It
uses a social network that allows people to follow the project development; a feature
to view graphs with the amount of updates per contributor, and other features. The
eight systems used in the case study are hosted by GitHub.

4.3 Choice of Tools

After several readings and studies Eclipse Plugin 1.3.6 Metrics tool was chosen. This
decision was based on the fact that all the chosen systems were written in Java and
needed to be compiled to generate the metrics. This tool collected various metrics
related to project modularity. Eight metrics that can influence systems modularity
have been selected after reading some articles.

The research to find mining tools repository was done cautiously. The selected tool
- GitStats- generates statistics of any project that is hosted on Git and outputs data
such as: quantity of contributors, most active contributors, amount of commits, etc...
The choice for GitStats happened for many reasons. Primarily because it accesses the
Git server, where the eight selected systems are hosted. Furthermore, we assume the
GitHub repositories as one of the best nowadays.

Both the Eclipse Metrics Plugin 1.3.6 and GitStats- are easily found tools used by
businesses. The use of such tools allows us to perform a job that can be easily
replicated in an inexpensively way by companies- not limiting this research to
academic context.

4.3.1 Metrics Collected via Eclipse Metrics Plugin 1.3.6
In collecting data 23 metrics were found. Here, we present the eight metrics used in
our research. There were two size metrics, three complexity metrics, two coupling
metrics and one cohesion metric. The classification of each used metric is shown
below in Table 2.

4.3.2 Metrics Collected by GitStats
The GitStats was used to generate some relevant social characteristics to come across
the software metrics. This tool provided the quantity of contributors present in the
GitHub repository of each project, the amount of commits by author and the total
amount of commits for each system.

An essential feature that is not presented by GitStats is geographic location of each
contributor. The location is very important to understand how modular the
organization we are evaluating is. This idea was presented before by [12] and helped
us to compare the organization structure with the source code structure. To obtain the
contributors’ location we executed solicitations using GitHub API to get the e-mail
address and name. Through this information we could find some contributors’
locations.

624 B. Siebra, E. Anjos, and G. Rolim

Table 2. Classification of metrics

Metrics Size Complexity Cohesion Coupling

TLOC X
NPOK X
NBD X
CC X
WMC X
LCOM X
Ca X
Ce X

We assumed that only the 20 most active contributors of each project were
relevant. The amount of commits guided this assumption. We noticed that beyond 20,
the amount of commits became irrelevant for our purposes . It is important to
mention here that it was not possible to find the location of all twenty contributors in
each system. The difficulty was due to lack of information from the GitHub on the
contributors. Sometimes just a nickname or a duplicated name was provided.

Thus, the geographical distribution is given as shown in (1) and the results of the
related metrics are shown in the Table 5:

 Number of Countries / Number of Contributors = DG . (1)

5 Results

The first results were obtained using the tools mentioned in the section 4.3: Eclipse
Metrics 1.3.6 and GitStats. Eclipse Metrics calculated metrics for each of the eight
projects. We selected the most relevant metrics for this paper and the results are
shown in Table 3 and Table 4.

The GitStats was used to generate some relevant social features to compare with
the software metrics. Among the many metrics, this tool showed we selected the three
most important ones : the quantity of contributors present in the GitHub repository of
each project, the amount of commits of each author and the total amount of commits
for each system.

 Study on the Social Impact on Software Architecture through Metrics of Modularity 625

Table 3. Size and complexity using Metrics for Eclipse

Open-Source
Systems

TLOC NPOK NBD CC WMC

FindBugs 20.573 77 1,379 2,678 26.410
HyperSQL 69.191 32 1,781 3,569 36.824

JasperReports 235.798 116 1,460 2,045 37.726
JEdit 117.366 42 1,590 3,054 22.347

JMeter 32.764 43 1,485 1,879 5.882
Poi 86.762 48 1,317 1,863 17.148

Tomcat 150.834 102 1,553 2,611 33.013
Vuze 565.168 488 1,851 2,713 85.275

Table 4. Coupling and cohesion using Metrics for Eclipse

Open Source
Systems

LCOM Ca Ce

FindBugs 0,267 25,494 11,325
HyperSQL 0,366 35,625 12,00

JasperReports 0,247 40,397 17,129
JEdit 0,222 18,929 8,429

JMeter 0,221 16,256 6,465
Poi 0,201 26,917 14,562

Tomcat 0,289 17,804 5,667
Vuze 0,318 22,795 4,814

5.1 Results Analysis

Here we present a comparison between modularity and social metrics. To evaluate the
results we formulated five hypotheses according to [6] [17], [18]. We divided into
subsections for more relevant comparisons and discuss each of the results.

Table 5. Result of social metrics

Open Source
Systems

Contributors Commits DG

FindBugs 26 14.743 0,36
HyperSQL 12 5.361 0,44

JasperReports 20 6.961 0,37
JEdit 37 6.581 0,58

JMeter 29 10.332 0,55
Poi 33 5.483 0,57

Tomcat 24 12.067 0,60
Vuze 42 24.828 0,54

626 B. Siebra, E. Anjos, and G. Rolim

Table 6. More active author of each project

Open Source
Systems

Author/Commits (%)

FindBugs Bill Pugh (EUA) / 50,04%
HyperSQL Fredt (ING) / 46,32%

JasperReports Teodord (ROM) / 48,36%
JEdit Slava Pestov (RUS) / 33,33%

JMeter Sebastian Bazley (ING) / 66,72%
Poi Nick Burch (ING) / 29.45%

Tomcat Mark Thomas (ING) / 66,81%
Vuze Parg (EUA) / 27,96%

5.1.1 Correlation between Coupling and Geographical Distribution
A análise entre a distribuição geográfica e o acoplamento foi direcionada a partir da
hipótese que segue:

H1: to maintain system modularity an increase in geographical distribution implies

coupling reduction.

This happens because once they have contributors in different countries, the system

must be least coupled to facilitate development.
In order to see better what happens, we analyze in particular the result of metrics

for two systems: Tomcat and JMeter. As shown in the previous tables, the most active
contributor in each system was responsible for over 66% of the total commits . This is
an indication that the code should be more coupled because a single person dominates
and understands more the code. But when we analyze the coupling metric (Ca, Ce) we
realized that Tomcat and JMeter are among the least coupled.

Although there is a contributor who dominates the code more than the others ,
those systems are among the most widely distributed geographically, as shown in
Table 5. With greater geographical distribution, the code tends to become least
coupled . A weak coupling indicates less dependence between modules, i.e., there is a
tendency for systems to be more modular. One of the issues raised here for future
investigation is which attribute is more powerful than the other.

5.1.2 Correlation between Quantity of Contributors and Complexity
This analysis was based on the following hypothesis:

H2: to maintain system modularity the growth of contributors results in a decrease in

system complexity.

This happens because once there are many developers , the system needs to be less

complex to facilitate development.

 Study on the Social Impact on Software Architecture through Metrics of Modularity 627

Fig. 1. Overview of each system

Fig. 2. Complexity of systems

Fig. 3. Correlation of number of developers with the WMC

628 B. Siebra, E. Anjos, and G. Rolim

In order to understand better what happens, we analyze especially the performance
of Vuze system. In Table 6 we see that the contributor with a larger quantity of
commits in Vuze holds only 27.96% of commits . Thus, Vuze is better split among
contributors. In addition, of all projects analyzed, it is the one with the largest quantity
of contributors. By having this feature, its complexity should tend to a lower value.
But to collect the results of the metrics NBD and DC detected that Vuze is a complex
system, as shown in Fig 2. In NBD metric it was the one with greater complexity, in
DC metric it was the third most complex.

The WMC metric returns a value of overall complexity, while the CC and NBD
calculate only the average complexities. For this reason we thought the use of CC
and NBD metrics would not be sufficient and decided to use the WMC metric to
assess the social evolution of architecture. Hence, we would evaluate the system
version altogether, so it could consider the quantity of contributors. But according to
Figure 3, we concluded that Vuze is still the most complex even when we analyze the
system complete version.

A possible explanation for Vuze to be among the most complex systems can be
seen when observing Figure 1, which shows Vuze as the system with the largest
quantity of contributors, more lines of code, the largest amount of packages and larger
quantity of commits of all the eight systems investigated.

5.1.3 Correlation between Cohesion and Geographical Distribution
In the analysis of the geographical distribution and LCOM metric we used as a
starting point the following hypothesis:

H3: to maintain system modularity, high geographic distribution implies in greater

cohesion.

This happens because once they have contributors in different countries; the

system must be more cohesive in order to facilitate development.

Fig. 4. Correlation of geographical distribution with cohesion

 Study on the Social Impact on Software Architecture through Metrics of Modularity 629

In Figure 4 we can see that jEdit, Poi and JMeter systems are among the systems
which are geographically dispersed and are among the most cohesive. Moreover,
Vuze and HyperSQL and FindBugs are among the least geographically dispersed and
are those with low cohesion. However, the most surprising result was Tomcat, it was
the system most widely dispersed and unexpectedly was among the least cohesive.
The study of the unexpected behavior of this system is currently being developed by
our researchers.

5.1.4 Correlation between the Quantity of Contributors and the Amount of
Packages

This analysis was based on the following hypothesis:

H4: to maintain the system modularity the growth in t quantity of contributors implies
in a growth in the amount of architectural components.

This is because as the quantity of contributors increases, the system tends to

increase the amount of packages.
Due to the data we collected from metrics, we considered the architectural

components as packages. In order to see better what happens, we analyze in particular
the behavior of Vuze and HyperSQL systems. Vuze is the one with more people
contributing and thus more packages. HyperSQL is the one with fewer contributors
and less packages. These two systems follow the trend we assumed in our hypothesis.
However, as some of the systems do not follow this trend, we cannot conclude the
hypothesis is met in all cases. To better understand this, we must know how close
these people are in software design to understand cohesion, perhaps a social network
analysis could give us more information on this comparison. Or even we could
examine the architectural components considering another scope, larger or smaller
than package.

5.1.5 Correlation between Geographical Distribution and System Complexity
The values obtained were quite motivating . Whereas a modular system has a low
complexity, the hypothesis initially raised for this comparison was as follows:

H5: the best geographically distributed a system is, the least complex.

This is because once they have contributors in different countries; the system needs

to be less complex to facilitate development.
We can note from Figure 5 that when geographical distribution increases, there is

in most cases, a reduction in system complexity. Some systems might not follow the
trend, although this issue can be further tested by making a study of the evolution of
the system and proving that for a particular system, when the geographical
distribution increases, the complexity decreases. These tests are being conducted by
our team for future work.

630 B. Siebra, E. Anjos, and G. Rolim

Fig. 5. Geographic distribution graph relating to Complexity

6 Conclusion and Future Works

Among the 8 open source systems investigated, there are few who escape completely
the standard required to understand their behavior before the results of the metrics of
modularity. They are:

 JasperReports: It is in 6th place in the complexity, i.e., it has low complexity
and with only 20 people, it is the 2nd project with fewer contributors. Its
geographical distribution is the 2nd smallest, which does not explain the
low complexity. Therefore, we could not correlate the social aspects of
modularity metrics in this system.

 JEdit: It is 2nd largest system in quantity of contributors and the 2nd
largest in geographical distribution. The complexity of this system is the
2nd largest of all. To evaluate the system considering its modularity,
system complexity should have been lower.

 Poi: It has large number of contributors, but the system complexity is low.
Several people developing the project in many different countries makes
the code less complex since it is highly splitted.

 JMeter: It is among the projects with the largest number of contributors,
there are 29. It is among the largest geographic distributions. Because of
this, its complexity is the 2nd lowest.

These results imply that we need to research more to understand why these systems

are exceptions. Maybe calculating more metrics could let us see new features. The
other results were more encouraging, proving that there is some relationship between
social metrics and modularity in the development of a system.

The research confirms the initial idea that social parameters for system projects can
be related to modularity metrics. However we still have difficulties on how to obtain
social data for analysis. Although we have seen here and in other researches is that,

 Study on the Social Impact on Software Architecture through Metrics of Modularity 631

according to the Mirroring Hypothesis, the organization mirrors the code,
nevertheless working with open-source systems is a bit complicated. There are many
peculiarities to consider with those systems, thus a great amount of metrics has to be
analyzed to obtain a better result.

The results evidence the necessity of trade-off analysis among the metrics. This
will underpin the peculiarities of each metric. Besides, to improve results it is
necessary to increase the quantity of versions and the amount of metrics for each
system. These tests are being conducted by our team.

We also intend to restrict the term "Social Factors", because it is far reaching. We
will try to analyze other social factors associated to the contributors to get more
responses. These social factors would be: education, age, occupation of the
contributors among others.

We will investigate the subcomponents of the system package structure. It is
usually just a physical hierarchy, but logically there are other components, such as
different subprojects, systems and libraries all of them maintained by different sub
teams of contributors.

We will also check possible explanation on comparing and collecting every threat
that affect the results. Every threat will be analyzed in order to ascertain its influence
and its validity concerning the research.

References

1. Carmel, E., Tija, P.: Offshoring Information Technology: Sourcing and Outsourcing to a
Global Workforce. Cambridge University Press, New York (2005)

2. Audy, J., Prikladnicki, R.: Desenvolvimento Distribuído de Software:Desenvolvimento de
software com equipes distribuídas. Elsevier, Rio de Janeiro (2008)

3. Lanubile, F., Damian, D., Oppenheimer, H.: Global Software Development: Technical,
Organizational, and Social Challenges. ACM SIGSOFT Software Engineering Notes 28(6)
(November 2003)

4. Pilatti, L., Audy, J.L.N., Prikladnicki, R.: Software configuration management over a
global software development environment: lessons learned from a case study. In:
Proceedings of the 2006 International Workshop on Global Software Development for the
Practitioner (GSD 2006), pp. 45–50. ACM, New York (2006)

5. Morris, R., Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into
Modules. Magazine Communications of the ACM (1972)

6. Baldwin, C.Y.: Modularity and Organizations, Harvard Business School Finance Working
Paper No. 13-046 (2012), http://ssrn.com/abstract=2178640 or
http://dx.doi.org/10.2139/ssrn.2178640

7. Garlan, D., Shaw, M.: An introduction to software architecture. Advances in software
engineering and knowledge engineering 1, 1–40 (1993)

8. Garlan, D.: Software Architecture. School of Computer Science at Research Showcase
(2001)

9. Rezende, D.A.: Engenharia de Software e sistemas de informação. 2nd ed. Brasport, Rio
de Janeiro (2002)

10. Gabriel, R.P., Jackson, M.: Definitions of Modularity. Retrospective on Modularity.
AOSD, Porto de Galinhas, Brazil (2011)

632 B. Siebra, E. Anjos, and G. Rolim

11. Conway, M.E.: How Do Committees Invent? Magazine Datamation (1968)
12. Maccormack, A., Rusnak, J., Baldwin, C.: Exploring the Duality between Product and

Organizational Architectures: A Test of the “Mirroring” Hypothesis. Publication in
Research Policy (2011)

13. Mills, E.E.: Software Metrics (CMU/SEI-88-CM-012). Software Engineering Institute,
Carnegie Mellon University (1988)

14. McCabe, J.: A Complexity Measure. In: Proceedings of the 2nd international conference
on Software engineering (ICSE 1976), p. 407. IEEE Computer Society Press, Los
Alamitos (1976)

15. Pressman, R.S.: Engenharia de Software, 5th edn., p. 843. McGraw-Hill, Rio de Janeiro
(2002)

16. Martin, R.C.: Prentice-Hall, Inc., Upper Saddle River (1995)
17. Rosemberg, L.H.: Applying and Interpreting Object Oriented Metrics. [S.l.]: NASA

Software Assurance Technology Center, SACT (2007)
18. Cai, Y., Huynh, S.: Measuring Software Design Modularity, pp. 5–6 (2008)

	Study on the Social Impact on Software Architecture through Metrics of Modularity
	1 Introduction
	2 Conceptual Background
	2.1 Software Architecture
	2.2 Modularity
	2.3 Open Source Software
	2.4 Conway’s Law and Mirrorring Hypothesis

	3 Metrics of Modularity
	4 Methodology
	4.1 Open Source Systems
	4.2 Git / GitHub
	4.3 Choice of Tools

	5 Results
	5.1 Results Analysis

	6 Conclusion and Future Works
	References

