

B. Murgante et al. (Eds.): ICCSA 2014, Part V, LNCS 8583, pp. 508–523, 2014.
© Springer International Publishing Switzerland 2014

An Empirical Study of Software Reuse and Quality
in an Industrial Setting

Berkhan Deniz1 and Semih Bilgen2

1 Aselsan Electronics Inc.,
Defense System Technologies (SST) Group, Ankara, Turkey

2 Middle East Technical University,
Electrical and Electronics Engineering Dept., Ankara, Turkey

berkhand@aselsan.com.tr,
semih-bilgen@metu.edu.tr

Abstract. Software reuse is known to be generally effective in reducing devel-
opment and maintenance time and cost as well as increasing quality. In this
paper, the effects of reuse on software quality in an industrial setting are empir-
ically investigated within the framework of three different case studies.
Throughout this study, we worked with Turkey’s leading defense industry com-
pany Aselsan’s software engineering department. We collected and calculated
reuse and quality metrics as well as performance measures of individual
embedded software modules and staff productivity rates. By analyzing these
measurements, we developed suggestions to further benefit from reuse through
systematic improvements to the reuse infrastructure and process.

Keywords: Software Reuse, Quality Metrics, Embedded Software, Fault-
proneness, Industrial Study.

1 Introduction

Software reuse is generally accepted to reduce development and maintenance time
and cost. Any software life cycle product can be reused, not only fragments of source
code [1].

As software assets are reused, the accumulated defect fixes result in higher quality
[2]. Therefore, a high degree of reuse correlates with a low defect density.

In this study, we investigated the reuse and quality relations in real-life software
projects carried out by Turkey’s leading defense industry company Aselsan. We
designed three separate case studies in which we collected and calculated object-
oriented quality metrics, reuse rates and performance of individual modules, fault-
proneness of components, and productivity rates of the products. Then, by analyzing
these metrics, we reached some useful conclusions: Based on these case studies, we
developed suggestions to further benefit from reuse through systematic improvements
to the reuse infrastructure and process.

The remaining sections of this paper are organized as follows: In Section 2, back-
ground information about reuse types, methods of measuring reuse and quality are

 An Empirical Study of Software Reuse and Quality in an Industrial Setting 509

presented. Also, previous studies on the effects of reuse on software quality are brief-
ly reviewed. In Section 3, our research hypotheses and the designed case studies are
presented. The collected reuse and quality metrics are introduced and the discussions
of these measurements are provided for all case studies, respectively. Section 4 is
about validity of the study. In Section 5, the collected data is analyzed and the re-
search hypotheses are verified. Finally, in Section 6, suggestions to improve the reuse
infrastructure are formulated based on the reported case studies. Section 7 concludes
the paper; the work done and obtained results are summarized, achievements and
difficulties of the study are reviewed; suggestions for future studies are offered.

2 Background

2.1 Reuse Types

Developers can resort to reuse via most software related entities such as requirements,
system specifications, design reports, and processes such as domain engineering for
product lines, as well as any other process artifact [1, 3]. There are two main reuse
categories: Components-based and transformation-based [12]. In the first category,
developers choose appropriate components, and reuse them, with modifications, if
and where. Open source software components, commercial-off-the-shelf components,
software architecture modules, and product-line components are some examples of
reusable components [6]. In the second category, an automated engine produces out-
puts by transforming appropriate inputs. Most reuse-engines are examples of trans-
formation-based reuse.

2.2 Measuring Reuse

Source line of code (SLOC) is the most often suggested metric for reuse size
measurements in literature [1, 11]. Furthermore, researchers suggest object-oriented
function points for measuring reuse, since this metric is more straightforward to im-
plement [3]. Additionally, for component-based software, “size” is not an available
metric as it is for standard systems. Therefore, “the number of use cases” is suggested
as an alternate means of size measurements [4].

2.3 Measuring Quality

ISO/IEC 25000 Quality Model. The latest quality model released by ISO/IEC is
Software product Quality Requirements and Evaluation (SQuaRE). This model covers
software quality requirements with a systems perspective. The new standard includes
a mechanical parts section including mechanics, hydraulics, electronics, and human
processes. Hence, the new system-description investigates a wide range of applica-
tions [14]. ISO/IEC 25023 Measurement of the system and software product quality
model of SQuaRE collects and replaces ISO/IEC 9126-2 and ISO/IEC 9126-3 revised
[15].

510 B. Deniz and S. Bilgen

Code-Based Software Quality Metrics. The above standard suggests both internal
and external metrics for measuring quality, and various other metrics derived using
this model. However, since the standard measures a software product via a large
number of aspects; it does not provide specific code-based metrics; hence using this
standard does not make sense for code-based measurements. Therefore, we decided to
use another model for code-based metrics. The advantages of code-based metrics are
summarized as:

• System level forecasting [8, 17]
• Prior identification of unsafe components [13]
• Development of safety design and programming instructions [8, 17]
• Identify the quality and structure of the software design and code [13]
• Prediction of fault-proneness [13]
• Prediction of development and testing efforts
• Validation of the software design quality [5]
• Improve software quality and productivity [5]
• Rapid response when a new technology is adopted [3]
• Reduction of implementation and maintenance cost [3]

The literature on CK metrics signifies that, in most of the studies, the measured
metrics correlate with software quality, especially with fault-proneness [5]. Addition-
ally, it is widely observed that OO concepts of coupling and complexity are strongly
correlated with fault-proneness [16].

Effects of Reuse on Software Quality. Software products’ quality usually increases
with reuse; because as software artifacts are reused, the collection of the defect cor-
rections in sequential versions brings about a higher quality [2]. Furthermore, the
defects detected in the reused components are given higher priority. Additionally,
components to be reused are designed and tested more carefully.

3 Research Hypotheses and Case Studies

In this study, we examined the relations between software reuse and quality in Asel-
san. We formulated four hypotheses as shown below and in order to confirm these,
we designed three different case studies.

• Hypothesis 1 – Code-based Quality: The quality of software products is improved
as reuse rates of the products increase.

• Hypothesis 2 – Performance of Embedded Software: Performance of the embedded
software products decays as reuse rate of the products increase.

• Hypothesis 3 – Fault-proneness: The number of defects detected in components
decreases as these components are reused in various products.

• Hypothesis 4 – Productivity: The productivity rates of products increase as the
reuse rates of these products increase.

 An Empirical Study of Software Reuse and Quality in an Industrial Setting 511

Throughout this study, we worked with three different software teams. These
teams were selected due to their accessibility and the possibility of communication
with them arising from the author’s employment.

The summary of metrics employed in each case study is displayed in Table 1.

Table 1. Case studies and the corresponding metrics employed

Case Study /
Metrics

Case
Study 1

Case
Study 2

Case
Study 3

Code-based Quality + +

Performance + +

Fault-proneness +

Productivity + +

3.1 Case Study 1

In this study, we worked with team 1. This team develops real-time embedded soft-
ware for various air defense weapon systems produced in Aselsan and creates soft-
ware in C++ language.

Three different software modules are investigated in this case study.
The first module is the User Command and Control Interface of an embedded sys-

tem. This module opens up a TCP/IP socket interface and the external users of the
system connect and control the system through this interface. This module is respon-
sible for getting commands through socket, parsing them, and entering the commands
into the rest of the system. This module also sends updates and requests to external
users; it formats messages in bytes level and sends through the socket.

Since message taking and sending include parsing and formatting in bytes level, it
is time-consuming to add a new message to the command interface. In order to simpl-
ify message management, a new reuse engine was developed and used by the devel-
opers in this team. This engine creates a middleware for all parsing and formatting
parts of the socket interface. The user of this tool just decides on the interface func-
tions, and the auto-created middleware is inserted into the main code.

This reuse engine is an example of transformation-based reuse since this engine
reuses all the process needed for message sending, receiving, and parsing. The devel-
oped middleware can be used without any changes in many different systems. Addi-
tionally, this engine can also be used by the test engineers and reduces test efforts.
Furthermore, the documentary outputs of this engine can be used for documentation
purposes as an example for documentation reuse.

The second module does the same work as the first module, but is implemented us-
ing the above-mentioned reuse engine.

The third module is also a product of the reuse engine; however, its developers are
different from the second one. It does work that is similar to the work in the second
one, but it is a small module: It has fewer messages than the second one.

In addition to CK metrics at the class level, we employed additional complexity
metrics in the experiment. In the OO environment, design concepts such as inherit-
ance, coupling, and cohesion have been argued to embrace complexity [5].

512 B. Deniz and S. Bilg

Also, complexity metrics h
ber of case studies [13]. H
McCabe Cyclomatic Comp
code), Nested Block Depth
Branch Statements (% Bran
the sequential execution of

In this study, the only a
same work to be done for e
the change of performance

The reuse rates of the m
non-comment line of code
Module 2: 81%, Module 3:

Tab

Metrics T
CBO
DIT
NOC
WMC
LCOM
SLOC
McCabeCC
NBD
% Branches
NoCycles

The only performance m

modules to receive the com
(Table 2).

Discussion of the Measure
primary OO concepts i.e. S
these metrics with respect t
tion between complexity m
and reuse rate, a positive r
strong relation between the

The use of a reuse engin
tion is noticed in all compl
with increasing reuse rate.

Fig. 1. C

gen

have been shown to correlate with defect density in a nu
ence, we selected additional complexity metrics from

plexity (McCabeCC - the number of flows in a part of
h (NBD - the extent of nested blocks of code), and Perc
nches – percentage of the statements that create a break
statements).
available physical metric is the number of cycles for
each module. Therefore, we used this metric to investig
metrics for embedded systems with changing reuse rate

modules were calculated by using reused (auto-generat
es, and total non-comment line of codes (Module 1: 0

52%).

ble 2. Extracted software quality metrics

Type Module 1 Module 2 Module 3
2,311111 1,944444 2,166667
0,333333 0,651166 0,066667
0,422222 0,686047 0,133333
4,777778 2,166667 2,9
0,0820 0,0495 0,0823
2819 4117 765
2,49 1,30 1,59
1,71 0,84 1,10
18,2 7,4 8,9
7914 9756 9648

metric calculated is the number of cycles (NoCycles) for
mmand from the system and send the corresponding d

ements. We group the measured metrics according to th
Size, inheritance, coupling, and complexity, and comp
to increasing reuse rates. We have found a strong corre

metrics and reuse rate (Figure 1). Between coupling met
relationship is observed (Figure 2). We did not observ
other quality metrics and reuse rate.

ne causes a reduction in complexity. In Figure 1, a red
exity metrics (WMC, McCabeCC, NBD, and % branch

Comparing complexity metrics and reuse rate

um-
[7]:
the

cent
k in

the
gate
s.
ted)
0%,

the
data.

heir
pare
ela-
trics
ve a

duc-
hes)

 An Empirical Stud

In Figure 2, an improvem
es. The change of the arch
system make the system les

Fig. 2.

Figure 3 shows the var
reuse rates. As expected, th
first module, after the comm
socket directly; however in
in order to reuse the middl
ware is introduced which in

Fig. 3. C

3.2 Case Study 2

In this study, we worked w
ware for tactical fire suppo
software in .NET environm
two types of components:
and product specific compo
veloped on this SPL consi
and product specific compo

The measurements in ca
oped by this team, which ar
these products.

dy of Software Reuse and Quality in an Industrial Setting

ment is observed in terms of coupling as reuse rate incre
hitecture for reuse and introducing interface classes in
ss coupled.

Comparing coupling metric and reuse rate

riation of performance metric (NoCycles) with differ
he number of cycles increases with increasing reuse. In
mand is received from the system, it is sent through rela
second and third modules the system architecture chan

leware and now between sending and receiving, a midd
ncreases the number of cycles.

omparing performance metric and reuse rate

with team 2. This team develops command and control s
ort systems using a software product line. The team crea
ment. SPL of team 2 is composition-oriented. In it, there

common platform components reused in various proje
onents developed for every single product. A product
ists of various numbers of common platform compone
onents in it.
ase study 2 include defect counts of the components dev
re reused in different products and the productivity rate

513

eas-
the

rent
the

ated
nged
dle-

oft-
ates
are

ects
de-

ents

vel-
s of

514 B. Deniz and S. Bilgen

Defect counts are obtained from the problem reporting system used in Aselsan. As
a result of company politics, all defects detected during system integration and accep-
tance testing and also those reported by customers are kept in the problem reporting
system i.e. Defects during software development process are not included in these
measurements.

Measurements about requirement counts are acquired from the requirements man-
agement tool used in Aselsan.

Total efforts of the products are measured by the business management software
used in Aselsan. However, due to the commercial confidentiality, we do not provide
exact measures of the efforts in this study.

About the specifications of the SPL’s various products, and about the properties of
the common and product-specific components in these products, we worked with one
of the configuration managers of team 2.

In this work, three different products are explored. All products have at least one
product specific component, and other components are common platform compo-
nents. The three products were developed sequentially with six months between the
completions of each one.

Table 3. New and reused component counts in three different products

Product No / Component count New Reused
Product 1 19 0
Product 2 3 16
Product 3 6 15

We classified the components which we analyzed as “new” and “reused” compo-

nents. New components are not used in earlier products, and reused components are
used previously in other products. Table 3 shows the new and reused component counts
in the products analyzed. Table 4 displays new and total requirement counts in all com-
ponents for each product. Table 5 displays total effort in man-hour for each product.

Defect counts of the components used in three different products are shown in Ta-
ble 6. Components 1-8 are common in all three products; component 11 is partly
common; and components 9, 10, and 12 are new components (i.e. They are used in
corresponding products for the first time). All 12 components are common-platform
components.

Table 4. New and total requirement counts in all components for each product

Components / Product No Product 1 Product 2 Product 3
C1 291 / 291 4 / 295 0 / 295
C2 383 / 383 10 / 293 0 / 293
C3 261 / 216 0 / 216 1 / 217
C4 167 / 167 0 / 167 0 / 167
C5 301 / 301 4 / 305 0 / 305
C6 304 / 304 11 / 315 0 / 315
C7 126 / 126 21 / 147 1 / 148
C8 220 / 220 32 / 252 27 / 279
C9 - - 211 / 211

C10 - - 177 / 177
C11 275 / 275 - 14 / 289
C12 - 141 / 141 -

 An Empirical Study of Software Reuse and Quality in an Industrial Setting 515

Table 5. Total effort for each product

Product No Total Effort (man-hour)
Product 1 2,75 * N
Product 2 1,5 * N
Product 3 N

Discussion of the Measurements. According to Figure 4, the average defect count in
the first product is more than 50, less than 3 in the following product and less than 1
in the third product. More than 95 % of the total defects are detected in the first prod-
uct. There are various reasons for this improvement: the reused components are less
modified than non-reused ones; therefore, they are more stable. Additionally, the
reused components are designed more intensely; since defects in them affect different
products. Furthermore, the employment of the common components in various prod-
ucts causes them to become faultless and finished components.

Table 6. Defect counts of the components in three different products

Components /
Product No

Product 1 Product 2 Product 3

C1 87 2 0
C2 35 5 0
C3 54 1 1
C4 20 0 0
C5 63 0 0
C6 100 6 0
C7 24 0 1
C8 48 3 0
C9 - - 24
C10 - - 34
C11 55 - 7
C12 - 27 -

In Figure 5, defect counts of the product-specific components (i.e. Components 9,

10, and 12), and the average defect counts of common components are shown. For all
three components, defect counts are more than 20. Since, these components are not
reused, we observe a similar distribution as the defect counts of the common compo-
nents in the first product they are used.

Defect count of component 11 is shown in Figure 6. This component is partially-
common in products 1 and 3 (see Table 4 and Table 6). In product 1, more than 50
defects are detected, and in product 3 almost 10 defects are detected. The defect dis-
tribution of this component is similar to common components’ distribution of prod-
ucts 1 and 2.

Table 7 shows productivity rates calculated by dividing number of new require-
ments (Table 4) by total efforts (Table 5).

516 B. Deniz and S. Bilg

Fig. 4. Defe

Fig. 5. Defect counts

Table 8 shows productiv
In Figure 7, productiviti

products, productivity rates

Fig. 6. Defect

Comparison of the prod
duction between the first a
the second and third produc
opment by employing a pro
oped in previous products, t

Table 7

Product No New
Product 1 228
Product 2 223
Product 3 431

gen

ect counts of the common components (C1-C8)

s of the product-specific components (C9, C10, and C12)

vity rates calculated with the total number of requiremen
ies are compared. As components are reused in differ
 increase remarkably, which is not surprising.

counts of the partially-common component (C11)

ductivity rates with new requirements exhibits a sharp
nd second products; and a noteworthy expansion betw
cts. We interpret the first case as a conclusion of the dev
oduct-line. Since the reused components are already dev
the productivity rates increase significantly.

. Productivity rates using new requirements

w Requirements Productivity (requirements / man-hour*N)
83 830,2
3 148,7
1 431

nts.
rent

re-
ween

vel-
vel-

 An Empirical Stud

Furthermore, the first red
riod of the development wit
ready to be used, it is still
grate them with the recentl
the second and third produc
trained in development wit
the productivity rates using
the first product.

Table 8.

Product No Tota
Product 1 228
Product 2 223
Product 3 279

Fig. 7. Comparison of produ
requirements

3.3 Case Study 3

In this study, we worked w
ware for fire control system
capabilities, which can be i
line, are modeled as separ
platform components reuse
components.

Measurements of case st
vary for different products
the performance measurem
and compared before and af

Reuse rates are calculate
comment line of codes. P
comment line of codes by
are measured by the busine
commercial confidentiality

dy of Software Reuse and Quality in an Industrial Setting

duction in the second case is explained as an adaptation
th the product line. Although there are developed-produ
time-consuming to gather up these components and in

ly developed components. Finally, the expansion betw
cts in the second case is interpreted as an evidence of be
th the product line. It is expected that, in future produ
g the new requirements will exceed the productivity rate

. Productivity rates using total requirements

al Requirements Productivity (requirements / man-hour*N)
3 830,2
1 1487,3

96 2796

uctivity rates of each product using new requirements and t

with team 3. This team develops real- time embedded s
ms using a composition-oriented SPL in C++ language. T

included in the product line or excluded from the prod
ate components. In this SPL, there are various comm

ed in different products and also there are product-spec

tudy 3 include of changing productivity rates as reuse ra
developed sequentially using SPL of team 3. In additi

ments of a critical scenario in this domain will be measu
fter the SPL is employed.
ed using reused non-comment line of codes and total n
Productivity rates are calculated by dividing total n
total effort to develop the so called product. Total effo
ss management software used in Aselsan. However, due
, we do not provide total efforts and total source line

517

pe-
ucts,
nte-

ween
eing
ucts,
e of

total

oft-
The
duct

mon-
cific

ates
ion,

ured

non-
non-
forts
e to
e of

518 B. Deniz and S. Bilgen

code metrics here. For making these measurements, we worked with one of the confi-
guration managers of the team.

In Table 9, reuse and productivity rates for the products developed using SPL of
team 3 are given.

In order to compare the performance before and after employing the product line,
one of the most critical scenarios in the system, the automatic video tracking scenario
is investigated. The performance metrics used are time delay and CPU usage in this
scenario. These metrics are measured using the provided embedded operating system
functions.

Table 9. Reuse and productivity rates for products in SPL of team 3

Product No % Reuse Rate
Productivity
(SLOC / man-hour)

Product 1 35,73 54,22
Product 2 39,25 54,92
Product 3 48,86 43,38
Product 4 48,9 68,39

During the development process of the product line, the team introduced two more

layers into the scenario. During the SPL design the team worked on two different
approaches i.e. Pull and push strategies, while the first approach was more reusable
with higher abstraction level.

Separately for three scenarios, the delay from reception of the track data from VT
System to the transmission of the platform data to the Servo Controller System and
the CPU usage during the scenario are measured. Measurements are shown below in
Table 10.

Table 10. Measurements of the AVT scenario

Scenarios / Mea-
surements

Minimum
Delay (ms)

Maximum
Delay (ms)

Average
Delay (ms)

% CPU
Usage

Before SPL 0,85 1,05 0,9 72,3

Pull strategy 2,12 35,0 20,0 81,5

Push strategy 2,12 5,5 3,2 79,9

Discussion of the Measurements. In Figure 8, the comparison of reuse and produc-
tivity rates of the products is displayed. Reuse rates increase from product 1 to prod-
uct 4; however productivity change does not have the equivalent attitude. Productivity
rates increase slightly between the first two products, and then productivity rate de-
creases from product 2 to product 3. However, between the last two products, produc-
tivity rate differs noticeably. When we discussed this situation with the team, we
found out the following factors:

• There was a serious waste of time during the development of the non-reused (new)
parts in product 3,

• Most of the developers of the product 3 were unfamiliar with software develop-
ment by employing the product-line.

 An Empirical Stud

We can conclude that ut
for the non-reused parts an
rates can be useful. Furthe
observe productivity decays
in a software development t

Previously, three differe
plained. The first method
second and third methods, t
line employment and in ord

Fig. 8. Comparison

Fig. 9. Comparison of averag
AVT scenario

The AVT scenario delay
son of the average delay an
comparisons, we can concl
ble, and more abstract from
the developers should deci
mance requirements allow
requirements are too heav
terms of reusability, howev
thod. It was also more reus
when the performance requ

dy of Software Reuse and Quality in an Industrial Setting

tilization of some normalizing factors i.e. Code complex
nd experience of the developers, in measuring productiv
ermore, during the initial products, it is not surprising
s; since it is time consuming to get used to the product l
team.
ent implementation methods of the AVT scenario are

was before the team developed the SSRM SPL. In
there are two additional layers which are due to the prod
der to increase the reuse of the scenario software.

of reuse and productivity for products in SPL of team 3

ge delays and CPU usages of three different implementation

y is measured for three cases (see Table 10), and comp
nd CPU usage are shown in Figure 9. According to th
lude that while transforming the software into more reu
m the interfaces; we lose from the performance. Therefo
ide on the limit of this trade-off. Sometimes, the perf

w these improvements; however sometimes performa
vy. The second method was the most appropriate one
ver the developers had to perform and apply the third m
sable compared to the first method, and it was accepta

uirements were considered.

519

xity
vity
g to
line

ex-
the

duct

ns of

pari-
hese
usa-
ore,
for-

ance
e in
me-
able

520 B. Deniz and S. Bilgen

4 Validity of the Case Studies

Four aspects of validity are summarized for empirical studies as “construct validity”,
“internal validity”, “external validity”, and “reliability” [10].

• Construct validity is about the compliance of the measurement and interpretation
of the theoretical constructs. In our case studies, the metrics are either measured by
the researcher or collected from the company databases.

• Internal validity is about whether the causal relations are studied. Since our case
studies are not scientific experiments, we did not suffer for this validity.

• External validity focuses on the generalizability of the results. In our case studies,
we aimed collecting all related metrics from all the teams; but for current states of
the teams and projects, it was not possible. Therefore, our results and suggestions
mainly are advantageous for our company.

• Reliability is concerned with the replicability of the study by different researchers.
We claim that any researcher accessible to the internal metrics of a software com-
pany may come up with the similar results.

5 Verification of the Hypotheses

In this section, the results of the measurements in the case studies will be analyzed,
and it will be stated whether or not the hypotheses are verified.

Case study 1 findings show that some CK metrics and size metrics do not correlate
with changing reuse rate: SLOC, DIT, NOC, and LCOM. However, Coupling and
Complexity CK metrics and the additional complexity metrics show a strong correla-
tion with the changing reuse rate. In accordance with the relevant literature, the im-
provements in coupling and complexity metrics are sufficient to claim an increase in
software quality. Therefore, we can conclude that Hypothesis 1 is verified.

In case study 1, we measured and compared the performance of a message receiv-
ing and transmitting scenario in three different embedded software modules. We find
a strong negative correlation between performance and reuse rate; which is consistent
with the related arguments in the literature.

In case study 3, we measured and compared the performance metrics of a critical
scenario of an embedded software system before and after employing a product-line
approach. We observed that, the case before the product line approach was the best
regarding the performance, and as the software turned into more reusable and more
abstract from other parts of the software, the performance of the software decayed.

Consequently, the measurements from two different case studies have verified Hy-
pothesis 2.

In case study 2, measurements are taken from a product line which is used in sub-
sequent products. When the components are not reused, we observe a large number of
defects. Furthermore, we find that the decrease in the defect counts is independent of
the product types. When the component is firstly used in product 3, again we detect a
similar distribution as if the component is firstly used in product 2.

 An Empirical Study of Software Reuse and Quality in an Industrial Setting 521

To conclude, as components are reused in several products, we observed that their
defect counts decrease significantly and so their fault-proneness. Therefore, we can
conclude that hypothesis 3 has been verified in this study.

In case study 2, productivity rates of the three products developed using the SPL
approach are presented. Productivity rates are measured using the number of require-
ments using the requirements count and total effort. The results showed that, if the
productivity is measured using the total number of requirements in the deployed
product, the productivity rates improve significantly. Additionally, productivity is
measured also by using the new requirements. In that case, we observed a reduction in
productivity between the first and second products; and an increase in productivity
between the second and third products. This situation is interpreted as an adaptation
period of the product line approach.

In case study 3, we compared productivity rates of products implemented by
another product line approach with increasing reuse rates. In this measurement, we
also observed a positive correlation with reuse and productivity rates. However, the
change of the members of the team during the development of product 3 caused a
reduction in the productivity rate of this product. This situation is interpreted, similar-
ly in case study 2, as an adaptation period of the product line.

Hence, we concluded that, if the effects of the adaptation period of the product line
approach are ignored, the productivity rates improve significantly as the rate of reuse
increases in a product line. Therefore, hypothesis 4 has been verified.

6 Suggestions for Further Benefit from This Study

In this section, suggestions regarding the reuse infrastructure and process to improve
benefits of reuse are formulated.
• Use of Reference Metrics

Software developers should incorporate software quality metrics into their software
development processes, and before and after serious decisions on design, technology
or infrastructure; the change of these metrics should be investigated.

Therefore, in order to succeed in the employment of these metrics, the software
developers should select reference metrics specific to their software domain and pe-
riodically monitor the changes of these metrics.
• Automated Detection of Architectural Effects

Real time embedded software developers should monitor the performance re-
quirements after employing extensive architectural modifications; furthermore, they
must update the modifications if the performance of the software eventually becomes
unacceptable for the system.

Thereupon, the embedded software developers should develop methods in order to
automate the process of detecting the architectural modifications which include the
chance of worsening the software performance below system requirements.
• Recording Software Development Process Defects

In order to improve the management of defects, and investigate the defects
intensely; the severity of the defects should also be provided after being corrected.

522 B. Deniz and S. Bilgen

Additionally, the defects detected during the software development process should
also be recorded; since the defects of the components during the development process
is a key metric in order to improve the reuse infrastructure of a product line.
• Association of Defects with Design Concepts

In order to improve the management of defects, and investigate the defects intense-
ly; the software developers should identify each defect with corresponding compo-
nent, and the design concept.
• Recording Rework Efforts and Efforts Associated with Reuse

In order to be able to measure and analyze rework and reuse efforts, with changing
reuse rates; these metrics should be recorded, and for this purpose the relevant infra-
structure should be developed.
• Explicit Accounting for Code Reuse

During analysis of the productivity rates of the products, it was found that lack of
the experience of the developer team was a significant factor of the declines in prod-
uctivity; since, the employment of product lines requires an extra effort such as an
adaptation period. Henceforth, during effort estimations of the products developed by
a product line approach; the experiences of the developers, about the product line,
should also be considered. Finally, the developers should also estimate and record
efforts separately for reused and non-reused components, in order to analyze the im-
pacts of reuse on the productivity rates deeply.

7 Conclusion

In this study, we worked with software engineering department of a defense industry
company Aselsan. We examined their software projects and follow reuse and quality
relations for these projects. For this purpose, we collected and compared some soft-
ware measurements such as OO quality metrics, fault-proneness, performance, and
productivity with changing reuse rates. Finally, we have formulated suggestions in
order to improve the reuse infrastructure and process, after verifying reuse and quality
relations in this setting. Throughout this study, we accomplished three different case
studies and measured and compared different concepts in all three cases; however we
were not able to obtain all these measures in all cases. Therefore, for future studies, it
would be a significant improvement if all types of the measurements could be col-
lected and compared with changing reuse rates, for all case studies separately.

References

1. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Computing Sur-
veys 28(2), 415–435 (1996)

2. Lim, W.C.: Effects of reuse on quality, productivity, and economics. IEEE Software 11(5),
23–30 (1994)

3. Jamali, S.M.: Object Oriented Metrics (A Survey Approach). Department of Computer
Engineering Sharif University of Technology, Tehran, Iran (2006)

 An Empirical Study of Software Reuse and Quality in an Industrial Setting 523

4. Sedigh-Ali, S., Ghafoor, A., Paul, R.A.: Metrics and models for cost and quality of com-
ponent-based software. In: Proceedings of IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pp. 149–155 (2003)

5. Subramanyam, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-oriented
design complexity: implications for software defects. IEEE Transactions on Software En-
gineering 29(4), 297–310 (2003)

6. Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H.: An Empirical Study of Software
Reuse vs. Defect-Density and Stability. In: Proceedings of International Conference on
Software Engineering, pp. 282–291 (2004)

7. Oliveira, M.F.S., Redin, R.M., Carro, L., da Cunha Lamb, L., Wagner, F.R.: Software
Quality Metrics and their Impact on Embedded Software. In: 5th International Workshop
on Model-based Methodologies for Pervasive and Embedded Software, MOMPES 2008,
pp. 68–77 (2008)

8. El-Emam, K.: Object-oriented metrics: A review of theory and practice. In: Advances in
Software Engineering, pp. 23–50. Springer-Verlag New York, Inc., New York (2002)

9. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transac-
tions on Software Engineering 20(6), 476–493 (1994)

10. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

11. Mohagheghi, P., Conradi, R.: Quality, productivity and economic benefits of software
reuse: a review of industrial studies. Empirical Software Engineering 12(5), 471–516
(2007)

12. Dusink, L., van Katwijk, J.: Reuse Dimensions. In: SSR 1995 Proceedings of the 1995
Symposium on Software Reusability, pp. 137–149 (1995)

13. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: ICSE
2006 Proceedings of the 28th International Conference on Software Engineering, Shang-
hai, China, pp. 452–461 (2006)

14. Boegh, J.: A New Standard for Quality Requirements. IEEE Software 25(2), 57–63 (2008)
15. ISO/IEC, Systems and software engineering – Systems and software Quality Requirements

and Evaluation (SQuaRE) – Measurement of system and software product quality, ISO,
ISO/IEC WD 25023 (2011)

16. Deniz, B.: Investigation of The Effects of Reuse on Software Quality in an Industrial Set-
ting. M.S. thesis, Electrical and Electronics Engineering Dept., Middle East Technical
University, Ankara, Turkey (2013)

17. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: ISSTA 2008
Proceedings of the 2008 International Symposium on Software Testing and Analysis, Seat-
tle, Washington, USA, pp. 131–142 (2008)

	An Empirical Study of Software Reuse and Quality in an Industrial Setting

	1 Introduction
	2 Background
	2.1 Reuse Types
	2.2 Measuring Reuse
	2.3 Measuring Quality

	3 Research Hypotheses and Case Studies
	3.1 Case Study 1
	3.2 Case Study 2
	3.3 Case Study 3

	4 Validity of the Case Studies
	5 Verification of the Hypotheses
	6 Suggestions for Further Benefit from This Study

	7 Conclusion
	References

