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Abstract. We face the problem of interpreting parts of a dataset as
small selections of features. Particularly, we propose a novel masked non-
negative matrix factorization algorithm which is used either to explain
data as a composition of interpretable parts (which are actually hidden
in them) and to introduce knowledge in the factorization process. Nu-
merical examples prove the effectiveness of the proposed algorithm as a
useful tool for Intelligent Data Analysis.
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1 Introduction

Non-negative Matrix Factorization (NMF) is a computational technique for low-
rank approximation of a numerical dataset [13,14]. Differently to other low-rank
approximation techniques, such as Principal Component Analysis (PCA), Sin-
gular Value Decomposition (SVD) et similia [8], NMF is able to explain data in
terms of combination of nonnegative factors (provided that data are nonnegative
too). In more formal terms, given a dataset represented as a nonnegative matrix

X = [x1,x2, . . . ,xm] ∈ R
n×m
+

where xi ∈ R
n
+ are column vectors representing samples 1, NMF algorithm aims

to approximate X into the product of two non-negative matrices – a base matrix
W ∈ R

n×k
+ and an encoding matrix H ∈ R

k×m
+ – such that

X ≈ WH. (1)

The value of k is user-specified and identifies the number of factors used
to explain data. In fact, each sample is approximated as a nonnegative linear

1 In the following, a matrix is denoted with an uppercase letter, e.g. X, its elements
with the corresponding lowercase letter, e.g. xij , a column vector in lowercase bold-
face, e.g. xi
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combination of factors, that is:

x̂j =
k∑

i=1

wihij . (2)

The non-negativity characterization of NMF makes it a useful tool for Intel-
ligent Data Analysis (IDA). In fact, the non-negativity makes NMF capable of
representing data as a additive combination of common factors. Moreover, if such
factors have some physical meaning (i.e., they can be interpreted in the domain
of the considered problem), NMF makes possible to explain data as a compo-
sition of parts, being each part a factor. For examples: student questionnaire
results can be explained in terms of basic student skills [9], news can be cathe-
gorized according to the arguments they refer to [17], objects can be detected
and localized in still in gray-scale images [6] and so on.

The main issue of NMF is therefore related to the ability of interpreting factors
in the problem domain: unfortunately, decomposition (1) is not unique; also, it
may be not easy to bring out useful knowledge from the representation of W
and H [11].

In order to overcome the limitations of classical NMF and to introduce knowl-
edge in the factorization process, additional constraints to the nonnegativity of
the matrices W and H can be added. Some examples of constraints are: the
sparseness adopted to increase the parts-based representations of the decom-
position [12], several forms of orthogonality used to improve the cluster ability
of NMF [4,10,16], local manifold structure [3], label information to perform a
semi-supervised learning decomposition process [15], binary structure to produce
biclustering structures explicitly [18]. Obviously, any additional constraint leads
to the development of different optimization algorithms for NMF factorization.

In this paper, we face the problem of interpreting parts as small selections of
features. More precisely, we constrain the column vectors of W so that only a
small subset of elements is non-zero. This representation of parts could be very
useful for IDA, since it is able to highlight some local linear relationships existing
among features that hold for a subset of data. To this purpose we introduce a
new optimization problem for NMF, which constrains the columns of the base
matrix W to possess a small number of non-zero elements. Then, we adopt a
query-based approach, where the structure of the base matrix is defined by a
user-provided mask matrix. In this way, the analyst can specify the parts she
is interested to discover in data; the proposed technique, in fact, extracts the
subset of data that are actually represented by the parts.

The proposed approach has been tested on a number of synthetic datasets
in order to show its effectiveness in correctly selecting parts in data according
to the provided queries. Moreover, a preliminary experiment on the well known
Iris data is also reported in order to demonstrate the validity of the proposed
approach on real dataset.

The paper is organized as follows: in the next section, the query-based ap-
proach is skeched together with the masked NMF algorithm. This latter is de-
rived by minimizing a novel weighted penalized objective function which has
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been proposed to matching the query matrix and to preserve nonnegativity of
data. In section 3 some numerical simulations are reported in order to illustrate
the effectiveness of the proposed approach. In section 4 some conclusive remarks
are outlined, along with future extensions of the proposed approach.

2 Masked NMF

Classical NMF algorithms used to compute the approximating factors W and H
as in (1) are typically derived by solving the constrained least square minimiza-
tion problem:

min
W≥0,H≥0

1

2
‖X −WH‖2F (3)

where ‖ · ‖F indicates the Frobienus matrix norm on matrices.
The non-negativity constraints imposed by (3) often are not enough to provide

for factors (i.e. the columns wk of W ) that represent useful knowledge. In fact,
usually these columns are very dense; moreover, different configurations of W
and H lead to the same approximation of X , thus it is difficult to associate a
physical meaning to the factors. Indeed

X = (WC)
(
C−1H

)

for every C ∈ R
k×k such that both C and C−1 are non-negative.

In order to overcome the limits of classical NMF and to inject a-priori knowl-
edge in the factorization process we introduce the concept of part. From the
vector representation of data derives that each sample is represented by a vector
of n features {f1, ..., fn}. A part p is defined as a sparse vector in R

n where at
least two components are non-zero. A feature belongs to a part iff its value is
non-zero. In this way we constrain the factorization process to describe data as
a linear correlation of different parts, whose features are linear correlated among
them. The structure of the part (i.e. the features set to zero, thus excluded by
the part), as well as the number of parts, constitutes the a-priori knowledge and
is user-defined.

In order to obtain basis factors that are able to extract parts, we constrain
the columns wk in W to contain only few non-zero elements. We observe that
factors possessing this type of structure enable the elicitation of local linear
relationships in subsets of data.

In order to incorporate the previously explained additional constraints, we
design the following minimization problem:

min
W≥0,H≥0

1

2
‖X − (P �W )H‖2F +

1

2
λ
∥∥∥P � W̃

∥∥∥
2

F
(4)

where
W̃ij = exp (−Wij)

and
P ∈ {0, 1}m×k
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is binary matrix, with a fixed number of non-zero elements per column which is
used as query for the NMF problem, while λ ≥ 0 is a regularization parameter.

The objective function in (4) is composed by two terms: the first one represents
a weigthed modification of the classical NMF problem where the mask matrix
P is used to fix the structure the base matrix W has to possess. The second
term is a penalty term used to enhance the elements in W that match the mask
structure. For this purpose the exponential function has been chosen: in fact
when the value of an entry wij of W is low it is increased by the penalty term,
when it is high the penalty tends to zero. The choice of the exponential function
allows us to prevent that zero values correspond to features that we want to
include in the parts. The query matrix P is used to identify the parts that the
analyst would like to extract from data. This is accomplished by defining P as a
set of k column vectors, where each element in a column is 1 if the corresponding
feature has to be selected, 0 if it has not be considered.

The objective function (4) automatically imposes the structure of the query
P in the factor matrix W , minimizing the non-relevant elements in W and
maximizing (when they are actually present) the relevant elements in it. It should
be observed, however, that the objective function (4) is not convex in both
variables W and H . So, it is thus unrealistic to find the global minima for it.
However, an iterative updating algorithm to obtain the local optima of (4) can
be derived. Particularly, denoted by Ψ = [ψij ] and Φ = [φij ] the Lagrangian
multipliers for the constraints Wij ≥ 0 and Hij ≥ 0, the Lagrangian function
associated to the minimization problem in (4) is given by:

L =
1

2
trace

(
(X − (P ⊗W )H)

T
(X − (P ⊗W )H)

)

+ λtrace

((
P ⊗ W̃

)T (
P ⊗ W̃

))
+ trace (ΨW ) + trace (ΦH) (5)

Imposing the Karush-Kuhn-Tucker conditions for the optimality, it follows
that the derivative of the Lagragian with respect to W and H are

∂L
∂W

= (P ⊗W )HHT − P ⊗ (
XHT

)
+

1

2
λ (−2)P ⊗ W̃ + Ψ = 0 (6)

∂L
∂H

= (P ⊗W )
T
(P ⊗W )H − (P ⊗W )X + Φ = 0 (7)

Solving the previous equations with respect to the elemements in W and H ,
the following updating formulas for Wij and Hij can be derived:

Wij ← Wij

[
P � (

XHT
)]

ij
+ λ

(
P � W̃

)

ij

[(P �W ) (HHT)]ij + ε
(8)

Hij ← Hij

[
(P �W )TX

]

ij[
(P �W )

T
(P �W )H

]

ij
+ ε

(9)
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where the constant ε = 10−12 has been introducted to prevent division by zero.
We will refer to (8) and (9) as Masked NMF (MNMF).

Regarding these two updating rules, it is not difficult to prove that the objec-
tive function (4) is nonincreasing under the updating rules (8) and (9).

2.1 Query Based MNMF

Algorithm 1 formally describes the proposed approach to analyse data through
MNMF. Particularly, the steps the proposed approach is composed by are justi-
fied and described in the following.

MNMF is an iterative updating algorithm based on the multiplicative algo-
rithm proposed by Lee and Seung [14]. It alternatively updates the matrices W
and H according to the rules (8) and (9) (lines 3 and 4 of algorithm 1) while
stopping criteria is not satisfied (line 2). Since the algorithm converges to zero,
the adopted stopping criteria is based on the difference between two following
values of the objective function: the computation of updates stops when the
difference is lower than a prescribed small value ε.

Formally, set E = Obj(t) − Obj(t − 1), where Obj(t) indicates the value of
the objective function at the t− th iterate, then

stop =

{
true if E ≤ ε

false otherwise

In the reported experiments ε = 10−6. A maximum number of iterations (set
equal to 1000) is also used as an additional stopping criteria just to avoid a high
computational effort when very low convergence rate occurs.

Being the MNMF algorithm based on the gradient descent method, it is sen-
sitive to the starting point. As stardart choice, the matrices W and H have been
initialized using two random matrices W0 and H0 (line 1), however different ini-
tializations can lead to better results [2,5,7], further experiments will be aimed
to examine this aspect.

It should be pointed out that data in the matrix X has been normalized (line
1) to lay in the unit sphere (i.e. ‖X:i‖2 = 1 for i = 1, . . . ,m). This representation
has been preferred because NMF works in vectorial space, where data are vectors
with an own direction and not points. Normalization eliminates information
related to the lenght of the vectors, preserving relationships in data.

After MNMF runs, columns of W are normalized in L2 (line 6) together with
the matrix H (line 7) in order to preserve the factorization results. This is ac-
complished multiplying the factor W for the diagonal matrix N , and multiplying
H for its inverse:

W̄ = WN (10)

H̄ = N−1H (11)

where N = diag (norm(W:,1), norm(W:,2), . . . , norm(W:,k)).
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Algorithm 1. QMNMF

Require: X ∈ R
n×m
+ {dataset}

Require: P ∈ {0, 1}n×k {mask}
Require: λ {regularization parameter}
Require: W0 ∈ R

n×k
+ and H0 ∈ R

k×m
+ {initial matrices W and H}

Require: t > 0 {threshold}
Require: hardmode ∈ {true, false} {hard-mode selection criterion}
1. Normalize X
2. while stopping criterion not satisfied do
3. update matrix W according to (8)
4. update matrix H according to (9)
5. end while
6. Normalize matrix W according to (10)
7. Adjust matrix H according to (11)
8. Binarize H into H̄ according to eq. (12)
9. if hardmode then
10. Compute the column index set J = j : h̄I,j = 1
11. else
12. Compute the column index set J = j : h̄I,j �= 0
13. end if
14. Select data samples X ′ = X[1 : n, J ] {all rows and columns in J}
15. return W ∈ R

n×k
+ {selected parts}

16. return H ∈ R
k×m
+ {coefficents}

17. return X ′ ∈ R
n×m′
+ {data subset}

When a NMF of a given data matrix X is computed, each sample is approxi-
mated in a low-rank subspace (of k dimensionality) by equation (3) . Particularly,
the elements of each columns of the encoding matrix H codify the information
needed to identify the factors (columns of W ) used to reconstruct each sample
of X in the low-rank subspace. From a geometrical point of view, the columns
of W define the basis vectors of a subspace of dimension k, and each column of
H defines the coefficients for each basis vector that is needed to approximate
the corresponding data sample in X . Therefore, the elements in a column of H
identify the importance of each basis vector in approximating the data sample:
if a coefficient is very small, then the corresponding basis vector is useless in
approximating the sample; as a consequence, the data sample does not contain
the part represented by this basis vector. Information stored in the matrix H
can be used therefore for Intelligent Data Analysis. After MNMF optimization a
possible occurrence is finding samples of H which have low values corresponding
to a part. This means that MNMF was not able to find the corresponding part in
that subset, so the analysis could be restricted to the subset of data where parts
have been recognized. This can be accomplished by ”binarizing” each column of
H into H̄, i.e.

h̄ij =

{
1, hij ≥ t

0, hij < t
(12)
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for a user-defined threshold t > 0 (line 8). Samples in the matrixH that have not
been reconstructed using parts which we are looking for, are then removed from
the matrix X . The remaining columns after this removal procedure form a new
data matrix that is denoted byX ′ ( line 14). This approach allows the selection of
the samples in data that are actually represented by the specified parts. However,
the new dataset X ′ can be extracted according to two alternative criteria: (i) a
data sample is selected if it contains at least one part in W (soft-mode) (line
12); (ii) a data sample is selected if it contains all the parts represented in W
(hard-mode) (line 10). The first criterion is more conservative as it selects data
samples that are represented by possibily other parts that are not included in
W . On the other hand, the second criterion is more selective because it selects
a data sample only if it can be well reconstructed by all the parts in W . At the
end of the selection process, MNMF is re-run for the subset of the selected data
samples. The objective of this last step is to re-compute the values in the base
and encoding matrices without taking into account data samples that are not
composed by the selected parts. This provides a more precise estimation of the
parts and their contribution in the data samples.

For technical reasons related to the optimization algorithm, columns of the
query matrix P have to be mutually orthogonal, i.e. pTi pj = 0 with i, j =
1 . . . k; i 
= j. This constrain ensures independence of user queries in the columns
of P . Moreover, the method requires extra bases. In order to avoid stretching in
the factorization process we add many canonical bases to the mask as the feature
that have not been selected in the query are. This ensures the factorization pro-
cess to find parts that the analyst is actually interested in discovering in data.
Without this precaution MNMF would attempt to force the reconstruction of
data using only the specified bases. Hence if parts in the query are not enough
to describe data, MNMF uses the extra bases. For this reason in the algorithm
we analyze the subset of rows of the matrix H that don’t refer to extra bases
(named I).

3 Numerical Simulations

We illustrate the results of some numerical simulations performed on a synthetic
dataset X ∈ R

6×350 that is generated in a specific way to evaluate the ability of
the proposed approach in finding parts in data (fig. 1).

To generate the data samples, we made use of two random variables, s1 ∼
N (5, 1) and s2 = αs1 with α = 3 (we cropped to 0 negative values). Then we
generated three combinations of two out of six features (mutually orthogonal),
namely (1, 2), (3, 4), (5, 6). We considered each combination of features (i1, i2)
and defined a correponding random basis ch, h = 1, 2, 3, so that ci1 = s1,
ci2 = s2 and ci = 0 for i /∈ {i1, i2}. We finally generated the dataset in blocks of
50 samples, each block being defined as a combination of the random bases ch
(i.e. c1,c2,c3, c1 + c2, c1 + c3,c2 + c3,c1 + c2 + c3).

Figure 1 shows a graphical representation of the data matrix X , which has
been constructed as linear combination of the three bases ci. It should be ob-
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Fig. 1. Graphical illustration of the synthetic dataset X

served that the boxes represent fifty sequential data generated with the same
linear combination.

Figure 2 reports the two different masks P1 and P2 adopted to query X .
The mask P1 is used to impose on the factors matrix W the same structure
occurring in the dataset X , while the mask P2 represents only partially the
structure hidden in data (i.e., the first column in P2 represents parts that are
actually present in X , while the second represents parts that are not present in
X). It has been pointed out that in both masks parts we are looking for in data
are expressed by the first two columns, the remaining two have been added for
techical reasons, and we will refer to them as extra bases. The mask P1 allows us
to verify if the proposed Query-based MNMF is able to recognize as relevant all
the examples in dataset that have been constructed using the parts specified by
the query mask; while the use of P2 should show the behaviour of the algorithm
when the analyst is looking for parts that are not actually in data.

P1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

P2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

Fig. 2. Mask matrices used in the MNMF algorithm

This means that in both cases the query we submitted to the algorithm does
not cover all the examples in the dataset, so we expect that the procedure selects
a subset of it containing only the relevant data.

Figure 3 illustrates the mask matrix P1 together with the factor matrix W
computed by MNMF with parameter λ = 0.00001 and P1. As it can be observed,
the factor W possesses the same of structure of P1 and the extracted bases wi

preserve also the multiplicative factor α that has been used to generate the data,
being the ratio of the two non-zero features approximately equal to 3.
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P1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

W =

⎛
⎜⎜⎜⎜⎜⎝

0.316 0 0 0
0.949 0 0 0

0 0.316 0 0
0 0.949 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Fig. 3. Comparison between W and P1 matrices obtained with λ = 0.00001

Figure 5 illustrates the matrix H obtained with MNMF and query P2. As
it can be observed only a subset of the samples has been reconstructed using
only the parts we are looking for (the first two basis of the matrix W ). It is
made by samples from 1 to 100 and from 151 to 200. The algorithm in the hard
mode returns this subset of data. The algorithm in the soft mode returns the
samples that have been reconstructed using at least one of the parts in P1. All
the samples in dataset satisfy this requirement except the subset from 100 to
150.

Below a detailed analysis shows the behavior of MNMF in reconstructing
samples when they contain the parts in P1, linear relationship of these parts,
and when there are not parts in the mask adequate to describe them.

Samples from 1 to 50 composed by the the first two features inX (whose linear
correlation is captured by w1) have been correctly reconstructed in H using only
the first part. Similarly, samples from 51 to 100 have been reconstructed using
the part w2 representing the relationship between features three and four.

MNMF can recognize parts that are composed linearly to describe data. This
is the case of the samples from 151 to 200 that have been generated adding data
composed by the first two features and data composed by the third and fourth.
These samples have been reconstructed in the matrix H using both the bases
w1 and w2 capturing the linear correlation between respectively first and second
features, and third and fourth features.

When the algorithm does not find parts that are able to correctly reconstruct
the samples in data it uses the extra bases in the mask. This beaviour suggests
to the analyst that the parts he is looking for in data are not enough to describe
them. This is the case of samples from 201 to 350 that have been constructed
adding data composed by feature caught in the mask and data composed by
parts that are not in P1. Matrix H correctly suggests which part in P1 we need
to reconstruct the samples and extra bases.

An extreme case are the samples from 101 to 150 that have been completely
constructed using a part that is not in P1, the algorithm returns no parts for
this samples. Hence, our proposed Query Based MNMF algorithm suggests which
parts correctly reconstruct data.

Figure 4 shows the reconstruction error (MSE) obtained for each sample in
data. It has been obtained using the equation (13) where i = i . . . 350 indicates
the i−th sample and n is the total number of samples in the dataset.

MSE (i) =
1

2

‖X∗i −WH∗i‖2F
n

(13)



Part-Based Data Analysis with Masked NMF 449

Fig. 4. MSE of each sample obtained with MNMF and P1

Fig. 5. Matrix H obtained with MNMF and P1

Mask P2 shows the behaviour of the Query Based MNMF algorithm when it
is looking for parts that not correctly decribe data.

Figure 3 illustrates the basis matrix W computed by MNMF with matrix
mask P2 and λ = 0.00001. As it can be observed, whilst the first base w1 that
catches the structure of the data has significative values, the second basew2 tries
to describe data with parts that not completely explain them. For this reason
one of the two values is very close to the maximum value 1, and the second
one is low. This could suggest that the structure imposed does not allow a good
reconstruction of the data.

Running the algorithm in the hard mode, it returns only the block of samples
from 1 to 50. This result is correct, in fact only this subset is completely explained
using the parts in P2, particularly only the part w1, instead the part w2 doesn’t
match with the structure of the data. Soft mode algorithm returns all the samples
except of the block from 51 to 100, it means that there is not in P2 a part that
describes these samples. In fact they have been constructed using the third and
forth features, since the value w32 is negligible, there is any part in P2 that allows
to reconstruct these samples. Moreover samples in X that have been constructed
using the fifth and the sixth features, are partially described by the part w2, for
this reason samples in the block from 100 to 150 have been reconstructed using
both the part w2 and an extra bases. This behaviour confirms that the part w2

does not completely represent data, it needs extra information.
The graph of the MSE illustrated in figure 8 provides a further confirmation

of the previously discussed behavior. Comparing the evolution of the MSE for
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both cases, we can note that in the first example (where bases well explain data)
the obtained error is near to the machine precision (i.e., 1017) while for the latter
example, MSE grows up to 10−4.

P2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

W =

⎛
⎜⎜⎜⎜⎜⎝

0.316 0 0 0
0.949 0 0 0

0 0.123 0 0
0 0 1 0
0 0 0 1
0 0.993 0 0

⎞
⎟⎟⎟⎟⎟⎠

Fig. 6. Comparison between W and P2 matrices obtained with λ = 0.00001

Fig. 7. Matrix H obtained with MNMF and P2

Fig. 8. MSE of each sample obtained with MNMF and P2

A further synthetic dataset has been constructed to better explain the be-
haviour of the proposed method when it is forced to find parts that are not
actually present in data. Points in XεR3x500 compose a circumference lying in
the plane x,y on the bisector of the first quadrant, thence a linear relationship
between features one and two exists in data (i.e. x = y). The components on
the axes z are equal, or almost equal to 0. MNMF has been executed with two

masks P3 =

⎛

⎝
1 0
0 1
1 0

⎞

⎠ and P4 =

⎛

⎝
1 0
1 0
0 1

⎞

⎠ and λ = 0.0001. The first mask P3 tries to
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find a linear relationship between the features on the axes x and z. As it can be
observed from the figure 9, MNMF returns a matrix W3 whose component w31

has a negligible value, while the component w11 has the maximum value 1. This
behaviour confirms that there is no part in data corresponding to the axes z.
Figure 10 shows the matricesH obtained when the masks P3 (picture on the left)
and P4 (picture on the right) are used . As it can be expected data have been re-
constructed using both bases. In the second example, the mask P4 tries to find a
relationship between the components on the axes x and y. MNMF returns a base
matrix W4 (figure 9) whose components w11 and w21 are significant, moreover
it catches the linear relationship between these two components.The component
w32, even though data do not have a z-components, has a value equals to 1.
It should be noted that this behavior has been produced by the normalization
process. Despite this, the matrix H (as it can be observed by the right picture
in Figure 10) confirms that the base w2 is not necessary in reconstructing data,
in fact all the samples use only the first base.

W3 =

⎛
⎝

1 0
0 1

0.0004 0

⎞
⎠W4 =

⎛
⎝

0.7 0
0.7 0
0 1

⎞
⎠

Fig. 9. Masks matrices used in the MNMF algorithm

Fig. 10. Comparison between matrices H obtained with MNMF and masks P3 and P4

3.1 Iris Dataset

In this section we briefly illustrate the behaviour of the proposed approach when
the well known Iris dataset is adopted [1]. The dataset is composed by 150 sam-
ples grouped in three different classes: Iris-Setosa, Iris-Veriscolor, Iris-Virginica.
This example highlights the use of a specific mask to select features and ex-
tract samples which are described by these parts. Particularly, the aim is to
discover if there exist any linear correlation between the features in the data
samples (i.e., sepal and petal length, sepal width and petal length, sepal and

petal width). MNMF has been executed with two different masks P5 =

⎛

⎜⎜⎝

1 0
0 1
1 0
0 1

⎞

⎟⎟⎠
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and P6 =

⎛

⎜⎜⎝

1 0
1 0
0 1
0 1

⎞

⎟⎟⎠ and with parameter λ = 0.0001. Mask P5 aims to discovery

linear correlations in data between the lengths and the widths, whilst P6 between
sepal and petal feature. The use of a real dataset better highlights the semantic
associated to the parts that have been selected.

Figure 11 illustrates the factor matrices W5 and W6 obtained respectively
with masks P5 and P6. As it can be observed, the factor matrices preserve the
structure imposed by the query masks, moreover the parts are represented by
significative values; this means that they are actually present in data, i.e., there
is correlation between the features selected in data.

W5 =

⎛
⎜⎝

0.85 0
0 0.96

0.53 0
0 0.29

⎞
⎟⎠ W6 =

⎛
⎜⎝

0.88 0
0.48 0
0 0.95
0 0.31

⎞
⎟⎠

Fig. 11. Comparison between W5 and W6 matrices obtained with masks P5 and P6

λ = 0.0001

Fig. 12. Comparison between matrices H obtained with MNMF and masks P5 and P6

Figure 12 illustrates the encoding matrices H obtained with the masks P5

and P6. Observing the left graph one can figures out that samples from 51 to
151 (belonging to the two classes Versicolor and Virginica) can be represented
using only the first bases w1. In fact, the elements in w1 assume almost the
maximum value, that is 1, while the elements in w2 assume values close to zero.
This means that in this subset of data there is a linear relationship between the
lengths of the iris, but not between the widths. On the contrary samples from
1 to 50 (belonging to Setosa), have been reconstructed using both bases w1 and
w2. We executed the MNMF on the modified dataset composed by the first fifty
samples, with the query mask P5. The reconstruction error obtained removing
samples that have not been well reconstructed is 4.7475× 10−4 much smaller
than that obtained with the entire dataset 1.76× 10−2. This result confirms
that data belonging to the class Setosa have linear relationships between the
lengths and widths.
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Similarly from the matrix H on the right, we can observe that samples from
1 to 50 are reconstructed mainly using the basis w1. In this case it means that
there is a linear relationship between the sepal features but not between the petal
features. On the contrary, there is a linear relationship between both sepal and
petal features in the subset of data composed by samples from 51 to 150. The re-
construction error obtained after removing samples from 1 to 50 is 8.3235× 10−4

much lower than that obtained with the whole dataset which is 3.5× 10−3.

4 Final Remarks

A novel NMF algorithm, namely Masked NMF has been proposed in order to
overcome the limitations of classical NMF and to introduce knowledge in the
factorization process, making the proposed MNMF algorithm a useful tool for
IDA. The query-based approach has been adopted to allow the analyst to specify
what parts she is interested to discover. As shown in the numerical examples,
the proposed approach is able to extract the subset of data that are actually
represented by the parts, discarding the data in the matrix X that do not find
a neat representation by the parts and returning the subset of samples that
contains the selected parts.

Future work can be addressed to assess the performance of the query based
MNMF approach on different real datasets as well as to further investigate its
capability of selecting local features hidden in data.
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