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Abstract. One of efficient ways to conduct experiments on HPC plat-
forms is to create custom virtual computing environments tailored to
the requirements of users and their applications. In this paper we inves-
tigate virtual private supercomputer, an approach based on virtualiza-
tion, data consolidation, and cloud technologies. Virtualization is used
to abstract applications from underlying hardware and operating sys-
tem while data consolidation is applied to store data in a distributed
storage system. Both virtualization and data consolidation layers offer
APIs for distributed computations and data processing. Combined, these
APIs shift the focus from supercomputing technologies to problems being
solved. Based on these concepts, we propose an approach to construct
virtual clusters with help of cloud computing technologies to be used
as on-demand private supercomputers and evaluate performance of this
solution.

Keywords: virtualization, supercomputer, virtual cluster, cloud com-
puting.

1 Introduction

Virtual supercomputer can be seen as a collection of virtual machines working
together to solve a computational problem much like a team of people working
together on a single task. There is a known definition of personal supercomputer
as a kind of metacomputer which was given in [1], however, in our approach
virtual supercomputer is not only a personal supercomputer but it also offers a
way of creating virtual clusters that are adapted to problem being solved and
to manage processes running on these clusters (figure 1). This is the case where
virtual shared memory cannot be used directly because of high latency and low
performance caused by complex data transfer patterns. Migration of processes
to data as well as methods of workload balancing [2] can solve this problem and
form a basis of load balancing technique for a virtual supercomputer.
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Fig. 1. A cloud platform example with three virtual clusters over two physical clusters

Computers like people need some sort of collective board to share results
of their work and advance problem solution one step further. In a distributed
computing environment distributed file systems and distributed databases act
as such a board, storing intermediate and final results of computation. Apart
from a shared desk people in a team need some sort of management to solve a
problem in time and computers need a way of combining them into hierarchy
helping efficiently distribute tasks among available computing nodes. Finally,
from a technical point of view, problem solution should be decoupled from ac-
tual execution of tasks by a virtualization layer as not every problem has efficient
mapping on physical architecture of a distributed system. So, virtual supercom-
puter is not only a cluster of machines but also virtualization and middleware
layers on top of it.

There are many ways to construct such a supercomputer and it is time-
consuming to compare and assess benefits of all technology combinations, how-
ever, it is convenient to tailor technologies to the needs of chosen problems and
to show advantages of virtual supercomputer approach in these particular cases.
Section 2 gives an overview of related work in this area. The chosen problems
should be general enough to cover a wide area of potential applications. We
selected two examples of such generic problems to be solved in personal super-
computer environment: ontology storage, retrieval and analysis involving use of
a distributed database; fluid dynamics simulations involving execution of highly
parallel code. These problems are discussed in Section 3. Corresponding virtual
supercomputer configuration, its key principles are discussed in Section 4. Exper-
imental evaluation of our solution is presented in Section 5. Section 6 concludes
the paper and shows the directions of future work.
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2 Related Work

One of the first approaches to construct clusters from virtual machines was
proposed in [3] and partially realized in In-VIGO [4], VMPlants [5], and Virtual
Clusters on the Fly [6] projects. In-VIGO focused on the end-to-end design of
a Web service that could employ VMs as part of a cluster computing system,
while VMPlants and Virtual Clusters on the Fly focused on rapid construction
of virtual clusters. All three systems were particularly concerned with the issue
of specifying and adapting to requirements and constraints imposed by the user.

Dynamic Virtual Clustering (DVC) [7] implemented the scheduling of VMs on
existing physical cluster nodes within a campus setting. The motivation for this
work was to improve the usage of disparate cluster computing systems located
within a single entity.

The idea of an adaptive virtual cluster changing its size based on the work-
load was presented in [8] describing a cluster management software called COD
(Cluster On Demand), which dynamically allocates servers from a common pool
to multiple virtual clusters.

Grid architecture that allows to dynamically adapt the underlying hardware
infrastructure to changing Virtual Organization (VO) demands is presented
in [27]. The backend of the system is able to provide on-demand virtual worker
nodes to existing clusters and integrate them in any Globus-based Grid.

The goal of current work is to investigate possibilities provided by modern
cloud and virtualization technologies to enable personal supercomputing mean-
ing creation of dedicated virtual clusters based on user’s and application’s re-
quirements. Unlike many of other projects in this area, our intention is to use
created clusters of VM as a single resource provided to a single parallel applica-
tion but not generating sets of worker nodes provided to different applications
separately.

3 Large-Scale Supercomputer Problems

3.1 Ontology Storage and Retrieval

One way of applying virtual supercomputer is graphs storage and processing.
Transport logistics, articles citation or social networks are common examples
of such tasks. In some cases graphs may have thousands or millions vertices
and edges, as in Web graph related tasks [9]. That kind of structures can be
handled by various types of algorithms such as shortest path computations, a
special subgraphs allocation, different varieties of clustering etc. It is challenging
to efficiently process large graphs since some graph’s properties work poorly with
high performance techniques [10].

— Parallelism based on partitioning of computation can be difficult to express
because the structure of computations in the algorithm is not known a priori.

— The irregular structure of graph data makes it difficult to extract paral-
lelism by partitioning the problem data. Scalability can be quite limited by
unbalanced computational loads resulting from poorly partitioned data.
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— Graphs can represent complex irregular relationships between entities thus it
may provide the lack of locality for computations and data access patterns.

— Runtime can be dominated by the wait for memory fetches because usu-
ally graph algorithms are based on exploring the structure of a graph in
preference to performing large numbers of computations on the data.

For the sake of effective handling large graphs require particular storage and
processing tools: graph databases such as Pregel [11] or hypergraph oriented
HyperGraphDB (http://www.hypergraphdb.org) [12]. They permit direct oper-
ation with a graph without any intermediate relational data representations. The
tools support replication and distributed transactions hence make work with a
graph size independent.

A special case of graphs is semantic network, which is considered a widespread
method for knowledge representation. Due to this fact creation and processing
of knowledge bases and ontologies constructed upon them may be seen as a
another resource consuming task [13,14]. Such networks may not be as big as
graphs related to Web graph problems in terms of numbers of elements, but they
often have complex hierarchical relations between vertices and compound nodes
and edges structure. This complicates the methods of their processing as the
graph structure and graph data are interconnected. Knowledge extraction and
ontology-based reasoning can be used as examples of such complex tasks.

Growing interest in ontologies development and processing generates demand
for tools which are capable of handling complex operational problems on their
own. Such tools have been created and already mentioned HyperGraphDB is one
of them. HyperGraphDB implements OWL 2.0 standard of ontology represen-
tation with operating multiple ontologies in one database as subgraphs. Usage
of subgraphs as the base allows representations of ontologies to use all benefits
of distributive graph database. HyperGraphDB has an integration with Protege
Editor, the most popular ontology editor, and permits using popular reasoners
such as Hermit, Fact++ and Pellet. Thereby the database hides all the internal
work and allows users to work with familiar tools.

3.2 Fluid Dynamics Simulations

Another way of applying virtual supercomputer is fluid dynamics simulations.
This class of applications demands highly scalable architecture. In particular,
experiments in a virtual testbed can be carried out on a single multiprocessor
machine [15] only in the most simple cases involving small simulation region
and time interval. However, large-scale simulations with multiple atmospheric
and ship motion models involved require use of multiple machines comprising
distributed computing system. Moreover, hierarchy of mathematical models and
high number of dimensions of these models demand a way of organizing compu-
tations into a single distributed workflow [16], for example, WRF, Wavewatch3
and wind wave model. So, a capability of a virtual supercomputer to dynami-
cally compose distributed pipelines can accelerate execution of experiments in a
virtual testbed.
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4 Principles of Virtual Supercomputer

Although virtual supercomputer can be implemented in many ways and using
different combinations of technologies, there are some principles that such im-
plementation is considered to obey. On one hand these principles arise from
similarity of different technologies and their implementations, on the other hand
the purpose of some principles is to solve problems inherent to existing general-
purpose distributed systems. In any case, the principles are useful for solving
large-scale problems on virtual supercomputer and some of them can be ne-
glected for problems of small sizes. So, the principles follow.

— Virtual supercomputer is completely determined by its application program-
ming interface (API) and this API should be platform-independent. The
use of API as the only interface in distributed processing systems is com-
mon, but its dependency on operating system or programming language
leads to problems in the long run. For example, the first API for portable
batch systems (PBS) was implemented in low-level C language and only
for UNIX-like platforms which led to inability or inefficiency of its usage in
other programming languages and in exposing it as a web service. Moreover,
the API does not cover all the functions of underlying PBS [17]. So, using
platform-independent API is one of the ways to avoid such integration and
connectivity problems. In other words, API is a programming language of a
virtual supercomputer and the only way of interacting with it.

— Virtual supercomputer API provides functions to connect with other virtual
supercomputers and such interaction is seamless. Interaction of different dis-
tributed systems is the way of solving large-scale problems [18] and seamless
interaction helps compose hybrid distributed systems dynamically: to extend
capacity when needed [21]. So it is the way of scaling virtual supercomputer
to solve problems that are too complex for one virtual supercomputer.

— Virtual supercomputer processes data stored in a single distributed database
and this processing is done using virtual shared memory. Efficient data pro-
cessing is achieved by distributing data among available nodes and by run-
ning small programs (queries) on each host where corresponding data resides;
this approach helps not only run query concurrently on each host but also
minimizes data transfers [11,19]. However, in existing implementations these
programs are not general-purpose: they are parts of algorithm and they are
specific to data model this algorithm was developed for. For example, in
MapReduce framework programs represent map and reduce functions that
are run on each row of table (or line of file) and it is difficult to compose
general-purpose program to process any data within this framework [19]. On
the other hand, virtual shared memory interface allows processing of data
located on any host [20] and does it in efficient way. So, distributed database
is a way of storing large data sets and virtual shared memory is a way of
writing general-purpose program to process it.

— Experiments show that using paravirtualization instead of full virtualization
is advantageous in terms of performance [22] and virtual computing nodes
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should be created using paravirtualization technologies only. However, not
every operating system can be paravirtualized and it should be possible to
access virtual supercomputer facilities through fully-virtualized hosts. So,
paravirtualization is inevitable in achieving balance between good perfor-
mance and ease of system administration in distributed environment and as
a consequence operating system should be UNIX-like for paravirtualization
to work.

— Load balance is achieved using virtual processors with controlled clock rate
and process migration. The first technique allows balancing coarse-granularity
tasks and the second is suitable for fine-grained parallelism.

— Virtual supercomputer uses complex gridlike security mechanisms. One of
the cloud problems is security issues [23] but we feel that proper combination
of GRID security tools with cloud computing technologies is possible.

To summarize, virtual supercomputer is an API offering functions to run
programs, to work with data stored in a distributed database and to work with
virtual shared memory and this API is the only programming language of a
virtual supercomputer.

5 Experimental Evaluation

5.1 Experimental Setup and Evaluation of Virtualization Impact

Implementation of a virtual supercomputer will not be possible without use
of server virtualization technologies: virtual machine migration provides load-
balancing and fault-tolerance capabilities and it is necessary to evaluate their
performance relative to physical machines.

We conducted most of our experiments at Resource Centre Computer Centre
of SPbSU [25]. This centre offers a specific approach to manage resources. Each
user is given a virtual machine with necessary characteristics. Such a machine
can be flexibly customized since user is granted administrative rights. When
resources of a single virtual machine become insufficient to meet all user require-
ments, they can be easily extended, or even additional VMs can be created in
order to form a virtual cluster. This is how dynamic allocation of computational
resources is carried out. Further on, access to HPC resources is provided via this
personal virtual machine.

In the same way virtual clusters can be created automatically when more re-
sources are needed and processes are dynamically migrated to newly constructed
virtual machines. Automated creation of virtual machines can be achieved by
rewriting PBS prologue script where desired properties of virtual machines can
be described in the same way as they are described when submitting PBS job
to cluster of physical machines, however in case of virtual machines operating
system can also be specified. So, there is no difference from a user point of view
whether a job is submitted to real or virtual cluster.

Alternatively, user can run jobs on dedicated HPC clusters. In case of our
resource centre they are T-Platforms cluster and HP cluster. User home directory
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Fig. 2. Performance of clusters with different interconnect bandwidth based on GRO-
MACS workload

is mounted via NFS on clusters. It provides universal access to computational
data: raw data and results are stored in a single place.

We chose GROMACS as an example of real application running on clus-
ters as it is commonly used by the users of St.Petersburg University Computer
Center. GROMACS is used for efficient molecular simulations [26]. Figure 2
illustrates the GROMACS runs (2 different tasks) on T-Platforms (maximum
376 CPU cores were used) and HP (maximum 192 cores were used) clusters.
Picture shows that these tasks have different scalability on different clusters.
Without going into details, we can say that the root causes of this behavior is
network bandwidth (HP has twice as much better network), memory size (swap-
ping to disk substantially increase run time; HP cluster has 96 GB RAM per node
while T-Platforms has only 16 GB) and intensive communication between worker
processes.

But what can user do when network communication prevents scalability? The
right way is using multicore SMP machine with large amount of memory. Com-
puter centre has 3 machines of this type. In usual case in order to harness such
a machine user has to migrate his applications, environment and data. In our
case virtual machine is migrated to SMP node. It can be done with ease and it
solves many problems: user does not need to do any actions, even get accustomed
to new environment because his tuned virtual machine is completely migrated
to powerful physical machine, and all applications, libraries and user settings
remain unchanged. So, virtual machine migration is another way of extending
dynamic computational resource pool.

Moreover, the resource pool can contain different accelerators. Contemporary
hypervisors have means to harness available GPUs in a system. One can dedicate
up-to-date GPUs supporting GPGPU to virtual machines, that is, to provide
users with GPGPU computations. Physical GPUs can be shared between several
virtual machines. Several GPUs can be utilized by hypervisor.
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Graphics processors supporting GPGPU can be seen as vector co-processors.
If a task can be parallelized using SIMD approach, it can be computed fast on
GPU. Of course, there are some limitations, and the most important one is data
transfer between GPU and CPU (it becomes a bottleneck). That is why some
tasks with intensive data transfer will not reach estimated speedup. But one can
test necessary application by adding GPU to virtual machine and running the
application. If test shows good results, GPU remains in the VM configuration.
Otherwise this task should be computed on CPU and GPU can be removed
from the VM. So, virtual supercomputer can be upgraded by including modern
GPUs. That is how new promising GPGPU technology can be used within virtual
systems.

Virtualization leads to substantial benefits when using it in a big computing
center [28], but what is about conventional PC? We used such a computer for
additional tests. It has 2 Intel Xeon E5410 CPU (total 8 cores), 8 GB RAM,
250 GB HDD. Such systems become ubiquitous today. Xen technology was used
for virtualization. We created paravirtualized guests. Both the host and the
guest systems run Debian 7.0. We were interested in testing such a PC with
practical workloads. We tested a GROMACS workload that puts heavy load on
CPUs. We tried to run this job on the host system without virtualization and
on the guest paravirtualized OS. After series of tests we can say that in our case
(paravirtualized guest using Xen) virtualization led to 5% time overheads only
(Figure 3), so virtualization offers benefits even on conventional PC.
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Fig. 3. Performance comparison for host and virtual machine based on GROMACS
workload

5.2 Cloud Management Tools for Virtual Clusters

For creation and management of virtual clusters we tested the FishDirector soft-
ware system developed by Sardina Systems [24]. FishDirector software supports
heterogeneous platforms and is hypervisor agnostic. It is architected to scale
from a few physical servers to well beyond 100,000, on-premise and in-Cloud.
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It is based on OpenStack and allows to create, monitor and manage virtual clus-
ters. Software lets users to create and manage clusters by using web interface or
by command line scripts.

FishDirector’s decision engines provide power-down/power-up automation
which can massively help reduce the carbon emissions of physical servers across
the data centre and lowers total power draw. When running HPC jobs on the
cluster there is a possibility of conflicts between big and small jobs within a
computing estate. To avoid the small job and big job biases FishDirector’s Op-
erations Manager predetermines the policies upon how big and small HPC jobs
are to be run and adds those constraints to the system, jobs are squeezed into
the resource pool, freeing up the remaining resources for other jobs to run and
resources are returned to the overall pool once any job is completed. In addition,
HPC users with jobs that are set to run for lengthy periods of time will benefit
from not having to create time consuming job snapshots for checkpoint restarts.

FishDirector monitors the stability and performance of HPC nodes in the
system. Should one of the nodes become unstable, FishDirector can transfer the
VM to a different node with no loss of data and without having to roll-back to a
checkpoint restart. This reduces the overall time taken to process the HPC job
without having to take regular time-consuming job snapshots with the added
confidence of full data integrity. Overall structure of FishDirector architecture
is shown in Figure 4.
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Fig. 4. FishDirector reference architecture

As it was mentioned above, not all hardware and operating systems support
paravirtualization, and in that case full virtualization should be used. But not
every machine can be fully virtualized considering underlying hardware capabil-
ities. To show the importance of efficient full virtualization we conducted tests
on two different machines: the first one supported full virtualization and the sec-
ond one did not. For this purpose we created virtual guests using FishDirector
package on each host and then ran the same test script on physical and virtual
machines. The script found an inverse of a matrix with given sizes (100x100,
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500x500 and 1000x1000) and then checked whether these matrices are really in-
verse of each other or not. Besides showing the significance of full virtualization,
this test could show efficiency of FishDirector and mathematical correctness of
virtual guests (created by FishDirector) work. We ran this script twenty times
for each size of matrix on every machine using only RAM and twenty times with
writing data on HDD and collected average values of the test time (fig. 5).
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Fig. 5. Average values of test results

As it can be seen the difference between the performance of the host and the
guest (using only RAM) are much bigger when the used machine did not support
full virtualization (around 7 times) (fig. 6), than when fully-virtualized machine
was used (around 1.15 times) (fig. 7).
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Fig. 6. Performance of host and virtual machines using only RAM, when full virtual-
ization is not supported
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Fig. 7. Performance of host and virtual machines using only RAM, when full virtual-
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Fig. 8. Performance of host and virtual machines using HDD, when full virtualization

is not supported

The situation was almost the same when HDD was used: the performance of
virtual machine, which worked on a host with support of full virtualization, was
lower of physical host’s performance for about 7 times (fig. 8), and in case of

full virtualization the difference was about 1.3 times (fig. 9).
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Fig. 9. Performance of host and virtual machines using HDD, when full virtualization
is supported

6 Conclusions and Future Work

It is known that virtualization improves security, resilience to failures, substan-
tially eases administration due to dynamic load balancing [28] while does not
introduce substantial overheads. Moreover, a proper choice of virtualization
package can improve CPU utilization.

Usage of standard cloud technologies as well as process migration techniques
can improve overall throughput of a distributed system and adapt it to problems
being solved. In that way virtual supercomputer can help people efficiently run
applications and focus on domain-specific problems rather than on underlying
computer architecture and placement of parallel tasks. Moreover, described ap-
proach can be beneficial in utilizing stream processors and GPU accelerators
dynamically assigning them to virtual machines.

The key idea of a virtual supercomputer is to harness all available HPC re-
sources and provide user with convenient access to them. Such a challenge can be
effectively solved only using contemporary virtualization technologies. They can
materialize the long-term dream of having virtual supercomputer at your desk.

In this paper we presented an approach to create and manage virtual clusters
based on virtualization and cloud technologies. We presented generic experimen-
tal evaluation of the virtualized hardware used as building blocks for the virtual
cluster. In the future we plan to perform specific experiments with popular soft-
ware packages to estimate performance and usability of our solution in real-life
problems provided by end-users.
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