A Formal Verification Tool for UML
Behavioral Diagrams

Luciana Brasil Rebelo dos Santos, Eduardo Rohde Eras,
Valdivino Alexandre de Santiago Junior,
and Nandamudi Lankalapalli Vijaykumar

Instituto Nacional de Pesquisas Espaciais (INPE), Sao José dos Campos, SP, Brazil

Abstract. Unified Modeling Language (UML) is considered a standard
for modeling object-oriented software. It supports several different dia-
grams that can be used to model behavior and structure of the software.
With respect to formal verification, particularly Model Checking, the ex-
isting approaches are usually restricted to a single UML diagram. This
paper presents a tool to convert UML behavioral diagrams (sequence,
activity, and state machine) into Transition Systems to support software
Model Checking. A peculiar feature of our tool is that it is developed
as part of a larger effort to allow Model Checking of software built in
accordance with UML, including several UML behavioral diagrams. We
demonstrate the effectiveness of our approach by applying it to a classic
case study and also to a real case study (embedded software) in the space
domain.

1 Introduction

A major challenge in software and systems development process is to advance
defect detection at early stages of their life-cycles. Formal methods offer a large
potential to obtain an early integration of verification in the design process, and
to provide more effective verification techniques [1]. Besides, formal verification
methods, such as Model Checking, are best applied in early stages of system
design, when costs are low and benefits can be high, increasing the quality of
systems. However, formal methods require mathematical background and their
use is restricted, as users privilege the simplicity of other notations, rather than
more formal means. Thus, adoption of formal methods will be easier when they
can be applied within standard development processes and when they are based
on standard notation [2].

Unified Modeling Language - (UML) [3] is currently accepted as the standard
for modeling (object-oriented) software and it has received attention from re-
searchers as well as practitioners. It presents diagrams that represent the static
structure of a system, and also defines diagrams to model the dynamic behavior
of systems. We make use of UML behavioral diagrams since we are interested in
verifying the system behavior. In particular, dynamic aspects of system behavior
can be specified by interactions (i.e. sequence diagrams), and activity diagrams
give a view of the system that is associated with instances of classes.

B. Murgante et al. (Eds.): ICCSA 2014, Part I, LNCS 8579, pp. 696-711, 2014.
© Springer International Publishing Switzerland 2014

A Formal Verification Tool for UML Behavioral Diagrams 697

Transition System, also called finite-state model, is a standard class of models
to represent hardware and software systems [1]. They are often used as models
to describe the behavior of systems. Basically, they are directed graphs where
nodes represents states, and edges model transitions, i.e, state changes. Such a
system evolves through its state space assuming different configurations, where
a configuration can be understood as the set of states to which the system abides
at any particular moment [4]. Model Checking is a formal automatic verification
technique for finite state systems that checks temporal logic specifications on a
given model. In the context of verifying design models expressed as UML activity
diagrams, Eshuis and Wieringa [5] explore an idea similar to Transition Systems.
However, transition system concept has a general nature and a broad range of
behavioral diagrams, such as activity, sequence, and behavioral state machine
can be conveniently adapted to use this concept [4].

This work presents a tool that allows the use of Formal Verification on projects
developed using UML diagrams. Currently, the tool is able to transform two
UML behavioral diagrams (sequence and activity) into individual Transition
Systems (TS) to support software Model Checking. We consider properties gen-
erated from use case descriptions, which represent the requirements; and the TS
translated from behavioral diagrams. The analyst specifies a use case, with its
narrative description, and a sequence or activity diagram. The diagram is trans-
lated into an individual Transition System and then to the input language of the
model checker. The requirement is fed into the model checker. If the requirement
is false, the model checker gives a counterexample in the form of a trace.

The rest of the paper is organized as follows. In the next section we give
a review of UML behavioral diagrams and Model Checking. In Section 3, the
proposed methodology is exposed. We explain the tool including its architecture
in Section 4. Section 5 shows the usability aspects of the tool. In Section 6 we
apply our tool to one scenario of ATM (Automated Teller Machine) case study
and on two scenarios of a space software product. Related work is discussed in
Section 7. Finally, Section 8 concludes the paper.

2 Fundamentals

Given a UML behavioral diagram, it is possible to generate the corresponding
TS provided that the elements of the diagram (messages, activities, states) are
both established and understood and there exists (and is defined) a step relation
enabling to systematically compute the next configuration(s) of the diagram
from any given configuration [4]. In this section we briefly discuss UML and
Model Checking.

2.1 UML

UML [3] is a visual language that has been developed to support the design of
complex object-oriented systems. UML diagrams can be divided into two broad
categories: structural and behavioral diagrams. The UML structural diagrams

698 L.B.R. dos Santos et al.

are used to model the static organization of the different elements in the system,
whereas behavioral diagrams focus on the dynamic aspects of the system [6].
This section discusses only the UML diagrams that are relevant in the context
of this work.

Use case: describes how a user interacts with the system by defining the steps
required to accomplish a specific goal [7]. Use case diagrams help to determine
the functionality and features of the software from the user’s perspective. A use
case comprises different possible sequences of interactions between the user and
the computer. Each specific sequence of interactions in a use case is called a
subscenario.

Sequence diagram: a sequence diagram (SD) is used to show the dynamic
communications between objects during the execution of a task. An SD describes
how groups of objects collaborate on some behavior over time. It registers the
behavior of a single use case and displays objects and messages passed between
these objects in the use case. The sequence diagram follows the approach based
on temporal order of the messages, that is, the emphasis is on the temporal
distribution of messages. The system requirements are represented in the use
cases, i.e., use cases model what is the problem. The sequence diagrams show
how the model will get the desired objective.

Activity diagram: activity diagram (AD) depicts the dynamic behavior of a
system (or part of a system) by means of the flow of control between actions
that the system performs [7]. It is similar to a flowchart and can show concurrent
flows. Activity diagrams are an extension to the original idea of state machines.
They evaluate better the conditions by which the instances come to certain de-
cisions. An activity is a procedure executed while the AD is in a particular state
and one or more outgoing transitions which automatically follow the termination
of the internal activity. If an activity has more than one outgoing transition, then
these must be identified through conditions. ADs typically support description
of sequencing, conditional dependency, parallel activities, and synchronization
aspects involved in different activities.

2.2 Model Checking

According to [1], Model Checking is an automated technique that, given a finite-
state model of a system and a formal property, systematically checks whether
this property holds for (a given state in) that model.

The Model Checking approach can be viewed in Figure 1. There are properties
obtained from the requirements (in our case, from use case descriptions) that
reveals what the system should do and not to do. The properties are formalized
using some sort of temporal logic such as Linear Temporal Logic (LTL) or Com-
putation Tree Logic (CTL) (we formalize properties by means of specification
patterns [8]). A model describes the system behavior (we generate the model
from UML behavioral diagrams). The model checker examines all system states
to check whether they satisfy the desired property. If a state violates the prop-
erty under consideration, the model checker provides a counterexample showing
a trace that indicates the violation.

A Formal Verification Tool for UML Behavioral Diagrams 699

-\/w»(}mrv’m IWD (system. \
— - i gt

Modeling

]

“propen -
\.»p!'r.‘fu(' wtion) Cs‘yw‘em mmin"-[\).
\—'l\lulrl Checking[=
satised > 7 violated + N _[Simulation V/Immlmu\
———— " counterezample _J e/

Fig. 1. Schematic view of Model Checking. Source: [1]

3 Proposed Approach

A prerequisite for Model Checking is a property to be checked and a model of the
system under consideration. In Figure 2, we show our approach aiming at Model
Checking of software developed in accordance with UML. In the following, we
explain the main activities that the workflow performs:

(i) identify scenarios by looking at use case models. A use case can be
viewed as a scenario. Each scenario is a set of related subscenarios tied together
by a common goal. The mainline sequence ('main success scenario’ [9]) and each
of the variations (’extensions and sub-variations’) are the scenarios identified by
our approach; (i) formalize properties. For each selected scenario, we extract
requirements from the textual description of use cases. After that, we formalize
properties by means of specification patterns [8]; (iii) generate TS. Based on
the available UML behavioral diagrams, we generate individual TSs and then
a unified TS (the unified TS is being developed). This is the main activity to
achieve the objective of our approach. As we will explain later, our approach
does not demand that all three UML behavioral diagrams (sequence, activity,
behavioral state machines) exist: it is enough to have the sequence diagram
and one of the other two to generate the TS; (iv) generate model checker
notation. Then, we translate the created TS to a model checker. Our first idea is
to use the NuSMV model checker [10]; (v) Finally, we apply Model Checking
to realize about defects in the behavioral description of the system represented
by the UML diagrams. We repeat activities from (ii) to (v) for each selected
scenario. Also note that activities (ii) and (iii)/(iv) may be accomplished in
parallel. Relating to acitivity (ii) the requirements are identified using use case
descriptions and then, formalized using using specification patterns as proposed
by [8]. This activity of obtaining the formalized properties depends on the human
factor and the professional knowledge of the requirements to identify which is
the best pattern/pattern scope. More details can be found on [8].

700 L.B.R. dos Santos et al.

Identify Scenarios
Start Formal Verification

Select Diagrams

(Select Requirements) (Generate TS)%

Generate Model Checker Notation

Simulate Model

[model's defects]

Formalize Properties

Apply Model Checking

Generate Report of
System Defects based on
Counter Examples

[more scenarios]

[end of scenarios]
Fig. 2. Workflow of the proposed approach

4 Software Tool

We are developing a tool aiming to support the approach that is detailed in
Section 3. It has been implemented using Java. We have considered UML 2.0
specifications and have used Papyrus [11] to produce the design artifacts. The de-
sign artifacts are then exported into XMI (XML Metadata Interchange) format,
and are inputted to our tool. The high level architecture of our tool is shown in
Figure 3. The three major modules of our implementation are: a reader module,
a converter module, and TUTS (The Unified Transition System). Blue lines
show the part that is already implemented. The state machine diagram converter,
the TUTS, as well as the translation to the model checker input language are
under development.

The reader module is fed with three XMI files, relating to UML sequence, state
machines, and activity diagrams. The reader module puts all the information of
each file in linked lists that are directed to the converter. The converter translates
the linked lists to individual transition systems. Finally, the TUTS joins the three
diagrams into a Unified Transition System.

A Formal Verification Tool for UML Behavioral Diagrams 701

Sequence Diagram X M |
Input
oo
List heck
— — checker
Activity Diagram XMI Reader Converter TUTS |——=NuSMVv
State Machine Diagram XMI

Fig. 3. Tool Architecture

After its creation, the unified TS can be used to systematically generate its
corresponding encoding into the model checker input language by constructing
declarative divisions [4]. It is important to emphasize that once a formal unified
TS was generated from UML behavioral diagrams, we see the possibility of
transforming it into several different languages of available model checkers such
as SPIN [12], UPPAAL [13], and NuSMYV [10]. In our current approach, we chose
the NuSMV model checker because it is open source, it has a widespread use
in academia, and it accepts properties formalized not only in Computation Tree
Logic (CTL) but also in Linear Temporal Logic (LTL) [1], two logics that are
well known and have mappings defined in the specification patterns [8].

The reader module uses an API (Application Programming Interface) to
parse the XMI input file called SAX (Simple API for XML). A Java class (Parser
class, in our tool) that extends the SAX APT implementing its functions is used.
While reading the file, the API triggers an event to every tag of the XMI input.
This event is captured by the functions implemented in the reading class and
makes the treatment for each case. Each tag read is then saved in a linked list
of objects that contains all information relevant to their future processing.

The input to the converter module (Converter class) is precisely the list
generated by the reader module. This list contains all the tags of the XMI input
sorted in the order they appear in the document. To process this list, there is a
main loop (MainLoop class) that goes through each item (tag) from this list and
directs its contents to a dictionary of functions (FunctionDictionary class). The
dictionary of functions contains functions specific to the treatment of each tag
that may appear in the XMI input file. Two dictionaries of functions were cre-
ated, one for each diagram, due to differences between the XMI files of sequence
and activity diagrams. However, the operation remains the same: for each item
read by the main loop it is called a function of the dictionary which will treat
that item. Once called the function, each rendered element generates a state for

702 L.B.R. dos Santos et al.

the final output, the individual Transition System (TS). These states are created
and stored by the Builder class in a linked list. This is the output of the converter
module. Figure 4 shows the classes diagram for the reader and converter modules.
In the bottom of Figure 4, we can see the basic classes Message and Guard, which
compose the class State, which, in turn, composes the class TransitionSystem.
We can also see the classes DiagramSelector and Diagrams, which selects the
type of diagram to process.

<<Java Class>> <<Java Class>> <<lava Class>>
(® ActivityFunctionListFacade (3 ActivityTrigger (@ Parser
comvener facade comvener functions activityFUnClions. ACEVyLogics reader logics
o functionList: ActivtyFunctionList | _tacage | © ISt ActvityFunctionList CH R e
: Acti i lewel. int
FActviyFuncionLstFacadeq) |+ ——— © function: ActivtyFunction)
@ initFunctionList():void 01 o start: ActivityNode FParser()
o id i @ parse(5tring):void
B ActivityTrigger() @ startDocument():void
<<lava Class>> & getinstance():Activity Trigger @ endDocument():void
(@ FunctionDictionai setStartActivityNode) void @ StartElement(String, String, String,Attributes) void
] (Activity)
convester logics & petStart():ActivityNode: s @ endElement{String, String, String):void
Lol L
o functionList: FunctionList @ beino vad UNQUEISIANGE | o characlers(char] int i) void
= function: Function 0.1 @ getlist():List<Node>
& FunctionDictianary() -acityTrigger |0.1 "
& redirect{Node, MainLoap, SubList):void -hacKr
~functionDictionary | 0.1 P eTS
(@ Converter
comverter
elnmlac o functionFacade: FunctionListFacade <<Java Class>>
(& MainLoop o dictionaryF acade: IdDictionaryF acade (© DiagramSelector
converter.logics = converter logics
T & Canverter()
o index:
@ ini{List<Node>):void _dingramSekector | B DagramSekector()
w bomii hookar) -mainLoap [~ | ¢Fgetinstance() DiagramSelector
S & runParser(String) void 5P| W etinslanael) Disgrafielecint
St 01 & run{String):void @ setDiagram(List<Node=):FunctionListFacade
& MainLoop() @ getDiagram():Diagrams s
: -uniquelnstance
& run{List<Node>):void @ setDiagram(Diagrams):void
@ activeBomb() void <<Java Class>> 55
@ getindex(yint (@ GuardCollectorFunction
converter. output bulder
a guardDictionary: GuardDictionary | _guardGollector <<Java Class>> ,
<<Java Class>> a quardFiter: GuardFiter o (© Builder ~agear | 0,1
Messal " converter output buider .
" G“mmge & GuardCallectarFunction() <<Java Enumeration=z
5 @ init{List<Node>):void o Buider(y G piagrams
D COnCT, D o provess(Node)vaid &P getinstance():Buider comvenerlogics
o contentld: String -buider | & addChild(TransitionSystem) void % Sequence: Diagrams
o sender: String T 0.1 | @ getChidList():List<TransiionSystem> %f Activity: Diagrams
o receiver: String e G © walk(TransitionSystem);void & Diagrams()
FMessage() -message (@ state @ getRoat{):T
@ setContent(String) void |~ 0..1 comverteroulput. beans @ getLast() TransitonSystem
1Sender(String):void RoolContent(State):void
@ setSender(String) vo) &Fstata() s el -uniquelnstance
@ setRecenver(String):void @ @ setPoint(TransitionSystem):void
: — o1
© getContent():String -k o~
@ getSender():String <“g“‘;c‘“;» o uetMessage():Message T -
uar transitionSystem -roa
@ getReceiver():String © getGuards() List<Guard> %

@ getContentld():String <<Java Class>>

@ setContentld(String):void Enama:SInG -state | 0.1 (@ TransitionSystem
o value: String e converter output buider
&FGuard()

setName(String)void | & TransitionSystem()
: set’\falue[Slrmgq) void @ addState(State) void
. © getState():State
e @ addNext(TransitionSystem):void
© getvalue():String : : i
© getNext() List<TransitionSystems j
@ getClone():Guard e

Fig. 4. Summarized class diagram of reader and converter modules

With respect to sequence diagrams, combined fragments can appear. They
are repetition structures (loops, alt, opt, ...). When found by the dictionary
of functions, these elements access specific functions for their treatment. These
functions control the main loop, initiating new instances of it or ending the

A Formal Verification Tool for UML Behavioral Diagrams 703

execution of the loop in order to drive the conversion of the XMI file, as the
repetition fragment requires. During the conversion of activity diagrams, the
main loop is used only to sort the elements that arrive out of order in XMI. Once
sorted, a class Trigger triggers the first function for reading the first element.
Then, when the element is read and processed the next element is called, as
well as its function. Each element acts on its own without the need of the main
loop. Decision-making structures and repetition are treated here by the tasks
that make your calls according to the read element. Treatment of parallelism in
activity diagram is based on the generation of all possibilities. These description
can be seen in Figure 5 as an activity diagram, showing activities (representing
the flow of the classes), as well as the objects created.

| seauence Digramprocess |

Fragment Type

Function Dictionary

Execute Function

Processed State

Buider

‘ Activity Diagram Process ‘

Activity Elements

Ordered Elements Start Element

Fig. 5. Activity diagram of the tool behavior when processing sequence and activity
diagrams

5 Usability Aspects

Observing the proposed approach in Section 3, on one side we have the prop-
erties, which are manually specified, and on the other side we have the system
model, which is automatically generated. Regarding the generation of the system
model, all the user needs to do is to model the UML diagrams using Papyrus
[11], exactly as shown in Figure 6.

704 L.B.R. dos Santos et al.

® B
B
]
®
-
%
£
=N
°e

Fig. 6. Screen of Papyrus

We are using eclipse [14], one of the most used IDE for Java programming,
and Papyrus is a plugin for eclipse. Papyrus is aiming at providing an inte-
grated environment for editing any kind of EMF (Eclipse Modeling Framework)
model and particularly supporting UML and related modeling languages such
as SysML and MARTE. It automatically generates the XMI file related to the
UML diagram that we use as input for the reader module.

After the diagrams are modeled in Papyrus, it is necessary to generate an XMI
file for each one of them. Our tool is distributed in a Java package. This package
should be added to the build path of the project, as can be seen in Figure 7 a).
Once the package is added to the project, it is sufficient to import our tool in a
java class, as follows:

import converter.converter;

Then, one must save the XMI file in the project root and pass its name as
a parameter in the run() function of the converter object. In Figure 7 b) it is
possible to see a Java class, which contains all the described steps to run the
tool, as well as the directory in the left, containing the XMI file and the project
(Papyrus generates XMI files with extension XML).

c.run("arquivo.xml") ;

When executing this command, the tool will run with the mentioned file and
display the output on the console. The output is exactly an individual Transition
System. When the tool is finished, the input language of the model checker will
be automatically generated, as well.

A Formal Verification Tool for UML Behavioral Diagrams 705

© Properties for XMITstesting Java - XMITStesting/src/Main.java - Eclipse

File Edit Source Refactor Navigate S

#pa x[pr WU = O | BMainjava
= < | @import printer.Printer

v & XMTstesting

> @@sic

> i JRESystem Library [Javase

» i Referenced Libraries
B filexml

args) {

2 cancel o

a) Screen of adding the build path b) Java class ready to run the tool

Fig. 7. Screens of Eclipse
6 Case Studies

In order to verify the effectiveness of our approach, we have carried out two case
studies. In our experiments we have considered five different diagrams: two from
ATM (where the ATM interacts with a potential customer via a specific interface
and communicates with the bank over an appropriate communication link), and
three from SWPDC (Software for the Payload Data Handling Computer), a
real space software product. As we have already stated, the tool is not totally
implemented and we will describe all steps we have performed to get the results,
including some mannual activities that will be automated when the tool is totally
finished. Due to space constraints, we will detail only one scenario, showing how
to execute all activities proposed in the approach, until the final results. With
respect to other scenarios, we will describe only the final results.

SWPDC is a space application software product developed in the context of
the QSEE (Quality of Space Application Embedded Software) research project
[15]. QSEE was an experience in outsourcing the development of software em-
bedded in satellite payload. INPE was the customer and there were two SW-
PDC’s suppliers: INPE itself and a brazilian software company. SWPDC has
the following computing units: Payload Data Handling Computer (PDC), Event
Pre-Processors (EPPs), and On-Board Data Handling (OBDH) Computer.

In accordance with our approach, we must identify scenarios, observing use
cases. The scenario we detail is Startup of PDC. In this scenario, the main actor
is the PCD (Power Conditioning Unit) that switches the PDC computer on.
The flow involves: to accomplish hardware verification, to obtain current PDC
temperature, to generate startup report, to configure PDC state with standard
values, and to divert the control to the main module when in safety operation
mode. Two diagrams are related to this scenario, sequence and activity, as shown
in Figure 8.

Then, we start Formal Verification. For this, we generate TS and select
requirements. The tool outputs for the sequence and activity diagrams are
shown in Figure 9. In the left, we can see the individual TS obtained from se-
quence diagram, with 10 reachable states. In the right, Figure 9 exhibits part of

706 L.B.R. dos Santos et al.

SWFD
T

5]

|
|
|
|
|
) |

<<Comanto On/off=>
1:poweOng 7 iniciargy

il

e FverficarHardwared)

1]

4. ObterStatusAlimentasao (Hx1, Hxz)

5 gerarRelaloPOST(

5

6 reconfigurar)

7 mudarhlododperacaod

|
|
|
I
|
I
SEGURANGA |
I
|
|
|
|
|
I

H s atvantoduloPrincipalg

]T_l

Sequence Diagram

44444444444444444444:4‘3»9
5

udar para modo

a2 overacdo
w SEGURANGA

[mél suceddo] T bem sucedido]
SR aliar procosss do

[else]

Activity Diagram

Fig. 8. Sequence and activity diagrams for scenario Startup of PDC

the individual TS obtained from activity diagram. In total, we have 135 states,
26 of which are reachable states when running NuSMV model checker. Each state
is characterized by the values of the variables (generate model checker nota-
tion). We have identified three main variables that characterize the TS obtained
from activity diagram: (i) State = {Start, Verificarmemoriadeprograma,...}; (ii)
bemSucedido = {dc,false,true}. bemSucedido represents the evaluation of the
startup process; and (iil) modolIniciacaoPowerOn = {dc,false,true}. modolnicia-
caoPowerOn represents the determination of the startup mode (power on or re-
set command). bemSucedido and modolniciacaoPowerOn comes from the guards
identified within the activity diagram. Regarding the TS obtained from sequence
diagram, we have identified only one variable: State = {Start,powerOn,...}.

Continuing the approach, we can extract four relevant user-defined properties
for this scenario, related to requirements. To proceed with the Formal Verifi-
cation, it is necessary to formalize the properties to be checked. We chose
Computation Tree Logic (CTL) [1] to formalize the properties. Note that the
properties could be formalized using LTL as well, considering that NuSMV sup-
ports such logic.

Requirement 1: The POST (Power-On Self Test) shall comprise: (i) Power
status of the PDC itself; (i) Power satus of the two EPP-HXI sets; (iii) Current
internal temperature of the PDC; (iv) Coherent information of the PDC Program
Memory; (v) Reading of SRAM (Data Memory) and; (vi) Correct operation of
the watchdog timer circuit. This requirement can be mapped into several proper-
ties wich can be formalized using the Existence Pattern and Globally Scope
proposed by [8], in CTL, as follows!:

! We used the NUSMV’s syntax to write the property in CTL.

A Formal Verification Tool for UML Behavioral Diagrams 707

<(Verificarmemoriadeprograma);
bemSucedido=dc,
odolniciacaoPowerOn=true>

<(Start),bemSucedido=dc,
modolniciacaoPowerOn=dc>

SEQ

<(VerificarstatusdaalimentacaodoPCD);
bemSucedido=dc,
modolniciacaoPowerOn=true>

<(Verificarmemoriadedados),
bemSucedido=dc,
odolniciacaoPowerOn=true>

<(verificarHardware)>
<(obterStatusAlimentacao)>
<(gerarRelatorioPOST)>

<(reconfirgurar)>

<(VerificarstatusdaalimentacaodoEPP-HXi),
bemSucedido=dc,
modolniciacaoPowerOn=true>

<(VerificartemperaturaatualdoPDC);
bemSucedido=dc,
modolniciacaoPowerOn=true>

<(Determinarmododeiniciacao),
bemSucedido=dc,
modolniciacaoPowerOn=true>

<(VerificarcirduitodeCao-de-Guarda),
bemSucedido=dc,
modolniciacaoPowerOn=true>

<LimparmemoriaFlash),
bemSucedido=dc,
i On=true>

<Gravarrelatodeeventos),
bemSucedido=dc,
modolniciacaoPowerOn=false>

<(ativarModuloPrincipal}>

Fig.9. TS obtained from sequence diagram and part of the TS obtained from activity
diagram of Startup via PDC scenario

AF(State = Verificarmemoriadeprograma)

AF (State = Verificarmemoriadedados)

AF (State = Veri ficarstatusdaalimentacaodoPC D)
AF(State = VerificarstatusdaalimentacaodoEPP — H X4)
AF(State = VerificartemperaturaatualdoP DC)

AF (State = VerificarcirduitodeCao — de — Guarda)

To formalize the properties, it is necessary to see the TSs generated by the
tool and its variables. Each one of the six items related to requirement 1 are rep-
resented by one state in the T'S obtained from activity diagram. When running
NuSMV (apply Model Checking), these properties are all true. Now, to the
TS obtained from sequence diagram, four of the six items are false, that is, the
diagram does not reflect this requirement.

Requirement 2: The SWPDC should know how to distinguish between a power-
on process and a reset process. This property can be formalized using the Exis-
tence Pattern and Scope After Q proposed by [8], in CTL, as follows:

IE[!((State = Determinarmododeiniciacao&modolniciacaoPowerOn = true)&
AF(State = LimparmemoriaFlash))U((State = Determinarmododeiniciacao&
modolniciacaoPowerOn = true)&!((State = Determinarmododeiniciacao&
modolniciacaoPowerOn = true)& AF (State = LimparmemoriaFlash)))]

The TS obtained from activity diagram has a variable that distinguish be-
tween a power-on process and a reset process (modolniciacaoPowerOn). After
the state Determinarmododeiniciacao if modolniciacaoPowerOn=true the next
state should be LimparmemoriaFlash. When running NuSMV, this property is
true. Relating to the TS obtained from sequence diagram, it is not possible to

708 L.B.R. dos Santos et al.

distinguish between the two startup modes. The diagram does not meet this
requirement.

Requirement 3: The SWPDC should report processing of the POST through
reports of events. This property can be formalized using the Existence Pattern
and Globally Scope proposed by [8], in CTL, as follows:

AF(State = Gravarrelatodeeventos)

AF(State = gerarRelatorioPOST)

The first is for the TS obtained from the activity diagram. The second is for the
TS obtained from sequence diagram. Both diagrams meet this requirement.

Requirement 4: In the case of any unrecoverable problem not being identified
in the PDC after the startup process, the PDC shall automatically enter into
the safety operation mode. This property can be formalized using the Response
Pattern and Globally Scope proposed by [8], in CTL, as follows:

AG((State = Avaliarprocessodeiniciacao&bemSucedido = true)— > AF(State =
MudarparamododeoperacaoSEGURANCA))

In the TS obtained from activity diagram, there is a variable that indicates if the
startup process is successful (bemSucedido=true) or not (bemSucedido=false).
After state Awaliarprocessodeiniciacao, in the case of bemSucedido=true, it is
possible to reach state MudarparamododeoperacaoSEGURANCA, which repre-
sents that the PDC enters the safety operation mode. Otherwise, the PDC re-
mains in the startup operation mode. When running NuSMV, this property is
true. For the TS obtained from sequence diagram, this property is false. The
variable that indicates if the startup process is successful (bemSucedido) is not
available for this diagram. Regardless of whether or not the startup has prob-
lems, the PDC enters in the safety operation mode. Thus, the diagram does not
meet this requirement.

We can note that the T'S obtained from the activity diagram meets all require-
ments verified. However, the T'S obtained from the sequence diagram reflects only
requirement 3, and does not meet all the other three requirements verified.

We have also worked with two other scenarios: one from SWPDC (Activa-
tion of the main module), with one activity diagram, and one scenario from
ATM (Perform Transaction), with two diagrams: a sequence and an activity
diagram. For the first scenario, we have obtained 351 states, 85 of which are
reachable states when running NuSMV model checker. Three requirements were
verified and for one of them, the TS did not meet the requirement. For the
second scenario, we have obtained 513 states, 53 of which are reachable states
when running NuSMV model checker for the sequence diagram, and we have
obtained 1218 states, 86 of which are reachable states when running NuSMV
model checker for the activity diagram. The two TSs obtained from the two
diagrams meet the requirements verified.

In this section, we have shown the use of our tool, by means of two case
studies, generating individual TSs from sequence and activity UML diagrams,
and we introduced policies to transform the TSs into the NuSMV input language.
Besides, after running the model checker for the explained scenario, we have

A Formal Verification Tool for UML Behavioral Diagrams 709

found that the sequence diagram modeling the space application product does
not comply with all the specified requirements.

7 Related Work

This section presents some of the research literature related to this paper, show-
ing (not exhaustive) tool approaches that use Formal Verification and UML.

Mikk [16] and Latella [17] translated Statecharts into PROMELA, the in-
put language of SPIN verification system. Lam [18] formally analyzed activity
diagrams using NuSMV model checker. The objective was determining the cor-
rectness of activity diagrams. Eshuis [5] presented two translations from activ-
ity diagrams to NuSMV. The aim was to assess the activity diagrams from the
point of view of requirements and also from the point of view of implementation,
which represents the current system behavior. Dubrovin [19] implemented a tool
that translates UML hierarchical state machine models to the input language
of NuSMV. Uchitel [20] proposes translation of scenarios, specified as Message
Sequence Charts (MSCs), into a specification in the form of Finite Sequential
Processes. This can then be fed to the Labelled Transition System Analyser
model checker to support system requirements validation. All these previous
studies deal with a single UML or UML-like diagram to perform Formal Verifi-
cation. Rather, our tool allows to work with up to two UML behavioral diagrams
(and more diagrams in the future). In addition, it is not clear if in the previ-
ous studies the authors used specification patterns to formalize the properties.
Specification patterns provide clear guidelines to such formalization.

Baresi [21] developed a tool to carry out Formal Verification of UML-based
models, mainly interested in the timing aspects of systems. It is composed of:
static part (class diagrams); dynamic aspects and behavior are rendered through:
(a) state diagrams and activity; (b) sequence diagrams; and (c) interaction
overview diagrams, used to relate different sequence diagrams; Clocks (and time
diagrams) are used to add the time dimension to systems. All these diagrams
seem to be required to construct the approach.

Cortellessa [22] proposes a methodology Performance Incremental Validation
in UML (PRIMA-UML) aimed at generating a queueing network based perfor-
mance model from UML diagrams that are usually available early in the software
lifecycle (use case, sequence, and deployment).

The main motivation of our approach is the practical use of formal methods in
software development, through automation. The idea is that the user feeds the
tool with UML behavioral diagrams and it shows the defects. This can be done
throughout the lifecycle, even before software coding. [22] suggested an interest-
ing approach to encompass performance validation task as an integrated activity
within the development process. We aim at detecting design defects within the
solution, but considering functional requirements of the software product. We
are proposing, rather than a tool, an approach to detect defects in the design of
software developed in accordance with UML. Besides, our approach suggests to
use different behavioral diagrams, which represent complementary views of sys-
tem behavior and are often used in different phases of software specification and

710 L.B.R. dos Santos et al.

design, allowing thus a wider system range to be verified. Most of the studies we
mentioned deal with a specific type of UML diagram. On the other hand, Baresi
[21] seems to require an assorted number of diagrams (structural, behavioral and
timing diagrams), which are not always available on the documentation.

8 Conclusions

In this paper we presented a tool that, ultimately, is another initiative in or-
der to facilitate and thus increase the use of formal methods in software real
projects. We draw on two facts to the development of this work. First, UML is
a language widely used in various application domains, including the aerospace
one. Second, Formal Verification and formal methods in general, despite all the
benefits already presented by academic community, have not seen widespread
adoption as a routine part of systems development practice [23].

We presented two case studies (containing three scenarios) running our tool.
We have detailed one scenario, showing how to perform the activities proposed
in the approach. We have shown the results for the three scenarios.

It is noteworthy that our tool supports the automation of a methodology
that aims to add value to software products, which are specified and designed
by means of UML. As seen in Figure 2 and detailed in the case studies section
(Section 6), our methodology not only involves the automatic transformation of
multiple perspectives of behavioral modeling (sequence, activity, behavioral state
machines) in order to accomplish Model Checking, but also this methodology
provides a way of formalizing the properties through specification patterns. From
a practical standpoint, hints of how to formalize properties are of great value to
find defects in design solutions for critical systems.

Future directions follow. We are currently developing the other modules of the
tool. When State Machine Diagram transformation is finished we will begin the
construction of the final part, the unified TS generation. Another direction is to
automatically identify in the UML diagrams a problem (inconsistency between
diagrams, incorrect behavior) when a counterexample is detected by running
NuSMV. We will dedicate efforts in transforming the unified TS to other model
checkers such as SPIN and UPPAAL.

Acknowledgement. This work is supported in part by Financiadora de Estu-
dos e Projetos (FINEP) under Project Number 01.10.0233.00, and by Fundagao
de Amparo & Pesquisa do Estado de Sao Paulo (FAPESP) under Process Number
2012/23767-2.

References

[1] Baier, C., Katoen, J.P.: Principles of model checking, p. 975. The MIT Press,
Cambridge (2008)

[2] Schéfer, T., Knapp, A., Merz, S.: Model checking uml state machines and collab-
orations. Electronic Notes in Theoretical Computer Science 55(3), 357-369 (2001)

[3]
[4]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A Formal Verification Tool for UML Behavioral Diagrams 711

OMG, T.O.M.G.: Omg - unified modeling language (omg uml) (1997)

Debbabi, M., Hassaine, F., Jarraya, Y., Soeanu, A., Alawneh, L.: Verification and
Validation in Systems Engineering, p. 270. Springer, Heidelberg (2010)

Eshuis, R., Wieringa, R.: Tool support for verifying uml activity diagrams. IEEE
Transactions on Software Engineering 30(7), 437-447 (2004)

Sarma, M., Mall, R.: Automatic generation of test specifications for coverage of
system state transitions. Information and Software Technology 51(2), 418-432
(2009)

Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 7th edn. Mc-
GrawHill, New York (2010)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: Proceedings of the International Conference on
Software Engineering (ICSE), pp. 411-420. ACM Press, New York (1999)
Cockburn, A.: Writing Effective Use Cases, p. 304. Addison-Wesley Professional,
US (2000)

Kessler, F.B.: Nusmv home page (2011)

eclipse.org: Papyrus (2014)

Holzmann, G.: The SPIN model checker: Primer and reference manual, vol. 1003.
Addison-Wesley (2004)

Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200-236. Springer,
Heidelberg (2004)

eclipse.org: Eclipse (2014)

Santiago, V., Mattiello-Francisco, M., Costa, R., Silva, W., Ambrosio, A.: Qsee
project: an experience in outsourcing software development for space applications.
In: The 19th International Conference on Software Engineering & Knowledge En-
gineering (SEKE), pp. 51-56 (2007)

Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.: Implementing statecharts in
promela/spin. In: Proceedings. 2nd IEEE Workshop on Industrial Strength Formal
Specification Techniques, pp. 90-101. IEEE (1998)

Latella, D., Majzik, 1., Massink, M.: Automatic verification of a behavioural sub-
set of uml statechart diagrams using the spin model-checker. Formal Aspects of
Computing 11(6), 637-664 (1999)

Lam, V.: A formalism for reasoning about uml activity diagrams. Nordic Journal
of Computing 14(1), 4364 (2007)

Dubrovin, J., Junttila, T.: Symbolic model checking of hierarchical uml state ma-
chines. In: ACSD 2008. 8th International Conference on Application of Concur-
rency to System Design, pp. 108-117. IEEE (2008)

Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from sce-
narios. In: Proceedings of the 23rd Intern. Conference on Software Engineering,
pp. 188-197. IEEE Computer Society (2001)

Baresi, L., Morzenti, A., Motta, A., Rossi, M.: Towards the UML-based formal
verification of timed systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue,
M.M. (eds.) Formal Methods for Components and Objects. LNCS, vol. 6957,
pp. 267-286. Springer, Heidelberg (2011)

Cortellessa, V., Mirandola, R.: Prima-uml: a performance validation incremental
methodology on early uml diagrams. Science of Computer Programming 44(1),
101-129 (2002)

Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Prac-
tice and experience. ACM Computing Surveys 41(4), 19:1-19:36 (2009)

	A Formal Verification Tool for UML
Behavioral Diagrams

	1 Introduction
	2 Fundamentals
	2.1 UML
	2.2 Model Checking

	3 Proposed Approach
	4 SoftwareTool
	5 Usability Aspects
	6 Case Studies
	7 Related Work
	8 Conclusions
	References

