
Exercising Java Exceptions Using Java

Pathfinder and Program Instrumentation

Alexandre Locci Martins, Simone Hanazumi, and Ana C.V. de Melo

Department of Computer Science, University of São Paulo, São Paulo, Brazil
{alelocci,hanazumi,acvm}@ime.usp.br

Abstract. This paper presents an instrumentation technique to exercise
the exceptional behavior of Java programs using the Java Pathfinder
model checker. First, programs statements that are potentially able to
throw exceptions are identified, and then a set of Java instructions are
inserted into programs source code to throw exceptions, producing an
instrumented program. Java Pathfinder is applied over this instrumented
code to perform multiple executions of the system under verification
and cover the program exceptional behavior. Additionally, our technique
proposes a prototype of a new Java Pathfinder class to verify and test
Java exceptions.

1 Introduction

Testing and formal verification are the main activities used by practitioners to
certify the software quality [1,11]. To assess the software quality, we compare
the observed software behavior and the software specification. If the software
behavior and its specification do not match, then there is a strong indication that
a software error was found. Therefore, testing and formal verification techniques
provide strategies to evaluate the software quality.

Testing consists in dynamically analyzing the software behavior to compare
the observed behavior at the implementation level against the expected behav-
ior specified at the design level. Formal verification [3,6], in turn, corresponds
to mathematically prove that a given system is in accordance with its design
specifications. These activities use different approaches to certify software qual-
ity and some recent studies have tried to crossover both techniques to combine
their strong features and minimize their weaknesses[7].

An exception is any unexpected or undesirable behavior detected by soft-
ware or hardware that requires a special handling [15]. Whenever an exception
is raised in a program, a change on the program normal execution path [14]
occurs, driving to the so called exceptional path. Today an expressive number
of Java programs have at least one kind of exception handling block statement
[4,5]. Although the importance of analyzing exception handling structures is rec-
ognized [16,17,4,15,5], most researches on combining testing and verification are
devoted to the normal behavior of software [12,16,17,2,9].

B. Murgante et al. (Eds.): ICCSA 2014, Part I, LNCS 8579, pp. 671–682, 2014.
c© Springer International Publishing Switzerland 2014



672 A.L. Martins, S. Hanazumi, and A.C. V. de Melo

If testing or verification techniques only focus on the normal software behavior,
an expressive number of potential execution paths may not be exercised. As a
result, a number of software behaviors are not checked in testing or they are
neglected as potential model elements in verification.

Aiming to contribute to the research of programs exceptional behavior testing
and verification, our work suggests a code instrumentation technique that guides
the Java Pathfinder (JPF) [13] verification to exercise exceptional paths of Java
programs. We force programs to exercise their exceptional paths via source code
instructions that are used by JPF to throw exceptions and return to predefined
execution states.

In the instrumentation technique we address the exceptions given by pro-
grammers. The application of this technique with the JPF execution gives to
programmers the opportunity to observe his/her program exceptional behavior
when testing or checking properties to ensure that the exceptional paths are also
reached.

This paper is organized as follows: Section 2 describes the main concepts that
appear in our work; Section 3 presents the proposed instrumentation technique
to exercise the exceptional paths of a program; Section 4 presents the related
work; and, Section 5 shows the conclusion and future work.

2 Background

This section describes the main Java exceptions statements used in the present
work and a brief overview of the JPF.

2.1 Handling Exceptions in Java

Java is one of the first modern languages in which exception handlers were
presented as primary design elements; all exceptions are objects.

There are three basic syntactic structures that provide exception handling.
The first one is the try/catch/finally blocks that are used to enclose the statement
that may throw exception (try), provide the correct treatment for an exception
thrown (catch) and release the used resources (finally). The second one is the
throws clause used to indicate that a method may throw an exception. The last
one is the throw statement used by the programmer to intentionally throw an
exception at run time.

When an exception is thrown at run time the control flow is skipped to the ap-
propriate syntactic handling structure (catch/finally) or the execution is halted.
In the try/catch/finally blocks, whenever an exception is thrown in the try block,
the control-flow is deviated to a catch and/or finally block and goes ahead, not
returning to the previous statement. Also, when a throw statement is used, the
method is killed and the flow goes up with the stack until a handling statement
is found or the program stops. All these cases show that an exception (handled
or not) changes the program behavior and must be tested/verified.



Exercising Java Exceptions 673

2.2 Java Pathfinder (JPF) and the Verify Class

Java Pathfinder (JPF) is a model checker written in Java and it is used to check
program properties directly on the Java bytecode [13]. It performs an exploration
of the state space to identify violations of properties. If a property violation is
detected, then it presents values at state space that are responsible for reaching
such violation, a counter-example. Otherwise, it can conclude that the program
satisfies the proposed property.

Although JPF does not work directly with exceptions, it provides the Verify
class to exercise an explicit interval of values, instead of leaving to JPF the task
of choosing values to use in programs verification (e.g. sequence of integer values
or boolean values).

The Verify class can be used similarly to exercise exceptional paths by com-
bining its methods with the throw statement [2,9,13]. However, using this in-
strumentation, the start point of the exceptional path could be no longer the
exact point in which the exceptions are really raised.

In the present work, the instrumentation technique preserves the capabilities
of the JPF Verify. The difference is that our technique focuses on the analysis
of the instrumented program behavior, and the instrumented code that actually
throws an exception is the starting point of an exceptional path. Moreover, our
instrumentation technique can be applied to Java programs and used to exercise
exceptional paths in other test and verification tools besides the JPF model
checker [10].

3 Source Code Instrumentation

In our work, we propose an alternative construction to the JPF Verify class, the
VerifyEx class, and an alternative instrumentation approach to exercise excep-
tions. The following sections describe this new class and how to use it to exercise
program exceptional paths.

3.1 The VerifyEx Class

The VerifyEx is a prototype Java class designed to exercise software exception
behavior. It may be integrated directly in the software code under test or used
as a library (.jar). This class provides methods to identify if one exception was,
or was not, thrown. If the class detects that an exception was not thrown, it
throws the exception to exercise the software exceptional behavior. In addition,
the VerifyEx class stores the sequence of exceptions that were thrown to report
to the user.



674 A.L. Martins, S. Hanazumi, and A.C. V. de Melo

Listing 1.1. VerifyEx Class Example

1 public class ExampleClass {
2 public static void main(String [] args) {
3 try{
4 if(VerifyEx .exception("1")){
5 throw new Exception();
6 }
7 }catch(Exception e){
8 System.out.println ("Exception 1");
9 }

10 if(ExceptionList.exceptionList.size() < 1) ExampleClass.main(args)
;

11 }
12 }
13 class VerifyEx { ... }
14 class ExceptionList {... }

Line 4 (Listing 1.1) presents an example of instrumentation statement: the
exception method receives a string as a parameter.

Different from Verify, this string is a label and can be used to identify the
line where the exception was thrown, the sequence of thrown exceptions or any
other kind of information that the developer needs for code analysis (testing).

The second difference is presented at line 10. The class attribute exceptionList
is used to define if all exceptions have been thrown. This attribute stores the
labels passed as parameters to the exception method. The Verify can be used
to implement this functionality either, but this implies in more statements to
be inserted directly into the source code. And this could make the code less
readable.

After the exception at line 5 has been thrown, label 1 is added to the list
and checked at line 10. If the list size is equal to 1, all executions are stopped.
Otherwise, one or more exceptions were not exercised yet and the reboot process
is started to cover the other values.

Although the Verify class can also execute a kind of reboot process, it does not
allow the developer to have control over the process as with the VerifyEx class.
For instance, the Verify class does not interrupt the program execution, even
when the exceptional behavior has been exercised. This results in the coverage
of a set of statements that does not have relation with the exceptional structure
and may be accessed without any exception throw. The new class, VerifyEx,
has the advantage of being more flexible because the reboot execution point
can be programmed to anywhere in code, instead of always going to the main

method. And the VerifyEx reboot process allows the interruption of the program
execution after the exceptional statements have been exercised.This feature can
drive the JPF execution to be more efficient in certain cases since the exceptional
path does not need to start at the main method.

A full example of using the VerifyEx class is given in Section 3.3.

3.2 Instrumenting Exceptions Statements

The source code is instrumented by using a method that allows the identification
of the lines that may throw an exception. This method is based on the activa-



Exercising Java Exceptions 675

tion/deactivation exception concept that was presented by Sinha and Harrold
[17]. An exception object is activated if it is raised with a throw command or in
a try block and deactivated when it is treated or a null value is given. Now, a
sequence of actions is implemented:

1. Build exception activation/deactivation model : we create an abstract model
that identifies the statements that may activate exceptions and the state-
ments that may deactivate exceptions in the source code. After that, we es-
tablish the relation among these elements, obtaining the control flow model
of exception activation/deactivation statements.

2. Determine the line to insert the instrumentation code:
– try blocks: insert instrumentation code at the first line of the try block.

This decision is based on the fact that the scope of try block is a potential
place to activate an exception.

– throw : the instrumentation is inserted immediately before this statement.
– throws : the instrumentation is inserted at the method first line.

3. Inserting the VerifyEx : we insert into the source code the statement that is
able to identify and throw the suitable exception.

All these steps are automatically done by a tool that takes a program source
code as input and returns the instrumented source code. To do so, the tool rec-
ognizes a program statement that is responsible for activating and deactivating
exceptions, finds the places where the instrumentation code must be inserted,
and inserts the instrumentation code to activate exceptions and reboot the pro-
gram path. An example in Section 3.3 illustrates the instrumentation technique.

3.3 Instrumenting a Code and Running JPF

To illustrate how the exceptional paths are exercised with the proposed instru-
mentation, which uses the VerifyEx class, we use the CheckValue program (List-
ing 1.2). We first present JPF running on the non-instrumented code to show how
far it goes on the exercise of exceptions. Then, we apply the presented instru-
mentation technique to instrument this code and run JPF on the instrumented
code to summarize the technique effects on program paths.

Listing 1.2. CheckValue Program - original code

1 public class CheckValue {
2 public static void main(String [] args) {
3 try{
4 int num = (int)(Math.random ()*200);
5 if (num == 95) throw new Exception();
6 checkValue(num);
7 s.o.p("Valid Values");
8 }catch(ArithmeticException e){
9 CheckValue.exitError("Value below the limit");

10 }catch(ArrayIndexOutOfBoundsException e){
11 CheckValue.exitError("Value over the limit");
12 }catch(Exception e){
13 CheckValue.exitError("Reserved ");
14 }finally {



676 A.L. Martins, S. Hanazumi, and A.C. V. de Melo

15 s.o.p("Value Checked ");
16 }
17 s.o.p("Stop");
18 }
19 private static void checkValue(int num) throws ArithmeticException,
20 ArrayIndexOutOfBoundsException{
21 ValueInferior vi = new ValueInferior();
22 CheckUpper vu = new CheckUpper();
23 vi.inferiorValue(num);
24 vu.upperValue(num);
25 }
26 private static void exitError(String str){
27 s.o.p(str);
28 }
29 }
30 class ValueInferior{
31 public void inferiorValue(int a){
32 if(a < 10){
33 throw new ArithmeticException();
34 }
35 s.o.p("Inferior Limit Checked ");
36 }
37 }
38 class CheckUpper{
39 public void upperValue(int a){
40 if(a > 100){
41 throw new ArrayIndexOutOfBoundsException();
42 }
43 s.o.p(Upper Limit Checked ");
44 }
45 }

3.4 Running JPF on the Non-instrumented Code

Despite the broad use of JPF to model check programs, it mainly operates on
the normal flow of control and data. For example, if the CheckValue program is
checked by JPF, only the normal paths are exercised and no exception is thrown
intentionally (Listing 1.3). As a result, JPF performs only one execution of the
program CheckValue.

Listing 1.3. JPF traces

JavaPathfinder v6.0 - (C) RIACS/NASA Ames Research Center
====================================================== system under test
application: CheckValue.java

========================================== search started : 2/27/14 4:41 PM
Inferior Limit Checked
Upper Limit Checked
Valid Values
Value Checked
Stop

====================================================== results
no errors detected

====================================================== statistics
...
============================================ search finished : 2/27/14 4:41 PM



Exercising Java Exceptions 677

However, a model checker can be used to exercise the whole behavior of pro-
grams, including the exceptional behavior. If so, properties on the exceptional
behavior are better covered and broader test cases are exercised. The forth-
coming section shows JPF running on an instrumented code of the CheckValue
program.

3.5 Running JPF on the Instrumented Code

Here we present an example of how to instrument a code with the VerifyEx
class. We use for this purpose the CheckValue program (instrumented code in
Listing 1.4). To illustrate how the exceptional paths are exercised with this
instrumentation, we present the results obtained using the tool JPF, Listing 1.5.

Listing 1.4. CheckValue Program - instrumented code

1 public class CheckValue {
2 public static void main(String [] args) {
3 try{
4 if (VerifyEx .exception("1")) throw new Exception();
5 int num = (int)(Math.random ()*200);
6 checkValue(num);
7 s.o.p("Valid Values");
8 }catch(ArithmeticException e){
9 CheckValue.exitError("Value below the limit");

10 }catch(ArrayIndexOutOfBoundsException e){
11 CheckValue.exitError("Value over the limit");
12 }catch(Exception e){
13 CheckValue.exitError("Reserved ");
14 }finally {
15 s.o.p("Value Checked ");
16 }
17 s.o.p("Stop");
18 if(ExceptionList.exceptionList.size() < 3) CheckValue.main(args);
19 }
20 private static void checkValue(int num) throws ArithmeticException,
21 ArrayIndexOutOfBoundsException{
22 ValueInferior vi = new ValueInferior ();
23 CheckUpper vu = new CheckUpper ();
24 vi. inferiorValue (num);
25 vu. upperValue (num);
26 }
27 private static void exitError(String str){
28 s.o.p(str);
29 }
30 }
31 class ValueInferior{
32 public void inferiorValue(int a) throws ArithmeticException{
33 if(VerifyEx .exception("2")){
34 throw new ArithmeticException();
35 }
36 s.o.p("Inferior Limit Checked ");
37 }
38 }
39 class CheckUpper{
40 public void upperValue(int a) throws ArrayIndexOutOfBoundsException{
41 if(VerifyEx .exception("3")){
42 String msg = "Invalid ";
43 throw new ArrayIndexOutOfBoundsException(msg);
44 }
45 s.o.p("Upper Limit Checked ");
46 }
47 }



678 A.L. Martins, S. Hanazumi, and A.C. V. de Melo

In the CheckValue program (Listing 1.4), we have three possible exceptional
paths. For each path, one of these three types of exceptions may be thrown:
(1) Exception; (2) ArithmeticException; and (3) ArrayIndexOutOfBoundsEx-
ception. To exercise all these exceptional paths, we instrument the code using
the VerifyEx class, following the steps of Section 3.2:

1. Build exception activation/deactivation model : in CheckValue program we
have identified in its abstract model three exceptions activation/deactivation
statements. They are located at lines:
– (3, 12): reference to the try block where an Exception may be thrown,

treatment of Exception in a catch block;
– (32, 8): reference to ArithmeticException throw, treatment of Arith-

meticException in a catch block; and
– (40, 10): reference to ArrayIndexOutOfBoundsException throw, treat-

ment of ArrayIndexOutOfBoundsException in a catch block.
2. Determine the line to insert the instrumentation code: according to the iden-

tified exceptions activation/deactivation, the appropriate instrumentation
statements are:
– Line 4: inside a try block;
– Line 33: first line of a method that throws exceptions; and
– Line 41: first line of a method that throws exceptions.

3. Inserting the VerifyEx : Listing 1.4 presents the instrumentation code in-
serted at lines 4, 33 and 41, as we have determined in the previous step.

In addition, the last element to be considered in the instrumentation is the
possibility of performing a reboot of the code after the release of a given exception
that involves the program execution halt. To do this, we insert a VerifyEx reboot
statement just before the halt statement. In the example (Listing 1.4), we put a
reboot statement at line 18 to guarantee that the three exceptional paths of the
program were exercised by JPF. After the execution of all the abnormal paths,
the program execution returns to its main method.

The JPF output of the instrumented CheckValue code is presented in Listing
1.5. The exceptional paths of the program are exercised in the following order:
(1) Exception: lines 6-8; (2) ArithmeticException: lines 9-11; and (3) ArrayIn-
dexOutOfBoundsException: lines 13-15.

Listing 1.5. CheckValue Program - JPF output

1 JavaPathfinder v6.0 - (C) RIACS/NASA Ames Research Center
2 ====================================================== system under test
3 application: CheckValue.java
4
5 ============================================ search started : 2/27/14 4:44

PM
6 Reserved
7 Value Checked
8 Stop
9 Value below the limit

10 Value Checked
11 Stop
12 Inferior Limit Checked



Exercising Java Exceptions 679

13 Value over the limit
14 Value Checked
15 Stop
16
17 ====================================================== results
18 no errors detected
19
20 =============================================== statistics
21 ...
22 ==================================== search finished : 2/27/14 4:44 PM

With this CheckValue example, we observe that the VerifyEx class allows the
automation of the process of exercising exceptional paths (Listing 1.5), using
source code instrumentation (Listing 1.4). This instrumentation allows multiple
executions of a program by the use of verification or testing tools. For each run,
the chosen tool provides a possible exception throw. For each thrown excep-
tion we have an exceptional path that is exercised. Thus, any check that was
previously restricted to program normal paths is applied to exceptional paths.
Additionally, the VerifyEx class allows overcoming situations in which the exe-
cution of a given path leads to a program halt. This is done through a simple
recursive call (reboot process) that is inserted before the instruction that causes
the program halt. Comparing these results to traditional programs exceptional
behavior testing/verification, we can conclude that our technique provides a
more effective and faster manner to test/verify programs abnormal execution
paths.

4 Related Work

The main researches related to our work are briefly described in this section.
They are divided in two categories: researches that dealt with the test of system
exceptional behavior, and researches that used the JPF Verify class (Section 2.2)
to instrument the code in order to exercise new execution paths.

4.1 Testing Programs Exceptional Behaviors

Ji et al. [8] presented mutant operators for Java exception handling constructs.
They are used with mutation testing to help in the evaluation and improvement
of test sets used to ensure that these constructs were arranged properly. Zhang
and Elbaum [19] dealt with the testing of exceptional paths in programs that
use external resources. In their approach, the test suite executes a broader space
of exceptional behavior associated with an external resource that is used by
the program under test. Consequently, most of program faults and abnormal
behaviors can be detected in an automated manner.

Our work intends to help the test of system exceptional behavior as the above
works. But our approach uses code instrumentation to exercise the exceptional
paths of a program.When exercising these paths using a testing tool, the software
tester can use the collected data to ensure, for instance, that an exception was
handled in a correct manner and that the exception was raised accordingly.



680 A.L. Martins, S. Hanazumi, and A.C. V. de Melo

4.2 Code Instrumentation with JPF Verify Class

Staats [18] rebuilt the Verify class to allow JPF working with the modified con-
dition/decision coverage (MC/DC). The code instrumentation presented in his
work allows the automatic generation of test cases and its execution with the use
of JPF to cover the MC/DC criterion. Since the MC/DC addresses the normal
behavior, the exception statements are not instrumented. Li et al. [9] presented a
technique to verify whether Java exceptions are used in a safe way. This technique
combines a static analysis of the Java source code to identify where exceptions
can be raised, with model checking technique visiting all possible exception exe-
cution paths. The exercise of exceptional paths is done by using the JPF Verify
class to make JPF performing multiple executions of the same program. For
each potential exception, all possible combinations of the normal or exceptional
paths are exercised. Using static analysis, they can automatically find excep-
tions and insert instrumentation code to exercise the exceptional paths. The
main contributions of this work are pointing out the possibility of using JPF to
check exceptional paths and using the Verify class to instrument code. Artho
and Sommer [2] presented a fault model for model checking networked programs.
For that, the network program is modeled to eliminate undesired behaviors, such
as deadlock. Each exceptional statement in the source code is instrumented by
using JPF Verify class. The program is then checked by the JPF. The excep-
tional behavior is observed to determine how the program deals with faults on
communications caught by the exceptional structures.

The works by Artho and Sommer [2] and Li et al. [9] address the feasibility
of using JPF Verify class to exercise exceptions. The current work has a similar
objective but differs from them in two aspects. First, we suggest a set of changes
to the JPF Verify class to better handle exceptional paths. With our approach,
the state to return after executing an exception path can be chosen by program-
mers. Second, our prototype class can be used in any testing or verification tool
instead of being restricted to JPF execution.

5 Conclusions and Future Work

Exercising the exceptional behavior of programs is not an easy task. Most of
the testing and verification tools were designed for handling normal control flow
rather than exceptional flow.

This work proposes an approach to exercise exceptional paths by combining
code instrumentation and the use of a testing and/or verification tool. In this
paper we used the verification tool JPF, but we could have used other tools
like the JUnit [10]. The result achieved here is a technique that: (1) exercises
exceptional paths; (2) allows the developer to build logs of sequences of thrown
exceptions and; (3) implements the reboot process that allows the programmer
to choose which method should be called to perform a new execution of the
program under verification. The latter streamlines the process of exercising ex-
ceptional behavior paths since it can ignore all code regions that have already



Exercising Java Exceptions 681

been explored. Another contribution is the possibility of using our technique to
instrument Java source code that can be executed in any kind of testing and
verification tool.

VerifyEx allows the automation of the process of exercising exceptional paths
using source code instrumentation. This instrumentation allows multiple execu-
tions of a program by the use of verification or testing tools. For each run, the
chosen tool provides a possible exception throw. For each thrown exception we
have an exceptional path that is exercised. Thus, any check that was previously
restricted to the normal path is applied to the exceptional paths. Additionally,
the VerifyEx class allows overcoming situations in which the execution of a given
path leads to a program halt through a simple recursive call, reboot process, be-
fore the instruction that causes the halt program.

In addition, the last element to be considered is the possibility of performing
a reboot of the code after the release of a given exception that involves the
program execution halt. The task of testing or verifying the exceptional paths
of programs with halt statements becomes exhaustive because the program will
stop whenever a halt statement is executed (a new execution must be set for
each path). A simple solution for this problem is to insert a VerifyEx reboot
statement just before the halt statement. Then this halt statement will not be
executed and the model checker goes ahead exercising other exceptional paths.

All the instrumentation process is supported by a tool that automatically do
the instrumentation. In practice, developers may wish to initiate a deviation
from a normal to an exceptional path before or after a particular instruction, it
depends on what he/she wants to observe in testing or verifying a program. To
automate the whole instrumentation process, however, a decision on where to
insert instrumentation code to exercise exceptions activation and deactivation
was taken. In a future work we will incorporate a decision process which aims
to improve the semi-automatic choice of the points at which exceptions could
be thrown. Finally, studies will be conducted to verify if we can use the listener
ExceptionInsert available in the JPF. If this is possible, exceptions will be thrown
without direct instrumentation of the source code.

Acknowledgments.This project has been funded by the Ministry of Education
Research Agency (CAPES- Brazil), and the State of São Paulo Research Foun-
dation (FAPESP) - Processes: 2011/01928-1, 2012/23767-2, 2013/22317-6 and
2013/25309-4.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, New York (2008)

2. Artho, C., Sommer, C., Honiden, S.: Model Checking Networked Programs in the
Presence of Transmission Failures. In: Proceedings of the First Joint IEEE/I-
FIP Symposium on Theoretical Aspects of Software Engineering, TASE 2007,
pp. 219–228. IEEE Computer Society, Washington, DC (2007)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)



682 A.L. Martins, S. Hanazumi, and A.C. V. de Melo

4. Cabral, B., Marques, P.: Exception Handling: A Field Study in Java and .NET. In:
Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 151–175. Springer, Heidelberg
(2007)

5. Dúulaigh, K.O., Power, J.F., Clarke, P.J.: Measurement of Exception-Handling
Code: An Exploratory Study. In: 5th International Workshop on Exception Han-
dling, Zurich, Switzerland (June 9, 2012)

6. Fisher, M.: An Introduction to Practical formal Methods Using Temporal Logic,
1st edn. Wiley (2011)

7. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verif. Reliab. 19, 215–261 (2009)

8. Ji, C., Chen, Z., Xu, B., Wang, Z.: A New Mutation Analysis Method for Testing
Java Exception Handling. In: 2012 IEEE 36th Annual Computer Software and
Applications Conference, vol. 2, pp. 556–561 (2009)

9. Li, X., Hoover, H.J., Rudnicki, P.: Towards Automatic Exception Safety Verifica-
tion. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 396–411. Springer, Heidelberg (2006)

10. Martins, A.L., Hanazumi, S., de Melo, A.C.V.: Testing Java Exceptions: An Instru-
mentation Technique. In: Proceedings of the 2014 IEEE 38th Annual Computer
Software and Applications Conference Workshops, COMPSACW 2014, IEEE Com-
puter Society, Väaster̊aas (to appear, 2014)

11. Mathur, A.P.: Foundations of Software Testing, 1st edn. Addison-Wesley Profes-
sional (2008)

12. Nagar, P., Soni, N.: Optimizing Program-States using Exception-handling Con-
structs in Java. International Journal of Engineering Science & Advanced Technol-
ogy 2(2), 192–199 (2012)

13. NASA, What is JPF,
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/what_is_jpf (accessed:
November 25, 2012)

14. Oracle. What Is an Exception? http://docs.oracle.com/javase/tutorial/

essential/exceptions/definition.html

(accessed: November 25, 2012)
15. Sebesta, R.W.: Concepts Programming Languages (7th ed.). Addison-Wesley

Longman Publishing Co., Inc., Boston (2005)
16. Sinha, S., Harrold, M.J.: Analysis of Programs with Exception-Handling Con-

structs. In: ICSM 1998: Proceedings of the International Conference on Software
Maintenance, p. 348. IEEE Computer Society, USA (1998)

17. Sinha, S., Harrold, M.J.: Analysis and Testing of Programs with Exception Han-
dling Constructs. IEEE Trans. Softw. Eng. 26(9), 849–871 (2000)

18. Staats, M.: Towards a Framework for Generating Tests to Satisfy Complex Code
Coverage in Java Pathfinder. In: Proceedings of NASA Formal Methods Sympo-
sium 2009, p. 116 (2009)

19. Zhang, P., Elbaum, S.: Amplifying tests to validate exception handling code. In:
Proceedings of the 2012 International Conference on Software Engineering, ICSE
2012, pp. 595–605. IEEE Press, Piscataway (2012)

http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/what_is_jpf
http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

	Exercising Java Exceptions Using JavaPathfinder and Program Instrumentation
	1 Introduction
	2 Background
	2.1 Handling Exceptions in Java
	2.2 Java Pathfinder (JPF) and the Verify Class

	3 Source Code Instrumentation
	3.1 The VerifyEx Class
	3.2 Instrumenting Exceptions Statements
	3.3 Instrumenting a Code and Running JPF
	3.4 Running JPF on the Non-instrumented Code
	3.5 Running JPF on the Instrumented Code

	4 Related Work
	4.1 Testing Programs Exceptional Behaviors
	4.2 Code Instrumentation with JPF Verify Class

	5 Conclusions and Future Work
	References




