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Abstract. Nowadays, the massive amount of spatio-temporal data available ex-
ceeds the human capability to absorb them (i.e., to achieve insights). A possible 
approach to address this issue is through less detailed representations of phe-
nomena so that the data complexity can be decreased making easier for the us-
ers to achieve meaningful insights. In this paper, we discuss the state of the art 
of modeling spatio-temporal phenomena at different levels of detail (LoDs). We 
found that granularities play an important role to hold spatio-temporal data at 
different LoDs. A novel granularity framework is proposed, allowing the defini-
tion of a granularity over any domain (including spatial and temporal granulari-
ties) as well as it allows transposing knowledge from the original domains to 
granularities (i.e., known relationships and its properties on the domain). Final-
ly, a granularities-based model is proposed, based on the proposed granularity 
framework, for dealing and relate different LoDs of spatio-temporal data. 

Keywords: spatial-temporal data, multigranularity. 

1 Context and Motivation 

Spatio-temporal data are being gathered at high levels of detail (LoDs) either from a 
spatial or temporal perspective, resulting into massive volumes of data to be 
processed, which can be further analyzed by users. Several examples can be found 
like spatio-temporal data collected from network sensors, remote sensing imagery; 
spatio-temporal data resulting from the usage of mobile devices (e.g., twitter, fours-
quare); spatio-temporal data from monitoring sensors used in marine navigation (e.g., 
Automatic Identification System) or sensors embedded in vehicles (e.g., Tom Tom). 

During the analytical activities performed on massive amounts of spatio-temporal 
data several problems emerge either from the computer or the human viewpoint [1]. 
From the computer perspective, the data processing becomes computationally very 
demanding, and not well-suited for the interactive exploration of large volumes of 
data as the Visual Analytics stands for [1], i.e., a smart combination of automatic 
algorithms and interactive visualization. One can make effective use of distributed 
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and parallel approaches. However solving the efficiency problems is unlikely enough 
to develop suitable environments for the analysis of massive spatio-temporal data, as 
the human issues remains to be solved. 

Our (as humans) capability to analyze and exploit spatio-temporal data was largely 
outpaced [1]. Spatio-temporal data are frequently referred as complex data as their 
characterizing attributes change over time or establish several relationships or interac-
tions with the surrounding environment. The massive amount of data which embodies 
spatio-temporal dynamism with multivariate connections, containing implicit struc-
tures, relationships and interactions, makes the data analyzing process a very chal-
lenging task for a human. This issue is related with the Law of Incompatibility stated 
by Lotfi A. Zadeh [2] “As complexity rises, precise statements lose meaning and 
meaningful statements lose precision”. This tradeoff can also be observed in the anal-
ysis of massive amounts of spatio-temporal data. Analyzing such data at fine LoDs 
hardly bring meaningful insights, while at coarse LoDs can provide meaningful 
knowledge as long as the amount and complexity of data are reduced. In short, data 
insight can be improved if loss of precision is performed.  

Suppose that we are analyzing spatio-temporal data about crimes. In this case, we 
are interested in analyzing the tendency about where and what time of the day the 
crimes occurred. For this purpose, we wouldn’t probably need to have the LoD of 
data at meters and seconds regarding the spatial and temporal components, respective-
ly. However, having the spatial component at the provinces level and the time compo-
nent at day’s sub-units (morning, afternoon, evening, night), the previous analytical 
requirements are met without the need to process data at higher LoDs.  

Looking at spatio-temporal data, both temporal and spatial characteristics of data 
can be expressed at different LoDs using granularities that can range from seconds to 
months or years, or from points to regions. From our perspective, according to the 
spatio-temporal phenomenon and analytical goals, different LoDs can be proper to get 
meaningful insights. In order to provide an instrument capable to reason and relate 
different LoDs, the contributions of this work may be summarized as follows.  

Primarily, we provide a comprehensive study about the ability to model spatio-
temporal phenomena at different LoDs, presented in Section 2. Then, a new granulari-
ty framework is proposed giving the possibility to define a granularity over any  
domain in a set of granules disjoint from each other. This framework is more general 
than existing proposals, in fact, many proposals for spatial and temporal granularities 
are particular cases of our framework. Moreover, it allows transposing knowledge 
from the original domains to granularities (i.e., known relationships and its properties 
on the domain). This way, over a domain, we can specify what kind of properties we 
intend for certain granularities. Based on the previous framework, presented in Sec-
tion 3.1, a granularities-based model is proposed that deals with phenomena at differ-
ent LoDs. To the best of our knowledge, the model distinguishes itself from others 
works, once every feature of a phenomenon is described by a granule. The model is 
presented in Section 3.2. 

Through the proposed model, we aim to achieve less detailed representations of 
massive spatio-temporal phenomena in order to provide meaningful insights to the 
users. Finally, the remarks about the presented work and directions for future work 
are given in Section 4. 
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2 Related Work 

To model spatio-temporal phenomena at multiple LoDs, multiscale spatio-temporal 
models have been investigated, proposed by different researchers, with different 
backgrounds and purposes, using different terminologies like multirepresentation, 
multiresolution or multigranularity. 

2.1 Multirepresentation Approaches 

Multirepresentation provides different point of views from a spatio-temporal pheno-
menon allowing the observation of the same geographical space and/or interval of 
time, from different perspectives. For example, we can have a representation of a 
country in terms of unemployment and another representation of the same country in 
terms of its average temperatures, for a certain time period. In general, the approaches 
denoted by multirepresentation are based on extensions of the ER (Entity-
Relationship) and UML (Unified Modeling Language) models in order to incorporate 
spatial and temporal features in the database modeling with different LoDs [3]. Sever-
al data models, each one with specific concepts, have been proposed in the literature. 
In [3] a survey about multirepresentation modeling is given in which three require-
ments are presented that should be verified in a multirepresentation approach. Firstly, 
a model should allow one to characterize the same object using different sets of 
attributes, or/and with different domain values. Secondly, a model should allow map-
ping one object to several objects or two different sets of objects. This is particularly 
useful when we change the spatial level of detail, where objects may disappear and 
others may be grouped. Thirdly, a model should enable multiple representations of 
relationships. For instance, two regions might be modeled as spatially adjacent at 
lower scale but at more precise scale the regions are just near to each other. Accord-
ing to [3], MADS (Modeling Application Data with Spatio-temporal features) [4] is 
the only model which verifies the three requirements. It supports multiple spatio-
temporal representations of a phenomenon mainly through perceptions. More particu-
larly, we can assign perception stamps to any element of the schema including ob-
jects, object' attributes, and relationships. According to the perception stamp, we will 
have access to different spatial representations of objects or relationships, to different 
domain values of attributes, or even to different attributes.  

Among the main drawbacks of multirepresentation is the fact that different LoDs, 
required by different applications, or the same application at different stages, can vary 
[5]. Bearing this in mind, easily the task of modeling a real-world phenomenon for 
which several spatial and/or temporal LoDs are needed can be very challenging. 
There are no pre-defined operations that take data from one spatial and/or temporal 
level to another. Everything is defined by the user at the instances level. Despite these 
drawbacks, it can be advantageous having several pre-computed representations when 
dealing with massive spatio-temporal datasets. 
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2.2 Multiresolution Approaches 

Unlike the multirepresentation approaches, the multiresolution is essentially focused 
on the spatial component of the data. Plus, it derives the proper level of detail on de-
mand [5]. Data are stored at the highest level of resolution (or detail) and are dynami-
cally generalized to lower LoDs, using known and pre-defined generalization  
operations. The generalization of spatial data is a non-trivial task and involves object 
simplification, which may lead to a change in the object geometry (e.g., a building 
can be represented by a polygon at a precise resolution, and by a point at a less pre-
cise resolution), dimensionality (e.g., at less precise resolutions, a building may be 
defined using less vertices than it was originally) and existence (e.g., eventually it is 
not relevant anymore represent that building). More details about generalization  
operators can be found in [6]. 

In an early work, Stell and Worboys [7] define resolution or granularity (for these 
authors are synonyms) as the level of discernibility between elements of a phenome-
non that is being represented by the dataset. We can acquire multiple resolutions of a 
phenomenon through multiple representations, if we consider that the several repre-
sentations concern the same geographical space and/or interval of time from the same 
perspective at different resolutions. 

Based on the resolution (or granularity) definition, Stell and Worboys [7] define a 
stratified map space which consists in a set of maps representing the same spatial 
extent at different resolutions (or granularities) related to form a granularity lattice 
through general conversion operators (generalize and lift operators). Each map holds 
the same semantic and spatial granularity which corresponds to a database state. Maps 
are grouped by map spaces, i.e., sets of maps at the same granularity, describing the 
set of all possible databases states that are instances of some fixed schema. Through 
this work, the authors do not intend a formalization of the complex process of carto-
graphic generalization, but a framework as basis reasoning on generalized maps. 

In [5] it is proposed a multiresolution approach to generalize polygonal data. The 
spatial generalization happens in a post-query process based on a scaless data struc-
ture. Regarding the time required to perform such operation it is not clear. The  
authors make the following statement: “We found that the overhead of simplify-while-
retrieve approach based on the scaleless data structure is significant but not very 
large". The generalization at run-time is important when such process depends on the 
data achieved on that moment which in turn may vary according to the user interac-
tion like filtering over semantic attributes, spatial filters, and so on. The time required 
to perform the generalization process can be an issue. In an interactive application, the 
fast response time in performing such process is crucial for a user, which is an open 
issue when dealing with massive datasets [8].  

Moreover, to the best of our knowledge, the multiresolution approaches do not 
provide generalization operators that take into account the temporal component. Fi-
nally, they are more focused on the map visualization (and the corresponding spatial 
generalization operators) and less with the computation of data at different LoDs. 
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2.3 Multigranularity Approach 

Granularity involves semantic aspects of data, both in representation in performing 
granularity transformations, and differs from resolution, which refers to the amount of 
detail in a representation. In the literature, temporal and spatial granularities were 
proposed. A temporal granularity, proposed by Bettini et al. [9], is a sequence of tem-
poral granules, each one composed by a set of time instants. For example, December 
2014 can be a temporal granule. Consider a time domain ߒ as a set of totally ordered 
time instants. A temporal granularity ܩ௧ is a mapping from an index set (e.g., the nat-
ural numbers) to subsets of the time domain. Suppose that, ݅, ݇, and ݆ are elements of 
an index set. A temporal granularity needs to satisfy the following conditions: (i) if ݅ ൏ ݆ and ݃௧ሺ݅ሻ and ݃௧ሺ݆ሻ are non-empty, then each element in ݃௧ሺ݅ሻ is less than all 
the elements in ݃௧ሺ݆ሻ; (ii) if ݅ ൏ ݇ ൏ ݆ and ݃௧ሺ݅ሻ and ݃௧ሺ݆ሻ are non-empty, then ݃௧ሺ݇ሻ 
is non-empty. Each non-empty ݃௧ሺ݅ሻ in the above definition is called a temporal gra-
nule. These conditions impose the following: temporal granules of the same temporal 
granularity cannot overlap as well as non-empty temporal granules must preserve the 
order given by the index set. Moreover, we cannot have an element (from the index 
set) mapped to the empty set between any two elements mapped to non-empty sub-
sets. Accordingly, weeks, years are examples of temporal granularities. On the other 
hand, a spatial granularity ܩ௦ is a set of spatial granules, each one being a portion of a 
spatial domain. Camossi et al. [10] define spatial granularity as a mapping from an 
index set to subsets of the spatial domain (assumed as 2-dimensional) such that: if ݅ ് ݆, and ݃௦ሺ݅ሻ and ݃௦ሺ݆ሻ are non-empty then ݃௦ሺ݅ሻ and ݃௦ሺ݆ሻ are disjoint. No order 
is required among the spatial granules, but two spatial granules of the same granulari-
ty cannot overlap. Examples of spatial granularities are: countries, meters, among 
others. The spatial granularity definition is further extended [11] in order to represent 
also the relations between spatial granules (e.g., direction-based relations, distance-
based relations).  

Granularities can be related through relationships allowing one to compare and re-
late granules belonging to different granularities, useful to hold spatio-temporal data 
at different LoDs [12]. Two commonly used relationships between granularities (spa-
tial or temporal) are given. A granularity G groups into H if each granule of H is 
equal to the union of a set of granules of G. For example, days groups into weeks, but 
weeks do not group into months. A granularity G is finer than H if each granule of G 
is contained in one granule of H. For instance, Portugal’s parishes is finer than Por-
tugal’s districts but rivers is not finer than countries. Some relationships are only 
applicable for some kind of granularities. For instance, in temporal granularities, we 
found groups periodically into or shift equivalent relationships. More details about 
granularities relationships can be found in [9], [11], [13]. Additionally, we can per-
form operations over granularities. In general, the operations are proposed to auto-
mate the creation of new granularities. More details about this subject can be found in 
[9], [11]. 

Camossi et al. [10] propose to represent spatio-temporal information (vector ap-
proach) in object-oriented database management systems (DBMSs) extending the 
ODMG standard. They define two new parametric data types. Spatial data types are 
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defined through the ݈ܵܽ݅ݐܽ݌ ൏ ,௦ܩ ߬ ൐ data type, where ܩ௦ is a spatial granularity and ߬ being one of the ODMG types typically used to define conventional attributes like 
literal types (e.g., integer, float, etc.) or geometric types (like points, lines and poly-
gons). Temporal or spatio-temporal data types are defined using the ݈ܶ݁݉ܽݎ݋݌ ൏ܩ௧, ߛ ൐ data type where ܩ௧ is a temporal granularity and ߛ can be any mentioned data 
type (including a spatial data type).  

To ݈ܵܽ݅ݐܽ݌ ൏ ,௦ܩ ߬ ൐  and ݈ܶ݁݉ܽݎ݋݌ ൏ ,௧ܩ ߛ ൐ data types, coarse and refinement 
functions can be assigned allowing to hold data at multigranularities (i.e., several 
LoDs). Coarse functions convert data from a granularity ܩఈ  to a granularity ܩఉ such 
that ܩఈ  is finer than ܩఉ while refinement functions perform the opposite. We can have 
coarse or refinement functions applicable to spatial geometrical attributes or spatial 
quantitative and temporal attributes [10]. For example, coarse or refinement functions 
applied to spatial geometrical attributes can make some granules modify their position 
and extent, be deleted, be splitted, and be merged. Some coarse functions that can be 
applied on numerical types are: min, max, average. Using this approach, the user spe-
cifies, for each class attribute, what conversion functions can be used (which are al-
ready defined in [10]). 

The ݈ܵܽ݅ݐܽ݌ ൏ ,௦ܩ ߬ ൐ data type index information of the type ߬ to spatial gra-
nules. Furthermore, the ݈ܶ݁݉ܽݎ݋݌ ൏ ,௧ܩ ݈ܽ݅ݐܽ݌ܵ ൏ ,௦ܩ ߬ ൐ ൐  data type index the 
information of the type ߬ already indexed by spatial granules to temporal ones. Note 
that, when we define a temporal data type, the temporal granules are specifying the 
valid time of the information indexed to them. Another important aspect of this ap-
proach is that the indexed information will not be granules of some granularity but 
values of some type  ߬ (belonging to some domain). As a result, in some scenarios, we 
cannot relate information at different LoDs. Consider the following class attributes: 
(i) ݈ܵܽ݅ݐܽ݌ ൏ ,௖௢௨௡௧௥௜௘௦ܩ ݐ݊݅ ൐ storing information about the exact number of popula-
tion in each country; (ii) ݈ܵܽ݅ݐܽ݌ ൏ ,௖௢௨௡௧௥௜௘௦ܩ ݃݊݅ݎݐܵ ൐ also storing information 
about the number of population but with less precision such that the possible values 
are: (i) less than one million (ii) one million or more and less than fifteen millions; 
(iii) fifteen or more millions. Although both variables refer to the same information, 
we cannot relate them by stating that the former is finer than the latter. This kind of 
reasoning is also important to relate spatio-temporal data at different LoDs.  

The proposals regarding granularities discussed so far are focused on vector data. 
As opposed, Pozzani et al. [13] propose a framework focused on raster data. The au-
thors define a spatial granularity ߪ as a total function from two-dimensional coordi-
nates in Ժଶ to a label set ܮ such that ߪ: Ժଶ  ՜ ܿ This way, given a cell .ܮ  א Ժଶ, ߪሺܿሻ 
represents the label associated to ܿ. Unlike the previous approaches, a granule corres-
ponds to the sets of all cells sharing the same label. Then, the authors redefine the 
relations and operations between two spatial granularities, taking into account the 
definition proposed. 

Either on vector-based granularities [11] or raster-based granularities [13] the au-
thors introduce the concept of spatio-temporal granularities in order to handle with 
changes over time of spatial granularities. For example, a country’s provinces may 
change over time. Spatio-temporal granularities are crucial to handle with such  
scenarios.  
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3 Granularity Theory 

Granularities perform divisions of a domain. Each division corresponds to a non-
decomposable entity, usually mentioned as a granule, that we can use in our statements 
to describe a feature of a phenomenon. As we discussed in Section 2, granularities play 
an important role to hold spatio-temporal data at different LoDs. However, in the litera-
ture, we just found proposals for spatial and temporal granularities. In this paper, we 
present a novel granularity framework in Section 3.1, allowing the definition of a 
granularity over any domain. Once we can define a granularity over any domain, we 
propose an approach that allows the transposal of the domain’s properties to the gra-
nularities. This approach is fundamental to specify what properties one intends for 
certain granularities. Moreover, in some contexts like data mining activities, the com-
putation of distances between granules may be needed, an issue which is also dis-
cussed. In the end, our goal is to hold spatio-temporal data at different LoDs using 
different granularities. To achieve such goal, we propose a granularities-based model 
in which every feature of a phenomenon is described by a granule. This characteristic 
of the model is only possible because we provide a granularity definition applicable to 
any domain. The model is detailed in Section 3.2.  

Throughout the paper, we will use a real spatio-temporal phenomenon monitored 
in Portugal to illustrate our contributions. The Institute for the Conservation of Nature 
and Forests published detailed data on forest fires in Portugal which contains informa-
tion about individual incidents. For each incident there is information about the start-
ing point of the fire, when it started, type of burnt area(s) (agricultural land, forest, 
populated land), among other information.  

3.1 Granularity Definition 

We (as humans) are constantly using granularities, in unconscious way, in order to 
perform statements about phenomena. Those granularities have underlying a domain 
of reference. In most cases, granularities are just a way to create a domain of dis-
course simpler than their domains of reference. This can be observed when we use 
several levels of administrative divisions to make easier to refer to particular country 
area; it can be observed when we refer to time as days, or months; it can be perceived 
when we assign the age of a person always rounded to units; it can also be observed in 
the way we define color palettes. Here, we denote a domain of reference of a granu-
larity as ܦ ൌ ሺܵܦ, ܴܵሻ where the domain set ܵܦ corresponds to a set of elements and ܴܵ is a set of relations defined over ܵܦ. A domain set can be discrete, dense, conti-
nuous or n-dimensional. A granularity is formally defined as follows. 
 
Definition 1 (Granularity). Let ࣣܵ be an index set; ܦ be a domain; 2஽ௌ the power set 
of the ܵܦ; and ܵܩ be the set of granules extent where ܵܩ ك 2஽ௌ ך  ሼ׎ሽ  such that any 
two elements α and β are disjoint from each other, i.e.,  ߙ ת β ൌ ,for any α ׎ β א  .ܵܩ
A granularity ܩ is an injective and functional mapping: 

ܵܩ :ܩ   ՜  ࣣܵ  (1) 
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A granularity ܩ defines a division of a domain in set of granules. A granule ݃௜௡ௗ  
corresponds to a pair (݃, ݅݊݀ሻ where ݃ א ݀݊݅ and ܵܩ א  ࣣܵ. We denote ܧሺ݃௜௡ௗ) as the 
extent of a granule which refers to ݃, and ܫሺ݃௜௡ௗ) gives the granule index which cor-
responds to ݅݊݀. In addition, the extent of a granularity ݐݔܧሺܩሻ consists in the union 
of the set of granules extent of ܩ. 

Unlike the majority of the proposals that can be found in the literature, we propose 
a mapping from the granules to an index set instead of the reverse (see Section 2.3). 
Using a mapping from the index set to the granules can lead too many values (from 
the index set) mapped to the empty set. Using our granularity definition, we just need 
to define the set of granules and the corresponding mapping of them to the index set. 

Through this definition, it is possible to define any kind of granularity including 
the ones proposed in the literature (see Section 2.3). Consider the following domains 
examples: ܦଵ ൌ ሺԹ, ሼ൏ሽሻ which consist in real numbers with total order on it; ܦଶ ൌ ሺԹଶ, ሼ൏௨௣, ൏௟௘௙௧ሽሻ consisting in two-dimensional space with partial order on it. ܦଵ can be used to represent time while ܦଶ to represent space. Based on these domains, 
we can define the following granularities: (i) ܵ஽௜௦௧௥௜௖௧௦ where each granule’s extent 
corresponds to a Portugal district; (ii)  ܵ௉௔௥௜௦௛௘௦ where each granule’s extent corres-
ponds to a Portugal parish; (iii) ுܶ௢௨௥௦ where each granule’s extent corresponds to a 
hour; (iv) ஽ܶ௔௬௦ where each granule’s extent corresponds to day. Note that, in all de-
fined granularities, the corresponding index sets are the obvious labels (e.g., in ܵ஽௜௦௧௥௜௖௧௦ are the names of districts). 

Additionally, to characterize the burnt area(s) for each fire incident, we can define the 
following discrete domain ܦଷ ൌ ሺሼagricultural land, forest, populated landሽ, ሼሽሻ in 
order to define the following granularities:  ݀݊ܽܮଵ where each granule corresponds to an 
element of ܦଷ; and ݀݊ܽܮଶ  with two granules ሺሼagricultural land, forestሽ, forest areasሻ 
and ሼpopulated landሽ, populated landሻ. These two granularities are in fact used by the 
data provider to describe forest fires in Portugal. 

Additionally, we can define a granularity based on the extent of another granularity 
already defined. For instance, we can define the granularity ܵ஽௜௦௧௥௜௖௧௦ based on the ݐݔܧሺܵ௉௔௥௜௦௛௘௦ሻ. Similarly, ஽ܶ௔௬௦ can be defined based on the ݐݔܧሺ ுܶ௢௨௥௦ሻ. By creat-
ing granularities based on others, we can relate granules (from different granularities) 
without having to look to the actual definition of them. 

The granules of a granularity can be related to each other through relationships. We 
introduce the possibility to annotate a granularity in order to define relations between 
granules of a granularity. An annotation over a granularity ܩ, denoted by ݊ܣሺܩሻ, 
corresponds to a binary relation defined on the set of granules. For example, we can 
annotate the granularity ܵ஽௜௦௧௥௜௖௧௦ with the binary relationship adjacent. 

 
Definition 2 (Annotated Granularity). An annotated granularity is a granularity ܩ 
and one or more annotations over it ݊ܣଵሺܩሻ, … , ܣ ௝݊ሺܩሻ, denoted by ࣛሺܩሻ. 
 

A granularity annotation can have specified any kind of interest relationships be-
tween granules. Some of those relations can be based on the relationships defined 
over the original domains, a subject that we discuss below. 
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Relationships between Granularities’s Granules. It may exist known relationships 
in the domains that we would like to preserve or transpose to the granularities. For 
instance, a time domain is characterized by the total order. Bettini et al. [9] are actual-
ly transposing the underlying total order of the time domain to the temporal granulari-
ties through the first condition imposed to them (see Section 2.3).  In the end, Bettini 
et al. are interested in temporal granularities where the granules are also total ordered.  

Likewise, and according to the domain, we are interested to transpose the know-
ledge about the domain into the granularities. This way, we introduce four types of 
relationships which can be verified between granules of a granularity. The proposed 
relationships are induced from the relations held by the elements of the domain set, of 
the corresponding granules. The proposed types of relationships are: (i) complete; (ii) 
partial; (iii) weak; (iv) and, existential.  

Given a granularity ܩ defined over a domain ܦ, a relation ܴ defined over ܵܦ such 
that ܴ א ܴܵ, and ݃௜ and ݃௝ denotes two granules belonging to ܩ. The formal defini-
tions of the relationships are given, illustrated with the granules ݃௔ and ݃௕ belonging 
to a spatial granularity S specified over the domain ܦ ൌ ሺԹଶ, ሼ݄݊ݐݎ݋ሽሻ such that a 
coordinate ሺݔ௜, ,௝ݔ௜ሻ is at north of a coordinate ሺݕ ௜ݕ ௝ሻ if and only ifݕ ൐  .௝ݕ 

 
Definition 3 (Complete Relationship). A complete relationship ݃௜ ܴ஼ ݃௝ is defined 
as follows. 

 ݃௜ ܴ஼݃௝   ֞ ௜ݔ ׊  א ,ሺ݃௜ሻܧ ௝ݔ א ሺ݃௝ሻܧ : ௝ݔ ܴ ௜ݔ    

If two granules ݃௜ and ݃௝ are completely related then all elements of ݃௜ must be re-
lated with all elements of ݃௝  through the relation R. An illustration of this relation-
ship can be seen in Fig. 1a where ݃௔ is completely at north of the granule ݃௕ (݃௔ ݄݊ݐݎ݋஼ ݃௕). 

 
Definition 4 (Partial Relationship). A partial relationship ݃௜ ܴ௉ ݃௝ is defined as 
follows. ݃௜ ܴ௉݃௝  ֞ ௜ݔ ׌ א ௝ݔ ׊ ሺ݃௜ሻܧ א ሺ݃௝ሻܧ : ௝ݔ ܴ ௜ݔ ר  ௝ݔ ׌  א ௜ݔ ׊ ሺ݃௝ሻܧ א  ௝ݔ ܴ ௜ݔ :ሺ݃௜ሻܧ

In case of two granules ݃௜ and ݃௝ are partially related then there is at least one ele-
ment in ݃௜ related with all elements of ݃௝ through the relation R and similarly, there is 
at least one element in ݃௝ where all elements of ݃௜ are related with ݃௝ through the 
relation R. Looking at Fig. 1b, ݃௔ is partially at north of the granule ݃௕ (݃௔ ݄݊ݐݎ݋௉݃௕). 

 
Definition 5 (Weak Relationship). A weak relationship ݃௜ ܴௐ݃௝ is defined as  
follows. ݃௜ ܴௐ݃௝  ֞ ௜ݔ ׌ א ௝ݔ ׊ ሺ݃௜ሻܧ א ሺ݃௝ሻܧ : ௝ݔ ܴ ௜ݔ ש ௝ݔ ׌  א ௜ݔ ׊ ሺ݃௝ሻܧ א ሺ݃௜ሻܧ : ௝ݔ ܴ ௜ݔ  

When two granules ݃௜ and ݃௝ are weakly related then there is at least one element 
in ݃௜ related with all the elements of ݃௝ through the relation R or, there is at least one 
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We may use the induced relations to annotate granularities. Moreover, we can use 
them to specify what kind of properties we intend for certain granularities. For in-
stance, temporal granularities defined by Bettini et al. [9] are, under our framework, 
granularities where the total order specified in DS induces complete relationships 
between their granules. 

Distance Functions between Granularities’ Granules. Data Mining activity plays 
an important role on the extraction of patterns that are hidden in very large data sets 
[8]. Distance/dissimilarity functions are frequently embedded into data mining ap-
proaches like clustering, classification, and nearest neighbors search. Instead of hav-
ing those approaches working on the original domains, it can be advantageous if they 
work based on the granularities defined for such domains [12]. 

Suppose that there is a granularity ܩ defined over a domain ܦ ൌ ሺܵܦ, ܴܵሻ, and a 
real-value distance function ݀, which quantifies the distance between elements be-
longing to ܵܦ such that ݀: ܵܦ ൈ ՜ ܵܦ Թ. Additionally, ݃௜ and ݃௝ denote two gra-
nules belonging to ܩ. The distances between granules can be defined based on the 
distances of their elements in ܵܦ. Here, we consider the following induced distances:  

 

─ Inner Distance: ݀ூ൫݃௜, ݃௝൯ ൌ  min௫೔א ாሺ௚೔ሻ min ௫ೕא ாሺ௚ೕሻ ݀൫ݔ௜,  ௝൯ (2)ݔ

─ Outer Distance: ݀ை൫݃௜, ݃௝൯ ൌ max௫೔א ாሺ௚೔ሻ max ௫ೕא ாሺ௚ೕሻ ݀൫ݔ௜,  ௝൯ (3)ݔ

─ Left Distance: ݀௅൫݃௜, ݃௝൯ ൌ max௫೔א ாሺ௚೔ሻ min ௫ೕא ாሺ௚ೕሻ ݀൫ݔ௜,  ௝൯ (4)ݔ

─ Right Distance: ݀ோ൫݃௜, ݃௝൯ ൌ min௫೔א ாሺ௚೔ሻ max ௫ೕא ாሺ௚ೕሻ ݀൫ݔ௜,  ௝൯ (5)ݔ

 
The inner distance corresponds to the minimum distance between two granules 

while the outer distance is the maximum distance. Moreover, the left distance corres-
ponds to the Hausdorff distance from ݃௜ to ݃௝ while the right distance corresponds to 
the Hausdorff distance from ݃௝ to ݃௜. Besides the induced distances introduced, it can 
be defined several other distances like the distance between centers of mass of the 
granules, the minimum between the inner and the outer distance, and so on. 

Relationships between Granularities. Recall that, the relationships between granu-
larities allow one to compare and relate granules belonging to different granularities, 
useful to hold spatio-temporal data at different LoDs. In this section, we revisit the 
majority of the relationships introduced in the literature considering the proposed 
granularity definition.  

Two granularities ܩ and ܪ can be related as follows. For a matter of simplification, 
in the following formal definitions, we refer to a granule of a granularity by using the 
lower case letter of the corresponding letter of the granularity. For instance, each 
granule’s extent of h can be stated as each h’s extent. 
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ࡳ) ࡴ  groups into ࡳ •  each h’s extent is equal to the union of a set of g’s :(ࡴ ٳ
extent. The formal definition is: א ݄׊ ,ܪ  Ԣܩ ׌ ك ڂ :ܩ  ᇲீאሺ݃ᇱሻ௚ᇲܧ ൌ Eሺ݄ሻ 

ࡳ) ࡴ is finer than ࡳ •  each g’s extent is contained in one h’s extent. The :(ࡴ ع
formal definition is: א ݃׊ ,ܩ  א ݄׌ :ܪ ሺ݃ሻܧ ك   ሺ݄ሻܧ

ࡳ) ࡴ is a sub-granularity ࡳ •  .ሻ: for each g there is one h with the same extentࡴ َ
The formal definition is: א ݃׊ ,ܩ  א ݄׌ :ܪ ሺ݃ሻܧ ൌ   ሺ݄ሻܧ

ࡳ) ࡴ is equivalent to ࡳ • ܩ  : ሻࡴ  ؍ ܪ and ܪ َ َ  ܩ
ܩ :ሻࡴ ۩ ࡳሺ ࡴ partitions ࡳ • ܩ and ܪ ٳ   ܪ ع
ࡳ) is extent covered by ऒ ࡳ • ෝَ  ,ܪ is contained in the extent of ܩ ሻ: the extent ofࡴ

formally defined as: ݐݔܧሺܩሻ ك   ሻܪሺݐݔܧ 

Some properties of the set of relationships revisited are: ܩ  ,ܪ ع ܩ implies ܪ َ
which in turn implies ܩ ෝَ ܩ ,Furthermore .ܪ ܩ does not implies ܪ ع  nor the ,ܪ ٳ
vice-versa.  

The relationships groups into, finer than, sub-granularity, partitions, and the extent 
covered (equivalent to image covered in the literature) are redefinitions of the rela-
tionships proposed and used in other works [9], [11] (see Section 2.3).  

Through the equivalent relationship, we intend a relationship capable to relate dif-
ferent granularities containing granules with equal extent. For example, we can have 
two spatial granularities where each granule corresponds to a country of our world.  
One granularity can be indexing the granules using native names and the other Eng-
lish names. Moreover, the granularities, related to the example about forest fires in 
Portugal, are related in the following manner: (i) ܵ௉௔௥௜௦௛௘௦ partitions ܵ஽௜௦௧௥௜௖௧; (ii) ுܶ௢௨௥௦ partitions ܵ஽௔௬௦; (iii) ݀݊ܽܮଵ is finer than ݀݊ܽܮଶ. 

Spatio-temporal Granularities and Granularities Evolution. Granularities may 
change over time. For instance, countries’ provinces may change over time i.e. some 
provinces can be merged, other can be splitted or new provinces can appeared; in 
biology, kingdom is a classification of life used to rank organisms which is a classifi-
cation that have been suffering changes over time. Thus, if we define the countries’ 
provinces or kingdom granularity, we need to be able to handle with the evolution of 
the corresponding granularities over time. 

In the literature, regarding just spatial granularities, this issue is handled under the 
terminology of spatio-temporal granularities, which corresponds to an evolution of a 
spatial granularity over time, from our point of view.  

Through Definition 1, we allow the definition of a granularity over any domain. 
Consequently, we need to handle with an evolution of granularity that can be defined 
over any domain, something that we left for future work. However, we envisage ad-
dressing this issue under a different terminology. Instead of using the term spatio-
temporal granularity, we propose to use the term evolution of a granularity. This way, 
we reserve the term spatio-temporal granularity to mention granularities where each 
granule refers to a portion of a Թଷ (e.g, if we assume the space as Թଶ and time as an 
additional dimension). 



340 J. Moura-Pires, R.A. Silva, and M.Y. Santos 

3.2 Granularities-Based Model 

The granularities play a key role in the level of detail that we perform statements 
about the reality. In general, for any domain, but in particular to time and space do-
mains, several granularities are needed in order to allow statements at different LoDs. 
For example, in the case of forest fires in Portugal, one statement may describe the 
occurrence of an incident whose origin start at a particular hour (a granule belonging 
to the granularity ுܶ௢௨௥௦) and, it takes place in a particular parish (which corresponds 
to a granule of ܵ௉௔௥௜௦௛௘௦). Others statements, involving the type of burnt area, can be 
performed using the granules of granularities ஽ܶ௔௬௦, ܵ௉௔௥௜௦௛௘௦, ݀݊ܽܮଵ. In short, the 
granularities are the instruments that allow modeling the different LoDs acceptable in 
the statements which are performed about phenomena. 

In order to reason at different LoDs about spatio-temporal natural or human activi-
ties a granularities-based model is proposed, formally defined as follows. 

 
Definition 7 (Granularities-based Model). Let ࣡ ൌ ሼࣛሺܣሻ, … , ࣛሺܼሻሽ be the set of 
annotated granularities, and ࣪ a set of predicates. A model ࣧconsists in a set of 
atoms where the arguments are granules of granularities in ࣡. 
 

An atom is a predicate symbol together with their arguments. In a granularities-
based model the predicates’ arguments are granules belonging to granularities in ࣡. 
Thereby, atoms are used to describe phenomena. A fundamental characteristic that 
makes our approach different from others is the fact that every feature of a phenome-
non is described by granule that refers to a granularity. Any granule of one granularity 
can be related to other one from a different granularity.  As a result, different atoms, 
forming a model, can be related in multiple ways. Particularly, to reason and relate 
atoms at different LoDs, it is crucial that the granularities of a model, regarding the 
same domain, are related through groups into, finer-than or, partitions relationships.  

Consider again data about forest fires in Portugal. For this phenomenon, there were 
already defined two spatial granularities, two temporal granularities, and two granu-
larities regarding the burnt area type. To illustrate the proposed model, we introduce 
three more granularities: ܵ௖௢௢௥ௗ௦, ݎܣଵ, ݎܣଶ. The granularity ܵ௖௢௢௥ௗ௦ is defined over ܦଶ 
(introduced in Section 3.1) whose granules are a subset of the elements of the domain 
such that ܵ௖௢௢௥ௗ௦ is finer than ܵ௉௔௥௜௦௛௘௦. Furthermore, the granularities ݎܣଵ and ݎܣଶ 
allow to make statements involving the size of the burnt area (in hectares). This way, 
the ݎܣଵ was defined over real numbers domain and its granules correspond to ([1, 
250[, tiny area), ([250, 1000[, medium area), ([1000, 2000[, big area), and ([2000, 
5000], huge area); the ݎܣଶ was defined with the following granules ([1, 10000[, small 
area), ([10000, 80000], large area). Note that, ݎܣଵ is finer than ݎܣଶ. To make state-
ments about the previous phenomenon, we can use the following predicate: incident 
(where, when, type of land, burnt area). When we apply this predicate with the ap-
propriate granules, we are describing that an incident occurred in a particular place, at 
particular time and with a specific burnt area (in hectares) of a type of land. 

Based on the defined granularities, we are in conditions to define a model to de-
scribe forest fires in Portugal. The granularities provide the domain of discourse that 
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we can use in a model to perform statements. Hence, we present a few illustrative 
atoms of a possible model:  

 
Example 1. incident ሺsୡ୭୭୰ୢୱଵ, t଴ସି଴଼ି ଶ଴଴଺ ଵ଻୦, land1୤୭୰ୣୱ୲, ar1୫ୣୢ୧୳୫ ୟ୰ୣୟሻ 
Example 2. incident ൫sୡ୭୭୰ୢୱଶ, tଶହି଴ଶି ଶ଴଴ଵ, land2୮୭୮୳୪ୟ୲ୣୢ ୪ୟ୬ୢ, ar1୲୧୬୷ ୟ୰ୣୟ൯ 

 
In the atom one, it is described that a fire incident occurred in a particular latitude 

and longitude, starting at 4th August 2006, at 17:00 hours burning a medium forest 
area; in the atom two, it’s stated that a fire incident occurred in a specific latitude and 
longitude at 25th February 2001, burning a tiny populated area. As can be observed, 
in a granularities-based model, the statements can be performed using different granu-
larities i.e., with different levels of detail.  

Moreover, and more relevant to our work, the granularities-based model provides 
the ability to perform statements that summarizes what happened. To illustrate such 
ability, we introduce the following predicates: (i) incidents(where, number of inci-
dents, burnt area) which allows describing the number of incidents and the corres-
ponding burnt area in a spatial granule; (ii) incidents(when, number of incidents, burnt 
area) allows to state the number of incidents and the corresponding burnt area in a 
temporal granule; (iii) incidents(where, when, number of incidents, burnt area) which 
permits to describe the number of incidents occurred, and the respectively burnt area, 
in a given spatial and temporal granule. In order to describe the number of incidents, 
we introduce a new granularity ܥ defined over the natural numbers domain, and its 
granules consist in the elements of the domain. Based on the previous predicates, we 
display the following atoms1: 

 
Example 3. incidents ൫sMୟçã୭, c଼଴, ar2ୱ୫ୟ୪୪ ୟ୰ୣୟ൯ 

Example 4. incidents ൫ tଵି଴଼ି ଶ଴଴ଷ, cସଽଷ, ar2୪ୟ୰୥ୣ ୟ୰ୣୟ൯ 
Example 5. incidents ሺsP୭୰୲୭, tଶଷି଴଺ି ଶ଴଴ଷ ଶଷ୦, cସସ, ar2ୱ୫ୟ୪୪ ୟ୰ୣୟሻ 

 
In the atom three, it’s stated that in the parish of Mação occurred 80 incidents 

which resulted in a small burnt area; in the atom four, it’s described that at 1st August 
2003 occurred 493 fire incidents that result in a large burnt area; regarding atom five, 
it’s stated that 44 fire incidents occurred, in district of Porto, at 23th June 2003, at 
23:00 hours which result in a small burnt area. Note that, in the previous examples, it 
were performed the appropriate aggregation operations, namely, count for counting 
the number of fire incidents and sum to acquire the total amount of the burnt area. 

These atoms provide high level descriptions about fire incidents which occurred in 
a spatial granule, temporal granule, or both, accordingly.  The ability to reduce the 
amount of data through high level descriptions can make easier the achievement of 
data insight. For instance, the predicate incidents(where, number of incidents, burnt 
area) can be advantageous to identify what regions are more affected by forest fires, 
instead of analyzing information provided by atoms referring individual fire inci-
dences. Therefore, the loss of precision provided by the predicates incidents can be 
suitable for certain analytical activities that otherwise would be challenging. 

                                                           
1 Porto is a Portugal district while Mação is a parish. 
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Once predicates arguments are granules of granularities in the model, we have the 
ability to relate different atoms via relationship between granules. Consider that, the 
granules sୡ୭୭୰ୢୱଵ and sୡ୭୭୰ୢୱଶ are within the granule sMୟçã୭. As a result, we can relate 
the atom three with the atoms one and two.  

The previous illustrative model shows an example regarding spatio-temporal 
events. However, different spatio-temporal phenomenon behave in different manners 
[14]. In addition to spatio-temporal events, we can have, for instance, georeferenced 
time-series or moving objects/entities. The georeferenced time-series refers to entities 
or objects that have a spatial fixed location over time, recording numerical informa-
tion (e.g., sales in stores, temperatures recorded by meteorological stations).  Moving 
objects/entities are spatial objects/entities that change their location over time (e.g., 
movement of persons, cars, boats, among others). Through the proposed model, dif-
ferent spatio-temporal phenomenon can be handled, expressing them at different 
LoDs.  

4 Conclusions and Future Work 

Our goal is to provide an approach to deal and relate different LoDs about spatio-
temporal phenomena. To achieve that goal, we analyze the literature proposals for deal-
ing with spatio-temporal phenomena at different levels of detail. Throughout this 
process, the concept of granularity drew our attention as well as the ability to relate 
different granularities. We propose a framework that generalizes the granularity defini-
tion to any domain, covering the definitions of temporal and spatial granularities pro-
posed in the literature. Furthermore, we propose an approach to transpose knowledge 
about the relations between elements of the original domains and its properties to the 
granularities2. This allows to annotate granularities with the induced relationships.  

Based on the granularity framework, it is presented a granularities-based model to 
deal and relate different LoDs about spatio-temporal data. Unlike other works, our 
model describes every feature of a phenomenon through a granule that belongs to a 
defined granularity. This allows relating atoms at different granularities in multiple 
ways through the relationships between granularities.  

As future work we want to extend the definition of granularity in order to handle 
the evolution of granularities over time, and also introduce the concept of spatio-
temporal granularities, as we briefly discussed in Section 2.3 and Section 3.1. Fur-
thermore, we want to deeply study in what conditions an induced distance can inherit 
properties of the distance defined on the domain set. Regarding the model, future 
work can be directed for the characterization of types of models defined for particular 
kinds of data; moreover, for each models’ types we are interested to develop automat-
ic operations to generate predicates with syntheses about the reality; furthermore,  
 

                                                           
2 The proofs regarding the results presented in the Table 1 can be found in: 
 http://staresearch.net/resources/Papers/2014/ 
2014-ICCSA-GranularitiesDemonstrations.pdf 
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given a model and an analytical goal, we are interested in identifying what LoDs are 
appropriate for the analytical task. 
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