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Abstract TheHartman–Watson distribution is an infinitely divisible probability law
on the positive half-axis whose density is difficult to evaluate near zero. We com-
pare three differentmethods to evaluate this density and show that the straightforward
implementation along Yor’s explicit formula can be improved significantly by resort-
ing to dedicated Laplace inversion algorithms. In particular, the best method seems
to be an approach that is specifically designed for distributions from the Bondes-
son class, to which the Hartman–Watson distribution belongs. The latter approach
can furthermore be extended to yield an efficient Laplace inversion algorithm for
evaluating the distribution function of the Hartman–Watson law.
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1 Introduction

In the process of studying the probability distribution of the integral over a geometric
Brownian motion, [14] introduced the function

θ(r, x) := r e
π2
2 x√

2 π3 x
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)
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for r, x > 0. Denoting by
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Fig. 1 Left The function θ(r, x) for three different parameters r and values x ∈ (0.15, 4). Right
The distribution function Fr (x) for three different parameters r and values x ∈ (0.15, 10)
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∞∑
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the modified Bessel function of the first kind, the function fr (x) := θ(r, x)/I0(r),
x > 0, r > 0, is the density of a one-parametric probability law, say μr ,
on the positive half-axis, called the Hartman–Watson law. The Hartman–Watson
law arises as the first hitting time of certain diffusion processes, see [10], and
is of paramount interest in mathematical finance in the context of Asian option
pricing, see [2, 6, 14]. It was shown in [7] that this law is infinitely divisi-
ble with Laplace transform given by ϕr (u) := I√2 u(r)/I0(r), u ≥ 0. More-
over, it follows from a result in [10] that μr is not only infinitely divisible, but
even within the so-called Bondesson class, which is a large subfamily of infi-
nitely divisible laws that is introduced in and named after [5]. Notice in par-
ticular that it follows from this fact together with ([13, Theorem 6.2, p. 49])
that the function Ψr (u) := − log

(
I√2 u(r)/I0(r)

)
, u ≥ 0, is a so-called complete

Bernstein function, which allows for a holomorphic extension to the sliced complex
plane C \ (−∞, 0). We will make use of this observation in Sect. 5.

It is well-known that the numerical evaluation of the density of the Hartman–
Watson law near zero is a challenging task because the integrand in the formula for
θ(r, x) is highly oscillating. The following sections discuss several methods to eval-
uate the function θ(r, x) accurately. Figure1 visualizes the function θ(r, x) for three
different parameters r and values x ∈ (0.15, 4), where all numerical computation
routines discussed in the present note yield exactly the same result.

When looking at Fig. 1, mathematical intuition suggests that the approximation
θ(0.5, x) ≈ 0 for x < 0.15 might be a pragmatic—and numerically efficient—
implementation close to zero. Nevertheless, [9] considers the numerical evaluation
close to zero and obtains significant errors, see Sect. 3. Moreover, [6] studies the
asymptotic behavior of fr (x) as x ↓ 0 and [2] study the behavior of the distribution
function Fr of μr as the argument tends to zero. We like to mention that the right
tail of the Hartman–Watson distribution μr becomes extremely heavy as r ↓ 0. For
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instance, the distribution function Fr (x) = ∫ x
0 fr (t) dt is still significantly smaller

than 1 for x = 10 and different r , see Fig. 1.
The remaining article is organized as follows. Section2 illustrates the occurrence

of the Hartman–Watson distribution, in particular, in mathematical finance. Section3
discusses the direct implementation of Formula (1). Section4 proposes the use of the
Gaver–Stehfest Laplace inversion technique. Section5 proposes a complex Laplace
inversion algorithm to numerically evaluate fr and Fr . Finally, Sect. 6 concludes.

2 Occurrence of the Hartman–Watson Law

The most prominent occurrence of the Hartman–Watson distribution is probably in
directional statistics (see [8]): if Wt denotes a two-dimensional Brownian motion
on the unit circle and τ ∼ μr is independent thereof, then Wτ has the same law
as (cos(X), sin(X)), where X follows the so-called von Mises distribution with
parameter r , which has density given by

fX (x) = 1

2 π I0(r)
er cos(x), −π < x < π.

The von Mises distribution is the most prominent law for an angle in the field of
directional statistics, because it constitutes a tractable approximation to the “wrapped
normal distribution” (i.e., the law of Y mod 2 π when Y is normal), which is difficult
to work with.

The importance of the Hartman–Watson distribution in the context of mathemat-
ical finance originates from the fact that

e− x2
2 t√

2 π t
P(At ∈ du | Wt = x) = 1

u
e− 1+e2 x

2 u θ
(ex

u
, t

)
,

where Wt denotes standard Brownian motion and At = ∫ t
0 e2 Ws ds an associated

integrated geometric Brownian motion, see [14]. The process At , and hence the
Hartman–Watson distribution, naturally enters the scene when Asian stock deriva-
tives, i.e., derivatives with “averaging periods,” are considered in the Black–Scholes
world, see, e.g., [2, 9]. Another example, which is mathematically based on the
exactly same reasoning, has recently been given in [3]: when the Black–Scholes
model is enhanced by the introduction of stochastic repo margins, this leads to a
convexity adjustment for all kinds of stock derivatives which involves the density of
the Hartman–Watson distribution.

Let us furthermore briefly sketch a potential third application, which uses a sto-
chastic representation for the Hartman–Watson law. Consider a diffusion process
{Xt }t≥0 satisfying the SDE
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Fig. 2 Evaluation of Formula (1) for r = 0.5 and x ∈ [0.125, 0.15] in MATLAB applying the
built-in adaptive quadrature routine quadgk, which can handle infinite integration domains

dXt = Xt

((1
2

+ Xt
I1(Xt )

I0(Xt )

)
dt + dWt

)
, X0 = r > 0.

This explodes with probability one, as can be seen from Feller‘s test for explosion
(the drift increases rapidly), i.e., there exists a stopping time τ ∈ (0,∞) such that
paths of {Xt } are well defined on [0, τ ) and limt↑τ Xt = ∞ almost surely. Such
explosive diffusions are used tomodel fatigue failures in solidmaterials. Xt describes
the evolution of the length of the longest crack and τ is the time point of ultimate
damage. Kent [10] shows that τ ∼ μr . We may rewrite τ as the first hitting time
of zero of the stochastic process Yt := 1/Xt , starting at Y0 = 1/r > 0. Observing
the stock price S0 > 0 of a highly distressed company facing bankruptcy, it might
now make sense to model the evolution of this company‘s stock price until default
as St := Yt setting r := 1/S0. The time of bankruptcy is defined as the first time the
stock price hits zero, which has a Hartman–Watson law. A similar model, assuming
St to follow a CEV process that is allowed to diffuse to zero, is applied in [1].

3 Straightforward Implementation Based on Formula (1)

Regarding the exact numerical evaluation of the Hartman–Watson density, the article
[9] shows that a straightforward numerical implementation of the Formula (1) for
r = 0.5 and x ∈ [0.125, 0.15] yields significant numerical errors. In particular, Fig. 2
in [9] shows that one ends up with negative density values. We come to the same
conclusion, see Fig. 2.
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4 Evaluation via Gaver–Stehfest Laplace Inversion

We apply the Gaver–Stehfest algorithm in order to obtain θ(r, ·) from its Laplace
transform I√2 ·(r) via Laplace inversion for fixed values of r . For a rigorous proof
and a good explanation of this method, see [11]. In particular, it is not difficult to
observe from Yor‘s expression (1) that ([11] Theorem 1(iii)) applies, which justifies
the approximation

θ(r, x) ≈ log(2)

x

2 n∑
k=1

ak(n) I√2 k log(2)/x (r), (3)

for n ∈ N large enough, where for j = 1, . . . , 2n we have

ak(n) = (−1)k+n

n!
min{k,n}∑

j=
(k+1)/2�
jn+1

(
n

j

) (
2 j

j

) (
j

k − j

)
.

TheGaver–Stehfest algorithmhas the nice feature that only evaluations of theLaplace
transform on the positive half-axis are required. In particular, the required modified
Bessel function I√2 u(r) is efficient and easy to compute for u > 0. In MATLAB, it
is available as the built-in function besseli. The drawback of the Gaver–Stehfest
algorithm is that it requires high-precision arithmetic because the involved constants
ak(n) are alternating and become huge and difficult to evaluate. For practical imple-
mentations, this prevents the use of large n, which would theoretically be desirable
due to the convergence result of [11]. Nevertheless, our empirical investigation shows
that n = 10 is still feasible on a standard PC without further precision arithmetic
considerations and yields reasonable results for the considered parameterization.
However, for larger values of r , the algorithm is less stable as can be seen at the end
of Sect. 5.

The obtained values of θ(r, x) are visualized in Fig. 3. Comparing them to the
brute force implementation in Fig. 2, the error for small x becomes significantly
smaller.

5 Evaluation via a Complex Laplace Inversion Method
for the Bondesson Class

As alreadymentioned in the introduction, the Hartman–Watson law is in the Bondes-
son class which allows to apply a Laplace inversion algorithm specifically derived for
such distributions in [4]. Furthermore, this method has the advantage that it imme-
diately implies as a corollary a similar formula for the distribution function Fr . To
be precise, we have the formula
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Fig. 3 Evaluation of θ(r, x) for r = 0.5 and x ∈ [0.125, 0.15] in MATLAB applying the Gaver–
Stehfest approximation (3) with n = 10. Left The y-axis is precisely the same as in Fig. 2 for
comparability. Right The y-axis is made finer to visualize smaller errors (scale 10−6)

θ(r, x) = M ex a

π

1∫

0

Im
(

ēx M log(v) (b i−a) I√2 (a−M log(v) (b i−a))
(r) (b i − a)

) dv

v

(4)
with arbitrary parameters a, b > 0 and M > 2/(a x), and this integral is a proper
Riemannian integral, since the integrand vanishes for v ↓ 0, see [4]. Regarding the
choice of the parameters, [4] have shown that a = 1/x, M = 3 is usually a good
choice and we will use these parameters. Concerning the remaining parameter b, we
choose b = a. For the evaluation of the distribution function Fr , it is also shown in
[4] that

Fr (x) = M ex a

π

1∫

0

Im
(

ēx M log(v) (b i−a)
ϕr

(
a − M log(v) (b i − a)

)
a − M log(v) (b i − a)

(b i −a)
) dv

v

with the same parameter restrictions as above. One particular challenge with this
method is that the modified Bessel function Iν needs to be evaluated for complex ν.
A straightforward implementation sufficient for our needs is achieved by using the
partial sums related to the representation in Eq. (2). It has the advantage that error
bounds can be computed, as for r > 0 and Sν

n (r) := ∑n
m=0

1
m!�(m + ν + 1) ( r

2 )
2m + ν ,

one can compute

∣∣Sν
n (r) − Iν(r)

∣∣ ≤
( r

2

)Re(ν)
∞∑

m=n+1

1

m! |�(m + ν + 1)|
( r

2

)2m
.

Using the Gamma functional equation �(z + 1) = �(z) z, it is easy to see that
|�(z + 1)| ≥ |�(z)| for |z| ≥ 1. Thus, for n ≥ −Re(ν) − 1, the sequence {|�(m +
ν + 1)|}m=n+1,n+2,... is increasing, yielding
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Fig. 4 Evaluation of θ(r, x) for r = 0.5 and x ∈ [0.125, 0.15] in MATLAB applying the Laplace
inversion formula (4) with a = b = 1/x and M = 3. The modified Bessel function is implemented
with accuracy 10−6. Left The y-axis is precisely the same as in Fig. 2 for comparability. Right The
y-axis is made finer to visualize smaller errors (scale 10−8)
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where the series term is the residual of the Taylor expansion of exp(−r2/4), which
allows for a closed-form estimate. Consequently, one is able to choose n such that the
modified Bessel function is approximated up to a given accuracy. Using the Gamma
functional equation, one has to compute the complex Gamma function only once
which further increases efficiency. The complex Gamma function is computed using
the Lanczos approximation, see [12].1

Figure4 shows the resulting values of θ(r, x), where the modified Bessel function
is approximated with accuracy 10−6. Formula (4) is evaluated in MATLAB apply-
ing the built-in adaptive quadrature routine quadgk. Comparing the results to the
Gaver–Stehfest inversion, the error for small x is again significantly reduced and
the results can be even improved by further increasing the accuracy of the modified
Bessel function.

A second comparison of the presented methods is included for a larger value
of r . The Laplace inversion method for the Bondesson class represents the most
stable and accurate algorithm as can be seen in Fig. 5, which visualizes the values of
θ(r, x) for small x and r = 3. Whereas the straightforward implementation based on
Formula (1) fails due to numerical problems and the choice n = 10 is not ideal for
the Gaver–Stehfest Laplace inversion, the Bondesson method yields stable results.

1 We use the implementation of P.Godfrey published on http://www.mathworks.com/matlabcentral/
fileexchange/3572-gamma.

http://www.mathworks.com/matlabcentral/fileexchange/3572-gamma
http://www.mathworks.com/matlabcentral/fileexchange/3572-gamma
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Fig. 5 Evaluation of θ(r, x) for r = 3 and x ∈ [0.125, 0.15] using the three presented methods
with the same specifications as before, i.e., the Gaver–Stehfest approximation (3) with n = 10 and
the Laplace inversion formula (4) with a = b = 1/x and M = 3

6 Conclusion

We compared three different methods to numerically evaluate the density of the
Hartman–Watson law. We found that Laplace inversion algorithms significantly out-
perform direct implementation ofYor‘s formula (1).Moreover, a dedicated algorithm
for distributions of the Bondesson class was proposed to numerically evaluate the
distribution function of the Hartman–Watson law efficiently.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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