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Abstract. The core challenge in a Hoare- or Dijkstra-style proof sys-
tem for graph programs is in defining a weakest liberal precondition
construction with respect to a rule and a postcondition. Previous work
addressing this has focused on assertion languages for first-order proper-
ties, which are unable to express important global properties of graphs
such as acyclicity, connectedness, or existence of paths. In this paper, we
extend the nested graph conditions of Habel, Pennemann, and Rensink
to make them equivalently expressive to monadic second-order logic on
graphs. We present a weakest liberal precondition construction for these
assertions, and demonstrate its use in verifying non-local correctness
specifications of graph programs in the sense of Habel et al.

1 Introduction

Many problems in computer science and software engineering can be modelled
in terms of graphs and graph transformation, including the specification and
analysis of pointer structures, object-oriented systems, and model transforma-
tions; to name just a few. These applications, amongst others, motivate the
development of techniques for verifying the functional correctness of both graph
transformation rules and programs constructed over them.

A recent strand of research along these lines has resulted in the develop-
ment of proof calculi for graph programs. These, in general, provide a means
of systematically proving that a program is correct relative to a specification.
A first approach was considered by Habel, Pennemann, and Rensink [1,2], who
contributed weakest precondition calculi – in the style of Dijkstra – for simple
rule-based programs, with specifications expressed using nested conditions [3].
Subsequently, we developed Hoare logics [4,5] for the graph transformation lan-
guage GP 2 [6], which additionally allows computation over labels, and employed
as a specification language an extension of nested conditions with support for
expressions.

Both approaches suffer from a common drawback, in that they are limited
to first-order structural properties. In particular, neither of them support proofs
about important non-local properties of graphs, e.g. acyclicity, connectedness, or
the existence of arbitrary-length paths. Part of the difficulty in supporting such
assertions is at the core of both approaches: defining an effective construction for
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the weakest property guaranteeing that an application of a given rule will estab-
lish a given postcondition (i.e. the construction of a weakest liberal precondition
for graph transformation rules).

Our paper addresses exactly this challenge. We define an extension of nested
conditions that is equivalently expressive to monadic second-order (MSO) logic
on graphs [7]. For this assertion language, and for graph programs similar to
those of [1,2], we define a weakest liberal precondition construction that can be
integrated into Dijkstra- and Hoare-style proof calculi. Finally we demonstrate
its use in verifying non-local correctness specifications (properties including that
the graph is bipartite, acyclic) of some simple programs.

The paper is organised as follows. In Section 2 we provide some preliminary
definitions and notations. In Section 3 we define an extension of nested conditions
for MSO properties. In Section 4 we define graph programs, before presenting
our weakest liberal precondition construction in Section 5, and demonstrating
in Section 6 its use in Hoare-style correctness proofs. Finally, Section 7 presents
some related work before we conclude the paper in Section 8.

Proofs omitted from this paper are available in an extended version [8].

2 Preliminaries

Let B = {true, false} denote the set of Boolean values, Vertex,Edge denote
(disjoint) sets of node and edge identifiers (which shall be written in lowercase
typewriter font, e.g. v, e), and VSetVar,ESetVar denote (disjoint) sets of node-
and edge-set variables (which shall be written in uppercase typewriter font, e.g.
X, Y).

A graph over a label alphabet C = 〈CV , CE〉 is defined as a system G =
(VG, EG, sG, tG, lG,mG), where VG ⊂ Vertex and EG ⊂ Edge are finite sets
of nodes (or vertices) and edges, sG, tG : EG → VG are the source and target
functions for edges, lG : VG → CV is the node labelling function and mG : EG →
CE is the edge labelling function. The empty graph, denoted by ∅, has empty
node and edge sets. For simplicity, we fix the label alphabet throughout this
paper as L = 〈{�}, {�}〉, where � denotes the blank label (which we render as

and in pictures). We note that our technical results hold for any fixed
finite label alphabet.

Given a graph G, the (directed) path predicate pathG : VG × VG × 2EG → B

is defined inductively for nodes v, w ∈ VG and sets of edges E ⊆ EG. If v = w,
then pathG(v, w,E) holds. If v 	= w, then pathG(v, w,E) holds if there exists an
edge e ∈ EG \ E such that sG(e) = v and pathG(tG(e), w, E).

A graph morphism g : G → H between graphs G,H consists of two functions
gV : VG → VH and gE : EG → EH that preserve sources, targets and labels; that
is, sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, lH ◦ gV = lG, and mH ◦ gE = mG.
We call G,H the domain (resp. codomain) of g. Morphism g is an inclusion if
g(x) = x for all nodes and edges x. It is injective (surjective) if gV and gE are
injective (surjective). It is an isomorphism if it is both injective and surjective.
In this case G and H are isomorphic, which is denoted by G ∼= H .
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3 Expressing Monadic Second-Order Properties

We extend the nested conditions of [3] to a formalism equivalently expressive to
MSO logic on graphs. The idea is to introduce new quantifiers for node- and edge-
set variables, and equip morphisms with constraints about set membership. The
definition of satisfaction is then extended to require an interpretation of these
variables in the graph such that the constraint evaluates to true. Furthermore,
constraints can also make use of a predicate for explicitly expressing properties
about directed paths. Such properties can of course be expressed in terms of
MSO expressions, but the predicate is provided as a more compact alternative.

Definition 1 (Interpretation; interpretation constraint). Given a graph
G, an interpretation I in G is a partial function I : VSetVar ∪ ESetVar →
2VG ∪ 2EG , such that for all variables X on which it is defined, I(X) ∈ 2VG if
X ∈ VSetVar (resp. 2EG , ESetVar). An (interpretation) constraint is a Boolean
expression that can be derived from the syntactic category Constraint of the
following grammar:

Constraint ::= Vertex ’∈’ VSetVar | Edge ’∈’ ESetVar
| path ’(’ Vertex ’,’ Vertex [’,’ not Edge {’|’ Edge}] ’)’
| not Constraint | Constraint (and | or) Constraint | true

Given a constraint γ, an interpretation I in G, and a morphism q with
codomain G, the value of γI,q in B is defined inductively. If γ contains a set
variable for which I is undefined, then γI,q = false. Otherwise, if γ is true, then
γI,q = true. If γ has the form x ∈ X with x a node or edge identifier and X

a set variable, then γI,q = true if q(x) ∈ I(X). If γ has the form path(v,w)
with v, w node identifiers, then γI,q = true if the predicate pathG(q(v), q(w), ∅)
holds. If γ has the form path(v,w,not e1| . . . |en) with v, w node identifiers
and e1, . . . , en edge identifiers, then γI,q = true if it is the case that the path
predicate pathG(q(v), q(w), {q(e1), . . . , q(en)}) holds. If γ has the form not γ1
with γ1 a constraint, then γI,q = true if γI,q

1 = false. If γ has the form γ1 and γ2
(resp. γ1 or γ2) with γ1, γ2 constraints, then γI,q = true if both (resp. at least

one of) γI,q
1 and γI,q

2 evaluate(s) to true. �
Definition 2 (M-condition; M-constraint). An MSO condition (short. M-
condition) over a graph P is of the form true, ∃VX[c], ∃EX[c], or ∃(a | γ, c′),
where X ∈ VSetVar (resp. ESetVar), c is an M-condition over P , a : P ↪→ C is
an injective morphism (since we consider programs with injective matching), γ
is an interpretation constraint over items in C, and c′ is an M-condition over C.
Furthermore, Boolean formulae over M-conditions over P are also M-conditions
over P ; that is, ¬c, c1 ∧ c2, and c1 ∨ c2 are M-conditions over P if c, c1, c2 are
M-conditions over P .

An M-condition over the empty graph ∅ is called an M-constraint. �
For brevity, we write false for ¬true, c ⇒ d for ¬c ∨ d, c ⇔ d for c ⇒

d ∧ d ⇒ c, ∀VX[c] for ¬∃VX[¬c], ∀EX[c] for ¬∃EX[¬c], ∃VX1, . . . Xn[c] for
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∃VX1[ . . . ∃VXn[c] . . .] (analogous for other set quantifiers), ∃(a | γ) for ∃(a |
γ, true), ∃(a, c′) for ∃(a | true, c′), and ∀(a | γ, c′) for ¬∃(a | γ,¬c′).

In our examples, when the domain of a morphism a : P ↪→ C can unambigu-
ously be inferred, we write only the codomain C. For instance, an M-constraint
∃(∅ ↪→ C, ∃(C ↪→ C′)) can be written as ∃(C, ∃(C′)).

Definition 3 (Satisfaction of M-conditions). Let p : P ↪→ G denote an
injective morphism, c an M-condition over P , and I an interpretation in G. We
define inductively the meaning of p |=I c, which denotes that p satisfies c with
respect to I. If c has the form true, then p |=I c. If c has the form ∃VX[c′] (resp.
∃EX[c′]), then p |=I c if p |=I′

c′, where I ′ = I∪{X �→ V } for some V ⊆ VG (resp.
{X �→ E} for some E ⊆ EG). If c has the form ∃(a : P ↪→ C | γ, c′), then p |=I c
if there is an injective morphism q : C ↪→ G such that q ◦ a = p, γI,q = true, and
q |=I c′.

A graph G satisfies an M-constraint c, denoted G |= c, if iG : ∅ ↪→ G |=I∅ c,
where I∅ is the empty interpretation in G, i.e. undefined on all set variables. �

We remark that model checking for both first-order and monadic second-
order logic is known to be PSPACE-complete [9]. However, the model checking
problem for monadic second-order logic on graphs of bounded treewidth can be
solved in linear time [10].

Example 1. The following M-constraint col (translated from the corresponding
formula §1.5 of [11]) expresses that a graph is 2-colourable (or bipartite); i.e. ev-
ery node can be assigned one of two colours such that no two adjacent nodes have
the same one. Let γcol denote not (v∈X and w∈X) and not (v∈Y and w∈Y).

∃VX,Y [ ∀( v , ∃( v | (v∈X or v∈Y) and not (v∈X and v∈Y)))

∧ ∀( v w , ∃( v w ) ⇒ ∃( v w | γcol)) ]
A graph G will satisfy col if there exist two subsets of VG such that: (1) every
node in G belongs to exactly one of the two sets; and (2) if there is an edge from
one node to another, then those nodes are not in the same set. Intuitively, one
can think of the sets X and Y as respectively denoting the nodes of colour one
and colour two. If two such sets do not exist, then the graph cannot be assigned
a 2-colouring. �
Theorem 1 (M-constraints are equivalent to MSO formulae). The as-
sertion languages of M-constraints and MSO graph formulae are equivalently
expressive: that is, given an M-constraint c, there exists an MSO graph formula
ϕ such that for all graphs G, G |= c if and only if G |= ϕ; and vice versa. �

4 Graph Programs

In this section we define rules, rule application, and graph programs. Whilst the
syntax and semantics of the control constructs are based on those of GP 2 [6],
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the rules themselves follow [1,2], i.e. are labelled over a fixed finite alphabet, and
do not support relabelling or expressions. We equip the rules with application
conditions (M-conditions over the left- and right-hand graphs), and define rule
application via the standard double-pushout construction [12].

Definition 4 (Rule; direct derivation). A plain rule r′ = 〈L ←↩ K ↪→ R〉
comprises two inclusions K ↪→ L, K ↪→ R. We call L,R the left- (resp. right-)
hand graph and K the interface. An application condition ac = 〈acL, acR〉 for r′
consists of two M-conditions over L and R respectively. A rule r = 〈r′, ac〉 is a
plain rule r′ and an application condition ac for r′.

L K R

G D H

(1) (2)g h

For a plain rule r′ and a morphism K ↪→ D, a direct derivation G ⇒r′,g,h H
(short. G ⇒r′ H or G ⇒ H) is given by the pushouts (1) and (2). For a rule
r = 〈r′, ac〉, there is a direct derivation G ⇒r,g,h H if G ⇒r′,g,h H , g |=I∅ acL,
and h |=I∅ acR. We call g, h a match (resp. comatch) for r. Given a set of rules
R, we write G ⇒R H if G ⇒r,g,h H for some r ∈ R. �

It is known that, given a (plain) rule r, graph G, and morphism g as above,
there exists a direct derivation if and only if g satisfies the dangling condition, i.e.
that no node in g(L)\g(K) is incident to an edge in G\g(L). In this case, D and
H are determined uniquely up to isomorphism, constructed from G as follows:
first, remove all edges in g(L) \ g(K) obtaining D. Then add disjointly all nodes
and edges from R \ K retaining their labels. For e ∈ ER \ EK , sH(e) = sR(e)
if sR(e) ∈ VR \ VK , otherwise sH(e) = gV (sR(e)), (targets defined analogously)
resulting in the graph H .

We will often give rules without the interface, writing just L ⇒ R. In such
cases we number nodes that correspond in L and R, and establish the conven-
tion that K comprises exactly these nodes and that EK = ∅ (i.e. K can be
completely inferred from L,R). Furthermore, if the application condition of a
rule is 〈true, true〉, then we will only write the plain rule component.

We consider now the syntax and semantics of graph programs, which provide
a mechanism to control the application of rules to some graph provided as input.

Definition 5 (Graph program). (Graph) programs are defined inductively.
First, every rule (resp. rule set) r,R and skip are programs. Given programs
C,P,Q, we have that P ;Q, P !, if C then P else Q, and try C then P else Q
are programs. �

Graph programs are nondeterministic, and their execution on a particular
graph could result in one of several possible outcomes. That outcome could be
a graph, or it could be the special state “fail” which occurs when a rule (set) is
not applicable to the current graph.

A full structural operational semantics is given in [8], but the informal meaning
of the constructs is as follows. Let G denote an input graph. Programs r,R
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correspond to rule (resp. rule set) application, returning H if there exists some
G ⇒r H (resp. G ⇒R H); otherwise fail. Program P ;Q denotes sequential
composition. Program P ! denotes as-long-as-possible iteration of P . Finally, the
conditional programs execute the first or second branch depending on whether
executing C returns a graph or fail, with the distinction that the if construct
does not retain any effects of C, whereas the try construct does.

Example 2. Consider the program init; grow! defined by the rules:

init : grow :

∅ ⇒
1

⇒
1

acL = ¬tc
where tc is an (unspecified) M-condition over L expressing some termination
condition for the iteration (proving termination is not our concern here, see
e.g. [13]). The program, if executed on the empty graph, nondeterministically
constructs and returns a tree. It applies the rule init exactly once, creating an
isolated node. It then iteratively applies the rule grow (each application adding
a leaf to the tree) until the termination condition tc holds. An example program

run, with tc = ∃( 1 ), is:

∅ ⇒ ⇒ ⇒ ⇒
�

5 Constructing a Weakest Liberal Precondition

In this section, we present a construction for the weakest liberal precondition
relative to a rule r and a postcondition c (which is an M-constraint). In our
terminology, if a graph satisfies a weakest liberal precondition, then: (1) any
graphs resulting from applications of r will satisfy c; and (2) there does not exist
another M-constraint with this property that is weaker. (Note that we do not
address termination or existence of results in this paper.)

The construction is adapted from the one for nested conditions in [3], and as
before, is broken down into a number of stages. First, a translation of postcon-
ditions into M-conditions over R (transformation “A”); then, from M-conditions
over R into M-conditions over L (transformation “L”); and finally, from M-
conditions over L into an M-constraint expressing the weakest liberal precondi-
tion (via transformations “App” and “Pre”).

First, we consider transformation A, which constructs an M-condition over R
from a postcondition (an M-constraint) by computing a disjunction over all the
ways that the M-constraint and comatches might “overlap”.

Theorem 2 (M-constraints to M-conditions over R). There is a transfor-
mation A, such that for all M-constraints c, all rules r with right-hand side R,
and all injective morphisms h : R ↪→ H ,

h |=I∅ A(r, c) if and only if H |= c.
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Construction. Let c denote an M-constraint, and r a rule with right-hand side
R. We define A(r, c) = A′(∅ ↪→ R, c) where A′ is defined inductively as follows.
For injective graph morphisms p : P ↪→ P ′ and M-conditions over P , define:

A′(p, true) = true,

A′(p, ∃VX[c′]) = ∃VX[A′(p, c′)],
A′(p, ∃EX[c′]) = ∃EX[A′(p, c′)],

A′(p, ∃(a : P ↪→ C | γ, c′)) = ∨
e∈ε∃(b : P ′ ↪→ E | γ,A′(s : C ↪→ E, c′)).

The final equation relies on the following. First, construct the pushout (1) of p
and a leading to injective graph morphisms a′ : P ′ ↪→ C′ and q : C ↪→ C′.

P ′ P

C ′ C

E

(1)

p

a′ a

q

e s

b

The disjunction then ranges over the set ε, which
we define to contain every surjective graph mor-
phism e : C′ → E such that b = e◦a′ and s = e◦ q
are injective graph morphisms (we consider the
codomains of each e up to isomorphism, hence the
disjunction is finite).

The transformations A,A′ are extended for
Boolean formulae over M-conditions in the usual
way, that is, A(r,¬c) = ¬A(r, c), A(r, c1 ∧ c2) =
A(r, c1) ∧ A(r, c2), and A(r, c1 ∨ c2) = A(r, c1) ∨
A(r, c2) (analogous for A

′). �
Example 3. Recall the rule grow from Example 2. Let c denote the M-constraint:

∃VX,Y[ ∀( v w , ∃( v w | path(v, w)) ⇒ ∃( v w | γ)) ]

for γ = (v ∈ X and w ∈ Y) and not (v ∈ Y or w ∈ X), which expresses that there
are two sets of nodes X,Y in the graph, such that if there is a path from some
node v to some node w, then v belongs only to X and w only to Y . Applying
transformation A:

A(grow, c)

= A′(∅ ↪→ 1 2 , c)

= ∃VX,Y[ A′(∅ ↪→ 1 2 , ∀( v w ,

∃( v w | path(v, w)) ⇒ ∃( v w | γ))) ]
= ∃VX,Y[

∧7
i=1 ∀( 1 2 ↪→ Ei, ∃(Ei | path(v, w)) ⇒ ∃(Ei | γ)) ]

where the graphs Ei are as given in Figure 1. �
Transformation L, adapted from [3], takes an M-condition over R and con-

structs an M-condition over L that is satisfied by a match if and only if the
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∅

v wv w

21

21

v w21 v2 v11=w 2=w 2 1w w1=v 2=v 1=v 2=w 1=w 2=v

v w1 v v11=w 1w w1=v 1=v 1=w

R

C ′

E1 E2 E3 E4 E5 E6 E7

Y1 Y2 Y3 Y4 Y5 Y6 Y7

(1)

Fig. 1. Applying the construction in Examples 3 and 4

original is satisfied by the comatch. The transformation is made more complex
by the presence of path and MSO expressions, because nodes and edges referred
to on the right-hand side may no longer exist on the left. For clarity, we sepa-
rate the handling of these two types of expressions, and in particular, define a
decomposition LPath of path predicates according to the items that the rule is
creating or deleting. For example, if an edge is created by a rule, a path pred-
icate decomposes to a disjunction of path predicates collectively asserting the
existence of paths to and from the nodes that will eventually become its source
and target; whereas if an edge is to be deleted, the predicate will exclude it.

Proposition 1 (Path decomposition). There is a transformation LPath such
that for every rule r = 〈L ←↩ K ↪→ R〉, direct derivation G ⇒r,g,h H , path
predicate p over R, and interpretation I,

LPath(r, p)I,g = pI,h.

Construction. Let r = 〈L ←↩ K ↪→ R〉 and p = path(v, w, not E). For sim-
plicity, we will treat the syntactic construct E as a set of edges and identify
path(v, w, not E) and path(v, w) when E is empty. Then, define:

LPath(r, p) = LPath′(r, v, w,E�) or FuturePaths(r, p).

Here, E� is constructed from E by adding edges e ∈ EL \ ER, i.e. that the
rule will delete. Furthermore, LPath′(r, v, w,E�) decomposes to path predi-
cates according to whether v and w exist in K. If pathR(v, w,E

�) holds, then
LPath′(r, v, w,E�) returns true. Otherwise, if both v, w ∈ VK , then it returns
path(v, w, not E�). If v /∈ VK , w ∈ VK , it returns:

false or path(x1, w, not E�) or path(x2, w, not E�) or . . .
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for each xi ∈ VK such that pathR(v, xi, E
�). Case v ∈ VK , w /∈ VK analogous.

If v, w /∈ VK , then it returns false or path(xi, yj , not E�) or . . . for all
xi, yj ∈ VK such that pathR(v, xi, E

�) and pathR(yj , w, E
�).

Finally, FuturePaths(r, p) denotes false in disjunction with:

(LPath′(r, v, x1, E
�) and path(y1, x2, not E�) . . . and path(yi, xi+1, not E�)

. . .and LPath′(r, yn, w, E�))

over all non-empty sequences of distinct pairs 〈〈x1, y1〉, . . . , 〈xn, yn〉〉 drawn from:

{〈x, y〉 | x, y ∈ VK ∧ pathR(x, y, E
�) ∧ ¬pathL(x, y, E�)}.

�
In addition to paths, transformation L must handle MSO expressions that

refer to items present in R but absent in L. To achieve this, it computes a
disjunction over all possible “future” (i.e. immediately after the rule application)
set memberships of these missing items. The idea being, that if a set membership
exists for these missing items that satisfies the interpretation constraints before
the rule application, then one will still exist once they have been created. The
transformation keeps track of such potential memberships via sets of pairs as
follows.

Definition 6 (Membership set). A membership set M is a set of pairs (x, X)
of node or edge identifiers x with set variables of the corresponding type. Intu-
itively, (x, X) ∈ M encodes that x ∈ X, whereas (x, X) /∈ M encodes that x /∈ X.

�
Theorem 3 (From M-conditions over R to L). There is a transformation
L such that for every rule r = 〈〈L ←↩ K ↪→ R〉, ac〉, every M-condition c over
R (with distinct variables for distinct quantifiers), and every direct derivation
G ⇒r,g,h H ,

g |=I∅ L(r, c) if and only if h |=I∅ c.

Construction. Let r = 〈〈L ←↩ K ↪→ R〉, ac〉 denote a rule and c an M-condition
over R. We define L(r, c) = L′(r, c, ∅). For such an r, c, and membership set M ,
the transformation L′ is defined inductively as follows:

L′(r, true,M) = true,

L′(r, ∃VX[c′],M) = ∃VX[
∨

M ′∈2MV

L′(r, c′,M ∪M ′) ]

L′(r, ∃EX[c′],M) = ∃EX[
∨

M ′∈2ME

L′(r, c′,M ∪M ′) ]

where MV = {(v, X) | v ∈ VR \ VL} and ME = {(e, X) | e ∈ ER \ EL}.
For case c = ∃(a | γ, c′), we define:

L′(r, ∃(a | γ, c′),M) = false
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if 〈K ↪→ R, a〉 has no pushout complement; otherwise:

L′(r, ∃(a | γ, c′),M) = ∃(b | γM ,L′(r∗, c′,M))

L K R

Y Z X

r :

r∗ :

〈

〈

〉

〉

(1)(2)b a

which relies on the following. First,
construct the pushout (1), with r∗ =
〈Y ←↩ Z ↪→ X〉 the “derived” rule
obtained by constructing pushout (2).
The interpretation constraint γM is
obtained from γ as follows. First, con-
sider each predicate x ∈ X such that x /∈ Y . If (y, X) ∈ M for some y = x, replace
the predicate with true; otherwise false. Then, replace each path predicate p
with LPath(r∗, p).

The transformation L is extended for Boolean formulae in the usual way, that
is, L(r,¬c) = ¬L(r, c), L(r, c1 ∧ c2) = L(r, c1) ∧ L(r, c2), and L(r, c1 ∨ c2) =
L(r, c1) ∨ L(r, c2) (analogous for L

′). �
Example 4. Take grow, c, γ and A(grow, c) as considered in Example 3. Applying
transformation L:

L(grow,A(grow, c)) = L′(grow,A(grow, c), ∅)
= ∃VX,Y[

∨
M ′∈2MV L

′(grow,
∧7

i=1 ∀( 1 2 ↪→ Ei, ∃(Ei | path(v, w))
⇒ ∃(Ei | γ)),M ′) ]

= ∃VX,Y[
∨

M ′∈2MV (
∧

i∈{1,2,4} ∀( 1 ↪→ Yi, ∃(Yi | path(v, w)) ⇒ ∃(Yi | γ))
∧ ∀( 1 v , ∃( 1 v | path(v, 1)) ⇒ ∃( 1 v | γM ′ ,L′(grow, true,M ′)))
∧ ∀( 1 w , false ⇒ ∃( 1 w | γM ′ ,L′(grow, true,M ′)))
∧ ∀( 1=v , true ⇒ ∃( 1=v | γM ′ ,L′(grow, true,M ′)))
∧ ∀( 1=w , false ⇒ ∃( 1=w | γM ′ ,L′(grow, true,M ′)))) ]

= ∃VX,Y[
∨

M ′∈2MV (
∧

i∈{1,2,4} ∀( 1 ↪→ Yi, ∃(Yi | path(v, w)) ⇒ ∃(Yi | γ))
∧ ∀( 1 v , ∃( 1 v | path(v, 1)) ⇒ ∃( 1 v | γM ′))

∧ ∀( 1=v , ∃( 1=v | γM ′))) ]

= ∃VX,Y[
∧

i∈{1,2,4} ∀( 1 ↪→ Yi, ∃(Yi | path(v, w)) ⇒ ∃(Yi | γ))
∧ ∀( 1 v , ∃( 1 v | path(v, 1)) ⇒ ∃( 1 v | v ∈ X and not v ∈ Y))

∧ ∀( 1=v , ∃( 1=v | v ∈ X and not v ∈ Y)) ]

where the graphs Ei and Yi are as given in Figure 1 and MV = {(2, X), (2, Y)}.
Here, only one of the subsets ranged over yields a satisfiable disjunct: M ′ =
{(2, Y)}, i.e. γM ′ = (v ∈ X and true) and not (v ∈ Y or false) for w = 2. �

Transformation App, adapted from Def in [2], takes as input a rule set R and
generates an M-constraint that is satisfied by graphs for which R is applicable.
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Theorem 4 (Applicability of a rule). There is a transformation App such
that for every rule set R and every graph G,

G |= App(R) if and only if ∃H. G ⇒R H.

Construction. If R is empty, define App(R) = false; otherwise, for R =
{r1, . . . , rn}, define:

App(R) = app(r1) ∨ · · · ∨ app(rn).

For each rule r = 〈r′, ac〉 with r′ = 〈L ←↩ K ↪→ R〉, we define app(r) = ∃(∅ ↪→
L,Dang(r′) ∧ acL ∧ L(r, acR)). Here, Dang(r′) =

∧
a∈A ¬∃a, where the index

set A ranges over all injective graph morphisms a : L ↪→ L⊕ (up to isomorphic
codomains) such that the pair 〈K ↪→ L, a〉 has no pushout complement; each L⊕

a graph that can be obtained from L by adding either (1) a loop; (2) a single
edge between distinct nodes; or (3) a single node and a non-looping edge incident
to that node. �

Finally, transformation Pre (adapted from [1]) combines the other transfor-
mations to construct a weakest liberal precondition relative to a rule and post-
condition.

Theorem 5 (Postconditions to weakest liberal preconditions). There is
a transformation Pre such that for every rule r = 〈〈L ←↩ K ↪→ R〉, ac〉, every
M-constraint c, and every direct derivation G ⇒r H ,

G |= Pre(r, c) if and only if H |= c.

Moreover, Pre(r, c) ∨ ¬App({r}) is the weakest liberal precondition relative to r
and c.

Construction. Let r = 〈〈L ←↩ K ↪→ R〉, ac〉 denote a rule and c denote an
M-constraint. Then:

Pre(r, c) = ∀(∅ ↪→ L, (Dang(r) ∧ acL ∧ L(r, acR)) ⇒ L(r,A(r, c))).

�
Example 5. Take grow, c, γ and L(grow,A(grow, c)) as considered in Example
4. Applying transformation Pre:

Pre(grow,L(grow,A(grow, c)))

= ∀( 1 , acL ⇒ ∃VX,Y[
∧

i∈{1,2,4} ∀( 1 ↪→ Yi, ∃(Yi | path(v, w)) ⇒ ∃(Yi | γ))
∧ ∀( 1 v , ∃( 1 v | path(v, 1)) ⇒ ∃( 1 v | v ∈ X and not v ∈ Y))

∧ ∀( 1=v , ∃( 1=v | v ∈ X and not v ∈ Y)) ])

where the graphs Yi are as given in Figure 1. This M-constraint is only satisfied
by graphs that do not have any edges between distinct nodes, because of the
assertion that every match (i.e. every node) must be in X and not in Y. Were an
edge to exist – i.e. a path – then the M-constraint asserts that its target is in Y;
a contradiction. �
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6 Proving Non-local Specifications

In this section we show how to systematically prove a non-local correctness
specification using a Hoare logic adapted from [4,5]. The key difference is the
use of M-constraints as assertions, and our extension of Pre in constructing
weakest liberal preconditions for rules. (We note that one could just as easily
adapt the Dijkstra-style systems of [1,2].)

We will specify the behaviour of programs using (Hoare) triples, {c} P {d},
where P is a program, and c, d are pre- and postconditions expressed as M-
constraints. We say that this specification holds in the sense of partial correct-
ness, denoted by |= {c} P {d}, if for any graph G satisfying c, every graph H
resulting from the execution of P on G satisfies d.

For systematically proving a specification, we present a Hoare logic in Figure
2, where c, d, e, inv range over M-constraints, P,Q over programs, r over rules,
and R over rule sets. If a triple {c} P {d} can be instantiated from an axiom
or deduced from an inference rule, then it is provable in the Hoare logic and we
write � {c} P {d}. Proofs shall be displayed as trees, with the specification as
the root, axiom instances as the leaves, and inference rule instances in-between.

[ruleapp]wlp {Pre(r, c) ∨ ¬App({r})} r {c} {c} r {d} for each r ∈ R
[ruleset] {c} R {d}

{c} P {e} {e} Q {d}
[comp] {c} P ; Q {d}

{inv} R {inv}
[!] {inv} R! {inv ∧ ¬App(R)}

c ⇒ c′ {c′} P {d′} d′ ⇒ d
[cons] {c} P {d}

Fig. 2. A Hoare logic for partial correctness

For simplicity in proofs we will typically treat [ruleapp]wlp as two different
axioms (one for each disjunct). Note that we have omitted, due to space, the
proof rules for the conditional constructs. Note also the restriction to rule sets
in [!], because the applicability of arbitrary programs cannot be expressed in a
logic for which the model checking problem is decidable [5].

Theorem 6 (Soundness). Given a program P and M-constraints c, d, we have
that � {c} P {d} implies |= {c} P {d}. �

The remainder of this section demonstrates the use of our constructions and
Hoare logic in proving non-local specifications of two programs. For the first, we
will consider a property expressed in terms of MSO variables and expressions,
whereas for the second, we will consider properties expressed in terms of path
predicates. Both programs are simple, as our focus here is not on building in-
tricate proofs but rather on illustrating the main novelty of this paper: a Pre
construction for MSO properties.
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Example 6. Recall the program init; grow! of Example 2 that nondetermin-
istically constructs a tree. A known non-local property of trees is that they
can be assigned a 2-colouring (i.e. they are bipartite), a property that the
M-constraint col of Example 1 precisely expresses. Hence we will show that

� {emp} init; grow! {col}, where emp = ¬∃( ) expresses that the graph is
empty. A proof tree for this specification is given in Figure 3, where the inter-
pretation constraints γ1 and γ2 in Pre(grow, col) are respectively (v∈X or v∈Y)

and not (v∈X and v∈Y) and not (v∈X and w∈X) and not (v∈Y and w∈Y).

{Pre(init, col)} init {col}
{emp} init {col}

{Pre(grow, col)} grow {col}
{col} grow {col}

{col} grow! {col ∧ ¬App({grow})}
� {emp} init; grow! {col}

Pre(init, col) ≡ col

Pre(grow, col) ≡ ∀( 1 ,¬tc ⇒ ∃VX,Y[

∀( 1 v ,∃( 1 v | γ1)) ∧ ∀( 1=v ,∃( 1=v | γ1))
∧ ∀( 1 v w , ∃( 1 v w ) ⇒ ∃( 1 v w | γ2))
∧ ∀( 1=v w , ∃( 1=v w ) ⇒ ∃( 1=v w | γ2))
∧ ∀( 1=w v , ∃( 1=w v ) ⇒ ∃( 1=w v | γ2))
∧ (∀( 1=v ,∃( 1=v | not v ∈ X))

∨ ∀( 1=v , ∃( 1=v | not v ∈ Y))) ])

Fig. 3. Trees are 2-colourable

Observe that Pre(grow, col) is essentially an “embedding” of the postcondition
col within the context of possible matches for grow. The second line expresses
that every node (whether the node of the match or not) is coloured X or Y. The
following three conjuncts then express that any edges in the various contexts of
the match connect nodes that are differently coloured. The final conjunct is of
the same form, but is “pre-empting” the creation of a node and edge by grow. To
ensure that the graph remains 2-colourable, node 1 of the match must not belong
to both sets; this, of course, is already established by the first nested conjunct.
Hence the first implication arising from instances of [cons], col ⇒ Pre(grow, col),
is valid. The second implication, emp ⇒ Pre(init, col), is also valid since a
graph satisfying emp will not have any nodes to quantify over. �
Example 7. An acyclic graph is a graph that does not contain any cycles, i.e.
non-empty paths starting and ending on the same node. One way to test for

acyclicity is to apply the rule delete = 〈〈 1 2 ⇒ 1 2 〉, acL〉 for as long as
possible; the resulting graph being edgeless if the input graph was acyclic. Here,

acL denotes the left application condition ¬∃( 1 2 ↪→ 1 2 ) ∨
¬∃( 1 2 ↪→ 1 2 ), expressing that in matches, either the source
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node has indegree 0 or the target node has outdegree 0 (we do not consider
the special case of looping edges for simplicity). Note that nodes within a cycle
would not satisfy this: if a source node has an indegree of 0 for example, there
would be no possibility of an outgoing path ever returning to the same node.

We prove two claims about this rule under iteration: first, that it deletes all
edges in an acyclic graph; second, that if applied to a graph containing cycles,
the resulting graph would not be edgeless. That is, � {¬c} delete! {e} and
� {c} delete! {¬e}, for M-constraints c (for cycles), e (for edgeless), γc =
path(v, w, not e) and path(w, v, not e), and proofs as in Figure 4.

{Pre(delete,¬c)} delete {¬c}
{¬c} delete {¬c}

{¬c} delete! {¬c ∧ ¬App({delete})}
� {¬c} delete! {e}

{Pre(delete, c)} delete {c}
{c} delete {c}

{c} delete! {c ∧ ¬App({delete})}
� {c} delete! {¬e}

c = ∃( v w | path(v, w) and path(w, v))

e = ¬∃( v w )

Pre(delete,¬c) = ∀( 1 2

e
, acL ⇒

∧ ¬∃( 1 2

e
v w | γc) ∧ ¬∃( 1=v 2

e
w | γc)

∧¬∃( 1 2=v

e
w | γc) ∧ ¬∃( 1=w 2

e
v | γc)

∧ ¬∃( 1 2=w

e
v | γc) ∧ ¬∃( 1=v 2=w

e | γc)
∧ ¬∃( 1=w 2=v

e | γc))
App({delete}) = ∃( 1 2 , acL)

Fig. 4. Acyclity (or lack thereof) is invariant

First, observe that Pre(delete,¬c) is essentially an “embedding” of the post-
condition ¬c within the context of possible matches for delete. The path pred-
icates in γc now additionally assert (as a result of the L transformation) that
paths do not include images of edge e: this is crucially important for establishing
the postcondition because the rule deletes the edge. For space reasons we did
not specify Pre(delete, c), but this can be constructed from Pre(delete,¬c) by
replacing each ∧ with ∨ and removing each ¬ in the nested part.

The instances of [cons] give rise to implications that we must show to be valid.
First, ¬c ⇒ Pre(delete,¬c) is valid: a graph satisfying ¬c does not contain any
cycles, hence it also does not contain cycles outside of the context of matches
for delete. Second, ¬c ∧ ¬App({delete}) ⇒ e is valid: a graph satisfying the
antecedent does not contain any cycles and also no pair of incident nodes for
which acL holds. If the graph is not edgeless, then there must be some such pair
satisfying acL; otherwise the edges are within a cycle. Hence the graph must be
edgeless, satisfying e.

In the second proof tree, c ⇒ Pre(delete, c) is valid. A graph satisfying
c contains a cycle: clearly, no edge (with its source and target) in this cycle
satisfies acL; hence the graph satisfies the consequent, since images of edge e
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cannot be part of the cycle in the graph. Finally, c ∧ ¬App({delete}) ⇒ ¬e is
valid: if a graph satisfies the antecedent, then it contains a cycle, the edges of
which delete will never be applicable to because of acL; hence the graph cannot
be edgeless, and satisfies ¬e. �

7 Related Work

We point to a few related publications addressing the verification of non-local
graph properties through proofs / theorem proving and model checking.

Habel and Radke have considered HR conditions [14], an extension of nested
conditions embedding hyperedge replacement grammars via graph variables. The
formalism is more expressive than MSO logic on graphs (it is able, for example, to
express node-counting MSO properties such as “the graph has an even number of
nodes” [15]) but it is not yet clear whether an effective construction for weakest lib-
eral preconditions exists.Percebois et al. [16] demonstratehowone canverify global
invariants involving paths, directly at the level of rules. Rules are modelled with (a
fragment of) first-order logic on graphs in the interactive theorem prover Isabelle.
Inaba et al. [17] address the verification of type-annotated Core UnCAL – a query
algebra for graph-structured databases – against input/output graph schemas in
MSO. They first reformulate the query algebra itself in MSO, before applying an
algorithm that reduces the verification problem to the validity of MSO over trees.

The GROOVE model checker [18] supports rules with paths in the left-hand
side, expressed as a regular expression over edge labels. One can specify such
rules to match only when some (un)desirable non-local property holds, and then
verify automatically that the rule is never applicable. Augur 2 [19] also uses
regular expressions, but for expressing forbidden paths that should not occur in
any reachable graph.

8 Conclusion

This paper has contributed the means for systematic proofs of graph programs
with respect to non-local specifications. In particular, we defined M-conditions,
an extension of nested conditions equivalently expressive to MSO logic on graphs,
and defined for this assertion language an effective construction for weakest lib-
eral preconditions of rules. We demonstrated the use of this work in some Hoare-
style proofs of programs relative to non-local invariants, i.e. the existence of 2-
colourings, and the existence of arbitrary-length cycles. Some interesting topics
for future work include: extending M-conditions and Pre to support other useful
predicates (e.g. an undirected path predicate), adding support for attribution
(e.g. along the lines of [4,5]), implementing the construction of Pre, and general-
ising the resolution- and tableau-based reasoning systems for nested conditions
[20,21] to M-conditions.

Acknowledgements. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 291389.



48 C.M. Poskitt and D. Plump

References
1. Habel, A., Pennemann, K.-H., Rensink, A.: Weakest preconditions for high-level

programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006)

2. Pennemann, K.H.: Development of Correct Graph Transformation Systems.
Doctoral dissertation, Universität Oldenburg (2009)

3. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems rela-
tive to nested conditions. Mathematical Structures in Computer Science 19(2), 245–
296 (2009)

4. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundamenta
Informaticae 118(1-2), 135–175 (2012)

5. Poskitt,C.M.:Verification ofGraphPrograms. PhD thesis, University ofYork (2013)
6. Plump, D.: The design of GP 2. In: Escobar, S. (ed.) WRS 2011. EPTCS, vol. 82,

pp. 1–16 (2012)
7. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A

Language-Theoretic Approach. Cambridge University Press (2012)
8. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-

grams: Extended version (2014), http://arxiv.org/abs/1405.5927
9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

10. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation 85(1), 12–75 (1990)

11. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of
Theoretical Computer Science, vol. B, Elsevier (1990)

12. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

13. Poskitt, C.M., Plump, D.: Verifying total correctness of graph programs. In: Echa-
hed, R., Habel, A., Mosbah, M. (eds.) GCM 2012. Electronic Communications of the
EASST, vol. 61 (2013)

14. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. In: Ermel,
C., Ehrig, H., Orejas, F., Taentzer, G. (eds.) GraMoT 2010. Electronic Communi-
cations of the EASST, vol. 30 (2010)

15. Radke, H.: HR∗ graph conditions between counting monadic second-order and
second-order graph formulas. In: Echahed, R., Habel, A., Mosbah, M. (eds.) GCM
2012. Electronic Communications of the EASST, vol. 61 (2013)

16. Percebois, C., Strecker, M., Tran, H.N.: Rule-level verification of graph trans-
formations for invariants based on edges’ transitive closure. In: Hierons, R.M.,
Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 106–121.
Springer, Heidelberg (2013)

17. Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-transformation verifi-
cation using monadic second-order logic. In: Schneider-Kamp, P., Hanus, M. (eds.)
PPDP 2011, pp. 17–28. ACM (2011)

18. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. Software Tools for Technology Transfer 14(1), 15–40
(2012)

19. König, B., Kozioura, V.: Augur 2 - a new version of a tool for the analysis of graph
transformation systems. In: Bruni, R., Varró, D. (eds.) GT-VMT 2006. ENTCS,
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