
Tableau-Based Reasoning for Graph Properties

Leen Lambers1 and Fernando Orejas2

1 Hasso Plattner Institut, University of Potsdam, Germany
2 Dpto de L.S.I., Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Graphs are ubiquitous in Computer Science. For this reason, in many
areas, it is very important to have the means to express and reason about graph
properties. A simple way is based on defining an appropriate encoding of graphs
in terms of classical logic. This approach has been followed by Courcelle. The
alternative is the definition of a specialized logic, as done by Habel and Penne-
mann, who defined a logic of nested graph conditions, where graph properties
are formulated explicitly making use of graphs and graph morphisms, and which
has the expressive power of Courcelle’s first order logic of graphs. In particular,
in his thesis, Pennemann defined and implemented a sound proof system for rea-
soning in this logic. Moreover, he showed that his tools outperform some standard
provers when working over encoded graph conditions.

Unfortunately, Pennemann did not prove the completeness of his proof sys-
tem. In this sense, one of the main contributions of this paper is the solution to
this open problem. In particular, we prove the (refutational) completeness of a
tableau method based on Pennemann’s rules that provides a specific theorem-
proving procedure for this logic. This procedure can be considered our second
contribution. Finally, our tableaux are not standard, but we had to define a new
notion of nested tableaux that could be useful for other formalisms where formu-
las have a hierarchical structure like nested graph conditions.

Keywords: Graph properties, Graph Logic, Automated deduction, Visual mod-
elling, Graph transformation.

1 Introduction

Graphs are ubiquitous in Computer Science. For this reason, in many areas, it is (or it
may be) very important to have the means to express and reason about graph properties.
Examples may be, model-driven engineering where we may need to express properties
of graphical models, or the verification of systems whose states are modelled as graphs,
or if we need to express properties about sets of semi-structured documents, especially if
they are related by links, or the area of graph databases, to express integrity constraints.
We can follow two different ways. The first one is based on defining an appropriate
encoding of graphs in terms of some existing logic. The second way is based on directly
defining a logic where graphs are first-class citizens. An example of the first approach is
the work of Courcelle who, in a series of papers (see, e.g. [3]) studied systematically a
graph logic defined in terms of first-order (or monadic second-order) logic. In particular,
in that approach, graphs are defined axiomatically by means of predicates node(n),
asserting that n is a node, and edge(n1,n2) asserting that there is an edge from n1 to

H. Giese and B. König (Eds.): ICGT 2014, LNCS 8571, pp. 17–32, 2014.
c© Springer International Publishing Switzerland 2014

18 L. Lambers and F. Orejas

n2. Graphs can also be defined as terms over a given algebra A as done in the context
of Maude [2,1]. The most prominent example of the second approach is the logic of
nested graph conditions, that we study in this paper, defined by Pennemann and Habel
[6], where graph properties are formulated explicitly making use of graphs and graph
morphisms. The origins of this approach can be found in the notion of graph constraint
[8], introduced in the area of graph transformation, in connection with the notion of
(negative) application conditions, as a form to limit the applicability of transformation
rules. However, graph constraints have a very limited expressive power, while nested
conditions have the same expressive power as Courcelle’s first-order graph logic [6]. A
similar approach was first introduced by Rensink in [15].

An advantage of encoding graph properties in terms of some existing logic is that we
can reason about them by using methods and tools provided by the given logic, while,
in the other case, we would need to define specific dedicated methods. In this sense, in
[12], we defined a sound and complete proof system for the restrictive case of graph
constraints, including the case where the constraints included conditions on graph at-
tributes [11]. Almost simultaneously, in [13,14], Pennemann defined and implemented
a sound proof system for reasoning with nested conditions. Unfortunately, in this work
the completeness of his approach was not proven. The problem is related with the dif-
ficulty to use induction for building a counter-model in the completeness proof. In this
sense, one of the main contributions of this paper is the solution to this open prob-
lem, since we prove the completeness of a subset of the rules defined by Pennemann.
In particular, we prove the (refutational) completeness of a tableau method based on
this subset of rules providing a specific theorem-proving procedure for this logic. This
procedure can be considered our second contribution. Moreover, our tableaux are not
standard, but we had to define a new notion of nested tableaux, that solves the difficul-
ties with induction, and that could be useful for other formalisms where formulas have
a hierarchical structure like nested graph conditions.

One may question in which sense this kind of work is relevant or interesting, if (ap-
parently) the encoding approach gives the same expressive power in a simpler way.
There are two main reasons: generality and efficiency. On the one hand, the logic of
nested graph conditions and our results are not restricted to a given kind of graphs. Our
graphs can be directed or undirected, typed or untyped, attributed or without attributes,
etc. The only condition is that the given category of graphs should be M -adhesive [9,5]
satisfying some additional categorical properties that are used in this paper. Actually,
this approach applies also to categories of structures that are not graphs, like sets. On
the contrary, when using encodings, each kind of graph structure needs a different en-
coding. On the other hand, a dedicated theorem-prover may be much more efficient than
a generic one when used over the given graph encoding. In particular, in [13,14], Pen-
nemann compares the implementation for his proof system with some standard provers,
like VAMPIRE, DARWIN and PROVER9, working over encoded graph conditions.
The result is that his implementation outperforms the coding approach. Actually, in a
considerable amount of examples, the above standard provers were unable to terminate
in the same time needed by Pennemann’s proof system.

The paper is organized as follows: In Section 2 we present the kind of graph prop-
erties that we consider together with some preliminariy results that we need in the rest

Tableau-Based Reasoning for Graph Properties 19

of the paper. In Section 3 we then present our new tableau-based reasoning method for
graph properties and subsequently in Section 4 we present soundness and complete-
ness for this reasoning method. We conclude the paper with Section 5. Due to space
limitations, proofs are only sketched. Detailed proofs can be found in [10].

2 Preliminaries

In this section we present the basic notions for this paper. First we reintroduce the
kind of graph properties that we consider. Secondly we introduce a (weak) conjunctive
normal form for them together with some shifting results.

For simplicity, we will present all our notions and results in terms of plain directed
graphs and graph morphisms1, i.e.: A graph G = (GV ,GE ,sG, tG) consists of a set GV

of nodes, a set GE of edges, a source function sG : GE → GV , and a target function
tG : GE → GV . Given the graphs G = (GV ,GE ,sG, tG) and H = (HV ,HE ,sH , tH), a
graph morphism f : G → H is a pair of mappings, fV : GV → HV , f E : GE → HE

such that fV ◦ sG = sH ◦ f E and fV ◦ tG = tH ◦ f E . A graph morphism f : G → H is
a monomorphism if fV and f E are injective mappings. Finally, two graph morphisms
m : H → G and m′ : H ′ → G are jointly surjective if mV (HV)∪m′V (H ′V) = GV and
mE(HE)∪m′E(H ′E) = GE . Note that all along the paper, unless it is explicitly said, if
we say that f is a morphism, we will implicitly assume that f is a monomorphism.

2.1 Graph Properties Expressed in GL

The underlying idea of the graph logic GL, handled in this paper, is that graph proper-
ties can be described stating that certain patterns, consisting of graphs and morphisms
(actually, inclusions), must be present (or must not be present) in a given graph. For
instance, the simplest kind of graph property, ∃C, specifies that a given graph G should
include (a copy of) C. For instance, the property ∃C1 with C1 as depicted on the left of
Fig. 1 states that a graph should include a node with a loop. More precisely, the fact
that a graph G satisfies a graph property α is expressed in term of the existence (or
non-existence) of monomorphisms from the graphs included in α to G, such that some
conditions are satisfied. For example, a graph G satisfies the former property if there
exists a monomorphism f : C1 → G. Obviously, graph properties can be combined us-
ing the standard connectives ∨, ∧, and ¬. For example, ¬∃C1, where C1 is the graph on
the left of Fig. 1, specifies that a graph should not include loops. We can also describe
more complex properties by using more complex patterns or diagrams. For instance, we
may consider that the property depicted in Fig. 1, where h1 and h2 are two inclusions
between the graphs involved, states that there must exist a node with a loop, such that

1 In some examples however, for motivation, we deal with typed attributed graphs. Anyhow,
following the approach used in [4], it is straightforward to show that our results generalize to
a large class of (graphical) structures. The only condition is that the given category of graphs
should be M -adhesive [9,5] satisfying the additional property of having a unique E ′ −M pair
factorization [5] (needed for Lemma 3) as well as infinite colimits (see Proposition 1 needed
for the Completeness Theorem).

20 L. Lambers and F. Orejas

for all pairs of edges connected to that node, there exists another pair of edges complet-
ing a rectangle. More precisely, a graph G would satisfy this condition if there exists a
monomorphism f : C1 → G such that for all f ′ : C2 → G, with f = f ′ ◦ h1, there exists
f ′′ : C2 → G, such that f ′ = f ′′ ◦ h2.

C1 C2 C3

h2 h1

Fig. 1. A graph property

For our convenience, we will express these properties using a nested notation [6] and
avoiding the use of universal quantifiers. Moreover, the conditions that we define be-
low are slightly more general than what may seem to be needed. Instead of defining
properties about graphs, nested conditions define properties of graph monomorphisms.

Definition 1 (condition, nesting level). Given a finite graph C, a condition over C is
defined inductively as follows:

– true is a condition over C. We say that true has nesting level 0.
– For every monomorphism a : C → D and condition cD over a finite graph D with

nesting level n such that n ≥ 0, ∃(a,cD) is a condition over C with nesting level
n+ 1.

– Given conditions over C, cC and c′C, with nesting level n and n′, respectively, ¬cC

and cC ∧ c′C are conditions over C with nesting level n and max(n,n′), respectively.
We restrict ourselves to finite conditions, i.e. each conjunction of conditions is finite.

We define when a monomorphism q : C → G satisfies a condition cC over C inductively:

– Every morphism q satisfies true.
– A morphism q satisfies ∃(a,cD), denoted q |= ∃(a,cD), if there exists a monomor-

phism q′ : D → G such that q′ ◦ a = q and q′ |= cD.
– A morphism q satisfies ¬cC if it does not satisfy cC and satisfies ∧i∈IcC,i if it satisfies

each cC,i (i ∈ I).

For example, the property in Fig. 1, would be denoted by the nested condition over the
empty graph ∃(iC1 : /0 → C1,¬∃(h1 : C1 → C2,¬∃(h2 : C2 → C3, true))) with nesting
level 3. As said above, nested conditions are more general than needed. The graph
properties in our graph logic GL are not arbitrary conditions, but conditions over the
empty graph. Consequently in this case, the models of a condition are morphisms /0→G
and this is equivalent to say that models of these conditions are graphs G. However, we
must notice that if ∃(a,c) is a graph property, in general c is an arbitrary graph condition.

Definition 2 (GL Syntax, GL Semantics). The language of graph properties GL con-
sists of all conditions over the empty graph /0. Given an element ∃(a,cD) of GL with
a : /0 → D, we also denote it by ∃(D,cD). A graph G satisfies a graph property c of GL
if the unique morphism i : /0 → G satisfies c.

Tableau-Based Reasoning for Graph Properties 21

2.2 Conjunctive Normal Form and Shifting Results

In this section, we introduce the notion of clause and (weak) conjunctive normal form
in GL that is needed in the following section to present tableau reasoning [7] for GL.

Definition 3 ((weak) CNF, subcondition). A literal � is either a condition of the form
∃(a,d) or ¬∃(a,d). We say that a literal of the form ∃(a,d) is a positive literal and of
the form ¬∃(a,d) is a negative literal. Each disjunction of literals is also called a clause.
A condition is in weak conjunctive normal form (CNF) if it is either true, or false, or a
conjunction of clauses ∧ j∈Jc j, with c j = ∨k∈Kj �k, where for each literal, �k = ∃(ak,dk)
or �k = ¬∃(ak,dk), dk is a condition in weak CNF again. Moreover, for each negative
literal �k = ¬∃(ak,dk) it holds that ak is a monomorphism, but not an isomorphism. A
condition c is in CNF if it is in weak CNF and in addition for each literal ∃(a,d) or
¬∃(a,d) occurring in c it holds that a is a monomorphism, but not an isomorphism.
A subcondition of a condition c in (weak) CNF is either a clause or a conjunction of
clauses in c.

The idea of having conditions in weak CNF is to be able to handle them efficiently in
our tableau reasoning method. In particular, the conjunction of clauses will allow us to
apply the classical tableau rules for CNF formulas. In addition, since negative literals
¬∃(a,d) where a is not an isomorphism are always satisfiable, we can handle them in a
specialized way as will be explained in the following section.

In [13,14], Pennemann describes a procedure, based on some equivalences, for trans-
forming any condition into CNF, which makes it sufficient to formulate our tableau rea-
soning method based on nested tableaux (see Section 3.2) for graph properties in CNF.
It is routine to show, based on the same equivalences, that the transformation to CNF
does not increase the nesting level of conditions.
Lemma 1 (transformation to CNF [13,14]). There exists a transformation for each
condition cC over C according to equivalences listed in [13,14] into an equivalent con-
dition [cC] in CNF.

Lemma 2 (transformation to CNF preserves or reduces nesting level). Given a con-
dition cC over C with nesting level n, [cC] has nesting level not greater than n.

In the following sections we will make use extensively of the following shifting result
over morphisms for conditions [5] that allow us to move a condition along a morphism.

Lemma 3 (shift of conditions over morphisms). There is a transformation Shi f t such
that for each condition cP over P and each morphism b : P → P′, it returns a condition
Shi f t(b,cP) over P′ such that for each monomorphism n : P′ → H it holds that n ◦ b |=
cP ⇔ n |= Shi f t(b,cP).

Construction 1 (shift of conditions over morphisms). The transformation Shi f t is
inductively defined as follows:

P

C

P′

C′
a a′(1)

b

b′

cC

Shi f t(b, true) = true.
Shi f t(b,∃(a,cC)) =

∨
(a′,b′)∈F ∃(a′,Shi f t(b′,cC)) if

F = {(a′,b′) jointly surjective | b′ mono and (1) commutes}
= /0
Shi f t(b,∃(a,cC)) = f alse if F = /0.
Moreover, Shi f t(b,¬cP) = ¬Shi f t(b,cP) and
Shi f t(b,∧i∈IcP,i) = ∧i∈IShi f t(b,cP,i).

22 L. Lambers and F. Orejas

When shifting conditions over morphisms we need to know if their nesting level is pre-
served/reduced and if they remain in weak CNF. It is routine to prove the lemma below
by induction on the structure of the given condition. But shifting negative literals does
not preserve weak CNF. When shifting a negative literal, according to Construction 1
we obtain Shi f t(b,¬∃(a,cC)) =¬Shi f t(b,∃(a,cC) =¬∨

(a′,b′)∈F ∃(a′,Shi f t(b′,cC)) =∧
(a′,b′)∈F ¬∃(a′,Shi f t(b′,cC)). Notice that we require that a′ is a monomorphismIn,

which is not required in [5]. We may add this requirement because the models of our
conditions are monomorphisms instead of arbitrary morphisms.

Lemma 4 (Shift literal in weak CNF). Given a positive literal � in weak CNF with
nesting level n and a morphism b : P→ P′, Shi f t(b, �) is a condition in weak CNF again
and it has nesting level less than or equal to n. Given a negative literal � in weak CNF
with nesting level n and a morphism b : P → P′, Shi f t(b, �) has nesting level less than
or equal to n.

3 Tableau-Based Reasoning for GL

Analogously to tableaux for plain first-order logic reasoning [7], we introduce tableaux
for dedicated automated reasoning for graph properties. We consider clause tableau
reasoning assuming that the given graph conditions are in weak CNF as introduced in
Def. 3. However, we will see that usual tableau reasoning is not sufficient and we will
introduce so-called nested tableaux for automated graph property reasoning.

3.1 Tableaux for Graph Conditions

As usual, tableaux are trees whose nodes are literals. The construction of a tableau for
a condition cC in weak CNF can be informally explained as follows. We start with a
tableau consisting of the single node true. Then, as usual in first-order logic, for every
clause c1 ∨ . . .∨ cn in cC we extend all the leaves in the tableau with n branches, one
for each condition ci, as depicted in Fig. 2. The tableau rules that are specific for our
logic are the so-called lift and supporting lift rules, defined by Penneman as part of his
proof system [13,14]. In both rules, given two literals �1 = ∃(a1,c1) and �2 in the same
branch, we add a new node to that branch with a new literal �3 that is equivalent to the
conjunction of �1 and �2. In particular, �3 is built by pushing �2 inside the next level
of nesting of �1 by shifting �2 (see Lemma 3) along a1. The difference between the lift
and supporting lift rules is that, in the former, �2 is a negative literal while, in the latter,
�2 is a positive literal. Moreover, since at any time in the tableau we want to produce
conditions that are in weak CNF and as argued in Lemma 4 shifted negative literals
in general do not preserve weak CNF, we apply the transformation rules according to
Lemma 1 to each shifted negative literal. The two rules are depicted in Fig. 3. Note that
because of Lemma 4 and 1, the tableau rules and in particular the lift and supporting lift
rule indeed generate a tableau as given in Def. 4, where each node is a literal in weak
CNF. As usual, a closed branch is then a branch where we have found an inconsistency.

Definition 4 (Tableau, branch). A tableau is a finitely branching tree whose nodes are
literals in weak CNF (see Def. 1). A branch in a tableau T is a maximal path in T .

Tableau-Based Reasoning for Graph Properties 23

Definition 5 (Tableau rules). Given a condition cC in weak CNF over C, then a tableau
for cC is defined as a tableau constructed with the following rules:

– The tree consisting of a single node true is a tableau for cC (initialization rule).
– Let T be a tableau for cC, B a branch of T , and c1 ∨ . . .∨ cn a clause in cC, then

extend B with n new subtrees and the nodes of the new subtrees labeled with ci

(extension rule).
– Let T be a tableau for cC, B a branch of T , and ∃(a1,c1) and ¬∃(a2,c2) literals

in B, then extend B with a node equal to ∃(a3,c3), where ∃(a3,c3) is the condition
∃(a1,c1 ∧ [Shi f t(a1,¬∃(a2,c2))]) (lift rule).

– Let T be a tableau for cC, B a branch of T , and ∃(a1,c1) and ∃(a2,c2) nodes in
B, then extend B with a node equal to ∃(a3,c3), where ∃(a3,c3) is the condition
∃(a1,c1 ∧Shi f t(a1,∃(a2,c2))) (supporting lift rule).

Definition 6 (Open/closed branch). In a tableau T a branch B is closed if B contains
∃(a, f alse) or f alse; otherwise, it is open.

Fig. 2. The extension rule

Fig. 3. The lift rule (left) and supporting lift rule (right)

In the completeness proof for our tableau reasoning method (see Theorem 2) we will
need to track conditions that, because of the lift and supporting lift rules, move inside
other conditions. We do this by means of a successor relation between conditions (and
subconditions) for each branch in a given tableau.

24 L. Lambers and F. Orejas

Definition 7 (Successor relation for a branch). For every branch B in a given tableau
T , we define the successor relation associated to that branch as the least relation on
nested conditions satisfying:

– If ∃(a1,c1 ∧ [Shi f t(a1,¬∃(a2,c2))]) is the literal on a node created using the lift
rule from literals ∃(a1,c1) and ¬∃(a2,c2), then [Shi f t(a1,¬∃(a2,c2))] is a succes-
sor of ¬∃(a2,c2) in B.

– If ∃(a1,c1 ∧ Shi f t(a1,∃(a2,c2))) is the literal on a node created using the sup-
porting lift rule from literals ∃(a1,c1) and ∃(a2,c2), then Shi f t(a1,∃(a2,c2)) is a
successor of ∃(a2,c2) in B.

Let us see an example that shows what happens if we have a very obvious refutable
condition ∃(a, true)∧¬∃(a, true). Since we have two clauses consisting of one literal,
using the extension rule we would get a single branch with the literals ∃(a, true) and
¬∃(a, true), where a is not an isomorphism. Using the lift rule we would extend the
branch with the condition ∃(a, true∧ [Shi f t(a,¬∃(a, true))]), which is equivalent to
∃(a, true∧ [¬Shi f t(a,∃(a, true))]).

P

C

C

C

a id

a

id

According to the construction of Shi f t, Shi f t(a,∃(a, true)) is a dis-
junction that would include ∃(id, true), since the diagram on the
left commutes, the identity is a monomorphism and (id, id) are
jointly surjective. Therefore, the condition [¬Shi f t(a,∃(a, true))]
would be equal to f alse. The lift rule has thus created a literal
∃(a, true∧ f alse) on the branch manifesting the obvious contradic-
tion between the literals ∃(a, true) and ¬∃(a, true) in the inner con-
dition of the literal ∃(a, true∧ f alse).

Using the lift and supporting lift rules we can thus make explicit the inconsistencies
that occur at the outer level of nesting, but we would need additional tableau rules
that do something similar at any inner level of nesting. The problem is that, then, it is
very difficult to use induction to prove properties of these tableaux (and, in particular,
completeness). Instead, in our procedure, after applying the extension rule until no new
literals can be added, if the literals in the branch are �1, . . . , �n we choose a positive
literal 2, say �1, that we call the hook of the branch, and we apply a lift (or a supporting
lift) rule to �1 and �2. Then, if more literals are left, we apply again a lift rule to the
result and �3 and so on, until we have applied a lift or supporting lift rule to all the
literals in the branch or until the branch is closed. In the example described above,
where we have a positive and negative literal on a single branch we would have the hook
∃(a, true) and the literal ¬∃(a, true) was shifted by the lift rule to the inner condition
of this hook. When we have done this for all the branches, then we say that the tableau
is semi-saturated. The next step is that for every open branch, if the condition in the
leaf is ∃(a,c), then we will proceed to open a new tableau for the inner condition c,
trying to find a refutation for c. In our example, the leaf of the open branch is equal
to ∃(a, true∧ [¬Shi f t(a,∃(a, true))] = ∃(a, true∧ f alse) and we would therefore open
a new tableau for true∧ f alse. It is obvious that the new tableau will be closed and

2 If all the literals are negative, then no rule can be applied. But in this case, we can conclude that
the given condition cC is satisfiable. The reason is that, if cC is a condition over C, the identity
id : C →C would be a model for all the literals in the path and, hence, for the condition.

Tableau-Based Reasoning for Graph Properties 25

will therefore refute the inner condition of ∃(a, true∧ f alse) making also the original
condition ∃(a, true)∧¬∃(a, true) refutable. If in the newly opened tableaux there are
still some open branches however, then new tableaux will be created for the conditions
in the leaves, and so on. We call such a family of tableaux a nested tableau and we will
study them in the following section.

Definition 8 (Semi-saturation, hook for a branch). Given a tableau T for a condition
cC over C, we say that T is semi-saturated if

– No new literals can be added to any branch B in T using the extension rule.
– And in addition, for each branch B in T , one of the following conditions hold

• B is closed,
• B consists only of negative literals,
• If E = {�1, . . . , �n} is the set of literals added to B using the extension rule, then

there is a positive literal �= ∃(a,d) in E such that the literal in the leaf of B is
∃(a,d∧�′∈(E\{�}) Shi f t(a, �′)). Then, we say that l is a hook for branch B in T .

For any condition in weak CNF we can then build a finite semi-saturated tableau.

Lemma 5 (Finiteness and existence of semi-saturated tableau). Given a condition
cC over C in weak CNF, there exists a semi-saturated and finite tableau T for cC.

In the rest of this subsection we relate satisfiability of conditions in weak CNF with
satisfiability of their associated tableaux. First, we define in the obvious way tableau
satisfiability. Then, we show that if a condition cC is satisfiable, then any associated
tableau cannot have all its branches closed. This means that the tableau rules are sound.
The proof is by induction on the structure of the tableau. The base case is trivial. If a
node has been added by using the extension rule, then satisfiability of the given condi-
tion implies satisfiability of the tableau. Finally, the case of the lift and the supporting
lift rules is a consequence of the soundness of these rules as shown by Penneman [13].

Definition 9 (Branch and tableau satisfiability). A branch B in a tableau T for a
condition cC over C is satisfiable if there exists a morphism q : C → G satisfying all the
literals in B. In this case we say that q : C → G is a model for B and we write q |= B. A
tableau T is satisfiable if there is a satisfiable branch B in T . If q |= B in T , we also say
that q is a model for T and also q |= T.

Lemma 6 (Tableau soundness). Given a condition cC in weak CNF and a tableau T
for this condition, then if cC is satisfiable, so is T .

Now, we show that if a tableau T is semi-saturated and satisfiable, then its associated
condition cC is also satisfiable. Actually, we show something slightly stronger. In par-
ticular, if an open branch B in T includes positive literals and the literal in the leaf is
satisfiable then cC is also satisfiable. The first part of the proof of this lemma is trivial,
since semi-saturation ensures that each branch includes a literal for each clause in cC.
The second part uses the fact that semi-saturation implies that d includes the shift of
all the literals in the branch (except for the hook). Then, satisfaction of this condition
implies the satisfaction of all conditions in the branch.

Lemma 7 (Semi-saturation and satisfiability). If T is a semi-saturated tableau for
cC, then q |= T implies q |= cC. Moreover, if B is an open branch including some positive
literals and ∃(a,d) is the literal in the leaf of B, then q |= ∃(a,d) implies q |= cC.

26 L. Lambers and F. Orejas

3.2 Nested Tableaux for Graph Properties

As we have discussed in the previous section, standard tableaux cannot be used in a
reasonably simple way as a proof procedure in our logic. So, our approach is based on
a notion of nested tableaux whose idea is that, for each open branch of a tableau T
whose literal in the leaf is ∃(a,c), we open a new tableau T ′ to try to refute condition
c. Then, we say that ∃(a,c) is the opener for T ′ and if a is a morphism from G to
G′, we say that G′ is the context of T ′, meaning that c is a property of the graph G′.

Fig. 4. Nested tableau with
nested branch

Nested tableaux have nested branches consisting of
sequences of branches of a sequence of tableaux in
the given nested tableau. We may notice that while
our tableaux are assumed to be finite (cf. Lemma
5), nested tableaux and nested branches may be infi-
nite. For simplicity, we will assume that the original
condition to (dis)prove is a graph property, i.e. the
models of the given condition (if they exist) are in-
tuitively graphs. Formally, this means that the given
condition c is a condition over the empty graph, i.e.
on the outer level of nesting it consists of literals of
the form ∃(a,d) or ¬∃(a,d), where a is some mor-
phism over the empty graph. Similarly, the models
of c are morphisms from the empty graph.

Definition 10 (Nested tableau, opener, context, nested branch, semi-saturation).
Let (I,≤, i0) be a poset with minimal element i0. A nested tableau NT is a family of
triples {〈Ti, j,∃(a j ,c j)〉}i∈I , where Ti is a tableau and ∃(a j,c j), called the opener of Ti

is the literal of an open branch in Tj with j < i. Moreover, we assume that there is a
unique initial tableau Ti1 that is part of the triple 〈Ti1 , i0, true〉.

We say that Ti1 has the empty context /0 and for any other tableau Ti, with
〈Ti, j,∃(a j ,c j)〉 ∈ NT , if a j : A j → A j+1, we say that Ti has context A j+1.

A nested branch NB in a nested tableau NT = {〈Ti, j,∃(a j ,c j)〉}i∈I is a maximal
sequence of branches Bi1 , . . . ,Bik ,Bik+1 , . . . from tableaux Ti1 , . . . ,Tik ,Tik+1 , . . . in NT
starting with a branch Bi1 in the initial tableau Ti1 , such that if Bik and Bik+1 are two
consecutive branches in the sequence then the leaf in Bik is the opener for Tik+1 .

Finally, NT is semi-saturated if each tableau in NT is semi-saturated.

Definition 11 (Nested tableau rules). Given a graph property c in CNF, a nested
tableau for c is constructed with the following rules:

– Let Ti1 for c be a tableau constructed according to the rules given in Def. 5, then
{〈Ti1 , i0, true〉} is a nested tableau for c (initialization rule).

– Let NT = {〈Ti, j,∃(a j ,c j)〉}i∈I be a nested tableau for c and ∃(an,cn) with an :
An → An+1 a literal in a leaf of a tableau Tn in NT such that ∃(an,cn) is not the
opener for any other tableau in NT , then add to NT a triple 〈Tj,n,∃(an,cn)〉, where
j > n is an index not previously used in I of NT , and Tj is a tableau for cn (nesting
rule).

Tableau-Based Reasoning for Graph Properties 27

For the proof of the completeness theorem, we need to extend the successor relation
defined for the branches of a tableau to a successor relation defined for each nested
branch of a nested tableau.

Definition 12 (Successor relation for a nested branch). For each nested branch NB
in a nested tableau NT , we define the successor relation associated to that branch as
the least transitive relation on nested conditions satisfying:

– If c1 is a successor of c2 in a branch B, with context A, in NB, then 〈A,c1〉 is the
successor of 〈A,c2〉 in NB

– If ∃(an,cn) with an : An → An+1 is the opener for a branch B in NB and � is a literal
included in B using the extension rule, then 〈An+1, �〉 is the successor of 〈An,c〉 for
each condition c that is a subcondition of cn.

If the context of conditions is clear from the context, then we may just say that a condi-
tion c is a successor of c′ in NB, instead of saying that 〈A,c〉 is a successor of 〈A′,c′〉 in
NB, where A and A′ are the contexts of c and c′ respectively.

A result that will be needed in the completeness proof is the fact that, if all the
successors of a literal in a given branch are satisfiable, then the literal is satisfiable.
The proof is by induction on j− i, using the definition of the Shift operation and of the
successor relation, and the fact that all the tableaux involved are semi-saturated.

Lemma 8 (Satisfiability of successors). Let NB=B0,B1, . . . ,B j, . . . be a nested branch
in a semi-saturated nested tableau, �i a literal in Bi with context Ai, ai j : Ai → A j the
composition a j−1 ◦ · · · ◦ ai. Then if 〈A j, � j〉 is the successor of �i in Bi and q j |= � j, then
q j ◦ ai j |= �i.

As in the case of standard tableaux, a closed nested branch represents an inconsistency
detected between the literals in the branch, and an open branch represents, under ade-
quate assumptions, a model of the original condition.

Definition 13 (Open/closed nested branch, nested tableau proof). A nested branch
NB in a nested tableau NT for a graph property c in CNF of GL is closed if NB contains
∃(a, f alse) or f alse; otherwise, it is open. A nested tableau is closed if all its nested
branches are closed.

A nested tableau proof for (the unsatisfiability of) c is a closed nested tableau NT for
c in CNF of GL according to the rules given in Def. 11.

Example 1. Let us consider another simple example of deduction with our tableau
method. Suppose that we want to resolve the condition c:
∃(/0 → Node, true)∧¬∃(/0 → Loop, true)∧¬∃(/0 → Node,¬∃(Node → Loop, true))
Thereby, Node is a graph consisting of just one node, and Loop is a graph consisting
of a node and a loop. That is, c states (i) that there must exist a node, (ii) there cannot
be loops and (iii) there is no node that does not include a loop. The tableau associated
to c is depicted in Fig. 5. It includes just a branch, since there are no disjunctions in c.
The first nodes of this branch include three literals obtained by applying the extension
rule. Moreover, the first literal of these three nodes is the hook for the branch, since it
is the only positive literal. Then, after semi-saturation, the leaf of the branch would be
∃(/0 → Node,d), where d is depicted at the bottom of the figure.

28 L. Lambers and F. Orejas

Fig. 5. Tableau for condition c in Example 1

So, the tableau for d with context Node is depicted in Fig. 6. Again, it includes
a single branch whose hook is the only positive literal in d. In this case, the leaf
of the branch would be ∃(Node → Loop,d′), where d′ is equivalent to the conjunction
of shifting along Node → Loop with the rest of the literals in d. But in this case, be-
cause of shifting the negative literal ¬∃(Node → Loop, true) the conjunction d′ would
include the f alse literal: As a consequence, when opening a tableau for d′ at the next
level of nesting, the only branch would include the f alse literal, which would close the
single branch. Hence, this nested tableau would be a proof of the unsatisfiability of c.

4 Soundness and Completeness

In this section we prove that our tableau method is sound and complete. In particular,
soundness means that if we are able to construct a nested tableau where all its branches
are closed then we may be sure that our original condition c is unsatisfiable. Complete-
ness means that if a saturated tableau includes an open branch, where the notion of
saturation is defined below, then the original condition is satisfiable. Actually, the open
branch provides the model that satisfies the condition.

Theorem 1 (Soundness). If there is a nested tableau proof for the graph property c in
CNF of GL, then c is unsatisfiable.

Tableau-Based Reasoning for Graph Properties 29

Fig. 6. Tableau for condition d in Example 1

In the proof of this theorem we use Lemma 6 that states the soundness of the rules
for constructing (non-nested) tableaux and the fact that if all branches of the nested
tableau are closed then it is finite. In particular, we prove by induction on the structure
of NT that if c is satisfiable, then it must include an open branch. The base case is a
consequence of Lemma 6. For the general case, assuming that the given nested tableau
NTi has an open nested branch NB, we consider two cases, depending on how we extend
that NTi. If the new tableau is not opened at the leaf of NB, then NB is still an open
branch of the new tableau. Otherwise, we show that NB can be extended by a branch of
the new tableau using Lemma 6.

For the completeness proof, the notion of saturation of nested tableaux is important.
As usual, saturation describes some kind of fairness that ensures that we do not postpone
indefinitely some inference step. In this case, the main issue concerning fairness is
the choice of the hook for each tableau in the given nested tableau. In particular, if
a (positive) literal, or its successors are never chosen as hooks we will be unable to
make inferences between that literal and other literals, especially, negative literals. This
means that we may be unable to find some existing contradictions.

30 L. Lambers and F. Orejas

Definition 14 (Saturation). A nested tableau NT is saturated if the following condi-
tions hold:

1. NT is semi-saturated.
2. For each open nested branch NB = B0,B1, . . . ,B j, . . . in NT one of the following

conditions hold:
– NB includes a branch consisting only of negative literals.
– For each node ∃(a j,c j) in NB with nesting level k on branch B j in tableau Tj

either ∃(a j,c j) is a hook for B j and the leaf of B j is a tableau opener (positive
literal is hook), or there is a successor ∃(ai,ci) of ∃(a j,c j) with nesting level k
being a hook in branch Bi of NB with i > j and corresponding tableau opener
(positive literal is a hook in the future).

Lemma 9 (Existence saturated nested tableau). Given a graph property c in CNF of
GL, then there exists a saturated nested tableau NT for c.

The key issue here is to choose the adequate hook for each branch Bi in each nested
branch NB = B0,B1, . . . ,B j, This can be done by keeping, for each branch, a queue
of pending literals. So when choosing the hook for branch Bi, if the first literal in the
queue is ∃(a j,c j), we select the successor of ∃(a j,c j) in Bi.

To prove the completeness theorem we will show that, to any open branch in a given
nested tableau NT , we can associate a graph G that, if NT is saturated, will be a model
for NT . In particular, it is defined as the colimit of monomorphisms arising from the
sequence of tableau openers on the nested branch. The existence of infinite colimits
(satisfying an additional minimality property) is described in Proposition 1, which is
proven in [12]. Intuitively, these colimits are the union of the graphs in the sequence.

Proposition 1 (Infinite colimits). Given a sequence of monomorphisms:

G1
f1 �� G2

f2 �� . . .
fi−1 �� Gi

fi �� . . .

there exists a colimit:

G1
f1 ��

h1

������
�����

�����
�����

�����
��� G2

f2 ��

h2

����
���

���
���

�� . . .
fi−1 �� Gi

fi ��

hi

�����
���

���
���

� . . .

G

that satisfies that for every monomorphism g : G ′ → G, such that G ′ is a finite graph,
there is a j and a monomorphism g j : G ′ → G j such that the diagram below commutes:

G ′ g j ��

g
���

��
��

��
� G j

h j����
��
��
�

G

Tableau-Based Reasoning for Graph Properties 31

Definition 15 (Canonical model for an open nested branch NB). Given a nested
tableau NT for c in CNF of GL and given an open nested branch NB in NT , then the
canonical model for NB is the empty graph in case that NB = Bi1 consists of only one
branch and otherwise it is defined as the (possibly infinite) colimit

/0
a0 ��

q0

������
�����

�����
�����

�����
��� A1

a1 ��

q1

����
���

���
���

�� . . .
ai−1 �� Ai

ai ��

qi

�����
���

���
���

� . . .

G

from the sequence of monomorphisms /0 a0→ A1
a1→ A2 · · · ai−1→ Ai

ai→ Ai+1 · · · arising from
the sequence of tableau openers true,∃(a0,c0), ∃(a1,c1), · · · , ∃(ai,ci) · · · on the nested
branch NB in NT .

Theorem 2 (Completeness). If the graph property c in CNF of GL is unsatisfiable,
then there is a tableau proof for c.

In the proof of the Completeness Theorem we show that if there is no tableau proof
for c, then c is satisfiable. Because of Lemma 9 we know that there exists a saturated
nested tableau NT for c. If NT is not a tableau proof for c, there exists at least one open
nested branch NB in NT . Then, we prove by induction on the nesting level of literals
that its associated canonical model G (as given in Def. 15) satisfies all the literals in NB.
In particular, we show that morphism qn : An → G satisfies all literals whose context is
An. This means that each condition on the branch Bi1 with empty context within NB is
satisfied by q0 : /0 → G and thus by G. Hence, as a consequence of semi-saturation and
Lemma 7, it holds that G |= c.

5 Conclusion

In this paper, we have presented a new tableau-based reasoning method for graph prop-
erties, where graph properties are formulated explicitly making use of graphs and graph
morphisms, having the expressive power of Courcelle’s first order logic of graphs. In
particular, we proved the soundness and completeness of this method based on Pen-
nemann’s [13] rules. Finally, we presented a new notion of nested tableaux that could
be useful for other formalisms where formulas have a hierarchical structure like nested
graph conditions. With respect to future work, in addition to implementing our ap-
proach, we consider that the graph logic GL could be used as the foundations for graph
databases, in the same sense as first-order logic is used as foundations for relational
databases. In particular there would be two aspects that would need further work. On
the one hand, we would need to extend the logic and reasoning method to allow for the
possibility to state the existence of paths between nodes in a graph. On the other hand,
we would need to characterize a sufficiently expressive fragment of that logic that is not
only decidable, but where queries could be computed efficiently.

Acknowledgement. We would like to thank Annegret Habel and Karl-Heinz Penne-
mann for some interesting discussions on the main ideas of this paper.

32 L. Lambers and F. Orejas

References

1. Boronat, A., Meseguer, J.: Automated model synchronization: A case study on uml with
maude. ECEASST 41 (2011)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

3. Courcelle, B.: The expression of graph properties and graph transformations in monadic
second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars, pp. 313–400.
World Scientific (1997)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph transforma-
tion. Springer (2006)

5. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M -adhesive transformation systems
with nested application conditions. part 1: Parallelism, concurrency and amalgamation. Math.
Struct, in Comp. Sc. (2012) (to appear)

6. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to
nested conditions. Mathematical Structures in Computer Science 19(2), 245–296 (2009)

7. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook
of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)

8. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a constructive
approach. Electr. Notes Theor. Comput. Sci. 2, 118–126 (1995)

9. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–545 (2005)
10. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. Tech. rep., Departa-

ment de Llenguatges i Sistèmes Informàtics, Universitat Politècnica de Catalunya (2014)
11. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput. 46(3),

294–315 (2011)
12. Orejas, F., Ehrig, H., Prange, U.: Reasoning with graph constraints. Formal Asp. Com-

put. 22(3-4), 385–422 (2010)
13. Pennemann, K.H.: Resolution-like theorem proving for high-level conditions. In: Ehrig, H.,

Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 289–304.
Springer, Heidelberg (2008)

14. Pennemann, K.H.: Development of Correct Graph Transformation Systems, PhD Thesis.
Dept. Informatik, Univ. Oldedburg (2009)

15. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004)

	Tableau-Based Reasoning for Graph Properties
	1 Introduction
	2 Preliminaries
	2.1 Graph Properties Expressed in GL
	2.2 Conjunctive Normal Form and Shifting Results

	3 Tableau-Based Reasoning for GL
	3.1 Tableaux for Graph Conditions
	3.2 Nested Tableaux for Graph Properties

	4 Soundness and Completeness
	5 Conclusion
	References

