
Martina Seidl
Nikolai Tillmann (Eds.)

 123

LN
CS

 8
57

0

8th International Conference, TAP 2014
Held as Part of STAF 2014
York, UK, July 24–25, 2014, Proceedings

Tests and Proofs

Lecture Notes in Computer Science 8570
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Martina Seidl Nikolai Tillmann (Eds.)

Tests and Proofs
8th International Conference, TAP 2014
Held as Part of STAF 2014
York, UK, July 24-25, 2014
Proceedings

13

Volume Editors

Martina Seidl
Johannes Kepler University
Institute for Formal Models and Verification
Altenbergerstr. 69, 4040 Linz, Austria
E-mail: martina.seidl@jku.at

Nikolai Tillmann
Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
E-mail: nikolait@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09098-6 e-ISBN 978-3-319-09099-3
DOI 10.1007/978-3-319-09099-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942868

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
a number of leading conferences on software technologies. It was formed after
the end of the successful TOOLS federated event (http://tools.ethz.ch) in 2012,
aiming to provide a loose umbrella organization for practical software technolo-
gies conferences, supported by a Steering Committee that provides continuity.
The STAF federated event runs annually; the conferences that participate can
vary from year to year, but all focus on practical and foundational advances
in software technology. The conferences address all aspects of software technol-
ogy, from object-oriented design, testing, mathematical approaches to modelling
and verification, model transformation, graph transformation, model-driven en-
gineering, aspect-oriented development, and tools.

STAF 2014 was held at the University of York, UK, during July 21-25, 2014,
and hosted four conferences (ICMT 2014, ECMFA 2014, ICGT 2014 and TAP
2014), a long-running transformation tools contest (TTC 2014), eight workshops
affiliated with the conferences, and (for the first time) a doctoral symposium.
The event featured six internationally renowned keynote speakers, and welcomed
participants from around the globe.

The STAF Organizing Committee thanks all participants for submitting and
attending, the program chairs and Steering Committee members for the indi-
vidual conferences, the keynote speakers for their thoughtful, insightful, and
engaging talks, the University of York and IBM UK for their support, and the
many ducks who helped to make the event a memorable one.

July 2014 Richard F. Paige

Preface

This volume contains the papers presented at the 8th International Conference
on Tests and Proofs (TAP 2014), held during July 24–25, 2014 in York, UK,
as part of the Software Technologies: Applications and Foundations (STAF)
federated event.

TAP 2014 is the 8th event in a series of conferences devoted to the synergy
of proofs and tests. Abandoning the traditional separation of formal verification
and testing as orthogonal research fields, TAP aims at the identification of com-
mon grounds of the different research communities. In particular, both follow
the goal to improve the quality of software and hardware, but with different
means. Therefore, TAP provides a forum for the cross-fertilization of ideas and
approaches from the formal verification community and the testing community
in order to drop earlier dogmatic views on the incompatibility of proving and
testing. TAP offers a meeting place for researchers who combine proofs and tests
in an interdisciplinary manner by taking the best from both worlds.

Since its first edition at the ETH Zürich in 2007, TAP has been organized
annually with great success. TAP was hosted by the Monash University Prato
Centre near Florence in 2008, the ETH Zürich in 2009, the University of Malaga
in 2010, the ETH Zürich in 2011, the Czech Technical University in Prague in
2012, and the Budapest University of Technology and Economics in 2013. From
2010 to 2012, TAP was co-located with the TOOLS conference series on advanced
software technologies. In 2013, TAP became part of the STAF federated event,
which was formed after the end of the TOOLS conference series.

For the 8th edition of the TAP conference hosted by the University of York,
UK, we initially received 33 submissions from which 27 were considered for re-
viewing. After a rigorous reviewing process and an intensive discussion phase,
we finally accepted 10 long papers and 4 short papers as well as 2 tutorial pre-
sentations. For each paper, we required at least three reviews from the Program
Committee or from subreviewers assigned by Program Committee members. The
overall quality of the submissions was very high. The accepted papers are con-
tributions related to the following four research topics: test generation, bridging
semantic gaps, integrated development processes, and bounded verification.

We wish to sincerely thank all authors who submitted their work for consid-
eration. Further, we would like to thank the Program Committee members as
well as the additional reviewers for their energy and their professional work in
the review and selection process. Their names are listed on the following pages.
The lively discussions during the paper selection were extremely vital and con-
structive.

We are very proud that TAP 2014 features a keynote by Ben Livshits on
“Finding Malware on a Web Scale”. As the core of several very large scale
malware-finding tools for JavaScript code is an interesting interplay of static

VIII Preface

and runtime analysis, this keynote perfectly fits within the scope of TAP. Be-
sides the two submitted tutorials selected by the Program Committee, we are
very happy to host an additional invited tutorial by Margus Veanes on “Sym-
bolic Automata”, a toolkit for efficiently manipulating and analyzing regular
expressions, symbolic finite automata and transducers, combining efficient rep-
resentations of large concrete sets and symbolic reasoning.

Finally, we would like to thank the organizers of the STAF event, in particular
the general conference chair Richard Paige, for their hard work and their support
in making the conference success, we thank the University of York for providing
the facilities, and we thank Springer for publishing these proceedings.

May 2014 Martina Seidl
Nikolai Tillmann

Organization

Program Committee

Dirk Beyer University of Passau, Germany
Achim D. Brucker SAP AG, Germany
Robert Clarisó Universitat Oberta de Catalunya, Spain
Marco Comini University of Udine, Italy
Catherine Dubois ENSIIE-CEDRIC, France
Juhan Ernits Tallinn University of Technology, Estonia
Gordon Fraser University of Sheffield, UK
Angelo Gargantini University of Bergamo, Italy
Christoph Gladisch Karlsruhe Institute of Technology, Germany
Martin Gogolla University of Bremen, Germany
Arnaud Gotlieb SIMULA Research Laboratory, Norway
Reiner Hähnle Technical University of Darmstadt, Germany
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Jacques Julliand Université de Franche-Comté, France
Thierry Jéron Inria Rennes - Bretagne Atlantique, France
Gregory Kapfhammer Allegheny College, USA
Nikolai Kosmatov CEA LIST Institute, France
Victor Kuliamin Russian Academy of Sciences, Russia
Karl Meinke Royal Institute of Technology Stockholm,

Sweden
Michal Moskal Microsoft Research, USA
Alexandre Petrenko Computer Research Institute of Montreal,

Canada
Holger Schlingloff Fraunhofer FIRST and Humboldt University,

Germany
Martina Seidl Johannes Kepler University Linz, Austria
Nikolai Tillmann Microsoft Research, USA
T.H. Tse The University of Hong Kong, China
Margus Veanes Microsoft Research, USA
Luca Viganò King’s College London, UK
Manuel Wimmer Vienna University of Technology, Austria
Burkhart Wolff University Paris-Sud, France

X Organization

Additional Reviewers

Baruzzo, Andrea
Bill, Robert
Bouquet, Fabrice
Bubel, Richard
Chai, Ming
Dangl, Matthias
Dury, Arnaud
Gerlach, Jens

Guardini, Davide
Hilken, Frank
Kääramees, Marko
Lackner, Hartmut
Langelier, Guillaume
Nguena Timo, Omer Landry
Niemann, Philipp
Ulbrich, Mattias

Table of Contents

Model-Based Mutation Testing of an Industrial Measurement Device . . . 1
Bernhard K. Aichernig, Jakob Auer, Elisabeth Jöbstl,
Robert Korošec, Willibald Krenn, Rupert Schlick, and
Birgit Vera Schmidt

Computing with an SMT Solver . 20
Nada Amin, K. Rustan M. Leino, and Tiark Rompf

An Abstraction Technique for Testing Decomposable Systems by Model
Checking . 36

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

An All-in-One Toolkit for Automated White-Box Testing 53
Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, and
Nikolai Kosmatov

Behaviour Driven Development for Tests and Verification 61
Melanie Diepenbeck, Ulrich Kühne, Mathias Soeken, and
Rolf Drechsler

Quality Assurance in MBE Back and Forth . 78
Sebastian Gabmeyer

Visualizing Unbounded Symbolic Execution . 82
Martin Hentschel, Reiner Hähnle, and Richard Bubel

Filmstripping and Unrolling: A Comparison of Verification Approaches
for UML and OCL Behavioral Models . 99

Frank Hilken, Philipp Niemann, Martin Gogolla, and Robert Wille

Generating Classified Parallel Unit Tests . 117
Ali Jannesari, Nico Koprowski, Jochen Schimmel, and Felix Wolf

JTACO: Test Execution for Faster Bounded Verification 134
Alexander Kampmann, Juan Pablo Galeotti, and Andreas Zeller

Explicit Assumptions - A Prenup for Marrying Static and Dynamic
Program Verification . 142

Johannes Kanig, Rod Chapman, Cyrille Comar, Jerôme Guitton,
Yannick Moy, and Emyr Rees

A Case Study on Verification of a Cloud Hypervisor by Proof and
Structural Testing . 158

Nikolai Kosmatov, Matthieu Lemerre, and Céline Alec

XII Table of Contents

Runtime Assertion Checking and Its Combinations with Static and
Dynamic Analyses: Tutorial Synopsis . 165

Nikolai Kosmatov and Julien Signoles

Generating Test Data from a UML Activity Using the AMPL Interface
for Constraint Solvers . 169

Felix Kurth, Sibylle Schupp, and Stephan Weißleder

Lightweight State Capturing for Automated Testing of Multithreaded
Programs . 187

Kari Kähkönen and Keijo Heljanko

How Test Generation Helps Software Specification and Deductive
Verification in Frama-C . 204

Guillaume Petiot, Nikolai Kosmatov, Alain Giorgetti, and
Jacques Julliand

Author Index . 213

Model-Based Mutation Testing
of an Industrial Measurement Device

Bernhard K. Aichernig1, Jakob Auer2, Elisabeth Jöbstl1, Robert Korošec2,
Willibald Krenn3, Rupert Schlick3, and Birgit Vera Schmidt2

1 Institute for Software Technology, Graz University of Technology, Austria
{aichernig,joebstl}@ist.tugraz.at

2 AVL List GmbH, Graz, Austria
{jakob.auer,robert.korosec,birgitvera.schmidt}@avl.com

3 AIT Austrian Institute of Technology, Vienna, Austria
{willibald.krenn,rupert.schlick}@ait.ac.at

Abstract. MoMuT::UML is a model-based mutation testing tool for
UML models. It maps UML state machines to a formal semantics and
performs a conformance check between an original and a set of mutated
models to automatically generate test cases. The resulting test suite is
able to detect whether a system under test implements one of the faulty
models instead of the correct, original model. In this work, we illus-
trate the whole model-based mutation testing process by means of an
industrial case study. We test the control logic of a device that counts
the particles in exhaust gases. First, we model the system under test
in UML. Then, MoMuT::UML is used to automatically generate three
test suites from the UML test model: one mutation-based test suite, one
set of random test cases, and a third test suite combining random and
mutation-based test case generation. The test cases are executed on the
system under test and effectively reveal several errors. Finally, we com-
pare the fault detection capabilities of the three test suites on a set of
faulty systems, which were created by intentionally injecting faults into
the implementation.

Keywords: test case generation, model-based testing, mutation testing,
automotive industry, UML.

1 Introduction

Testing of complex systems is a challenging and labour-intensive task. Approx-
imately 50% of the elapsed time and costs of a software project are spent on
testing [24]. Furthermore, the later a software error is detected, the higher are
the costs for fixing it [18]. Hence, tools and techniques to assist testers are de-
manded by industry. In this work, we present a formal approach to software
testing and demonstrate its applicability in an industrial setting.

Figure 1 gives an overview of our approach, which we refer to as model-based
mutation testing. Yellow parts highlight the aspects of mutation testing that we

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 1–19, 2014.
© Springer International Publishing Switzerland 2014

2 B.K. Aichernig et al.

Fig. 1. Overview of model-based mutation testing

integrate into model-based testing, which is depicted in grey. Model-based test-
ing (MBT) is a black-box testing technique requiring no knowledge about the
source code of the system under test (SUT). Only the interface to the SUT has to
be known. A test engineer creates a formal model that describes the expected be-
haviour of the SUT (Step 1). Test cases are then automatically derived from this
test model. A crucial matter in MBT is the choice of the test criterion. It specifies
which test cases shall be generated and hence, has a great influence on the qual-
ity of the resulting test suite. Exhaustive testing, i.e., using all of the test cases
that can possibly be created from the test model, is impractical. Examples for
commonly used test criteria are coverage criteria, random traversals, equivalence
classes, or specified testing scenarios (test purposes). We follow a fault-centred
approach, i.e., use mutations for test case generation (TCG). We syntactically
alter the original test model producing a set of mutated models (Step 1a). We
then automatically generate test cases that kill the model mutants, i.e., reveal
their non-conforming behaviour. This is accomplished by a conformance check
between the original and the mutated models (Step 2). As the test model is
an abstraction of the SUT, also the derived test cases are abstract. Hence, they
have to be concretised, i.e., mapped to the level of detail of the SUT (Step 3).
Finally, the concrete test cases can be executed on the SUT (Step 4) and the
test results can be analysed (Step 5). A particular feature of the generated test
suites is their fault coverage. The generated tests will detect whether a faulty
model has been implemented instead of the correct, original model. Hence, the
generated test suite covers all of the modelled faults expressed by the model
mutation operators and has a high chance of covering many additional similar
faults (cf. coupling effect [14]).

Tool support for our model-based mutation testing approach is provided by
the MoMuT::UML test case generator. It takes a UML model of the SUT, au-
tomatically creates mutated models, and subsequently uses these models for the
automatic generation of abstract test cases. For model creation, we rely on ex-
ternal UML modelling tools like Visual Paradigm. The concretion and execution
of the abstract test cases has also not been integrated in MoMuT::UML as these
tasks highly depend on the SUT.

Model-Based Mutation Testing of an Industrial Measurement Device 3

We already presented and applied the model-based mutation testing approach
previously [2]. However, this earlier work relied on an enumerative TCG engine.
One contribution of this work is the application of a new and more efficient
TCG engine based on SMT solving techniques. Underlying research has already
been presented in [3–5]. However, these earlier tool versions did not yet support
the full language required for the UML approach and additionally used Prolog’s
constraint solver instead of the SMT solver Z3. Hence, this is the first time that
we apply our SMT-based TCG tool to a UML model.

The main contribution is a comprehensive case study: we demonstrate the
whole model-based mutation testing process on an industrial use case from the
automotive domain incl. modelling, test generation, concretion, as well as exe-
cution and analysis of the test results. Moreover, we evaluate the fault detection
capability of the mutation-based tests on a set of faulty SUTs and compare it
with random tests and a test suite combining random and mutation-based tests.

The rest of this paper is structured as follows. Section 2 presents the SUT
and describes how it has been modelled in UML. Section 3 deals with test case
generation with MoMuT::UML and Section 4 reports on test execution. Finally,
we discuss related work in Section 5 and conclude the paper in Section 6.

2 System under Test: A Particle Counter

The SUT is a measurement device for the automotive domain produced by AVL1

which is used to measure particle number concentrations of diluted exhaust
gas in compliance with UNECE-83 and PMP2. The particle counter consists
of a conditioning component (volatile particle remover VPR) and the actual
particle number counter (PNC). The VPR consists of the first dilution step, an
evaporation tube, and a secondary dilution step.

In order to count non-volatile particles, a pump draws the exhaust gas into a
sampling probe which eliminates all particles >2.5 μm. The sampled exhaust gas
is then diluted with cleaned hot air to stabilize the particle number concentra-
tion. After the hot primary dilution, the diluted exhaust gas is further heated up
in the evaporation tube in order to convert all volatile particles into the gaseous
phase. Afterwards, a secondary dilution is performed to prevent further conden-
sation or adsorption of volatile substances and to ensure that the maximum inlet
temperature of the particle number counter (PNC) is not exceeded. Within the
PNC the particles are enlarged due to the condensation of butanol and detected
and counted using the light-scattering method.

In this paper we are concerned with testing the control logic of the particle
counter, which offers several different operation modes to the user. For exam-
ple, the user can choose between continuously measuring the current particle
concentration or accumulating the number of particles counted over a period
of time. During the measurement, the ratio by which the exhaust gas is mixed
with particle-free dilution air can be adjusted. Additionally, there is a command
1 https://www.avl.com/particle-counter, 18.03.2014
2 http://www.unece.org/, 14.05.2014

https://www.avl.com/particle-counter
http://www.unece.org/

4 B.K. Aichernig et al.

entry /
 body = Manual = true;

entry /
 body = Manual = false;

Manual Remote

Initial_bottom DilutionSelection / setDilution

SetRemote

SetManual / send Offline

DilutionSelection, LeakageTest, ResponseCheck, SetPurge, SetZeroPoint, StopIntegralMeasurement, StartIntegralMeasurement / send RejectOF

SetManual

/ send Offline

when not Manual / send Online

SetRemote / send Online

Fig. 2. The orthogonal region modelling the communication mode changes

to measure pure, particle-free air to check whether the sensors are calibrated
correctly. Other commands are provided for necessary maintenance tasks like a
leakage test, a response check, or for purging the sampling line.

In total, the particle counter distinguishes between eight different operating
states that can be triggered via the testing interface. They include two idle states
(Pause and Standby) as well as states like Measurement or Purging. Additionally,
there are two different communication modes: Manual for controlling the particle
counter directly via the buttons at the device and Remote for controlling the
system remotely via a client, which will be tested. Furthermore, the system may
switch from a Ready to a Busy status when processing a command.

The device receives commands from the user interface and shows its current
state and each change between different internal modes. Commands from the
user may be rejected (a) if the command is not available in the current operating
state, (b) if the system is in the wrong communication mode, or (c) if the system
is busy. In each case, the system returns an appropriate error message.

Initially, the system is idle (Pause operating state), Ready to accept com-
mands, and expects Manual communication. In order to receive commands via
our testing interface, it has to be set into the Remote communication state.

Every system update must be tested on a testbed that is equal to the cus-
tomer’s setup. However, this is complex and expensive when physical devices are
used. A solution are virtual testbeds, where the combustion engine as well as
the measurement device are simulated by real-time software. The simulation of
the particle counter is basically a Matlab Simulink3 model, which is compiled
to a real-time executable. Thus, only two computers are required: one runs the
simulation, the other one the test driver and the client for communication with
the simulated SUT. In this work, we test the simulation of the particle counting
device. However, the generated test cases can of course also be executed on the
physical device. For more details on our test execution setup, see Section 4.

Test Model. The test model has been created with the UML editor Visual
Paradigm 10.2. It comprises a class diagram for specifying the testing interface,
i.e., possible input and output events, and a state machine for modelling the
behaviour of the SUT. The state machine consists of three orthogonal regions.
One for the operating state, one for switching between busy/ready, and one for

3 http://www.mathworks.co.uk/products/simulink, 18.03.2014

http://www.mathworks.co.uk/products/simulink

Model-Based Mutation Testing of an Industrial Measurement Device 5

Java Java

Prolog

Prolog

AlarmSystem_StateMachine

Alarm

Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

ash

Sound

Papyrus MDT/
Visual Paradigm Aldebaran aut format

Java
frontend

backend

Fig. 3. Architecture of the MoMuT::UML tool chain

the communication modes. The latter is shown in Fig. 2. It is the simplest of the
three regions. The whole state machine consists of 19 states (5 nested into the
top-level states and further 7 nested into these) and 39 transitions (excluding
initial transitions). Transitions are triggered by signal receptions from the out-
side, by changes of internal variables, or by progress of time. OCL4 expressions
are used for expressing guards on variable values and on states of other regions.
Transition effects and entry/exit actions send outgoing signals or change the
value of internal variables. We use AGSL [35] as action language.

3 Test Case Generation with MoMuT::UML

MoMuT::UML automatically generates test cases from UML models. Figure 3
gives an overview of the inputs, outputs, and the architecture. As input, it re-
quires (1) a class diagram and (2) a state machine modelling the SUT. Although
there exist plenty of UML modelling tools, most of them work with a very spe-
cific or proprietary format. Hence, it is not feasible to support all possible UML
modelling tools and we concentrated on support for Papyrus MDT5 (an Eclipse
plugin) and Visual Paradigm for UML 10.26. Like all model-based testing tools,
MoMuT::UML delivers abstract test cases, which describe sequences of events
on the model’s level of abstraction. MoMuT::UML uses the Aldebaran format7
to represent test cases. It is a very simplistic and straightforward format for
Labelled Transition Systems (LTS). The format is also supported by other tools,
e.g., the popular CADP toolbox8.

An exemplary abstract test case for the particle counter’s control logic is
depicted in Fig. 4. It is a direct graphical representation of the textual test case
in Aldebaran format produced by MoMuT::UML. Note that we deal with positive
test cases, i.e., they only contain desired behaviour as specified in the original
test model. Fail verdicts are implicit: every reaction from the SUT that is not
specified in the test case leads to a fail verdict. In the test case, we distinguish

4 http://www.omg.org/spec/OCL/, 13.05.2014
5 http://www.eclipse.org/papyrus, 18.03.2014
6 http://www.visual-paradigm.com/product/vpuml, 18.03.2014
7 http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html#sect6, 18.03.2014
8 http://cadp.inria.fr, 18.03.2014

http://www.omg.org/spec/OCL/
http://www.eclipse.org/papyrus
http://www.visual-paradigm.com/product/vpuml
http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html#sect6
http://cadp.inria.fr

6 B.K. Aichernig et al.

between controllable actions (prefix ctr) and observable actions (prefix obs).
Controllable actions are inputs for the SUT and are provided by the tester.
Observable actions are outputs from the SUT and can be observed by the tester.
These observable actions are used by the tester to give verdicts. If the SUT issues
an output that is not specified in the test case, the verdict is fail. Otherwise, the
execution of the test case continues, or a pass verdict is reached. Note that the
first parameter of each action in our test cases denotes time. For controllable
actions, it states the number of time units the tester has to wait before sending
the input to the SUT. For observable actions, it denotes the period of time in
which the SUT may deliver a specified output.

obs StatusReady(0)

obs SPAU_state(0)

obs Offline(0)

ctr SetStandby(0)

obs StatusBusy(0)

obs STBY_state(0)

obs Online(0)

obs StatusReady(30)

ctr StartMeasurement(0)

obs StatusBusy(0)

obs SMGA_state(0)

obs StatusReady(30)

ctr StartIntegralMeasurement(0)

obs SINT_state(0)

ctr SetStandby(0)

obs STBY_state(0)

pass

Fig. 4. A sample test case

Initially, the system is ready, in operating
state Pause – SPAU, and offline. This is reflected
by the first three events in the test case depicted
in Fig. 4. Then, it requests the system to switch
to the Standby operating state. This entails a se-
quence of outputs from the system: it becomes
busy, moves to operating state Standby (STBY),
switches to the remote mode (online), and fi-
nally becomes ready within 30 seconds. The next
input to the SUT starts the measurement of
the current particle concentration. Again, a se-
quence of observations similar to the previous
one is triggered. Being ready and in operating
state measurement (SMGA), the system must
accept the command that starts integral mea-
surement, i.e., cumulative particle measurement.
In this case, the system does not become busy,
but directly switches to the according operating
state (SINT). Finally, measurement is stopped
by returning to the Standby (STBY) state.

As shown in Fig. 3, MoMuT::UML’s architec-
ture distinguishes between frontend and back-
end. The frontend is implemented in Java, the
backend relies on native code.

Frontend. The frontend is responsible for con-
verting the UML model into a representation suitable for the backend, i.e., the
actual test case generator. First, the UML model is transformed into a labelled
and object-oriented action system (OOAS [23]). This executable intermediate
representation has formal semantics and is based on a generalisation of Dijk-
stra’s guarded command language [25] and Back’s action system [9] formalism.
Most UML elements can be directly mapped to the corresponding OOAS struc-
tures, e.g., classes, member fields, and methods. Transitions of the state machine
are - roughly speaking - mapped to actions. Only the time- and event semantics
of UML needs to be expressed by more complex OOAS structures. Second, the

Model-Based Mutation Testing of an Industrial Measurement Device 7

Table 1. Number of model-mutants per mutation operator

Mutation Operator # Upper Bound

Set Guard to False 22 O(t) t. . . # transitions9
Set Guard to True 21 O(t) t. . . # transitions with guard
Set OCL Sub-Expr. False 115 O(e) e. . . # boolean OCL sub expressions
Set OCL Sub-Expr. True 115 O(e) e. . . # boolean OCL sub expressions
Invert Change Expr. 2 O(t) t. . . # transitions with change trigger
Invert Guard 21 O(t) t. . . # transitions with guard
Invert OCL Sub-Expr. 115 O(e) e. . . # boolean OCL sub expressions
Remove Change Trigger 2 O(t) t. . . # transitions with change trigger
Remove Effect 28 O(t) t. . . # transitions with effect
Remove Entry Action 11 O(s) s. . . # states with entry actions
Remove Exit Action 2 O(s) s. . . # states with exit actions
Remove Signal Trigger 44 O(t) t. . . # transitions with signal trigger
Remove Time Trigger 6 O(t) t. . . # transitions with time trigger
Replace Effect 2044 O(t · te) t. . . # transitions, te . . .# transitions with effects
Replace Signal Event 528 O(t · sg) t. . . # signal triggered transitions, sg. . . # signals
Replace OCL Operator 27 O(o) o. . .# of and, or,<,≤, >,≥,=, �=,+,−, ∗, div

OOAS is lowered to a non-object-oriented, but still labelled action system (AS)
the backend can work with.

The frontend is also home to the mutation engine that injects faults to con-
struct model mutants. Mutations are inserted at the UML level. The mutation
operators (cf. Table 1) are applied to the following state machine elements: trig-
gers, guards, transition effects, entry- and exit actions. The elements are either
removed or replaced with another element of the same type from the model. This
leads to O(n) mutants for the removals and O(n2) mutants for the replacements
(with n being the number of considered elements in the model). Additional op-
erators exist for change-trigger expressions, for guards expressed in OCL and
for effect, entry-/exit action and method bodies. The modifications made here
are: exchange operators, modify literals, fix (sub-)expressions to literals. They
all lead to O(n) mutants. After all model mutants have been generated, they are
converted into action systems similarly to the original UML model.

Backend. These action systems serve as input for the TCG backend. There exist
two alternative implementations: an enumerative and a symbolic TCG engine.
The enumerative backend is called Ulysses . It is a conformance checker for action
systems and performs an explicit forward search of the state space. This pro-
cess yields the labelled transition system (LTS) semantics of the UML models.
The conformance relation in use is input-output conformance (ioco). Informally,
ioco conformance is given if for all input/output traces of the specification the
implementation does only produce output allowed by the specification. Notice
that an implementation may react arbitrarily to unspecified inputs, which means
that ioco supports partial specifications. Partial-model support is an important
feature as incorporating all aspects of a complex SUT in one monolithic model
is hard. When executing Ulysses during TCG, the original model is treated as
the specification, while the mutated models are considered implementations. For

9 Due to a bug in the mutation engine only one guard-less transition was mutated.

8 B.K. Aichernig et al.

a formal definition of ioco and LTSs, we refer to Tretmans [32]. For further
information on the enumerative backend, see our previous work [2].

Experiments have shown that the performance of the explicit conformance
checker Ulysses is lacking when the tool is applied to complex models. Therefore,
a second backend exploiting SMT solving has been implemented. It interfaces
with Microsoft’s SMT solver Z310. In this paper, we concentrate on this symbolic
TCG engine. It supports two conformance relations: ioco and refinement. Our
refinement relation is defined similarly as in [19], i.e., the mutated action system
must imply the original action system for all possible observations, which are
defined via a predicative semantics. Intuitively, it states that an implementation
must not reach states or events that are not allowed by the specification. For a
formal definition, we refer to [5, 21].

The basic idea of our refinement checking approach is to encode the transition
relation as well as a condition that decides about refinement as SMT formulas [4].
We then use Z3 to see whether non-refinement can be proven and if so, proceed
with test case generation. Since the refinement check is the corner stone of our
test-case generation approach, it needs to be quick. Here we benefit from the
SMT solver as it solves the constraints in general more efficiently than is possible
by simple enumeration-based approaches. One particular example is the progress
of time where the discrete time domain typically ranges over some bounded set
of positive integers: only at certain points in time, defined by the time triggers in
the UML model, some action will be enabled. Enumerating all positive integer
values to find the right point in time where some action is enabled is much more
time consuming (for high bounds) than symbolically solving the constraints.
While the refinement check is fully symbolic, the reachability check (finding a
trace to the point of non-refinement) relies on explicit state enumeration, which
itself uses the SMT solver and the symbolic encoding of the transition relation
to compute the states. We optimised our basic approach and achieved significant
performance gains [3,5]. However, in these earlier publications we did not support
all elements of the action system language required for the integration with the
MoMuT::UML frontend. Adding the missing features and working with more
complex models meant that we had to give up on SICStus Prolog’s built-in
constraint solver and switch to Z3.

Our refinement relation is rather strict as it disallows differences of internal
states. In addition, it does not distinguish between inputs and outputs. Hence,
additional inputs in the SUT lead to non-refinement and partial models be-
come useless. Therefore, the symbolic backend also offers an ioco check: it uses
the SMT solver to repeatedly solve the transition relation of the action sys-
tems, thereby gaining the underlying LTSs. This implementation is more effi-
cient compared to the enumerative backend – particularly in terms of memory
consumption. However, an ioco check between complex models is still expensive.

To counteract, our symbolic TCG engine offers a third option that combines
the strict, but efficient refinement check with an ioco check. We consider the
refinement check as weak mutation testing, where a wrong internal state already

10 http://z3.codeplex.com, 18.03.2014

http://z3.codeplex.com

Model-Based Mutation Testing of an Industrial Measurement Device 9

Table 2. TCG details for mutation (M), random (R), and the combined (C) test suites

Test Suite
M R C

Max. Depth [ref/rand + ioco] 18 + 7 25 + 0 20 + 5

Model Mutants [#] 3103 3103 3103

Model Mutants Killed By Rand. TC [#] - 2173 1819

Model Mutants Surviving [ref/rand + ioco] 375 + 177 930 + 0 375 + 308

Gen. TCs [# unique (+ dupl./invalid)11] 67(+9) 238(+2) 57(+7)

Max. TC Depth [steps] 19 25 20

Overall Gen. Time [#workers, hh:mm:ss] 21, 44:08:49 1, 1:43:39 21, 67:34:35
Gen. Time Mutants [mm:ss] 14:12 - 15:32
Gen. Time AS [mm:ss] 13:03 00:01 11:57
Avg. Time - Generate TC [mm:ss] 12:43 00:26 26:47
Avg. Time - Equiv. Mutant [mm:ss] 22:42 - 24:26
Avg. Time - Kill Mutant w. TC [mm:ss] 2:59 - 2:42

kills a mutant. In contrast, strong mutation testing additionally requires that
this wrong internal state propagates to a wrong observation, which is checked
by ioco. Hence, we first perform a refinement check. Only if non-refinement is
identified, we append an ioco check. Note that this ioco check does usually not
start at the initial state, but at a deeper state. This allows for higher exploration
depths and hence longer test cases.

In addition to the mutation-based TCG, both backends offer random traver-
sals of the test model to generate a random test suite of a given size (in terms
of the number of generated tests and their length). MoMuT::UML also allows
the combination of random and mutation-based testing. This TCG strategy first
generates a set of random tests and runs them on the mutated models to see
which model mutants are killed. In a second step, the surviving mutated models
are used as input for the more complex mutation-based TCG.

Before generating a new test case, both backends check whether an already
existing test case kills the new model mutant. This check is done to avoid gen-
erating duplicate test cases and to minimise the size of the generated test suite.
Finally, we want to point out that the mutation-based TCG lends itself to paral-
lel processing, as each model/mutant pair is independent. Hence MoMuT::UML
supports TCG with multiple, parallel running workers: the user states the de-
sired number of workers and the tool partitions the set of model mutants such
that mutants are processed in parallel.

3.1 Test Case Generation for the Particle Counter

Using the symbolic backend, we generated three test suites: the first test suite,
denoted M, is mutation-based, the second, called R, is randomly generated, and
the third one, referred to as C, is a combined random/mutation test suite. To

11 M and C: Number of duplicate tests due to parallel TCG.
R: Number of invalid tests due to the abstraction of time in the model.

10 B.K. Aichernig et al.

generate M and C, we used our combination of refinement and ioco as explained
before. All test suites were generated on a computer equipped with about 190 GB
RAM and two 6-core Intel Xeon processors (3.47 GHz), running a 64-bit Linux
(Debian 7.1). The system supports hyper-threading, hence 24 logical cores were
available and allowed the exploitation of MoMuT::UML’s multi-worker capabil-
ity. The approximate complexity of the model can be estimated when considering
the bounded integer types of the 87 state variables. Theoretically, the state space
consists of about 2.7 · 1036 states. However, not all of these states are reachable
from the initial system state by applying the 139 actions of the model.

Table 2 presents the most important figures for each of the three test suites.
The first row shows the maximum exploration depth that was kept a constant 25
steps with M and C differing in the balance of the refinement and ioco depth.
This was done in order to explore the relative effect of these two bounds. In
total, 3103 model mutants were generated. Strategies R and C, both employing
random tests, are able to kill 70% and 59% of the model mutants with the random
tests only. The difference in the effectiveness is explained by the differences in
depth (25 vs. 20) and number (238 vs. 20) of the random tests. After TCG, we
have a total of 552, 930, and 683 model mutants not covered by test cases for
strategies M, R, and C respectively. Examining the difference between M and
C, we found that this is due to the reduced ioco-depth, which prevented C from
finding 6 test cases M was able to find. The three strategies produce test suites
differing in size and maximum depth of the test cases: M comprises 67, R 238,
and C 57 unique tests that can be executed on the SUT. Duplicates in M and C
are due to the race condition between multiple worker threads generating tests
in MoMuT::UML, while R generated a small number of tests not applicable to
the SUT due to the abstraction of time in the model. Looking at the maximum
length of the generated test cases, we can see that M has the shortest tests with
a maximum depth of 19, while in R and C the maximum depths, determined
by the random strategy, are 25 and 20 respectively. The overall generation times
in Table 2 include model-mutant generation, UML to OOAS to AS mapping,
and the actual TCG process. The latter takes advantage of 21 parallel workers
for test suites M and C. Note that the generation times for M and C are not
comparable due to the different exploration depths. Times for mutant generation
and OOAS to AS mapping are also given separately in the table. The last three
rows give average values for the time required for creating one new test case,
for processing a mutant that is equivalent up to the given depth, and the time
needed for checking whether an existing test already kills a model mutant.

Although we allowed for a refinement search depth of up to 20, none of the
tests has a refinement-depth greater than 17. Changing the maximum ioco-depth
had a bigger influence. While almost all tests were found with an ioco-depth of
less than three, there were four tests that needed a depth of seven. Further
analysis of the data indicates that our bounds were not high enough to find all
possible test cases. For example, in some instances the random tests of C were
able to kill mutants deemed equivalent by M.

Model-Based Mutation Testing of an Industrial Measurement Device 11

Fig. 5. Breakup of computation time and final fault coverage

Figure 5 shows a detailed breakup of the computation time and fault coverage
for test suite M and the mutation-part of test suite C. The figures on the compu-
tation time prove that we spend more than 60% of the total TCG time checking
equivalent model mutants. Note that this percentage is even higher for strategy
C since the 20 random tests already kill many non-equivalent mutants. The data
also demonstrates that our mutation engine needs to be improved to generate
more meaningful mutants as in test set M 80% of the model mutants are covered
by test cases generated for two percent of them. The combined strategy C has
a better ratio due to the random tests removing a lot of model mutants.

We also attempted to generate test suite C using the enumerative backend but
otherwise using the same setup. While the symbolic backend proved to be CPU-
bound, i.e., we were never in danger of running out of RAM, the enumerative
backend was unable to finish the task due to excessive memory consumption.
Even with many of the parallel computations being prematurely aborted, the
computation time exceeded 144 hours.

4 Concretion, Test Execution, and Analysis of Results

Before the abstract test cases, which have been generated by MoMuT::UML,
can be executed on the SUT, the tests need to be concretised and brought
to the level of abstraction of the SUT. This can either be accomplished by a
translation of the abstract test cases into executable test cases or by a special
test driver, which performs this adaptation on the fly during execution. As the
existing test infrastructure of AVL is based on concrete unit tests, we chose the
first option and mapped the abstract test cases to valid NUnit12 test methods.

12 http://www.nunit.org, 18.03.2014

http://www.nunit.org

12 B.K. Aichernig et al.

Listing 1.1. The C# test case corresponding to the abstract test case of Fig. 4

1 public void CMB_AVL489_MUTATION_guard_false__transition_9() {
2 avl489.WaitForReady(1);
3 avl489.WaitForState(AVL489.States.Pause, 0);
4 avl489.WaitForManual(1);
5 avl489.Standby();
6 avl489.WaitForBusy(1);
7 avl489.WaitForState(AVL489.States.Standby, 0);
8 avl489.WaitForRemote(1);
9 avl489.WaitForReady(1);

10 avl489.StartMeasurement();
11 avl489.WaitForBusy(1);
12 avl489.WaitForState(AVL489.States.Measurement, 0);
13 avl489.WaitForReady(1);
14 avl489.StartIntegralMeasurement();
15 avl489.WaitForState(AVL489.States.IntegralMeasurement, 0);
16 avl489.Standby();
17 avl489.WaitForState(AVL489.States.Standby, 0);
18 }

Transforming the events of the abstract test cases into concrete method calls
in the NUnit tests proved to be straightforward and has been implemented via
simple XML-configured text substitutions. For example, the test case shown in
Fig. 4 is mapped to the C# test method shown in Listing 1.1. Controllable
events are directly mapped to method calls of the SUT’s interface. Observable
events are not as simple to map. Because the SUT does not actively report
state changes, observable actions like WaitForManual have to be implemented
via repeated polling of the system’s state. If the desired state is not reached
within a specified time span, the method throws an exception leading to a fail
verdict. Unfortunately, repeated polling of the complete SUT state turned out
too expensive. We therefore had to weaken our testing approach and only poll
the state variables of the SUT related to the expected observable event. This
means that the execution of a test will yield a pass verdict although the SUT
produces additional, unspecified outputs to the expected one. This change, which
we could not avoid, limits our ability to find faults via the coupling effect and
means that we cannot guarantee that the ioco relation holds between the SUT
and the model - not even with exhaustive testing. For details on the mapping
between abstract and concrete tests and the test execution setup, we refer to [8].

We would like to remark that the concretion of abstract test-cases can not
always be automated as easily as in our case. The more abstract the model,
the more work has to be done during the mapping and the more likely it is to
introduce bugs. However, running the resulting test cases is an effective means
of finding bugs in the concretion step. Also, code reviews of test driver and/or a
sample of concrete test cases in connection with test-runs on known-to-be-wrong
SUT mock-ups will further increase the confidence in a correct mapping.

4.1 Execution Results for the Particle Counter

The generated test cases were executed on the simulation of the device as de-
scribed above and effectively revealed several errors. Although the simulation

Model-Based Mutation Testing of an Industrial Measurement Device 13

Table 3. SUT Mutants

Number Description

1 Operation SetManual disabled in state Measurement
2 Operation SetManual disabled in state IntegralMeasurement
3 Operation SetManual disabled in state Purging
4 Device will not become Busy when changing to state Pause
5 Device will not become Busy when changing to state Standby
6 Device will not become Busy when changing to state Leakage
7 Operation SetRemote disabled in state Zerogas.
8 Operation SetRemote disabled in state Purging.
9 Operation SetRemote disabled in state Leakage.

10 Duration the device stays Busy divided in half.
11 Duration the device stays Busy doubled.
12 Operation StartMeasurement disabled.
13 Operation StartIntegralMeasurement disabled.
14 Operation SetPurge disabled.
15 Operation Zerogas disabled.
16 Device becomes Busy after SetPause in state Pause

was in use for several years already, these tricky bugs had not been identified so
far. In the following, we give an overview of the errors.

One class of errors relates to changes of the operating state, which should
not be possible when the device is busy. In the first case, the simulation allowed
a switch from the operating state Pause to Standby, although the device was
busy. The second issue concerned the activation of the integral measurement
of the number of particles over a period of time. If the device is measuring the
current particle concentration and is still busy, the system must reject the request
for cumulative measurement. However, the simulation accepted the command.
Further issues in the simulation were encountered when sending multiple inputs
to the SUT in a short period of time. The simulation accepted them without
any error messages, creating the impression that the inputs were processed. In
reality, however, the inputs were absorbed and ignored. The correct behaviour
is to emit appropriate error messages.

Not only the simulation of the device was erroneous but also the client for re-
mote control of the device. The client did not correctly receive all error messages
from the simulation. Normally, if the device is offline and receives the command
to change the dilution value, it returns the error message RejectOffline. In this
particular case, the error messages were not recorded.

4.2 Evaluation of the Test Suites

After the bugs described in the previous section had been fixed, a set of arti-
ficial faults were injected to evaluate the fault detection capabilities of the test
suites. In total 16 faulty implementations (cf. Table 3) with a varying likelihood
of detection were prepared by AVL. In the following, we refer to these faulty
implementations as SUT mutants, in contrast to the model mutants we use to
derive test cases. Two computers, running Windows 7 (64-bit), were needed for

14 B.K. Aichernig et al.

Table 4. Test case execution results

Test Suite
M R C

TCs [#] 67 238 57

Exec. Time on Original SUT [hh:mm] 00:29 01:36 00:29
Exec. Time on All Faulty SUTs [hh:mm] 07:53 27:24 08:07
Survived Faulty SUTs [#] 4 6 3
Mutation Score [%] 75 62.5 81.25

Fig. 6. Evaluation Results

test case execution. The first one was simulating the particle counter and ran
the real-time simulation of the device, using about 300 MB RAM, while the sec-
ond one ran the test driver communicating with the simulated device. The test
driver and the client for remote communication with the simulated measurement
device required one core and about 1 GB of RAM.

Table 4 summarises the test suite evaluation runs. As can be seen, running the
random test suite R took roughly three times as long as any of the two remain-
ing test suites. Besides being most expensive when run, it also has the lowest
mutation score. The mutation score measures the effectiveness of a test suite in
terms of its mutation detection ability. It is defined as the ratio of killed mutants
to the number of non-equivalent mutants. Note that there are no equivalent SUT
mutants as we did not apply mutation operators, but deliberately injected faults
in the SUT. The combination of random and mutation tests achieved the best
results in this evaluation: test suite C does not only have the lowest number of
test cases, but also the highest mutation score. The execution time on the faulty
SUTs varied depending on how many tests failed, i.e., did not have to be fully
executed.

Model-Based Mutation Testing of an Industrial Measurement Device 15

Figure 6 highlights the results in more detail. In particular, the figure shows
that two of the SUT mutants (7 and 9) were not found by any of the tests. These
two artificial faults disable the ability to switch the system online in specific oper-
ating states that can only be reached within a sequence of at least 8 and 9 steps.
The faulty SUT no. 8 shows the same behaviour but in an operating state that is
easier to reach. Since the affected functionality is split across multiple regions of
the UML model, there is no simple model mutation directly emulating this type of
problem. Hence, we identified a weakness in our set of model-mutation operators
that causes MoMuT::UML to miss test cases that cover these errors. The faults
were very unlikely to be found by random tests as they were buried deep in the
model. Comparing test suites M and C reveals that C could even have a higher
killing rate if we had not restricted the ioco-depth below the value of M (cf. SUT
mutant 8). We also checked whether the test environment’s inability to observe
the full state of the SUT had adverse effects on test suites M and C. We found
this, indeed, to be the case. One example is SUT mutant 16. It is not killed by
test suite M due to the test execution setup. Given full observability of the SUT’s
state, test suite M would kill this SUT mutant. Test suite C kills this mutant de-
spite the restricted observations as one random test detects the fault.

General threats to the validity of this case study can be summarised as fol-
lows: (1) The set of manually prepared SUT mutants might be a sample too
small. To guard against this, the experts at AVL came up with a diverse set of
SUT mutants representing typical faults they consider as being relevant. (2) The
limitation of the test environment to snapshot the full state of the device might
weaken our testing approach. This is indeed the case but we still get a very good
detection rate. (3) We only run one set of random tests and, hence, one might
argue that a different set might have done better. We are aware of this issue,
which was caused by the limited amount of time we had in the lab. We tried to
mitigate it by creating a sufficiently large and deep (the random tests are the
deepest) test suite. Finally, (4) the style of modelling limits the test cases that
can be generated. This is an issue only in very specialised cases of the presented
case study and does not weaken the general outcome.

In summing up, the results corroborate that, while fault-based TCG is ex-
pensive, it leads to high-quality test suites. This is in line with previous results
reported by others, cf. [29]. Also, our combined random and mutation strat-
egy really combines the best of two worlds: cheap random tests with directed,
fault-based tests and the guarantee to cover certain faults.

5 Related Work

To our knowledge, this is the first test case generation approach that deals with
UML state machines, uses mutations, and is based on constraint/SMT solving.

A lot of research has been conducted on automated test case generation from
UML state machines. However, none of these works is mutation-based. Indeed,
there has been previous work on mutation testing of UML state machines but
in terms of model validation [15]. It seems that we are the first who actually

16 B.K. Aichernig et al.

generate test cases from mutated UML state machines. One of the first tools for
test case generation from UML state machines was based on various coverage
criteria [27]. Following this lead, many other approaches also concentrated on
coverage-based test case generation, e.g., [16,22,36]. Apart from coverage criteria,
also test purposes/specifications are a popular way to derive test cases. This
approach has also been employed in several works on test generation from UML
state machines, e.g., [12,17,30]. Besides academia, commercial companies provide
tools for test case generation from UML state machines [33], e.g., Smartesting
CertifyIt13, IBM’s Rational Rhapsody14 with the add-on for Automatic Test
Generation (ATG), or Conformiq Designer15. Finally we want to point to other
industrial-sized MBT case studies in [2,33] and refer to a brief literature review
on test case generation from UML state machines [1].

Regarding model-based mutation testing, one of the first models to be mutated
were predicate-calculus- [13] and Z specifications [31]. Later on, model checkers
were used to check temporal formulae expressing equivalence between original
and mutated models. Model checkers work very similar to our approach. In case
of non-equivalence, they produce counterexamples that serve as test cases [7]. In
contrast to our work, which can cope with non-deterministic models, most test
case generation approaches using model checkers solely deal with deterministic
systems. Nevertheless, there also exist work considering non-determinism and the
involved difficulties, e.g., [10,28]. In addition, [26] considers non-determinism, but
does not work with mutations. For a survey on mutation testing incl. mutation-
based test case generation, we refer to [20]. The idea of using an ioco checker
for mutation testing comes from Weiglhofer, who tested against Lotos specifica-
tions [6]. Like our enumerative backend Ulysses [11], Weiglhofer’s ioco checker
relies on enumerative techniques. A general taxonomy of model-based testing
approaches can be found in [34].

6 Conclusion

We gave an overview of our formal testing approach called model-based muta-
tion testing and its implementation in MoMuT::UML. We combine model-based
testing with mutation testing to generate a test suite that guarantees the cov-
erage of certain modelled faults. We conducted a comprehensive case study on
an industrial use case from the automotive domain: a particle counter. We be-
gan with the modelling of the system under test in UML. This test model has
subsequently been used for test case generation with MoMuT::UML, resulting
in three test suites: a mutation-based test suite, a random test suite, and a
combined random- and mutation-based test suite. We showed how the resulting
abstract tests were mapped to concrete tests before being executed on the sys-
tem under test. Our test cases effectively revealed subtle errors that have neither

13 http://www.smartesting.com/en/product/certify-it, 18.03.2014
14 http://www-03.ibm.com/software/products/en/ratirhapfami, 18.03.2014
15 http://www.conformiq.com/products/conformiq-designer, 18.03.2014

http://www.smartesting.com/en/product/certify-it
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www.conformiq.com/products/conformiq-designer

Model-Based Mutation Testing of an Industrial Measurement Device 17

been found by manual testing nor by the operation of the system over several
years.

After fixing these bugs we deliberately injected faults to assess the fault de-
tection capabilities of our three test suites. It turned out that the random test
suite, although it is the largest with 238 test cases, achieved the lowest mutation
score (62.5%). In contrast, the combination of random and mutation-based tests
resulted in the smallest test suite (57 test cases) with the best detection rate
(∼81%). The mutation-based test suite was of similar size (67 test cases), but
achieved a lower mutation score (75%). Our case study demonstrates that the
combination of random and mutation-based test case generation is beneficial.
Random tests are generated with relatively low effort and mutation-based test
case generation completes the test suite to guarantee coverage of the modelled
faults. This confirms our earlier work, where we came to the same conclusion
based on two further case studies [2].

Nevertheless, none of our three test suites was able to detect all injected
faults. We identified two possible reasons. First, the test execution environment
was restricted due to technical reasons that we could not circumvent. We could
only check for outputs expected by a test case but not for unexpected ones.
This restriction decreased the fault detection capabilities of our tests. Second, we
identified a weakness in our set of model mutants that failed to cover a particular
faulty system. Hence, the implemented model-mutation operators need to be
extended. Having said that, an analysis of the existing model mutants showed
that we generate too many similar mutations as 80% of our model mutants were
killed by test cases generated from only 2% of our model mutants. Finally, and as
with most mutation testing approaches, equivalent mutants are hindering: They
consume 60% of the overall computation time. Future work includes further
analysis of the applied mutation operators to improve the situation.

Acknowledgments. Research herein was funded by the Austrian Research
Promotion Agency (FFG), program line “Trust in IT Systems”, project number
829583, TRUst via Failed FALsification of Complex Dependable Systems Using
Automated Test Case Generation through Model Mutation (TRUFAL).

References

1. Aggarwal, M., Sabharwal, S.: Test case generation from UML state machine dia-
gram: A survey. In: ICCCT, pp. 133–140. IEEE (2012)

2. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing
strategies for model-based mutation testing. Software Testing, Verification and
Reliability (2014)

3. Aichernig, B.K., Jöbstl, E.: Efficient refinement checking for model-based mutation
testing. In: QSIC, pp. 21–30. IEEE (2012)

4. Aichernig, B.K., Jöbstl, E.: Towards symbolic model-based mutation testing: Com-
bining reachability and refinement checking. MBT. EPTCS 80, 88–102 (2012)

5. Aichernig, B.K., Jöbstl, E., Kegele, M.: Incremental refinement checking for test
case generation. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp.
1–19. Springer, Heidelberg (2013)

18 B.K. Aichernig et al.

6. Aichernig, B.K., Peischl, B., Weiglhofer, M., Wotawa, F.: Protocol conformance
testing a SIP registrar: An industrial application of formal methods. In: SEFM,
pp. 215–224. IEEE (2007)

7. Ammann, P., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: ICFEM, pp. 46–54. IEEE (1998)

8. Auer, J.: Automated Integration Testing of Measurement Devices - A Case Study
at AVL List GmbH. Bachelor’s thesis, Graz University of Technology (2013)

9. Back, R.J., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. In: PODC, pp. 131–142. ACM (1983)

10. Boroday, S., Petrenko, A., Groz, R.: Can a model checker generate tests for non-
deterministic systems? ENCTS 190(2), 3–19 (2007)

11. Brandl, H., Weiglhofer, M., Aichernig, B.K.: Automated conformance verification
of hybrid systems. In: QSIC, pp. 3–12. IEEE (2010)

12. Briand, L.C., Labiche, Y., Cui, J.: Automated support for deriving test require-
ments from UML statecharts. Software and System Modeling 4(4), 399–423 (2005)

13. Budd, T., Gopal, A.: Program testing by specification mutation. Comput.
Lang. 10(1), 63–73 (1985)

14. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. IEEE Computer 11(4), 34–41 (1978)

15. Fabbri, S.C.P.F., Maldonado, J.C., Masiero, P.C., Delamaro, M.E., Wong, W.E.:
Mutation testing applied to validate specifications based on Statecharts. In: ISSRE,
pp. 210–219. IEEE (1999)

16. Fröhlich, P., Link, J.: Automated test case generation from dynamic models. In:
Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 472–492. Springer, Heidelberg
(2000)

17. Gnesi, S., Latella, D., Massink, M.: Formal test-case generation for UML state-
charts. In: ICECCS, pp. 75–84. IEEE (2004)

18. Grub, P., Takang, A.A.: Software Maintenance: Concepts and Practice, 2nd edn.
World Scientific Publishing (2003)

19. Hoare, C., He, J.: Unifying Theories of Programming. Prentice Hall (1998)
20. Jia, Y., Harman, M.: An analysis and survey of the development of mutation

testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011)
21. Jöbstl, E.: Model-Based Mutation Testing with Constraint and SMT Solvers. Ph.D.

thesis, Graz University of Technology, Institute for Software Technology (2014)
22. Kansomkeat, S., Rivepiboon, W.: Automated-generating test case using UML stat-

echart diagrams. In: SAICSIT, pp. 296–300 (2003)
23. Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to labeled transition sys-

tems for test-case generation - a translation via object-oriented action systems. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 186–207. Springer, Heidelberg (2010)

24. Myers, G.J.: The Art of Software Testing. Wiley (1979)
25. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang.

Syst. 11(4), 517–561 (1989)
26. Nogueira, S., Sampaio, A., Mota, A.: Guided test generation from CSP models.

In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 258–273. Springer, Heidelberg (2008)

27. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: France,
R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 416–429. Springer, Heidelberg (1999)

28. Okun, V., Black, P.E., Yesha, Y.: Testing with model checker: Insuring fault vis-
ibility. In: 2002 WSEAS Int. Conf. on System Science, Applied Mathematics &
Computer Science, and Power Engineering Systems, pp. 1351–1356 (2003)

Model-Based Mutation Testing of an Industrial Measurement Device 19

29. Paradkar, A.: Case studies on fault detection effectiveness of model based test
generation techniques. SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

30. Seifert, D.: Conformance testing based on UML state machines. In: Liu, S., Araki,
K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 45–65. Springer, Heidelberg (2008)

31. Stocks, P.A.: Applying formal methods to software testing. Ph.D. thesis, Depart-
ment of computer science, University of Queensland (1993)

32. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software - Concepts and Tools 17(3), 103–120 (1996)

33. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers (2007)

34. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability 22(5), 297–312 (2012)

35. Weissenbacher, G. (ed.): D 3.2b - modelling languages (final version). Tech. rep.,
MOGENTES (2010)

36. Weißleder, S.: Test Models and Coverage Criteria for Automatic Model-Based Test
Generation with UML State Machines. Ph.D. thesis, Humboldt Universität zu
Berlin (2009)

Computing with an SMT Solver

Nada Amin1 , K. Rustan M. Leino2 , and Tiark Rompf1,3

1 EPFL, Lausanne, Switzerland
{first.last}@epfl.ch

2 Microsoft Research, Redmond, WA, USA
leino@microsoft.com

3 Oracle Labs, Lausanne, Switzerland
{first.last}@oracle.com

Abstract. Satisfiability modulo theories (SMT) solvers that support quantifier
instantiations via matching triggers can be programmed to give practical support
for user-defined theories. Care must be taken to avoid so-called matching loops,
which may prevent termination of the solver. By design, such avoidance limits
the extent to which the SMT solver is able to apply the definitions of user-defined
functions. For some inputs to these functions, however, it is instead desireable to
allow unadulterated use of the functions; in particular, if it is known that evalua-
tion will terminate.

This paper describes the program verifier Dafny’s SMT encoding of recur-
sive user-defined functions. It then describes a novel encoding that, drawing on
ideas from offline partial evaluation systems, lets the SMT solver evaluate “safe”
function applications while guarding against matching loops for others.

1 Introduction

The collections of cooperating decision procedures in modern satisfiability modulo the-
ories (SMT [3]) solvers provide a powerful reasoning engine. This power is harnessed
in numerous applications where logical constraints are involved, including program ver-
ification, program analysis, program testing, program synthesis, constraint-based type
inference, and theorem proving. While some of the theories supported (e.g., the theory
of uninterpreted functions) have complete decision procedures, the SMT solver may
support other theories (e.g., integer linear arithmetic) only by semi-decision procedures,
either because of theoretical limitations or because of practical time or space compro-
mises. It would be unreasonable to expect the SMT solver to provide support for all
theories of interest. Luckily, many theories can be axiomatized in the input to the SMT
solver, using logical quantifiers that give some interpretation to otherwise uninterpreted
function symbols.

Quantifier support in an SMT solver was first implemented in Simplify [12], based on
an idea from Greg Nelson’s PhD thesis [26]. The idea is to give each universal quantifier
a matching pattern, a.k.a. a trigger, that guides the instantiation of the quantifier. For
example, consider the following fragment of input to an SMT solver:

Fib(0) = 0 ∧ Fib(1) = 1 ∧
∀ n : int { :Fib(n)} • 2 ≤ n =⇒ Fib(n) = Fib(n-2) + Fib(n-1)

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 20–35, 2014.
c© Springer International Publishing Switzerland 2014

Computing with an SMT Solver 21

where we have written { :M} to use the list of expressions M as the matching pattern for
the enclosing quantifier. This instructs the SMT solver to instantiate the quantifier with
n:=E whenever in its proof search the current set of ground terms includes a subexpres-
sion of the form Fib(E). The approach of using triggers does not, in general, give a
complete decision procedure, but the approach fits well into the SMT approach and has
been used effectively in practice.

Understanding and making good use of matching patterns is a crucial part of the de-
sign of a system built on top of an SMT solver. Using triggers that are too liberal and
hence allow too many instantiations can be a source of inefficiency in the proof search.
A particular worry is that of non-termination among instantiations, a condition known
as a matching loop. Therefore, it is necessary to use triggers to curb instantiations. On
the other hand, using triggers that are too specific can be a source of incompleteness,
since they may prevent instantiations that are needed in the proof. Both of these ex-
tremes are common mistakes.

In this paper, we explain and solve a problem with quantifiers that skirts the edge
between the two extremes. While instantiations must in general be curbed, there are
some instantiations where it is desireable to let the instantiations “run loose”. For ex-
ample, if Fib(k), which matches the trigger, is a ground term in the proof search, then
the resulting instantiation produces two new terms, Fib(k-2) and Fib(k-1), and these
terms also match the trigger. If nothing else is known about the term k, a neverending
series of instantiations n:=k-d, one for each natural number d, could arise. We want to
prevent the proof search from considering all of these, so some curbing is necessary. On
the other hand, if the proof exploration produces a fact like k=12, then we would wish
for the SMT solver to instantiate the quantifier enough times to figure out Fib(k)=144,
as if it used the axiom to compute the value of Fib(12). The problem we solve in this
paper is to find an encoding that provides curbing in the general case and computa-
tion in the case where functions are involved on literals. We do the encoding as part
of the input to the SMT solver, using appropriate matching patterns; no modification
of the SMT solver itself is needed, assuming the SMT solver supports quantifiers via
matching patterns in the first place.

We encountered this problem while using the Dafny program verifier [21], where
occasionally it is necessary to compute or partially evaluate expressions that contain
some literals. For example, we may wish for the SMT solver to compute Fib(12) above.
As another example, given

∀ n : int, t : T •
(n = 0 =⇒ iter(n, t) = t) ∧
(n > 0 =⇒ iter(n, t) = iter(n-1, f(t)))

we may wish for the SMT solver to partially evaluate iter(5,x) as f(f(f(f(f(x))))).
The need for computation also arises when one wants to statically test the outcome of
a given function. For example, one can use Dafny to define the formal semantics of a
language, say some form of the lambda calculus1, and one may then want to test that

1 Full example, which we will revisit in Sec. 5, at http://rise4fun.com/Dafny/CXCK .

http://rise4fun.com/Dafny/CXCK

22 N. Amin, K.R.M. Leino, and T. Rompf

the evaluation of a particular term reduces to the expected value. For instance, verifying
the formula

n > 0 =⇒ reduces_to(
Appl(LambdaOf(0, Var(0)), Const(29)),
Const(29),
n)

is a test that (λx0. x0) 29 reduces to 29 in no more than n reduction steps.
Throughout the paper, we use Dafny as the context for explaining the problem and

solution. What we say is likely to apply to any language or notation with user-defined
functions that in some form are encoded as SMT input. In Sec. 2, we give a primer on
matching patterns in an SMT solver. We describe how Dafny uses matching patterns
to curb instantiation of user-defined functions in Sec. 3. This account of curbing repre-
sents the current encoding used in Dafny, which is more uniform and flexible than its
previously described encodings [21]. In Sec. 4, we then give our encoding that allows
literal arguments to be treated differently. We have implemented our encoding in Dafny
and report on our experience in Sec. 5, through examples that show both full evaluation
of functions and partial evaluation of functions.

2 A Primer on Matching Patterns

A simplified view of the operation of an SMT solver, suitable for our purposes, is the
following. The solver is asked to check the validity of a conjecture P, often of the form
A =⇒ Q where A is a conjunction of axioms and Q is some proof goal. During the proof
search, the proof state at any time is (some bookkeeping information and) a conjunction
of atomic formulas, some of which consist only of ground terms and others of which
are universal quantifiers. The ground terms are represented in an E-graph [26], a data
structure that represents the congruence closure of a set of terms (that is, equalities
between terms, with the built-in knowledge that two terms f(x) and f(y) are equal if
the terms x and y are).

At opportune times, the SMT solver considers the quantifiers in the proof state and
looks in the E-graph for ground terms that match the triggers of the quantifiers. The
matching ground terms are used to instantiate the quantifiers. This yields more formulas
and the proof search continues.

Logically, a universal quantifier holds for all values of the bound variables, but unin-
formed instantiations are not likely to be useful in the proof search. Therefore, matching
patterns are used to limit the instantiations that can take place. Syntactically, a match-
ing pattern is a set of terms whose free variables include all the bound variables of the
quantifier. For example, a possible matching pattern for a quantifier∀ x,y • . . . (here
and elsewhere, we omit types of bound variables when they are obvious or irrelevant
for the example) is { :f(x),g(x,y)}. It says that the quantifier can be instantiated with
x,y:=E,F in a proof state where the E-graph contains both the terms f(E) and g(E,F).
The terms given in a matching pattern are typically subterms of the body of the quan-
tifier. Since the role of the matching pattern is to limit instantiations, terms that do not
discriminate are not allowed; for example, { :f(x),y} is not a legal trigger for the quan-
tifier above, since it places no constraints on the ground terms that could be used for y.

Computing with an SMT Solver 23

Since matching is performed in the E-graph, which represents uninterpreted function
symbols in the SMT solver, a matching pattern cannot use symbols that are interpreted
by some theory; for example, a matching pattern cannot make use of arithmetic inequal-
ities like≤2. One quantifier can contain several matching patterns; a match for any one
of them can cause an instantiation.

As an example, suppose we want to define in the SMT input a function ff that applies
a particular function f twice. Function ff’s defining axiom is the following:

∀ x • ff(x) = f(f(x))

It is instructive to consider different choices of triggers for this quantifier.
Probably the best trigger for this quantifier is { :ff(x)}, because it will in effect make

ff into something of a macro—as soon as an ff term arises among the ground terms, it
will become equated with its definition. It is useful to think of quantifier instantiations
as having a direction. The direction implied by the trigger { :ff(x)} is to go from a
higher-level function ff to a more primitive function f. Such a direction is also what
one would have in mind when designing effective input for a term rewriting system (e.g.,
Maude [8]), but note that term rewriting systems and macros replace a source term with
a target term, whereas instantiating a quantifier conjoins the instantiated quantifier body
to the proof state.

Suppose there is a number of interesting properties that hold for values in the func-
tional image of ff, but not necessarily for all values in the functional image of f. Then,
we may want to produce ff terms whenever possible and to axiomatize the other prop-
erties in terms of ff. For this purpose, { :f(f(x))} may make a suitable trigger. Note
that this trigger goes in the other direction from { :ff(x)}.

Let us consider what may happen if we choose the trigger to be { :f(x)}. Suppose
a proof state contains the ground term f(k). It will cause the quantifier to be instan-
tiated for x:=k, giving us (an equality between) two new terms, ff(k) and f(f(k)).
The existence of the latter among the ground terms now gives rise to the instantiation
x:=f(k) and before we know it, the SMT solver will spend all its time instantiating the
quantifier with longer and longer terms x:=f(f(. . .f(k). . .)). This situation is known
as a matching loop and is one that we want to avoid3.

For a larger example that highlights typical trigger considerations and gives guidance
on trigger design, see [23].

3 User-Defined Functions and Curbing in Dafny

Dafny is a programming language that includes support for specifications and proofs.
This built-in support makes the language suitable for reasoning about imperative and
functional programs as well as some formalized mathematics. Dafny programs are
translated into the Boogie intermediate verification language, which the Boogie veri-
fication engine then turns into input for the SMT solver Z3 [1,20]. For our purposes in

2 Because of this restriction, adding a new theory to the SMT solver comes at the considerable
expense of not being able to match on its symbols.

3 Boogie code for the matching loop example discussed here:
http://rise4fun.com/Boogie/mH23 .

http://rise4fun.com/Boogie/mH23

24 N. Amin, K.R.M. Leino, and T. Rompf

this paper, the most relevant part of the Dafny language is its (possibly recursive) user-
defined functions, and we consider their translation into axioms for the SMT solver.

Let us give some motivation by considering an example. Suppose we want to encode
as SMT input a Dafny function that defines triangle numbers:

function Triangle(n : nat) : nat
{

if n = 0 then 0 else n + Triangle(n-1)
}

To encode this for the SMT solver, we introduce a function Triangle on the integers
and supply an axiom like this:

∀ n : int • 0 ≤ n =⇒
Triangle(n) = if n = 0 then 0 else n + Triangle(n-1)

How do we want this quantifier to be triggered? Whenever a proof search involves a
term Triangle(k) for some subterm k, then it seems useful to instantiate the quantifier
with n:=k, so we may consider the straightforward trigger { :Triangle(n)}. However,
such a trigger would lead to a matching loop, because lacking any information about k,
the SMT solver would explore both branches of the if expression, and the successive
exploration of the else branch would lead to new instantiations of the quantifier4.

To curb such instantiations, the Dafny verifier adds an extra parameter to the SMT
encoding of the function. Borrowing a recent name from discussions about co-induction
in the type-theory community, we will refer to this parameter as “fuel”. The fuel param-
eter specifies how many unrollings of the function we want to allow the SMT solver to
do. Note, the value of the function does not actually depend on the fuel parameter; it is
used only to control the SMT solver’s instantiations.

Since matching is performed in the E-graph, it is important that non-zero fuel values
be recognizable structurally, with no theory reasoning and without interpreted symbols
like 0 and +. Thus, we make use of Peano arithmetic (that is, unary arithmetic) and
provide the following declarations in the SMT input:

type Fuel
function Z() : Fuel
function S(Fuel) : Fuel

These declarations can be thought of as an inductive datatype like

datatype Fuel = Z | S(Fuel)

but we do not bother to say anything about Z and S, beyond fact that they are functions
with the given signatures.

We can now encode the Dafny function Triangle. We declare it in the SMT input as
follows:

function Triangle(fuel : Fuel, n : int) : int

4 http://rise4fun.com/Boogie/Agsl

http://rise4fun.com/Boogie/Agsl

Computing with an SMT Solver 25

Next, we produce three axioms. The “synonym” axiom that says that the value of the
fuel parameter is irrelevant:

∀ fuel : Fuel, n : int • { :Triangle(S(fuel), n)}
Triangle(S(fuel), n) = Triangle(fuel, n)

The “definition” axiom encodes the function body:

∀ fuel : Fuel, n : int • { :Triangle(S(fuel), n)} 0 ≤ n =⇒
Triangle(S(fuel), n) = if n = 0 then 0 else n + Triangle(fuel, n-1)

Finally, the “consequence” axiom states properties that come from the signature and
specification of the function:

∀ fuel : Fuel, n : int • { :Triangle(S(fuel), n)} 0 ≤ n =⇒
0 ≤ Triangle(S(fuel), n)

This encoding provides curbing because the matching patterns will cause the quantifiers
to be instantiated only when the fuel parameter is non-zero (more precisely, when it has
the form S applied to something) and because recursive (and mutually recursive) calls
in the right-hand side of the definition axiom use a smaller fuel value than the left-hand
side.

The verifier translates other Dafny uses of the function with some default value for
the fuel parameter. In Dafny, this default value is usually 1 (that is, S(Z())), but it is 2 in
certain proof-obligation positions (like when a user-supplied assertion or postcondition
needs to be verified). Although we currently do not provide it as a feature, the default
fuel value could in principle be set by the user, globally or for particular functions or
particular proof obligations.

We end this section with an example that both illustrates the technique and serves as a
segue to the next section. Consider a lemma that proves, by induction, that Triangle(n)
is at least twice as big as n, provided n is at least 3. In Dafny, this is done as follows:5

lemma TriangleProperty(n : nat)
ensures 3 ≤ n =⇒ 2*n ≤ Triangle(n);

{
if n ≤ 3 {

assert Triangle(3) = 6; // the crucial property of the base case
} else {

TriangleProperty(n-1); // invoke the induction hypothesis
}

}

The “postcondition” of the lemma, given by the ensures clause, states the conclusion
of the lemma. The body of the lemma is some code, where all control paths are verified
to lead to the postcondition. The recursive call to TriangleProperty essentially obtains
the inductive hypothesis, applied for n-1.

5 We ignore the fact that Dafny has some support for automatic induction [22] and here give the
proof explicitly.

26 N. Amin, K.R.M. Leino, and T. Rompf

To detail the proof obligations for this lemma, we view the lemma as a pre/post-
condition pair and write the following pseudo code (which is representative of what the
intermediate form in Boogie will look like):

assume 0 ≤ n; // assume precondition of lemma
if n ≤ 3 {

assert Triangle(S(S(Z())), 3) = 6; // fuel = 2
} else {

assert 0 ≤ n-1; // check precondition of call
// assume postcondition of call :
assume 3 ≤ n-1 =⇒ 2*(n-1) ≤ Triangle(S(Z()), n-1); // fuel = 1

}
// check postcondition of lemma :
assert 3 ≤ n =⇒ 2*n ≤ Triangle(S(S(Z())), n); // fuel = 2

Note that the fuel argument is passed in as 2 in proof-obligation positions and as 1
elsewhere. The verification condition for this pseudo code is the following first-order
formula, which is given to the SMT solver:

0 ≤ n =⇒
(n ≤ 3 =⇒ Triangle(S(S(Z())), 3) = 6) ∧ // check then branch
(3 < n =⇒ 0 ≤ n-1) ∧ // check else branch (trivial)
// prove the postcondition from what is learnt in both branches :
((n ≤ 3 ∧ Triangle(S(S(Z())), 3) = 6) ∨

(3 < n ∧ 0 ≤ n-1 ∧ (3 ≤ n-1 =⇒ 2*(n-1) ≤ Triangle(S(Z()), n-1)))
=⇒ 3 ≤ n =⇒ 2*n ≤ Triangle(S(S(Z())), n))

To prove the postcondition of the lemma, there are two cases. If n = 3, the post-
condition follows from what is learnt from the then branch. If 4 ≤ n, the postcondition
follows from the definition axiom and the induction hypothesis. In more detail, since
the fuel parameter of the last call to Triangle has the form S(. . .), the definition axiom
is triggered and thus the final inequality becomes:

2*n ≤ n + Triangle(S(Z()), n-1)

This inequality follows from what is learnt from the else branch (that is, the induction
hypothesis).

As we just saw, we had more fuel than necessary to complete the proof of the post-
condition in this example. But what about the proof of the then branch? The fuel sup-
plied in its call to Triangle is enough for two instantiations of the definition axiom,
which reduces the proof goal to:

3 + 2 + Triangle(Z(), 1) = 6

Since there is no fuel left, the SMT solver is unable to complete this proof (so a verifica-
tion error will be reported to the user). In the next section, we describe how we extend
the encoding to handle cases like this.

Computing with an SMT Solver 27

4 Enabling Computation

We enable computation by allowing unfolding steps that do not decrease the fuel pa-
rameter in chosen cases, picked at compile time. Dafny generates SMT input that allows
unfolding for two kinds of function applications: (a) when all function arguments are
known to be constants, and (b) when all arguments that are part of the decreasing mea-
sure for termination (maintained internally by Dafny) are constants. In the first case, the
result of the function application is known to be a constant as well. In the second case,
the result is not necessarily a constant, but evaluation (via E-matching for the instan-
tiations) is still guaranteed to terminate. If it is known which function arguments are
part of the decreasing measure (which it is in Dafny), then (b) is typically more useful;
however, we nevertheless also generate SMT input for case (a), because one can con-
struct examples where handling (a) is useful and (b) does not apply.6 Dafny propagates
which expressions will definitely evaluate to constants and uses this information for
further unfolding decisions; a technique known as binding-time analysis in the context
of partial evaluation [18].

Our encoding for computation relies on an identity function, provided in the SMT
input, to mark constant expressions as “literals”:

function Lit<T>(x : T) : T { x }

For each user-defined function, we add extra “computation” axiom(s) that trigger on
literal argument(s) and that do not consume any fuel. For the Triangle function, we
provide the following extra axiom:

∀ fuel : Fuel, n : int • { :Triangle(fuel, Lit(n))}
0 ≤ n =⇒
Triangle(fuel, Lit(n)) =

if n = 0 then 0 else n + Triangle(fuel, Lit(n-1))

To enable computations, the Dafny compiler wraps all concrete values, such as 2,
with the Lit marker. The compiler also lifts simple operations on literal expressions:
Lit(x)+Lit(y) becomes Lit(x+y), since adding two constant values will produce a
constant again. This lifting mechanism is also what enables recursive computations,
since Triangle(fuel, Lit(n)-Lit(1)) becomes Triangle(fuel, Lit(n-1)). Note
that the variable n is wrapped as a literal expression Lit(n) because it is a formal
parameter fixed as a literal in the trigger of the axiom.

For computations to be composable, we also Lit-wrap each function application on
all literal arguments. Hence, Triangle(fuel, Lit(3)) is tagged as a constant expres-
sion Lit(Triangle(fuel, Lit(3))). This propagation of binding-time information is
essential to enable computation on nested expressions, such as Triangle(Triangle(3))
in Dafny.

Finally, a word of caution: we don’t always want to compute. The SMT solver can
prove Fib(1000)�=1000 on its own without computing Fib(1000), but if we provide a
“computation” axiom for Fib and give it too much importance, then the solver hangs
instead. We resolve this tension by giving a low priority to the “computation” axioms.

6 http://rise4fun.com/Dafny/J1Im

http://rise4fun.com/Dafny/J1Im

28 N. Amin, K.R.M. Leino, and T. Rompf

Also, as a small tweak that matters in practice, we also let if-then-else expressions act
as a “barrier” for literals, so that we unwrap any top-level literals following the if, then
or else expressions. This is why the computation axiom above does not return Lit-
wrapped expressions in the then and else branches.

5 Experience

We re-iterate the necessity of the fuel parameter with a complete Dafny example 7

which correctly verifies using the encoding described in Sec. 3 but enters a matching
loop when the fuel parameter is ignored. The example proves the equivalence of the
recursive and iterative definitions of the factorial function.

function Factorial(n : nat) : nat
{

if n = 0 then 1 else n*Factorial(n-1)
}
function FactorialIter(n : nat, acc : nat) : nat
{

if n = 0 then acc else FactorialIter(n-1, acc*n)
}
function Factorial’(n : nat) : nat
{

FactorialIter(n, 1)
}
lemma lemmaFactorialStep(n : nat, acc : nat)

ensures acc*Factorial(n) = FactorialIter(n, acc);
{
}
lemma theoremFactorialEquiv(n : nat)

ensures Factorial(n) = Factorial’(n);
{

lemmaFactorialStep(n, 1);
}

This example demonstrates that curbing is sometimes essential when proving uni-
versally quantified theorems in Dafny. Now, we show that controlled relaxation of the
curbing, described in Sec. 4, is also very important in practice.

Just like one would write tests in conventional languages, in Dafny, one can write
out examples with their expected results, with the hope that they will be automatically
verified. Thanks to our novel encoding that enables computation, this hope is now often
materialized.

For example, in an implementation of the simply typed lambda calculus8, we may
wish to check that λ(x : T).λ(f : T → T).f (f (x)) has type T → (T → T) → T .
This example now verifies automatically, while it previously required 5 intermediate

7 http://rise4fun.com/Dafny/EHGl
8 http://rise4fun.com/Dafny/SUOW

http://rise4fun.com/Dafny/EHGl
http://rise4fun.com/Dafny/SUOW

Computing with an SMT Solver 29

statements to verify. Note that we represent variable names directy as numbers (0 is x
and 1 is f):

lemma example_typing()
ensures has_type(map[],

Lambda(0, T, Lambda(1, Arrow(T, T),
Appl(Var(1), Appl(Var(1), Var(0))))))

=
Some(Arrow(T, Arrow(Arrow(T, T), T)));

{
/* This manual proof is no longer necessary, thanks to computation.
var c := extend(1, Arrow(T, T), extend(0, T, map[]));
assert find(c, 0) = Some(T);
assert has_type(c, Var(0)) = Some(T);
assert has_type(c, Var(1)) = Some(Arrow(T, T));
assert has_type(c, Appl(Var(1), Appl(Var(1), Var(0)))) = Some(T); */

}

We now illustrate the utility of generating a computation axiom which triggers
merely when decreasing formal parameters are literals. Even when the typing context
is left abstract, Dafny automatically verifies type-checking of the example λ(f : T →
T).f (f (x)) provided a context with at least (x : T) :

lemma example_typing_m(m : map<int,ty>)
requires 0 in m ∧ m[0]=T;
ensures has_type(m,

Lambda(1, Arrow(T, T),
Appl(Var(1), Appl(Var(1), Var(0)))))

=
Some(Arrow(Arrow(T, T), T));

{
}

Even though the context m is not a literal, computation is possible because only the
term parameter (that is, the second parameter to has_type) is part of the decreasing
measure of the has_type function, and that argument is a literal in this example appli-
cation.

Here is another example 9, inspired by an exercise in the Coq-based textbook Soft-
ware Foundations [28]. This example shows that our encoding of computations plays
well with function applications in complex expressions.

datatype Nat = O | S(Nat) // Peano numbers
function plus(n : Nat, m : Nat) : Nat
{
// . . .

}
function mult(n : Nat, m : Nat) : Nat

9 http://rise4fun.com/Dafny/AtWK

http://rise4fun.com/Dafny/AtWK

30 N. Amin, K.R.M. Leino, and T. Rompf

{
// . . . in terms of plus

}
function factorial(n : Nat) : Nat
{
// . . . in terms of mult

}
function toNat(n : nat) : Nat
{

if n=0 then O else S(toNat(n-1))
}
lemma test_factorial0()

ensures factorial(toNat(3)) = toNat(6);
{
}
lemma test_factorial1()

ensures factorial(toNat(5)) = mult(toNat(10),toNat(12));
{
}

With the previous encoding of user-defined functions that implements curbing with-
out computation, proving test_factorial1 would be very tedious and require many
intermediate steps.

5.1 Limitations

Since we need to make the computation axioms low priority to avoid hanging computa-
tions, we also prevent some larger (tractable) computations. This is a matter of degree:
we may not want to allow Fib(1000), but what about Fib(40)?

We chose to make unfolding decisions at compile time, when generating SMT input
in Dafny, as opposed to delegating to the SMT solver to make such decisions on-the-
fly, at run time—in particular, we chose not to provide the SMT solver with any axioms
that would create fresh applications of the Lit marker. Clearly, such a static binding-
time analysis is approximate by nature and cannot always deduce that an expression
will evaluate to a constant. Hence, we miss some easily computable expressions, as we
show next. We extend the previous sample code with an example that Dafny cannot
auto-verify:

function returnFst(a : nat, b : nat) : nat
{

if b=0 then a else returnFst(a, b-1)
}

lemma test_factorial_indirect(n : nat)
ensures factorial(toNat(returnFst(5, n)))=mult(toNat(10),toNat(12));

{
}

Computing with an SMT Solver 31

Note that we use a convoluted definition of returnFst. Otherwise, the function
would be inlined by the Dafny compiler, and the example reduced to test_factorial1.
The problem here is that the Dafny compiler does not detect that returnFst(5, n) is
in fact equivalent to 5, and hence fails to recognize at compile time that the argument
to factorial is indeed a literal. Interestingly, it is enough guidance for verification to
provide this fact:

lemma eqReturnFst(a : nat, b : nat)
ensures returnFst(a, b) = a;

{
}
lemma test_factorial_indirect_ok(n : nat)

ensures factorial(toNat(returnFst(5, n)))=mult(toNat(10),toNat(12));
{

eqReturnFst(5, n);
}

We leave a closer investigation of online techniques to future work, where the SMT
solver would make unfolding decisions on the fly. The benefit would be an increase
in precision, but in general, ensuring termination is harder in an online setting. We
conjecture that the additional information about termination measures that is available
in Dafny could be put to use here as well, possibly at the expense of a more involved
encoding.

6 Related Work

Partial Evaluation. Partial evaluation [18] denotes a class of program transformations
that aim to pre-compute parts of a program that do not depend on dynamic input values.
The result of partial evaluation is a residual program, where expressions that only de-
pend on statically known values are evaluated to constants. Partial evaluation is usually
applied to improve performance, as the residual program performs less work. In our
case, we are interested in the simplification aspect: in a verification context, evaluating
an application of a user-defined function means that we can directly reason about the
result value and need not reason about the function definition.

Partial evaluation comes in two flavors: online [5,29,30] and offline [7,9,15,16]. In an
online setting, decisions whether to evaluate or to residualize an expression are made on
the fly. If a function is called with only static arguments, the function will be evaluated.
If a subset of the arguments is static, a specialized function may be generated. A well-
known problem in online partial evaluation is that it is difficult to ensure termination
(and even a terminating computation might take a long time). The second flavor of
partial evaluation is offline. Here, a binding-time analysis first classifies each expression
as static or dynamic. A second pass then evaluates all expressions classified as static.

In our case, evaluation is a special case of proof search in an SMT solver. Concep-
tually, evaluation corresponds to unfolding of functions and simplifying. On the SMT
level, unfolding means instantiation of the corresponding quantifier. Without further
directions, the SMT solver will make decisions online, whether or not to unfold quan-
tifier definitions, based on heuristics like a global instantiation depth. Since the SMT

32 N. Amin, K.R.M. Leino, and T. Rompf

solver knows nothing about user-defined functions apart from their axiomatization, it
cannot know whether a particular function will terminate or not, and whether unfolding
is profitable. On the Dafny level, however, this kind of information is readily available.
Our encoding serves the purpose of communicating this information to the solver. In
essence, we implement a classic offline partial evaluation scheme. We perform a simple
binding-time analysis to identify static expressions within Dafny. We tag those expres-
sions with a Lit(.) marker, and we emit axioms that direct the SMT solver to unfold
functions if they are called with Lit(.) arguments. But we also get some of the effects
of an online scheme, because the SMT solver may end up combining results from our
simple binding-time analysis. For example, given the Dafny program snippet

var y := 12;
assert y ≤ k ∧ k < y + m ∧ m = 1 =⇒ Fib(k) = 144;

our simple binding-time analysis will classify only 12 as
“static” (that is, it will Lit-wrap it). But after the SMT solver’s theory reasoning con-
cludes k = y = 12, that “static” classification is in effect transferred to k, and thus the
term Fib(k) will be fully evaluated.

A different approach is taken by the Leon verification system [19]. Instead of map-
ping user-defined functions to quantifiers and invoking the SMT solver only once, Leon
invokes the solver interactively, while successively unfolding function definitions in the
solver input. This is an example of a practical online approach, but crucially one that
circumvents the brittle solver heuristics.

Computation in Proof Assistants. Many interactive proof assistants rely on computa-
tions. For example, uses of Coq [6] and PVS [27] routinely need computation as part
of type checking. These computations are not set up using trigger-based quantifiers, but
are instead based on custom tactics or other heuristics or mechanisms.

Quantifiers and Triggers. The SMT solver Simplify [12] was the first to give compre-
hensive support of trigger-based quantifiers. As DPLL(T)-style architectures became
popular, experimental SMT solvers [14,24] and mature SMT solvers [2,4] also added
support for quantifiers. For our purposes, the efficient implementation of matching in
the SMT solver Z3 [11] took quantifier support to a heightened level [10].

More information about how triggers work can be found in the descriptions of Sim-
plify [12] and Z3 [11], as well as in Michał Moskal’s PhD thesis [25]. Dross et al.
have studied a logical semantics for triggers [13]. Leino and Monahan [23] convey the
artform of typical trigger design through a particular example.

Curbing by Constructor Cases. In the current version of Dafny, curbing is achieved as
we have described in Sec. 3. In a previous version, functions whose body consisted of
a match expression would get translated “Haskell style” into one axiom per constructor
case. Inspired by VeriFast [17], this translation attempts to curb instantiations by in-
cluding the name of a constructor in each trigger, which means that the axioms will not
be applied unless it is already known which case applies. With this approach, compu-
tation and partial evaluation do not need our Lit encoding and axioms. The approach

Computing with an SMT Solver 33

does not guarantee termination [17], but it seems to do well in practice. The main lim-
itation is that the approach only applies to functions defined by match expressions. We
have found that we no longer need the “Haskell style” translation for curbing, so the
only curbing that Dafny now uses is what we described in Sec. 3. In fact, our current
curbing allows more examples to be verified, because of the more liberal triggering.

7 Conclusions

Proper attention to the design of matching triggers is crucial for any tool that wants to
harness the power of an SMT solver with trigger-based quantifiers. The Dafny program
verifier simultaneously uses two techniques to encode the user-defined functions that it
has to reason about. While one technique curbs instantiations and thus limits the use
of function definitions, the other technique is designed to give unadulterated use of
the function definitions. The first technique is useful because many inductive program
proofs need only one unfolding of functions, and the curbing prevents matching loops
in the SMT solver. The other technique is useful because it allows the SMT solver to
perform computations and partial evaluations, and axioms are set up in such a way that
they apply only when the function arguments are literals. The two techniques come
together automatically in Dafny, and there is no need for users do anything special to
obtain the benefits.

Using our design, we have profited from the use of computation in Dafny. For ex-
ample, we have transcribed into Dafny examples from two chapters of the Coq-based
Software Foundations book by Pierce et al. [28], which uses many examples to test the
given definitions. Our design and implementation of the two simultaneous techniques
in Dafny now make it possible to benefit from computation while doing proofs within
the comfort of the automation provided by an SMT-based program verifier.

Acknowledgments. We thank Nik Swamy for useful comments on an earlier draft of
this paper.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modu-
lar Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer,
Heidelberg (2006)

2. Barrett, C.W., Berezin, S.: CVC Lite: A New Implementation of the Cooperating
Validity Checker Category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 515–518. Springer, Heidelberg (2004)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Gupta, A.,
Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (2010)

4. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

5. Berlin, A.A., Weise, D.: Compiling scientific code using partial evaluation. IEEE Computer
23(12), 25–37 (1990)

34 N. Amin, K.R.M. Leino, and T. Rompf

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development — Coq’Art:
The Calculus of Inductive Constructions. In: Texts in Theoretical Computer Science.
Springer (2004)

7. Bondorf, A.: Automatic autoprojection of higher order recursive equations. Sci. Comput.
Program. 17(1-3), 3–34 (1991)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: Specification and programming in rewriting logic. Theoretical Computer
Science 285(2), 187–243 (2002)

9. Consel, C.: A tour of Schism: A partial evaluation system for higher-order applicative lan-
guages. In: Schmidt, D.A. (ed.) Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM 1993, pp. 145–154. ACM
(June 1993)

10. de Moura, L., Bjørner, N.S.: Efficient E-Matching for SMT Solvers. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)

11. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. Journal
of the ACM 52(3), 365–473 (2005)

13. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Reasoning with triggers. In: Fontaine, P.,
Goel, A. (eds.) 10th International Workshop on Satisfiability Modulo Theories, SMT 2012.
EasyChair 2013 EPiC Series, pp. 22–31 (2012)

14. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer,
Heidelberg (2003)

15. Gomard, C.K., Jones, N.D.: Compiler generation by partial evaluation: A case study.
Structured Programming 12(3), 123–144 (1991)

16. Gomard, C.K., Jones, N.D.: A partial evaluator for the untyped lambda-calculus. J. Funct.
Program. 1(1), 21–69 (1991)

17. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520,
Department of Computer Science, Katholieke Universiteit Leuven (August 2008)

18. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program generation.
Prentice-Hall, Inc. (1993)

19. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions. In:
Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA 2013, pp. 407–426. ACM (October 2013)

20. Rustan, K., Leino, M.: Specification and verification of object-oriented software. In: Broy,
M., Sitou, W., Hoare, T. (eds.) Engineering Methods and Tools for Software Safety and
Security. NATO Science for Peace and Security Series D: Information and Communica-
tion Security, vol. 22, pp. 231–266. IOS Press (2009), Summer School Marktoberdorf 2008
lecture notes.

21. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidel-
berg (2010)

22. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V., Rybalchenko, A.
(eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012)

23. Rustan, K., Leino, M., Monahan, R.: Reasoning about comprehensions with first-order SMT
solvers. In: Shin, S.Y., Ossowski, S. (eds.) Proceedings of the 2009 ACM Symposium on
Applied Computing (SAC), pp. 615–622. ACM (March 2009)

Computing with an SMT Solver 35

24. Leino, K.R.M., Musuvathi, M., Ou, X.: A Two-Tier Technique for Supporting Quantifiers in
a Lazily Proof-Explicating Theorem Prover. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 334–348. Springer, Heidelberg (2005)

25. Moskal, M.J.: Satisfiability Modulo Software. PhD thesis, Institute of Computer Science,
University of Wrocław (2009)

26. Nelson, C.G.: Techniques for program verification. Technical Report CSL-81-10, Xerox
PARC (June 1981)

27. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining specification,
proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

28. Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C., Sjöberg, V., Yorgey,
B.: Software Foundations. In: Electronic textbook (2013),
http://www.cis.upenn.edu/~bcpierce/sf

29. Sahlin, D.: The mixtus approach to automatic partial evaluation of full Prolog. In: Debray,
S.K., Hermenegildo, M.V. (eds.) Proceedings of the 1990 North American Conference on
Logic Programming, NACLP, October–November 1990, pp. 377–398. MIT Press (1990)

30. Weise, D., Conybeare, R., Ruf, E., Seligman, S.: Automatic online partial evaluation. In:
Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 165–191. Springer, Heidelberg (1991)

http://www.cis.upenn.edu/~bcpierce/sf

An Abstraction Technique for Testing

Decomposable Systems by Model Checking�

Paolo Arcaini1, Angelo Gargantini1, and Elvinia Riccobene2

1 Dipartimento di Ingegneria, Università degli Studi di Bergamo, Italy
{paolo.arcaini,angelo.gargantini}@unibg.it

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

Abstract. Test generation by model checking exploits the capability
of model checkers to return counterexamples upon property violations.
The approach suffers from the state explosion problem of model checking.
For property verification, different abstraction techniques have been pro-
posed to tackle this problem. However, such techniques are not always
suitable for test generation. In this paper we focus on Decomposable
by Dependency Asynchronous Parallel (DDAP) systems, composed by
several subsystems running in parallel and connected together in a way
that the inputs of one subsystem are provided by another subsystem. We
propose a test generation approach for DDAP systems based on a decom-
positional abstraction that considers one subsystem at a time. It builds
tests for the single subsystems and combines them later in order to ob-
tain a global system test. Such approach avoids the exponential increase
of the test generation time and memory consumption. The approach is
proved to be sound, but not complete.

1 Introduction

Test generation by model checking is a well-known technique that exploits the
capability of model checkers to efficiently explore the state space and build a
counterexample when a property is falsified by the model. One main problem
is the “state explosion problem”, i.e., the size of the system state space grows
exponentially w.r.t. the number of variables and the size of their domains. Much
of the research in model checking over the past 30 years has involved developing
techniques for dealing with this problem in the context of property verifica-
tion [8]. There exist several abstraction techniques (like counterexample guided
abstraction [7]) that address this problem for property verification, but they are
not suitable for test generation [19]. Indeed, they can guarantee validity of a
property in the original model if the property is verified in the abstract model,
but they may not guarantee to find the right counterexample if the property is
false. Other classical abstractions (like slicing [21] or reduction techniques like
finite focus [1] that soundly reduces a state machine) reduce the original spec-
ification to a smaller one for which it may be easier to find the desired tests;

� This work is partially supported by GenData 2020, a MIUR PRIN 2010-11 project.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 36–52, 2014.
c© Springer International Publishing Switzerland 2014

An Abstraction Technique for Testing Decomposable Systems 37

however, they may miss parts of the system specification that are necessary for
building the tests.

The approach presented here can be viewed in the context of those abstraction
techniques for test generation that, following the “divide and conquer” principle,
are based on system [2,3] or property [16] decomposition. Since model checkers
suffer exponentially from the size of the system, decomposition brings an expo-
nential gain and allows to test large systems.

In this paper we focus on systems that can be decomposed in two (or more)
subsystems that run asynchronously in parallel but such that (part of) the in-
puts of one subsystem are provided by another subsystem. For such systems,
we propose a test generation approach based on model checking, exploiting the
decomposition by dependency abstraction. The approach consists in generating
the tests for the single subsystems and combining them later, in order to build
a test for the whole system. The generation is performed by considering the
dependency relation, starting from the “most” dependent subsystem, to the in-
dependent subsystem. Such approach permits to exponentially reduce the test
generation time and the memory consumption with respect to the basic approach
that builds a test for the whole system.

Section 2 provides some background on Kripke structures with inputs, on their
representation in the model checker NuSMV. Test case generation by model
checking is also briefly recalled in this section. Section 3 introduces DDAP
systems, i.e., systems having two components in a dependency relation, and
Section 4 proposes a test generation approach for them. Section 5 extends the
approach to n-DDAP systems, i.e., systems having more than two components.
Preliminary experiments are presented in Section 6. Section 7 reviews some re-
lated literature, and Section 8 concludes the paper.

2 Background

We here report some basic concepts regarding the formal structure and the test
generation approach by model checking that represent the fundamentals of the
theory of DDAP systems, developed in Sections 3, 4, and 5.

2.1 Kripke Structures

In this paper we use Kripke structures with inputs [15], that can be conveniently
used to represent reactive systems.

Definition 1 (Kripke Structure with Inputs). A Kripke structure with
inputs is a 6-tuple M = 〈S, S0, IN ,OUT , T,L〉 where
– S is a set of states;
– (S0 ⊆ S) �= ∅ is the set of initial states;
– IN and OUT are disjoint sets of atomic propositions;
– T ⊆ S×P(IN)×S is the transition relation; given a state s and the applied

inputs I, the structure moves to a state s′, such that (s, I, s′) ∈ T .
– L : S → P(OUT) is the proposition labeling function.

38 P. Arcaini, A. Gargantini, and E. Riccobene

Definition 2 (Input Sequence). An input sequence for a Kripke structure
with inputs is a (possibly infinite) sequence of inputs I0, . . . , In, . . . with Ii ∈
P(IN).

Definition 3 (Trace). Given an input sequence I0, . . . , In, . . ., a trace for a
Kripke structure with inputs is a sequence s0, I0, s1, . . . , sn, In, sn+1 . . . such that
s0 ∈ S0 and (si, Ii, si+1) ∈ T .

Definition 4 (Test). A test for a Kripke structure with inputs is a finite trace
s0, I0, s1, . . . , sn−1, In−1, sn.

We define the set of atomic propositions as AP = IN ∪OUT and CTL/LTL
formulae are defined over AP .

Kripke structures with inputs differ from classical Kripke structures because
the inputs are explicitly not part of the state and cannot be modified by the
machine. However, since for every Kripke structure K with inputs there is a
corresponding Kripke structure K ′ without inputs [5], all the model checking
techniques can be still applied.

2.2 Encoding Kripke Structures with Inputs in NuSMV

NuSMV [6] is a well-known tool that performs symbolic model checking. It allows
the representation of synchronous and asynchronous finite state systems, and the
analysis of specifications expressed in Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL). A NuSMV specification describes the behavior of a Finite
State Machine (FSM) in terms of a “possible next state” relation between states
that are determined by the values of variables. A variable type can be Boolean,
integer defined over intervals or sets, or an enumeration of symbolic constants.
A state of the model is an assignment of values to variables.

There are two kinds of variables: state variables, declared in the section VAR,
and input variables, declared in the section IVAR. The value of state variables
can be determined in the ASSIGN section in the following way:

ASSIGN var := simple expression −− simple assignment
ASSIGN init(var) := simple expression −− init value
ASSIGN next(var) := next expression −− next value

A simple assignment determines the value of variable var in the current state,
the instruction init permits to determine the initial value(s) of the variable,
and the instruction next is used to determine the variable value(s) in the next
state(s).

Input variables represent inputs of the system, and their value cannot be
bound as done for state variables. They can only be used to determine the next
value of state variables.

A DEFINE statement (DEFINE id := exp) can be used as a macro to syn-
tactically replace an identifier id with the expression expr.

NuSMV offers another more declarative way of defining initial states and
transition relations. Initial states can be defined by the keyword INIT followed

An Abstraction Technique for Testing Decomposable Systems 39

by characteristic properties that must be satisfied by the variables values in the
initial states. Transition relations can be expressed by constraints, through the
keyword TRANS, on a set of current state/next state pairs.

Temporal properties are specified in the LTLSPEC (resp. CTLSPEC) sec-
tion that contains the LTL (resp. CTL) properties to be verified.

NuSMV can be used to describe Kripke structures with inputs. The inputs are
modeled as input variables (IVAR), and the outputs as state variables (VAR)
or definitions (DEFINE).

In this paper we use NuSMV, but the approach is general and applicable to
any model checker.

2.3 Model-Based Test Generation by Model Checking

In model based testing [14,20], the specification describing the expected behavior
of the system is used to generate tests that exhibit some desired system behaviors
(testing goals). Test goals can be formally represented by test predicates.

Definition 5 (Test Predicate). A test predicate is a formula over the model,
and determines if a particular testing goal is reached.

A classical technique for model-based test generation exploits the capability
of model checkers to produce counterexamples [10,12]. If a test predicate can be
expressed as a CTL/LTL formula over the model states, then a test suite covering
the test goals corresponding to a desired coverage criterion can be generated as
follows.

1. The test predicates set {tp1, . . . , tpn} is derived from the specification ac-
cording to the desired testing goals. Test predicate structure depends on the
particular desired coverage criteria [11].

2. For each test predicate tpi, the trap property ¬tpi is verified. If the model
checker proves that the trap property is false (tpi is feasible), then the re-
turned counterexample shows how to cover tpi. We call the counterexample
witness, and we translate it to a test. If the model checker explores the
whole state space without finding any violation of the trap property, then
the test predicate is said unfeasible and it is ignored. In the worst case,
the model checker terminates without exploring the whole state space and
without finding a violation of the trap property (i.e., without producing any
counterexample), usually because of the state explosion problem. In this case
the user does not know if either the trap property is true (i.e., the test is
unfeasible), or it is false (i.e., there exists a sequence that reaches the goal).

Note that the specification is used also to produce a test oracle to assess the
correctness of the implementation.

Example 1. Consider as example a simple system in which there is a statement
like if C then A possible test goal, requiring that the condition is covered
by at least a test, can be formalized by the LTL test predicate F(C), requiring

40 P. Arcaini, A. Gargantini, and E. Riccobene

Fig. 1. DDAP system – SafeLock

that C is eventually true. If the model checker finds a counterexample for the
trap property !F(C), such counterexample leads the system to a state where C
is true and, therefore, it is the desired test.

3 DDAP Systems

In this paper we focus on Decomposable by Dependency Asynchronous Paral-
lel (DDAP) systems. A DDAP system is composed of two subsystems, running
asynchronously in parallel, such that (part of) the inputs of the dependent sub-
system are provided by the other subsystem which runs independently. Formally,
DDAP systems are defined as follows.

Definition 6 (Dependency). Given two Kripke structures with inputs P =
〈SP , S

0
P , INP , OUTP , TP , LP 〉 and Q = 〈SQ, S

0
Q, INQ , OUTQ , TQ, LQ〉, Q

depends on P if OUTP ∩ INQ �= ∅.
Definition 7 (DDAP System). A DDAP system 〈P,Q〉 is a system having
two components P , Q satisfying the following properties:

– P = 〈SP , S
0
P , INP , OUTP , TP ,LP 〉 and Q = 〈SQ, S

0
Q, INQ ,OUTQ , TQ,LQ〉

are two Kripke structure with inputs;
– Q depends on P , but P does not depend on Q;
– only one system at a time is active (interleaving asynchronous parallelism).

We call D = OUTP ∩ INQ the dependency set of the DDAP system.

Example 2. Fig. 1 shows an example of DDAP system (called SafeLock). The
safe lock system is composed by two locks, P and Q, which work in sequence.
Both locks have two buttons (upP and downP, upQ and downQ) that change the
digit of the lock. Lock P becomes unlocked (i.e., unlockedP = true) only if the
digit is equal to the stored correct value (in the example, the value 4). Lock Q
becomes unlocked (i.e., unlockedQ = true) only if the digit is equal to the stored
correct value (in the example, the value 2) and if P is unlocked. So the safe lock
is unlocked when Q is unlocked.

An Abstraction Technique for Testing Decomposable Systems 41

Lock P has as inputs INP = {upP, downP} and as output OUTP = {digitP0,
. . . , digitP9, unlockedP}. It has ten different states (sp0, . . . , s

p
9), distinguished by

the value of the digit; LP (s
p
4) = {digitP4, unlockedP} and LP (s

p
i) = {digitPi}

for i = 0, . . . , 3, 5, . . .9.
LockQ has as inputs INQ = {upQ, downQ, unlockedP} and as output OUTQ =

{digitQ0, . . . , digitQ9, unlockedQ}. It has eleven different states (sq0, . . . , s
q
9,

and s̃q2), distinguished by the value of the digit and of unlockedQ; LQ(s̃
q
2) =

{digitQ2, unlockedQ}, and LQ(s
q
i) = {digitQi} for i = 0, . . . , 9.

The output unlockedP of lock P is connected to the corresponding input of
lock Q, i.e., the dependency set is D = {unlockedP}.
Definition 8 (DDAP Input Sequence). The input set of a DDAP system
K = 〈P,Q〉 is the set INK = INP ∪ (INQ \D). An input sequence for the DDAP
K is a sequence J0, . . . , Jn such that Ji ∈ P(INK).

We define the concept of a trace of a DDAP system, reflecting the fact that
only one component makes a move at each step, and that, when the dependent
component moves, it reads some of its inputs from the outputs of the independent
component.

Definition 9 (DDAP Trace). Given an input sequence J0, . . . , Jn, . . . for a
DDAP system 〈P,Q〉, a trace is the sequence (p0, q0), J0, (p1, q1), . . . , (pn, qn),
Jn, (pn+1, qn+1), . . . such that:

[(1)]
1. p0 ∈ S0

P and q0 ∈ S0
Q;

2. ((pi, Ji∩INP , pi+1) ∈ TP ∧qi = qi+1)⊕((qi, (Ji∩INQ)∪(LP (pi)∩D), qi+1) ∈
TQ ∧ pi = pi+1).

Requirement (2) specifies that either the component P moves from pi to pi+1

and Q remains still in state qi = qi+1, or component Q moves from qi to qi+1

and P remains still in state pi = pi+1. When Q moves, it reads some of its inputs
from the outputs of P (i.e., LP (pi) ∩D).

Example 3. For the safe lock system SafeLock, the input set is INSafeLock = {upP,
downP, upQ, downQ}. Assuming that the both locks are initialized to 0, a possible
trace leading to the state in which the global lock is unlocked is: (sp0, s

q
0), {upP},

(sp1, s
q
0), {upP}, (sp2, sq0), {upP}, (sp3, sq0), {upP}, (sp4, sq0), {upQ}, (sp4, sq1), {upQ},

(sp4, s̃
q
2).

Note that DDAP systems can be extended to systems with more that two
subsystems, as shown in Section 5.

3.1 Encoding DDAP Systems in NuSMV

NuSMV permits to split a model in different modules and run several module
instances in the main module. Modules instances can be run in a synchronous
or asynchronous way. Asynchronous modules instances are created through the

42 P. Arcaini, A. Gargantini, and E. Riccobene

MODULE lockP
DEFINE keyP := 4;
IVAR −− INP

upP: boolean;
downP: boolean;

VAR −− OUTP

digitP: 0 .. 9;
DEFINE −− OUTP

unlockedP := digitP = keyP;−− D = OUTP ∩ INQ

ASSIGN
init(digitP) := 0;
next(digitP) :=

case
upP & !downP: (digitP + 1) mod 10;
downP & !upP: (digitP + 9) mod 10;
TRUE: digitP;

esac;
’

Code 1. Lock P

MODULE lockQ
DEFINE keyQ := 2;
IVAR −− INQ

upQ: boolean;
downQ: boolean;
unlockedP: boolean; −− D = OUTP ∩ INQ

VAR −− OUTQ

digitQ: 0 .. 9;
DEFINE −− OUTQ

unlockedQ := digitQ = keyQ & unlockedP;
ASSIGN

init(digitQ) := 0;
next(digitQ) :=

case
upQ & !downQ: (digitQ + 1) mod 10;
downQ & !upQ: (digitQ + 9) mod 10;
TRUE: digitQ;

esac;

Code 2. Lock Q

MODULE main
VAR

procP: process lockP;
procQ: process lockQ;

TRANS procP.unlockedP = procQ.unlockedP;

Code 3. DDAP system SafeLock

keyword process; at each step, one process is nondeterministically chosen and
executed, while the other processes do not run and so do not change their state.

A DDAP system can be easily encoded in NuSMV. Subsystems P and Q are
defined as two NuSMV modules, as described in Section 2.2, and asynchronously
instantiated in the main module (as processes procP and procQ), so that only
one subsystem is executed at a time. The connection between P outputs and
Q inputs is established by a TRANS declaration in which each output x of P
belonging to the dependency set (i.e., x ∈ OUTP ∩ INQ) is linked with the
corresponding input of Q (i.e., procP.x = procQ.x). In the sequel, we refer to
this global model as whole model.

Example 4. We have encoded the running case study SafeLock in NuSMV.
Codes 1 and 2 show the NuSMV modules for locks P and Q; Code 3 shows
the main module that asynchronously executes the two locks and connects the
output unlockedP of P with the corresponding input of Q.

4 Test Generation for DDAP Systems

In this section we present a novel technique for test generation by model checking
for DDAP systems. The technique introduces an abstraction that exploits the
dependency among the subsystems.

Definition 10 (DDAP Test). A test for a DDAP system 〈P,Q〉 is a finite
trace (p0, q0), J0, (p1, q1), . . . , (pn−1, qn−1), Jn−1, (pn, qn).

An Abstraction Technique for Testing Decomposable Systems 43

−> State: 1.1 <−
procP.upP = FALSE
procP.downP = FALSE
procP.digitP = 0
procP.unlockedP = FALSE
procQ.upQ = FALSE
procQ.downQ = FALSE
procQ.unlockedP = FALSE
procQ.digitQ = 0
procQ.unlockedQ = FALSE
procP.keyP = 4
procQ.keyQ = 2trap

−> Input: 1.2 <−
process selector = main
running = TRUE
procQ.running = FALSE
procP.running = FALSE

−> State: 1.2 <−
procP.upP = TRUE

−> Input: 1.3 <−
process selector = procP
running = FALSE
procP.running = TRUE

−> State: 1.3 <−
procP.digitP = 1

−> Input: 1.4 <−
−> State: 1.4 <−
procP.digitP = 2

−> Input: 1.5 <−
−> State: 1.5 <−
procP.digitP = 3

−> Input: 1.6 <−
−> State: 1.6 <−
procP.downP = TRUE
procP.digitP = 4
procP.unlockedP = TRUE
procQ.upQ = TRUE
procQ.unlockedP = TRUE

−> Input: 1.7 <−
process selector = procQ
procQ.running = TRUE
procP.running = FALSE

−> State: 1.7 <−
procQ.digitQ = 1

−> Input: 1.8 <−
−> State: 1.8 <−
procP.upP = FALSE
procP.downP = FALSE
procQ.upQ = FALSE
procQ.digitQ = 2
procQ.unlockedQ = TRUE
’

’

’

’

’

Fig. 2. Witness for the test predicate F(procQ.unlockedQ)

Definition 11 (Soundness). A test generation method for DDAP systems is
sound if each produced sequence is a test for the DDAP.

If a DDAP system is specified as a whole model (as described in Section 3.1),
the technique presented in Section 2.3 can be used to generate tests for the
DDAP. Let us call this technique Mwhole .

Definition 12 (Completeness). A test generation method M for DDAP sys-
tems is complete if M generates a test suite covering all the feasible test predi-
cates of the whole model.

Theorem 1. Mwhole is sound and complete.

Example 5. Consider the DDAP system SafeLock shown in Codes 1, 2, and 3.
A test predicate for the system (using Mwhole) is F(procQ.unlockedQ), requir-
ing that lock Q can become unlocked. In order to find a test for covering the
test predicate, we check the trap property !F(procQ.unlockedQ), saying that Q
never becomes unlocked. Since the test predicate is feasible, the trap property
is violated and the returned counterexample is a witness for the test predicate.
The counterexample is shown in Fig. 2; we can see that, in the last state of the
sequence, the test predicate is covered because procQ.unlockedQ becomes true.

4.1 Decomposition by Dependency Abstraction

Given a test predicate tp over a DDAP system 〈P,Q〉, if tp contains only labels
of P , one can apply the cone of influence (COI) abstraction technique [9], by not
considering Q, and generating a test only for P . If the test predicate tp contains
only labels of Q, instead, the application of COI is not effective, since it cannot
simplify the model: indeed, P provides input values to Q and so both P and Q

44 P. Arcaini, A. Gargantini, and E. Riccobene

Algorithm 1. Test generation algorithm MDD

Require: Two specifications P and Q
Require: A test predicate tpQ for Q
Ensure: A test for the DDAP system
1: testQ ← getWitness(tpQ)
2: if testQ �= UNFEASIBLE then
3: inputSeq ← getInputSeq(testQ , P)
4: rcP ← getLTL(inputSeq)
5: testP ← getWitness(rcP)
6: if testP �= UNFEASIBLE then
7: return merge(testP , testQ)
8: else
9: return UNKNOWN � It is unknown if the test predicate is feasible
10: end if
11: else
12: return UNFEASIBLE � The test predicate is unfeasible
13: end if

must be considered. A basic approach is to generate a test using Mwhole that,
however, may suffer from the state space explosion problem.

We propose an abstraction that exploits (un)dependency between inputs and
outputs to decompose the complete system; the proposed test generation ap-
proach consists in generating two tests, one over Q and one P , and merging
them later. Alg. 1 shows the test generation algorithm MDD we propose.

Given a test predicate tpQ for Q, if tpQ is feasible, we compute its witness
(line 1 in Alg. 1) by asking the model checker for a counterexample for the trap
property ¬tpQ . The counterexample is a trace of Q

testQ = q0, IQ0, . . . , qm

where q0 ∈ S0
Q, and IQj ⊆ INQ is the set of inputs of Q applied at state qj to

obtain state qj+1, j = 0, . . . ,m−1. We identify the inputs coming from machine
P (those of the dependency set) as IQj ∩D.

We split the sequence testQ in subsequences σi, i = 0, . . . , n, such that atomic
propositions of the dependency set remain unchanged:

testQ = q0, σ0, σ1, . . . , σn

= q0,

σ0︷ ︸︸ ︷
IQ0, q1, . . . , qk1

D0

,

σ1︷ ︸︸ ︷
IQk1

, qk1+1, . . . , qk2

D1

, . . . ,

σi︷ ︸︸ ︷
IQki

, qki+1, . . . , IQki+1−1, qki+1

Di

, . . . ,

σn︷ ︸︸ ︷
IQkn

, qkn+1, . . . , qm

Dn

where n < m and 0 = k0 < . . . < kn < m, and, for each σi, Di is the set of
inputs of the dependency set that are applied all over σi, i.e., ∀j = ki, . . . , ki+1−
1: IQ j ∩D = Di.

An Abstraction Technique for Testing Decomposable Systems 45

Given the sequence D0, . . . , Dn (called inputSeq in Alg. 1), we build a reach-
ability condition rcP over P as LTL formula (line 4 in Alg. 1), requiring that
n+ 1 subsequent states (not necessarily contiguous) exist, in which P produces
the output values Di requested by Q to start the computation σi. It holds

rcP = F

⎛

⎝
∧

d0∈D0

d0 ∧ F

⎛

⎝. . .F

⎛

⎝
∧

dn−1∈Dn−1

dn−1 ∧ F

(
∧

dn∈Dn

dn

)⎞

⎠ . . .

⎞

⎠

⎞

⎠

If rcP is feasible, we compute its witness as counterexample for the trap
property ¬rcP (line 5 in Alg. 1)

testP = p0, IP0, . . . , pt

P produces the output values Di in the n+1 states ph1 , ph2 , . . ., phn , pt. We
split the sequence testP after states p0, ph1 , ph2 , . . ., phn , obtaining the following
computation segments

testP = p0, δ0, δ1, . . . , δn

= p0,

δ0︷ ︸︸ ︷
IP0, p1, . . . , ph1

D0

,

δ1︷ ︸︸ ︷
IPh1 , ph1+1, . . . , ph2

D1

, . . . ,

δi︷ ︸︸ ︷
IPhi , phi+1, . . . , IPhi+1−1, phi+1

Di

, . . . ,

δn︷ ︸︸ ︷
IPhn , phn+1, . . . , pt

Dn

with 0 = h0 < h1 < . . . < hn < t, and where p0 ∈ S0
P and IPj ⊆ INP is the set

of inputs of P applied at state pj to obtain state pj+1. In the last state phi+1 of
a subsequence δi, P produces the output values Di necessary to Q for beginning
the subsequence σi, i.e., LP (phi+1) ∩D = Di.

The test for the DDAP system can be built, as described below, using infor-
mation coming from testP and testQ (line 7 in Alg. 1).

Let 〈δi ◦ q〉 indicate the sequence IPhi , (phi+1, q), . . . , (phi+1 , q) of the DDAP
system in which P executes δi and Q keeps still at state q.

Let 〈σi ◦ p〉 indicate the sequence IQki
\ D, (p, qki+1), . . . , (p, qki+1) of the

DDAP system in which Q executes σi and P keeps still at state p.
A test for the DDAP system is the sequence

testPQ = (p0, q0), 〈δ0 ◦ q0〉 , 〈σ0 ◦ ph1〉 , 〈δ1 ◦ qk1〉 , . . . ,
〈σi−1 ◦ phi〉 , 〈δi ◦ qki〉 ,

〈
σi ◦ phi+1

〉
, . . . , 〈δn ◦ qkn〉 , 〈σn ◦ pt〉

Example 6. In this example we show how to apply the decomposition by depen-
dency abstraction to the safe lock system SafeLock presented in Example 2, for
generating the test that covers the test predicate F(unlockedQ) in component
Q. The test built for Q is

testQ = sq0,

σ0︷ ︸︸ ︷
{upQ, unlockedP}, sq1, {upQ, unlockedP}, s̃q2

D0={unlockedP}

46 P. Arcaini, A. Gargantini, and E. Riccobene

The corresponding reachability condition on P is

rcP = F (unlockedP)

The test built for P is

testP = sp0,

δ0︷ ︸︸ ︷
{upP}, sp1, {upP}, sp2, {upP}, sp3, {upP}, sp4

D0={unlockedP}

The test for the DDAP system is

testPQ = (sp0, s
q
0),

〈δ0◦sq0〉︷ ︸︸ ︷
{upP}, (sp1, sq0), {upP}, (sp2, sq0), {upP}, (sp3, sq0), {upP}, (sp4, sq0),

{upQ}, (sp4, sq1), {upQ}, (sp4, s̃q2)︸ ︷︷ ︸
〈σ0◦sp4〉

Theorem 2 (Soundness). The test generation method MDD is sound.

Proof. Proving the soundness of the proposed technique MDD corresponds to
prove that testPQ is a test for the DDAP system.

testP is a valid trace for P because ∀j = 0, . . . , t − 1: (pj , IPj , pj+1) ∈ TP .
testQ is a valid trace for Q because ∀j = 0, . . . ,m− 1: (qj , IQj , qj+1) ∈ TQ.
In Def. 9, (1) holds since p0 ∈ S0

P and q0 ∈ S0
Q (by def. of testP and testQ).

In Def. 9, (2) holds for all the transitions of testPQ :

– for the initial transition ((p0, q0), IP0, (p1, q0)), because (p0, IP0, p1) ∈ TP ;
– for the subsequent transitions ((p, q), I, (p′, q′)), since one of the following

cases occurs:
• if the transition is in a 〈δi ◦ qki〉, then (p, I, p′) ∈ TP ∧ q = q′ = qki ;
• if the transition is in a

〈
σi ◦ phi+1

〉
, then (q, I∪Di, q

′) ∈ TQ∧LP (phi+1)∩
D = Di ∧ p = p′ = phi+1 ;

• if the transition moves from 〈δi ◦ qki〉 to
〈
σi ◦ phi+1

〉
(with i = 0, . . . , n),

then (q, I ∪ Di, q
′) ∈ TQ ∧ p = p′ = phi+1 , with I = IQki

\Di, q = qki ,
and q′ = qki+1;

• if the transition moves from 〈σi−1 ◦ phi〉 to 〈δi ◦ qki〉 (with i = 1, . . . , n),
then (p, I, p′) ∈ TP∧q = q′ = qki , with I = IPhi , p = phi , and p′ = phi+1.

Proposition 1 (Incompleteness). The method MDD is not complete.

Proof. A test predicate in Q may be covered by more than one test; the model
checking approach, however, returns only one test. It is easy to build a DDAP sys-
tem for which, given a test predicate tpQ for Q, there exist two tests, testQ and
testQ ′, for covering tpQ in Q, and such that P can provide the values required
by testQ ′, but not the values required by testQ. If the model checker returns
testQ , the test predicate is not covered with MDD (Alg. 1 returns UNKNOWN),
although it can be covered using Mwhole .

An Abstraction Technique for Testing Decomposable Systems 47

MODULE P
VAR −− OUTP

x: 1 .. 4; −− D
ASSIGN

x := {2, 4};

MODULE Q
IVAR −− INQ

x: 1 .. 4; −− D
DEFINE

y := (x + 1) mod 3;

MODULE main
VAR

procP: process P;
procQ: process Q;

TRANS procP.x = procQ.x;

Code 4. Example of DDAP system for proving that MDD is not complete

Let us consider the DDAP system shown in Code 4. In order to cover the test
predicate F(y = 2) in Q, MDD can require by P either value 1 or value 4 for
the input variable x. If the required value is 1, MDD can not find a test on P to
provide 1 as value for x, since x can only assume values 2 and 4 in P ; so MDD

returns UNKNOWN. However, the test predicate can be covered with Mwhole (which
finds a witness for the corresponding test predicate F(procQ.y = 2)), and could
be covered using MDD as well, if Q would request 4 as input value for x.

5 Generalization to DDAP Systems with n Components

DDAP systems (see Def. 7) can be extended to systems with more than two
components.

Definition 13 (n-DDAP System). An n-DDAP system is a system having
n components C1, . . . , Cn (with n ≥ 2) satisfying the following properties:

– Ci = 〈SCi , S
0
Ci
, INCi , OUTCi , TCi,LCi〉 is a Kripke structure with inputs;

– Ci depends only on Ci−1, for each i = 2, . . . , n; C1 does not depend on any
other component;

– only one system at a time is active (interleaving asynchronous parallelism).

We can adapt the test generation approach presented in Alg. 1 for dealing
with n-DDAP systems. Alg. 2 shows the modified algorithm M n

DD . Given a test
predicate for a component Ci, the algorithm builds a test for Ci (line 1). Then,
if the test predicate is feasible, for each previous component Cj it computes the
reachability condition that specifies the values that Cj must pass to Cj+1 (lines 5
and 6). If a test satisfying the reachability condition can be built for Cj , such test
is merged with the previous tests generated so far for components Cj+1, . . . , Ci

(line 9). If for a component Cj the test cannot be built,M
n
DD returns the UNKNOWN

result, otherwise, at the end, it returns a test for the n-DDAP system.

6 Initial Experiment

We run all the experiments on a Linux machine, Intel(R) Core(TM) i7 CPU, 4
GB RAM. We have developed NuSMV models in the NuSeen framework1 which
provides an interface to the NuSMV model checker [6] and to a model advisor
for NuSMV specifications [4].

1 https://code.google.com/a/eclipselabs.org/p/nuseen/

https://code.google.com/a/eclipselabs.org/p/nuseen/

48 P. Arcaini, A. Gargantini, and E. Riccobene

Algorithm 2. Test generation algorithm M n
DD for n-DDAP systems

Require: An n-DDAP system {C1, . . . , Cn}
Require: A test predicate tp for a Ci

Ensure: A test for the n-DDAP system
1: componentTest ← getWitness(tp)
2: systemTest ← componentTest
3: if componentTest �= UNFEASIBLE then
4: for j = i− 1, . . . , 1 do
5: inputSeq ← getInputSeq(componentTest , Cj)
6: rc ← getLTL(inputSeq)
7: componentTest ← getWitness(rc)
8: if componentTest �= UNFEASIBLE then
9: systemTest ← merge(componentTest , systemTest)
10: else
11: return UNKNOWN � It is unknown if the test predicate is feasible
12: end if
13: end for
14: else
15: return UNFEASIBLE � The test predicate is unfeasible
16: end if
17: return systemTest

We have experimented our approach on the n-DDAP system n-SafeLock, an
extension of the DDAP system SafeLock described in Example 2. n-SafeLock
is composed of n locks L1, . . . , Ln, such that each lock Li is unlocked if it
contains the correct digit and (except for L1) if the previous lock is unlocked.
We have applied the basic technique Mwhole and the proposed technique M n

DD

(see Alg. 2) on different instances of n-SafeLock, using an increasing number of
locks n. For each experiment, we have always tried to cover the test predicate
F(unlockedLn) over the last lock Ln; all the test predicates are feasible. Mwhole

has find a test for each test predicate (as expected from Thm. 1); also M n
DD has

always obtained a test for the whole system (no UNKNOWN result).
Fig. 3 shows the experimental results. Fig. 3a shows the memory consumption

(in terms of number of BBD nodes allocated) of the test generation using Mwhole

and using M n
DD ; we can see that, using Mwhole , the required memory grows

exponentially, whereas, using M n
DD , it grows linearly. Fig. 3b shows the time

taken by the two test generation methods (using a logarithmic); the required
time grows exponentially using Mwhole , whereas it grows linearly using M n

DD .
Note that Mwhole calls the model checker only once, while M n

DD does it n times.
For small values of n, when the instantiation time constitutes the main part of
the execution time, Mwhole outperforms M n

DD .

An Abstraction Technique for Testing Decomposable Systems 49

(a) Memory (b) Time

Fig. 3. Experiment results

7 Related Work

In [2] we have proposed a test generation technique for sequential nets of Abstract
State Machines (ASMs), which represent systems constituted by a set of ASMs
such that only one ASM is active at a time. Given a net of ASMs, a test suite for
every ASM in the net is built, and then the tests are combined in order to obtain a
test suite for the entire system. Apart from the different notation, that technique
shares with MDD the fact that the generation of the tests is performed for the
single subsystems that are subsequently combined. However, that technique only
supports sequential systems, whereas MDD supports interleaving asynchronous
systems.

The technique presented in [2] has been extended in [3] for handling the
passing of information between subsystems, in a similar way as done in MDD

with the dependency set. However, since the subsystems run in sequence, the
information between two subsystems P and Q can only be passed by P to Q
at the end of a P run in order to start a Q run; in MDD , instead, P can pass
information to Q several times in different states of their traces.

With respect to [2,3], the technique proposed here has required to handle, as
test predicates, LTL temporal formulae. Moreover, tests are no more built by
concatenating the tests for the single components, but by merging them.

Since our approach is based on model checking, we mainly relate to abstraction
techniques for formal verification. The cone of influence (COI) technique [9]
reduces the size of the transition graph by removing from the model the variables
that do not influence the variables in the property one wants to check. In [18] COI
is used to reduce the state space of fFSM models, a variant of Harel’s Statecharts;
models that could not be verified before, have been verified successfully after its
application. The data abstraction technique [9], instead, consists in creating a
mapping between the data values and a small set of abstract data values; the
mapping, extended to states and transitions, usually reduces the state space,
but it may not preserve properties. In [7] a technique to iteratively refine an
abstract model is presented. The technique assures that, if a property is true in
the abstract model, so it is in the initial model; if it is false in the abstract model,

50 P. Arcaini, A. Gargantini, and E. Riccobene

instead, the spurious counterexample may be the result of some behavior in the
abstract model not present in the original model. The counterexample itself is
used to refine the abstraction so that the wrong behavior is eliminated.

A technique for sequential modular decomposition for property verification of
complex programs is presented in [17]. The approach consists in partitioning the
program into sequentially composed subprograms (instead of the typical solution
of partitioning the design into units running in parallel). Based on this partition,
the authors present a model checking algorithm for software that arrives at its
conclusion by examining each subprogram in separation. They identify ending
states in the component where the computation is continued in another com-
ponent and some information passed to the next subprogram. The algorithm
then tries to formally prove the property in each component finding the nec-
essary assumptions about the initial (entering) states of the component. The
algorithm proceeds backwards until it finds that the property is true in every
sub-component starting from any initial state of the system. Since the goal is
formal verification, the algorithm must guarantee that the property holds in any
state, while in our approach, since we want to find only a counterexample, we
only need to find a path leading to interesting states.

An approach performing test generation by decomposing sequential programs,
called SMART, is presented in [13]. It proposes a sequential decomposition tech-
nique: given a program calling several functions inside it, these called functions
are tested in isolation and complete tests are composed only at the end. The
main difference with our approach is that tests for sub-functions are not real
tests but they are expressed as summaries using input preconditions and output
postconditions, and then re-used when testing higher-level functions. The main
advantage is that SMART is both sound and complete compared to monolithic
test generation (like Mwhole), while our approach is only sound. A disadvantage
is that SMART must maintain the summaries and it can solve them only at the
end. Sometimes constraints on some inputs can not be expressed (for instance
a hash function) and sometimes all the collected constraints are very hard to
solve, leaving some issues still open.

8 Conclusions

We have proposed a test generation approach by model checking for Decom-
posable by Dependency Asynchronous Parallel (DDAP) systems, i.e., systems
composed by several subsystems connected together in a way that (part of) the
inputs of one subsystem are provided by another subsystem. The approach is
based on a decompositional abstraction: It builds tests for the single subsystems
and combines them later in order to obtain a global system test. Such approach
permits to mitigate the state explosion problem of model checking. The method
has been proved to be sound but not complete.

As future work, we plan to apply the proposed technique MDD to more com-
plex systems, possibly leading to UNKNOWN results. This would require to improve
MDD to achieve its completeness, on the base of the following intuition. When

An Abstraction Technique for Testing Decomposable Systems 51

Alg. 1 returns the UNKNOWN result, it means that the value requested by test
testQ cannot be provided by P . In this case, the technique could ask for another
test testQ ′ for Q, and check if now the values requested by testQ ′ can be pro-
vided by P ; such procedure should be iterated until a test for the whole system
is returned or no new test on Q can be found.

The approach MDD is suitable for building tests for test predicates defined
over APQ , i.e., the labels of only Q (or of only a component in an n−DDAP
system). As future work, we plan to extend the technique for handling general
test predicates built over all the labels of the system, i.e., over APP ∪ APQ .

A further improvement could be dealing with systems in which one component
may depend on several components. In this case, the dependency relation would
be represented by an acyclic graph.

References

1. Ammann, P., Black, P.: Abstracting formal specifications to generate software tests
via model checking. In: Proceedings of the 18th Digital Avionics Systems Confer-
ence, vol. 2, pp. 10.A.6-1–10.A.6-10 (1999)

2. Arcaini, P., Bolis, F., Gargantini, A.: Test Generation for Sequential Nets of
Abstract State Machines. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid,
S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316,
pp. 36–50. Springer, Heidelberg (2012)

3. Arcaini, P., Gargantini, A.: Test Generation for Sequential Nets of Abstract State
Machines with Information Passing. Science of Computer Programming (2014)

4. Arcaini, P., Gargantini, A., Riccobene, E.: A model advisor for NuSMV specifica-
tions. Innovations in Systems and Software Engineering 7(2), 97–107 (2011)

5. Browne, M.C.: An improved algorithm for the automatic verification of finite state
systems using temporal logic. In: Proceedings, Symposium on Logic in Computer
Science (LICS), Cambridge, Massachusetts, USA, June 16-18, pp. 260–266. IEEE
Computer Society (1986)

6. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
pp. 359–364. Springer, Heidelberg (2002)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50, 752–794 (2003)

8. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
10. Fraser, G., Gargantini, A.: An evaluation of model checkers for specification based

test case generation. In: ICST 2009, Denver, Colorado, USA, April 1-4, pp. 41–50.
IEEE Computer Society (2009)

11. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Software Testing, Verification and Reliability 19(3), 215–261 (2009)

12. Gargantini, A., Heitmeyer, C.L.: Using model checking to generate tests
from requirements specifications. In: Wang, J., Lemoine, M. (eds.) ESEC 1999
and ESEC-FSE 1999. LNCS, vol. 1687, pp. 146–162. Springer, Heidelberg (1999)

52 P. Arcaini, A. Gargantini, and E. Riccobene

13. Godefroid, P.: Compositional dynamic test generation. In: Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2007, pp. 47–54. ACM, New York (2007)

14. Hierons, R., Derrick, J.: Editorial: special issue on specification-based testing. Soft-
ware Testing, Verification and Reliability 10(4), 201–202 (2000)

15. Josko, B.: A context dependent equivalence relation between kripke structures. In:
Clarke, E., Kurshan, R. (eds.) CAV 1990. LNCS, vol. 531, pp. 204–213. Springer,
Heidelberg (1991)

16. Koo, H.-M., Mishra, P.: Functional test generation using design and property
decomposition techniques. ACM Trans. Embed. Comput. Syst. 8(4), 32:1–32:33
(2009)

17. Laster, K., Grumberg, O.: Modular model checking of software. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 20–35. Springer, Heidelberg (1998)

18. Park, S., Kwon, G.: Avoidance of State Explosion Using Dependency Analysis in
Model Checking Control Flow Model. In: Gavrilova, M.L., Gervasi, O., Kumar,
V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006.
LNCS, vol. 3984, pp. 905–911. Springer, Heidelberg (2006)

19. Prenninger, W., Pretschner, A.: Abstractions for Model-Based Testing. Electron.
Notes Theor. Comput. Sci. 116, 59–71 (2005)

20. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann (2006)

21. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

An All-in-One Toolkit
for Automated White-Box Testing�

Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, and Nikolai Kosmatov

CEA, LIST, Gif-sur-Yvette, F-91191, France
first.name@cea.fr

Abstract. Automated white-box testing is a major issue in software engineering.
Over the years, several tools have been proposed for supporting distinct parts of
the testing process. Yet, these tools are mostly separated and most of them sup-
port only a fixed and restricted subset of testing criteria. We describe in this paper
FRAMA-C/LTEST, a generic and integrated toolkit for automated white-box test-
ing of C programs. LTEST provides a unified support of many different testing
criteria as well as an easy integration of new criteria. Moreover, it is designed
around three basic services (test coverage estimation, automatic test generation,
detection of uncoverable objectives) covering most major aspects of white-box
testing and taking benefit from a combination of static and dynamic analyses.
Services can cooperate through a shared coverage database. Preliminary experi-
ments demonstrate the possibilities and advantages of such cooperations.

1 Introduction

Automated white-box testing is a major issue in software engineering. Along the years,
several tools have been proposed for supporting distinct parts of the testing process,
such as test replay, coverage estimation or automatic test generation. Yet, these tools
are mostly separated, and most of them support only a fixed and restricted subset of
existing testing criteria.

Our main goals are (1) to provide tool support for most steps of the white-box testing
process, and (2) to support a large range of coverage criteria and to offer flexible ways
of adding new ones. We propose FRAMA-C/LTEST, a generic and integrated toolkit for
automated white-box testing of C programs. It is generic in the sense that it supports a
broad class of coverage criteria in a unified way, and integrated in the sense that it covers
most major aspects of white-box testing. FRAMA-C/LTEST is implemented on top of
the FRAMA-C verification platform [4] and relies on a combination of test generation
and static analysis. More precisely:

– LTEST provides three basic services for test automation: coverage estimation, auto-
matic test generation (ATG) and detection of uncoverable test objectives. Moreover,
several coverage criteria are already supported, and adding new ones is straightfor-
ward. We achieved this by building the tool upon label coverage [2], a specification
mechanism allowing to manage many existing criteria in a unified way.

� Work partially funded by EU FP7 (project STANCE, grant 317753) and French ANR (project
BINSEC, grant ANR-12-INSE-0002).

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 53–60, 2014.
c© Springer International Publishing Switzerland 2014

54 S. Bardin et al.

– The toolkit is designed around four basic modules (program annotation, coverage
estimation, ATG and detection of uncoverable labels) that advantageously combine
static and dynamic analysis techniques and communicate through a shared database
of coverage information. This modular architecture allows for flexible interactions
between modules and gives opportunities for dedicated optimisations.

– We provide a summary of preliminary results demonstrating the benefits of our
hybrid analysis approach, typical use-case scenarios and gains of our optimisations.

The paper is organized as follows. Section 2 provides necessary background on la-
bels. An overview of the LTEST platform is given in Section 3, including a descrip-
tion of the provided services, a typical use-case and implementation details. Section 4
presents a summary of experiments. Finally, related work is discussed in Section 5 and
Section 6 concludes the paper.

2 Labels

Label coverage [2] provides a convenient and powerful specification mechanism for
coverage criteria. Labels are predicates attached to program instructions. A program
with labels is called an annotated program. A label is covered if a test execution reaches
it and satisfies the predicate. Labels can faithfully emulate many standard coverage
criteria, from decision or condition coverage to a substantial subset of weak mutations,
allowing us to manage all of them in a unified way. Basically, for each test objective
a new label is added to the program under test, such that covering the label in the
annotated program is equivalent to covering the test objective in the program under test.
The automatic insertion of adequate labels for a given coverage criterion is performed
by a so-called labelling function. Several examples are presented in Fig. 1.

statement_1;
if (x==y && a<b)

{...};
statement_3;

−→

statement_1;
// l1: x==y && a<b
// l2: !(x==y && a<b)
if (x==y && a<b)

{...};
statement_3;

statement_1;
// l1: x==y
// l2: x!=y
// l3: a<b
// l4: a>=b
if (x==y && a<b)

{...};
statement_3;

statement_1;
// l1: x==y && a<b
// l2: x!=y && a<b
// l3: x==y && a>=b
// l4: x!=y && a>=b
if (x==y && a<b)

{...};
statement_3;

Decisions (DC) Conditions (CC) Multiple Conditions (MCC)

int foo(int x){
statement_1;
...

}

−→
int foo(int x){

// l1: true
statement_1;
...

}

int foo(int x){
// l1: x==0
// l2: x>0
// l3: x<0
statement_1;
...

}

Functions (FC) Input Domain Partition (IDC)

Fig. 1. Simulating standard coverage criteria with labels

An All-in-One Toolkit for Automated White-Box Testing 55

Dynamic Symbolic Execution (DSE) [7,11] is a popular approach to automatic test
generation, based on path exploration. We showed in previous work [2] how to extend
DSE for handling labels with only very small overhead, while prior instrumentation-
based approaches incur a blow-up of the search space [9]. We denote by DSE� this
modified version of DSE.

3 Overview of the Platform

3.1 From the User Perspective

LTEST comes as a series of FRAMA-C plugins [4]. The toolkit offers the following
main services:

Uncoverability Detection: the service detects uncoverable test objectives, i.e. those
objectives which cannot be covered by any test datum. The information is primarily
used by other modules, but it can also be exported for external use.

Coverage Estimation: the service replays a given test suite and reports its coverage.
Coverage is given as a whole (all test objectives taken into account) and per crite-
rion. Moreover, uncoverable or uncovered test objectives are reported.

ATG: the service produces a test suite which can be replayed for coverage estimation.
In case a test suite has already been replayed, the ATG service will try to complete
the achieved coverage rather than to start from scratch.

The platform currently supports the following test criteria [1,2]: decision coverage
(DC), function coverage (FC), condition coverage (CC), multiple-condition coverage
(MCC), weak mutation (WM, operators AOR, ROR, COR, ABS) and input domain
partition (IDC). Moreover, coverage criteria can be combined together, test objectives
can be restricted to certain procedures of the program under test and it is possible to add
hand-written test objectives.

3.2 A Typical Use-Case

To illustrate the usage of the platform, let us consider a toy example. The function
quadrant of Fig. 2 takes as inputs the coordinates of two points P1 = (x1, y1) and
P2 = (x2, y2) on the plane and checks if they belong to the same quadrant.

Suppose we run LTEST first to generate labels for this function and choose the MCC
coverage criterion [1]. Here, 16 labels will be added by the tool before each if state-
ment, that is, 64 labels in total. For instance, the labels with the following conditions
are added just before line 6 of Fig. 2:

x1 � 0 ∧ x2 � 0 ∧ y1 • 0 ∧ y2 • 0, where � ∈ {≤, >}, • ∈ {≥, <}.
Next, we run the ATG service based on DSE�. It covers 58 of the 64 labels after

exploring 409 (partial) program paths. The remaining 6 labels are indeed uncoverable.
For example, the label ψ = x1 > 0 ∧ x2 > 0 ∧ y1 ≥ 0 ∧ y2 ≥ 0 added before the
statement of line 6 is uncoverable since the condition ψ is weaker than the condition

56 S. Bardin et al.

1 // Checks if input points (x1,y1) and (x2,y2) lie in the same quadrant
2 // of the plane. Returns the quadrant number if so, otherwise returns 0.
3 int quadrant (int x1, int y1, int x2, int y2){
4 if(x1 >= 0 && x2 >= 0 && y1 >= 0 && y2 >= 0)
5 return 1; // (+,+): quadrant 1
6 if(x1 <= 0 && x2 <= 0 && y1 >= 0 && y2 >= 0)
7 return 2; // (-,+): quadrant 2
8 if(x1 <= 0 && x2 <= 0 && y1 <= 0 && y2 <= 0)
9 return 3; // (-,-): quadrant 3

10 if(x1 >= 0 && x2 >= 0 && y1 <= 0 && y2 <= 0)
11 return 4; // (+,-): quadrant 4
12 return 0; // not in the same quadrant
13 }

Fig. 2. Function quadrant

of the first if statement followed by a return (cf lines 4–5 in Fig. 2), so ψ cannot be
satisfied at this program point. Similarly, two uncoverable labels are generated for line
8 and three for line 10, each of them being unsatisfiable because of the preceding if

and return statements. Note that, here, using a standard DSE approach with a direct
instrumentation instead of DSE� [2] would lead to exploring 3938 program paths.

To avoid wasting time trying to cover uncoverable labels, we can first run the un-
coverability detection service based on static analysis, successfully marking the six un-
coverable labels. The ATG service will now ignore them, exploring only 284 program
paths (instead of 409) while still covering the same 58 labels.

3.3 Inside LTEST

The toolkit is designed around the notions of labels and annotated programs, and struc-
tured in four modules: LANNOTATE, LREPLAY, LUNCOV and LGENTEST. Mod-
ules can interact through shared information comprising the annotated program and
a database mapping each label to its current status, namely: covered, uncoverable, un-
known (i.e. neither covered nor proven uncoverable). LANNOTATE acts as a front-end:
it annotates the program with labels according to the chosen criteria and creates the
status database. The other modules provide user-level services. They can update label
statuses and in some cases take advantage of them. Compared to the description given
in Sec. 2, labels are equipped with a unique identifier used by the database and a “cat-
egory” tag allowing their classification according to coverage criteria. Finally, besides
annotated programs which are our core language and the primary input for DSE�, we
use two closely related classes of instrumented programs for uncoverability detection
(Fig. 3(b)) and test replay (Fig. 3(c)).

The whole architecture is depicted in Fig. 4. We give hereafter a few clues about the
technologies behind each module.

LANNOTATE: The module implements the idea of labelling functions [2] and can be
seen as a mapping

(program, set of criteria) �→ (annotated program, status database).

Given a C program and a set of supported criteria (listed in Sec. 3.1), LANNOTATE au-
tomatically computes a program annotated with the labels corresponding to the selected
criteria. It also initializes the status database that can be used by other LTEST services.

An All-in-One Toolkit for Automated White-Box Testing 57

statement_1;
//id: p
statement_2;

−→
statement_1;
// fresh var b_id
b_id:=p;
statement_2;

,
statement_1;
if(p){output id};
statement_2;

p:label predicate

id: label identifier
(a) (b) (c)

Fig. 3. An annotated program (a), its instrumentations for LUNCOV (b) and LREPLAY (c)

LANNOTATE contains an annotation function per criterion. The module relies on the
FRAMA-C kernel services for program transformation [4], based themselves on the CIL
library. More precisely, each annotation function takes as input the program’s abstract
syntax tree (AST), inserts the required labels for the target criterion, and outputs a new
AST containing the labels. In addition to already supported criteria, users can extend
the module by writing their own annotation functions. LANNOTATE provides facilities
to easily insert labels into an AST and to collect all inserted labels into the shared status
database. Note that annotated programs can be exported for external use.

LUNCOV: This module acts as a mapping

(annotated program, status database) �→ status database.

Given an annotated program and its status database, LUNCOV runs static analysis to
identify uncoverable labels and marks them as uncoverable in the database. A label
can be uncoverable for example when it has an unreachable location (dead code) or an
unsatisfiable condition.

The implementation of LUNCOV strongly relies on the value analysis plugin
(VALUE) of FRAMA-C [4]. VALUE computes (an overapproximation of) the set of pos-
sible values of variables at each program point through abstract interpretation. Given an
annotated program, we launch VALUE on the instrumented version depicted in Fig. 3(b):
if VALUE reports that a “label variable” cannot be true, then the associated label is un-
coverable. For example, in Fig. 3(b), if b_id cannot be true before statement_2, then
either the execution cannot reach statement_2 or the predicate p cannot be satisfied. In
both cases, it follows that label id in the original annotated program of Fig. 3(a) is
uncoverable.

LREPLAY: The interface of this module can be seen as a mapping

(annotated program, test suite, status database) �→ status database.

Given an annotated program and an existing test suite, the module runs each test on
the instrumented version of Fig. 3(c) and inspects output traces in order to update label
statuses in the status database. In addition, it computes coverage statistics for the given
test suite.

58 S. Bardin et al.

LGENTEST: This module provides the test generation service of LTEST and performs
the mapping

(annotated program, status database) �→ (test suite, status database).

LGENTEST implements DSE� [2] and is based on a modified version of the PATH-
CRAWLER test generator [11]. Compared to [2], the current version includes two new
optimisations: (OPT-1) DSE� is stopped once all (potentially coverable) labels have
been covered, and (OPT-2) already-covered labels (e.g. by another test suite) and un-
coverable labels are ignored by DSE�. In this way, test generation effectively benefits
from static analysis results computed by LUNCOV (cf Sec. 3.2 & 4).

Fig. 4. Overview of LTEST Architecture

3.4 Implementation Details

The LTEST toolkit is built on top of the FRAMA-C verification platform for C pro-
grams [4] (open source, LGPL). We took advantage of the plugin-based architecture
of FRAMA-C as much as possible, reusing existing analyses of interest for our needs.
The FRAMA-C kernel, LANNOTATE, LGENTEST and LUNCOV modules are written
in OCaml. The LGENTEST module is based on a modified version of PATHCRAWLER

[11], which is written in ECLiPSe/Prolog. The LTEST code is open source (LGPL),
except the LGENTEST module, and available online.1

4 Experiments

Experiments1were conducted to evaluate the interest of the proposed combination of
test generation with static analysis and the new optimizations of DSE� in LGENTEST.

1 Source code, benchmark programs and a detailed description of experiments are available
online at http://micdel.fr/ltest.html

An All-in-One Toolkit for Automated White-Box Testing 59

We consider the same annotated benchmark programs and the same three coverage
criteria (CC, MCC and WM) as in [2]. These are standard benchmark programs from the
literature, coming from the Siemens test suite, the Verisec benchmark and MediaBench.
Their sizes range from a few dozen to a few hundred lines of codes.

We compare the following variants of LGENTEST: the DSE� technique as described
in [2], DSE�+s that includes in addition the stopping criterion (OPT-1, Sec. 3.3), and
DSE�+u+s that exploits in addition uncoverable labels detected through a preliminary
pass of LUNCOV (OPT-2, Sec. 3.3).

Our results are very promising. First, experiments confirm the interest of the stop-
ping criterion. When full coverage is reached, test generation becomes in average 2.95×
faster, and up to 600× faster on some examples. Second, LUNCOV is indeed able to de-
tect several uncoverable objectives, and marks as uncoverable up to 35% of labels in
some examples. This yields an improvement of reported coverage ratios by discarding
uncoverable objectives. Coverage ratios can thus reach in some cases 100% of coverable
objectives. Moreover, by combining the knowledge of statically-detected uncoverable
objectives and the stopping criterion, test generation on programs with uncoverable ob-
jectives becomes in average 1.36× faster, the speedup going up to 11.52×. Note that
the detection of uncoverable objectives takes a reasonable amount of time on our bench-
mark programs (12% of the total computation time in average, up to 30% on a few cases
where test generation terminates quickly, but less than 3% when test generation takes
more than 10s). Finally, these experiments underline the real synergy between the two
optimisations: the stopping criterion is efficient as long as everything is coverable, while
static analysis improves the performances of test generation by removing some uncov-
erable objectives.

5 Related Work

Many different automatic testing tools are available, from test suite coverage estimation
and test replay to automatic test generation. Yet, these tools are usually limited to few
services and to few coverage criteria. On the opposite, we aim at providing an integrated
and generic toolbox for automated white-box testing.

Most DSE tools support only the basic decision coverage criterion, sometimes en-
hanced with some implicit “run-time error” coverage criterion (see [2] for a more
detailed discussion). An interesting exception is APEX [9], which targets the .NET
platform. It operates by adding additional predicates to path conditions during DSE,
whereas LTEST annotates the code with predicates. Our approach is less ATG-centric
since predicates can be reused outside test generation. In particular, we can use static
analysis in order to detect uncoverable labels or measure the (weak) mutation score
of a third party’s test suite. In addition, LTEST’s ATG service implements DSE� [2]
dedicated to labels, drastically limiting the overhead observed for example with APEX.

The SANTE approach [3] combines static analysis and DSE in order to prove the
absence or presence of run-time errors. The present work can be seen as an extension
of SANTE, providing a larger choice of coverage criteria and a larger choice of services
(test replay and completion), together with a more flexible combination scheme.

Several recent results have been obtained concerning the combinations of
different formal methods inside a single tool [5,6]. FRAMA-C is primarily devoted to

60 S. Bardin et al.

verification rather than testing: plugins collaborate in order to prove assertions written
in the high-level language ACSL, cooperation is based on recording which assertions
have been proved under which hypotheses [6]. The extensions SANTE and STADY [10]
take advantage of dynamic analysis in order to disprove assertions as well. A similar
combination has been studied using DAFNY and PEX [5]. While we also combine static
and dynamic techniques, our goal is clearly the opposite: we target testing, and use
static analysis for optimizing test generation and sharpening coverage measures.

6 Conclusion and Future Work

We propose FRAMA-C/LTEST, a generic and integrated toolkit for automated white-
box testing of C programs implemented on top of the FRAMA-C verification platform
and relying on a combination of test generation and static analysis.

LTEST can be used in black-box as a powerful testing tool. Yet, thanks to its modular
architecture and open-source license, it can also be very useful as a basic building block
for developing other advanced testing tools. In the future, we plan to explore additional
cooperations with other FRAMA-C plugins and features. For example, we could take
advantage of the expressive annotation language ACSL [4] for specifying richer test
objectives.

References

1. Ammann, P., Offutt, A.J.: Introduction to software testing. Cambridge University Press
(2008)

2. Bardin, S., Kosmatov, N., Cheynier, F.: Efficient Leveraging of Symbolic Execution to Ad-
vanced Coverage Criteria. In: ICST 2014. IEEE, Los Alamitos (2014)

3. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances a verification
technique combining static and dynamic analysis. In: SAC 2012. ACM, New York (2012)

4. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C - a
software analysis perspective. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

5. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with explicit
assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 132–
146. Springer, Heidelberg (2012)

6. Correnson, L., Signoles, J.: Combining Analyses for C Program Verification. In: Stoelinga,
M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130. Springer, Heidelberg
(2012)

7. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In: PLDI
2005. ACM, New York (2005)

8. Godefroid, P., Levin, M.Y., Molnar, D.: Automated Whitebox Fuzz Testing. In: NDSS 2008
(2008)

9. Jamrozik, K., Fraser, G., Tillman, N., de Halleux, J.: Generating Test Suites with Augmented
Dynamic Symbolic Execution. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942,
pp. 152–167. Springer, Heidelberg (2013)

10. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: How Test Generation Helps Software
Specification and Deductive Verification in Frama-C. In: Seidl, M., Tillmann, N. (eds.) TAP
2014. LNCS, vol. 8570, pp. 204–211. Springer, Heidelberg (2014)

11. Williams, N., Marre, B., Mouy, P.: On-the-Fly Generation of K-Path Tests for C Functions.
In: ASE 2004. IEEE, Los Alamitos (2004)

Behaviour Driven Development for Tests
and Verification

Melanie Diepenbeck1, Ulrich Kühne1, Mathias Soeken1,2, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{diepenbeck,ulrichk,msoeken,drechsle}@informatik.uni-bremen.de

Abstract. The design of hardware systems is a challenging and error-
prone task, where a signifcant portion of the effort is spent for testing and
verification. Usually testing and verification are applied as a post-process
to the implementation. Meanwhile, for the development of software, test-
first approaches such as test driven development (TDD) have become
increasingly important. In this paper, we propose a new design flow based
on behaviour driven development (BDD), an extension of TDD, where
acceptance tests written in natural language drive the implementation.
We extend this idea by allowing the specification of properties in natural
language and use them as a starting point in the design flow. The flow also
includes an automatic generalisation of test cases to properties that are
used for formal verification. In this way, testing and formal verification
are combined in a seamless manner, while keeping the requirements —
from which both tests and formal properties are derived — in a single
consistent document. The approach has been implemented and evaluated
on several examples to demonstrate the advantages of the proposed flow.

1 Introduction

In the design of hardware and software systems, testing and verification are often
more labour and cost intensive than the implementation itself. The higher the
quality standards — up to safety critical systems in cars, avionics, or medical
equipment — the more time needs to be spent in writing good test benches
or formal properties. In traditional hardware design flows, verification is often
done at post-design time. This practice can result in long design cycles, since
serious bugs discovered at this late stage might lead to major design changes
or modifications of the specification. This is why it is desirable to start the
validation as early as possible.

In the software domain, agile techniques have become quite popular, as a
means to shorten the design cycles and achieve a more flexible flow, where
changes can be integrated quickly. In test driven design (TDD), the tests are
written first [1], which forces the designer to think about the requirements
and interfaces before getting started with coding. Behaviour driven develop-
ment (BDD) is an extension of TDD, where the tests are written in natural
language [2]. In BDD, textual scenarios, which can easily be derived from the

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 61–77, 2014.
c© Springer International Publishing Switzerland 2014

62 M. Diepenbeck et al.

requirements, provide a valuable link between the specification and the imple-
mentation. During the design process, the scenarios are ported step by step to
executable tests. Writing tests and implementing the required code is interleaved,
resulting in short design cycles. There have been some attempts to make use of
agile techniques in the hardware domain [3], also with a focus on formal models
and verification techniques [4, 5].

In the context of BDD, the natural language scenarios are usually used to
describe acceptance tests, i.e. scenarios that test whether certain features are
implemented according to the requirements. But, when applied to safety critical
hardware designs, just testing is not enough. Since it is infeasible to cover the
whole input and state space even of smaller hardware blocks by mere simulation,
there remains a risk that subtle bugs will be missed. This is where formal meth-
ods come into play. Using automatic or semi-automatic proof techniques, high
confidence can be reached in the correct functionality. In particular, SAT-based
model checking techniques like [6–8] have been successfully applied to industrial
scale hardware designs. However, their application is difficult and requires writ-
ing properties in dedicated languages such as the property specification language
(PSL, [9]).

In this paper, we present for the first time a hardware design flow that com-
pletes the BDD method by complementing tests with formal verification tech-
niques in a flexible and agile way. The methodology builds on the popular BDD
tool cucumber [2]. We enhance the existing test driven flow by integrating for-
mal verification, while keeping the natural language requirements in a single
consistent document. As a first step to improve the design quality, test cases can
be generalised automatically to PSL properties. This enables the use of model
checking tools with no additional effort for the user. However, not all test cases
can be generalised in this way. We add further flexibility by allowing to write re-
quirements dedicated to formal verification only, that will be translated directly
to PSL. This allows the use of more powerful constructs, which cannot easily be
described by single test cases.

Overall, the contributions of this work are the following:

– Strengthening BDD for hardware design by automated test generalisation
– A seamless integration of tests and formal properties in a single human

readable document
– The implementation within the popular BDD tool cucumber
– The experimental evaluation on several examples

The paper is structured as follows. First, the used property specification lan-
guage and the basics of BDD are introduced in Sect. 2. The proposed BDD
flow for hardware design and verification are presented in Sect. 3. Section 4 dis-
cusses advantages and limitations of our approach. Related work can be found
in Sect. 5. The paper is concluded in Sect. 6.

Behaviour Driven Development for Tests and Verification 63

2 Background

2.1 Property Specification Language

PSL has been adapted as IEEE standard 1850 in 2005 [9]. It is supported by
many verification tools, both dynamic (simulative) and formal. PSL comes in
different flavors for the hardware description languages VHDL, Verilog, and
SystemVerilog, as well as for SystemC, a C++ library for hardware and system
design.

The language is organised in layers, starting at the bottom with the Boolean
layer, which consists of expressions from one of the flavor languages. On top of
this, timing can be added in the temporal layer. Basically, PSL is a superset
of linear time logic (LTL, [10]). Besides the standard operators such as always,
until, and next1, a convenient way to describe computations in PSL are sequen-
tially extended regular expressions (SEREs). Like ordinary regular expressions,
they allow for pattern matching and provide an easy way to express repetitions
and concatenation, but focusing on temporal aspects. Finally, at the verification
layer, directives are given to the verification tool, what to do with the stated
properties. Here, we will only introduce a subset of this very rich standard. A
good introduction to PSL for hardware verification can be found in [11].

Example 1. Consider the following simple PSL property:

property reset = always {rst; !rst} |-> pc == 0;

The operator always indicates that the following expression should be considered
an invariant, which must hold at every single cycle in any computation. The
invariant given by property reset is formed by the overlapping suffix implication
operator ‘|->’. On the left hand side of the suffix implication, a SERE is formed,
consisting of two cycles, where the signal rst is high in the first and low in
the second cycle. The suffix implication has the following meaning: if the left
hand side sequence occurs, then the right hand side must hold simultaneously
to the last cycle of the sequence. Overall, the property reset states that after
asserting and releasing signal rst, the signal pc must be set to zero. A slightly
more complex property is stated below:

property release_req = always {{req; ack} | {req; rty}} |=> !req;

Here, the operator ‘|=>’ is called non-overlapping suffix implication. The prop-
erty holds if the right hand side holds in the cycle directly after the last cycle
of the sequence on the left hand side. The left hand side SERE is a composition
of two sequences, combined with the non-length matching or ‘|’. The left hand
side matches if any of the two given sequences match. Overall, the property says
that req should be released after it has been asserted and after either ack or
rty has occurred.

Besides the operators in the above examples, we will use the non-length match-
ing and, expressed by a single ‘&’, which combines two sequences analogously to
1 According, respectively, to G, U and X in LTL.

64 M. Diepenbeck et al.

the non-length matching or. The built-in functions next(ϕ) and prev(ϕ) can be
used to retrieve the value of an expression ϕ in the next or the previous cycle,
respectively. The built-in function stable(ϕ) is a shortcut for the expression
ϕ== prev(ϕ).

2.2 Running Examples

As a running example, a first-in-first-out queue (FIFO) and an arithmetic-logic
unit (ALU) will be used. Figure 1 shows block diagrams of the designs under test.
The FIFO is a synchronous circuit, driven by the clock signal clk. The single bit
outputs empty and full give information on the fill status of the FIFO, while
elems shows the exact number of elements currently in the queue. The oldest
data element can be read from output dat_out. By asserting the input rst_n
(active low), the FIFO is cleared. Elements are added and removed using the
signals push and pop, respectively, where dat_in is used to present the data
to be added to the queue. The actual design under test has a capacity of four
elements.

The ALU in Fig. 1(b) computes 2-input logic and arithmetic functions. The
type of function is selected via the five bit input func_i. The ALU implements
17 different functions, among them addition, shifting, multiplication and com-
parisons like equals or less. The single bit input signed_i indicates whether
both the 32 bit data inputs are to be treated as signed or unsigned integers. The
ALU is part of an open source hardware project.2

FIFO

rst_n

push

pop

dat_in

empty

full

elems

dat_out

clk

(a) First-in-first-out queue

ALU

a_i

b_i

result_o

func_i

signed_i

(b) Arithmetic-logic unit

Fig. 1. Block diagrams of example circuits

2.3 Behaviour Driven Development

BDD extends the idea of TDD with natural language written user stories or
acceptance tests, which are called scenarios. These are grouped by means of fea-
tures and each scenario is described as a sequence of sentences.
2 http://opencores.org/project,m1_core

http://opencores.org/project,m1_core

Behaviour Driven Development for Tests and Verification 65

Scenario Outline: Pushing
When the FIFO is empty
And I push <a>
And I wait 1 cycle
Then the output is <a>
Examples:

| a |
| 1 |
| 0 |
| 127 |

(a) Scenario

When /^the FIFO is empty$/ do
$assert(empty);

end

When /^I push (\d+)$/ do |arg|
rst_n = 1;
push = 1;
pop = 0;
dat_in = arg;

end

Then /^the output is (\d+)$/ do |arg|
$assert(dat_out == arg);

end

(b) Step definitions

Fig. 2. BDD scenario with step definitions

Example 2. Figure 2(a) shows an example scenario that describes how data is
written (push operation) into the FIFO from the previous section. When an
element is pushed to the empty queue, then it is the oldest element in the FIFO
and therefore it can be read from the output.

In order to have a nicely readable text, the BDD flow suggest to use the
keywords Given, When, and Then, that refer to test code containing assumptions,
conditions, and assertions, respectively. Note that these keywords have no further
semantic meaning in the BDD tool. The keyword And can be used to avoid
repetition and one can also use * as a generic keyword to introduce a sentence.
In fact, the keyword does not even have to match the keyword used in the
step definitions. Consequently, Then sentences can e.g. also be used as When
sentences.

To automatically execute a sentence in a scenario, one has to provide a step
definition which is a 3-tuple consisting of a keyword, a regular expression, and
test code. The BDD tool then essentially works as follows:

1. For each sentence in a scenario it is checked whether it is matched by a
regular expression of a step definition. Step definitions are ordered and the
first matching step definition is taken.

2. If necessary, values are extracted from the sentence using capture groups in
the regular expression. Then, the test code is executed.

Since regular expressions are used in order to match a sentence to a step def-
inition, there is no restriction on the natural language that is used to describe
the scenarios (An exception is the approach that is presented in [12] and uses
natural language processing techniques to extract structural information to cre-
ate a formal model from a set of natural language scenarios). Optionally, it is
possible to add special test code that is executed before and after each scenario.
Every scenario is executed separately within its own test bench environment.

Example 2 (continued). For each sentence in the scenario the designer creates a
step definition, as listed in Fig. 2(b). Since no implementation is available at this

66 M. Diepenbeck et al.

Requirements

BDD for Tests and Verification

Scenarios

Properties

Tests

Properties

DUV

implement

implement

BDD

BDD

generalise

check

verify

1

2

3

4

5 6

Fig. 3. Improved BDD flow

point, the designer only decides on the input and output signals of the FIFO
module in the step definitions.

A predefined sentence “And I wait t cycles” handles timing where test code
in succeeding sentences takes place t cycles after the sentence before this timing
sentence.

This scenario can now be used for testing, however, step definitions cannot
be run directly. Instead, they require a test bench that encloses the test code of
all sentences of a scenario. This test bench can either be written by the designer
or generated automatically from the design information given by the designed
module.

In our examples we mainly use scenario outlines instead of scenarios. A sce-
nario outline is a parameterised scenario which is enriched with an examples
table that allows the specification of several test assignments given by each row
in the table. The variables of a scenario outline, denoted e.g. with <a>, enable
property generalisation, which will be shown in Sect. 3.1.

3 BDD for Tests and Verification

Based on the BDD flow that has been described in the previous section, the idea
for the improved flow is introduced in this section. Our proposed flow is driven
by tests and properties.

The first thing that is usually done in a BDD based approach is writing test
cases in terms of scenarios to drive the implementation. This is a first step in
verifying the design under verification (DUV), and helps in achieving a good
design quality. Nevertheless, this is usually insufficient to completely verify the
design, since the input and state space of non-trivial designs can hardly be
covered by test runs. As a first improvement, it is possible to automatically
generalise test cases to formal properties, thereby covering more potential bugs.
However, some requirements cannot be easily stated as test cases. This holds
especially for global properties like in the following example.

Behaviour Driven Development for Tests and Verification 67

Example 3. Consider the FIFO example of Sect. 2.2 which has a capacity of four
elements. In order to check this requirement of the FIFO, the designer needs to
check two scenarios; (1) a scenario which checks if it is possible to insert at
least four elements and (2) a scenario that checks that a fifth element cannot
be inserted into the queue. Even then, possible bugs — like an underflow when
popping from an empty queue — could be missed, which would violate this
requirement.

Therefore, we propose to drive the implementation by both tests and proper-
ties, as shown on the left hand side of Fig. 3 (marked by 1), where requirements
are described by scenarios and properties. For each sentence of each scenario
and property, step definitions are defined to express the desired behaviour of a
sentence using test code or PSL expressions. This code is then used to guide the
implementation of the design (2). The properties and tests are used in all stages
of the BDD approach to implement, test, and verify the DUV (3,4,6). By gener-
alising tests to properties (5), the verification is strengthened. The generalisation
even allows to reuse parts of a test scenario in a property.

In the remainder of this section it is described how test cases can be gener-
alised, but also limitations are drawn. It is then shown how to overcome these
limitations by writing properties in addition to scenarios to cover more require-
ments of the DUV.

3.1 From Tests to Generalised Properties

As described in Sect. 2.3, acceptance tests are used to create a circuit design
using Verilog. The tests are created in a BDD manner, as shown in Fig. 3 and
can be used to check the DUV.

Acceptance tests as illustrated in Example 2 usually consider only few se-
lected test input data and never cover a scenario exhaustively. Such scenarios
can be generalised in terms of a PSL property which covers the whole test input
space. To obtain the PSL property, the structure of the scenario defined by the
Given-When-Then keywords is mapped to an implication property. While the
antecedent of the implication property is filled with the step definition code of
all When-steps of a scenario, the consequent is filled with the step definition
code of all Then-steps of scenario. In this way, the verification intent of the test
scenario is captured in a PSL property. A property is generated as follows.

Algorithm P (Property Generation). Given a scenario and its step definitions,
this algorithm generates a property for it.
P1. [Sorting step definitions.] The step definition code of every step of the sce-

nario is mapped to the appropriate part of the property.
P2. [Resolve dependencies.] Since inputs and outputs need to be related, the

parameters used to set the test input data inside the step definition must
be replaced by the placeholder variable from the scenario.

P3. [Timing.] Timing information from all step definitions needs to be extracted.
Every statement of the step definition code is assigned to one time step.

68 M. Diepenbeck et al.

Scenario Outline: Pushing
When the FIFO is empty
And I push <a><a>
And I wait 1 cycle1 cycle
Then the output is <a><a>

(a) Feature file

When /^the FIFO is empty$/ do
$assert(empty);$assert(empty);

end

When /^I push (\d+)(\d+)$/ do |arg||arg|
rst_n = 1;rst_n = 1;
push = 1;push = 1;
pop = 0;pop = 0;

dat_in = argarg;
end

Then /^the output is (\d+)(\d+)$/ do |out||out|
$assert (dat_out === outoutdat_out === outout);

end
(b) Step definitions

vunit fifo(fifo) {
restrict {!rst_n; rst_n};

property pushing = always
{emptyempty
&& rst_n == 1&& rst_n == 1
&& push == 1&& push == 1
&& pop == 0&& pop == 0 ;;
stable(rst_n)stable(rst_n)
&& stable(push)&& stable(push)
&& stable(pop)&& stable(pop)
&& stable(dat_in)}&& stable(dat_in)}

|->
{dat_out == prevprev(dat_indat_out == prevprev(dat_in)};

assert pushing;
}

(c) Resulting property

(t = 0)

(t = 0)

(t = 0)

(t = 0)

(t = 0)

(t = 1)

<a>

<a>

Fig. 4. From a scenario to a generalised property

P4. [Test semantics.] In order to follow the same semantics as in the test, the
property is extended by expressions that ensure the test semantics.

P5. [Assembling.] Assemble all statements of the antecedent and the consequent
to SERE expression using the timing information of step P3 and the addi-
tional test expressions of step P4.

Figure 4 illustrates the briefly sketched algorithm P. All statements in Fig. 4(b)
that have a grey background will be inserted into the appropriate part of the
property, depending on whether the step is a When or Then-step, as described
in step P1. The last statement of the second step definition is left out, because
it only assigns test input data.

After that the dependencies between the inputs and the outputs are resolved.
For this purpose, the implicit information of the glue code is used. The glue code is
the part of the scenario and the step definitions that relates the input and output
signals with placeholders such as <a>. Placeholders correspond to selected test
input data. Since the same placeholder variables are used to target the same inputs
and outputs in the scenario, it is possible to resolve the dependencies in the step
code. In Fig. 4(b) the parameters arg and out are substituted by the placeholder
<a>. This is indicated by the solid arrows that connect the parameters of the step
definitions with the placeholder <a> in the scenario. Both mark the same input

Behaviour Driven Development for Tests and Verification 69

dat_in. For this reason, the parameter out can be replaced by the input dat_in
in the last step definition, which is indicated by the dashed arrow.

For timing consideration each statement is annotated with a current time t.
The timing of the statements can be seen in Fig. 4(b) on the left side of each
statement. The predefined Timing sentence “And I wait t cycles” increments
the current time step.

Before the complete property can be assembled, it is necessary to consider the
test semantics first. While testing, the input signals are assigned imperatively.
A new time step does not change the value of the signals unless explicitly spec-
ified. Since the imperative semantics of test code is not implicitly considered
in properties for verification, these test semantics need to be ensured explicitly.
For signals that do not change, a stable-expression is inserted to ensure the
value of the signal stays the same. These statements can be seen in the resulting
property in Fig. 4(c).

In the last step, the property is assembled using all gathered informations. The
timing informations gathered in step P3 is used to assemble the SERE expression
for the antecedent and consequent. This can be seen in Fig. 4(c) in the antecedent
of property pushing where a ’;’ is added between the expressions of the first
and the second time step. In the antecedent the second time step consists of all
stable-assignments of all unchanged signals.

SEREs provide a concise and flexible way to express complex properties, in
particular when compared to the initial approach in [13], which only allowed the
translation of rather simple test cases. For instance, in this style, the generalisa-
tion of an if-then-else statement can be represented as follows:

{{{condition} & {if_assigns}} | {{!condition} & {else_assigns}}}

3.2 Limitation of Test Generalisation into Properties

The method to generalise properties as discussed in the previous section cannot
be applied to all scenarios. Limitations of the approach are listed in the section,
and two types of test cases that lead to invalid properties are illustrated.

Example 4. Consider the exemplary generalisation of the scenario for an addition
operation of the ALU in Fig. 5. Figure 5(a) shows a valid scenario for this
requirement. The step definitions for this scenario are given in Fig. 5(b). The
first two step definitions set the inputs to the values from the examples table.
When this test is generalised the design inputs a_i and b_i are detected as inputs
that can have arbitrary values. The fourth step definition compares the result of
the design output with the given value for <c> in the table. But the assertion of
the design output result_o cannot be generalised since <c> cannot be mapped
to anything in the design. That is because no input-output-relationship is known.
This is shown in the property of Fig. 5(c) where arg is replaced by a question
mark. Although <c> is the addition of <a> and , the relation is never explicitly
stated. Therefore this scenario can not be generalised and would be skipped.

70 M. Diepenbeck et al.

Scenario Outline: Adding
When I set the 1st operand to <a>
And I set the 2nd operand to
And I want to add these
Then the output should be <c>
Examples:

a	b	c
10	15	25
20	15	35
-20	15	-5

(a) Feature file

WhenWhen /^I set the 1st operand to
(\d+’b\d+)$/ do |arg|

a_i = arg;
end

AndAnd /^I set the 2nd operand to
(\d+’b\d+)$/ do |arg|

b_i = arg;
end

AndAnd /^I want to add these$/ do
signed_i = 1;
func_i = 4;

end

ThenThen /^the result should be
(-?\d+)$/ do |arg|

$assert(result_o === argarg);
end

(b) Step definitions

property addition_signed = always
{signed_i==1 && func_i==4} |-> {result_o == ?? };

(c) Resulting property

1

2

3

4

Fig. 5. Missing input-output-relationship

The designer could make this scenario generalisable when she restates the last
step to “Then the output should be the addition of <a> and ” and creates a
complying step definition for it that explains the relation.

Then /^the result should be the sum of (-?\d+) and (-?\d+)$/
do |arg1, arg2|

$assert(result_o === arg1 + arg2);
end

There might also be test cases where generalisation does not yield a useful
property. This is often the case when the relationship of the design input signals
is relevant.

Example 5. Consider the relation operator ‘<’ of the ALU module. A typical
scenario for an acceptance reads as follows:

Scenario Outline: less than
When I set the first operand to <a>
And I set the second operand to
And I use the less-than operator
Then the output should be true
Examples:

a	b
10	15
400	512
-40	15

(1)

Behaviour Driven Development for Tests and Verification 71

The property that is being generalised from this scenario and the correspond-
ing step definitions is:

property less_than = always {signed_i==1 && func_i==13} |-> {result_o==1};

Although the property can be generalised it will fail when verifying it against
the implementation. The relationship of the inputs a_i and b_i cannot be de-
rived from the test case. A specific counter example for this property is that the
design input a_i is set to 7, while b_i is set to 0. Therefore a_i (respectively
<a>) is greater than b_i (respectively). Again, this relationship has only
been stated implicitly in the examples table. This is why the property will fail
when considering arbitrary values of <a> and .

In this case, the user needs to make the relationship explicit by adding it as
an assumption. This can be done using Given-sentences. In the above example,
the designer can fix the property by adding the sentence “Given <a> is less than
” to the beginning of the scenario. This Given-sentence is then translated to
a global assumption, using an assume directive in PSL:

property is_less_than = always {a_i < b_i};
assume is_less_than;

The refactoring of scenarios can lead to a better code inspection and therefore
improves the design understanding. In general, it is easy to rephrase the scenarios
in order to apply property generalisation. But it may also be desirable to treat a
scenario as a normal test case. We offer this possibility by annotating a scenario
with a tag indicating it must not be generalised.

3.3 Specifying Properties

As motivated in the previous section, the property generalisation approach has
its limitations. However, when disabling property generalisation for certain sce-
narios, an exhaustive consideration of the input space is no longer guaranteed.
As an alternative, we extended the features to contain standalone properties next
to scenarios. They work like scenarios with the difference that step definitions do
not contain test code but PSL code to build the property. Consequently, prop-
erties are checked using an automatic formal verification tool and not executed
as part of a test bench. On the level of the natural language requirements, there
is no difference between plain properties and test cases.

A natural language property can be specified in two different ways: (1) as
an implication property similar to the generated properties given by the Given-
When-Then-structure or (2) as an invariant property without using the provided
structure.

Specifying Natural Language Implication Properties. In the following we
illustrate how to specify natural language implication properties. The structuring
of this type of properties is very similar to the specification of scenarios.

72 M. Diepenbeck et al.

Property: Incrementing
When the FIFO is not empty
And I push an element
And I wait 1 cycle
Then the number of elements has increased

(a) Property

When /^the FIFO is
not empty$/ do

Verilog::add_antecedent do
!empty

end
end

When /^I push an element$/ do
Verilog::add_antecedent do

rst_n == 1 && push == 1
&& pop == 0

end
end

Then /^the number of elements
has increased$/ do

Verilog::add_consequent do
elems == prev(elems) + 1

end
end

(b) Step definitions

Fig. 6. Implication property

Example 6. Figure 6(a) shows how to write an implication property that states
that the number of elements of a FIFO is increased whenever an element is
pushed. The property looks very similar to a scenario which is used for testing,
but instead of writing test code, the desired behaviour is expressed with PSL
code. The step definitions in PSL are given in Fig. 6(b).

The PSL property code is written in a Verilog flavour. To build the property,
the designer specifies for which part of the property, i.e. antecedent, consequent, or
assume, the given PSL code is written. For each part an API command is provided.

Although this information could in principle be generated from the appro-
priate keywords (When as antecedents, Then as consequents, and Given as as-
sumes), it is not generated automatically, so that properties can be written more
flexible. In some cases those keywords are not suitable at all as described in the
following section.

Specifying Natural Language Invariant Properties. When an implication
structure is not needed to express a property, the usual When and Then keyword
may be superfluous.

Example 7. As an example for a simple invariant, this property fixes the maxi-
mum amount of elements that can be stored in the FIFO.
Property: Invariant

* The number of elements in the FIFO is at most 4.
(2)

The following step definition contains the PSL code for the property, stating
that the number of elements shown at output elems will at most be 4:

Then /^the number of elements in the FIFO is at most 4\.$/ do
Verilog::add_antecedent do

elems <= 4
end
end

Behaviour Driven Development for Tests and Verification 73

When the FIFO is not full
And I push an element
And I wait 1 cycle1 cycle
Then the number of elements has increased

(a) Feature file

Then /^the FIFO is not full$/ do
$assert(!full!full);

end
When /^I push an element$/ do
Verilog::add_antecedentadd_antecedent do

rst_n == 1 && push == 1 && pop == 0rst_n == 1 && push == 1 && pop == 0
end
end
Then /^the number of elements has increased$/ do
Verilog::add_consequentadd_consequent do

elems == prev(elems) + 1elems == prev(elems) + 1
end
end

(b) Step definitions

vunit fifo(fifo) {
restrict {{!rst_n; rst_n}};

property incrementing = always {
{!full!full} &
{rst_n == 1 && push == 1 && pop == 0}rst_n == 1 && push == 1 && pop == 0}

} |=>|=> {
{elems == prev(elems) + 1elems == prev(elems) + 1}

};

assert incrementing;
}

(c) Resulting property

Fig. 7. Implementation

In this case it may seem that a comment to a PSL property would also suf-
fice to describe the property, but the difference is that the natural language
description also serves as a specification. Therefore the invariant property is an
important part of the feature description of the design.

Assembling the Property. The property code in the step definitions needs to
be assembled to a correct property in PSL syntax in order to be checked against
the implementation. Similar to the property generalisation, the PSL code from
the antecedent parts and the consequent parts of the step definitions are mapped
to the antecedent and the consequent of the resulting property, as can be seen
in Fig. 7.

The PSL code of each step is joined for the antecedent and consequent block,
respectively. If the property code of the antecedent (respectively consequent)
occurs in the same time step, they are assembled as parallel sequences using the
non-length matching and ‘&’ operator. Steps in consecutive cycles are treated
using the concatenation operator ‘;’ between the statements as it is done in the
generalisation.

In the property in Fig. 7, the timing is explicitly stated by one of the steps
that separates the antecedent and consequent blocks. Using the non-overlapping
suffix implication operator ‘|=>’ in the generated property, it is expressed that
the consequent is expected to hold one cylce after the last cycle of the antecedent.

The first step definition in the example in Fig. 7 is particularly interesting,
since it is written in Verilog test code. This example shows that it is additionally
possible to reuse sentences that are used in acceptance tests. To add this test
code to the resulting property it is necessary to generalise the statement. The

74 M. Diepenbeck et al.

Table 1. Examples used to evaluate the new flow

Design #Scenarios #Properties #Gen. Properties

FIFO 7 4 5
m1_alu 22 19 8
counter 1 4 1
hamming 6 5 2

step definition code is assumed to belong to the antecedent block due to the
When keyword and inserted into the antecedent as it is done in the property
generalisation.

Because assume-blocks describe global restrictions, an independent property
is assembled for every assume-block given in a property, which is then assumed
in the generated PSL code. This is analogous to the transcription of the Given-
sentences. This is not shown in the example in Fig. 7.

4 Discussion

In this section we discuss the new flow which has been implemented on top of the
cucumber tool in Ruby. We use WoLFram [14] as the underlying model checker.
Our approach was applied to several examples which are listed in Table 1. The
table states the number of specified scenarios and properties that have been used
to drive the implementation in the first two columns. The third column states
the number of properties that could be generalised from the specified scenarios.
Every functionality of each example is verified using properties that have either
been written or been generalised from the specified scenarios.

In the following we discuss the advantages that arise with the new proposed
flow by referring to some of the examples on which we applied our approach. The
first point to be noticed is the previously explained limitation of the property
generalisation which is described in Sect. 3.2. In the proposed approach of [13]
the generalised properties were the only possibility to formally verify the design.
Therefore, it was sometimes necessary to rephrase the scenario or add a new
step in order to create a valid property. While this is generally easy, it is rather
uncommon when defining tests. In this case, the direct mapping from a scenario
to a property is a convenient alternative.

In Fig. 8 the specification of scenarios and properties for the logical AND
operation of the ALU example can be compared. It is apparent that stating
the requirements in a scenario is more long-winded than the specification of
the requirement as a property. This shows an advantage of this approach since
requirements can be described more concisely which improves the discussion with
stakeholders. This could be observed while specifying tests for the 17 functions
of the ALU.

Behaviour Driven Development for Tests and Verification 75

Scenario Outline: and operation
When I set the first input to <a>
And I set the second input to
And I use the AND operation
Then the result is the logical

AND of <a> and
Examples:

a	b
2’b11	2’b00
2’b01	2’b10
2’b00	2’b00
2’b11	2’b01

Property and operation
When I want to and two operands
Then the result is the logical AND

Fig. 8. Scenarios vs. Properties

Also some requirements cannot be easily stated just using scenarios. Consider
the invariant from the previous section that stated that the FIFO can only
contain at most 4 entries.

Property: Invariant
* the number of elements in the FIFO is at most 4

In order state this invariant as acceptance tests, the designer would need to
write several scenarios. At least one that states that the FIFO can contain 4
elements and another one that states that the FIFO will not take a fifth ele-
ment after four elements have been inserted. This is very laborious and not very
concise. This observation has an important implication on the original idea of
BDD; defining properties as “acceptance tests” completes the aspect of behaviour
driven development.

However, it is not just that scenarios and properties can be defined in the same
document and then tests and verification is used separately. It is even possible to
use steps from scenarios that were only designed for testing in the specification
of properties. The significance of this became very evident while applying the
approach on the examples of Table 1. While implementing the FIFO one third of
the step definitions in properties were reused from test scenarios. Even complete
properties were defined using only steps from scenarios, but instead of resulting
in executable test code creating a valid provable property.

5 Related Work

A first step in this direction has been presented in [13]. But this approach is
one-sided since it only supports a test-based approach that generalises prop-
erties. Our new approach additionally supports a property-based BDD which
goes hand in hand with the previously presented test-based BDD approach. It is
also enhanced by a more advanced property generalisation that supports a more

76 M. Diepenbeck et al.

complex test bench design. Both tests and verification are the main driver for
the implemented design.

Baumeister proposed an approach of a generalisation of tests to a formal
specification in [15]. His work considers Java as target language where the spec-
ification is checked using generated JML. The drawback is that the approach
does not facilitate an automatic generalisation of tests. In [16] a property driven
development approach is presented where a UML model is developed together
with a specification and tests in a TDD manner and OCL constraints are being
added to the UML models while generalising test cases. But this approach is not
implemented.

Agile techniques for hardware design are heavily discussed in several blog
post [17]. One of the most promising approaches that was presented is SVUnit [3],
which is a unit test framework created for SystemVerilog that enables TDD for
circuit design.

The combination of formal techniques and agile design has been considered
in [4]. There, Henzinger et al. propose a paradigm called “extreme model check-
ing”, where a model checker is used in an incremental fashion during the de-
velopment of software programs. Another approach is called “extreme formal
modeling” [18]. In contrast to our work, a formal model is derived first, which
can then be used as a reference in the implementation process. The technique
has also been applied to hardware [5].

6 Conclusions

We proposed a new BDD based flow that combines testing and verification in a
seamless manner using natural language tests and properties as starting point
for the design. For this purpose we introduced a new element for defining prop-
erties in natural language and supported the assembling of PSL code to valid
properties that can be used for verification. This approach helps designers to
write properties by starting from natural language. Our new flow supports the
idea of completeness driven development (CDD) [19] by also defining properties
as a starting point.

Further research will explore how to generate tests from properties written in
BDD style. This can be useful to speed up regression tests during the design,
when the formal verification of global properties would take too long. Future
work will extend the specification language for properties to make scenarios and
properties more expressive and to help the designer in writing properties more
easily, especially if he or she is not a verification engineer.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) within the Reinhart Koselleck project DR 287/23-1 and by the
Graduate School SyDe, funded by the German Excellence Initiative within the
University of Bremen’s institutional strategy.

Behaviour Driven Development for Tests and Verification 77

References

1. Beck, K.: Test Driven Development. By Example. Addison-Wesley Longman,
Amsterdam (2003)

2. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. The Pragmatic Bookshelf (January 2012)

3. Morris, B., Saxe, R.: svunit: Bringing Test Driven Design Into Functional Verifi-
cation. In: SNUG (2009)

4. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model check-
ing. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772,
pp. 332–358. Springer, Heidelberg (2004)

5. Suhaib, S., Mathaikutty, D., Shukla, S., Berner, D.: Extreme formal modeling
(XFM) for hardware models. In: Fifth International Workshop on Microprocessor
Test and Verification, MTV 2004, pp. 30–35 (2004)

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

7. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

8. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

9. Accellera: Accellera property specification language reference manual, version 1.1
(2005), http://www.pslsugar.org

10. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

11. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Integrated Circuits and
Systems. Springer, Secaucus (2006)

12. Soeken, M., Wille, R., Drechsler, R.: Assisted behavior driven development using
natural language processing. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 269–287. Springer, Heidelberg (2012)

13. Diepenbeck, M., Soeken, M., Grosse, D., Drechsler, R.: Behavior driven develop-
ment for circuit design and verification. In: Int’l Workshop on High Level Design
Validation and Test Workshop (HLDVT), pp. 9–16 (November 2012)

14. Sülflow, A., Kühne, U., Fey, G., Grosse, D., Drechsler, R.: WoLFram – A word level
framework for formal verification. In: Proceedings of the IEEE/IFIP International
Symposium on Rapid System Prototyping, RSP 2009, pp. 11–17. IEEE (2009)

15. Baumeister, H.: Combining formal specifications with test driven development. In:
Zannier, C., Erdogmus, H., Lindstrom, L. (eds.) XP/Agile Universe 2004. LNCS,
vol. 3134, pp. 1–12. Springer, Heidelberg (2004)

16. Baumeister, H., Knapp, A., Wirsing, M.: Property-driven development. In: Pro-
ceedings of the Second International Conference on Software Engineering and For-
mal Methods, SEFM 2004, pp. 96–102. IEEE (2004)

17. Johnson, N., Morris, B.: AgileSoC (2012), http://www.agilesoc.com/
18. Suhaib, S.M., Mathaikutty, D.A., Shukla, S.K., Berner, D.: XFM: an incremental

methodology for developing formal models. ACM Trans. Des. Autom. Electron.
Syst. 10(4), 589–609 (2005)

19. Drechsler, R., Diepenbeck, M., Große, D., Kühne, U., Le, H.M., Seiter, J.,
Soeken, M., Wille, R.: Completeness-driven development. In: Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 38–50.
Springer, Heidelberg (2012)

http://www.pslsugar.org
http://www.agilesoc.com/

Quality Assurance in MBE Back and Forth

Sebastian Gabmeyer

Institute of Software Technology and Interactive Systems
Vienna University of Technology, Vienna, Austria

gabmeyer@big.tuwien.ac.at

Abstract. The maturing of model-based engineering (MBE) has led to
an increased interest and demand on the verification of MBE artifacts.
Numerous verification approaches have been proposed in the past and, in
fact, due to their diversity it is sometimes difficult to determine whether a
suitable approach for the verification task at hand exists. In the first part
of this tutorial, we thus present a classification for verification approaches
of MBE artifacts that allows us to categorize approaches, among others,
according to their intended verification goal and the capabilities of their
verification engine. Based thereon, we briefly overview the landscape of
existing verification approaches. In the second part, we iteratively build
and verify the behavioral correctness of a small software system with our
OCL-based model checker MocOCL.

1 Introduction

Software models and model transformations are the core development artifacts in
model-based engineering (MBE) [7,8]. Following the MBE paradigm, programs
are specified in terms of software models and the executable code and other deliv-
erables are generated through successive applications of model transformations.
Therefore, the correctness of the software models and the model transformations
correlates directly with the correctness of the generated artifacts. Hence, errors
made in the former most likely propagate to the latter. As a consequence, recent
years have seen an impressive rise of verification approaches that aim to pre-
vent the propagation of defects from the modeling to the code layer by verifying
the system directly at the modeling layer. In fact, the diversity of the proposed
approaches, which stems from, e.g., the different verification scenarios that the
approaches support and the capabilities of their underlying verification engines,
make it hard to overview existing verification approaches.

In the first part of this tutorial we will thus review the state-of-the-art of verifi-
cation approaches for MBE artifacts and present a classification that will help us
to categorize and compare these approaches [4,5]. We will focus, but not limit,
our presentation to formal verification techniques and, wherever appropriate,
highlight connections and possible applications to testing-based approaches. In
particular, we will survey model checking and theorem proving-based approaches
that

– check whether a set of models provides a consistent view onto the system,

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 78–81, 2014.
c© Springer International Publishing Switzerland 2014

Quality Assurance in MBE Back and Forth 79

– verify whether a transformation performs a semantically consistent conver-
sion from the source to the target model, or

– assert whether the behavior of a model satisfies its specification.

Contrasting this theoretic presentation, the second part of the tutorial demon-
strates an iterative, model-based development process that builds the implemen-
tation and specification of a small software system hand in hand. At the end of
each iteration we assess the system’s behavioral correctness by verifying that its
implementation satisfies the specification. The software system’s implementation
consists of a MOF-conforming structural description and a set of model trans-
formations that capture the system’s behavior. The specification is formulated in
cOCL [2], an extension that augments OCL [6] with temporal operators based
on Computation Tree Logic (CTL) [3]. The verification is then conducted with
MocOCL, a model checker for cOCL specifications [2].

2 Outline of the Tutorial

After motivating the need and usefulness of formal verification techniques in
model-based engineering, we start with an introduction to the two predomi-
nant verification techniques, model checking and (interactive) theorem proving.
Next, we analyze common verification tasks in MBE. These tasks can be cate-
gorized according to their verification goal. We will subsequently identify three
such verification goals, namely consistency checking, translation correctness, and
behavioral correctness. The identification of these goals leads naturally to a clas-
sification scheme for verification approaches. In the following, we amend this
classification by additional categories. In particular, we refine the classification
to distinguish approaches according to the input format of the problem descrip-
tion, that is, the type of software models they can verify. Further refinements of
our classification allow us to categorize approaches according to the their ver-
ification technique, where we distinguish between model checking and theorem
proving-based approaches. Final elaborations on the classification list different
specification languages, that various approaches use to formulate/phrase verifi-
cation properties, and formal encodings, which are generated from the inputted
problem description and subsequently analyzed by the underlying verification
engine. In this way, we develop a feature model that allows us to identify and
compare suitable approaches for a given verification task quickly. Moreover, after
categorizing existing approaches according to this feature-based classification we
point out possible future research direction that have not or only partly been
investigated according to our classification.

In the second part of the tutorial we present the explicit-state model checker
MocOCL and show how it can be used to eliminate bugs in MBE artifacts. Af-
ter a short discussion of its features, we will define structure and behavior of our
running example. The system’s static structure is captured by an Ecore model
and its behavior is defined by model transformations. We will then formulate the
cOCL specification and verify with MocOCL whether the modeled system sat-
isfies this specification. The interpretation of the verification results will unveil,

80 S. Gabmeyer

at first, that the specification is incorrect, and, after refining the specification,
we notice that a bug in our implementation causes erroneous behavior. We fix
the implementation and deem our model correct with respect to its specification
after a final verification run.

3 cOCL and MocOCL

Among the insights that we derive during the discussion of existing verifica-
tion approaches we also conclude that the majority of the presented approaches
translates the models under verification into some lower level representation
that corresponds to the input format of the underlying verification engine. For
example, if the verification engine spin is used, the models are converted into
Promela code. From a practical perspective, this requires to translate back the
results produced by the verification engine to the modeling layer, and, from a
theoretical perspective, it is necessary to verify whether the translation from
model to low-level representation and back is indeed correct in order to trust
the produced results. These considerations motivated the work on cOCL and
MocOCL that allow us to verify the software system directly at the modeling
layer; thus, translations between models and their verification representations
are avoided.

In the following we introduce the concrete syntax of cOCL and discuss the
verification workflow of our model checker MocOCL.

cOCL. The cOCL language extends OCL by five temporal operators, Next,
Globally, Eventually, Until, and Unless, that must be preceded by a path quan-
tifier, either Always or Exists. The semantics of these operators follow those de-
fined for the branching-time logic CTL [3]. Expressions formulated with cOCL
evaluate to Boolean values and must adhere to the following syntax definition:

(Always | Exists)(Next ϕ | Globally ϕ | Eventually ϕ | ϕ Until ψ | ϕ Unless ψ)

where ϕ, ψ are either Boolean OCL expressions or cOCL expressions. An OCL
invariant can only assert properties of single states, whereas a cOCL expression
allows us to formulate assertions over a sequence, or path, of system states. Con-
sider, for example, the Dining Philosophers problem. We formulate the following
cOCL expression to check whether it is possible that we finally reach a state
from which a path starts where one of the philosophers is always hungry:

philosphers→
exists(p | Exists Eventually Exists Globally p.status=St ::hungry)

If this property is found to hold, it shows that there exists at least one philosopher
that starves forever. Further, we can check safety properties and assert with the
following expression that the number of forks remains constant:

let initialNumForks = forks→size() in

Always Globally forks→size() = initialNumForks

Quality Assurance in MBE Back and Forth 81

MocOCL. The model checker MocOCL verifies cOCL expressions. For this
purpose, the modeler provides an Ecore (meta)model that defines the static
structure of the system, a set of graph transformations that define the system’s
behavior, an initial model, and a cOCL expression as input. Starting with the
initial model MocOCL applies the graph transformations iteratively to incre-
mentally derive new states represented by graphs. At each iteration it evaluates
the cOCL expression and, if the evaluation fails, produces a counter-examples.
Otherwise, MocOCL continues its state space exploration until it either (a) con-
cludes that the expression holds for the given system or (b) runs out of memory.
In all but the last case, MocOCL reports back the cause of the verification that
explains why the cOCL expression evaluated successfully or why it failed.

Currently, MocOCL uses Henshin [1] to apply graph transformations to
Ecore models during the state space exploration. Moreover, it extends the
OCL engine1 integrated into Eclipse to evaluate cOCL expression over
sequences of Ecore (instance) models. MocOCL is available for download at
http://modelevolution.org/prototypes/mococl.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations, pp. 121–135 (2010)

2. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-
Extended OCL Model Checking, pp. 13–22

3. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic, pp. 52–71 (1981)

4. Gabmeyer, S., Brosch, P., Seidl, M.: A Classification of Model Checking-Based Ver-
ification Approaches for Software Models. In: Proceedings of the STAF Workshop
on Verification of Model Transformations (VOLT 2013), pp. 1–7 (2013)

5. Gabmeyer, S., Kaufmann, P., Seidl, M.: A feature-based classification of formal
verification techniques for software models. Tech. Rep. BIG-TR-2014-1, Institut
für Softwaretechnik und Interaktive Systeme; Technische Universität Wien (2014),
http://publik.tuwien.ac.at/files/PubDat_228585.pdf

6. OMG, O.M.G.: Object Constraint Language (OCL) V2.2. (February 2010),
http://www.omg.org/spec/OCL/2.2/

7. Selic, B.: The Pragmatics of Model-driven Development. IEEE Software 20(5),
19–25 (2003)

8. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003),
http://dx.doi.org/10.1109/MS.2003.1231150

1 http://projects.eclipse.org/projects/modeling.mdt.ocl

http://modelevolution.org/prototypes/mococl
http://publik.tuwien.ac.at/files/PubDat_228585.pdf
http://www.omg.org/spec/OCL/2.2/
http://dx.doi.org/10.1109/MS.2003.1231150
http://projects.eclipse.org/projects/modeling.mdt.ocl

Visualizing Unbounded Symbolic Execution

Martin Hentschel, Reiner Hähnle, and Richard Bubel

TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany
{hentschel,haehnle,bubel}@cs.tu-darmstadt.de

Abstract. We present an approach for representing and visualizing all
possible symbolic execution paths of a program. This is achieved by inte-
grating method contracts and loop invariants into a symbolic execution
engine and rendering them visually in a suitable manner. We use the
technique to create an omniscient visual symbolic state debugger for
Java that can deal with unbounded loops and method calls.

1 Introduction

Symbolic execution [3,14] is a method to explore systematically all possible ex-
ecution paths of a program for all possible input data. This property makes it
into a powerful program analysis technique that is useful in a wide variety of
application scenarios. Recently, symbolic execution enjoyed renewed interest and
efficient implementations of symbolic execution engines for industrial program-
ming languages are available (e.g., [2,4,5]). From its very inception, symbolic
execution has been employed in two fundamentally different scenarios: (i) state
exploration for the purpose of, for example, test case generation or debugging
[14] and (ii) formal verification of programs against a functional property[3].
For the latter, program annotations in the form of loop invariants and method
contracts, are necessary. Recent verification approaches use contract-based spec-
ification languages specific to the target language for this purpose, such as the
Java Modeling Language (JML) [15] or SPEC# [1].

A main drawback of the second scenario is that meaningful contracts are often
unavailable. But in fact also the first scenario cannot do without annotations in
practice: loops with symbolic bounds and method calls quickly render symbolic
execution infeasible or allow to explore only a fraction of all possible execution
paths. As a remedy, compositional symbolic execution was proposed [10] where
approximate contracts, so-called method summaries, are constructed on the fly.

In this paper we unify both strands of symbolic execution: our contribution
is an approach for representing and visualizing all possible symbolic execution
paths of a program. This is achieved by integrating method contracts and loop
invariants into a symbolic execution engine and rendering them visually in a
suitable manner. We use the technique in the context of computer-assisted de-
bugging to deal with unbounded loops and method calls.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 82–98, 2014.
c© Springer International Publishing Switzerland 2014

Visualizing Unbounded Symbolic Execution 83

2 Symbolic Execution

Symbolic execution means to execute a program with symbolic values in lieu
of concrete values. We explain symbolic execution by example: method sum()
shown in Listing 1.1 takes an array a as argument and computes the sum of all
of a’s elements. If the passed reference a is null, an exception is thrown.

Listing 1.1. Sum of array elements

1 public static int sum(int[] a) throws Exception {
2 if (a == null) {
3 throw new Exception("Array␣is␣null.");
4 }
5 else {
6 int sum = 0;
7 for (int i = 0; i < a.length; i++) {
8 sum += a[i];
9 }

10 return sum;
11 }
12 }

For a Java method to be executed it must be called explicitly. For instance, the
expression sum(new int[]{42}) invokes method sum() with a freshly created
array of length one with content 42 as argument. This results in a single execution
path: first line 2 is executed, i.e., the guard of the conditional is evaluated. The
guard evaluates to true, so execution continues with lines 6–9, where the sum
is computed. Execution finishes with the return statement in line 10. We note
that concrete execution (i) requires fixture code to set up a specific state and to
call the method of interest with specific arguments, and (ii) results (assuming
a deterministic programming language) in a single execution path through the
program.

Let us execute the same method symbolically, i.e., without a concrete argu-
ment, but a reference to a symbolic value a0 which can stand for any array object
or null. The symbolic interpreter starts execution at line 2 and evaluates the
guard of the conditional statement. As there is no information about the value
of a0, one cannot rule out any of the two branches of the conditional statement.
Consequently, the symbolic interpreter has to split execution into two continu-
ations, (i) for the case where the condition a0 == null is true, and (ii) for its
complement. These conditions are called branch conditions.

Symbolic execution on branch (i) continues with the throw-statement, while
on branch (ii) it is concerned with the sum computation. We discuss branch (ii)
in more detail: executing the next statement declares the local variable sum and
initializes it with value 0. The symbolic state maintained by the interpreter looks
then as follows:

a : a0 {a0 �= null}
sum : 0

84 M. Hentschel, R. Hähnle, and R. Bubel

The left column lists all relevant (i.e., until now accessed) locations such as local
variables, fields and array elements (here: a and sum), while the second column
shows their symbolic value. (We consider concrete values as special cases of
symbolic ones.) The third column lists possible constraints on symbolic values.
These represent knowledge we have about a symbolic value either a priori from
preconditions in specifications (see Section 3) or accumulated during symbolic
execution from the branch conditions (here, we know a0 �= null).

Fig. 1. Initial section of infinite symbolic execution tree of sum() from Listing 1.1

Now symbolic execution enters the loop. First the initializer of the counter i
is executed. Then the loop guard i < a.length is tested, i.e., the interpreter
attempts to determine whether 0 < a0.length holds. Clearly, the current sym-
bolic state represents concrete states, where the condition is true, but also con-
crete states, where it is false. Hence, we obtain two new execution branches with

Visualizing Unbounded Symbolic Execution 85

branch conditions (ii.1) a0.length == 0 and (ii.2) a0.length > 0. Each exe-
cution path is determined by the conjunction of all branch conditions that occur
on it. For a given path, this conjunction is called path condition.

In branch (ii.1) the loop exits and the return statement is executed. In
branch (ii.2) the loop is entered and its body is executed. After execution of
the loop body, the loop condition is evaluated again, causing further branching
(with branch conditions (ii.2.1) a0.length == 1, (ii.2.2) a0.length > 1), etc.

The symbolic execution tree up to here is shown in Fig. 1. The top compart-
ment of each node contains the statement to be executed next in the symbolic
state shown in the optional bottom compartment. It lists the locations modi-
fied by its parent with name, symbolic value and optional constraints in braces.
The complete symbolic state of a node consists of all variables defined in parent
nodes with their most recent value and constraints. Branch conditions appear
as annotations along the edges of branching nodes.

In contrast to concrete execution, symbolic execution does not require fixture
code, but can start execution at any code position—newly encountered locations
are initialized with a fresh symbolic value about which nothing is assumed. It
generates a symbolic execution tree that represents all possible concrete execu-
tion paths (up to its depth): each symbolic execution path through the symbolic
execution tree may represent infinitely many concrete executions and is deter-
mined by its path condition. Symbolic execution may not terminate in presence
of loops, e.g., when iterating over data structures with unbounded symbolic
length. In standard symbolic execution method calls are handled by inlining the
method body of the callee. If multiple implementations for a method exist, sym-
bolic execution creates one branch for each of them. Recursive methods exhibit
the same problem as loops and can result in infinite symbolic execution trees.

The symbolic execution tree in Fig. 1 contains not all possible branches. For
example, the one checking the array for being null during the access in line 8
is omitted, because it can be shown to be infeasible (its path condition is con-
tradictory). Only feasible paths need to be explored.

3 Symbolic Execution with Specifications

We saw that symbolic execution of loops and recursive method calls leads to
infinite symbolic execution trees. Our solution to this problem employs loop
invariants and method contracts as known from program specification and ver-
ification. Method contracts do not only provide the means to render symbolic
execution trees finite, but allow also to realize compositional symbolic execu-
tion. The necessity to have method contracts available is no principal limitation,
because it is possible to use schematically generated, abstract contracts [12].

3.1 Symbolic Execution using Loop Invariants

Our solution uses similar techniques as in program verification to keep proof
representations (proof trees) finite. To explain this better, we discuss briefly how

86 M. Hentschel, R. Hähnle, and R. Bubel

loops are handled in program verification. For ease of presentation we consider
only programs that contain local variables but no fields or arrays. For the same
reason, we do not consider termination. A full presentation is in [2].

Finite representation of all possible loop executions can be achieved either
by induction or by loop invariants. We focus on the latter approach which is
technically somewhat simpler: assume we prove that if a program is started in a
state satisfying property P then in its final state property Q holds. In Hoare-style
notation this is usually written as “{P } while (b) { body } rest; {Q}”.

A loop invariant I is a property that is satisfied on entering a loop and is
preserved throughout the execution of the loop, i.e., it has to hold at the begin-
ning and the end of each loop iteration. We give the loop invariant rule in Hoare
notation:

loopInv

� P → I (init)
{I ∧ b} body {I} (preserves)
{I ∧ ¬b} rest {Q} (use)

{P } while (b) { body } rest; {Q}
Here, � φ is a first-order problem to be discharged by an first-order reasoning.

The rule is applied bottom to top and splits a proof into three subgoals, where
(use) marks the exit from the loop. The established invariant I is then used to
prove the program rest following the loop.

Note that precondition P in the conclusion cannot be used to prove the
(preserves) and (use) subgoals, because the execution of body might change
the value of locations in P . This means that those parts of P that are not af-
fected by body must be encoded into the invariant, which is clearly inefficient.
For this reason, we track the set of locations that are modifiable in the loop body
with a so-called assignable (or modifies) clause mod. In this case, P can be used
to prove (preserves) and (use) provided that we execute the program in a state
where we wiped out all knowledge about locations occurring in mod. This can
be achieved by a kind of skolemization. Details and the generalization to fields
and arrays are in [2].

Definition 1 (Loop Specification). The pair L = (I,mod) with I being a
first-order formula and mod a set of locations is called a loop specification.

The Java Modeling Language (JML) [15] is a popular specification language
for Java programs that we use in the following to demonstrate our approach.
Listing 1.2 shows a loop specification for the loop from Listing 1.1 in JML:

The loop invariant limits the range of i and stipulates that sum is equal to the
sum of all array elements visited so far. The assignable clause lists all locations
changed by the loop: the local variables i and sum.

We use loop specifications to finitely represent loop execution within symbolic
execution trees. Assume we have a symbolic execution path p whose leaf nl refers
to a code position with a loop statement l as the next statement to be executed.
Let L = (I,mod) be the loop specification for loop l. Then, instead of unwinding

Visualizing Unbounded Symbolic Execution 87

Listing 1.2. Loop invariant for loop in Listing 1.1

1 /*@ loop_invariant i >= 0 && i <= a.length &&
2 @ sum == (\sum int j; 0<=j && j<i; a[j]);
3 @ assignable sum, i;
4 @*/
5 for (int i = 0; i < a.length; i++) { ... }

the loop, we create two new symbolic execution branches with root nodes nit

and nexit. The subtree rooted at nit represents the symbolic execution of an
arbitrary loop iteration and nit refers to the first statement of the loop body
to be executed next, while nexit represents the execution of the program after
exiting the loop.

The corresponding branch conditions are I ∧ b and I ∧ ¬b where I is the
loop invariant as given by the loop specification L and b is the loop guard. The
assignable clause of the loop specification is used to compute the symbolic states
for the nodes nit and nexit. These symbolic states coincide with the state of nl

on all locations which are not contained in mod while the symbolic value of all
locations contained in mod are replaced by fresh symbolic values. Note that there
might exist already constraints on the fresh symbolic values. These constraints
stem from the loop invariant and the branch condition.

The resulting symbolic execution tree for the array sum computation using
the loop specification from Listing 1.2 is shown in Fig. 2. The values of the
local variables i and sum in the assignable clause have been replaced by fresh
symbolic values i0, sum0 and i1, sum1. The constraints shown in the bottom
compartment of the nodes directly after the loop node are obtained using the
branch condition.

Where do loop specifications come from? They can either be inferred auto-
matically by various tools or simply provided by the user. In the latter case,
the provided loop specification might be wrong or insufficient: one can always
supply the trivial invariant true. We can construct the symbolic execution tree
regardless of whether the invariant and assignable clause are provable, but if not,
then we mark the corresponding node accordingly. Whether it is acceptable to
consider a possibly incorrect symbolic execution tree or not is a decision to be
made by the application using the tree.

3.2 Symbolic Execution Using Contracts

Next we look at using method contracts as an alternative to method inlining
in symbolic execution. This has three major advantages: (i) symbolic execution
becomes compositional and more robust against implementation changes, (ii) it
becomes possible to create a finite symbolic execution tree for recursively defined
methods with unbounded recursion depth; and, (iii) the size of the symbolic
execution tree stays manageable compared to inlining.

88 M. Hentschel, R. Hähnle, and R. Bubel

Fig. 2. Finite symbolic execution tree of sum() using loop invariant in Listing 1.2

We use the notion of a method contract (or simply contract) in the sense of
the design by contract specification paradigm [17].

Definition 2 (Method Contract). A method contract Cm := (R, E,mod) of
a method m consists of a precondition formula R, a postcondition formula E,
and an assignable clause mod containing the locations modifiable by m.

An implementation of a method m satisfies its contract if it guarantees that
whenever m is called in a state satisfying R then E holds in the final state and
it changes at most those locations contained in mod. There can be more than
one method contract for a method.

JML permits to specify method contracts as structured Java comments.
Listing 1.3 shows the contract for sum(). It consists of two specification cases
(separated by also). The normal behavior case has a precondition (keyword
requires), a postcondition (ensures), and an assignable clause (assignable).
A method satisfies the normal behavior specification case if it satisfies the con-
tract and terminates normally without throwing an uncaught exception. The
exceptional specification case consists of a precondition, an exceptional postcon-
dition (signals), and an assignable clause. A method satisfies the exceptional

Visualizing Unbounded Symbolic Execution 89

specification case if, when called in a state that satisfies the precondition, an
exception is thrown and in the exit state the exceptional postcondition holds.
Both specification cases can be encoded in terms of a single method contract.
The details depend on the formalism used and are out of scope of this paper.

Listing 1.3. Specification of method sum()

1 /*@ normal_behavior
2 @ requires a != null;
3 @ ensures \result == (\sum int i; 0<=i && i<a.length; a[i]);
4 @ assignable \nothing;
5 @ also
6 @ exceptional_behavior
7 @ requires a == null;
8 @ signals (Exception e) true;
9 @ assignable \nothing;

10 @*/
11 public static int sum(/*@ nullable @*/ int[] a) throws Exception {...}

A method contract can be used instead of method inlining to represent a
method invocation within a symbolic execution tree. We borrow the idea once
again from program verification. The method contract application proof rule
looks as follows (simplified for presentation purposes, e.g., ignoring null pointer
exceptions and assignable clause):

mcAppCm

� P → R {E}rest;{Q}
{P }o.m(v̄); rest;{Q}

Here, the method contract is Cm := (R, E,). The first subgoal establishes
that before the invocation of m() on object o the precondition holds. In the
second subgoal we assume that the postcondition holds and continue execution
of the remaining program rest following the method invocation.

In symbolic execution tree construction, method contracts can be used instead
of inlining as follows: let nbefore denote a node with an invocation of method m as
the statement to be executed next. Similar as in loop specification, we generate
a node nafter , which represents the symbolic state directly after the invoked
method returns and before the next statement is executed. The edge between
nbefore and nafter is labeled with the precondition R of method m. The assignable
clause and postcondition are used to update the symbolic state in nafter similar
as in the use case of loop invariant specification. All locations contained in the
assignable clause are given a fresh symbolic value. Constraints on their values
stem from the postcondition of the method contract.

We do not check whether the implementation of a method satisfies its contract.
This is a task that has to be performed independently using program verification
or other means. In this sense a symbolic execution tree is only correct relative
to the correctness of the used contracts. We do, however, check whether the

90 M. Hentschel, R. Hähnle, and R. Bubel

precondition of a method is satisfied at invocation time. If this check fails the
invocation node is flagged. Another alternative would be to generate correct
partial specifications by compositional symbolic execution and insert them.

The node representing the applied contract may have several children, if there
are several exclusive specification cases. In this case, the branch condition of each
child refers to the precondition of the corresponding specification case.

Method contracts provide also a solution with respect to branching induced by
dynamic dispatch. In case of method inlining we have to branch over all possible
method implementations as we can in general not determine the exact dynamic
type of the callee. However, if Liskov’s principle [16] is satisfied (JML enforces
it by specification inheritance), branching can be avoided by using the method
contract of the callee’s static type.

Listing 1.4. Average of array elements
1 public static int average(int[] a) throws Exception {
2 try {
3 int sum = sum(a);
4 return sum / a.length;
5 }
6 catch (Exception e) {
7 throw new Exception("Can’t␣compute␣average.");
8 }
9 }

We extend our previous example by the method average() shown in List-
ing 1.4, which computes the average of all array values by invoking sum(). The
initial segment of the resulting symbolic execution tree in which the method
specification from Listing 1.3 is applied is shown in Fig. 3.

The first statement in the try-clause declares sum and calls sum(), which is
handled in the next node by using its contract. Since nothing is known about
parameter a, execution splits into two branches. The left branch continues sym-
bolic execution when the method terminates normally, while the right branch
continues execution in case that an uncaught exception has been thrown during
method execution. We stop symbolic execution just before the return statement
in the left branch and before the throw statement in the right.

4 Application and Visualization

One important application of symbolic execution using specifications, is pro-
gram understanding in the context of debugging. Interestingly, using symbolic
execution to help debugging programs has been already suggested in one of the
earliest papers on the subject [14].

Based on symbolic execution with specifications, as described in Sect. 3, we
built an Eclipse extension called Symbolic Execution Debugger (SED) (available
at www.key-project.org/eclipse/SED) that extends the Eclipse debug plat-
form by symbolic execution and by visualization capabilities. SED is a complete

http://www.key-project.org/eclipse/SED

Visualizing Unbounded Symbolic Execution 91

Fig. 3. Partial symbolic execution tree of method average() using contract of sum()

rewrite with extended functionality of an earlier tool [11], which (i) lacked the
capability to use specifications, i.e., it could not represent unbounded loops and
recursive method calls; (ii) provided an inferior visualization and state inspection
compared to the approach presented in this paper.

SED works for nearly full sequential Java and realizes a symbolic execution
engine based on the KeY verification system [2].

A major advantage of SED over standard interactive debuggers is that any
method or (block of) statements can be executed directly without setting up a
fixture. Being based on symbolic execution, SED lets the user debug simultane-
ously all feasible execution paths. One can focus on a path of interest and control
symbolic execution by the usual navigation functions of debuggers, such as step
into/step over or breakpoints. The symbolic execution tree is built up and vi-
sualized incrementally, its layout is done automatically. Users can inspect the
symbolic state and symbolic call stack of any node as well as its path condition.

To be feasible, debugging needs to focus on a specific part of the code, such
as a method, rather on an execution path trough the whole application [20]. To
obtain a quick overview over a single method is possible thanks to the finite and
usually compact symbolic execution trees that use specifications, which represent
all possible execution paths. If all paths match the expected behavior, the user
of SED can continue to systematically inspect called methods, where a method
contract was applied during symbolic execution, or the callers. In combination
with verification, failed proofs point directly to a possibly buggy method.

92 M. Hentschel, R. Hähnle, and R. Bubel

In the visualization we use icons and flags to underscore the semantics of
different symbolic execution tree nodes. Start nodes mark the beginning of a
symbolic execution run and represent the initial state in which the program
fragment (any method or any block of statements) is executed. Statement nodes
mark a symbolically executed statement and represent the state in which it is
executed. There are several subtypes of statement nodes for conditional state-
ments, loop statements, etc. In general, these cause branching. Branch condition
nodes are used whenever execution splits to visualize the branch condition under
which a path is taken. Normal termination and exceptional termination nodes
indicate that a path terminates normally/exceptionally with an uncaught ex-
ception. Method call nodes are used to mark the entrance point to an invoked
method if the method call is treated by inlining. In case of overwritten methods,
branch condition nodes immediately prior to the method invocation represent
the dynamic dispatch. Method return nodes indicate that an inlined method
body has been executed completely. These nodes may contain return values.
Loop invariant nodes show the used loop specification (according to Def. 1).
A flag on these nodes indicates whether the loop invariant is initially satisfied
or not. Loop body termination nodes are used in the loop invariant (preserves)
branch of used loop specifications to indicate that execution stops. A flag on
such nodes indicates whether the invariant still holds or not. Method contract
nodes represent an applied method contract (according to Def. 2). A flag on the
node indicates whether the precondition of the applied contract is fulfilled or
not. An optional second flag shows whether the caller object can be null.

Listing 1.5 shows the buggy method indexOf(), which returns the first index
of an object in the given array accepted by the filter and -1 if no element is
accepted. Objects are selected by method accept() of the Filter interface.

The corresponding symbolic execution tree is shown in Figure 4. As precon-
dition array != null && filter != null && \invariant_for(filter) was
assumed. The start node at the root defines the program fragment to execute,
here a call to indexOf(), which is handled by inlining as shown by the following
method call node. The method body is then symbolically executed and the next
two statement nodes declare local variables acceptedIndex and i. At loop entry,
the user decided to apply the loop specification to continue symbolic execution.
Notice that the loop invariant is too weak for verification but powerful enough
for debugging: even obvious loop invariants are often helpful for debugging!

After applying the loop invariant, two branch condition nodes increase read-
ability. They are labeled Body Preserves Invariant and Use Case. In the Body
Preserves Invariant branch the filter is queried whether it accepts the current
array element. This splits execution since the array index can be outside of the
array bound. In the left branch the array index is in bound and we handle the call
of method accept() by applying its contract. This allows to continue execution
without considering all available implementations of Filter. If the comparison
result is true acceptedIndex is set to the value of i and execution stops after the
loop body is completely executed. The crossed icon in the loop termination node
indicates that the loop invariant is not preserved. The reason is that termination

Visualizing Unbounded Symbolic Execution 93

Listing 1.5. Search in array

1 public class Arrays {
2 public static int indexOf(Object[] array, Filter filter) {
3 int acceptedIndex = -1;
4 int i = 0;
5 /*@ loop_invariant i >= 0 && i <= array.length;
6 @ decreasing array.length - i;
7 @ assignable \strictly_nothing;
8 @*/
9 while (acceptedIndex < 0 && i <= array.length) {

10 if (filter.accept(array[i])) {
11 acceptedIndex = i;
12 }
13 else {
14 i++;
15 }
16 }
17 return i;
18 }
19

20 public static interface Filter {
21 /*@ normal_behavior
22 @ requires true;
23 @ ensures true;
24 @ assignable \strictly_nothing;
25 @*/
26 public boolean accept(/*@ nullable @*/ Object object);
27 }
28 }

of the loop cannot be shown (the variant is not strictly monotonuosly decreas-
ing). Otherwise if the comparison result is false, execution stops after merely
increasing i. In the case when the current array index is not in bound, execution
terminates with an uncaught exception. This is not an expected behavior and
directly indicates that the loop guard is buggy.

This bug is also reflected in the branch condition for the Use Case. Inspecting
the branch condition reveals that the statements after the loop are only executed,
if acceptedIndex is non-negative, i.e., if no element is accepted, the return
statement at the end is never reached.

In case an element has been accepted the return statement is executed and the
value of variable i is returned as the method’s result1. This indicates a second
bug, because the value of acceptedIndex is the expected return value. Finally,
the use case branch terminates normally.

1 If multiple return values were possible, the method return node would show all of
them, together with the condition when each is valid.

94 M. Hentschel, R. Hähnle, and R. Bubel

<start>

Arrays.indexOf(array,filter);

int acceptedIndex = -1;

int i = 0;

invariant: i >= 0 & i <= array.length;
variant: javaSubInt(array.length, i)
mod: false

Body Preserves Invariant: acceptedIndex_0 < 0 & i_0 >= 0 & i_0 <= array.length

if (filter.accept(array[i]))

i_0 < array.length

result_0 = var.accept(var_1) catch(exc_0)
pre: var.<inv>
post: var.<inv> & exc_0 = null
mod: empty, creates no new objects
termination: diamond

result_0 = TRUE

acceptedIndex=i;

<loop body end>

!result_0 = TRUE

i++;

<loop body end>

i_0 >= array.length

<uncaught java.lang.ArrayIndexOutOfBoundsException>

Use Case: acceptedIndex_0 >= 0 & i_0 >= 0 & i_0 <= array.length

return i;

<return i_0 as result of Arrays.indexOf(array,filter);>

<end>

Fig. 4. Visualized symbolic execution tree of indexOf() in the SED (slightly beautified)

In this example no flags were raised for the loop invariant and method contract
nodes. This means that the applied invariant was initially valid; likewise, the
precondition of the applied method contract was fulfilled.

Fig. 5 shows the correct program code (fixed loop and return statement)
together with the visualized symbolic execution tree produced by SED. We can

Visualizing Unbounded Symbolic Execution 95

immediately see, that (i) the ArrayIndexOutOfBoundException is no longer
shown, (ii) the loop invariant can now be proven to be preserved, and, (iii) the
returned result is the expected one, namely, the value of variable acceptedIndex.

<start>

Arrays.indexOf(array,filter);

int acceptedIndex = -1;

int i = 0;

invariant: i >= 0 & i <= array.length;
variant: javaSubInt(array.length, i)
mod: false

Body Preserves Invariant: acceptedIndex_0 < 0 & i_0 >= 0 & i_0 < array.length

if (filter.accept(array[i]))

result_0 = var.accept(var_1) catch(exc_0)
pre: var.<inv>
post: var.<inv> & exc_0 = null
mod: empty, creates no new objects
termination: diamond

result_0 = TRUE

acceptedIndex=i;

i++;

<loop body end>

!result_0 = TRUE

i++;

<loop body end>

Use Case: acceptedIndex_0 >= 0 & i_0 >= 0 & i_0 < array.length || i_0 == array.length

return acceptedIndex;

<return acceptedIndex_0 as result of Arrays.indexOf(array,filter);>

<end>

Fig. 5. Symbolic execution tree of the correct version of indexOf() (slightly beautified)

1 while (acceptedIndex < 0 &&
2 i < array.length) {
3 if (filter.accept(array[i])) {
4 acceptedIndex = i;
5 }
6 i++;
7 }
8 return acceptedIndex;

96 M. Hentschel, R. Hähnle, and R. Bubel

Thanks to the use of specifications we obtained a finite and compact sym-
bolic execution tree that nevertheless represents the full program behavior. The
developer can use this tree to verify that the program behavior matches her
expectations.

We stress again that in the context of debugging even partial or unprovable
loop invariants and method contracts can be used to build up and visualize a
symbolic execution tree and can contribute to program and specification un-
derstanding. This is even important for verification scenarios where it is often
difficult for the user to understand the reasons why a proof failed.

5 Related Work and Discussion

As far as we know EFFIGY [14] was the first system that allowed to interactively
execute a program symbolically in the context of debugging. It did not support
specifications or visualization.

Compositional symbolic execution [19] employs “method summaries” that are
obtained by symbolically executing each method separately and maintaining
information about the explored paths in the form of path conditions (which
constrain the input values) and a symbolic representation of the final state of
each method. The concept of method summaries is compatible with our approach
and could easily be integrated into it.

Using method contracts instead of method summaries has the advantage to
achieve more robustness in the presence of changes to implementations of called
methods. The key point is that we can completely separate the contract of a
method from its implementation. This means that we do not rely on the avail-
ability of an actual implementation. Hence we can use our approach in early
prototyping or evaluation phases as well as in situations where a third party
library implementation is not available. In the context of test generation, this
allows to generate acceptance tests for an externally developed library. Another
consequence of the separation of contracts and method implementations is that
a correct symbolic execution tree using method contracts remains correct for
any implementation that satisfies the used contracts. Specifically, this holds for
overwritten methods as long as the overwriting method satisfies Liskov’s behav-
ioral subtyping principle [16]. Further, the additional abstraction provided by
a declarative contract nurtures program understanding as it focuses on what is
computed instead of how something is computed.

The paper [10] uses symbolic execution for dynamic test generation and pro-
poses to use loop summaries to deal with unbounded loops. The computation
of loop summaries is restricted to certain types of loops to be able to compute
the input-output dependencies. Again we are agnostic with respect to the actual
loop invariant generation method and not limited to a specific loop inference
approach. Even though our approach is presented in a static symbolic execu-
tion setting, we expect it to be applicable also to dynamic symbolic execution
strategies as presented in [5,13].

Visualizing Unbounded Symbolic Execution 97

Behavior trees [6] are an abstract visual notation to specify the behavior of
software systems. They are derived from a detailed requirements analysis rather
than from source code and they do not represent symbolic states.

There is clearly a relation between symbolic execution trees and code rep-
resentations used traditionally in static analysis, such as control flow graphs
and program dependence graphs [18]. A main difference is that the latter do
not contain symbolic state information (except indirectly, in the form of path
conditions).

6 Conclusion and Future Work

We extended symbolic execution by the use of specifications to ensure that the
resulting symbolic execution trees are finite even in presence of loops and recur-
sive methods. The use of method contracts also makes execution more robust
against implementation changes and allows symbolic execution even if the con-
crete implementation is not (yet) available. We applied our approach successfully
in the context of debugging and presented a meaningful visualization of symbolic
execution trees.

The support of JML contracts in SED means that any contract or loop invari-
ant generation tool which outputs JML can be used to annotate the analyzed
programs. Our approach to symbolic execution with specifications and to vi-
sualization could be implemented also for other languages than Java/JML, for
example, Code Contracts [9].

An interesting class of programs for our approach are algorithms that are
difficult to specify in a declarative manner, such as voting or incomplete opti-
mization algorithms. A compact, visual representation of their behavior, such as
it can be produced with SED, could be a useful description.

The SED could also be the basis of a tool that makes code inspections [8] more
efficient and to increase the defect discovery rate. Another application scenario
we plan to investigate in the future is to extend the test generation in KeY [7]
to symbolic execution trees with specifications. One problem to be solved is that
path conditions are no longer necessarily quantifier-free formulas which might
impair the computation of test input values.

It would be interesting to formalize the relation between symbolic execution
with specifications, control flow graphs, and program dependence graphs. As the
underlying construction algorithms are rather different, it is likely that synergies
can be gained from their combination.

We plan to use the visualization of a symbolic execution tree as an alternative
graphical user interface for the KeY verification system [2]. The visualization
capabilities and a debugger-like interface will flatten the learning curve to use a
verification system. A thorough evaluation of our approach and its application
to real world Java programs is in its planning stage.

98 M. Hentschel, R. Hähnle, and R. Bubel

References
1. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An

overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Beckert, B., Hähnle, R., Schmitt, P.: Verification of Object-Oriented Software.
LNCS, vol. 4334. Springer (2007)

3. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974, pp. 308–312. Elsevier/North-Holland (1974)

4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symp. on Operating Systems Design and Implementation,
OSDI. USENIX Association, San Diego (2008)

5. De Halleux, J., Tillmann, N.: Parameterized unit testing with Pex. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 171–181. Springer, Heidelberg
(2008)

6. Dromey, R.G.: From requirements to design: Formalizing the key steps. In: 1st
Intl. Conf. on Software Engineering and Formal Methods, SEFM. IEEE Computer
Society, Brisbane (2003)

7. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007)

8. Fagan, M.E.: Design and code inspections to reduce errors in program development.
IBM Systems Journal 15(3), 182–211 (1976)

9. Fähndrich, M., Barnett, M., Logozzo, F.: Code Contracts,
http://research.microsoft.com/en-us/projects/contracts

10. Godefroid, P.: Compositional dynamic test generation. In: POPL, pp. 47–54 (2007)
11. Hähnle, R., Baum, M., Bubel, R., Rothe, M.: A visual interactive debugger based

on symbolic execution. In: ASE, pp. 143–146 (2010)
12. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in Software Verification by

Abstract Method Calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898,
pp. 300–314. Springer, Heidelberg (2013)

13. Jamrozik, K., Fraser, G., Tillmann, N., Halleux, J.D.: Augmented dynamic sym-
bolic execution. In: ASE, pp. 254–257. ACM (September 2012)

14. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7), 385–394 (1976)

15. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual (September 2009)

16. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

17. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992)
18. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software

development environment. In: Riddle, W.E., Henderson, P.B. (eds.) Proc. of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, pp. 177–184. ACM (1984)

19. Vanoverberghe, D., Piessens, F.: Theoretical Aspects of Compositional Symbolic
Execution. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603,
pp. 247–261. Springer, Heidelberg (2011)

20. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging, 2nd edn. Elsevier
(2009)

http://research.microsoft.com/en-us/projects/contracts

Filmstripping and Unrolling:
A Comparison of Verification Approaches
for UML and OCL Behavioral Models�

Frank Hilken, Philipp Niemann, Martin Gogolla, and Robert Wille

University of Bremen, Computer Science Department
D-28359 Bremen, Germany

{fhilken,pniemann,gogolla,rwille}@informatik.uni-bremen.de

Abstract. Guaranteeing the essential properties of a system early in
the design process is an important as well as challenging task. Model-
ing languages such as the UML allow for a formal description of struc-
ture and behavior by employing OCL class invariants and operation
pre- and postconditions. This enables the verification of a system de-
scription prior to implementation. For this purpose, first approaches
have recently been put forward. In particular, solutions relying on the
deductive power of constraint solvers are promising. Here, complemen-
tary approaches of how to formulate and transform respective UML and
OCL verification tasks into corresponding solver tasks have been pro-
posed. However, the resulting methods have not yet been compared to
each other. In this contribution, we consider two verification approaches
for UML and OCL behavioral models and compare their methods and
the respective workflows with each other. By this, a better understand-
ing of the advantages and disadvantages of these verification methods is
achieved.

1 Introduction

The Unified Modeling Language (UML) has been widely accepted as the standard
language for modeling and documentation of software systems. UML allows for
an initial description of a system at a high level of abstraction, i.e. before precise
implementation steps are performed. For this purpose, UML employs appropri-
ate description means which hide implementation details while being expressive
enough to formally describe the structure and behavior of a complex system.
Additionally, the Object Constraint Language (OCL) can be applied to refine
a UML model with textual constraints describing further properties e.g. of the
respective components or defining pre- and postconditions of their operations.

The resulting models may be composed of numerous different components
with various relations, dependencies, or constraints and usually lead to non-
trivial descriptions where errors can easily arise. Hence, guaranteeing that the
� This work was partially funded by the German Research Foundation (DFG) under

grants GO 454/19-1 and WI 3401/5-1 as well as within the Reinhart Koselleck project
DR 287/23-1.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 99–116, 2014.
c© Springer International Publishing Switzerland 2014

100 F. Hilken et al.

resulting descriptions are plausible and consistent is an important as well as chal-
lenging task. This motivated the development of approaches for the validation
and verification of UML/OCL models.

In this contribution, we focus on the verification of behavioral models, i.e. de-
scriptions employing operations whose functionality is provided by OCL pre- and
postconditions. Due to the formal nature of the corresponding UML/OCL com-
ponents, automatic reasoning engines can be utilized in order to check whether
certain properties do or do not hold. In particular, solutions relying on the
deductive power of constraint solvers such as Kodkod or for SAT Modulo The-
ory (SMT) have been shown to be promising [17,23]. Here, two complementary
approaches of how to formulate and transform respective UML and OCL verifi-
cation tasks into corresponding solver tasks have been proposed, namely

– a solution which transforms the given problem into a so called filmstrip
model [14], i.e. an equivalent UML/OCL description in which all behavioral
model elements and the verification task are represented by static descrip-
tions and, afterwards, are checked for interesting properties, and

– a solution which unrolls the dynamic behavior resulting in a skeleton for all
possible system states while constraints and the verification task are directly
formulated by means of an SMT theory to be solved by a corresponding
solving engine [23].

Both approaches represent proper solutions which address the respective UML
and OCL verification tasks. However, while certain differences between both ap-
proaches are evident at a first glance (e.g. the use of relational logic versus the use
of an SMT engine), a detailed comparison of them has not been conducted yet.

In this contribution, we conduct such a comparison. More precisely, we con-
trast the workflows of both verification approaches to each other and provide a
step-by-step description of the respective steps for each of them. Using a recently
proposed UML/OCL model representing the dining philosophers problem (taken
from [4]), the application of both approaches is illustrated. By this, an in-depth
understanding of respective benefits and drawbacks of these complementary ver-
ification approaches is provided. This enables a better comprehension of their
potential and possible application scenarios.

The remainder of this contribution is structured as follows: Section 2 provides
an overview of the workflows of both verification approaches including their
respective workflow steps. Afterwards, each step is described and illustrated in
more detail in Section 3 using the model of the dining philosophers problem.
Based on that, a discussion on the benefits and drawbacks of the approaches
is provided in Section 4 before related work is considered and conclusions are
drawn in Section 5 and Section 6, respectively.

2 Conceptual Workflows

Before the considered verification approaches are described in detail, this section
briefly reviews their conceptual workflows. For this purpose, the major steps are

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 101

UML and OCL model + verification task

Generation of the skeletonGeneration of the filmstrip model

Transform model
into filmstrip model

Create frame conditions

Determine bounds

Unroll model (create sequence
of system states)

Generate frame conditions

Verification taskVerification task
Formulate the

verification task in OCL

Determine bound intervals

Formulate the
verification task in SMT

Solving and InterpretationSolving and Interpretation

Solve the problem instance

Extract filmstrip system state

Extract system states
and sequence diagram

Solve the problem instance

Extract system states
and sequence diagram

Analysis of the result

Fig. 1. Conceptual workflows of filmstripping (left) and unrolling (right)

illustrated in Fig. 1. Steps that require manual interaction are indicated by a
bullet in order to distinguish them from steps that are performed automatically.

Both approaches take as input a UML model description enriched by OCL
constraints together with a verification task which is to be performed on the
model. Possible verification tasks comprise e.g. checking for deadlocks, verify-
ing executability of operations, reachability of particular system states, or may
address other behavioral aspects of the model.

First, the given UML/OCL model is extended in order to support the consid-
eration of behavioral aspects. For the filmstripping approach, this includes an
automatic transformation of the source model into the corresponding filmstrip
model [14] followed by a manual creation of frame conditions, i.e. additional OCL
constraints to limit the effects of the operation call to the relevant changes. For
the unrolling approach, behavioral aspects are supported by automatically un-
rolling the model, i.e. creating an empty skeleton of system states (containing
objects, their attributes and associations) for a certain number of observation
points as well as operation calls connecting consecutive states. In contrast to the
filmstripping approach, a (restricted set of) frame conditions is automatically
generated. In order to create a skeleton of appropriate size, problem bounds
(e.g. the number of observation points, the number of objects to be instanti-
ated, or the range for primitive data types like integers to be considered) need
to be fixed manually at this early stage. Note that bounding is not a special

102 F. Hilken et al.

characteristic of the unrolling approach, but a common procedure for verifica-
tion purposes and also the filmstripping approach will employ this technique.
Beyond that, bounding is necessary due to the complexity of the problem and
justified by the fact that actual instances/implementations of the models will
have finite dimensions and occupy finite resources anyway.

In the second stage, the addressed verification task is incorporated by adding
constraints expressed in terms of OCL or SMT, respectively. The filmstripping
approach requires a manual transformation of the verification task into OCL.
More precisely, the verification task is first formulated in source model compati-
ble OCL including elements of temporal logic. In a second step, this formulation
is transformed into an OCL form that respects the characteristic structure of
the filmstrip model. Finally, problem bound intervals are determined for the
filmstripping approach as well. In contrast, in the unrolling approach several
standard tasks like checking for deadlocks can be handled automatically. Others
that involve more model-specific behaviour, have to be formulated manually in
the SMT language [3], i.e. by further constraining attributes, associations, or
operation calls.

In both cases, the result of the second stage is a problem instance carrying
the source model as well as the targeted verification task and problem bounds.
This is passed to an appropriate solving engine which is supposed to determine
an assignment satisfying all OCL/SMT constraints or has to prove the absence
of such an assignment. For the filmstripping approach, relational logic is used on
the basis of Kodkod [26] and Alloy [16], while the unrolling approach employs
an SMT solver (like Boolector [6] or Z3 [9]). As a last step, both approaches
translate the assignment retrieved from the solver back to the model context.
The filmstripping approach provides an instance of the filmstrip model which
contains all necessary information of the system states. Source model compatible
object and sequence diagrams can be extracted if needed. Due to the different
layer of abstraction, the unrolling approach extracts a sequence of system states
(one for each observation point) and additionally creates a sequence diagram in
order to provide the same information as contained in a (single) system state
of the filmstrip model. Using this representation, the developer can analyze the
result and draw conclusions with respect to the given verification task.

3 Comparison of the Verification Approaches

For a better comparison of the verification processes, they are exemplified us-
ing the same UML and OCL model (dining philosophers) and verification task
(finding a deadlock) as a running example. We begin with the model definition
and afterwards explain the approaches in detail separately.

3.1 Running Example Model Definition

The classic dining philosophers problem serves as an example to compare the
verification approaches. The UML and OCL model is derived from [4] and

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 103

ForkPhilosopher

takeLeft()

takeRight()

dropForks()

Plate
leftFork 1rightPlate1

leftHand
0..1

rightPhilo
0..1

plate 1philosopher1
rightFork 1leftPlate1

rightHand
0..1

leftPhilo
0..1

context Fork inv maxOnePhilo:
self.leftPhilo.oclIsUndefined()

or self.rightPhilo.oclIsUndefined()
context Plate inv oneCircle: Set{ self }→closure(

rightFork.rightPlate) = Plate.allInstances()

-- operation takeLeft()
pre emptyHand: self.leftHand.oclIsUndefined()
post forkInHand: self.leftHand = self.plate.leftFork

-- operation takeRight()
pre emptyHand: self.rightHand.oclIsUndefined()
post forkInHand: self.rightHand = self.plate.rightFork

-- operation dropForks()
pre hasLeftFork: not self.leftHand.oclIsUndefined()
pre hasRightFork: not self.rightHand.oclIsUndefined()
post emptyLeftHand: self.leftHand.oclIsUndefined()
post emptyRightHand: self.rightHand.oclIsUndefined()

Fig. 2. The dining philosophers model

slightly simplified. The well known problem of the forks, being shared by two
philosophers each, has not changed. The model definition is shown in Fig. 2. A
philosopher is connected to exactly one plate, which should not change during
an execution period. Each plate has a left fork and a right fork, where two adja-
cent plates share one fork in between them, i.e. the left fork of one plate is the
right fork of another plate. Lastly the philosopher is connected with the forks to
model the picking up and dropping of forks.

The model embodies two additional constraints that cannot be expressed in
UML. These requirements are specified as OCL invariants and shown at the
bottom of Fig. 2. The first invariant Fork::maxOnePhilo enforces the important
rule that a fork may only be used by a single philosopher at a time. The second
invariant Plate::oneCircle assures a single circle of plates and forks. Otherwise
the philosophers can split up into small groups that each have their own set of
plates and forks.

The model dynamics are specified as pre- and postconditions for the three
operations of the model, namely takeLeft(), takeRight() and dropForks().
The operations takeLeft() and takeRight() make the philosopher pick up the
left fork – or right fork, respectively – if it is not already picked up. The operation

104 F. Hilken et al.

dropForks() puts the forks back between the plates, leaving them ready to
be picked up again. The latter operation can only be invoked, if the involved
philosopher has both forks in his hands. The model as shown in Fig. 2 has a
serious flaw, in fact leads to a deadlock. This can be detected using verification
approaches as described next.

3.2 Verification Using the Filmstripping Approach

Generation of the Filmstrip Model. To find a deadlock in the dining
philosophers model using the filmstripping approach, the first step is to trans-
form the source model into the philosopher filmstrip model [14]. For easier ref-
erence, we call the source model the application model and our transformed
model the filmstrip model. The result of the transformation is another UML and
OCL model, which represents the model dynamics of the application model with
classes, associations and invariants instead of operation pre- and postconditions.
The expressiveness of the filmstrip model is the same as the application model,
but all dynamic model elements have been transformed into static ones.

Example. Consider the class diagram of the filmstrip model in Fig. 3. It is an
extension of the application model (Fig. 2), where the behavioral elements of
the application model became structural elements in the filmstrip model. A
system state of the application model is described by a Snapshot, to which
every object of a state is linked, and several snapshots can be connected to a
filmstrip with operation call objects (OpC) between each of them. Aside of this
filmstrip connection, each object gets a reflexive association to link different
representation of the same object along the snapshots. The three operations of
the application model become concrete classes extending the base operation call
class. The operation pre- and postconditions are transformed into invariants and
corresponding OCL constraints ensure the correct representation of the model
dynamics.

Philosopher

takeLeft()

takeRight()

dropForks()

takeRight_PhilosopherOpC

dropForks_PhilosopherOpC

OpC

pred() : Snapshot

succ() : Snapshot

Plate

PhilosopherOpC

aSelf : Philosoph...

Fork

Snapshot

pred() : Snapshot

succ() : Snapshot

takeLeft_PhilosopherOpC

leftFork 1rightPlate1

leftHand
0..1

rightPhilo
0..1

plate 1philosopher1

succ0..1

pred

0..1

succ

0..1

pred0..1

succ0..1

pred0..1

rightFork 1leftPlate1

rightHand
0..1

leftPhilo
0..1 fork*

1

philosopher *

snapshot

plate *

opC

0..1pred

0..1

succ

0..1

Fig. 3. Philosopher filmstrip model class diagram

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 105

context dropForks_PhilosopherOpC inv noForkChangeExcept:
let except = aSelf in
pred().philosopher→forAll(p | p <> except implies

(p.leftHand.succ = p.succ.leftHand
and p.rightHand.succ = p.succ.rightHand))

context Snapshot inv sameCountPhilosopher:
not succ().oclIsUndefined() implies philosopher→size() =

succ().philosopher→size()
context OpC inv predBecomesSucc:

self.pred().philosopher→forAll(p |
self.succ().philosopher→includes(p.succ))

Fig. 4. Example frame conditions for the dining philosophers filmstrip model

The next step in the verification process is the creation of frame conditions.
The OCL invariant noForkChangeExcept, in Fig. 4, forces links between philoso-
phers and forks to persist during the dropForks() operation call, except for the
one philosopher, on which the operation is invoked. This philosopher shall drop
the forks onto the table, i.e. the links between the philosopher and the forks are
removed. Due to the assignment of the invariant to the specific operation call
class, it is possible to specify different behavior for different operation calls, e.g.
the same invariant for the operation takeLeft() allows changes for the speci-
fied exceptions’ left hand only and all other links persist. Similar invariants are
created for the other associations, to keep their links between operation calls.

In the philosophers example there are two more invariant types, also shown
in Fig. 4, that are added to the model. One constrains the number of objects
to be the same in every snapshot, i.e. no new philosopher joins the system,
once it is running. An example for this constraint is represented by the invari-
ant sameCountPhilosopher. The second condition enforces a link between all
objects of successive snapshots, to prevent object destruction and creation, i.e.
no philosopher gets exchanged with a new one. The invariant predBecomesSucc
illustrates such constraint for the philosopher objects. These two conditions are
added for every class of the application model. These extra constraints are not
necessarily required for the verification, since the filmstrip model can handle
object creation and destruction, but they simplify the formulation of the verifi-
cation task for the application model, because they remove a lot of side effects. If
an application model specifically handles object creation and destruction, these
constraints do not need to be added.

Verification Task. The next step towards the verification of the system is the
transformation of the verification task into OCL. A wide variety of verification
tasks can be expressed in OCL due to the capabilities of the filmstrip model.
Special properties for a defined state can be expressed as an OCL invariant,
e.g. to define an initial state for the system. Temporal requirements for the
model can also be expressed as invariants, e.g. using one of the temporal OCL
proposals [21,27,10]. Given that an application model state sequence is captured

106 F. Hilken et al.

context Snapshot inv initialState:
let firstSnapshot = Snapshot.allInstances()→select(s |

s.pred().oclIsUndefined()) in
firstSnapshot.philosopher→forAll(ph | ph.leftHand = null and

ph.rightHand = null)
context Snapshot inv deadlock:

Snapshot.allInstances()→exists(s |
not s.philosopher→exists(ph |

-- takeLeft preconditions and invariants
(ph.leftHand.oclIsUndefined() and

ph.plate.rightFork.leftPhilo.oclIsUndefined())
-- takeRight preconditions and invariants

or (ph.rightHand.oclIsUndefined() and
ph.plate.leftFork.rightPhilo.oclIsUndefined())

-- dropForks preconditions and invariants
or (ph.leftHand.oclIsUndefined() and

ph.rightHand.oclIsUndefined())))

Fig. 5. Formulation of the verification task

by a single filmstrip model state, it is possible to verify tasks expressed in terms
of LTL formulas.

Example. The OCL invariants to describe the verification task for the filmstrip
model are shown in Fig. 5. The invariant initialState asserts that the system
starts in a state where no philosopher has picked up a fork yet. The deadlock
verification task is expressed in the OCL invariant deadlock. It defines a state
for a snapshot, where no more operations can be invoked. This is done by looking
at all possible preconditions of the model operations and ensure, that none of
those are valid in the snapshot. Additionally the invocation of the operation may
not interfere with an invariant, once the operation call is finished, thus invariants
interfering with the postconditions are added as well. The individual parts for
the three operations from the application model are marked in the constraint.
Other properties like the number of philosophers are left open and will be chosen
by the solver.

The result of this verification task not only describes the condition whether
the system contains a deadlock or not, but also the final state, in which the
system came to hold and the whole sequence of operation invocations that lead
there from the initial state. In the case that there is no deadlock in the system,
there exists no valid system state for the prepared model and the solver yields
unsatisfiable.

The last preparation for the model is to determine the problem bound inter-
vals, i.e. the minimum and maximum quantities of objects for each class and
association. Especially by addressing the classes from the filmstrip model, it is
possible to define how many and which operation invocations are allowed. For
the dining philosopher example, the number of operation invocations is limited

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 107

plate6:Plate plate8:Plate

philosopher4:Philosopher

fork8:Fork

plate10:Plate

snapshot5:Snapshot

philosopher5:Philosopher

takeleft_philosopheropc3:takeLeft_PhilosopherOpC
aSelf=philosopher5

plate7:Plate

fork5:Fork

snapshot1:Snapshot

fork1:Fork

philosopher1:Philosopher

fork10:Fork

philosopher3:Philosopher

fork7:Fork
fork9:Fork

philosopher7:Philosopher

snapshot2:Snapshot

plate5:Plate

takeleft_philosopheropc4:takeLeft_PhilosopherOpC
aSelf=philosopher6

philosopher6:Philosopher

plate1:Plate

leftHand

rightPhilo

leftHand

rightPhilo

leftHand

rightPhilo

Fig. 6. Object diagram of the found solution for the philosopher verification task

to 4 and the number of application class objects is limited to 10. The lower
bounds are set to 0. Note, however, that these bounds limit the system state of
the filmstrip model instead of a system state in the application model, i.e. they
allow for a maximum of 10 objects per class split among the snapshots of the
filmstrip model. To affect the distribution per snapshot, OCL constraints can be
used. The chosen configuration gives no hints for the verification engine, i.e. it is
unknown whether a deadlock exists in the system and the validation tool shall
try every possible combination.

Solving and Interpretation. Now the problem description is complete and
the next step is to solve the problem instance. Since all behavioral aspects of the
application model have been transformed and eliminated in the filmstrip model,
it can be validated with techniques designed for structural analysis [2,7,20,12].
We solve the problem using relational logic utilizing our model validator [17].
The model validator uses Kodkod [26] to transform the model, which itself uses
Alloy [16] to encode the problem. The resulting problem instance is then solved
by one of the supported SAT solvers, e.g. Sat4j, MiniSat or Glucose, which
yields either the bindings of the found solution, if the problem is satisfiable,
or marks the problem as unsatisfiable otherwise.

Example. In our example the solver finds a solution for the problem. The model
validator extracts the bindings and creates an object diagram from it. Figure 6
illustrates the solution, representing a system state of the filmstrip model. The
elements on the left show a snapshot, which represents the initial state. No
philosopher is linked with any fork in this state, as defined. At the top are the
operation calls. The first operation call lets the lower philosopher pick up the left
fork. The snapshot in the middle illustrates this property with a link between
the philosopher and the fork, labelled (leftHand,rightPhilo). All other con-
nections remain the same. For the second operation call, the upper philosopher

108 F. Hilken et al.

picks up the left fork, shown by the right snapshot. Now both philosophers each
have their left fork picked up and the system is stuck. Nobody can pick up a
left fork (takeLeft()), since everybody already has one, nobody can pick up a
right fork (takeRight()), since they are in use and nobody can drop their fork
(dropForks()), because that is only possible once both forks are acquired. The
classic dining philosophers problem.

The resulting system state contains all features of the filmstrip model. There-
fore it is possible to express OCL queries using temporal conditions to validate
the model even further and get hints for more verification tasks. For example,
the expected behavior of the dining philosophers model can be expressed as a
regular expression as (

(tL tR | tR tL) dF
)∗

where tL represents the operation takeLeft(), tR represents takeRight() and
dF represents dropForks(). In the context of the filmstrip model the expression
can be transformed into an OCL query to find sequences of operation invocations
in the system state, that match the pattern.

Finally, the object diagram of the filmstrip model can be transformed back to
object and sequence diagrams of the application model. This is useful to track
back errors in the application model revealed by performing the verification task
on the filmstrip model.

3.3 Verification Using the Unrolling Approach

Generation of the Skeleton. In this section, we describe the unrolling ap-
proach in detail using the previously introduced dining philosophers model as a
running example. The basic idea of the approach is to unroll the source model,
thereby generating a skeleton, i.e. an initially empty sequence of system states
[23]. Note that the maximum number of objects and states must be determined
in advance in order to generate a skeleton of appropriate size.

Example. Figure 7 shows a skeleton generated for the dining philosophers model
with two instances of each class per state. Objects of the same type are automat-
ically enumerated which allows to immediately identify corresponding objects at
different states (observation points) and to easily observe the lifeline of each
object. Transitions between the states are made by operation calls ω0, ω1. Note
that the number of objects and states must be determined in advance in order
to generate a skeleton of appropriate size.

The purpose of the skeleton is to describe the dynamic behavior of the model
at a level that can easily be transferred to a formulation suitable for SMT
constraint solvers. In contrast to classical SAT solvers which expect the prob-
lem instance to be in Conjunctive Normal Form (CNF), SMT solvers support
higher-level theories which allows to formulate the problem instance at a higher
level of abstraction thereby providing structural information that can acceler-
ate the solving process. In our context, we especially make use of the theory of
Quantifier-Free Bit-Vectors (QF_BV) logic which features bit-vectors of arbi-
trary length, comparisons like, e.g., < or ≤, and other bit-vector operations [3].

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 109

pl0: Plate

pl1: Plate

ph0: Philosopher

ph1: Philosopher

fk0: Fork fk1: Fork

σ0

pl0: Plate

pl1: Plate

ph0: Philosopher

ph1: Philosopher

fk0: Fork fk1: Fork

σ1

pl0: Plate

pl1: Plate

ph0: Philosopher

ph1: Philosopher

fk0: Fork fk1: Fork

σ2

ω0 = ? ω1 = ?

ω0, ω1 ∈ {φ.takeLeft(), φ.takeRight(), φ.dropForks() | φ = ph0 ∨ φ = ph1}

Fig. 7. Skeleton consisting of a sequence of system states and connecting operations

Accordingly, object attributes and associations are translated to bit-vectors of
appropriate length as illustrated by the following example.
Example. Consider the association (leftHand, rightPhilo) of the philosophers
model (Fig. 2). In order to represent this in the skeleton we introduce bit-vector
variables λleftHand, one for each Philosopher object. Since the target of this
association is of type Fork, the bit-width is set to the maximum number of forks
with the implicit semantics that the i-th bit of λleftHand is set to 1 if and only
if Fork i is part of the leftHand relation. Likewise, λrightPhilo variables (one for
each Fork object) are used for the other association end. This is illustrated by
means of Fig. 8.

Finally, the cardinality constraint 0..1 for the association ends is translated
to the constraint that at most one bit of the bit-vector is set to 1. Many SMT
solvers natively support such cardinality constraints for bit-vectors. For others,
transformation frameworks like metaSMT [15] can be used to automatically
translate these constraints to a more explicit, solver compatible form.

ph0: Philosopher

| | ?

ph1: Philosopher

| | ?

fk1: Fork
|

fk0: Fork
|

fk2: Fork
? | ?

rightPhilo

leftHand

λph0
leftHand ∈ B

3 λph0
leftHand = 01?2

λph1
leftHand ∈ B

3 λph1
leftHand = 10?2

λfk0
rightPhilo ∈ B

2 λfk0
rightPhilo = 012

λfk1
rightPhilo ∈ B

2 λfk1
rightPhilo = 102

λfk2
rightPhilo ∈ B

2 λfk2
rightPhilo ≤ 102

Fig. 8. Translating associations to λ-variables

110 F. Hilken et al.

To complete the translation of the model’s static components, also class in-
variants have to be addressed. Though the whole translation is performed au-
tomatically and hidden from the developer, this process is illustrated by the
following example for the sake of completeness.
Example. Consider the two invariants of the example model shown in Fig. 2.

1. The invariant Fork::maxOnePhilo is translated to a set of SMT constraints

(OR (= State_i::Fork_j::leftPhilo #b00)
(= State_i::Fork_j::rightPhilo #b00))

one for each state (i) and fork (j). The oclIsUndefined() property of the
association ends, i.e. there is no link to any philosopher, is translated to the
assertion that the corresponding λ-variables are equal to the bit-vector 002.

2. The invariant Plate::oneCircle contains the iterator closure whose trans-
lation to SMT is very complex and not supported in our current implemen-
tation. For simplicity, we use the invariant

inv noIsolatedPlate: self.leftFork <> self.rightFork

instead. This invariant can be easily translated to a set of SMT constraints
as above and is equivalent to the original invariant for up to three plates,
since it then suffices that none of the plates forms a “circle” on its own.

The last important step of generating the skeleton is to add transitions be-
tween the states, i.e. to translate operation calls. For this purpose, we introduce
ω-variables (one per transition) that are further constrained in order to represent
respective operation calls.
Example. Consider the transition from the initial state σ0 to the following
state σ1. Since there are two philosophers and three operations per philosopher,
there are six possible operations in total, resulting in a bit-width of �log2(6)� = 3
for the corresponding ω0-variable. For each possible value of ω (corresponding
to some operation call), we add an SMT constraint saying that if this particular

(=> (= omega_0 #b000) ; representing ph0.takeLeft()
; pre-conditions hold in current state

(AND (= State_0::Philosopher_0::leftHand #b00)
; post-conditions hold in succeeding state
(= State_1::Philosopher_0::leftHand

(ite (= State_1::Philosopher_0::plate #b01)
State_1::plate_0::leftFork
State_1::plate_1::leftFork))

; enforce frame conditions
(= State_0::Philosopher_0::rightHand

State_1::Philosopher_0::rightHand)
...

Fig. 9. SMT constraint representing a call to the ph0.takeLeft() operation

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 111

operation call is chosen for the state transition, we require that the correspond-
ing pre- and postconditions hold in the pre- and post-state, respectively, and
enforce frame conditions, e.g. which attributes and associations are allowed to
be changed during an operation call and which shall not be altered. Figure 9 ex-
emplarily shows the respective constraint for the takeLeft() operation invoked
on philosopher ph0.

Remark. While pre- and postconditions are given by the source model, ob-
taining frame conditions is a non-trivial problem and can be an elaborate task.
However, there is built-in functionality to generate frame conditions automati-
cally under certain premises, e.g. fixing all variables that do not occur in post-
conditions. For more details on the whole translation process, we refer to [22].

Verification Task. The next step is to consider the targeted verification task.
First of all, the skeleton can be passed to the solving engine directly in order
to check consistency of the model, i.e. to answer the question whether or not
there exists a sequence of operation calls starting from an arbitrary initial state
and satisfying all invariants, pre- and postconditions. In most cases, however,
the verification task has to be included by further constraining attributes, asso-
ciations, or operation calls. The approach offers a wide range of possibilities for
this purpose:

– The constraining can be done very fine granular by addressing single vari-
ables of the skeleton, e.g. enforce a certain operation to be called at least
once or at a certain position by constraining the corresponding ω-variables.

– At a larger scale, partially or completely preassigned states, e.g. the initial
or final state, can be loaded and automatically constrain the corresponding
variables or additional invariants can be enforced for a selection of states.

– Beyond that, several standard tasks like checking for deadlocks can be han-
dled automatically. For instance, a deadlock finder extends the skeleton by
adding a helper state for each possible operation call. These states have the
same structure as normal system states, but only have a single invariant
that states that the respective operation may not be called since either the
preconditions are not fulfilled or the postconditions would raise a conflict
with some invariant.

Example. In our running example, the deadlock finding method can be employed
in multiple ways. If the number of states is set to one, i.e. no dynamic behaviour,
it can prove whether deadlock states exists at all. Increasing the number of states,
also sequences of operation calls leading to a deadlock state can be determined.
Alternatively, the extracted deadlock state can be fed in as the final state of a
reachability problem. Clearly, this is most useful in combination with a preas-
signed initial state.

Solving and Interpretation. In the last stage of the approach, the problem
instance is passed to an SMT solver, e.g. Boolector [6] or Z3 [9], which, in turn,
either determines a satisfying assignment (SAT) or proves the absence of such
an assignment (UNSAT). In the case of UNSAT, it is proven that the desired

112 F. Hilken et al.

// Generate skeleton
input = loadModel("DiningPhilosophers.ecore")
bounds = new Bounds(AllObjectsSameBounds(2),

FixedNumberOfStates(3))
skeleton = generateSkeleton(input.model, bounds)

// Incorporate verification task
initialState = loadState("PhilosophersInitial.xmi")
skeleton.getState(0).assign(initialState)
instance = DeadlockFinder(skeleton)

// Solve the problem instance
solver = new SMT_Solver
sat = solver.solve(instance)
assertEquals(true, sat)

// Extract states and sequence diagram
extractStatesAsXMI(solver.solution)
printTransitions(solver.solution)

Fig. 10. Deadlock finding in the dining philosophers model (developer’s perspective)

behaviour can not be achieved in the underlying model with respect to the
specified problem bounds. In the case of SAT, a witness for the desired behaviour
in form of object and sequence diagrams can be extracted automatically by
translating the assignments of λ- and ω-variables (as demonstrated by Fig. 8).

Finally, the whole flow of the approach from the developer’s perspective is
illustrated by means of example code shown in Fig. 10. Our current implemen-
tation is written in Xtend/Closure and is fully integrated into Eclipse. We use
Ecore as the input format for source models as well as XMI to in- and output
system states. Note again that the whole translation process to SMT is per-
formed automatically and hidden from the developer who does not need to write
a single line of SMT code.

First, a skeleton is generated for the dining philosophers model with two
philosophers/plates/forks each. Then the verification task, i.e. finding a dead-
lock that can be reached in three steps from a given initial state, is incorporated.
Finally, the problem instance is passed to a solver and system states and transi-
tions are extracted from the solution. Most parts of the code serve as template
which can be reused for other problems or bounds. So far, problem bounds like
the number of states or the number of objects per state have to be specified
explicitly. However, we plan to support interval bounds in order to delegate the
exact determination of bounds from the developer to the solving engine.

After setting up the instructions shown in Fig. 10, the problem considered
here can be solved fully automatically.

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 113

4 Discussion of Comparison Criteria

After we have seen both verification approaches illustrated and applied to the
same example, we now discuss their respective pros and cons. A comparison of
core criteria (that are not necessarily disjoint) is summarized in Table 1.
The level of operation is a crucial difference between the approaches. The

filmstripping approach mainly operates at the model level (UML/OCL) while
the unrolling approach operates much closer to the solver level (SMT).

The procedure and applicability of the approaches is consequently quite
different. Filmstripping essentially relies on manual interaction, particularly
for the formulation of frame conditions and the verification task. However,
these are to be formulated in UML/OCL which can be expected to be the
designer’s expertise. This allows for a higher flexibility and more universal
applicability. In contrast, the unrolling approach is highly automated (au-
tomatic generation of frame conditions, predefined verification tasks) at the
expense of a somewhat more restricted applicability. More precisely, some
features of OCL are currently not supported.

Frame conditions are formulated manually for the filmstripping approach in
due consideration of the structure of the derived filmstrip model. There-
fore, they are problem-specific and thus compatible to the input model. In
contrast, for the unrolling approach the frame conditions are generated au-
tomatically following a given set of rules, which may not be adequate for
every given model.

Verification task To formulate the verification task, the engineer might need
to understand the basics of the approaches. For the filmstripping approach,
this is the structure of the filmstrip model which have to be enriched by
additional OCL constraints. In contrast, the unrolling approach requires the
verification task specified by means of SMT constraints which require a
deeper understanding of SMT. This can not always be expected from the
designer. However, for common verification tasks, such as reachability and
deadlock detection, predefined automatic checks can be conducted which
require no further expertise at all.

Table 1. Overview of important comparison criteria for the verification approaches

Criterion Filmstripping Unrolling
Level of operation model level (UML/OCL) solver level (SMT)
Procedure essential manual interaction,

thus more flexible
Highly automated,
but less flexible

Applicability Universal Restricted
Frame conditions Explicit formulation for model Generated from set of rules
Verification task Formulation in OCL

(templates possible)
Formulation in SMT
(some predefined)

Search bounds Intervals Fixed
Validation on result OCL queries on filmstrip state Not directly possible
Runtime Good solving time Optimized solving time
Solving engine Relational logic (Kodkod) SMT solver

114 F. Hilken et al.

Search bounds are provided as intervals for the filmstripping approach. This
makes the determination easier, e.g. when the exact problem bounds are
unknown, but has a negative impact on solving times. Changing the bounds
also does not affect the other steps of the verification task. In contrast, the
unrolling approach is currently based on fixed bounds. In the case that the
initial bounds are not sufficient, new bounds have to be determined and
individual constraints may have to be adapted to these new bounds.

Validation on result In the filmstripping approach, the extracted filmstrip
state contains all behavioral features and can be directly accessed by OCL
queries, allowing for further validation on the result. For the unrolling ap-
proach, the extracted diagrams are split into several object and sequence
diagrams that are not directly accessible by OCL queries.

Runtimes Previous results for static model aspects [24] indicate a structural
advantage (in terms of runtimes) of solver-driven approaches against model-
driven approaches. This is in accordance with what we observed for the veri-
fication of behavioral aspects in this study (though a detailed analysis is left
for future work), even if the higher manual interaction for the filmstripping
is ignored.

Solving engine The filmstripping approach uses relational logic to solve prob-
lem instances. In this field currently only one solving engine is available.
Using SMT in the unrolling approach allows to choose from a wide variety
of solvers.

Performance In general, the performance of both approaches highly depends on
the complexity of the input model and the desired verification task and, thus,
is hard to compare. Moreover, there is no standard metric for the complexity
of OCL or SMT constraints. Consequently, the effort for manual creation of
frame conditions (in the filmstripping approach) and manual incorporation of
verification tasks (in both approaches) cannot be measured precisely.

Overall, the unrolling approach promises fast results for a set of common,
predefined verification tasks and input models that are compatible with the au-
tomatic generation of frame conditions (like, but clearly not limited to the con-
sidered dining philosophers model). For rather complex models, e.g. containing
sophisticated side effects in the OCL constraints, or very dedicated verification
tasks, the more flexible filmstripping approach is likely to be the better choice,
at the price of substantial manual interaction.

5 Related Work

Besides from the approaches already mentioned, the two discussed methods have
connections to related papers. In a previous contribution [13] we have identified
verification tasks like consistency and independence of invariants in UML and
OCL models and established a benchmark. The running example in this paper
(dining philosphers) would be another candidate for the benchmark. In contrast
to testing methods, there are a number of works applying interactive theorem
proving techniques for UML and OCL, like for example the works based on

Filmstripping and Unrolling: Verification for UML and OCL Behavioral Models 115

PVS [18], the KeY approach [1], and the combination of testing and proving
based on Isabelle and HOL/OCL [5]. A classification of model checkers with
respect to verification tasks can be found in [11].

(Semi)-automatic proving approaches for UML class properties have been put
forward on the basis of description logics [19], on the basis of relational logic and
pure Alloy [2] using a subset of OCL, and in [25] focussing on model inconsis-
tencies by employing Kodkod, the programming interface of Alloy.

Verification of OCL operation contracts have been studied on the basis CSP
solvers in [8]. The unrolling approach tackled in this paper was presented in [23]
and the filmstripping approach in [14].

6 Conclusion and Future Work

In this contribution, we provided a comparison of the filmstripping approach to
the unrolling approach – two recently proposed solutions aiming for the verifica-
tion of behavioral models given in UML/OCL. Both approaches allow to check
the functional correctness of a system description prior to its implementation.
However, the fashion in which they formulate and eventually solve the respective
verification tasks is significantly different. Our comparison discussed the main
differences and, by this, provided a better understanding of the advantages and
disadvantages of these verification methods. Future work will focus on the anal-
ysis and extension of these verification approaches with respect to scalability,
i.e. the support of larger and more complex models, as well as applicability,
i.e. the support of further descriptions means and verification tasks.

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Schmitt, P.H.: KeY: A Formal Method for
Object-Oriented Systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS
2007. LNCS, vol. 4468, pp. 32–43. Springer, Heidelberg (2007)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of Model Trans-
formation from UML to Alloy. Software and System Modeling 9(1), 69–86 (2010)

3. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2010), www.SMT-LIB.org

4. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards CTL-
Extended OCL Model Checking. In: Proceedings of the MODELS 2013 OCL Work-
shop. vol. 1092, pp. 13–22 (2013)

5. Brucker, A.D., Wolff, B.: Semantics, calculi, and analysis for object-oriented spec-
ifications. Acta Inf. 46(4), 255–284 (2009)

6. Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-Vectors and
Arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009)

7. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification of
UML/OCL Models using Constraint Programming. In: Stirewalt, R.E.K., Egyed,
A., Fischer, B. (eds.) ASE 2007, pp. 547–548. ACM (2007)

8. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL Operation Contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer,
Heidelberg (2009)

www.SMT-LIB.org

116 F. Hilken et al.

9. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Flake, S., Müller, W.: Past- and Future-Oriented Time-Bounded Temporal Prop-
erties with OCL. In: SEFM 2004, pp. 154–163. IEEE Computer Society (2004)

11. Gabmeyer, S., Brosch, P., Seidl, M.: A Classification of Model Checking-Based
Verification Approaches for Software Models. In: Proceedings of VOLT 2013 (2013)

12. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69 (2007)

13. Gogolla, M., Büttner, F., Cabot, J.: Initiating a Benchmark for UML and OCL
Analysis Tools. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942,
pp. 115–132. Springer, Heidelberg (2013)

14. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From Ap-
plication Models to Filmstrip Models: An Approach to Automatic Validation of
Model Dynamics. In: Fill, H.G., Karagiannis, D., Reimer, U. (eds.) Proc. Model-
lierung (MODELLIERUNG 2014), Gesellschaft für Informatik, LNI (2014)

15. Haedicke, F., Frehse, S., Fey, G., Großbe, D., Drechsler, R.: metaSMT: Focus on
your application not on solver integration. In: DIFTS 2012 (2012)

16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press,
Cambridge (2006)

17. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012)

18. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H.: Formalizing UML Models and OCL Constraints in PVS.
Electr. Notes Theor. Comput. Sci. 115, 39–47 (2005)

19. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

20. Snook, C., Butler, M.: UML-B: A Plug-in for the Event-B Tool Set. In: Börger,
E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 344.
Springer, Heidelberg (2008)

21. Soden, M., Eichler, H.: Temporal Extensions of OCL Revisited. In: Paige, R.F.,
Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 190–205.
Springer, Heidelberg (2009)

22. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP 2011.
LNCS, vol. 6706, pp. 152–170. Springer, Heidelberg (2011)

23. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models.
In: DATE, pp. 1077–1082. IEEE (2011)

24. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using Boolean satisfiability. In: DATE, pp. 1341–1344. IEEE
(2010)

25. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the Kodkod Model Finder
for Resolving Model Inconsistencies. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer, Heidelberg
(2011)

26. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

27. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 351–357. Springer, Heidelberg
(2004)

Generating Classified Parallel Unit Tests

Ali Jannesari1,2, Nico Koprowski1,2, Jochen Schimmel3, and Felix Wolf1,2

1 German Research School for Simulation Sciences, Aachen, Germany
2 RWTH Aachen University, Aachen, Germany

3 Karlsruhe Institute of Technology (KIT), Germany

Abstract. Automatic generation of parallel unit tests is an efficient and
systematic way of identifying data races inside a program. In order to
be effective parallel unit tests have to be analysed by race detectors.
However, each race detector is suitable for different kinds of race condi-
tions. This leaves the question which race detectors to execute on which
unit tests. This paper presents an approach to generate classified par-
allel unit tests: A class indicates the suitability for race detectors con-
sidering low-level race conditions, high-level atomicity violations or race
conditions on correlated variables. We introduce a hybrid approach for
detecting endangered high-level atomic regions inside the program under
test. According to these findings the approach classifies generated unit
tests as low-level, atomic high-level or correlated high-level. Our evalu-
ation results confirmed the effectiveness of this approach. We were able
to correctly classify 83% of all generated unit tests.

1 Introduction

Today, unit testing is an essential part of software development. A software
artifact may consist of billions of lines of code. A full error analysis can be
very time consuming and is often unnecessary. Usually, only new and modified
code regions have to be tested. For this, developers create unit tests for the
considered software. By creating unit tests, small parts of the program can be
effectively tested without executing redundant code regions to find new bugs.
From unit testing, a new field of research and work has emerged: automatic unit
test creation [1]. One remarkable aspect of this work is the parallel unit test
generator which focuses on creating unit tests for concurrency bugs.

However, parallel unit tests have to be analysed by external concurrency bug
detectors. In general, each of these tools has varying suitability for different
classes of concurrency bugs. Today, parallel unit tests do not come with any
information on the potentially contained class of bug. Therefore, applying the
correct concurrency bug detector is left to the user and mostly results in trial-
and-error application.

In this work we present a parallel unit test generator which produces classified
unit tests for race detection. We generally distinguish tests by whether they
are suited for low-level or high-level race detectors. Additionally, we further
classify high-level unit tests according to their suitability for race detectors for

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 117–133, 2014.
c© Springer International Publishing Switzerland 2014

118 A. Jannesari et al.

correlated variables. In order to realise this, our work builds on the existing unit
test generator AutoRT [2] which analyses and creates parallel unit tests from
method pairs. In the scope of this paper we want to introduce an extension of
this work: AutoRT+. We enhance AutoRT by identifying and analysing possibly
violated high-level atomicity inside the method pairs.

For a total of 10 applications AutoRT+ automatically generated and classified
130 parallel unit tests for low-level and 106 parallel unit tests for high-level
race detectors. From these 106 high-level tests AutoRT+ classified 52 for race
detectors on correlated variables. We analysed the generated unit tests with four
different race detectors. During our evaluation we observed that 83% of all unit
tests were correctly classified.

2 Background

In this section we introduce terms which we use in the scope of this paper.

2.1 High-level Data Races

Thread Normalize
Acquire Lock

len =
√
x2 + y2;

x = 1
len ∗ x;

y = 1
len ∗ y;

end

end

Thread Double
Acquire Lock

x = 2 ∗ x;
end
Acquire Lock

y = 2 ∗ y;
end

end

Fig. 1. A high-level data race violating the seman-
tics of the vector (x, y)

In our work, we define a race
condition as an atomicity vio-
lation when accessing variable
values. We further divide race
conditions into high-level and
low-level race conditions, ac-
cording to the number of vari-
ables that are part of the data
race.

Low-level races violate the
atomicity of a single variable
access. A low-level data race
occurs when two concurrent
threads access a shared vari-
able without synchronization and when at least one of these accesses is a write.

High-level races violate the atomicity between several variable accesses. A
high-level race condition is generally harder to detect, since identifying high-
level atomicity requires an understanding of the program semantics. Figure 1
gives an example for such a high-level data race: All accesses have been secured
by locks. However, if we have the interleaving in which the vector is normalized
in between the doubling operation, the values of x and y are not correctly tuned
to each other any more. We recognize that the semantics of those variables has
been violated.

There are different approaches for identifying high-level atomic regions. In our
work, AutoRT+ relies on the following two approaches.

Generating Classified Parallel Unit Tests 119

Variable Correlations. Two variables are correlated iff their values are, or
are meant to be, in a semantic relationship during the entire program execution
[9]. Therefore, accesses to correlated variables form high-level atomic regions.
Violations of this atomicity lead to correlation violations: the semantic relation-
ship between the correlated variables becomes violated. We already introduced
an example of a variable correlation in figure 1, where the two variables x and y
constitute a vector. Here, the high-level atomicity inside Double is endangered.

Region Hypothesis. The region hypothesis [3] employs the concept of compu-
tational units in order to identify high-level atomic regions. Thereby, a compu-
tational unit is the longest sequence of instructions which satisfies the following
two conditions:

1. The instructions are data and control dependent on one another. Thus, there
exist no independent computations inside a single computational unit.

2. Inside a single computational unit a shared variable is not read after it has
been written to.

The concept assumes that a typical atomic operation on a shared data struc-
ture consists of three parts: reading, computing and storing. The high-level
atomic region to be protected inside a computational unit is called the shared
region. It starts with the first access to a shared variable and ends with the last.

2.2 Parallel Unit Tests

Function Parallel Unit Test()
// Initializing context

// Concurrent invocation

Thread1.Start(Method1);
Thread2.Start(Method2);

// Wait for methods to

finish

Thread1.Wait();
Thread2.Wait();

end

Fig. 2. General structure of a parallel unit
test

Unit testing has become a common
practice in the field of software engi-
neering. The idea of unit testing is to
concentrate debugging on small parts
at a time instead of the whole pro-
gram. This promises better precision
and shorter testing times since bug
detection can be focussed on the rel-
evant code without analysing or exe-
cuting the whole program. A unit test
verifies the correctness of the corre-
sponding part of the program informs
about and reports any anomalous be-
haviour. For this verification we have
to execute the unit test. During exe-
cution the program part to be tested
is invoked and the results of the invocation are compared to the expected results.

Parallel unit tests are a special subclass of unit tests which distinguish them-
selves in the following ways:

1. A parallel unit test contains the parallel invocation of two methods, a method
pair.

120 A. Jannesari et al.

2. It should not be executed directly but is intended to be analysed by tools
for concurrency bug detection.

3. The parallel unit test is independent with respect to execution. This means
it can be executed without any additional support. This is an important
feature for dynamic concurrency bug detection tools which need to execute
the code for analysis.

Figure 2 illustrates the generic structure of a parallel unit test, divided into
three parts: Initializing the necessary context, concurrently invoking the methods
and synchronizing with the main thread.

3 Related Work

We present some approaches for the automatic generation of parallel unit tests
and race detection approaches used in the scope of this paper. ConCrash [4]
uses a static race detection approach to identify methods for unit test genera-
tion. The actual generation process is done by employing a Capture-And-Replay
technique. ConCrash only considers methods in which race conditions have been
found. Katayama et al. [5] explain an approach for the automatic generation of
unit tests for parallel programs. The approach uses the Event InterAction Graph
(EIAG) and Interaction Sequence Test Criteria, ISTC. Musuvathi et al. [10] use
reachability graphs to generate unit tests for parallel programs. The approach
proved to be very effective on small programs. However, it is not scalable regard-
ing programs with a large amount of parallelism. A. Nistor et al. [7] generate
parallel unit tests for randomly selected public class methods. The approach
appends complex sequential code to the unit tests in order to increase the pre-
cision of concurrency bug detection. The approach only considers some parts of
the program for unit test generation and neglects multiple class interactions.

MUVI [8] is a hybrid race detector for correlated variables. The algorithm
employs a static correlation detection analysis based on data mining techniques.
Subsequently, MUVI executes a dynamic race detection on the program under
test. The correlation detection does not consider data dependencies between
correlated variables and the race detection cannot identify continuous locks for
high-level atomic regions. Helgrind+ for correlated variables (HCorr) [9] is a
dynamic race detection approach. Parallel to the race detection the approach dy-
namically detects correlated variables by identifying computational units. HCorr

considers variables correlated if they are accessed in the same computational
unit. CHESS [10], [11] dynamically searches a program for concurrency bugs
including races, deadlocks and data errors. Through user annotations CHESS is
also able to identify high-level races. However, for whole coverage the approach
needs to perform a dynamic analysis for each interesting thread scheduling. This
naturally leads to comparatively high analysis times for large programs. The
Intel Thread Checker is a commercial dynamic race detector for low-level race
conditions. It is part of the Intel Inspector [12], which is a known tool for de-
tecting conventional concurrency bugs as well as memory leaks. [13] presents a

Generating Classified Parallel Unit Tests 121

dynamic race detector (NDR) which is able to detect low-level and high-level
races by identifying non-deterministic reads. Thereby, a non-deterministic read
is a read access on a value which is written dependent on the scheduling of
threads. NDR also dynamically identifies correlated variables by detecting pat-
terns of data and control dependencies. Finally, NDR reports for each found race
condition the violated variable correlations.

4 Approach

This section presents AutoRT+, a parallel unit test generator which produces
classified unit tests. The approach extends the parallel unit test generator Au-
toRT [2] by classification analysis techniques. First, we shortly introduce the
original AutoRT approach. Thereafter, we present our new methods and de-
scribe the new features of AutoRT+.

4.1 AutoRT

Fig. 3. Overview of AutoRT

AutoRT is a proactive unit test generator for
parallel programs which uses both dynamic
and static approaches for program analysis.
For a given program the algorithm considers
all possible method pairs as candidates for
unit testing. In its generation steps AutoRT
filters this candidate set to the most signif-
icant method pairs and generates unit tests
based on them. Figure 3 gives an overview of
the approach.

The algorithm identifies significant method
pairs in two independent analyses:

1. A static analysis filters the candidate set
to parallel dependent method pairs, i.e.
method pairs containing accesses to the
same variables.

2. A dynamic analysis reduces the candidate
set to method pairs which truly run in par-
allel.

Having obtained a significant candidate set,
AutoRT employs a Capture-and-Replay tech-
nique: It dynamically records the object states which are necessary for invoking
each method pair in parallel, called the test context. After AutoRT has fil-
tered out equivalent contexts, the algorithm creates a parallel unit test for each
different context of a method pair. Since the Capture-and-Replay technique re-
constructs only contexts which actually existed during program execution, the
generated unit test cases do not depict situations which never happen during
runtime.

122 A. Jannesari et al.

4.2 Overview of AutoRT+

AutoRT+ introduces an approach for producing classified unit tests. It distin-
guishes between three classes of parallel unit tests: (a) low-level unit tests which
are suited for low-level race detectors, (b) high-level atomicity unit tests, which
should be analysed by high-level race detectors in general, and (c) high-level
correlation unit tests which are suitable for high-level race detectors considering
correlated variables.

Method Pairs

Parallelism
Analysis

Parallel Dependency
Analysis

Object State
Recording

Unit Test
Generation

Parallel Unit Tests

Test Contexts

Significant
Method Pairs

MP-Shared
Variables

Computational Unit
 Analysis

Correlation
Detection

Endangered Atomicity
Analysis

Computational Units

Correlated Variables

Endangered Atomicities

Classifier
Classified

Method Pairs

Parallel Dependent
Variables Variable

Identities

2.
1.

3.

4.

5.

6.

Fig. 4. Overview of AutoRT+

Figure 4 gives an overview of the unit
test generator. Extensions are colored and
are detailed in the following:

1. We have extended the dynamic paral-
lelism analysis to protocol the encoun-
tered variable identities. This infor-
mation is used in the subsequent com-
putational unit and correlation detec-
tion to improve their precision.

2. The static parallel dependency anal-
ysis now also reports the variables
which cause the parallel dependency
of the method pair.

3. After the parallelism and parallel de-
pendency analysis, we identify all
possible computational units of each
method pair.

4. We perform a correlation detec-
tion analysis considering all identified
computational units in the program.

5. For each method pair we determine
endangered high-level atomic regions.
In order to do this, we consider the
identified computational units and the
detected correlated variables.

6. Finally, we classify the method pairs
according to whether they contain en-
dangered atomic regions and in what
way they are endangered.

Then, AutoRT+ employs the Capture-and-Replay technique for generating
the parallel unit tests. Finally, the class of the unit test is determined by the
class of the method pair it is based on.

4.3 Shared vs. Method Pair-Shared (MP-Shared)

A variable is shared iff multiple threads access the variable during program
execution. We further differentiate method pair shared (mp-shared) variables.

Generating Classified Parallel Unit Tests 123

A variable is mp-shared for a method pair iff each of the two methods in the pair
accesses the variable from a different thread. Obviously, an mp-shared variable
is also a shared variable but a shared variable is not necessarily mp-shared for
every method pair.

In the context of AutoRT+ we can identify mp-shared variables with the
help of the dynamic parallelism and static parallel dependency analysis. The
mp-shared variables of a parallel method pair are the members of the set of
variables on which the two methods are parallel dependent.

4.4 Identifying Computational Units

For a given method pair we perform a static approach to identify the compu-
tational units for each method. In order to do so, we need information about
the data and control dependencies between instructions and the shared vari-
ables. For this reason, we employ an analysis on the method to detect the
data and control dependencies between its contained instructions. Further on,
for the shared region we do not regard shared variables in general but only the
mp-shared variables of the method pair. We use the information gained by the
preceding parallelism and parallel dependency analysis in order to determine
the mp-shared variables.

Function SetSize(newSize)
SizeFt = newSize;
if SizeFt > 6 then

Big = true;
end
SizeCm = SizeFt ∗ 30, 48;
MethodCount + +;

end
CU1 = {newSize, SizeFt, SizeCm};
CU2 = {newSize, SizeFt, Big, SizeCm};
CU3 = {Count};

Fig. 5. All three possible computational
units for the method SetSize

By traversing the control flow
graph of the method on a specific path
we are now able to identify the com-
putational units a method consists of.
However, different paths may lead to
different computational units. In prin-
ciple, for all possible computational
units we would need to traverse all
possible paths. But a method includes
an infinite number of possible con-
trol flow paths for traversal when it
contains loops. Therefore we follow a
more relaxed branch coverage, mean-
ing that for every branch in the method there exists a path we traverse which
covers that branch. For each encountered instruction on a path we perform the
following operations:

– An instruction without a data or control dependency is initially assigned its
own computational unit.

– The same goes for an instruction which accesses a previously written mp-
shared variable.

– For other instructions, we merge the computational units of the instruc-
tions on which they are data and control dependent and assign the resulting
merged computational unit to the instruction.

Figure 5 shows an example for the computational units detection. The pre-
sented method contains two possible control flow paths. Our first path skips

124 A. Jannesari et al.

the control flow branch of the if-statement. As a result, we identify CU1 and
CU3. Since we demand a full branch coverage of the control flow, our second
path follows the control flow branch and identifies CU2 and CU3. Thus, we have
identified all three possible computational units of the method.

4.5 Identifying Correlated Variables

For identifying correlations between variables we perform an analysis on the
given computational units of the whole program. Our approach is based on the
concepts of HCorr [9] and MUVI [8]. According to HCorr, variables are correlated
if they are accessed within the same computational unit. This implies a strong
relationship between data/control dependencies and variable correlations. How-
ever, this criterion seems to be too weak for successfully detecting correlated
variables. Variables that may be initialized in the same computational unit but
bear no further connection during the rest of the program can hardly be called
correlated. We expect correlated variables to be in relation to each other during
most of the program’s execution. The approach MUVI uses is based upon this
assumption. Here it is assumed that variables which are accessed relatively often
near to each other are likely to be correlated. However, it does not additionally
regard data and control dependencies for its analysis.

We introduce a hybrid approach for identifying correlated variables which
combines the ideas of HCorr and MUVI. As a result, we consider variables whose
accesses appear relatively often in the same computational units to be correlated.
The more frequently variables are accessed in the same computational units,
the higher the probability that these variables are actually correlated. We call
this probability the correlation probability. In order to compute the correlation
probability for a variable pair, we sum up the total number of accesses to these
variables inside the program. Then, the correlation probability is the percentage
of accesses that appear inside a computational unit accessing both variables of
the pair.

We only identify correlations between shared variables. Trivially, a correlation
consisting only of local variables cannot be involved in an atomicity violation;
there is just one thread accessing the participating variables.

Figure 6 gives an example for the correlation detection approach, in which
we consider only two methods accessing shared variables. In this situation the
variables SizeF t and SizeCm are correlated. During the method Initialize the
data dependencies between Count and SizeF t is just arbitrary since they have
the same initial values. The computational unit obtained from SetSize gives a
better representation of the semantic relationships between the variables. When
we apply our correlation detection algorithm on the two methods, we identify
the correlated variables SizeF t and SizeCm with a correlation probability of
100%. The correlation probabilities involving the uncorrelated variable Count
are significantly lower.

Generating Classified Parallel Unit Tests 125

Function Initialize()
SizeFt = 0;
SizeCm = SizeFt;
Count = SizeFt;

end
Function SetSize(newSize)

SizeFt = newSize;
SizeCm = SizeFt ∗ 30, 48;
Count = Count + 1;

end

CU(Initialize) = {SizeFt, SizeCm,Count};
CU1(SetSize) = {SizeFt, SizeCm};
CU2(SetSize) = {Count};
#Accesses(SizeFt) = 5;
#Accesses(SizeCM) = 2;
#Accesses(Count) = 3;

CorrelationProb(SizeFt, SizeCm) = 7/7 = 1;
CorrelationProb(SizeFt, Count) = 4/8 = 0.5;
CorrelationProb(SizeCm,Count) = 2/5 = 0.4;

Fig. 6. Correlation probabilities for the variable pairs accessed in two methods

4.6 Endangered Atomicity

After we have identified computational units and correlated variables, we deter-
mine endangered high-level atomic regions. Therefore, we consider the synchro-
nisation instructions of the method pair. Any kind of synchronization instruction
inside the mp-shared region of a computational unit suggests a possible atom-
icity violation. For this reason, we regard the atomicity of that computational
unit as being endangered. We determine endangered correlated variables in a
similar manner. A synchronization instruction which separates two accesses to
correlated variables hints at a high-level atomicity violation.

If we do not detect any synchronization instructions, we can assume that
the accesses in consideration are either fully and continuously synchronized or
not synchronized at all. Of course, the latter case may lead to low-level race
conditions and, if applicable, a violation of a high-level atomic region. Despite
that, we do not consider this case an endangerment of high-level atomicity, since
totally unsynchronized accesses naturally come with low-level race conditions.
Therefore, the flaws can be found by low-level race detectors. Thus, a generated
unit test for such a method pair should be classified as low-level and analysed
by a low-level race detector. Figure 7 illustrates examples for high-level atomic
regions we consider endangered or safe.

temp = a;
a = temp + 1;

(a) Safe atomic re-
gion

temp = a;
Acquire Lock

a =
temp + 1;

end

(b) Endangered
atomic region

Acquire Lock
x = 2 ∗ x;
y = 2 ∗ y;

end

(c) Safe correlation
accesses

Acquire Lock
x = 2 ∗ x;

end
Acquire Lock

y = 2 ∗ y;
end

(d) Endangered cor-
relation accesses

Fig. 7. Examples of safe and endangered high-level atomic regions. Note: All variables
are shared and the variables x and y are correlated.

126 A. Jannesari et al.

4.7 Unit Test Classification

After we have determined the endangered high-level atomic regions we classify
the method pairs accordingly:

Low-Level: The method pair should not contain any high-level race conditions.
Therefore, it does not include computational units or correlated variables, which
are endangered.

Atomic High-Level: The method pair contains at least one endangered compu-
tational unit. However, there are no endangered accesses to correlated variables.

Correlated High-Level: The method pair contains at least one endangered vari-
able correlation.

In this kind of classification we willingly allow the possibility of low-level race
conditions to be present inside high-level method pairs. This is because high-
level race detectors are generally able to also identify low-level race conditions.
On the other hand, low-level race detectors are unable to identify high-level race
conditions. Therefore, we assign method pairs which may contain low-level and
high-level race conditions to a high-level class.

5 Implementation

We implemented AutoRT+ in C# which runs within the .NET runtime. For data
and control flow analysis as well as the code instrumentation we employed the
Common Compiler Infrastructure (CCI) framework. Therefore, the presented
analysis works on the Common Intermediate Language (CIL) which underlies
every .NET program.

The dynamic parallelism analysis protocols encountered field variable ac-
cesses. We identify each field variable by its unique field identifier (acquired
from the CCI framework) and the hash code of its parent object.

For our approach we need to identify data and control dependencies. CCI
already provides simple data and control flow analysis data structures. However,
control flow branch analysis, which is required for the control dependencies, is
not supported by the framework. Therefore, we identify the scope of control flow
branches via post dominator analysis and apply a simple and efficient algorithm,
which was presented in [14].

Detecting endangered atomic regions requires the identification of synchro-
nization instructions. In .NET, synchronization instructions are method calls
to the .NET core library which communicate with the operating system. We
are able to detect these method calls inside the CIL code of the program by
their distinctive namespace: System.Threading. All methods belonging to that
namespace manage synchronization operations between threads. Also, as our
analysis does not distinguish between the types of synchronization, it is there-
fore able to identify synchronization instructions in general.

Generating Classified Parallel Unit Tests 127

6 Evaluation

We use sample programs as well as real-world applications for our evaluation
purposes. Table 1 lists the programs and provides an overview of their most
important characteristics and evaluation results.

Table 1. Summary of the evaluation programs

Program LOC Meth. Thrds Par.
Meth.

Par.
Meth.
Pairs

Corr.
Vars

Unit
Tests

Gen.
Time
(ms)

Bank Acc. 25 4 2 4 4 0 2 1030
Queue 31 6 3 6 14 2 10 451
Dekker 15 3 3 3 5 2 3 238
Order Sys. 360 7 5 5 15 13 15 1820
Corr Sys. 480 18 5 10 27 18 14 1923

Petri Dish 1070 35 7 35 230 12 24 23050
Kee Pass 1240 58 16 58 478 18 18 49300
STP 1120 46 12 37 315 25 53 29400
.Net Zip 14k 2366 19 63 1343 35 87 93900
Cosmos 78k 12k 19 269 5660 35 87 224600

We used the pro-
gramsBank Account,
BoundedQueue and
Dekker from CHESS,
which provides small
programs containing
high-level data races.
We chose an order-
system from MSDN
Code Gallery [15].
We implemented an
alternative version
containing various
correlated variables.
Furthermore, we eval-
uated the following open source programs:

– PetriDish [16], a simulation of three categories of organisms, all growing,
mating, and eating each other.

– KeePass [17], a password manager.

– SmartThreadPool (STP) [18], a thread pool library.

– DotNetZip [19], a toolkit for manipulating zip files.

– Cosmos [20], an operating system toolkit.

6.1 Correlation Detection Efficiency

We compare the efficiency of different thresholds for the correlation probability
in order to obtain the most suitable threshold. For this reason, we consider the
number of variables falsely identified as being correlated, the false positives, and
the number of missed correlated variables, the false negatives. In our evaluation
we tested thresholds for 50% to 100% correlation probability.

In our 10 evaluation programs we detected 134 correlations in total. The
efficiency of our correlation detection analysis depends highly on the chosen
threshold for the correlation probability. Generally, we expected and observed
that a low threshold leads to many false positives and fewer false negatives. A
high threshold, on the other hand, prevents false positives but also drastically
increases the number of false negatives.

Figure 8a shows the overall distribution of false positives and false negatives
and relation to the correlation probability threshold. The break-even point be-
tween false positives and false negatives are approximately 80%. At this point,

128 A. Jannesari et al.

0%

10%

20%

30%

40%

50%

60%

70%

50% 60% 70% 80% 90% 100%

Fr
ac

tio
n

of
 fo

un
d

co
rr

el
at

io
ns

Correlation probability threshold

False Positives

False Negatives

(a) Percentage of false negatives and false
positives in relation to the correlation
probability threshold

1 1 13 16 11 10 14
21

37 1 1 6 7
6

13

19

1 1
2

5

4

0

10

20

30

40

50

60

70
False Negatives

False Positives

True Positives

(b) Distribution of false negatives and
false positives for a correlation probability
threshold of 70%

Fig. 8. Efficiency of the correlation detection

we observed 18% false positives and false negatives. However, we rate false neg-
atives more critically than false positives. As a result, we regard a threshold of
70% to be ideal according to our observations. At this threshold the percentage
of false negatives is less than 5%. But as a major drawback we have to deal with
an average of 35% false positives.

Figure 8b shows the distribution of false positives and false negatives in regard
to the single evaluation programs with a 70% correlation probability threshold. In
the smaller test programs we observe far fewer false negatives and false positives,
each less than 5%. Some programs do not contain many correlations and due to
the small program size the contained correlations are rather obvious. The open
source programs prove to be more representative: Only with KeePass was there
a relatively low amount of false positives at 22%. The other programs are close
to the average of 35%. Considering false negatives, only DotNetZip stands out,
having 12% false negatives.

6.2 Classification Precision

We identify falsely classified unit tests based on the contained atomic regions
and the detected race conditions inside tests.

1. Low-level unit tests should not contain endangered high-level atomic regions
or high-level race conditions.

2. High-level unit tests in general should not only contain low-level race condi-
tions. Either they contain no race conditions or an arbitrary amount of race
conditions from which at least one is a high-level race condition.

3. High-level atomic unit tests should not contain endangered variable correla-
tions or race conditions on correlated variables.

4. High-level correlation unit tests should either contain no race conditions or
an arbitrary amount of race conditions from which one is at least a race
condition on correlated variables.

Generating Classified Parallel Unit Tests 129

We consider unit tests which differ from the specification above as falsely
classified. In order to identify race conditions we analysed the generated unit tests
with four different race detectors: CHESS, ITC, HCorr and NDR (see section 3).

CHESS and ITC are unable to detect high-level race conditions and were used
to determine strictly low-level race conditions. HCorr and NDR on the other hand
are both able to detect high-level atomic and correlation race conditions.

AutoRT+ generated 236 parallel unit tests in total. Our approach was able
to categorize these tests as shown in figure 9a. According to the observed distri-
bution, the majority, roughly 55% of all unit tests, were categorized as low-level.
Furthermore, our approach classified 25% of all generated unit tests as high-level
atomic and 25% as high-level correlated.

130
54

52 Low-Level

High-Level (Atomicity)

High-Level (Correlation)(~55%)

(~22%)

(~23%)

(a) Proportions of generated unit tests in
total

1 4 15
3

13 9 8
30

47

1 1
7 6 2

13

24

3
3 11

4 3
2

10

16

0
10
20
30
40
50
60
70
80
90

100

High-Level (Correlation)

High-Level (Atomicity)

Low-Level

(b) Proportions of generated unit tests for
each evaluation program

Fig. 9. Distribution of generated parallel unit tests

Figure 9b shows the distribution of unit tests with regard to the evaluation
programs. Again, we can observe a significant difference from the average dis-
tribution in the smaller test programs. The test program ’order system’ was
designed not to contain any high-level race conditions which naturally resulted
in generating exclusively low-level unit tests. On the other hand, ’corr system’
mainly consists of accesses to correlated variables. A higher amount of high-level
unit tests was therefore expected. The unit tests for the open source programs
follow the average distribution.

74

51 54
69

5

10
4

6

0

10

20

30

40

50

60

70

80

90

CHESS ITC HelgrindCorr NDR

Correlation Races

Atomicity Races

Low-Level Races

(a) Results for low-level
tests

22 20 22 22

46 49

4 5

0

10

20

30

40

50

60

70

80

CHESS ITC HelgrindCorr NDR

Correlation Races

Atomicity Races

Low-Level Races

(b) Results for high-level
atomicity tests

19 15 18 18

17 20

26
30

0

10

20

30

40

50

60

70

80

CHESS ITC HelgrindCorr NDR

Correlation Races

Atomicity Races

Low-Level Races

(c) Results for high-level
correlation tests

Fig. 10. Results of the race detectors applied to the classified unit tests

130 A. Jannesari et al.

Figure 10 shows the findings of the race detectors which we applied on the
classified unit tests. In the low-level tests we observed about 18% high-level
findings. Furthermore, of the reported findings of the high-level atomicity test,
29% were low-level and 7% were correlated high-level findings. Finally, the high-
level correlation tests included 28% low-level and 29% uncorrelated high-level
findings.

The validity of the classification between low-level and high-level unit tests is
illustrated by figure 11a. We observed that 11 of the unit tests (8%) which were
classified as low-level are actually high-level unit tests. In these cases, the region
hypothesis has failed to identify correct high-level atomic regions resulting in
computational units that are too small. In this way, our approach was unable to
identify the related atomic regions as endangered. Finally, 5 of the unit tests (3%)
classified as high-level are actually low-level unit tests. In this case the employed
region hypothesis lead to the estimation of atomic regions (computational units)
that were too large.

118

101

11
5

0

20

40

60

80

100

120

140

Low-Level Tests High-Level Tests

Correctly Classified

Incorrectly Classified

(a) Differentiation between low-level and
high-level unit tests

49

34

5

18

0

10

20

30

40

50

60

High-Level Tests Correlation Tests

Correctly Classified

Incorrectly Classified

(b) Differentiation between high-level and
correlated unit tests

Fig. 11. Precision of the categorization approach

The distinction between regular high-level unit tests and unit tests containing
endangered correlations turned out to be far more imprecise, as figure 11b illus-
trates. 5 unit tests (9%) contained undetected endangered variable correlations.
A major influencing factor is the false negatives of the correlation detection. Ad-
ditionally, we have a high amount of unit tests falsely categorised as unit tests
for correlated variables. In total, 18 unit tests (35%) were falsely categorized this
way. Here, the high amount of false positives in the correlation detection heavily
influences the outcome.

6.3 Performance

Figure 12 shows the time our analysis takes for classifying and ultimately gener-
ating the unit test in relation to the execution time. Since our approach analyses
method pairs, the time of classification is heavily dependent on the number of
parallel method pairs inside the program. The time for unit test generation is a

Generating Classified Parallel Unit Tests 131

sum of different partial times including the static parallel dependency analysis,
the correlation analysis, the dynamic parallelism analysis and the capture-and-
replay technique. Our experience is that the most critical performance impact
lies in the dynamic analysis. Multiple executions of the same program code and
expensive object recording cause a major slow down. The ratio between the over-
all unit test generation time and the execution time of the program varies wildly
by a factor between 16 and 266. Large programs with many objects and many
parallel methods like Cosmos cause a high state recording time. The static corre-
lation analysis only takes a small part of the overall generation time. Therefore,
the categorization time only takes a small part of the total unit test generation
time. In average about 5% of the total time goes into our additional analysis. In
the smaller test programs we can even report a rate under 1%.

47

8 5

89 112 203 170 264
670

2040
1030

451
238

1820 1923

23050 29400 49300
93900

224600

1 ms

10 ms

100 ms

1000 ms

10000 ms

100000 ms

1000000 ms

B.Account B. Queue Dekker Order Sys Corr Sys PetriDish STP KeyPass DotNetZip Cosmos

Program Execution Time

Unit Test Generation Time

Fig. 12. Comparison between the unit test generation times of AutoRT+ and the
execution times of the evaluation programs

7 Conclusion

In this paper we introduced an approach which enhances automatic parallel unit
test generation and execution with a totally new dimension: classified unit tests.
Our analysis is able to distinguish between unit tests that should be analysed
by low-level race detectors, detectors for correlated variables or high-level race
detectors in general. This supports testing of parallel software by reducing the
number of unnecessary unit tests or unsuitable employed race detectors. Overall
for ten different applications, we were able to classify 83% of the generated unit
tests correctly.

In the future, we want to introduce new classes to AutoRT+. Generally, dif-
ferent race detectors vary in their effectiveness to detect specific kinds of concur-
rency bugs. Even detectors for correlated variables vary in precision depending
on the structure of the code. Therefore, as a next step we want to provide addi-
tional classification analysis and clustering metrics which state how method pairs

132 A. Jannesari et al.

are suited for specific race detectors. Furthermore, we can extend our heuristics
to other concurrency bugs like deadlocks and order violations.

Another direction for our future work would be to pass the results of our corre-
lation detection to the race detectors executing the generated parallel unit tests.
This would be especially useful for detectors which normally rely on the user anno-
tation for correlation specifications e.g. CHESS [10] or [21]. However, race detec-
tors with automatic correlation detection may profit from a reduced performance
overhead and increased precision by our preceding correlation analysis.

References

1. Hamill, P.: Unit Test Frameworks: Tools for High-Quality Software Development.
O’Reilly Series. O’Reilly Media (2008)

2. Schimmel, J., Molitorisz, K., Jannesari, A., Tichy, W.F.: Automatic generation of
parallel unit tests. In: 8th IEEE/ACM International Workshop on Automation of
Software Test (AST) (2013)

3. Xu, M., Bod́ık, R., Hill, M.D.: A serializability violation detector for shared-
memory server programs. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 1–14.
ACM, New York (2005)

4. Luo, Q., Zhang, S., Zhao, J., Hu, M.: A lightweight and portable approach to
making concurrent failures reproducible. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 323–337. Springer, Heidelberg (2010)

5. Katayama, T., Itoh, E., Ushijima, K., Furukawa, Z.: Test-case generation for con-
current programs with the testing criteria using interaction sequences. In: Pro-
ceedings of the Sixth Asia Pacific Software Engineering Conference, APSEC 1999.
IEEE Computer Society, Washington, DC (1999)

6. Wong, W.E.: Yu Lei, X.M.: Effective generation of test sequences for structural
testing of concurrent programs. In: 10th IEEE International Conference on Engi-
neering of Complex Computer Systems, ICECCS 2005, pp. 539–548. IEEE Com-
puter Society, Richardson (2005)

7. Nistor, A., Luo, Q., Pradel, M., Gross, T.R., Marinov, D.: Ballerina: Automatic
generation and clustering of efficient random unit tests for multithreaded code. In:
Proceedings of the 2012 International Conference on Software Engineering, ICSE
2012, pp. 727–737. IEEE Press, Piscataway (2012)

8. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., Zhou, Y.: Muvi:
Automatically inferring multi-variable access correlations and detecting related
semantic and concurrency bugs. In: SOSP 2007: Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles, pp. 103–116. ACM, New
York (2007)

9. Jannesari, A., Westphal-Furuya, M., Tichy, W.F.: Dynamic data race detection
for correlated variables. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.)
ICA3PP 2011, Part I. LNCS, vol. 7016, pp. 14–26. Springer, Heidelberg (2011)

10. Musuvathi, M., Qadeer, S.: Chess: Systematic stress testing of concurrent soft-
ware. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 15–16. Springer,
Heidelberg (2007)

11. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 267–280. USENIX Association, Berkeley (2008)

Generating Classified Parallel Unit Tests 133

12. Intel (Intel Inspector XE) (2013),
http://software.intel.com/en-us/intel-inspector-xe

13. Jannesari, A., Koprowski, N., Schimmel, J., Wolf, F., Tichy, W.F.: Detecting cor-
relation violations and data races by inferring non-deterministic reads. In: Proc.
of the 19th IEEE International Conference on Parallel and Distributed Systems
(ICPADS). IEEE Computer Society, Seoul (2013)

14. Cooper, K.D., Harvey, T.J., Kennedy, K.: (A simple, fast dominance algorithm)
15. Microsoft: Code gallery for parallel programs,

http://code.msdn.microsoft.com/Samples-for-Parallel-b4b76364

16. Butler, N.: Petridish: Multi-threading for performance in c#,
http://www.codeproject.com/Articles/26453/

PetriDish-Multi-threading-for-performance-in-C

17. Reichl, D.: Keepass password safe, http://keepass.info/
18. Smart thread pool, http://smartthreadpool.codeplex.com/
19. Dotnetzip, http://dotnetzip.codeplex.com/
20. C# open source managed operating system, https://cosmos.codeplex.com/
21. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data

in an object-oriented language. In: POPL 2006: Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 334–345. ACM, New York (2006)

http://software.intel.com/en-us/intel-inspector-xe
http://code.msdn.microsoft.com/Samples-for-Parallel-b4b76364
http://www.codeproject.com/Articles/26453/
http://www.codeproject.com/Articles/26453/PetriDish-Multi-threading-for-performance-in-C
http://keepass.info/
http://smartthreadpool.codeplex.com/
http://dotnetzip.codeplex.com/
https://cosmos.codeplex.com/

JTACO: Test Execution for Faster Bounded Verification

Alexander Kampmann2, Juan Pablo Galeotti1, and Andreas Zeller1

1 Software Engineering Chair, Saarland University, Saarbrücken, Germany
{lastname}@cs.uni-saarland.de

2 Saarbrücken Graduate School of Computer Science
Saarland University

Saarbrücken, Germany
kampmann@st.cs.uni-saarland.de

Abstract. In bounded program verification a finite set of execution traces is ex-
haustively checked in order to find violations to a given specification (i.e. errors).
SAT-based bounded verifiers rely on SAT-Solvers as their back-end decision pro-
cedure, accounting for most of the execution time due to their exponential time
complexity.

In this paper we sketch a novel approach to improve SAT-based bounded ver-
ification. As modern SAT-Solvers work by augmenting partial assignments, the
key idea is to translate some of these partial assignments into JUNIT test cases
during the SAT-Solving process. If the execution of the generated test cases suc-
ceeds in finding an error, the SAT-Solver is promptly stopped.

We implemented our approach in JTACO, an extension to the TACO bounded
verifier, and evaluate our prototype by verifying parameterized unit tests of sev-
eral complex data structures.

1 Introduction

Bounded verification [5] is a fully automatic verification technique. Given a program
P and its specification 〈Pre, Post〉, a bounded verification tool exhaustively checks
correctness for a finite set of executions. In order to constrain the number of program
executions to be analyzed, the user selects a scope of analysis by choosing: (a) a bound
to the size of domain (e.g., LinkedList, Node, etc.), and (b) a limit to the number
of loop unrollings or recursive calls.

Bounded verification tools [3,5,8,10,12,16] rely on translating P , precondition Pre
and postcondition Post into a propositional formula ψ such that

ψ = Pre ∧ P ∧ ¬Post.

If an assignment of variables exists such that ψ is true, ψ is satisfiable, and the satis-
fying assignment represents an execution trace violating the specification 〈Pre, Post〉.
On the other hand, if ψ is unsatisfiable (i.e. there is no satisfying assignment for ψ),
the specification holds within the user-selected scope of analysis. However, a violation
might still be found if a greater scope of analysis is chosen. In order to decide on the
satisfiability of ψ, the bounded verifier relies on a SAT-Solver, a program specialized in
solving the satisfiability problem for propositional formulas.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 134–141, 2014.
c© Springer International Publishing Switzerland 2014

JTACO: Test Execution for Faster Bounded Verification 135

1 public static void testRemove(int v1, int v2, int v3) {
2 BinarySearchTree t = new BinarySearchTree();
3 t.add(v1);
4 t.add(v2);
5 t.add(v3);
6 assert t.find(v2);
7 t.remove(v2); // should remove all occurrences
8 assert !t.find(v2);
9 }

Fig. 1. A parameterized unit test for a binary search tree class

TACO [8] targets the bounded verification of sequential Java programs. For exam-
ple, for the parameterized unit test shown in Figure 1, TACO will search for values for
the integer parametersv1, v2 and v3 to falsify any of the assertions. Apart from check-
ing regular assert statements, TACO also verifies more complex program specifica-
tions written in behavioural formal languages such as JML [2] or JFSL [17]. Although
TACO is specially tailored for verifying complex specifications in linked-data struc-
tures (such as the well-formedness of red-black trees), the burden of writing such speci-
fications is by no means small. As a light-weight alternative, applying bounded verifiers
to parameterized unit tests might still help finding errors, but requires less effort from
the user.

Fig. 2. A high-level view of the TACO architecture

Figure 2 presents a high-level overview of the TACO architecture. In order to trans-
late the Java program into a propositional formula ψ, TACO uses the ALLOY language
[11] as an intermediate representation. The analysis starts when the target Java program
and its specification are translated into an ALLOY model. The ALLOY analyzer is then
invoked to check the correctness of the model. This is done by translating the ALLOY

representation into a propositional formula that is later solved using the MINISAT SAT-
Solver. In case MINISAT [7] finds a solution to ψ, the satisfying assignment is returned
to the ALLOY analyzer, that builds an ALLOY instance as a counterexample to the vio-
lated property. Finally, TACO translates the ALLOY counterexample into a JUNIT test
case for later inspection by the user.

Given n propositional variables, there are 2n possible assignments of values to those
variables. SAT-Solvers are programs designed for efficiently deciding the satisfiability
of a formula (i.e., either it is satisfiable or it is unsatisfiable). Nevertheless, as the worst-

136 A. Kampmann, J.P. Galeotti, and A. Zeller

case time complexity of SAT is exponential on the number of propositional variables
in ψ, it is often the case that most of the verification budget is spent in the execution
of the SAT-Solver. On many occasions, when the time bound or the resources at hand
are exhausted, the verification effort has to be cancelled. This leads to the unpleasant
situation that significant computational resources might have been spent, while the user
obtained no feedback from that investment.

In previous work [6], we already explored the idea of profiting from observing the
internal state of the SAT-Solver during its execution. By assuming the ψ is unsatisfi-
able we approximate an UNSAT core [15] by measuring the activity of the SAT-Solver
during the progress of the SAT-Solving process. In this paper, we aim at optimizing
the bounded verifier when the underlying ψ is satisfiable. More specifically, we try to
lift a partial assignment collected from the SAT-Solver into a JUNIT [1] test case. If
the execution of the JUNIT test case leads to a violation of the specification, the whole
SAT-Solver could be stopped. The intuition behind this is that in some cases the SAT-
Solving process might not be as performant as executing the code in order to check the
validity of ψ.

The contributions of this article include:

– An approach to combine SAT-Solving and JUNIT test case execution based on
monitoring the internal state of the SAT-Solver.

– JTACO, an extension to the TACO bounded verifier implementing the aforemen-
tioned approach.

– An evaluation of the JTACO approach on a small benchmark of parameterized unit
tests handling several complex data structures.

2 From Partial Assignments to JUNIT Test Cases

Most modern SAT-Solvers (like MINISAT) are based on variants of the Davis-Putnam-
Logemann-Loveland(DPLL) algorithm [4]. The DPLL algorithm maintains and extends
a partial assignment of the propositional variables to binary values. Each propositional
variable can be assigned (meaning the algorithm has determined a provisional binary
value for this variable), or unassigned.

In Figure 3 we show the pseudocode of the DPLL algorithm. It starts by calling pro-
cedure search_new_value() to extend the current assignment by deciding a new
binary value for an unassigned variable. The function propagate() applies boolean
constraint propagation (BCP) until no more values for variables can be inferred or
the current decisions led to an unsatisfiable clause (namely, a conflict). The function
analyze_conflict() determines the set of variable assignments that implied the
conflict, returning the highest level of decision for all the variables involved (i.e., the
conflict_level variable). Finally, backtrack() undoes the current assignment
to the conflict level. This is usually referred to as back jumping.

Any partial assignment that led to a conflict during the propagate() phase is
known to be unsatisfiable. In our previous work [13], we observed that only a fraction of
the propositional variables of ψ are actually modelling the initial state of the execution
trace. This is due to the fact that, given the static nature of the ALLOY language, TACO

JTACO: Test Execution for Faster Bounded Verification 137

1 while (true) {
2 search_new_value();
3 propagate();
4 if (status==CONFLICT) {
5 conflict_level = analyze_conflict();
6 if (conflict_level==0) {
7 return UNSAT;
8 } else {
9 backtrack(conflict_level);

10 }
11 } else if (status==SAT) {
12 return SAT;
13 }
14 }

Fig. 3. A sketch of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm

models field and variable updates by introducing several versions of the same variable
(much like in a SSA-like form1).

JTACO extends MINISAT by dumping the partial assignment whenever a conflict
occurs (line 5 of Figure 3). Then, JTACO tries to lift the obtained partial assignment to
a JUNIT test case. In order to lift a partial assignment v, JTACO first removes all those
variables in v that are not used to model the initial state of the execution trace. However,
the resulting filtered partial assignment might be insufficient for generating a JUNIT test
case if any of the propositional variables modelling a given initial value is missing. For
example, consider the argument v1 of the parameterised unit test shown in Figure 1. If
k propositional variables model the initial value of v1 (namely v10, v11, . . . , v1k−1)2,
we need to know the value of all the propositional variables to conclude the initial value
of v1.

1 @Test
2 public void test1() {
3 int int0 = -8;
4 int int1 = -8;
5 int int2 = 0;
6 try {
7 BinarySearchTree.testRemove(int0, int1, int2);
8 } catch (AssertionError err) {
9 fail("An assertion did not hold:" + err);

10 }
11 }

Fig. 4. A failing JUNIT test case generated by JTACO

1 In the Single Static Assignment (SSA) form, each variable is assigned exactly once.
2 Alloy encodes integer values using two’s complement.

138 A. Kampmann, J.P. Galeotti, and A. Zeller

If all the propositional variables encoding the initial state (i.e., arguments and field
values) are assigned, then JTACO writes a JUNIT test case by decoding the values from
the partial assignment (as the one shown in Figure 4). Subsequently, JTACO compiles
the written test case and executes it. By construction, if the test case fails then the initial
state led to a violation of the specification (in this case, failing the assert statement
in line 8 of Figure 1). We refer to the original partial assignment that led to a failing test
case as a failing partial assignment. The importance of finding such a partial assignment
relies on the fact that, as soon as it is detected, the entire SAT-Solving process can be
stopped.

To conclude, whenever a conflict occurs during the execution of the MINISAT’s
DPLL algorithm, JTACO filters those variables from the partial assignment that are
not modelling initial values of the execution trace. If all the variables of the initial state
are assigned in the resulting filtered partial assignment, a JUNIT test case is written,
compiled and executed. If the JUNIT test case fails, then a violation to the specification
has been found, and the verification process is stopped. In any other scenario (i.e., unas-
signed initial variables, JUNIT execution succeeding) the DPLL algorithm resumes.

3 Evaluation

We ran our prototype of JTACO on an Intel Core Duo T6600 with a scope of analysis
of 4 elements per domain and 3 loop unrollings. We selected a benchmark of con-
tainer classes taken from [8]. Since all these classes have already been verified using
TACO, we wrote 9 additional faulty parameterized unit tests that are expected to fail
(like asserting an AVL tree is empty after an insertion). Additionally, we add a faulty
implementation of binary search trees plus a parameterized unit test capable of exhibit-
ing the failure. The rationale behind these decisions is twofold: first, by aiming at the
case where the formula ψ is satisfiable, we focus on the scenario in which our approach
could make gains. Secondly, by resorting to parameterized unit tests (instead of regular
JML or JFSL specification violations) we avoid the problem of synthesizing runtime
predicates for asserting the validity of the specifications.

We evaluate our approach by addressing the following research questions:

– RQ1: During the MINISAT execution, when does the first failing partial assign-
ment occur (i.e. the first partial assignment leading to a failing JUNIT test case)?

– RQ2: Does JTACO outperform TACO in terms of execution time?

Experimental Results. Figure 5 presents the average results of 10 executions of TACO
and JTACO on the subjects of the selected case study. The first and second column list
the subject name and the parameterized unit test. The third column shows the average
time for verifying the program using TACO (only MINISAT time is considered). The
fourth column presents the point in time when the first failing partial assignment was
found during the MINISAT execution. The fifth column shows the total JTACO time
(i.e. MINISAT time plus the time for collecting partial assignments, lifting them to
JUNIT test cases and executing them). The last column presents the speed-up of JTACO
with respect to TACO.

In all cases the failing partial assignment occurs very early during the MINISAT ex-
ecution: ranging from 0.5% to 56% of the total solver time. Under these circumstances,

JTACO: Test Execution for Faster Bounded Verification 139

Subject parameterized TACO 1st Failing Partial JTACO Speed-up
Unit Test time (ms) Assignment (ms) time (ms)

SinglyLinkedList testRemove 144.7 81.1 (56.0%) 1545.7 0.09x
DoublyLinkedList testRemove 496.2 202.4 (40.0%) 1940.3 0.25x

testIndexOf 167.8 17.7 (10.0%) 408.4 0.41x
NodeCachingLinkedList testIndexOf 1065.5 16.7 (1.5%) 150.5 7.07x

testRemove 1823.9 20.7 (1.1%) 172.6 10.56x
BinaryTree testRemove 567.4 7.9 (1.3%) 101.0 5.61x
BuggyBinaryTree parameterized 315.2 10.4 (3.3%) 176.9 1.78x

parameterizedSmall 136.5 9.0 (6.5%) 163.0 0.83x
AvlTree testFindMax 3886.3 1072.5 (27.0%) 12928.9 0.30x

testIsEmpty 2743.9 16.0 (0.5%) 146.2 18.76x
BinaryHeap testFindMinDecrease 679.3 10.7 (1.5%) 100.0 6.76x

Fig. 5. Average execution times for 10 runs of TACO and JTACO on the benchmark

the fundamental idea of lifting these partial assignments into JUNIT test cases seems
validated.

Regarding the performance of TACO and JTACO, surprisingly JTACO is outper-
formed on half of the subjects. A closer inspection revealed that, although a failing
partial assignment was indeed found very quickly, the MINISAT process was mostly
delayed by JTACO’s generation and execution of test cases. In other words, the cost
of generating and executing JUNIT test cases was higher than the benefit of stopping
the SAT-Solver execution sooner, at least in a single-core environment. Observe that
JTACO was faster if the first failing partial assignment occurred within the first 5% of
the MINISAT execution time.

4 Conclusions and Further Work

Given the exponential complexity of the SAT-solving process, techniques for decreas-
ing the execution time of bounded verification tools are paramount. In this work we
presented an approach for generating JUNIT test cases from partial assignments col-
lected during the SAT-Solver execution.

Besides general improvements such as robustness and maturity for the JTACO tool,
our future work will focus on the following issues:

– Runtime-checking of JML/JFSL Specifications: The current prototype of
JTACO only handles properties that are expressed as assert statements. In order
to fully support JML and JFSL specifications we need to automatically synthesize
runtime predicates for a significant fragment of the specification language (e.g.,
handling the runtime-checking of all the constructs used in [8]). Additionally, we
also need to extend the lifting mechanism (introduced in Section 2) for handling
initial values that do not satisfy the precondition of the method under analysis.

– Bounded Verification of Correct Programs: If ψ happens to be unsatisfiable,
all the overhead invested in dumping partial assignments is lost. Due to this fact,
JTACO could become a practical approach only if the SAT-Solver’s overhead is
reasonable in case the formula is unsatisfiable.

140 A. Kampmann, J.P. Galeotti, and A. Zeller

– A Multi-core JTACO: In a multi-core environment, several processes could be
spawned for lifting different partial assignments without blocking the main MI-
NISAT process. We expect that a multi-core JTACO might boost JTACO per-
formance. Our future work will include a comparison against other parallel SAT-
solving tools [9,14].

The current prototype of the JTACO tool, as well as all subjects required to replicate
the results in this paper are publicly available. For details, see:

http://www.st.cs.uni-saarland.de/jtaco/

Acknowledgments. This work was funded by an European Research Council (ERC)
Advanced Grant “SPECMATE – Specification Mining and Testing” and MEALS 295261.
Eva May provided helpful comments about this work. We thank the anonymous review-
ers for their comments and suggestions.

References

1. Bech, K., Gamma, E.: JUnit: A programmer-oriented testing framework for Java (May 2014),
http://junit.org

2. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification
and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg
(2006)

3. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

4. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

5. Dennis, G., Yessenov, K., Jackson, D.: Bounded verification of voting software. In: Shankar,
N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 130–145. Springer, Heidelberg
(2008)

6. D’Ippolito, N., Frias, M.F., Galeotti, J.P., Lanzarotti, E., Mera, S.: Alloy+HotCore: A fast
approximation to unsat core. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves,
S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 160–173. Springer, Heidelberg (2010)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Galeotti, J.P., Rosner, N., Pombo, C.L., Frias, M.F.: Analysis of invariants for efficient
bounded verification. In: Tonella, P., Orso, A. (eds.) ISSTA, pp. 25–36. ACM (2010)

9. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4), 245–262
(2009)

10. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft: Software
verification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 301–306. Springer, Heidelberg (2005)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, revised edition. The
MIT Press (2012)

12. Near, J.P., Jackson, D.: Rubicon: bounded verification of web applications. In: Tracz, W.,
Robillard, M.P., Bultan, T. (eds.) SIGSOFT FSE, p. 60. ACM (2012)

http://www.st.cs.uni- saarland.de/jtaco/
http://junit.org

JTACO: Test Execution for Faster Bounded Verification 141

13. Parrino, B.C., Galeotti, J.P., Garbervetsky, D., Frias, M.F.: TacoFlow: optimizing sat program
verification using dataflow analysis. SoSyM: Software and Systems Modeling (2014)

14. Rosner, N., Galeotti, J.P., Bermúdez, S., Blas, G.M., Rosso, S.P.D., Pizzagalli, L., Zemı́n,
L., Frias, M.F.: Parallel bounded analysis in code with rich invariants by refinement of field
bounds. In: Pezzè, M., Harman, M. (eds.) ISSTA, pp. 23–33. ACM (2013)

15. Torlak, E., Chang, F.S.H., Jackson, D.: Finding minimal unsatisfiable cores of declarative
specifications. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 326–341.
Springer, Heidelberg (2008)

16. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean satisfia-
bility. ACM Trans. Program. Lang. Syst. 29(3) (2007)

17. Yessenov, K.: A light-weight specification language for bounded program verification.
Master’s thesis, MIT (2009)

Explicit Assumptions - A Prenup for Marrying

Static and Dynamic Program Verification

Johannes Kanig2, Rod Chapman1, Cyrille Comar2, Jerôme Guitton2,
Yannick Moy2, and Emyr Rees1

1 Altran UK, 22 St Lawrence Street, Bath BA1 1AN, United Kingdom
{rod.chapman,emyr.rees}@altran.com

2 AdaCore, 46 rue d’Amsterdam, F-75009 Paris, France
{comar,guitton,kanig,moy}@adacore.com

Abstract. Formal modular verification of software is based on assume-
guarantee reasoning, where each software module is shown to provide
some guarantees under certain assumptions and an overall argument
linking results for individual modules justifies the correctness of the
approach. However, formal verification is almost never applied to the
entire code, posing a potential soundness risk if some assumptions are
not verified. In this paper, we show how this problem was addressed in
an industrial project using the SPARK formal verification technology,
developed at Altran UK. Based on this and similar experiences, we pro-
pose a partial automation of this process, using the notion of explicit
assumptions. This partial automation may have the role of an enabler
for formal verification, allowing the application of the technology to iso-
lated modules of a code base while simultaneously controlling the risk
of invalid assumptions. We demonstrate a possible application of this
concept for the fine-grain integration of formal verification and testing
of Ada programs.

Keywords: Formal methods, Program Verification, Test and Proof,
Assumptions.

1 Introduction

Formal modular verification of software is based on assume-guarantee reasoning,
where each software module is shown to provide some guarantees under certain
assumptions, and an overall argument linking results for individual modules jus-
tifies the correctness of the approach. Typically, the assumptions for the analysis
of one module are part of the guarantees which are provided by the analysis of
other modules. The framework for assume-guarantee reasoning should be care-
fully designed to avoid possible unsoundness in this circular justification. For
software, a prevalent framework for assume-guarantee reasoning is Hoare logic,
where subprograms1 are taken as the software modules, and subprogram con-
tracts (precondition and postcondition) define the assumptions and guarantees.

1 In this paper, we use the term subprogram to designate procedures and functions,
and reserve the more common term of function to subprograms with a return value.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 142–157, 2014.
c© Springer International Publishing Switzerland 2014

Explicit Assumptions 143

Formal verification tools based on Hoare logic analyze a subprogram without
looking at the implementation of other subprograms, but only at their contract.

Although verification is done modularly, it is seldom the case that the results
of verification are also presented modularly. It is tempting to only show which
components have been verified (the guarantees), omitting the assumptions on
which these results depend. This is indeed what many tools do, including the
SPARK tools co-developed by Altran UK and AdaCore. In theory, the correct-
ness of the approach would depend, among other things, on formal verification
being applied to all parts of the software, which is never the case for industrial
projects. Even when considered desirable to maximize formal verification, there
are various reasons for not applying it to all components: too difficult, too costly,
outside the scope of the method or tool, etc. In practice, expertise in the formal
verification method and tool is required to manually justify that the implicit
assumptions made by the tool are valid.

The care with which this manual analysis must be carried out is an incentive
for system designers to minimize boundaries between formally verified mod-
ules and modules that are verified by other means. For example, this can be
achieved by formally verifying the entire code except some difficult-to-verify
driver code, or by formally verifying only a very critical core component of the
system. However, such a monolithic approach is hindering a wider adoption of
formal methods. Modules that are not formally verified are usually verified using
other methods, often by testing. If combining verification results of e.g., proof
and test was easy, projects could freely choose the verification method to ap-
ply to a given component, based on tool capabilities and verification objectives.
We propose to facilitate the effective combination of modular formal verifica-
tion and other methods for the verification of critical software by extending the
application of assume-guarantee reasoning to these other methods.

1.1 SPARK

SPARK is a subset of the Ada programming language targeted at safety- and
security-critical applications. SPARK builds on the strengths of Ada for creating
highly reliable and long-lived software. SPARK restrictions ensure that the be-
havior of a SPARK program is unambiguously defined, and simple enough that
formal verification tools can perform an automatic diagnosis of conformance be-
tween a program specification and its implementation. The SPARK language
and toolset for formal verification has been applied over many years to on-board
aircraft systems, control systems, cryptographic systems, and rail systems [3,11].

In the versions of SPARK up to SPARK 2005, specifications are written as spe-
cial annotations in comments. Since version SPARK 2014 [10], specifications are
written as special Ada constructs attached to declarations. In particular, vari-
ous contracts can be attached to subprograms: data flow contracts (introduced by
global), information flow contracts, and functional contracts (preconditions and
postconditions, introduced respectively bypre and post). An important difference
between SPARK2005 and SPARK2014 is that functional contracts are executable
in SPARK 2014, which greatly facilitates the combination between test and proof

144 J. Kanig et al.

(see Section 4). The definition of the language subset is motivated by the simplic-
ity and feasability of formal analysis and the need for an unambiguous semantics.
Tools are available that provide flow analysis and proof of SPARK programs.

Flow analysis checks correct access to data in the program: correct access to
global variables (as specified in data and information flow contracts) and correct
access to initialized data. Proof is used to demonstrate that the program is free
from run-time errors such as arithmetic overflow, buffer overflow and division-
by-zero, and that the functional contracts are correctly implemented.

The different analyses support each other - for example, proof assumes that
data flow analysis has been run without errors, which ensures that all variables
are initialized to a well-defined value before use, that no side-effects appear in
expressions and function calls, and that variables are not aliased. The latter
point is partly achieved by excluding access (pointer) types from the language,
and completed by a simple static analysis. For the purposes of this paper, we
consider the SPARK analysis as a whole in Section 4 and will discuss interaction
between the different analyses in Section 5.

1.2 Related Work

Neither the idea of explicit assumptions nor the idea of combining different types
of analyses on a project are new. However, the focus of this line of research has
been to show how different verification techniques can collaborate on the same
code and support each other’s assumptions. Examples are the explicit assump-
tions of Christakis et al. [5], the combination of analyses [7] in Frama-C [9],
the EVE tool for Eiffel [13] and the work of Ahrendt et al. [1]. In contrast, we
focus on the combination of verification results for different modules. Another
line of research is the Evidential Tool Bus (ETB [8]), which concentrates on
how to build a safe infrastructure for combining verification results from differ-
ent sources and tracking the different claims and supporting evidence. An ETB
could be used as the backbone for the framework that we describe in this paper.

1.3 Outline

In Section 2, we describe how the problem of heterogeneous verification was ad-
dressed in an industrial project using the SPARK formal verification technology,
developed at Altran UK, using an ad-hoc methodology. In Section 3, we propose
a framework for combining the results of different verification methods that can
be partly automated, and thus lends itself to a more liberal combination of ver-
ification methods. In Sections 4 and 5, we present our experiments to combine
at coarse-grain and fine-grain levels proof and test on Ada programs, using the
SPARK technology that we develop.

Explicit Assumptions 145

2 Assumptions Management in a Large Safety-Critical
Project

Project X2 is a large, mission-critical, distributed application developed by Al-
tran UK, and now in operational service. The software consists of several pro-
grams that execute concurrently on a network of servers and user workstations.
The latter machines include a user-interface that is based on the X11/Motif UI
framework.

Almost all of the software for Project X is written in SPARK 2005 and is
subject to extensive formal verification with the SPARK 2005 toolset. Two other
languages are used, though:

– Ada (not SPARK subset, but still subject to a project coding standard) is
used where SPARK units need to call operating-system or compiler-defined
run-time libraries.

– C code is used to form a layer between the SPARK code and the underlying
X11/Motif libraries, which is implemented in C.

One program, called the UI Engine, is a multi-task SPARK program that
uses the RavenSPARK subset of Ada’s tasking features [3]. This mitigates many
common problems with concurrent programming, such as deadlock and priority
inversion. The C code is only ever called from a single task of the main SPARK
program - a major simplification which prevents interference between the imple-
mentation languages, because the C code does not have global side effects. Also,
in this way the C code does not need to worry about reentrance. The UI engine
component is 87kloc (logical lines of code), comprising of 61kloc SPARK and
26kloc MISRA C.

2.1 The Requirements Satisfaction Argument

The fitness-for-purpose of Project X is justified at the top-level by a “Require-
ments Satisfaction Argument”. This is essentially structured as a tree of goals,
justifications, assumptions, and evidence, expressed in the Goal Structured No-
tation (GSN).

A large section of the GSN is devoted to non-interference arguments that
form the core of the safety argument for Project X. Part of that non-interference
argument includes detailed justifications for the integration of software written in
multiple languages, and the prevention of defects that could arise. The leaves of
the GSN typically refer to verification evidence (e.g., test specifications, results,
provenance of COTS components, static analysis results and so on) or standards
(such as the coding standards for SPARK and C used by the project).

2.2 From SPARK to C (and Back Again)

In Project X, SPARK code calls C code to implement various user-interface el-
ements. Beyond that point, the formal analyses offered by the SPARK toolset

2 This is not its actual name, which we cannot mention.

146 J. Kanig et al.

Table 1. SPARK to C assumptions and verification

Assumption How verified

Parameter types match AUTO
Variables initialized MISRA
Outputs in expected subtype REVIEW, TEST
No side effects MISRA
No aliasing MISRA, REVIEW
Data flow contract respected REVIEW
No thread/task interaction REVIEW
No dynamic allocation MISRA
Functional contract respected REVIEW, TEST
Absence of run-time errors TEST

are not available, so we cannot rely on these analyses to prove the assumptions
made to analyze the SPARK code. Instead, the project manages an explicit list of
assumptions that must be enforced across each such boundary. Essentially, the
SPARK code assumes that the called C function is “well-behaved” according
to a set of implicit project-wide rules (e.g., the function terminates, and pa-
rameters are passed using the expected types and mechanism) and the explicit
SPARK contract (e.g., precondition and postcondition) applied to the SPARK
specification of that function.

Each of these assumptions is verified on the C code through a combination of
one or more of:

– AUTO. Automated code generation. In particular, the Ada and C type dec-
larations that are used to communicate across the language boundary are
automatically generated from a single description.

– MISRA. Automated static analysis using the MISRA C:2004 rules [2].
– REVIEW. Checklist-driven manual code review. In particular, parameter

passing mechanisms and types are carefully reviewed to ensure they match
across such a language boundary.

– TEST. Specific unit test objectives.

The set of MISRA rules enforced and the review checklist items were chosen
to cover the assumptions needed to support the verification of the SPARK units.
The project maintains a detailed analysis of every MISRA rule and how its use
meets the assumptions required by the SPARK analysis. A small number of
MISRA rules are not used by the project, or deviations may be justified on a
case-by-case basis. Again, detailed records are maintained to make sure that
these deviations do not undermine the analysis of the SPARK code. Table 1
shows how each major assumption made by the SPARK code is verified in the
C code.

Explicit Assumptions 147

procedure Set_Off_Button
(Button_Enabled : Boolean ;
Background_Colour : Background_Colour_T);

--# global in out Shutdown .Error_Flag;
--# in out Shutdown .Do_Shutdown_SO;

(a) The SPARK specification of Set Off Button

void TB_Set_Off_Button_SC (
const bool Button_Enabled ,
const HMI_Types__Background_Colour_T Background_Colour,

HMI_Types__Status_T* Error);

(b) The C specification of TB Set Off Button SC

procedure Set_Off_Button
(Button_Enabled : Boolean ;
Background_Colour : Background_Colour_T)

i s
Button_Enabled_C : C_Base_Types.C_Bool;
Background_Colour_C : HMI_Types.C.Background_Colour_T;
Error : HMI_Types.C.Status_T ;

−− Here is the interface to C function TB Set Off Button SC
procedure TB_Set_Off_Button

(Button_Enabled_C : C_Base_Types.C_Bool ;
Background_Colour_C : HMI_Types.C.Background_Colour_T;
Error : out HMI_Types.C.Status_T);

pragma Import (C, TB_Set_Off_Button, "TB_Set_Off_Button_SC");
begin

Button_Enabled_C := C_Base_Types.To_C_Bool (Button_Enabled);
Background_Colour_C :=

HMI_Types.C.To_C.Background_Colour_T (Background_Colour);

−− Call to C here
TB_Set_Off_Button

(Button_Enabled_C => Button_Enabled_C ,
Background_Colour_C => Background_Colour_C,
Error => Error);

Common_Error.Log_And_Handle_If_Error
(Message => Error ,
Gate => HMI_DM_Fatal_Error_In_C_Code);

end Set_Off_Button;

(c) The SPARK body of Set Off Button

Fig. 1. Excerpt of mixed SPARK/C code in Project X

148 J. Kanig et al.

/∗ PRQA S:R14 1 S002 1503 1 ∗/
void TB_Set_Off_Button_SC (

const bool Button_Enabled ,
const HMI_Types__Background_Colour_T Background_Colour,

HMI_Types__Status_T* Error)
{

CF_Set_OK (Error);
CF_Set_Widget_Sensitivity(tb_OffButton , Button_Enabled);

switch (Background_Colour)
{

case HMI_Types__Active_Colour:
{

XtVaSetValues (tb_OffButton ,
XmNbackground , /∗ PRQA S:R11 5 S001 0311 ∗/
Alert_Colour ,
NULL);

break;
}
case HMI_Types__No_Colour:
{

XtVaSetValues (tb_OffButton ,
XmNbackground , /∗ PRQA S:R11 5 S001 0311 ∗/
Background_Colour,
NULL);

break;
}
default: /∗ PRQA S:R14 1 S001 2018 ∗/
{

CF_Set_Not_OK_Str_Int (Error ,
"Invalid Off Background Colour , Enum ",
(int) Background_Colour);

/∗ Note that analysis deemed that a fa i lure to decode an ∗/
/∗ enumeration is l i k e l y to have been caused by a memory ∗/
/∗ corruption , and to continue processing would be unsafe . ∗/
/∗ Assign the category as force shutdown . ∗/
CF_Set_Category (Error ,

HMI_Common_Types__Force_Shutdown,
CF_On_Error_Abort);

} break;
}

}

(d) The C implementation of TB Set Off Button SC

Fig. 1. (Continued.)

Explicit Assumptions 149

2.3 Example

This section shows an example of how SPARK code interfaces to a UI function
that is written in C. The SPARK specification is given Listing 1a. Note the data
flow contract introduced by global. This specifies the frame condition of the
procedure - stating exactly the set of objects that may be referenced and/or
updated by the procecure and (implicitly) defining that no other objects are
used. In this case, we see that the procedure may read and update two objects
in package Shutdown, both of which record the need to terminate the system in
response to a fatal error.

The SPARK implementation is given in Listing 1c. Ada’s pragma Import here
specifies Convention “C” for the nested procedure - this instructs the compiler
to pass parameters as would be expected in C, according to a set of rules given
in the Ada Reference Manual.

The corresponding C header is provided in Listing 1b. Note the careful use
of naming conventions here to ease the task of both generating and reviewing
the Ada/C interface. Finally, the C implementation is given in Listing 1d. Note
that the coding is overtly defensive, dealing with the possibility of a memory
corruption leading to the default branch of the switch statement being executed.
The “PRQA” comments are instructions to the MISRA analysis tool to suppress
particular warnings. All of these comments are collated and verified as part of
the satisfaction argument.

Consider one particular verification objective for this code: the output
parameter Error on the SPARK declaration of the imported procedure
TB Set Off Button. In SPARK, output parameters must be defined by the
called procedure in all cases. This ensures that Error is properly initialized
when calling Log And Handle Error inside the body of Set Off Button. If
the body of TB Set Off Button were written in SPARK, then the flow analy-
sis engine would verify this obligation, but since the body is in C, additional steps
are needed. In this case, an explicit review checklist item requires C function pa-
rameters that correspond to SPARK output parameters to be unconditionally
initialized - hence the call to CF Set OK that initializes Error at the top of the
function body, for cases which do not result in an error.

2.4 Summary

This approach has proven reliable in practice, owing to judicious architectural
design, a strong desire to minimize the volume of C code (although 26kloc does
still feel a little too large for comfort in an 87kloc application), and strict ad-
herence to design and coding disciplines through automated analysis, review
checklists and focussed testing.

The main drawback is the time, expense and paperwork required to maintain
the satisfaction argument and its supporting evidence across a long-lived project,
which has absorbed several major UI re-designs in its lifetime.

150 J. Kanig et al.

3 Tool Assisted Assumptions Management

Reading the previous section, the reader may ask the questions of how we came
up with the left column of Table 1 and how all subprograms at the interface
have been identified. This is in fact the result of expert knowledge of the SPARK
technology as well as specificities of the project. We want to present here a more
systematic way to achieve the same goal.

The work done on Project X to develop Table 1 and to apply it at the bound-
ary between formal verification and other methods can be broken down into
three steps:

– listing all assumptions of formal verification,
– verifying the non-formally-verified modules using some other method, so that

the previous assumptions are verified, and
– checking that all assumptions have been taken care of.

It is clear that for the first and the last step, tool support is possible and
welcome, and this is the topic of this paper. We propose to enhance formal ver-
ification tools to not only output verification results, but also the assumptions
these results rely on - a more detailed version of the left column of Table 1. As
non-formal methods may rely on assumptions as well, we may also require that
these other methods explicitly list all their assumptions and guarantees when
applied to a module. These should be precise enough to avoid holes in the justifi-
cation, or subtly different interpretations of the properties in different methods.
As an extreme example, “module M is correct” is not at the appropriate level
of precision. For formal methods, this requires an explicit enumeration of the
usually implicit assumptions made for the verification of a component, like non-
aliasing of subprogram parameters, non-interference of subprogram, validity of
the data accessed, etc. For informal methods, this requires defining methodolog-
ical assumptions and guarantees that the method relies upon.

Formally, each verification activity is a process whose output is a list of Horn
clauses, that is, implications of the form

A1 ∧A2 ∧ · · · ∧ An → C

where C is a claim3, and the Ai are assumptions. The exact form of claims and
assumptions differs for each method and tool. The next sections will provide
examples based on SPARK.

Compared to the manual process in the previous section, the advantage is
that the “checklist” of verification activities at the boundary between verification
methods is simply provided by each tool, and does not require that users possess
this level of expertise about the tool. The assumptions still need to be verified
of course - that is the right column of Table 1.

3 We prefer to use the word “claim” here over “guarantee”, as it more clearly conveys
the idea that until the corresponding assumptions are verified, no guarantee can be
given.

Explicit Assumptions 151

If explicit assumptions are gathered for all verification activities on the
project, we can simply consider together all Horn clauses, and simple queries
such as

– Is claim C completely verified?
– On which unverified assumptions is claim C based on?
– Which verification activities are left to do to verify claim C?
– If assumption A turns out to be invalid, which claims does this impact?

can be answered simply by analyzing these Horn clauses.
Other forms of explicit assumptions are possible. Christakis et al. [5] and Cor-

renson and Signoles [7] describe assumptions and claims as formulas at program
points, which is more precise than our approach. The drawback is the complexity
to generate and exploit these assumptions, as their formulation implies the use of
a weakest precondition calculus in the former work, or trace semantics in the latter
work, in order to interpret the meaning of a formula at a programpoint. Also, sim-
ply formulating these formulas already requires choosing amemorymodel. Instead,
we prefer to see claims and assumptions as well-defined, parameterized properties
uniquely identified by a tag. For example, where Christakis et al. use the formula
c �= d to express non-aliasing of two parameters at subprogram entry, we prefer
to write it as the property Nonaliased (c, d) where the names c and d are given in
a format which allows their unique identification, and Nonaliased is a tag which
is unambiguously defined to mean that two variables do not share any memory.
Similarly, to denote an assumption on the precondition of some subprogram p, we
would write Pre(p) instead of the formula which constitutes the precondition.

This choice, together with the choice of Horn clauses as data format, makes
it much simpler to feed assumptions to existing tools such as the ETB [8] and
opens the door to tool assisted assumptions management.

4 Coarse-Grain Assumptions Management

We have described in some previous work [6] a coarse-grain application of the
framework described in the previous section, to combine the results of test and
proof on Ada programs (proof being restricted to SPARK subprograms) in the
context of certification of avionics software following the do-178c [12] certifica-
tion standard. In this context, tests with MC/DC coverage [4] or proofs are two
acceptable methods to verify a module, where modules here are subprograms.
We can reexpress the goal of verifying a subprogram P using Horn clauses as
described in the previous section:

Tests Passed (P) ∧MCDC Covered(P) → Verified(P)

Contract Proved(P) ∧ No Runtime Errors(P) → Verified(P)

Note that assumptions made during proof are still implicit in the Horn clauses
above. Assumptions related to functional contracts, like the guarantee that called
subprograms respect their postcondition, or that the subprogram proved is only

152 J. Kanig et al.

called in a context where its precondition holds, are discharged either by the
proof of the callees/callers, or by executing the corresponding contracts dur-
ing the test of the callees/callers. Thus, it is essential for the combination that
functional contracts are executable. Other assumptions related to non-aliasing
of parameters, or validity of variables, are discharged by having the compiler in-
strument the tested programs to check the assumptions. Finally, the assumptions
that cannot be tested are guaranteed by the combination of a coding standard
and a static analysis on the whole program. The coding standard forbids in par-
ticular calls through subprogram pointers, so that the call-graph is statically
known. The static analysis forbids aliasing between parameters of a call and
global variables that appear in the data flow contract for the called subprogram.

We built a prototype tool in Python implementing this approach, allowing
users to specify the generic Horn clauses above in some special syntax. This
monolithic specially crafted approach for SPARK was not completely satisfying,
as it was not easily extensible or customizable by users. This is why we switched
to a finer-grain approach where assumptions are explicit.

5 Fine-Grain Assumptions Management

We consider now the combination of verification results for individual subpro-
grams whose declaration is in SPARK. As described in Section 1.1, various con-
tracts can be attached to such subprograms: data flow contracts, information
flow contracts, and functional contracts (preconditions and postconditions).

5.1 Claims and Assumptions

We provide a detailed definition of claims and assumptions for SPARK. We
assume subprograms are uniquely identified, for example by using their name and
the source location of the declaration. We also assume that calls to subprograms
are uniquely identified, again using e.g., the source location of the call. We use
capital letters such as P for subprograms, and write P@ to indicate a specific
call to a subprogram.

It should be noted that some fundamental assumptions, e.g., correctness of
the verification tool, compiler and hardware, are out of scope of this framework
and are not taken into account here.

SPARK formal verification tools may be used to ensure that the following
claims are satisfied by a subprogram P or a call to P :

– Effects(P) - the subprogram P only reads input variables and writes output
variables according to its data flow contract.

– Init(P) - the subprogram P is only called when all its input parameters, and
all the input variables in its data flow contract, are initialized.

– Init(P@) - in this specific calling context of P , all its input parameters, and
all the input variables in its data flow contract, are initialized.

– Nonaliasing(P) - the subprogram P is not called with parameters which
would create aliasing.

Explicit Assumptions 153

– Nonaliasing(P@) - in this specific calling context of P , the values of param-
eters do not create aliasing.

– AoRTE (P) - the subprogram P is free of run-time errors.
– Contract(P) - the subprogram P respects its contract, that is, the precon-

dition is sufficient to guarantee the postcondition.
– Pre(P) - the subprogram P is only called in a context that respects its

precondition.
– Pre(P@) - in this specific calling context of P , its precondition is respected.
– Term(P) - the subprogram P terminates.

The output of the SPARK tools can then be described as follows. Given a
subprogram P which contains the calls Ri@, if flow analysis is applied without
errors, then the following set of Horn clauses holds:

Effects(Ri) ∧ Init(P) ∧Nonaliasing(P) −→Effects(P) ∧
Init(Ri@) ∧
Nonaliasing (Ri@) (1)

and if proof is applied without unproved properties being reported, then the
following set of Horn clauses holds:

Effects(Ri) ∧ Init(P) ∧ Nonaliasing (P) ∧
AoRTE (Ri) ∧ Contract(Ri) ∧ Pre(P) −→AoRTE (P) ∧

Pre(Ri@) (2)

Effects(Ri) ∧ Init(P) ∧ Nonaliasing (P) ∧
Contract(Ri) −→Contract(P) (3)

For the sake of succinctness, we have taken the liberty to merge Horn clauses
with different conclusions, but identical premises - this is only a shortcut for
the equivalent expansion using only Horn clauses. The result of successful flow
analysis of subprogram P , as expressed in Formula 1, is that, assuming P ’s callees
respect their data flow contract, and assuming P is always called on initialized
inputs and non-aliased inputs/outputs, then P respects its data flow contract,
and calls inside P are done in a context which does not introduce uninitialized
inputs or aliasing for the callee. For proof, there are in fact two different sets of
results and assumptions. The first one, expressed in Formula 2, is that, assuming
P ’s callees respect their data flow contract and their pre/post contract, and they
do not raise run-time errors, and assuming P is always called on initialized inputs
and non-aliased inputs/outputs, in a context where its precondition holds, then P
does not raise run-time errors, and calls inside P are done in a context where their
precondition holds. The second one, expressed in Formula 3, is that assuming P ’s
callees respect their data flow contract and their pre/post contract, and assuming
P is always called on initialized inputs and non-aliased inputs/outputs, then P
also respects its pre/post contract.

Note that the precondition of P is not an assumption of Formula 3, because the
tag Contract already includes the precondition. In this manner, as can be easily

154 J. Kanig et al.

seen, Formula 3propagates assumptions about contracts down the call graph,while
Formula 2 propagates the assumptions on preconditions up the call graph.

Note that Pre, Init and Nonaliasing applied to a subprogram are a bit special:
they only appear as assumptions and not as claims. They are in fact assumptions
on the calling context, and the only way to discharge them is to verify that they
hold for all calling contexts. As a consequence, a non-modular analysis is needed
here to identify all calls to a subprogram, so we add Horn clauses of the form:

tag(P@) −→ tag(P) (4)

where tag is any of Pre, Init and Nonaliasing and P@ are all calls to a given
subprogram P . An important special case is that, for main subprograms (which
are not called by any other subprogram), we obtain the immediate guarantees
of the form:

tag(P) (5)

By combining Formulas 1, 4, and 5, it can be checked easily that, if for-
mal verification is applied to the entire program4, then Effects(P), Init(P) and
Nonaliasing(P) hold for every subprogram P . Similarly, by combining Formu-
las 2 to 5 together with the guarantees just obtained, it can be checked easily
that, if formal verification is applied to the entire program, then AoRTE (P),
Pre(P) and Contract(P) hold for every subprogram P . As we did not check
termination here, this corresponds exactly to partial correctness of the program.

But, aswe argued earlier, it is almost never the case that formal verification is ap-
plied to a complete program. In that very common case, it is not immediately clear
what guarantees the application of formal verification gives. In particular, a user is
probably interested in knowing that no run-time errors can be raised, which corre-
sponds in our formalization toAoRTE (P) and Pre(P@) and that the subprogram
contracts are respected, which corresponds in our formalization to Effects(P) and
Contract(P). With our formulation of formal verification results as Horn clauses,
we can precisely compute on which unverified assumptions these claims depend.

Termination. We have not discussed termination (represented by the tag Term)
yet. In fact, termination is not an assumption of Formulas 2 and 3, because
the properties claimed there are formulated in terms of partial correctness. For
example, the most precise formalization of Contract is: if the precondition holds,
and if the control flow of the program reaches the end of the subprogram, then
the postcondition holds. Assuming absence of recursion, the SPARK tools can
in fact establish termination by adding the following set of Horn clauses for each
subprogram:

Term(Ri) ∧Term(Lk) −→ Term(P)

where the Ri are the subprograms called and the Lk are the loops occurring in
the subprogram P . Termination of loops can be established in SPARK by two
means: for-loops terminate by construction in Ada, and more general loops can
be annotated with a variant, wich allows to prove termination of the loop.

4 We are assuming absence of recursion in the program. Recursion requires a more
advanced treatment.

Explicit Assumptions 155

Table 2. Assumptions and possible verification strategies

assumption verification strategy

assumption on call

Init(P@) coding standard, run-time initialization checking
Nonaliasing(P@) static analysis, run-time non-aliasing checking, review
Pre(P@) unit testing with assertions enabled

assumption on subprogram

Effects(P) static analysis, review, coding standard
AoRTE (P) unit testing with run-time checks enabled
Contract (P) unit testing with assertions enabled
Term(P) unit testing, review

5.2 Discharging Assumptions

As visible from Formulas 1 to 3, the SPARK tools provide claims for the formal
verification of one subprogram that discharge assumptions for the formal verifi-
cation of another subprogram. It remains to see how to discharge assumptions
at the boundary between formally verified and non-formally verified code.

Table 2 summarizes the assumptions of SPARK and presents possible verifi-
cation strategies when the SPARK tools cannot be applied to the code on which
the assumption is issued. The possibility in Ada to perform exhaustive run-time
checking allows applying unit testing for verifying the absence of run-time er-
rors. The possibility to also execute functional contracts is only available with
SPARK 2014, not SPARK 2005, and it allows applying unit testing for verifying
functional contracts.

Assumptions on the calling context are a bit more difficult to verify. Table 2
does not contain entries for assumptions on the calling context, so the first step
is to find out all callers. Once all call points are identified, one needs to verify
that each call verifies the assumptions that have been made for the verification
of the called subprogram. This poses another interesting challenge: How to verify
by testing that, e.g., the precondition of a call deep inside the tested subpro-
gram holds? How can one be sure that enough testing was applied? We are not
answering these questions in this paper, but raising the issue.

Finally, SPARK lets the user insert assumptions inside the program for both
flow analysis and proof. A typical example is a counter whose incrementation
could overflow in theory, but never does in practice because it would require that
the system runs for longer that its longest foreseen running time. In that case,
the user can insert a suitable code assumption before the counter is incremented:

pragma Assume (Cnt < Integer ’Last , "system is rebooted every day");
Cnt := Cnt + 1;

Such assumptions can also be part of the output of the tools, so that a review
of all remaining assumptions can assess their validity.

156 J. Kanig et al.

5.3 A Concrete Example

In this section, we exercise the assumptions mechanism on the example pro-
vided in Section 2. Let us assume that we apply the SPARK tools only to
Set Off Button, and in the remainder of this section we assume that flow anal-
ysis and proof have been applied successfully. We therefore obtain the following
verification results:

Effects(Ri) ∧ Init(P) −→ Effects(P) ∧ Init(Ri@)

Effects(Ri) ∧ Init(P) ∧ AoRTE (Ri) −→ AoRTE (P)

where P is Set Off Button and the Ri are the subprograms called by
Set Off Button: To C Bool, Background Color T, TB Set Off Button, and
Log And Handle If Error.

Note that the above statement is somewhat shorter than the general one be-
cause the tags Pre and Contract do not apply (no preconditions or postconditions
appear in the example), just as the tag Nonaliasing . In fact, it is impossible for
aliasing to occur in the example, partly due to the types of parameters that can-
not alias in some calls, and partly because scalar input parameters are passed
by copy in Ada, and thus cannot alias with anything. The other claims that
SPARK could provide do not apply, because Set Off Button doesn’t have a
postcondition, and the called subprograms do not have preconditions.

There are three assumptions in the above Horn clauses, for which we can find
both which verification was actually performed in Project X, in Table 1, and to
which general verification strategy this corresponds, in Table 2, as summarized
in Table 3:

Table 3. Discharging assumptions by other methods in a concrete example

Assumption How verified in Project X Verification strategy applied

Effects(Ri) MISRA coding standard
Init(P) MISRA coding standard
AoRTE (Ri) TEST unit testing

In fact, most assumptions from Table 1 also appear in Table 2. Those that do
not appear are project-specific. For example, the use of SPARK tools does not
prevent the use of dynamic allocation in other parts of the program, in general.
It happens to be a requirement of the project described in this paper.

6 Conclusion

We have presented the current state of the art in industrial software when apply-
ing formal verification on part of the code only. We reused the notion of explicit
assumptions, which has already been present in other works, but used differently
and for different purposes, to show how to render formal verification truly mod-
ular by proper tool support. We have experimented with a coarse-grain variant
of explicit assumptions to realize the combination of proof and test, and have
presented a more fine-grain model.

Explicit Assumptions 157

Future Work. Our immediate plan is to implement explicit assumptions in the
SPARK technology, using the evidential tool bus as the back-end for assumptions
management. More work is required to make the application of the framework
truly usable. For example, all the presented tags simply have a subprogram name
or call as argument. To increase precision, it would be better to also include tags
with variable arguments, e.g., a tag such as Nonaliasing(x , y). Such support
is not very different from what we describe here, but much more complex to
write down, and the non-modular analysis to match call guarantees with calling
context assumptions requires more work.

Our ultimate goal is to provide support for assumptions management and
a smooth combination of test and proof in a future version of the commercial
SPARK tools.

References

1. Ahrendt, W., Pace, G.J., Schneider, G.: A unified approach for static and runtime
verification: framework and applications. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part I. LNCS, vol. 7609, pp. 312–326. Springer, Heidelberg (2012)

2. M. I. S. R. Association. MISRA C:2004 - Guidelines for the use of the C language
in critical systems (2004)

3. Barnes, J.: SPARK: The Proven Approach to High Integrity Software. Altran
Praxis (2012)

4. Chilenski, J.J.: An Investigation of Three Forms of theModified Condition/Decision
Coverage (MCDC) Criterion. Technical Report DOT/FAA/AR-01/18 (April 2001)

5. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 132–146. Springer, Heidelberg (2012)

6. Comar, C., Kanig, J., Moy, Y.: Integrating formal program verification with testing.
In: Proc. ERTS (2012)

7. Correnson, L., Signoles, J.: Combining Analyses for C Program Verification. In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012)

8. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 275–294. Springer, Heidelberg (2013)

9. Cuoq, P., Signoles, J., Baudin, P., Bonichon, R., Canet, G., Correnson, L., Monate,
B., Prevosto, V., Puccetti, A.: Experience report: OCaml for an industrial-strength
static analysis framework. SIGPLAN Not. 44(9), 281–286 (2009)

10. Dross, C., Efstathopoulos, P., Lesens, D., Mentré, D., Moy, Y.: Rail, space, security:
Three case studies for spark 2014. In: Proc. ERTS (2014)

11. O’Neill, I.: SPARK – a language and tool-set for high-integrity software develop-
ment. In: Boulanger, J.-L. (ed.) Industrial Use of Formal Methods: Formal Verifi-
cation. Wiley (2012)

12. RTCA. DO-178C: Software considerations in airborne systems and equipment cer-
tification (2011)

13. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Usable verification of object-
oriented programs by combining static and dynamic techniques. In: Barthe, G.,
Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 382–398.
Springer, Heidelberg (2011)

A Case Study on Verification of a Cloud Hypervisor
by Proof and Structural Testing�

Nikolai Kosmatov1, Matthieu Lemerre1, and Céline Alec2

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette, France
{firstname.lastname}@cea.fr

2 LRI, CNRS UMR 8623, Université Paris-Sud, France
lastname@lri.fr

Abstract. Complete formal verification of software remains extremely expen-
sive and often reserved in practice for the most critical products. Test genera-
tion techniques are much less costly and can be used in combination with the-
orem proving tools to provide high confidence in the software correctness at an
acceptable cost when an automatic prover does not succeed alone. This short
paper presents a case study on verification of a cloud hypervisor with the Frama-
C toolset, in which deductive verification has been advantageously combined
with structural all-path testing. We describe our combined verification approach,
present the adopted methodology and emphasize its benefits and limitations.

Keywords: deductive verification, test generation, specification, Frama-C.

1 Introduction

Deductive verification can provide a rigorous mathematical proof that a given anno-
tated program respects its specification, but remains relatively expensive, whereas test-
ing can find counter-examples or increase confidence in the program correctness at a
much lower cost. This short paper describes how both techniques have been combined
during the verification of a critical module of a cloud hypervisor using the FRAMA-C
toolset [1]. This case study has focused on combining automatic theorem proving and
automatic structural testing in order to provide a high confidence in the system within
limited time and costs. In particular, we address the question of how to share the roles
between formal proof and testing in order to take the best of each technique and to in-
crease the final level of confidence. The contributions of this paper include the presen-
tation of the combined verification approach, the proposed methodology, its evaluation
and results.

2 The Anaxagoros Hypervisor and Its Virtual Memory Module

Since the usage of cloud becomes pervasive in our lives, it is necessary to ensure the
reliability, safety and security of cloud environments [2]. Anaxagoros [3,4] is a secure

� This research work has received funding from the FUI-AAP14 SYSTEM@TIC Paris-Région
project “PISCO” partially funded by bpifrance.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 158–164, 2014.
c© Springer International Publishing Switzerland 2014

A Case Study on Verification of a Cloud Hypervisor by Proof and Structural Testing 159

microkernel and hypervisor developed at CEA LIST, that can virtualize preexisting op-
erating systems, for example, Linux virtual machines. It enables execution of hard real-
time tasks or operating systems, for instance the PharOS real-time system [5], securely
along with non real-time tasks, on a single chip. This goal has required to put a strong
emphasis on security in the design of the system.

A critical component to ensure security in Anaxagoros is its virtual memory system
[4]. The x86 processor (as many other high-end hardware architectures) provides a
mechanism for virtual memory translation, that translates an address manipulated by
a program into a real physical address. One of the goals of this mechanism is to help
to organize the program address space, for instance, to allow a program to access big
contiguous memory regions. The other goal is to control the memory that a program can
access. The physical memory is split into same-sized regions, called frames or physical
pages, that we will simply call pages in this paper. Pages can be of several types: data,
pagetable, pagedirectory. Basically, page directories contain mappings (i.e.
references) to page tables, that in turn contain mappings to data pages. The page size is
4kB on standard x86 configurations.

Anaxagoros does not decide what is written to pages; rather, it allows tasks to per-
form any operations on pages, provided that this does not affect the security of the
kernel itself, and of the other tasks in the system. To do that, it has to ensure only two
simple properties. The first one ensures that a program can only access a page that it
“owns”. The second property states that pages are used according to their types.

Indeed, the hardware does not prevent a page table or a page directory from being
also used as a data page. Thus, if no protection mechanism is present, a task can change
the mappings and, after realizing a certain sequence of modifications, it can finally
access (and write to) any page, including those that it does not own.

The virtual memory module should prevent such unauthorized modifications. It re-
lies on recording the type of each page and maintaining counters of mappings to each
page (i.e. the number of times the page is referred as a data page, page table, or page di-
rectory). The module ensures that pages can be used only according to their role. In ad-
dition, to allow dynamic reuse of memory, the module should make it possible to change
the type of a page. To avoid possible attacks, changing the page type requires that we
ensure even more complex additional properties. (Simplified) examples of properties
include: page contents should be cleaned before any type change; still referred pages
cannot be cleaned; the cleaning should be correctly resumed after an interruption; the
counters of mappings (references) should be correctly maintained; cleaned pages are
never referred to; etc.

3 The Verification Approach and Methodology

3.1 Context and Objectives

The verification target of this case study was a simplified sequential version of the
Anaxagoros virtual memory system containing a significant subset of its features (pages
of all three types, read-only and writable mappings, page cleaning with possible inter-
ruptions, page type changes, counters of mappings, etc.). Our objective was to study
how such different verification techniques as automatic theorem proving and structural

160 N. Kosmatov, M. Lemerre, and C. Alec

A: annotate
Pre/Post

P : auto-
matic proof

D: add asserts,
invariants. . .

I: split & isolate
unproven parts

C: test unproven
functions

Fig. 1. Methodology of combined verification

testing could be combined together in order to provide the best trade-off between cor-
rectness guarantees obtained by rigorous formal proof and low cost of automatic struc-
tural testing.

We used verification tools offered by the FRAMA-C framework for verification of C
programs [1], in particular, the JESSIE plugin [6] for Hoare logic based deductive verifi-
cation with the automatic provers Alt-Ergo and Simplify, and the concolic test generator
PATHCRAWLER [7,8]. FRAMA-C also offers an expressive specification language for C
programs called ACSL [1]. Therefore we needed to annotate the C code in ACSL, apply
whenever possible automatic theorem proving using JESSIE and complete verification
using PATHCRAWLER. The ACSL specification was derived from informal specification
of the code and an earlier formalization and (paper-and-pencil) proof of properties for
the Anaxagoros virtual memory system detailed in [9].

3.2 The Methodology

Very soon after the beginning of the project, when the first proof failures occurred (along
with the difficulties of their analysis) and the first naive attempts to complete verification
with testing appeared to be inconclusive, it became clear that we needed to elaborate a
structured methodology that would allow to advantageously combine proof and testing.
The adopted methodology is outlined in Fig. 1.

Step (A) consists of writing initial Annotations including e.g. function contracts with
pre-/postconditions and auxiliary predicates with global invariants necessary to express
function contracts. Step (P) applies automatic Proof. When proof failures occur, the
specification Detailing step (D) consists in analysis of failures and adding further an-
notations (assertions, loop invariants, revised function contracts). Several iterations be-
tween Steps (P) and (D) can be necessary to help an automatic prover to prove as many
properties as possible, and to identify the origin of each remaining proof failure, for
instance, by surrounding relevant statements by appropriate assertions. The first steps
(A), (P), (D) are commonly used in deductive verification practice.

When the origin of each proof failure is identified (in terms of particular statements
that cannot be traversed by the proof, and particular parts of the global property whose
proof fails), we apply the Isolation step (I). It consists of splitting an unproven function
into simpler ones in order to isolate an unproven part in a smaller annotated function.

A Case Study on Verification of a Cloud Hypervisor by Proof and Structural Testing 161

So, if a function f is not proven and a (block of) statement(s) s is identified as the origin
of a proof failure, we isolate s in a separate annotated function g, and a call to g will
now replace s in f . Since modular deductive verification of f relies on the contract of
g, it allows us to prove f (under hypothesis that g is correct). The original function f is
now proven, and we isolated proof failures in simpler functions.

Finally, each remaining unproven function g is verified using Step (C) that applies
all-path testing w.r.t. a specification, sometimes also called Cross-checking. Assume
the specification of a function g is translated into a C function u. In cross-checking, the
user runs all-path testing on a new function h that calls the function under test g and its
specification u, in order to check whether it is possible to cover a path which conjoins
a path in g and a path in u which fails to satisfy the specification (see [10, “Bypassing
the limits. . . ” section] for more detail). When cross-checking is used with an all-path
testing tool ensuring completeness like PATHCRAWLER [8, Sec. 3.1] and when the tool
manages to explore all paths (hence, the resulting function h has a finite number of
paths), the absence of a counter-example provides a guarantee of correctness.

In general, the number of paths in h can be however too big to be explored. In this
case, testing cannot provide any guarantee of correctness. Hence, we propose to limit
the program input domain so that the number of paths becomes finite but remains rep-
resentative of the behavior of the function under test (cf discussion below). Absence of
counter-examples for the remaining unproven functions established by automatic cross-
checking on a reduced input domain provides the verification engineer with additional
confidence in correctness of these unproven parts when an automatic prover fails to
complete the proof.

3.3 Benefits and Limitations of the Approach

We applied and evaluated the proposed methodology on the present case study. The
results are very encouraging. First of all, relying only on automatic verification tech-
niques, our approach could be acceptable for most software developers and validation
engineers. Indeed, the present case study was performed within 2 months, and was
mainly conducted by a junior software engineer who did not have any experience in
software verification before this project. The complete annotated C code contains 2400
lines with 37 functions and the total number of 3915 proof obligations was generated
by JESSIE.

Second, Steps (D) and (I) helped to prove as much as possible (98.8% of generated
proof obligations were proven by JESSIE), and to identify and isolate actions and prop-
erties for which automatic proof failed. Starting from a situation where automatic proof
failed for most functions without any clear reason, we were finally able to precisely
identify and isolate the real proof issues. Unproven code has been reduced to one-line
functions (e.g. changing one element of a page) that impact the counters of mappings.

Maintaining the counters of mappings appeared to be the most difficult issue for
automatic proof in this case study so we present it here in more detail. Fig. 2 shows
a (simplified) definition of two inductive predicates used to count mappings, where
pData[p*PageSize + i] represents the element of index i in page of index p. The pred-
icate CountOne states that N is the number of occurrences of target page targ at index
range 0..last of the page of index p. The predicate CountAll states that N is the number

162 N. Kosmatov, M. Lemerre, and C. Alec

of occurrences of target page targ in the pages of index range 0..lastP. A frequent ori-
gin of proof failures in this case study is related to the (simplified) global invariant Inv
that says that Mappings[targ] is indeed the number of occurrences of targ in all pages.

Finally, thanks to Steps (D) and (I), the isolated unproven functions were quite ap-
propriate for cross-checking. For instance, consider a simple function writing a new
element into a page: pData[p*PageSize + i]=new. If true in the precondition, the invari-
ant Inv would remain true in the postcondition for all elements except for the new and
the old element (if they are different) for which the real number of occurrences becomes
greater (resp., less) by 1 than the unmodified counter of mappings. Such elementary un-
proven functions do not contain any loops, and the C version of its specification contains
only fixed-size loops over all page entries to compute the real number of occurrences
(specified by CountAll in Fig. 2). Therefore, a simple way to limit path explosion for
such functions would be to limit the page size and number of pages to smaller con-
stants, say, 5. This limit does not modify the function logic, and is very unlikely to
eliminate a counter-example in this case (even if it cannot be excluded). It shows that
cross-checking of Step (C) can be run on reduced, but representative input domain, and
provide a higher confidence in program correctness at a relatively low cost.

One limitation of the methodology is the need to restructure the code and to move
some parts of a function into a separate function at Step (I) that might be not desir-
able at the verification step. Notice however, that it could often be acceptable because
high-level function interfaces (such as microkernel hypercalls) are not modified, since
the code restructuring is performed on the sub-function level. Moreover, the proposed
methodology can be hopefully adopted by the developers that might find it useful to
structure their code in a way that facilitates verification.

The second limitation is related to the need of reducing the input domain for cross-
checking at Step (C). When there is no way to reduce the program input domain to a
representative smaller subset, it can still be interesting to obtain some confidence after
a partial cross-checking.

4 Related Work and Conclusion

Klein et al. [11] presented formal verification for seL4, a microkernel allowing de-
vices running seL4 to achieve the EAL7 level of the Common Criteria. Another formal
verification of a microkernel was described in [12]. In both projects, the verification
used interactive, machine-assisted and machine-checked proof with the theorem prover
Isabelle/HOL. The formal verification of a simple hypervisor [13] used VCC, an auto-
matic first-order logic based verifier for C. The underlying architecture was precisely
modeled and represented in VCC, where the mixed-language system software was then
proved correct. Unlike [11] and [12], this technique was based on automated methods.

[14] reports on verification of the translation lookaside buffer (TLB) virtualization,
a core component of modern hypervisors. As devices run in parallel with software,
they require concurrent program reasoning even for single-threaded software. This work
gives a general methodology for verifying virtual device implementations, and demon-
strate the verification of TLB virtualization code in VCC.

Formal verification nowadays remains very expensive. [15] estimates that the ver-
ification of the seL4 microkernel took around 25 person-years, and required highly

A Case Study on Verification of a Cloud Hypervisor by Proof and Structural Testing 163

1 #define NumPages 10000 // number of memory pages
2 #define PageSize 1024 // page size (in words)
3 unsigned int pData[NumPages * PageSize]; // page entries
4 unsigned int Mappings[NumPages]; // counters of references (mappings) to pages
5 /*@
6 inductive countOne{L}(integer p, integer last, integer targ, integer N){
7 case oneEq: \forall integer p, targ;
8 0<=p<NumPages && pData[p*PageSize] == targ ==> countOne(p, 0, targ, 1);
9 case oneNotEq: \forall integer p, targ;

10 0<=p<NumPages && pData[p*PageSize] != targ ==> countOne(p, 0, targ, 0);
11 case severalLastNotEq: \forall integer p, last, targ, N;
12 (0<=p<NumPages && 0<last<PageSize && pData[p*PageSize + last] != targ &&
13 countOne(p, last-1, targ, N) ==> countOne(p, last, targ, N));
14 case severalLastEq: \forall integer p, last, targ, N;
15 (0<=p<NumPages && 0<last<PageSize && pData[p*PageSize + last] == targ &&
16 countOne(p, last-1, targ, N) ==> countOne(p, last, targ, N+1));
17 }
18 inductive countAll{L}(integer lastP, integer targ, integer N){
19 case onePage: \forall integer targ, N;
20 (countOne(0, PageSize-1, targ, N)) ==> countAll(0, targ, N);
21 case severalPages: \forall integer lastP, targ, N1, N2;
22 (0 < lastP < NumPages && countAll(lastP-1, targ, N1) &&
23 countOne(lastP, PageSize-1, targ, N2) ==> countAll(lastP, targ, N1+N2));
24 }
25 */
26 /*@
27 predicate Inv{L} = \forall integer targ; 0<=targ<NumPages ==>
28 countAll(NumPages-1, targ, Mappings[targ]);
29 */

Fig. 2. Simplified ACSL predicates for counting mappings (occurrences) in memory pages

qualified experts. seL4 contains only about 10,000 lines of C code, and verification cost
is about $700 per line of code.

Our present work continues these efforts, but in addition fixes a quite different objec-
tive: to perform a real-life case study using a combination of automatic theorem proving
and automatic all-path testing, and to explore how to find a reasonable trade-off between
rigorous proof and cross-checking of the program on a reduced program domain. We
described our methodology and evaluated it during this project. In particular, our results
suggest that all-path testing of the code w.r.t. a specification on a reduced program do-
main can be a precious complement to deductive verification allowing any verification
engineer (without being a highly qualified expert) to achieve a higher level of confi-
dence within a very limited time and cost and without using more expensive interactive
proof.

An ongoing work is aimed at a complete formal verification of the virtual memory
module of Anaxagoros by combining automatic and interactive proof tools. The first
observations confirm the conclusions of this case study: properties we validated by
cross-checking appear so far to be correct and provable in the interactive proof tool
Coq, while their interactive proof takes (at least 10x) more time and requires a higher
level of qualification of the verification engineer.

Future work includes further evaluation of the proposed combined methodology, as
well as verification of the complete code of the Anaxagoros virtual memory module
taking into account parallel execution in several threads.

164 N. Kosmatov, M. Lemerre, and C. Alec

References

1. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C - a
software analysis perspective. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

2. Loulergue, F., Gava, F., Kosmatov, N., Lemerre, M.: Towards Verified Cloud Computing
Environments. In: HPCS 2012 (2012)

3. Lemerre, M., David, V., Vidal-Naquet, G.: A communication mechanism for resource isola-
tion. In: IIES 2009 (2009)

4. Lemerre, M., David, V., Vidal-Naquet, G.: A dependable kernel design for resource isolation
and protection. In: IIDS 2010 (2010)

5. Lemerre, M., Ohayon, E., Chabrol, D., Jan, M., Jacques, M.B.: Method and Tools for Mixed-
Criticality Real-Time Applications within PharOS. In: AMICS 2011 (2011)

6. Moy, Y.: Automatic Modular Static Safety Checking for C Programs. PhD thesis, Univ. Paris
11 (2009)

7. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation of path
tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche, M., Pataricza, A.
(eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer, Heidelberg (2005)

8. Botella, B., Delahaye, M., Hong Tuan Ha, S., Kosmatov, N., Mouy, P., Roger, M., Williams,
N.: Automating structural testing of C programs: Experience with PathCrawler. In: AST 2009
(2009)

9. Lemerre, M.: Intégration de systèmes hétérogènes en termes de niveaux de sécurité. PhD
thesis, Université Paris Sud XI — Orsay (2009) (in French)

10. Williams, N., Kosmatov, N.: Structural testing with PathCrawler. Tutorial synopsis. In: QSIC
2012 (2012)

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an OS kernel. In: SIGOPS 2009 (2009)

12. Alkassar, E., Paul, W.J., Starostin, A., Tsyban, A.: Pervasive verification of an OS microker-
nel. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217,
pp. 71–85. Springer, Heidelberg (2010)

13. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification of a small
hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS,
vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

14. Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of TLB virtualization imple-
mented in C. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152,
pp. 209–224. Springer, Heidelberg (2012)

15. Klein, G.: From a verified kernel towards verified systems. In: Ueda, K. (ed.) APLAS 2010.
LNCS, vol. 6461, pp. 21–33. Springer, Heidelberg (2010)

Runtime Assertion Checking and Its
Combinations with Static and Dynamic Analyses

Tutorial Synopsis�

Nikolai Kosmatov and Julien Signoles

CEA, LIST, Software Reliability Laboratory, PC 174
91191 Gif-sur-Yvette France

{firstname.lastname}@cea.fr

Abstract. Among various static and dynamic software verification techniques,
runtime assertion checking traditionally holds a particular place. Commonly used
by most software developers, it can provide a fast feedback on the correctness of
a property for one or several concrete executions of the program. Quite easy to
realize for simple program properties, it becomes however much more complex
for complete program contracts written in an expressive specification language.
This paper presents a one-hour tutorial on runtime assertion checking in which
we give an overview of this popular dynamic verification technique, present its
various combinations with other verification techniques (such as static analysis,
deductive verification, test generation, etc.) and emphasize the benefits and dif-
ficulties of these combinations. They are illustrated on concrete examples of C
programs within the Frama-C software analysis framework using the executable
specification language E-ACSL.

1 Introduction

Among the most useful techniques for detecting and locating software errors, runtime
assertion checking (RAC) is nowadays a widely used programming practice [1]. Asser-
tions offer one of the most convenient and scalable automated techniques for detecting
errors and providing information about their locations, even for errors that are traversed
during execution but do not necessarily lead to failures. More and more engineers and
researchers today are interested in verification tools allowing to automatically check
specified program properties at runtime.

This one-hour tutorial proposes a short survey on runtime assertion checking and
focuses on combinations of this technique with other static and dynamic verification
approaches (such as abstract interpretation, deductive verification, test generation, etc.).
While runtime assertion checking is not so difficult to implement for simple program
properties, it becomes much more complex for more evolved specification like full func-
tion contracts written in an expressive specification language. We discuss the benefits
and the difficulties of runtime assertion checking for expressive specifications, and of
its combinations with other analysis techniques.

� This work was partially funded by EU FP7 (project STANCE, grant 317753).

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 165–168, 2014.
© Springer International Publishing Switzerland 2014

166 N. Kosmatov and J. Signoles

annotated
C program

instrumentation
with E-ACSL

instrumented
C program

program monitoring

runtime assertion checking

Fig. 1. Basic usages of the E-ACSL plugin translating annotations into C code

annotated
C program

proof with WP

unproven
properties

proven
properties

RAC with
E-ACSL

pass/fail
verdicts

existing
test suite

Fig. 2. Combination of deductive verification and runtime assertion checking

Tutorial examples are run in FRAMA-C1 [2], an open-source software verification
toolset, using the executable specification language E-ACSL [3,4]. E-ACSL syntax is
intentionally close to C and can be easily learned on-the-fly. FRAMA-C offers various
analyzers, such as abstract interpretation based value analysis plugin VALUE, deductive
verification plugin WP, test generation plugin PATHCRAWLER [5]. The E-ACSL plugin
of FRAMA-C translates E-ACSL annotations into instrumented C code that can be used
for runtime assertion checking or program monitoring as illustrated by Fig. 1.

2 Tutorial Outline

In the first part of the tutorial, we give a historical overview of runtime assertion check-
ing and its usage in software engineering. The second part presents runtime assertion
checking for E-ACSL, an expressive specification language (including pre- and post-
conditions, loop annotations, mathematical integers, quantifications, memory-related
constructs, references to specific program points, etc.), and emphasizes the benefits and
the issues of this kind of specifications. We also show how different types of errors,
sometimes very subtle, can be efficiently detected by runtime assertion checking.

As an illustration of what kind of examples the tutorial provides, Fig. 3 shows a C
function which implements binary search and contains E-ACSL annotations enclosed in
special comments/*@ ... */. Before the function, we specify the function contract.
First, the requires clauses define preconditions stating that each cell of the array
must be a valid memory location, that the array must be sorted and that its length must
be positive. The function has two behaviors: if the searched key exists, the result of the
function is the index where the key is found; otherwise (if the key does not exist), the

1 http://frama-c.com/

http://frama-c.com/

Runtime Assertion Checking and Its Combinations with Static and Dynamic Analyses 167

1 /*@ requires \forall integer i; 0 <= i < length ==> \valid(a+i);
2 @ requires \forall integer i; 0 <= i < length-1 ==> a[i] <= a[i+1];
3 @ requires length >= 0;
4 @
5 @ behavior exists:
6 @ assumes \exists integer i; 0 <= i< length && a[i] == key;
7 @ ensures a[\result] == key;
8

9 @ behavior not_exists:
10 @ assumes \forall integer i; 0 <= i < length ==> a[i] != key;
11 @ ensures \result == -1; */
12 int binary_search(int *a, int length, int key) {
13 int low = 0, high = length - 1;
14 /*@ loop invariant 0 <= low <= high + 1;
15 @ loop invariant high < length;
16 @ loop invariant \forall integer k; 0 <= k < low ==> a[k] < key;
17 @ loop invariant \forall integer k; high < k < length ==> a[k] > key; */
18 while (low <= high) {
19 int mid = low + (high - low) /2;
20 /*@ assert low <= mid <= high; */
21 if (a[mid] == key) return mid;
22 if (a[mid] < key) { low = mid+1; }
23 else { high = mid - 1; }
24 }
25 return -1;
26 }

Fig. 3. Function binary search annotated in E-ACSL

C program value analysis
with VALUE

annotated
C program

RAC with
E-ACSL

pass/fail
verdicts

existing
test suite

Fig. 4. Combination of value analysis and runtime assertion checking

function returns −1. The body of the function also contains several loop invariants that
express invariant properties of the loop, and an assertion.

The last part of the tutorial focuses on combinations of runtime assertion checking
with other analyzers. We show the benefits and the limitations of runtime verification
used in combination with deductive verification where it can help to quickly check if
the program respects an unproven annotation on one or several concrete executions (see
Fig. 2). Combinations of abstract interpretation with runtime assertion checking can be
beneficial in several ways, for example, by statically validating or invalidating some
annotations, avoiding redundant or irrelevant checks to optimize runtime verification,
or generating annotations for alarms to be checked (see Fig. 4). Combinations with
automatic test generation can be used to check at runtime complex properties on a
large test suite even when the properties are too complex to be supported by symbolic
test generation techniques directly (see Fig. 5). The combinations will be illustrated on
examples of C programs within the FRAMA-C verification framework and using the
PATHCRAWLER test generator [5].

168 N. Kosmatov and J. Signoles

annotated
C program

test generation with
PATHCRAWLER

generated
test suite

RAC with
E-ACSL

pass/fail
verdicts

Fig. 5. Combination of test generation and runtime assertion checking

3 About the Presenters

The presenters are researchers at CEA LIST. Nikolai Kosmatov’s research interests
include software testing, constraint solving and combinations of various software ver-
ification techniques. Nikolai gave several theoretical courses and exercise sessions on
software testing and proof of programs since 2009. He is the main author of the on-
line testing service pathcrawler-online.com. Nikolai co-organized (with Nicky
Williams) tutorials on software testing with PATHCRAWLER at TAP 2012, TAROT
2012, ASE 2012 and QSIC 20122.

Julien Signoles is one of the main developers of FRAMA-C. He is also the main
author of the E-ACSL plug-in of FRAMA-C and the E-ACSL specification language. His
research focused on software security, runtime assertion checking and combination and
applications of program analysis techniques. He taught various theoretical courses and
exercise sessions on program specification, proof of programs, abstract interpretation
and software testing since 2009. The presenters are co-authors (with Virgile Prevosto)
of tutorials on proof of programs with FRAMA-C at SAC 20132, iFM 2013 and TAP
2013, and the authors of the tutorial on runtime assertion checking at RV 2013.

References

1. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion checking in soft-
ware development. ACM SIGSOFT Software Engineering Notes 31(3), 25–37 (2006)

2. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C, a
program analysis perspective. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

3. Signoles, J.: E-ACSL: Executable ANSI/ISO C Specification Language (2013),
http://frama-c.com/download/e-acsl/e-acsl.pdf

4. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static and dy-
namic analysis of C programs. In: The 28th Annual ACM Symposium on Applied Computing
(SAC 2013), pp. 1230–1235. ACM (2013)

5. Williams, N., Marre, B., Mouy, P.: On-the-fly generation of k-paths tests for C functions:
towards the automation of grey-box testing. In: The International Conference on Automated
Software Engineering (ASE 2004), pp. 290–293. IEEE Computer Society (2004)

2 Tutorial materials available at http://kosmatov.perso.sfr.fr/nikolai/

http://frama-c.com/download/e-acsl/e-acsl.pdf
http://kosmatov.perso.sfr.fr/nikolai/

Generating Test Data from a UML Activity
Using the AMPL Interface for Constraint Solvers

Felix Kurth, Sibylle Schupp, and Stephan Weißleder

Hamburg University of Technology, Institute for Software Systems,
Schwarzenbergstr. 95, 21073 Hamburg, Germany

{felix.kurth,schupp}@tu-harburg.de, stephan.weissleder@gmail.com
http://www.sts.tu-harburg.de

www.model-based-testing.de/person/stephan_weissleder

Abstract. Testing is one of the most wide-spread means for quality as-
surance. Modelling and automated test design are two means to improve
effectivity and efficiency of testing. In this paper, we present a method to
generate test data from UML activity diagrams and OCL constraints by
combining symbolic execution and state–of–the–art constraint solvers.
Our corresponding prototype implementation is integrated in the ex-
isting test generator ParTeG and generates C++ unit tests. Our key
improvement is the transparent use of multiple industry strength solvers
through a common interface; this allows the user to choose between an
expressive constraint language or highly optimised test data generation.
We use infeasible path elimination to improve the performance of test
generation and boundary value analysis to improve the quality of the
generated test data. We provide an industrial case study and measure
the performance of our tool using different solvers in several scenarios.

Keywords: Model–BasedTesting,ActivityDiagram,AMPL,Constraint
Solving, Infeasible Path Elimination, Boundary Value Analysis, Mixed
Integer Non–Linear Programming.

1 Introduction

Model–Based Engineering is a promising technology for system engineering. The
Unified Modelling Language

TM
(UML) is the quasi standard for model–based

specifications. A UML activity diagram can be used to give a quick and intu-
itive overview of a system. It can also be used to formally describe details of a
procedural implementation. They can be refined in a step-wise manner starting
with a vague description of the intended system usage and adding more details
later on.

Modelling is not an end in itself. The benefits of Model–Based Engineering are
automated subsequent tasks in software development like, for example, testing.
We want to automatically generate test data from an activity diagram with
embedded constraints described using the Object Constraint Language (OCL).
The test model describes the relevant control flows in the system under test

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 169–186, 2014.
c© Springer International Publishing Switzerland 2014

http://www.sts.tu-harburg.de
www.model-based-testing.de/person/stephan_weissleder

170 F. Kurth, S. Schupp, and S. Weißleder

(SUT). The embedded OCL constraints describe interdependencies between the
variables and how variables change their value.

In this paper we present a transformation from an activity diagram into an
‘A Mathematical Programming Language’ (AMPL) program. For that, we sym-
bolically execute control–flow paths in the activity diagram and encode each
of them as AMPL program. The solutions of these resulting AMPL programs
contain input values and corresponding oracle values that can be used to test
the implementation. Since test data at the boundaries of path constraints has a
higher probability to detect failures [5], we also integrate boundary value analy-
sis in test generation. Depth–first search is used to find control–flow paths and we
introduced early infeasible path elimination within the depth–first search to re-
duce the runtime of our algorithm. The presented transformation is implemented
as part of a master thesis [7] in a proof–of–concept, fully automated unit test
generation tool called Activity Tester (AcT). The tool is integrated as a feature
into the Partition Test Generator (ParTeG) available as Eclipse plug–in.1

The paper is structured as follows. Section 2 contains the related work. An
introduction to AMPL and the used models is given in Section 3. Section 4
contains a description of the core ideas of the proposed algorithm. The report
on our case study is given in Section 5. The paper is concluded in Section 6.

2 Related Work

There are several approaches for test generation based on activity diagrams.
For instance, Wang Linzhang et al. propose in [9] a path–search–based method
to find test scenarios in an activity diagram. They implemented the proof–of–
concept tool UMLTGF. Minsong et al. [11] propose to randomly generate Java
unit tests and match the test execution traces to the control–flow paths in the
activity diagram. They then select a subset from the test cases that covers all
simple paths in the test model. Our method is also path–search–based like [9]
and unlike [11] we are using constraint solvers to find test data.

Weißleder and Sokenou presented a data–oriented approach to select test
cases [16]. They use abstract interpretation to derive partitions and correspond-
ing boundaries of the domain of input values. Weißleder [15] describes a detailed
collection of different model–based structure- and data–oriented coverage crite-
ria including their formal definition. The source code of ParTeG, the proof–of–
concept tool associated with this thesis, is freely available.2 It uses graph search
in combination with abstract interpretation and a comprehensive framework,
allowing the user to steer which coverage criteria the generated test cases will
adhere to. In contrast to the data–oriented test data generation with abstract
interpretation we are using symbolic execution. We are also offering boundary
value analysis based on mathematical optimisation instead of data partitions.

There are several approaches to integrate the solution of OCL formulas. Ali
et al. [1] use evolutionary algorithms to search for potential solutions of OCL
1 ParTeG and AcT are available from: http://parteg.sourceforge.net/
2 Source code of ParTeG is available from: http://sourceforge.net/p/parteg/code

http://parteg.sourceforge.net/
http://sourceforge.net/p/parteg/code

Automated Generation of Test Data Using AMPL 171

constraints. Krieger and Knapp [6] use a SAT solver to find instantiations of
variables satisfying OCL constraints. They transform OCL formulas into boolean
formulas and use a SAT-solver-based model finder for solving these formulas. In
contrast, we generate models for OCL formulas not based on a single heuristic
or a single solver, but we are using the AMPL frontend to which we can link
either a heuristic or an algorithm.

Malburg and Fraser [10] propose a hybrid approach. On the top level they
use a genetic algorithm evolving a population of candidate test data. Internally,
they provide guidance to the genetic algorithm by providing a special mutation
operator performing dynamic symbolic execution. Also the white–box unit test
tool PEX [14] from Microsoft R© research is based on dynamic symbolic execu-
tion. Both [10] and [14] execute the implementation with random input values
and generate new input values by collecting path conditions along the executed
control flow. Then they negate one of the path conditions and use a constraint
solver to find a solution. Like the presented work, we also use symbolic execu-
tion. Since we are only performing a static analysis, however, we do not need
the source code to generate test cases. So in contrast to the related work, our
tool is also suitable for black–box testing.

3 Preliminaries

In this section, we introduce the programming language AMPL and the seman-
tics of the used test models.

3.1 AMPL and Its Solvers

We use ‘A Mathematical Programming Language’ (AMPL) by Robert Fourer [4]
to formalise the execution of a control–flow path in the test model. In this sec-
tion, we describe AMPL and introduce the solvers we have used to generate
test data.3 In AMPL we can state linear, non–linear, and logical constraints.
Variables can be continuous or discrete. The AMPL system serves as a com-
mon interface to a variety of solvers. Depending on the constraint satisfaction
problem encoded in the AMPL program a suitable solver can be selected to solve

Table 1. List of solvers and problems they can solve

Solver MILP NLP SMT MINLP
Cplex �
LPsolve �
Gurobi �
Minos �

Solver MILP NLP SMT MINLP
Couenne � � �
IlogCP � �
GeCoDE �

3 A bundle containing AMPL and the solvers Cplex, LPsolve, Gurobi, and Minos is
available from: http://ampl.com/try-ampl/download-a-demo-version/

http://ampl.com/try-ampl/download-a-demo-version/

172 F. Kurth, S. Schupp, and S. Weißleder

the problem. If all constraints are linear we use a solver that is specialized on
mixed integer linear programming (MILP), for example, Cplex or LPsolve [3]. If
constraints are non–linear but convex and all variables are continuous we use a
non–linear programming (NLP) solver. For problems with non–linear constraints
and discrete as well as continuous variables we need a solver capable of solving
mixed integer non–linear programming (MINLP), for example, Couenne 4 [2].
If logical operations are used in the constraints, a satisfiability modulo theories
(SMT) solver supporting appropriate background theories is used, for example,
GeCoDE 5 or IlogCP 6 [8]. In Table 1 we show a selection of solvers interfacing
with AMPL. A checkmark in a cell means that we have successfully tested the
solver in the row on the problem named in the column.

3.2 Semantics of the Test Models

For the transformation into ‘A Mathematical Programming Language’ (AMPL)
presented in Section 4.2 we clarify the semantics of the expected input model.
Modelling elements of the UML such as Activity and UML references name or
ownedParameter are typeset in a special font. In this section, we first detail which
UML modelling elements we use and will then shortly recapitulate the Petri–Net
semantics of activity diagrams (see [12]). Further, we introduce the notion of a
state, which will be relevant for our algorithm.

As test model we assume an activity diagram with Actions, ControlNodes, and
ControlFlows modelling the control flow of an Operation. The Activity is linked
as method to its specifying Operation. Each Action can contain several textual
OCL constraints as localPostcondition and each ControlFlow can hold a textual
OCL constraint as guard . The textual OCL in the guard and localPostcondition
will be parsed in the context of the specifying Operation. That means the OCL
constraints can access all ownedAttributes of the Class containing the specifying
Operation. Further, all ownedParameters of the specifying Operation can be ref-
erenced in the textual OCL. We interpret every Property as variable that can
change its value during the execution of an Action. A Parameter will be inter-
preted as a parameter that can not change its value during the execution of an
Action.

When executing a control–flow path, we start with a token in the InitialNode.
We allow only one InitialNode per Activity . The token can move along an enabled
ControlFlow . A ControlFlow is enabled when the OCL constraint in its guard
evaluates to true. We say that an Action is being executed when a token resides
in the Action.

We refer to an assignment of all variables and parameters as state. While the
token resides in the InitialNode there is an initial state. After each execution of an
Action the current state can change according to the OCL constraints contained

4 Couenne is available from: http://www.coin-or.org/download/binary/Couenne/
5 GeCoDE is available from: http://www.gecode.org/
6 IlogCP with AMPL drivers is available on request from:
http://ampl.com/try-ampl/get-a-trial-license/

http://www.coin-or.org/download/binary/Couenne/
http://www.gecode.org/
http://ampl.com/try-ampl/get-a-trial-license/

Automated Generation of Test Data Using AMPL 173

in the Action’s localPostcondition. An OCL constraint contained as localPostcon-
dition can specify a relation between the current state and the previous state.
Consequently, the states are interconnected with each other via localPostcondi-
tions. The set of all relations contained in localPostconditions can be seen as state
transition function. For a ControlFlow to be enabled the OCL constraint in its
guard has to evaluate to true with respect to the current state. OCL constraints
contained in a guard can only specify a relation between the variables and pa-
rameters within a single state. It is not possible to access the value of a variable
in the previous state within a guard .

4 The Algorithm

In this section we explain the core ideas of the algorithm that we implemented
in AcT. First, we demonstrate with a small example how the execution of a
control–flow path can be formalised. Then we show how to acquire test data
that is at the boundary of path constraints and, finally, we present an algorithm
that efficiently searches for executable control–flow paths.

4.1 Overview

Symbolic execution is done by transforming an activity diagram into a parame-
terised AMPL model representing all relevant OCL Constraints, Properties, and
Parameters. This transformation preserves the original semantics of the activity
diagram.

The parameters of the AMPL model encode a control–flow path. An assign-
ment of each variable in each state is generated by state–of–the–art constraint
solvers from an AMPL model with given parameters. The generated variable
assignment is suitable test data. A great advantage of a commonly used math-
ematical programming language is that industrial–strength solvers are available
for a wide variety of problems (see Section 3.1).

4.2 AMPL Transformation

An AMPL model encodes the relevant Properties, Parameters, and OCL
constraints contained in an activity diagram. Properties and Parameters are rel-
evant if they are referenced in a guard or localPostcondition inside the Activ-
ity under consideration. We call a sequence of ControlFlows control–flow path.
For two subsequent ControlFlows A and B in a control–flow path it holds that
A.target=B.source. A control–flow path is encoded in the AMPL data.

We model the execution of a control–flow path as a series of states. Each
AMPL model has one parameter called pathlength representing the number of
Actions on a control–flow path. Executing an Action changes the state, conse-
quently, there are pathlength + 1 states. Since a Property can have a distinct
value in each state, they are modelled as an array of variables. Parameters are

174 F. Kurth, S. Schupp, and S. Weißleder

Assignment
Else

Then «localPostcondition»
returnV alue = true

«localPostcondition»
returnV alue = false

«localPostcondition»
a · x = 2 · x@pre · x@pre − 3

[x ≥ a+ 1]

[x ≤ a]

Fig. 1. A simple UML activity diagram

constant and are therefore represented by a single AMPL variable. Every Prop-
erty and Parameter has either integer, float, or boolean as type; in AMPL we
specify the domain of an AMPL variable correspondingly.

The OCL constraints in Figure 1 reference three different OCL variables.
We assume a and returnV alue to be Parameters that are modelled as a single
variable in AMPL and we assume x to be a Property that is modelled as an
array of variables. We further assume that all three UML elements have the type
integer. Consequently, we generate the following AMPL code for them:

var a : integer;
var returnValue : integer;
var x{0.. pathlength} : integer;

During execution, a ControlFlow ’s guard or an Action’s localPostcondition is
always evaluated with respect to the current state. The set of states in which
an Action or ControlFlow is being executed is called activation set. There is
one activation set for each ControlFlow having an OCL guard and each Action
having an OCL localPostcondition. All OCL localPostconditions and OCL guards
are contained in the AMPL model as constraints, which can be switched on and
off for each state. In the AMPL model states are referenced via their index. For
each Action and ControlFlow the activation set is declared as a subset of the
set {0..pathlength}. Each OCL constraint in a guard or localPostcondition is
transformed into an indexed collection of constraints over the activation set.

When a variable reference is marked with @pre we are accessing the variable
in the previous state and thus need to subtract one from the index; otherwise
we access the variable at the index from the activation set. The AMPL model
code generated for the Assignment Action in Figure 1 is, for example, as follows:

set Assignment within {0.. pathlength} default {};
s.t. Assignment_post0 {i in Assignment} : a*x[i]=2*x[i

-1]*x[i-1] -3;

The code generated for the Then and Else Actions and ControlFlows with guard is
analogous. The complete AMPL model consists of the declaration of the param-
eter pathlength, variable declarations and the constraints together with their
activation sets. The value of the parameter pathlength as well as the elements
of each activation set will be specified in the AMPL data. This way, there is one

Automated Generation of Test Data Using AMPL 175

AMPL model per activity diagram and any control–flow path within the activity
diagram can be specified in the AMPL data.

Let us, for example, encode the bold printed control–flow path from Figure 1
as AMPL data. Starting at the InitialNode, the current state is the initial state
with the index 0. In this state there are no constraints. When we reach the
Assignment Action our current state switches to 1. Since there is a post–condition
for Assignment, we add 1 to the activation set of the Assignment. The next
ControlFlow has an OCL guard, consequently we add 1 to its activation set.
Further, we add 2 to the activation set of the Then Action. In AMPL syntax,
the data specifying this path is:

param pathlength := 2;
set Assignment := 1;
set Cf_Then := 1;
set Then := 2;

4.3 Boundary Value Analysis

Test data at the boundaries of the path constraints is more valuable than arbi-
trary test data causing the given control–flow path to be executed [5]. We will
refer to test data at the boundaries of path constraints also as boundary test data.
Up to now we did not explicitly require the test data to be boundary test data.
An additional linear objective function in the AMPL model ensures that gener-
ated test data is boundary test data. When solving AMPL programs augmented
by such an objective function three things can happen: either the solver gener-
ates boundary test data, or the solver reports that the problem is unbounded,
or the solving time for the problem increases enormously and the solver exceeds
its time limit. The first case is the good case. In the second case we can change
the direction of the objective function and try again to hit a boundary. The last
case is especially a problem of mixed integer non–linear programming solvers.
It is not too hard to find a solution to a mixed integer non–linear program, if
there are enough solutions, but finding a solution that is optimal with respect to
an objective function is much harder. In fact Couenne will try to find the global
optimum although also a locally optimal solution—with respect to a linear ob-
jective function—would be suitable as boundary test data. In such a case we
can first use a global mixed integer non–linear programming solver to solve the
original AMPL program. In a second step we add the linear objective function
and use a local search algorithm using the solution generated before as starting
point to find a solution at the boundary of the path constraints.

4.4 Early Infeasible Path Elimination

Control–flow paths are stored in a path tree. A path tree is a tree data structure
consisting of path–tree nodes. Each path–tree node holds a reference to its parent
path–tree node, a reference to a ControlFlow , and an integer—its depth. The root
node points to an outgoing ControlFlow of the InitialNode. Any path–tree node

176 F. Kurth, S. Schupp, and S. Weißleder

is a representation of a control–flow path from the InitialNode to the target of its
referenced ControlFlow . Leaf path–tree nodes reference a ControlFlow that ends
in an ActivityNode with no outgoing ControlFlow . We call the control–flow path
represented by a leaf path–tree node an abstract test case.

Not every control–flow path is a feasible path. A control–flow path is feasible, if
there exists test data that causes this control–flow path to be executed. In other
words, for an infeasible path the corresponding AMPL program will contain
contradicting constraints, for example, x0 ≤ 5;x0 ≥ 10. It is quite obvious that
if a path–tree node represents an infeasible path any of its children nodes will
also represent an infeasible path. Since we are only interested in abstract test
cases for which test data can be generated, we prune branches containing no
feasible abstract test cases as early as possible.

Pseudo code constructing a path tree with early infeasible path elimination
is given in Algorithm 1. Infeasible path check (isFeasiblePath()) is done by run-
ning a solver on the AMPL program corresponding to the examined control–flow
path. If the solver reports a failure or infeasibility of a problem, we assume the
control–flow path to be infeasible. The earlier during construction of the path
tree a control–flow path is detected to be infeasible the more control–flow paths
are pruned. On the other hand, if we check feasibility for every single path–tree
node we will impose unnecessary work. We allow for a customised trade–off by in-
troducing the parameter unchecked steps (UchkSteps). Further, our path search
algorithm accepts the parameters maximum path length (MaxPathLen) bound-
ing the depth of the path tree and maximum number of test cases (MaxNoPaths)
bounding the number of abstract test cases to find. The function countPathDe-
cisionsTo() in the third last line of Algorithm1 counts the number of path–tree
nodes with at least 2 children nodes on the path from its source to its argument.

5 Results

The presented algorithm is implemented as an Eclipse plug–in. The tool is
called Activity Tester (AcT) and is integrated into the Partition Test Generator
(ParTeG). We built a set of example models with corresponding C implementa-
tions to test our implementation. Finally, our tool has also been applied in an
industrial case study at Airbus Operations GmbH. The constraint solver based
approach presented here has already been adopted by Amin Rezaee for StateMa-
chines [13]. In this section we will first evaluate AcT for a model with mixed
integer non–linear constraints and then summarise the results of the industrial
case study.

5.1 Mixed Integer Non–linear Example Model

Figure 2 shows an activity diagram modelling the physical process of pumping
air into a tyre. The relations between volume, amount of air (n), pressure, and
temperature are described by the ideal gas equation. The equations for adia-
batic compression of air during one pump stroke states a non–convex relation

Automated Generation of Test Data Using AMPL 177

Algorithm 1. Path search algorithm with early infeasible path elimination
Require: root : path–tree node � the root path–tree node

MaxPathLen : integer � maximum path length for each control–flow path
MaxNoPaths : integer � maximum amount of leaf path–tree nodes to find
UchkSteps : integer � number of path decisions without infeasible path check

Ensure: constructs path tree starting from root using early infeasible path elimination
decisions : integer ← 0 � count path decisions
stack : LIFO Buffer ← {root} � only root node in stack
while !stack→isEmpty() and path tree contains less than MaxNoPaths leaf nodes
do

ptn : path–tree node ← stack→pop() � remove first path–tree node from stack
f : integer ← ptn.controlFlow.target.outgoing→size() � fanout of current node
if f>0 and ptn.depth<MaxPathLen and (decisions<UchkSteps or f<2 or

ptn→isFeasiblePath()) then � evaluate isFeasiblePath() only if its value is relevant
for cf : ControlFlow ∈ ptn.controlFlow.target.outgoing do

stack→push(new path–tree node(ptn, cf, ptn.depth+1))
end for
decisions ← (f≥2 ? (decisions mod UchkSteps)+1 : decisions)

else
decisions ← max(decisions − stack→top()→countPathDecisionsTo(ptn), 0)

end if
end while

pumpExtended

Pump

Initialse

«LocalPostCondtion»
{counter=pumps}

CoolALittle

«LocalPostCondtion»
ideal gas

{(pressure*volume)=0.287058*n*temp}

«LocalPostCondtion»
adiabatic compression

{pressure@pre*((volume+pumpVolume)*(volume+pumpVolume))=pressure*volume*volume}

«LocalPostCondtion»
10% cooldown

{11*temp=10*temp@pre+300}

«LocalPostCondtion»
reduce counter

{counter=counter@pre-1}

«LocalPostCondtion»
ideal gas

{(pressure*volume)=0.287058*n*temp}

«LocalPostCondtion»
there is no leak in tyre

{n=n@pre}

«LocalPostCondtion»
increase air amount

{n=n@pre+(pressure@pre*pumpVolume/(temp@pre*0.287058))}
TyreMelted

TyreBurst

«LocalPostCondtion»

{varBursted=true}

«LocalPostCondtion»

{varMelted=true}

«LocalPostCondtion»
{varBursted=false}

Return

«LocalPostCondtion»
{varMelted@pre=tyreMelted}

«LocalPostCondtion»
{varBursted@pre=tyreBursted}

«LocalPostCondtion»
{varMelted=false}

pumps: integer
volume: float
pumpVolume: float
tyreMelted: boolean
tyreBursted: boolean

[n>=0.5]

[volume>=2]

[pressure>=1]

[temp>=400]

[(pressure*volume)=0.287058*n*temp]

[temp>=300]

[counter<=0]

[temp<=399.9]

[pumpVolume>=0.001]

[counter>=1]

[pressure>=15]

[pressure<=14.9]

Fig. 2. Activity diagram with mixed integer non–linear constraints

178 F. Kurth, S. Schupp, and S. Weißleder

between these physical measures, consequently the resulting AMPL programs
will be non–convex. Additionally, we introduced the boolean variables tyreEx-
ploded and tyreMelted, which will be set when the pressure or temperature inside
the tyre raised above a certain threshold. Moreover, we introduce an integer
loop counter (counter) to count the number of pump strokes. Consequently, the
AMPL program is also a mixed integer problem.

5sec 10sec 20sec 60sec 10min

40 60

0.1

1

10

100

1h

3d

maximum path length

ti
m

e
[s
]

40 60

0

100

200

300

maximum path length

nu
m

be
r

of
te

st
ca

se
s

fo
un

d

Fig. 3. Runtime consumed and test cases found for the tyre pump model

Runtime Measurement. Mixed integer non–linear programming is in general
undecidable. Consequently, solvers might not halt on an MINLP instance. During
test generation we solve a great many of MINLP instances. It is advisable to set
a suitable solver time limit. For very small time limits test generation is faster
while for longer time limits chances to find a solution for a particular MINLP
instance are rising. In other words, when setting a larger time limit we will
certainly find a solution more often and thus generate more test cases but the
overall runtime will grow. Note that this is only the case if constraints are stated
by means of an undecidable theory; otherwise we can always find test data for
a feasible path.

We generate test cases for the Activity from Figure 2. Figure 3 plots the overall
runtime of the test generation depending on the maximum path length. We used
Couenne as solver and varied the time limit per MINLP instance between 5
seconds and 10 minutes. The right hand side of Figure 3 plots the number of
abstract test cases for which we found test data with the given solver time limit.

Automated Generation of Test Data Using AMPL 179

The number of abstract test cases grows exponentially with the maximum path
length and so does the overall computation time and the number of real test
cases.

Comparing the runtime of our algorithm with different time limits for the
maximum path length 60 we recognise that increasing the time limit from 20
seconds to 60 seconds increased the overall runtime by a factor of 2.78 and
generated 17 more real test cases; those are 9.2% more test cases. Increasing
the time limit from 60 seconds to 600 seconds increased the overall runtime by a
factor of 7.67 and produced 11 additional test cases, which amounts to only 5.4%
more test cases. We see that increasing the time limit for the solver massively
increases the overall runtime, but we gain only very few additional test cases for
that and we doubt that those additional test cases massively increase the quality
of the test suite. We therefore recommend using less than 20 seconds as solver
time limit for Couenne.

Mutation Testing. We applied selective mutation generate 1000 mutants of
our C implementation of the tyre pump model. The mutate.py 7 script used
does this by text pattern matching and therefore created 427 non compilable
mutants. We generated test suites with a solver time limit of 10 seconds and for
a maximum path length of 20,30,40, and 50 and ran them on the 573 compilable
mutants. The test suite for path length 50 was mutation adequate. The test
suites for path length 20 left 20 mutants alive; that is a mutation score of 96.5%.
Table 2 summarises the results of the performed mutation testing.

Table 2. Mutation test results for tyre pump model

maximum path length 20 30 40 50
number of test cases 4 18 47 97
killed mutants 553 569 570 573
alive mutants 20 4 3 0
mutation score 96.5% 99.3% 99.5% 100%

Those high mutation scores have two reasons. First, we produced one test case
for every control–flow path up to a given maximum path length which is quite
exhaustive testing for a small academic example. Second, due to the interdepen-
dency between temperature, pressure, and amount of air (n) a small error in one
of these measures will propagate to all three of those measures causing a great
number of failed tests due to just one wrong statement. Similarly, reordering of
statements introduced huge errors in all three measures. And finally, sub–optimal
calculation plans resulting in small rounding errors have been detected by al-
most every test case. For example the C expressions (10 *temp + 300) / 11
and 10 * temp / 11 + 300 /11 have been identified as not equivalent. Even
the replacement of < by ≤ has been detected.
7 mutate.py is available from: http://archive.today/wz4TF

http://archive.today/wz4TF

180 F. Kurth, S. Schupp, and S. Weißleder

5.2 Case Study

We tested our implementation on a model from Airbus Operations GmbH. Out of
the model of the complete product we selected a large activity diagram modelling
the control flow of a function. The selected Activity contains 21 Actions, 24
ControlNodes, and two LoopNodes. Furthermore, there are eight DataStoreNodes
representing function local variables. The branching conditions and the code
body of each Action is given in C syntax. All assignments and conditions consist
of linear equations and inequalities. All variables are in the integer or boolean
domain. Consequently, for test data generation mixed integer linear programs
have to be solved. Cplex and LPsolve are perfectly optimised for this kind of
problem while Couenne is suitable for a more general class of problems.

The algorithm described in Section 4 has several parameters. We use this case
study to evaluate the influence of the parameters maximum path length, the
solver to use, unchecked steps, maximum amount of test cases, and boundary
value analysis on the runtime.

Manual Adaptation. A bit of manual pre–processing is necessary in order to
use the case study model with AcT: import the model, add guards and localPost-
conditions in OCL syntax, flatten the LoopNodes, and replace the DataStoreNodes
by Properties.

The model was provided as XMI export from Atego R© Artisan Studio. Due
to slight differences in the implementation it is not directly possible to load an
XMI file from Atego R© in Eclipse. We manually removed some objects not recog-
nised by Eclipse and corrected some typing errors in the XMI file. Every Action
and ControlFlow contains C code snippets, but no OCL constraints. We added
guards and localPostconditions reproducing the semantics of the C code snip-
pets contained in the original model. The function specifying which ControlFlow
to take after each Action is well–defined and defined over the complete domain.
The original model used local C struct variables modelled by the DataStoreNodes
contained by the Activity . Our implementation can handle variables modelled as
Property . Consequently, we created one Property per field of a struct variable.
The original model also used arrays. We emulated the behaviour of an indexed
collection by allowing all variables depending on an index to change to an arbi-
trary value upon a change of the index. This may produce wrong behaviour but
seemed good enough to evaluate the runtime of our algorithm. The LoopNodes
contain further model elements in their bodyPart. We connect those elements
from the bodyPart to additional ControlFlows and ActivityNodes emulating the
counter loop semantics. The LoopNode is discarded and its augmented bodyPart
is directly embedded in the Activity .

Runtime Measurement Results. We examine the influence of the used
solver, the maximum path length, the maximum number of test cases, the
unchecked steps, and boundary value analysis on the runtime of our algorithm.

Automated Generation of Test Data Using AMPL 181

Different Solvers. We found that the runtime grows almost exponentially with
the maximum path length: It doubles when the maximum path length increases
by 6-7. The solvers LPsolve, Cplex, and GeCoDE are equally fast. Couenne
consumed about three times the runtime consumed by LPsolve. This is because
Couenne is actually suitable for the much more general mathematical problem of
mixed integer non–linear programming; it is not perfectly specialized for mixed
integer linear programming.

All constraints in the case study model are instances of mixed integer linear
programming and the solvers implement effective methods for mixed integer
linear programming. Consequently, we gain test data for every feasible path.
The number of test cases grows exponentially with the maximum path length.
For a maximum path length of 110 a total of 12,850,000 linear programs had to
be solved to find 83,000 sets of test data. The fastest solver, LPSolve, took only
13 hours for this task. This makes 275 solved problems per second and among
them 1.8 produced actual test data.

0 5 10 15

10

100

103

104

105

1h

3d

unchecked steps

ti
m

e
[s
]

maximum path length
90
80
70
60
50
40

Fig. 4. Runtime of our implementation depending on the unchecked steps

Unchecked Steps. In Figure 4, we plotted the overall runtime of our algorithm
depending on the unchecked steps (see Section 4.4). We used Cplex as solver
and repeated the experiment for different maximum path lengths. In the plots
we see, up to a maximum path length of 50 it is not beneficial to use early
infeasible path elimination for the case study model. With longer maximum path
lengths the impact of well configured early infeasible path elimination grows. For
a maximum path length of 90 our algorithm configured with the optimal value
for the unchecked steps parameter — 2 — takes less than one hour, while it
takes several days with unchecked steps set to 6.

182 F. Kurth, S. Schupp, and S. Weißleder

101 102 103 104 105

1

10

100

103

104

105

x
1

x
1
.4
5

x
2

[s
]

2,000 4,000 6,000 8,000

2 · 103

6 · 103

8 · 103

[s
]

Fig. 5. Runtime depending on the number of test cases. Left: depth–first search. Right:
breadth–first search

Maximum Amount of Test Cases. The runtime as well as the number of abstract
test cases grows exponentially with the maximum path length. The quotient
of runtime and generated test cases grows polynomially. To illustrate that, we
plotted the runtime of our algorithm against the number of test cases in Figure 5.
For the plot on the left we did not use the parameter maximum amount of test
cases but plotted the number of test cases actually found against the runtime of
our algorithm using different values for maximum path length. It is logarithmic
on both axes and we can see that the runtime grows with an exponent of 1.45.

Depth–first search without limit on the maximum path length but with a limit
on the number of test cases, would not produce useful test cases. All generated
abstract test cases would over and over share very long common sub–paths and
some ControlFlows would not be checked at all. Therefore, we implemented a
breadth–first search–based alternative to the algorithm explained in Section 4.4.
We use this alternative to evaluate the effect of the maximum amount of test
cases on the runtime; for all other experiments we use only depth first search.

In Figure 5, right, we plot the runtime of our algorithm with breadth–first
search. The dotted line shows a small section of the left plot. As we can see
breadth–first search is considerably slower than depth–first search. The reason
for that is that breadth–first search can not make such a good use of the warm
start capabilities of the solvers as depth–first search can. In depth–first search,
usually only a small amount of the constraints change between two subsequent
solver invocations. For breadth–first search it happens more often that all con-

Automated Generation of Test Data Using AMPL 183

straints have changed between two subsequent solver invocations. Furthermore,
we see that the generation of 9,000 test cases took only slightly longer than the
generation of 8,000 test cases. We can not explain this last effect.

20 40 60 80 100

1

10

100

103

104

1h

maximum path length

ti
m

e
[s
]

enabled
disabled

Fig. 6. Comparison of runtime with boundary value analysis enabled and disabled

Boundary Value Analysis Finally, we analysed the impact of boundary value
analysis on the runtime of our implementation. As explained in Section 4.3, an
additional objective has been added in the AMPL program. We minimise the
sum of all variables in the initial state. In Figure 6, we show the runtime of our
algorithm depending on the maximum path length. We use LPsolve as solver.
The runtime with boundary value analysis and the runtime without boundary
value analysis are plotted. The plot clearly shows that there is no difference in
runtime between generating boundary test data or arbitrary test data.

This result is plausible because the number of solver invocations where extra
work needs to be performed is small compared to the number of total solver calls.
For example, for a maximum path length of 70 there are 1568 test cases. The
solver performs the optimisation only for them. On the other hand, there are
35044 solver invocations in total including those that recognise a control–flow
path as infeasible. Consequently, only 4.5% of all solver invocations are actually
performing some extra work. For larger maximum path lengths this fraction is
declining further.

184 F. Kurth, S. Schupp, and S. Weißleder

5.3 Limitations and Outlook

A natural limitation for constraint-solver-based test data generation is decidabil-
ity. There is no effective method to generate variable instantiations that satisfy
an arbitrary mathematical term and heuristics may not come to a halt on some
problem instances. Currently, we support only a subset of the UML activity
modelling elements. Hierarchical activity diagrams, complex data types, data
flow, concurrency, and exception handling are currently not supported.

In terms of the UCL nomenclature, the hierarchical modelling elements Struc-
turedActivityNode, CallBehaviourAction, CallOperationAction are missing. These
elements could be flattened by a preprocessing algorithm just as we did manu-
ally for our case study in Section 5.2. We support the data types integer, boolean,
and float. AMPL has support for arrays, so it is possible to add support for arrays
of those basic types to our tool by adjusting the UML–to–AMPL transformation
slightly. Further a variable with a complex data type such as Class holding inte-
ger, boolean, or float attributes can be replaced by several basic typed Property
elements. Currently we use only Property elements to represent a data store;
of course, ObjectNode and its subtypes could be handled in a similar manner
or just be replaced by a set of Property elements during preprocessing; this is
done manually in Section 5.2. The concurrency modelling elements ForkNode and
JoinNode are not interpreted correctly, as our tool is not focused on concurrency.
There is no provision to handle ExceptionHandler elements.

Finally, our path search algorithm currently suffers from combinatorial explo-
sion. Generating test cases that adhere to a feasible coverage criterion like, for
example, control–flow coverage, would avert this problem. In [15] a comprehen-
sive framework for generating test suites that adhere to model coverage criteria
has been presented. At its core it uses a depth first search based algorithm that is
supported by abstract interpretation. This search algorithm can be replaced by
Algorithm 1, which is supported by symbolic execution and constraint solvers;
this has been done by Amin Rezaee in [13]. Further, some adaptations of the
framework need to be done to work with an Activity instead of a StateMachine
element.

6 Summary and Recommendation

In this paper, we presented an efficient way to integrate state–of–the–art con-
straint solvers into a model–based testing tool. Depending on the specific needs
of the modeller, a variety of constraints can be used in the model. We showed
that the automatic test data generation is especially fast when constraints are
specified in terms of a decidable theory and solved with an optimised solver. On
the other hand we generated test data for models whose constraints are formu-
lated as instances of an undecidable problem like, for example, mixed integer
non–linear programming. Although our approach makes it possible to generate
test data for models with undecidable constraints, this can be very time con-
suming. Furthermore, it is not guaranteed that existing test data will be found.

Automated Generation of Test Data Using AMPL 185

If possible, one should restrict oneself to linear inequalities or another decidable
constraint formulation.

We have presented a concept for early infeasible path elimination during gen-
eration of abstract test cases and examined its impact on the overall runtime of
our algorithm. Using early infeasible path elimination with two unchecked steps
massively reduces the runtime of our algorithm.

Finally, we showed that the presented approach allows steering the generation
of test data in a way that boundary values are produced with no additional effort.
It is common knowledge that the use of boundary values as test data tends to
trigger existing bugs with a higher probability.

References

1. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A Search-based OCL Constraint
Solver for Model-based Test Data Generation. In: 11th International Conference
on Quality Software, QSIC 2011, pp. 41–50. IEEE Computer Society (July 2011),
http://dx.doi.org/10.1109/QSIC.2011.17

2. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and Bounds
Tightening Techniques for Non–Convex MINLP. Optimization Methods and Soft-
ware 24(4-5), 597–634 (2009), http://dx.doi.org/10.1080/10556780903087124

3. Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve: Open source (Mixed-Integer)
Linear Programming system, http://lpsolve.sourceforge.net/5.5/

4. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Math-
ematical Programming, 2nd edn. Duxbury Press (2002),
http://ampl.com/resources/the-ampl-book/

5. Kosmatov, N., Legeard, B., Peureux, F., Utting, M.: Boundary coverage criteria
for test generation from formal models. In: 15th International Symposium on Soft-
ware Reliability Engineering, ISSRE 2004, pp. 139–150. IEEE Computer Society
(November 2004), http://dx.doi.org/10.1109/ISSRE.2004.12

6. Krieger, M.P., Knapp, A.: Executing Underspecified OCL Operation Contracts
with a SAT Solver. Electronic Communications of the EASST 15 (2008),
http://journal.ub.tu-berlin.de/eceasst/article/view/176

7. Kurth, F.: Automated Generation of Unit Tests from UML Activity Diagrams using
the AMPL Interface for Constraint Solvers. Master’s thesis, Hamburg University
of Technology, Germany, Hamburg (January 2014),
http://www.sts.tuhh.de/pw-and-m-theses/2014/kurth14.pdf

8. Laborie, P.: IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on
Three Problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS,
vol. 5547, pp. 148–162. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-01929-6_12

9. Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., Guoliang, Z.:
Generating Test Cases from UML Activity Diagram based on Gray–Box Method.
In: 11th Asia-Pacific Software Engineering Conference, APSEC 2004, pp. 284–291.
IEEE Computer Society, Los Alamitos (2004),
http://dx.doi.org/10.1109/APSEC.2004.55

10. Malburg, J., Fraser, G.: Combining Search–based and Constraint–based Testing.
In: 2011 26th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2011, pp. 436–439. IEEE Computer Society (November 2011),
http://dx.doi.org/10.1109/ASE.2011.6100092

http://dx.doi.org/10.1109/QSIC.2011.17
http://dx.doi.org/10.1080/10556780903087124
http://lpsolve.sourceforge.net/5.5/
http://ampl.com/resources/the-ampl-book/
http://dx.doi.org/10.1109/ISSRE.2004.12
http://journal.ub.tu-berlin.de/eceasst/article/view/176
http://www.sts.tuhh.de/pw-and-m-theses/2014/kurth14.pdf
http://dx.doi.org/10.1007/978-3-642-01929-6_12
http://dx.doi.org/10.1109/APSEC.2004.55
http://dx.doi.org/10.1109/ASE.2011.6100092

186 F. Kurth, S. Schupp, and S. Weißleder

11. Mingsong, C., Xiaokang, Q., Xuandong, L.: Automatic Test Case Generation for
UML Activity Diagrams. In: Workshop on Automation of Software Test, AST 2006,
pp. 2–8. ACM, New York (2006), http://dx.doi.org/10.1145/1138929.1138931

12. Object Management Group (OMG): OMG Unified Modeling Language
TM

(OMG
UML), Superstructure (May 2010), http://www.omg.org/spec/UML/2.3/

13. Rezaee, A.: A New Approach to Optimized Generation of Test Cases using UML
State Machine. Master’s thesis, University of Isfahan, Iran, Isfahan (February 2014)

14. Tillmann, N., de Halleux, J.: Pex-White Box Test Generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008), http://dx.doi.org/10.1007/978-3-540-79124-9_10

15. Weißleder, S.: Test Models and Coverage Criteria for Automatic Model–Based Test
Generation with UML State Machines. Ph.D. thesis, Humboldt University Berlin
(2010), http://model-based-testing.de/data/weissleder_phd_thesis.pdf

16. Weißleder, S., Sokenou, D.: Automatic Test Case Generation from UML Models
and OCL Expressions. In: Maalej, W., Brügge, B. (eds.) Software Engineering 2008
- Workshopband, Fachtagung des GI-Fachbereichs Softwaretechnik. Lecture Notes
in Informatics, vol. 122, pp. 423–426. Gesellschaft für Informatik (February 2008),
http://pdf.aminer.org/000/231/949/generating_test_
sequences_from_uml_sequence_diagrams_and_state_diagrams.pdf

http://dx.doi.org/10.1145/1138929.1138931
http://www.omg.org/spec/UML/2.3/
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://model-based-testing.de/data/weissleder_phd_thesis.pdf
http://pdf.aminer.org/000/231/949/generating_test_sequences_from_uml_sequence_diagrams_and_state_diagrams.pdf
http://pdf.aminer.org/000/231/949/generating_test_sequences_from_uml_sequence_diagrams_and_state_diagrams.pdf

Lightweight State Capturing for Automated

Testing of Multithreaded Programs

Kari Kähkönen and Keijo Heljanko

Helsinki Institute for Information Technology HIIT
Department of Computer Science and Engineering

School of Science, Aalto University
{kari.kahkonen,keijo.heljanko}@aalto.fi

Abstract. We present a lightweight approach to capture abstract state
information that can be used to avoid testing redundant interleavings of
multithreaded programs. Our approach is based on modeling states that
are observed during the test executions as a Petri net. This model is then
used to determine if some execution paths lead to an already explored
state. In such cases exploring execution paths from the same state mul-
tiple times can be avoided. Our approach does not capture the complete
global states of programs but instead it relies on particular commuta-
tivity of transitions to determine if they lead to already known abstract
states. We have combined this lightweight state capture technique with a
dynamic symbolic execution based approach to systematically test multi-
threaded programs. Experiments show that even without complete state
information, the lightweight state capturing technique can sometimes
reduce the number of redundant test executions substantially.

1 Introduction

Testing multithreaded programs is challenging due to the large number of ex-
ecution paths caused by input values and interleavings of threads. One way to
avoid redundant test executions is to capture program states and stop a test ex-
ecution when an already explored state is encountered. However, capturing and
storing states of real world multithreaded programs can add a considerable time
and space overhead to a testing algorithm. Furthermore, matching states can be
nontrivial if the states are expressed symbolically as in some testing approaches
such as dynamic symbolic execution (DSE) [8]. For example, in a symbolic state
a variable x could have any value that satisfies a constraint x > 0. If another
execution path leads to an identical symbolic state except that the constraint
for x is x > 5, the first symbolic state subsumes the second one (i.e., the first
state represents all concrete states of the second symbolic state). To determine
if a symbolic state has been visited before, a subsumption check by a constraint
solver is needed. This can be computationally expensive if the constraints are
complex and therefore we will not use such an approach in this paper.

An alternative to capturing states is to use stateless algorithms that explore
execution paths through a program without explicitly storing state information.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 187–203, 2014.
c© Springer International Publishing Switzerland 2014

188 K. Kähkönen and K. Heljanko

A naive way to do such exploration is to consider all possible input values and
interleavings. Approaches like DSE and partial order reductions [7,15] can be
used to avoid redundant test executions. DSE expresses symbolically the sets of
input values that cause the same execution path to be followed. Partial order
reduction algorithms avoid redundant tests based on the fact that it is not neces-
sary to explore different interleavings of independent state transitions. However,
even with such reduction techniques, stateless algorithms can explore the same
subset of the state space multiple times.

In this paper we present a lightweight approach to state capturing that can be
combined with DSE without the need for subsumption checks that use constraint
solvers or for storing complete global states. Our approach is based on the ob-
servation that sometimes it is easy to see that interleavings even with dependent
transitions commute and thus lead to the same state. As an example, consider
a program that has an array in shared memory and the access to this array is
synchronized with a lock. This means that if two threads want to read a value
from the array (or to update distinct indexes), both threads need to acquire the
same lock. The corresponding transitions are dependent and therefore both ways
to interleave the accesses to the array need to be explored even if using partial
order reductions. However, after both threads have acquired the lock, read a
value and released the lock, the program ends up in the same state regardless
of the execution order. In this case it is not necessary to know the exact global
states of the program to be able to determine that both interleavings result in
the same state. In this paper we detect such cases by constructing a Petri net
model of the program under test based on the information collected during test
executions. This model is constructed such that any modeled state transitions
lead to new abstract states unless it is easy to determine that a transition leads
to an already known state.

We also present a systematic testing algorithm that constructs the model on-
the-fly and uses it to perform state matching. The new algorithm can be seen as
extending our previous unfolding based testing approach [10] with lightweight
state matching. Naturally without complete state information, the cases where
state matching can be done are limited. Nevertheless, experiments show that in
cases where our approach can detect that a given state has been visited before,
the savings both in testing time and the number of test executions can be sub-
stantial. The main contributions of this paper are: (1) a lightweight approach to
match states without capturing complete global states or using symbolic sub-
sumption with a constraint solver, (2) a testing algorithm that combines net
unfoldings, dynamic symbolic execution and the lightweight state capturing to
reduce unnecessary test executions, and (3) an experimental evaluation of the
new approach.

2 Background

To keep the presentation simple we assume that in programs to be tested the
number of shared variables is fixed and the only nondeterminism in threads is

Lightweight State Capturing for Automated Testing 189

caused by concurrent access of shared memory or by input data from the environ-
ment. We also assume that operations accessing shared memory are sequentially
consistent. The state of a multithreaded program consists of the local states of
threads and the shared state consisting of the shared variables. The operations
on shared memory that are considered in this work are read and write of shared
variables and acquire and release of locks. We assume that a read operation reads
a value from a shared variable and assigns it to a variable in the local state of the
thread performing the operation. Write assigns either a constant or a value from
a local variable to a shared variable. Local operations, such as if-statements,
are evaluated solely on the values in the local state and therefore cannot access
shared variables directly. In real programs the statements can be modified auto-
matically to satisfy these assumptions by using local temporary variables. The
algorithms discussed in this work are based on analyzing sequences of operations
observed during test executions and therefore language constructs such as loops,
goto-statements and function calls are also supported.

2.1 Dynamic Symbolic Execution

Dynamic symbolic execution (DSE) [8,14], which is also known as concolic test-
ing, is a systematic test generation approach in which a program is executed
both concretely and symbolically at the same time. The concrete execution cor-
responds to the execution of the actual program and symbolic execution com-
putes constraints on values of the variables in the program by using symbolic
values that are expressed in terms of input values. At each branch point in the
program’s execution, the symbolic constraints specify the input values that cause
the program to take a specific branch. As an example, executing a program x =

x + 1; if (x > 0)...; generates constraints input1+1 > 0 and input1+1 ≤ 0
at the if-statement assuming that the symbolic value input1 is assigned initially
to x. A path constraint is a conjunction of the symbolic constraints correspond-
ing to each branch point in a given execution path. All input values that satisfy
a path constraint will explore the same execution path for sequential programs.
If a test execution goes through multiple branch points that depend on the in-
put values, a path constraint can be constructed for each of the branches that
were left unexplored along the execution path. These constraints are typically
solved using SMT-solvers in order to obtain concrete values for the input sym-
bols. This allows all the feasible execution paths through the program under test
to be explored systematically.

2.2 Petri Nets and Unfoldings

In the following we describe Petri nets and their unfoldings that are used in our
testing algorithm to model and explore the states of the program under test.

Definition 1. A net is a triple (P, T, F), where P and T are disjoint sets of
places and transitions, respectively, and F ⊆ (P × T) ∪ (T × P) is a flow rela-
tion. Places and transitions are called nodes and elements of F are called arcs.

190 K. Kähkönen and K. Heljanko

The preset of a node x, denoted by •x, is the set {y ∈ P ∪ T | (y, x) ∈ F}. The
postset of a node x, denoted by x•, is the set {y ∈ P ∪ T | (x, y) ∈ F}. A mark-
ing of a net is a mapping P �→ N. A marking M is identified with the multiset
which contains M(p) copies of p. A Petri net is a tuple Σ = (P, T, F,M0), where
(P, T, F) is a net and M0 is an initial marking of (P, T, F).

Graphically markings are represented by putting tokens on circles that repre-
sent the places of a net. A transition t is enabled in a marking that puts tokens
on the places in the preset of t.

Definition 2. The causality relation < in a net is the transitive closure of F .
The reflexive and transitive closure of F is denoted by ≤.

Definition 3. Two nodes x and y are in conflict if there are distinct transitions
t1 and t2 such that •t1 ∩ •t2 �= ∅ and t1 < x and t2 < y.

Similarly as a directed graph can be unwinded into a tree that represents all
paths through the graph, a Petri net can be unfolded into an acyclic net called
occurrence net. For acyclic Petri nets the causality relation is a partial order.

Definition 4. An occurrence net O is an acyclic net (B,E,G), where B and
E are sets of conditions (places) and events (transitions) and G is the flow
relation. Occurrence net O also satisfies the following conditions: for every b in
B, |•b| ≤ 1; for every x ∈ B ∪ E there is a finite number of nodes y ∈ B ∪ E
such that y < x; and no node is in conflict with itself.

To avoid confusion when talking about Petri nets and their occurrence nets,
the nodes B and E are called conditions and events, respectively. If an occurrence
net is obtained by unfolding a Petri net, the events and conditions in it can also
be labeled with the corresponding transitions and places.

Definition 5 (Adapted from [11]). A labeled occurrence net is a tuple (O, l)=
(B,E,G, l) where l : B∪E �→ P ∪T is a labeling function such that: (i) l(B) ∈ P
and l(E) ∈ T ; (ii) for all e ∈ E, the restriction of l to •e is a bijection between
•e and •l(e); (iii) the restriction of l to Min(O) is a bijection between Min(O)
and M0, where Min(O) denotes the set of minimal elements with respect to the
causal relation; and (iv) for all e, f ∈ E, if •e = •f and l(e) = l(f) then e = f .

Different labeled occurrence nets can be obtained by stopping the unfolding
process at different times. The maximal labeled occurrence net (possibly infi-
nite) is called the unfolding of a Petri net [3]. To simplify the discussion in this
paper, we use the term unfolding for all labeled occurrence nets and not just
the maximal one. To illustrate the concepts above, let us consider the Petri
net shown on the left in Fig. 1. Next to the Petri net are its computation tree
and unfolding that represent the computations (sequences of transitions) of the
Petri net in an acyclic manner. The nodes in the computation tree represent the
reachable markings of the Petri net (i.e., global states) and the edges represent
transitions that lead from one marking to another. In the unfolding each event

Lightweight State Capturing for Automated Testing 191

Fig. 1. A Petri net, its computation tree and unfolding

and condition are labeled with the corresponding transition or place of the Petri
net. For some Petri nets its unfolding can be exponentially more succinct than
the corresponding computation tree.

All the reachable markings of a Petri net can be explored by traversing its
computation tree. However, exploring the full computation tree is not always
necessary. In our example, the marking reached after firing t1 is {s2, s3}. Firing
transition sequence t1t2t4 leads to the same marking and therefore there is no
need to expand the computation tree further from the node that corresponds to
this transition sequence. In a similar way, it is also possible to compute a finite
prefix of the unfolding that captures all the reachable markings of a Petri net.
However, as an unfolding is a more succinct representation than the computation
tree, computing a finite prefix is not as straightforward. In the following we use
notation similar to [3].

Definition 6. The local configuration of an event e in an unfolding is the set
{e′ | e′ ≤ e}.
Definition 7. Let e be an event in the unfolding of Petri net N . St(e) denotes
the marking of N reached after firing the transitions corresponding to the events
in the local configuration of e.

Definition 8. Let ≺ be a partial order on the events of an unfolding. An event
e in a prefix of the unfolding is a terminal (also known as a cut-off event) if
there exists an event e′ such that e′ ≺ e and St(e’) = St(e).

A finite prefix of an unfolding can be constructed by leaving out any events
that are causally preceded by a terminal event. That is, if an event e′ has been
added to the unfolding before event e and St(e’) = St(e), the unfolding process
can be stopped at event e. To illustrate this, let us consider the unfolding in Fig. 1
again. The numbers on the events in the unfolding denote the order in which

192 K. Kähkönen and K. Heljanko

they have been added to the unfolding and therefore follow the ≺ partial order.
Let us assume that en denotes the event labeled with n. The local configuration
of e4 consists of events e1, e2 and e4. The marking reached by firing these events
corresponds to the marking St(e4) = {s2, s3}. Note that event e1 has been added
to the unfolding before e4 and St(e1) = St(e4). This means that e4 is a terminal
and no events that are causally preceded by it need to be added to the unfolding.
Similarly the event e5 is also a terminal.

It is important to note that not all partial orders ≺ lead to complete pre-
fixes [3]. In other words, if the prefix is not complete, some reachable marking of
the Petri net is not represented in the prefix. It has been shown that if events are
added to the unfolding in so called adequate order, the prefixes are always com-
plete. In the implementation of our algorithm that is used in the experiments,
we use the ERV adequate order as described in [4]. For further details about
unfoldings, see [3].

3 Modeling Test Executions

Our lightweight state capturing technique is based on modeling behavior ob-
served during test executions as a Petri net. This model can then be used for
state matching in a testing algorithm. The initial state of the program is mod-
eled by having a place for each thread, shared variable and lock in the program
under test. Places for threads are abstract representations of their local states
and places for shared variables represent valuations of that shared variable. To
model execution paths through the program, transitions are added to the model
such that they correspond to operations that have been observed during test
executions. To model these operations we use the constructs shown in Fig. 2.
For clarity, the places corresponding to shared variables and locks have a darker
color than places for abstract local states.

The intuition behind the modeling constructs is as follows. When a thread
is in a local state such that the next operation to be executed is a write, the
operation always results in the same subsequent local state and the same value
to be written to the shared memory regardless of the current valuation of the
shared variable. This is represented in Fig. 2 such that if the write transition
marked with dashed lines is added to the model after the transition with solid
lines from the same local state, the transitions result in the same places for the
local state and the shared variable. For read operations the resulting local states
are always different if the shared variable places are different (i.e., in cases where
the values being read might be different). This is again illustrated by a second
read transition marked with dashed lines in Fig. 2. However, reading a value does
not change it and therefore a read operation can be modeled with a transition
that returns the token back to the original shared variable place. For each lock
there is always only one lock place and acquiring a lock takes a token from
this place and releasing the lock puts the token back to the same place. Local
operations of threads are not modeled explicitly as a thread executes them always
in the same way until the next global operation is encountered. An exception to

Lightweight State Capturing for Automated Testing 193

Fig. 2. Modeling constructs

this are branching operations that depend on input values. In our approach we
use symbolic execution to collect constraints that describe which input values
cause either the true or false branch to be followed at a given local state. These
constraints are added to the transitions for the true and false branches. As such
constraints restrict the possible values in a local state, branching transitions lead
to new abstract local states.

To model a test execution, a marking that corresponds to the initial state
is first created. This marking is used to denote the current state of the test
execution. The operations enabled in the initial state are then modeled. The test
execution then executes one of these operations and the corresponding transition
is fired to update the current marking. In the resulting state all the enabled
operations are again modeled unless a corresponding transition already exists in
the model. This process is then continued until the whole test execution has been
processed. Note that as we model sequences of observed operations, loops in the
program are unrolled. Also as we do not track the full local states of threads, we
cannot determine if a thread can loop its execution back to an earlier abstract
local state. This means that any transition in the model can be fired at most
once in any given test execution. The only cycles in the Petri net model occur
with places for shared variables and locks. As a test execution can be infinite for
nonterminating programs, we limit the length of each test execution by a given
bound in order to guarantee termination.

Example 1. Let us consider the program shown in Fig. 3 and a test execution
that executes the statements on lines 1,2,3,4,5,6 in that order. Modeling this
execution starts with an initial marking {s1, s2, x1, y1, l1}. In the initial state
the lock acquire operations of both threads are enabled. These are modeled as
the transitions t1 and t2. The lock transition belonging to thread 1 is then fired
to obtain a marking {s3, s2, x1, y1}. In this new state the operation x = 1 is

194 K. Kähkönen and K. Heljanko

the only one that is enabled. As the model does not contain a transition that
is enabled in the current marking, the transition t3 is added to the model and
fired. The rest of the test execution is processed in a similar manner to obtain
the net in Fig. 3. Note that if a second test execution is made such that thread 2
performs its operations first, no new transitions need to be added to the model.
Furthermore, both of these executions end up in the same marking indicating
that the resulting states are the same.

Global variables:

int x = 0;

int y = 0;

Thread 1:

1: acquire(lock);

2: x = 1;

3: release(lock);

Thread 2:

4: acquire(lock);

5: y = 1;

6: release(lock);

Fig. 3. Locking example

Example 2. Fig. 4 shows another example program where three threads write
concurrently to the same shared variable. The partial model on the top of the
figure is obtained by performing a test execution where thread 1 is executed
first, thread 2 second and thread 3 last. In the initial state the writes for all
threads are enabled and this is modeled by the transitions t1, t2 and t3. After
executing the write of thread 1, the enabled writes of thread 2 and thread 3
are modeled as transitions t4 and t5. The final write of the test execution is
modeled as transition t6. The model on the bottom shows the complete model
for the program. In this case there are six possible ways to interleave the write
operations. However, there are only three possible end states (markings) for
these interleavings and therefore if the program continues after the writes, it is
possible to cut the exploration of some of these interleavings.

3.1 Advantages and Limitations for State Matching

As discussed in the examples, test executions following different interleavings
can lead to the same marking. This can be used to avoid unnecessary tests
in automated testing by storing the visited markings, for example, to a hash
table. Naturally the cases where our modeling approach can determine that a
test execution leads to an already visited state are limited as it does not do

Lightweight State Capturing for Automated Testing 195

Global variables: Thread 1: Thread 2: Thread 3:

int x = 0; 1: x = 1; 2: x = 2; 3: x = 3;

Fig. 4. Concurrent writes example

any complex reasoning on the symbolic data values. Furthermore, as in the
model the loops in the program are unrolled, it cannot be used to detect cases
where a test execution loops back to a state that was already visited during
the same execution. However, the model can be in some cases used to detect
when different interleavings of the same operations lead to the same state. Cases
such as accessing different variables in a shared data structure that is protected
by a lock do occur and in such cases our approach has potential to scale much
better than stateless testing approaches, even if they reduce interleavings of
independent operations. Furthermore, the space requirement of storing markings
can be considerably smaller than storing full state information.

4 Systematic Model Construction

Modeling test executions as a Petri net is easy. However, to systematically test
a given program, we want to perform test executions that cover the complete
model. This can be done by starting with a random initial test execution, mod-
eling it and using the obtained information to compute inputs for subsequent
test executions. In this section we present two algorithms to do this.

4.1 Naive Stateful Approach

A simple way to construct a complete model of a program under test is to initially
model a random test execution and start traversing the computation tree of the

196 K. Kähkönen and K. Heljanko

Require: A program P
1: model := empty Petri net
2: visited := ∅
3: extend model with a random test execution
4: explore(M0, ∅)
5: procedure explore(M,S)
6: if M /∈ visited then
7: visited := visited ∪ {M}
8: predictTransitionsFromModel(M)
9: if model is incomplete at M then
10: extendModel(P,S, k)

11: for all transitions t enabled in M do
12: M ′ := fire(t,M)
13: S′ := S appended with t
14: explore(M ′, S′)

Fig. 5. Naive testing algorithm

model. If the model does not have enough information to determine how the
computation tree should be expanded at some state, a new test execution is
performed to update the model. An algorithm based on this idea is shown in
Fig. 5. It performs a depth-first search on the reachable markings of the model
by calling recursively the explore subroutine that takes the state (marking M
of the model) and a sequence S of transitions that lead to this state as input. At
each state the algorithm determines that a model is incomplete if it is not known
what operations the threads want to perform next or if there are no transitions
in the model for these operations. This requires keeping track of the end states
of threads observed during test executions (i.e., a thread does not perform any
operations after reaching such a state). If the model does not have the necessary
information, a test execution to explore the current state is performed. After this
the transitions enabled in the current state are known. The algorithm also stores
the visited states and backtracks if an already explored state is encountered.

In some cases it is easy to determine from the model which operation a thread
wants to perform next even if the corresponding transition in the model is miss-
ing. As an example, let us consider the program and the partial model in Fig. 4.
Let us assume that we are exploring a marking m = {s1, s5, s3, x3}. The model
is incomplete at this marking because no transition for thread 1 is enabled in
this state. However, each transition from a place representing a local state of
a thread has the same type (i.e., from a given local state, the operation the
thread wants to perform is always the same). As there is a write transition
in the postset of s1, we know that thread 1 wants to perform a write opera-
tion. In cases like this, the missing transition (t7 in our example) can be added
to the model without performing a test execution. The subroutine predict-
TransitionsFromModel performs such analysis for each visited marking. To
be more precise, predictTransitionsFromModel checks the postsets of the

Lightweight State Capturing for Automated Testing 197

places for local thread states to determine the operations the threads want to
perform and adds any missing transitions to the model. For reads and writes
this is trivial. For lock operations it needs to be checked that the lock is free
in the current state (i.e., the marking contains the respective lock place). Us-
ing predictTransitionsFromModel can sometimes significantly reduce the
need for test executions. For example, the final model for program in Fig. 4 can
be constructed with information obtained from a single test execution.

The extendModel subroutine performs a test execution both concretely
and symbolically. The subroutine takes as input a sequence S of transitions that
leads to the state that is being explored. Bound k for the execution length is used
to guarantee termination. To get concrete input values for the test execution,
all the symbolic constraints associated with the branching transitions in S are
collected and their conjunction is solved using a constraint solver. The sequence
S is also given to a runtime scheduler that schedules the execution such that the
operations are performed in the same order as the corresponding transitions in
S. After reaching the target state, the scheduler is free to follow any schedule.

We call the algorithm in Fig. 5 naive because it explores interleavings of
global operations even if they are independent. This is unnecessary to find errors
such as assertion violations or reachability of control states. Naturally different
interleavings of independent operations lead to the same state and the algo-
rithm backtracks in such cases. To avoid exploring unnecessary interleavings, we
present next an algorithm based on unfolding the model. This approach is only
guaranteed to cover the reachable local states of threads and to detect all as-
sertion violations. Detecting all deadlocks is not guaranteed. Another approach
would be to use partial order reduction algorithms such as DPOR [6]. As using
state matching with DPOR requires special care to guarantee the completeness
of the algorithm [16], investigating such possibilities is left for future work.

4.2 Unfolding Based Approach

To explore an unfolding of the model instead of the computation tree, we make
a small modification to the modeling approach presented in Sect. 3: instead of
modeling a shared variable with a single place in each reachable marking, we
duplicate the place for each thread. In other words, each shared variable place
in the model is replaced with n places, where n is the number of threads in the
program. A write transition is made to access each of the n copies while a read
transition accesses only the local copy belonging to the thread performing the
read. This approach is known as place replication [5] and it has the effect that
two concurrent reads of the same shared variable become independent. If place
replication is not used, the unfolding process would explicitly explore different
interleavings of read transitions. The use of place replication is demonstrated in
the example at the end of this section.

The unfolding based testing algorithm is shown in Fig. 6 and the idea behind
it is similar as with the naive algorithm. Initially a random test execution is per-
formed to start the model construction. The algorithm maintains a set of events
that can be used to extend the unfolding. Initially such events are those that are

198 K. Kähkönen and K. Heljanko

Require: A program P
1: model := empty Petri net, unf := initial unfolding
2: visited := ∅
3: extend model with a random test execution
4: extensions := events enabled in the initial state
5: while extensions �= ∅ do
6: choose ≺-minimal event e from extensions
7: M := St(e)
8: predictTransitionsFromModel(M)
9: if model is incomplete at M then
10: extendModel(P, e, k)
11: else
12: add e to unf
13: extensions := extensions \ {e}
14: if M /∈ visited then // e is not a terminal

15: visited := visited ∪ {M}
16: extensions := extensions ∪ PossibleExtensions(e, unf)

Fig. 6. Unfolding algorithm

enabled in the initial state. The algorithm then starts adding these extensions
to the unfolding in the order specified by the partial order ≺ (lines 5-6). As
discussed in Sect. 2, we use the ERV adequate order to guarantee completeness.

To be able to avoid exploring states multiple times, the algorithm computes
St(e) for each event e added to the unfolding. This can be seen as the state that is
reached by following the shortest execution path to the event e. For the obtained
marking (state), the algorithm performs the same analysis for missing transitions
as the naive algorithm does (line 8). If after adding the predicted transitions the
model is incomplete at the obtained marking, a new test execution is performed
to update the model. Otherwise the algorithm adds the selected event to the
unfolding and determines if it is a terminal. This is done by checking if an event
with the same marking St(e) has already been added to the unfolding (line 14). If
the event is not a terminal, the algorithm computes a set of new events that can
be added to the unfolding and adds these events to the set of possible extensions.
To be more precise, a possible extension is an event that has not yet been added
to the unfolding but could be fired in some reachable marking.

Computing Possible Extensions. There exists several algorithms for computing
possible extensions. Most of these algorithms, however, have been designed for
arbitrary Petri nets and are computationally the most expensive part of building
unfoldings. Such algorithms can be used in our testing approach but this could
adversely affect the performance. Fortunately, the Petri net models constructed
in our approach have a restricted structure that makes computing possible ex-
tensions more efficient than in the general case. We have recently described an
efficient possible extensions algorithm in [10] that works with unfoldings that

Lightweight State Capturing for Automated Testing 199

are constructed in a similar way as in our new testing algorithm. We use this
efficient algorithm in the implementation of the algorithm in Fig 6.

Computing Inputs For Test Executions. Extending a model with a test execution
can be done similarly as in the naive algorithm. The difference is that with
unfoldings we do not have directly a sequence of transitions that leads to the
state (i.e., marking M) we want to explore. However, obtaining such a sequence
is easy. The state is reached by firing the transitions corresponding to the local
configuration of e. If the events in the unfolding have labels that describe the
order in which they were added to the unfolding (e.g., the numbers on events
in Fig. 1), an event with a larger label cannot causally precede an event with a
smaller label. This means that the transitions can be fired in the order given by
the labeling of their corresponding events to reach the marking M .

Example 3. To illustrate the unfolding based algorithm, let us consider the Petri
net model and its unfolding in Fig. 7. The model represents a program with two
threads that acquire a lock and read a shared variable x. The first thread also
branches its execution based on input values at the end. Note that the places for
x have been replicated for each thread (i.e., x1 has been replicated to x1

1 and x2
1).

This makes the read transitions independent as explained earlier. To construct
the net in Fig. 7, the algorithm first performs a random test execution. In this
example, any execution provides enough information to model all the transitions
shown in the Petri net model. However, depending which branch the first thread
follows at the end, the model remains incomplete at place s9 or s10 as the
corresponding local state is not explored. From the initial state it is possible to
fire transitions t1 and t2. The events 1 and 2 correspond to these transitions and
are added to the set of possible extensions. The algorithm selects event 1 to be
added to the unfolding and this results in a new reachable marking where it is
possible to fire event 3. The found event is added to the set of possible extensions
and the same process is continued until the algorithm selects the event 12 to be
added to the unfolding. The marking computed at line 7 is the same for this
event as well as for event 11. Therefore event 12 is a terminal (marked with a
cross) and possible extensions for it are not computed. Let us assume that the
initial test execution did not explore the state corresponding to place s9. To add
event 13 to the unfolding, the algorithm needs first to perform a test execution
to explore s9 so that it has enough information to compute possible extensions
for event 13. This is achieved by a test execution that follows the transitions
corresponding to the events 1, 3, 5 and 13. Let us assume that the symbolic
constraint associated with t7 is input1 > 5. Solving this constraint gives the test
execution a concrete input value (e.g., the value 6). After performing the test
execution, the algorithm knows that s9 corresponds to an end state and can
continue the unfolding process by adding event 13 and finally event 14.

200 K. Kähkönen and K. Heljanko

Fig. 7. A model and its unfolding

5 Experiments

We have performed a set of experiments with the new algorithms and compared
them with a combination of DSE and DPOR as described in [13] and the state-
less unfolding based testing algorithm described in [10]. The naive algorithm
described in this paper and DPOR have also been augmented with sleep sets [7]
to further reduce the number of test executions needed. The stateless unfold-
ing algorithm constructs similar unfoldings (without constructing the Petri net
model) as the new algorithm except that no terminal events are used. In this
sense our new approach can be seen as extending the testing approach in [10]
by taking some state information into account.

The following benchmarks are used in the experiments. Fib and Szymanski
are from the 1st International Competition on Software Verification except that
they have been simplified by limiting how many times some loops are executed.
Filesystem benchmark is from [6] where it was used to evaluate DPOR. Dining
implements a dining philosophers problem where each philosopher eats twice. In
Locking all accesses to shared memory are protected by a single lock. Updater
contains a set of threads where some threads update values in shared memory
and other threads perform work based on these values. Writes is similar to the
program in Fig. 4 except with more threads and more writes per thread. Finally,
synthetic benchmarks perform randomly generated sequences of operations on
input values and on global variables. Benchmarks with multiple variants are sim-
ilar with each other except that the number of threads increases or the program
otherwise increases in complexity.

The results of the experiments are shown in Table 1. For each algorithm the
table shows the number of test executions needed to fully cover the program
under test and the time required to do this. As the algorithms are partially ran-

Lightweight State Capturing for Automated Testing 201

Table 1. Comparison of different approaches

Stateless unfolding Stateless DPOR Stateful naive Stateful unfolding

Benchmark tests time tests time tests time tests time

Fib 1 19605 0m 17s 21102 0m 21s 5746 0m 11s 4946 0m 15s
Fib 2 218243 4m 18s 232531 4m 2s 53478 3m 45s 46829 3m 15s

Filesystem 1 3 0m 0s 142 0m 4s - (> 30m) 3 0m 0s
Filesystem 2 3 0m 0s 2227 0m 46s - (> 30m) 3 0m 0s

Dining 1 798 0m 3s 1161 0m 3s 3 0m 0s 4 0m 0s
Dining 2 5746 0m 14s 10065 0m 22s 3 0m 1s 3 0m 1s
Dining 3 36095 1m 29s 81527 3m 29s 2 0m 7s 4 0m 1s
Dining 4 205161 12m 55s - (> 30m) - (> 30m) 2 0m 3s

Szymanski 65138 2m 3s 65138 0m 30s 50264 0m 43s 46679 2m 35s

Locking 1 2520 0m 8s 2520 0m 6s 20 0m 1s 18 0m 3s
Locking 2 22680 0m 56s 22680 0m 47s 29 0m 2s 26 0m 9s
Locking 3 - (> 30m) - (> 30m) 115 0m 21s 89 3m 32s

Updater 33269 2m 22s 33463 2m 6s 13586 1m 23s 12259 1m 52s

Writes - (> 30m) - (> 30m) 1 0m 0s 1 0m 0s

Synthetic 1 926 0m 3s 1661 0m 4s 68 0m 1s 62 0m 1s
Synthetic 2 8205 0m 41s 22462 1m 20s 123 0m 7s 97 0m 11s
Synthetic 3 11458 1m 12s 37915 2m 18s 326 1m 8s 298 0m 30s

domized (e.g., the random initial execution), the experiments were repeated ten
times and the average results are reported. As a sanity check, it was checked
that both the naive and the stateful unfolding algorithms generated models of
the same size. From the results it can be seen that the stateful algorithms can
sometimes greatly outperform the stateless testing approaches. The naive algo-
rithm is more lightweight than the unfolding approach and therefore typically
faster for small programs. However, the naive algorithm scales poorly on some
benchmarks. The unfolding based algorithm is only guaranteed to cover the
reachable local states of threads and therefore it typically scales better. In some
cases, such as with Szymanski, our new approach does not provide a significant
reduction to the number of test executions. In such cases the stateful algorithms
can be slower than the stateless counterparts. With stateless unfolding the or-
der in which events are added does not matter and therefore unfolding with
terminals has the additional overhead of sorting the possible extensions. One
disadvantage of the stateful approaches is that they require more memory as the
model and the visited markings need to be stored.

6 Related Work

Stateful approaches have been successful in model checking. However, when sys-
tematically testing real-world programs, storing explored states can require a
considerable amount of memory. Even though methods to alleviate this problem
have been developed (e.g, compression and hashing [9] and selective caching [2]),

202 K. Kähkönen and K. Heljanko

many testing tools rely on stateless exploration. The problem with stateless test-
ing, even when combined with partial order reductions, is that part of the state
space may be explored multiple times. Our work can be seen as balancing be-
tween complete state capturing and stateless search.

Yang et al. [16] propose a related lightweight approach to capture states at
runtime that is based on tracking changes between successive local states without
storing full state information. In their approach the captured local states are
abstract but they capture the shared portion of the state concretely. Therefore,
unlike our approach, their approach cannot directly be combined with DSE. They
also describe a stateful DPOR algorithm based on their state capture approach.
To guarantee the soundness of their algorithm, additional computation needs
to be performed to make sure that any subset of the state space is not missed.
With unfoldings this is handled by adding events in an adequate order.

It is possible to take the valuations of variables into account in state matching.
With symbolic execution this leads to subsumption checking of symbolic states.
Anand et al. [1] propose a combination of subsumption checking and abstractions
for data structures such as lists and arrays. Such approaches are considerably
more heavyweight compared to our approach but can match states that our
approach cannot. An alternative way to reduce the number of states that need
to be explored when using symbolic execution is to use state merging [12], where
multiple execution paths are expressed symbolically instead of exploring them
separately. This, however, makes path constraints more demanding to solve.

7 Conclusions

We have presented a lightweight approach to capture abstract state information
of multithreaded programs. This approach is based on modeling programs under
test with Petri nets and using this model to avoid exploring reachable states
multiple times. We have presented a testing algorithm that combines the mod-
eling approach with DSE. Based on our experiments, lightweight state matching
can greatly improve the scalability of DSE based testing algorithms that target
multithreaded programs. Potential directions for future work are combining the
state capture approach with other partial order reduction algorithms and im-
plementing modeling constructs for common cases such as waits in while loops
that do not change the local state of the waiting thread. Another possibility is
to take variable valuations in different states into consideration. As discussed in
Sect. 1, capturing full state information can be expensive. However, as the Petri
net model contains places for shared variables, it is possible to use the same
shared variable place whenever the shared variable has the same concrete value
(i.e., the value does not depend on inputs). This could make the model more
compact.

Acknowledgments. This work was financially supported by Academy of Fin-
land (project 139402).

Lightweight State Capturing for Automated Testing 203

References

1. Anand, S., Păsăreanu, C.S., Visser, W.: Symbolic execution with abstract sub-
sumption checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 163–181.
Springer, Heidelberg (2006)

2. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer, Hei-
delberg (2003)

3. Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science. Springer (2008)

4. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. Formal Methods in System Design 20(3), 285–310 (2002)

5. Farzan, A., Madhusudan, P.: Causal atomicity. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)

6. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 110–121. ACM (2005)

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag New York, Inc.,
Secaucus (1996)

8. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI 2005), pp. 213–223. ACM (2005)

9. Holzmann, G.J.: The model checker Spin. IEEE Trans. Software Eng. 23(5),
279–295 (1997)

10. Kähkönen, K., Saarikivi, O., Heljanko, K.: Using unfoldings in automated testing
of multithreaded programs. In: Proceedings of the 27th IEEE/ACM International
Conference Automated Software Engineering (ASE 2012), pp. 150–159 (2012)

11. Khomenko, V., Koutny, M.: Towards an efficient algorithm for unfolding Petri nets.
In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 366–380.
Springer, Heidelberg (2001)

12. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp. 193–204. ACM
(2012)

13. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reduc-
tions for concolic testing. In: Proceedings of the 12th International Conference on
Application of Concurrency to System Design (ACSD 2012), pp. 132–141 (2012)

14. Sen, K.: Scalable automated methods for dynamic program analysis. Doctoral the-
sis, University of Illinois (2006)

15. Valmari, A.: Stubborn sets for reduced state space generation. In: Proceedings
of the 10th International Conference on Applications and Theory of Petri Nets:
Advances in Petri Nets 1990, pp. 491–515. Springer, London (1991)

16. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic
partial order reduction. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 288–305. Springer, Heidelberg (2008)

How Test Generation Helps Software Specification
and Deductive Verification in Frama-C�

Guillaume Petiot1,2, Nikolai Kosmatov1, Alain Giorgetti2,3, and Jacques Julliand2

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

2 FEMTO-ST/DISC, University of Franche-Comté, 25030 Besançon Cedex France
firstname.lastname@femto-st.fr

3 INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-lès-Nancy France

Abstract. This paper describes an incremental methodology of deductive verifi-
cation assisted by test generation and illustrates its benefits by a set of frequent
verification scenarios. We present STADY, a new integration of the concolic test
generator PATHCRAWLER within the software analysis platform FRAMA-C. This
new plugin treats a complete formal specification of a C program during test gen-
eration and provides the validation engineer with a helpful feedback at all stages
of the specification and verification tasks.

Keywords: static analysis, test generation, specification, Frama-C, deductive
verification.

1 Introduction

Validation of critical systems can be realized using various verification methods based
on static analysis, dynamic analysis or their combinations. Static analysis is performed
on the source code without executing the program, whereas dynamic analysis is based
on the program execution. Both are complementary and can be advantageously com-
bined [10,3,14,6,7,5,18].

Among static techniques, formal deductive verification allows to establish a rigorous,
mathematical proof that a given annotated program respects its specification. The mod-
ular verification approach requires a formal specification (contract) for each function
describing its admissible inputs and expected results. Modern theorem proving tools
can automatically establish many proofs of correctness, but achieving a fully successful
proof in practice needs a lot of tedious work and manual analysis of proof failures by the
validation engineers. Klein [15] estimates that the cost of one line of formally verified
code is about $700. This high cost is explained by the great difficulty of understand-
ing why a proof fails, and of writing correct and sufficiently complete specifications
suitable for automatic proof of contracts for which loop variants and invariants can be
required.

� The research leading to these results has received funding from the ARTEMIS Joint Undertak-
ing under grant agreement No 269335 and from the French government.

M. Seidl and N. Tillmann (Eds.): TAP 2014, LNCS 8570, pp. 204–211, 2014.
c© Springer International Publishing Switzerland 2014

How Test Generation Helps Deductive Verification in Frama-C 205

The main motivation of this methodology and tool paper is to study how automatic
test generation can help to write a correct formal specification and to achieve its deduc-
tive verification. The contributions of this paper include:

– a brief presentation (in Sec. 2) of a combined STAtic/DYnamic tool named STADY.
Within the software analysis framework FRAMA-C [11], this tool fills the gap be-
tween deductive verification and test generation and allows to treat a complete
formal specification (including pre-/postconditions, assertions, loop invariants and
variants) during test generation with PATHCRAWLER [4];

– a methodology of iterative deductive verification taking advantage of feedbacks
provided by test generation (in Sec. 3). Its benefits are illustrated on a set of frequent
verification scenarios;

– a summary of experiments showing STADY’s bug detection power (in Sec. 3.4).

2 STADY Tool Overview

The STADY tool integrates the concolic test generator PATHCRAWLER [4] into the soft-
ware analysis framework FRAMA-C [11], and in particular allows the user to combine
it with the deductive verification plugin WP [11].

FRAMA-C [11] is a platform dedicated to analysis of C programs that includes
various source code analyzers as separate plugins such as WP performing weakest-
precondition calculus for deductive verification, VALUE performing value analysis by
abstract interpretation, etc. FRAMA-C supports ACSL (ANSI C Specification Language)
[2,11], a behavioral specification language allowing to express properties over C pro-
grams. Moreover, ACSL annotations play a central role in communication between plu-
gins: any analyzer can add annotations to be verified by other ones and notify other
plugins about results of the analysis it performed by changing an annotation status.
The status can indicate that the annotation is valid, valid under conditions, invalid or
undetermined, and which analyzer established this result [9].

For combinations with dynamic analysis, we consider the executable subset of ACSL

named E-ACSL [12,19]. E-ACSL can express function contracts (pre/postconditions,
guarded behaviors, completeness and disjointness of behaviors), assertions and loop
contracts (variants and invariants). It supports quantifications over bounded intervals
of integers, mathematical integers and memory-related constructs (e.g. on validity and
initialization).

PATHCRAWLER [4] is a structural (also known as concolic) test generator for C
programs, combining concrete and symbolic execution. PATHCRAWLER is based on a
specific constraint solver, COLIBRI, that implements advanced features such as floating-
point and modular integer arithmetics support. PATHCRAWLER provides coverage
strategies like k-paths (feasible paths with at most k consecutive loop iterations) and
all-paths (all feasible paths without any limitation on loop iterations). PATHCRAWLER

is sound, meaning that each test case activates the test objective for which it was gen-
erated. This is verified by concrete execution. PATHCRAWLER is also complete in the
following sense: when the tool manages to explore all feasible paths of the program, all
features of the program are supported by the tool and constraint solving terminates for

206 G. Petiot et al.

all paths, the absence of a test for some test objective means that this test objective is
infeasible, since the tool does not approximate path constraints [4, Sec. 3.1].

Given a C program annotated in the executable specification language E-ACSL [11],
STADY first translates its specification into executable C code, instruments the program
for error detection, runs PATHCRAWLER to generate tests for the instrumented code,
and finally returns the results to FRAMA-C. To detect errors, the translation generates
additional branches, enforcing test generation to trigger erroneous cases, and thus to
generate inputs activating the error if such inputs exist. In this way, STADY treats and
triggers errors in assertions, postconditions, loop invariants and variants, and also in
pre- and postconditions of called functions (also called callees). PATHCRAWLER be-
ing complete, whenever test generation terminates without finding any error after an
exhaustive “all-path” coverage, we are sure that the translated E-ACSL properties hold.
If the coverage is only partial but no error occurred, the test generation increases the
confidence that the program respects its specification but cannot guarantee it. However,
errors can be found and used to invalidate the annotations in FRAMA-C even when the
coverage is incomplete.

STADY currently supports most ACSL clauses. Quantified predicates \exists and
\forall and builtin terms as \sum or \numof are translated as loops. Logic functions and
named predicates are handled, however recursivity is currently not supported. \old con-
structs are treated by saving the value of the formal parameters of a function. Validity
checks of pointers are partially supported due to the current limitation of the underlying
test generator: we can only check the validity when a base address is an input pointer.
assert, assumes, behavior, ensures, loop invariant, loop variant and requires clauses are
supported as well. assigns clauses and complex constructs like inductive predicates are
not handled yet and are part of our future work.

3 Verification Scenarios Combining Proof and Testing

During specification and deductive verification, test generation can automatically pro-
vide the validation engineer with a fast and helpful feedback facilitating the verification
task. While specifying a program, test generation may find a counter-example show-
ing that the current specification does not hold for the current code. It can be used at
early stages of specification, even when formal verification has no chances to succeed
yet (e.g. when loop annotations, assertions or callees’ contracts are not yet written). In
case of a proof failure for a specified program property during program proof, when the
validation engineer has no other alternative than manually analyzing the reasons of the
failure, test generation can be particularly useful. The absence of counter-examples after
a rigorous partial (or, when possible, complete) exploration of program paths provides
additional confidence in (resp., guarantee of) correctness of the program with respect
to its current specification. This feedback may encourage the engineer to think that the
failure is due to a missing or insufficiently strong annotation (loop invariant, assertion,
called function contract etc.) rather than to an error, and to write such additional anno-
tations. On the contrary, a counter-example immediately shows that the program does
not meet its current specification, and prevents the waste of time of writing additional
annotations. Moreover, the concrete test inputs and activated program path reported

How Test Generation Helps Deductive Verification in Frama-C 207

1 int delete_substr(char *str, int strlen, char *substr, int sublen, char *dest) {
2 int start = find_substr(str, strlen, substr, sublen), j, k;
3 if (start == -1) {
4 for (k = 0; k < strlen; k++) dest[k] = str[k];
5 return 0;
6 }
7 for (j = 0; j < start; j++) dest[j] = str[j];
8 for (j = start; j < strlen-sublen; j++) dest[j] = str[j+sublen];
9 return 1;

10 }

Fig. 1. Unspecified function delete_substr calling the function of Fig. 2

1 /*@ requires 0 < sublen ≤ strlen;
2 @ requires \valid(str+(0..strlen-1)) ∧ \valid(substr+(0..sublen-1));
3 @ assigns \nothing;
4 @ behavior found:
5 @ assumes ∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
6 @ (∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] == substr[j]);
7 @ ensures 0 ≤ \result < strlen-sublen;
8 @ ensures ∀ j∈ Z; 0 ≤ j < sublen ⇒ str[\result+j] == substr[j];
9 @ behavior not_found:

10 @ assumes ∀ i∈ Z; 0 ≤ i < strlen-sublen ⇒
11 @ (∃ j∈ Z; 0 ≤ j < sublen ∧ str[i+j] �= substr[j]);
12 @ ensures \result == -1; */
13 int find_substr(char *str, int strlen, char *substr, int sublen);

Fig. 2. Verified function find_substr with a “pretty-printed” E-ACSL contract

by the testing tool precisely indicate the erroneous situation. Notice that the objective
is certainly not to fit the specification to (potentially erroneous) code, but to help the
validation engineer to identify the problem (in the specification or in the code) with a
counter-example. Let us illustrate these points on concrete verification scenarios.

Suppose Alice is a skilled validation engineer in charge of specification and deduc-
tive verification of the function delete_substr (Fig. 1). We follow Alice throughout her
validation process. The delete_substr function is supposed to delete one occurrence of
a substring substr of length sublen from another string str of length strlen and to put
the result into dest (pre-allocated for strlen characters), while str and substr should
not be modified. For simplicity, we use arrays rather than usual zero-terminated strings.
The delete_substr function returns 1 if an occurrence of the substring was found and
deleted, and 0 otherwise. We assume Alice has already successfully proved the correct-
ness of find_substr (Fig. 2) supposed to return the index of an occurrence of substr in
str if this substring is present, and −1 otherwise.

Alice first writes the following precondition (added before line 1 of Fig. 1):

requires 0 < sublen ≤ strlen;
requires \valid(str+(0..strlen-1));
requires \valid(dest+(0..strlen-1));
requires \valid(substr+(0..sublen-1));
requires \separated(dest+(0..strlen-1), substr+(0..sublen-1));
requires \separated(dest+(0..strlen-1), str+(0..strlen-1));
typically strlen ≤ 5;

We propose here the new clause typically C; that extends E-ACSL and defines the
precondition C only for test generation. It allows Alice to strengthen the precondition

208 G. Petiot et al.

if she desires to restrict the (potentially too big) number of paths to be explored by
test generation to user-controlled partial coverage. Here the clause typically strlen ≤5

asks to cover all feasible paths where str is of length 5 or less. Ignored by deductive
verification, this clause does not impact the proof. The extension of ACSL with the
typically keyword is an experimental feature, not available in the distributed version of
FRAMA-C.

3.1 Early Validation

Now Alice specifies that the function can assign only the array dest, and defines the
postcondition for the case when the substring does not occur in the string. She adds the
following (erroneous) clauses into the contract after the precondition defined above:

assigns dest[0..strlen-1];
behavior not_present:
assumes !(∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] �= substr[j]));

ensures ∀ k∈ Z; 0 ≤ k < strlen ⇒ \old(str[k]) == dest[k];
ensures \result == 0;

To validate it before going further, Alice applies STADY. It runs test generation and
reports that both ensures clauses are invalidated by the counter-example strlen = 2,
sublen = 1, str[0] = ’A’, str[1] = ’B’, substr[0] = ’A’, dest[0] = ’B’ and \result = 0.
Alice sees that in this case the string substr has to be found in the string str and the
behavior not_present should not apply, so its assumes clause must be erroneous. This
helps Alice to correct the assumption by replacing �= with ==, to get:

assumes !(∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] == substr[j]));

Running STADY again reports that all feasible paths with strlen ≤5 have been covered
(within 3.4 sec.) and 9442 test cases have been successfully generated and executed.
Alice is now pretty confident that this behavior is correctly defined.

For the complementary case Alice copy-pastes the not_present behavior and
(wrongly) modifies it into the following behavior:

behavior present:
assumes ∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] == substr[j]);

ensures ∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ \old(str[i+j]) == \old(substr[j])) ∧
(∀ k∈ Z; 0 ≤ k < i ⇒ \old(str[k]) == dest[k]) ∧
(∀ l∈ Z; i ≤ l < strlen ⇒ \old(str[l+sublen]) == dest[l]);

ensures \result == 1;

Again, Alice runs STADY. The tool reports an out-of-bounds error in accessing the
element of str at index l+sublen in the last ensures. This helps Alice to understand that
the upper bound of index l should be strlen-sublen instead of strlen. She fixes this
error and re-runs STADY. Test generation reports that 13448 test cases cover without
errors the feasible paths for strlen ≤5. Alice is now satisfied with the defined behaviors.
Notice that these cases exhibit errors in the specification. In other cases errors could be
in the program (cf Sec. 3.4).

How Test Generation Helps Deductive Verification in Frama-C 209

3.2 Incremental Loop Validation

Alice now specifies as follows the first for-loop at line 4 in Fig. 1:
loop invariant ∀ m∈ Z; 0 ≤ m < k ⇒ dest[m] == \at(str[m],Pre);
loop assigns k, dest[0..strlen-1];
loop variant strlen-k;

Then Alice runs WP. The deductive verification tool cannot validate the postcondition
of delete_substr, in particular because the other two loops are not yet specified. How-
ever, WP could validate the annotations of the first loop. Here it fails, and Alice does
not know whether it is because the loop specification is already incorrect, or because it
is not complete enough to be verified. She runs STADY, which does not find any error
in the loop specification and the postcondition, after 15635 test cases. Alice now be-
lieves that loop specification is valid but incomplete. This confidence helps her to add
an additional invariant

loop invariant 0 ≤ k < strlen;

defining the bounds for k. Alice tries again to prove the loop, and WP fails again.
She runs STADY and this time the new loop invariant is invalidated. After analyzing the
failure on a simple counter-example, Alice understands that the loop invariant k <strlen

is not correct. Indeed, k is equal to strlen after the last iteration, so the loop invariant
should say k ≤strlen. After fixing this error, WP succeeds to prove the loop annotations.
Similarly, Alice iteratively specifies and verifies the other two loops.

The now completely specified function delete_substr can be fully proved by WP.
However its default timeout (10 seconds per property) has to be significantly extended
(e.g. to 50 seconds per property). The fact that test generation achieves (within only 4
sec.!) a significant partial coverage (restricted by the typically clause for testing) and
finds no error convinces Alice to increase the timeout, that could be a waste of time
when a counter-example can show why the program does not respect the specification.

3.3 Adaptation of Callees’ Contracts for Modular Verification

It often happens that the contract of a called function is fully proved, but is too weak
to prove the caller. For instance assume that the clause at line 7 of Fig. 2 is missing.
Running WP on the whole program, Alice sees that find_substr is totally proved, but
the postcondition and loop annotations of delete_substr are not proved. Since test gen-
eration does not find any counter-example, Alice believes that some necessary clause
is too weak or missing. Moreover, all properties depending on the behavior not_found

being fully proved, Alice reasonably suspects that the found behavior of find_substr is
not strong enough.

3.4 Detecting Errors in Source Code

Counter-examples generated by STADY can also help to detect potential errors in the
code. To evaluate its bug detection ability, we specified in E-ACSL 26 programs mostly
taken from the TACAS 2014 Competition, generated 1088 mutants (that mimic frequent
programming errors) and applied STADY to detect errors in them. The E-ACSL contract
in mutants was not changed. 96.68% of non equivalent mutants have been successfully
reported as buggy.

210 G. Petiot et al.

4 Conclusion and Future Work

We showed by a number of selected verification scenarios how automatic test generation
provides a useful feedback that helps the validation engineer to test the conformance of
a program to its (even partial) specification, identify errors, understand them thanks to
generated counter-examples, and finally find missing, insufficient or wrong annotations,
or detect bugs in the code. These scenarios sketch an iterative methodology assisted
by test generation that makes deductive verification easier, less costly in time, more
interactive and less error-prone. We presented the STADY tool, integrating a concolic
test generator into FRAMA-C. A more detailed description of the STADY tool, some
verification scenarios and initial experiments are available in [17].

Among previous combinations of static and dynamic analyses, [3,14] developed
combinations of predicate abstraction and software testing. [5] described HOL-TestGen,
a formally verified test-system extending the interactive theorem prover Isabelle/HOL.
The design of JML accommodates both deductive and runtime verification [16]. Com-
binations of deductive verification and testing for imperative languages were recently
studied and implemented for C# programs specified with Boogie in [18], and combining
Dafny and Pex in [7]. In [8], the specification-based random testing tool Quickcheck is
used to find counter-examples to invariants that have not been formally verified by au-
tomated theorem provers. [13] described an approach to show the correctness of a Java
program and in case of a verification failure to show a counter-example or to guide the
user. A counter-example is found based on information contained in proof trees of failed
verification attempts, so the process has to start with a proof attempt. In our approach
it is not necessary to start with a proof, the user may start by testing if she thinks the
program is more likely to contain bugs. [1] addressed the verification of first-order logic
axioms, that are provided by the user to theorem provers and supposed to hold. In this
work, model-based random testing is used to find counter-examples to axiomatizations,
but no coverage is ensured.

Our work continues these efforts for C programs in the FRAMA-C framework and
proposes a methodology of incremental specification and deductive verification assisted
by test generation. The SANTE method [6] proposed a combination of value analysis,
slicing and test generation in order to detect runtime errors. Our present work combines
deductive verification with testing, treats complete E-ACSL specifications (while SANTE

treated only simple assertions) and thus handles in addition a large class of functional
properties that were not supported in SANTE.

Future work includes further evaluation of the proposed methodology, experiments
on real-size programs and a better support of E-ACSL constructs in our implementation
(inductive predicates, assigns clauses, validity checks for non-input pointers).

Acknowledgment. The authors thank the FRAMA-C and PATHCRAWLER teams for
providing the tools and support. Special thanks to François Bobot, Bernard Botella,
Loı̈c Correnson, Pascal Cuoq, Bruno Marre, Julien Signoles and Nicky Williams for
many fruitful discussions, suggestions and advice.

How Test Generation Helps Deductive Verification in Frama-C 211

References

1. Ahn, K.Y., Denney, E.: Testing first-order logic axioms in program verification. In: Fraser, G.,
Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 22–37. Springer, Heidelberg (2010)

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, http://frama-c.com/acsl.html

3. Beyer, D., Henzinger, T., Theoduloz, G.: Program analysis with dynamic precision adjust-
ment. In: ASE (2008)

4. Botella, B., Delahaye, M., Hong Tuan Ha, S., Kosmatov, N., Mouy, P., Roger, M., Williams,
N.: Automating structural testing of C programs: Experience with PathCrawler. In: AST
(2009)

5. Brucker, A.D., Wolff, B.: On theorem prover-based testing. FAC (2012)
6. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances a verification

technique combining static and dynamic analysis. In: SAC (2012)
7. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with

explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 132–146. Springer, Heidelberg (2012)

8. Claessen, K., Svensson, H.: Finding counter examples in induction proofs. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 48–65. Springer, Heidelberg (2008)

9. Correnson, L., Signoles, J.: Combining analyses for C program verification. In: Stoelinga,
M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130. Springer, Heidelberg
(2012)

10. Csallner, C., Xie, T.: DSD-Crasher: A hybrid analysis tool for bug finding. In: ISSTA (2006)
11. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C - a

software analysis perspective. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

12. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static and
dynamic analysis of C programs. In: SAC (2013)

13. Gladisch, C.: Could we have chosen a better loop invariant or method contract? In: Dubois,
C. (ed.) TAP 2009. LNCS, vol. 5668, pp. 74–89. Springer, Heidelberg (2009)

14. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.D.: Compositional may-must program
analysis: unleashing the power of alternation. In: POPL (2010)

15. Klein, G.: From a verified kernel towards verified systems. In: Ueda, K. (ed.) APLAS 2010.
LNCS, vol. 6461, pp. 21–33. Springer, Heidelberg (2010)

16. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML accom-
modates both runtime assertion checking and formal verification. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 262–284.
Springer, Heidelberg (2003)

17. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: StaDy: Deep Integration of Static and
Dynamic Analysis in Frama-C. Tech. rep. (2014),
http://hal.archives-ouvertes.fr/hal-00992159

18. Polikarpova, N., Furia, C.A., West, S.: To run what no one has run before: Executing an inter-
mediate verification language. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174,
pp. 251–268. Springer, Heidelberg (2013)

19. Signoles, J.: E-ACSL: Executable ANSI/ISO C Specification Language,
http://frama-c.com/download/e-acsl/e-acsl.pdf

http://frama-c.com/acsl.html
http://hal.archives-ouvertes.fr/hal-00992159
http://frama-c.com/download/e-acsl/e-acsl.pdf

Author Index

Aichernig, Bernhard K. 1
Alec, Céline 158
Amin, Nada 20
Arcaini, Paolo 36
Auer, Jakob 1

Bardin, Sébastien 53
Bubel, Richard 82

Chapman, Rod 142
Chebaro, Omar 53
Comar, Cyrille 142

Delahaye, Mickaël 53
Diepenbeck, Melanie 61
Drechsler, Rolf 61

Gabmeyer, Sebastian 78
Galeotti, Juan Pablo 134
Gargantini, Angelo 36
Giorgetti, Alain 204
Gogolla, Martin 99
Guitton, Jerôme 142

Hähnle, Reiner 82
Heljanko, Keijo 187
Hentschel, Martin 82
Hilken, Frank 99

Jannesari, Ali 117
Jöbstl, Elisabeth 1
Julliand, Jacques 204

Kähkönen, Kari 187
Kampmann, Alexander 134

Kanig, Johannes 142
Koprowski, Nico 117
Korošec, Robert 1
Kosmatov, Nikolai 53, 158, 165, 204
Krenn, Willibald 1
Kühne, Ulrich 61
Kurth, Felix 169

Leino, K. Rustan M. 20
Lemerre, Matthieu 158

Moy, Yannick 142

Niemann, Philipp 99

Petiot, Guillaume 204

Rees, Emyr 142
Riccobene, Elvinia 36
Rompf, Tiark 20

Schimmel, Jochen 117
Schlick, Rupert 1
Schmidt, Birgit Vera 1
Schupp, Sibylle 169
Signoles, Julien 165
Soeken, Mathias 61

Weißleder, Stephan 169
Wille, Robert 99
Wolf, Felix 117

Zeller, Andreas 134

	Preface
	Organization
	Table of Contents
	Model-Based Mutation Testing of an Industrial Measurement Device
	1 Introduction
	2 System under Test: A Particle Counter
	3 Test Case Generation with MoMuT::UML
	3.1 Test Case Generation for the Particle Counter

	4 Concretion, Test Execution, and Analysis of Results
	4.1 Execution Results for the Particle Counter
	4.2 Evaluation of the Test Suites

	5 Related Work
	6 Conclusion
	References

	Computing with an SMT Solver
	1 Introduction
	2 A Primer on Matching Patterns
	3 User-Defined Functions and Curbing in Dafny
	4 Enabling Computation
	5 Experience
	5.1 Limitations

	6 Related Work
	7 Conclusions
	References

	An Abstraction Technique for TestingDecomposable Systems by Model Checking
	1 Introduction
	2 Background
	2.1 Kripke Structures
	2.2 Encoding Kripke Structures with Inputs in NuSMV
	2.3 Model-Based Test Generation by Model Checking

	3 DDAPSystems
	3.1 Encoding DDAP Systems in NuSMV

	4 Test Generation for DDAP Systems
	4.1 Decomposition by Dependency Abstraction

	5 Generalization to DDAP Systems with n Components
	6 InitialExperiment
	7 Related Work
	8 Conclusions
	References

	An All-in-One Toolkit for Automated White-Box Testing
	1 Introduction
	2 Labels
	3 OverviewofthePlatform
	3.1 From the User Perspective
	3.2 A Typical Use-Case
	3.3 Inside LTEST
	3.4 Implementation Details

	4 Experiments
	5 Related Work
	6 Conclusion and Future Work
	References

	Behaviour Driven Development for Tests and Verification
	1 Introduction
	2 Background
	2.1 Property Specification Language
	2.2 Running Examples
	2.3 Behaviour Driven Development

	3 BDD for Tests and Verification
	3.1 From Tests to Generalised Properties
	3.2 Limitation of Test Generalisation into Properties
	3.3 Specifying Properties

	4 Discussion
	5 Related Work
	6 Conclusions
	References

	Quality Assurance in MBE Back and Forth
	1 Introduction
	2 Outline of the Tutorial
	3 cOCLandMocOCL
	References

	Visualizing Unbounded Symbolic Execution
	1 Introduction
	2 Symbolic Execution
	3 Symbolic Execution with Specifications
	3.1 Symbolic Execution using Loop Invariants
	3.2 Symbolic Execution Using Contracts

	4 Application and Visualization
	5 Related Work and Discussion
	6 Conclusion and Future Work
	References

	Filmstripping and Unrolling: A Comparison of Verification Approaches for UML and OCL Behavioral Models
	1 Introduction
	2 Conceptual Workflows
	3 Comparison of the Verification Approaches
	3.1 Running Example Model Definition
	3.2 Verification Using the Filmstripping Approach
	3.3 Verification Using the Unrolling Approach

	4 Discussion of Comparison Criteria
	5 Related Work
	6 Conclusion and Future Work
	References

	Generating Classified Parallel Unit Tests
	1 Introduction
	2 Background
	2.1 High-level Data Races
	2.2 Parallel Unit Tests

	3 Related Work
	4 Approach
	4.1 AutoRT
	4.2 Overview of AutoRT+
	4.3 Shared vs. Method Pair-Shared (MP-Shared)
	4.4 Identifying Computational Units
	4.5 Identifying Correlated Variables
	4.6 Endangered Atomicity
	4.7 Unit Test Classification

	5 Implementation
	6 Evaluation
	6.1 Correlation Detection Efficiency
	6.2 Classification Precision
	6.3 Performance

	7 Conclusion
	References

	JTACO: Test Execution for Faster Bounded Verification
	1 Introduction
	2 From Partial Assignments to JUNIT Test Cases
	3 Evaluation
	4 Conclusions and Further Work
	References

	Explicit Assumptions - A Prenup for MarryingStatic and Dynamic Program Verification
	1 Introduction
	1.1 SPARK
	1.2 Related Work
	1.3 Outline

	2 Assumptions Management in a Large Safety-Critical Project
	2.1 The Requirements Satisfaction Argument
	2.2 From SPARK to C (and Back Again)
	2.3 Example
	2.4 Summary

	3 Tool Assisted Assumptions Management
	4 Coarse-Grain Assumptions Management
	5 Fine-Grain Assumptions Management
	5.1 Claims and Assumptions
	5.2 Discharging Assumptions
	5.3 A Concrete Example

	6 Conclusion
	References

	A Case Study on Verification of a Cloud Hypervisor by Proof and Structural Testing
	1 Introduction
	2 The Anaxagoros Hypervisor and Its Virtual Memory Module
	3 The Verification Approach and Methodology
	3.1 Context and Objectives
	3.2 The Methodology
	3.3 Benefits and Limitations of the Approach

	4 Related Work and Conclusion
	References

	Runtime Assertion Checking and Its Combinations with Static and Dynamic Analyses
	1 Introduction
	2 Tutorial Outline
	3 About the Presenters
	References

	Generating Test Data from a UML Activity Using the AMPL Interface for Constraint Solvers
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 AMPL and Its Solvers
	3.2 Semantics of the Test Models

	4 The Algorithm
	4.1 Overview
	4.2 AMPL Transformation
	4.3 Boundary Value Analysis
	4.4 Early Infeasible Path Elimination

	5 Results
	5.1 Mixed Integer Non–linear Example Model
	5.2 Case Study
	5.3 Limitations and Outlook

	6 Summary and Recommendation
	References

	Lightweight State Capturing for AutomatedTesting of Multithreaded Programs
	1 Introduction
	2 Background
	2.1 Dynamic Symbolic Execution
	2.2 Petri Nets and Unfoldings

	3 Modeling Test Executions
	3.1 Advantages and Limitations for State Matching

	4 Systematic Model Construction
	4.1 Naive Stateful Approach
	4.2 Unfolding Based Approach

	5 Experiments
	6 Related Work
	7 Conclusions
	References

	How Test Generation Helps Software Specification and Deductive Verification in Frama-C
	1 Introduction
	2 STADY Tool Overview
	3 Verification Scenarios Combining Proof and Testing
	3.1 Early Validation
	3.2 Incremental Loop Validation
	3.3 Adaptation of Callees’ Contracts for Modular Verification
	3.4 Detecting Errors in Source Code

	4 Conclusion and Future Work
	References

	Author Index

