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Abstract Most high-dimensional data exhibit some correlation such that data
points are not distributed uniformly in the data space but lie approximately on a
lower-dimensional manifold. A major problem in many data-mining applications is
the detection of such a manifold from given data, if present at all. The generative
topographic mapping (GTM) finds a lower-dimensional parameterization for the
data and thus allows for nonlinear dimensionality reduction. We will show how a
discretization based on sparse grids can be employed for the mapping between latent
space and data space. This leads to efficient computations and avoids the ‘curse of
dimensionality’ of the embedding dimension. We will use our modified, sparse grid
based GTM for problems from dimensionality reduction and data classification.

1 Introduction

High-dimensional data often exhibit a correlation structure between the variables,
which means that there are areas in the data space with little or no data points.
A suitable low-dimensional projection of the data then allows a more compact
description, a better visualization and a more efficient processing.

One approach to dimensionality reduction is to express the high-dimensional
data in terms of latent variables. A well-known method is the Principal Component
Analysis (PCA), which is based on the diagonalization of the data covariance
matrix. However, the PCA is by construction a linear method. As such, it is not
capable of modeling nonlinear lower-dimensional dependencies and sometimes may
fail. A simple three-dimensional example, the so called ‘Swiss roll’, is given in
Fig. 1. Here, the topological structure of the data is not preserved under the mapping
into two dimensions and points originally far apart on the manifold are close-by in
the two-dimensional projection.

This is why nonlinear methods are necessary. Some common approaches are
multidimensional scaling (MDS), curvilinear component analysis (CCA), curvilin-
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Fig. 1 The projection of the ‘Swiss roll’ data (left) onto the first two principal components results
in a two-dimensional representation (right)

ear distance analysis (CDA), Laplacian eigenmaps (LE), locally linear embedding
(LLE), Kohonen’s self-organizing map (SOM), generative topographic mapping
(GTM) and kernel PCA (KPCA), cf. [17]. Unfortunately, capturing nonlinearities
comes at the price of a significant increase in computational complexity and with
the problem of possibly finding only a locally optimal solution.

In this article we will focus on the generative topographic mapping (GTM) [4].
Usually, the latent space of the generative model is limited to two or three
dimensions due to the ‘curse of dimensionality’. It means that the cost complexity
for the approximation to the solution of a problem grows exponentially with the
dimension d , i.e. it is of the order O.h�d / with h being the one-dimensional mesh-
width. Instead, we use sparse grids [6] for the discretization of the mapping between
latent space and data space. Then, the number of degrees of freedom grows only by
O.h�1 .logh�1/d�1/, which is a substantial improvement. This approach has also
been followed for principal curves and manifolds in [10]. Of course, this saving in
computational complexity comes at a cost, namely an additional logarithmic error
term and a stronger smoothness assumption on the mapping. As a result, we get a
sparse GTM (SGTM), which basically achieves the same level of accuracy with less
degrees of freedom. In contrast to the conventional GTM, it can cope with higher-
dimensional latent spaces.

This paper is organized as follows: In Sect. 2, we describe our generative model,
which is based on a mapping between the lower-dimensional latent space and the
data space. In Sect. 3, we present a method to find the mapping by minimizing a
certain target functional, i.e. the regularized cross-entropy between the model and
the given data. Then, in Sect. 4, we show how we can obtain the original GTM as
well as the sparse GTM by special discretization choices. In Sect. 5, we apply the
sparse GTM to a benchmark dataset from literature and a real-world classification
problem. Some final remarks conclude this paper.
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2 The Generative Model

In the following, we will describe a generative model, which is based on a low-
dimensional parameterization.

We want to represent a d -dimensional density p.t/ � 0; t 2 R
d , by a density

that is intrinsically low-dimensional. To this end, we introduce a mapping

y W Œ0; 1�L ! R
d

with L � d that connects the L-dimensional latent space Œ0; 1�L and the data
space Rd . The generated density is then

qy;ˇ.t/ D
�
ˇ

2�

�d=2 Z
Œ0;1�L

exp

�
�ˇ
2

ky.x/� tk2
�

dx : (1)

It can be interpreted as the image of anL-dimensional uniform distribution under the
mapping y with additional Gaussian noise, which is controlled by the parameter ˇ,
see Fig. 2 for an illustration. It is easy to see that

R
Rd
qy;ˇ.t/dt D 1, i.e. qy;ˇ is a

density in the d -dimensional data space.
The aim is now to choose a mapping y and an inverse variance ˇ 2 RC, such

that the dissimilarity between qy;ˇ and p is minimized. To be precise, for a given
regularization term �S.y/ and density p.t/, we want to minimize the regularized
cross-entropy [16]

G .y; ˇ/ WD H.p; qy;ˇ/C �S.y/ (2)

D �
Z
Rd

p.t/ log
Z
Œ0;1�L

exp

�
�ˇ
2

ky.x/� tk2
�

dxdt � d

2
log

ˇ

2�
C �S.y/

in y and ˇ. For the remainder of this paper, we assume S.y/ D Pd
kD1 kykk2H ,

where y.x/ D .y1.x/; : : : ; yd .x// and k � kH D .�; �/1=2H denotes a given norm or
seminorm in a prescribed Hilbert space H . This naturally requires the components
of the vector-valued function y to be an element ofH . For an in-depth discussion of

data spacemappinglatent space

y(x)

Fig. 2 The L-dimensional data space is mapped by y into the d -dimensional data space. There,
the model assumes multivariate Gaussian noise with variance ˇ�1
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the relation between regularization terms and associated function spaces, see [20].
A weak regularization with a too small � or even � D 0 leads to overfitting, i.e.,
the method models random noise instead of a meaningful underlying relationship
between latent variables and the data set. A regularization that is too strong might
prevent the method from discovering relevant features of the data. We recommend
choosing the parameter � for reconstruction and classification tasks by cross-
validation techniques [7, 15].

3 Functional Minimization

Let us now show how the GTM functional G can be efficiently minimized even
though it is nonlinear and nonconvex in y and ˇ. It is important to note that the
functional equals the logarithm of the partition function, and we can rearrange it
to its free energy form for easier numerical treatment. First we define the posterior
probabilities Ry;ˇ W Rd � Œ0; 1�L ! R by

Ry;ˇ.t; x/ WD e� ˇ
2 ky.x/�tk2

R
Œ0;1�L

e� ˇ
2 ky.x0/�tk2dx0

:

Next, we introduce the functional

K . ; y; ˇ/ WD
Z
Rd

p.t/
Z
Œ0;1�L

 .t; x/ log .t; x/dxdt (3)

Cˇ

2

Z
Rd

p.t/
Z
Œ0;1�L

 .t; x/ky.x/� tk2dxdt � d

2
log

ˇ

2�
C �S.y/ :

Here, for all t 2 R
d it must hold that  .x; t/ is a density in x. Then, a lengthy, but

otherwise simple calculation reveals that

K .Ry;ˇ; y; ˇ/ D G .y; ˇ/ for all y; ˇ: (4)

We now minimize K by successively minimizing with respect to its single
parameters , y and ˇ. This is advantageous, because these subproblems are convex
even though G is not.

The following three minimization steps have to be carried out in an outer iteration
until we converge to a local minimum. Minimizing with respect to ˇ yields

arg minˇK . ; y; ˇ/ D
�
1

d

Z
Rd

p.t/
Z
Œ0;1�L

 .t; x/ky.x/� tk2dxdt
��1

: (5)
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The posterior probabilitiesRy;ˇ minimize K w.r.t.  , i.e.

arg min K . ; y; ˇ/ D Ry;ˇ ; (6)

which is analogous to statistical physics, where the Boltzmann-distribution mini-
mizes the free energy [18]. In combination with (4), this step can be understood as
a projection back into the permissible search space since

K .arg min K . ; y; ˇ/; y; ˇ/ D K .Ry;ˇ; y; ˇ/ D G .y; ˇ/ :

To minimize K in y-direction, we need to solve the quadratic regression type
problem

arg miny

Z
Rd

p.t/
Z
Œ0;1�L

 .t; x/ky.x/� tk2dxdt C 2�

ˇ
S.y/ : (7)

4 Discretization of the Model

We now discretize the mapping y by M basis functions �j W Œ0; 1�L ! R; j D
1; : : : ;M; and obtain yM.x/ D W�.x/ with the coefficient matrix W 2 R

d�M
and �.x/ D .�1.x/; : : : ; �M .x//T . The minimization of the K -functional in y-
direction (7) then amounts to solving d decoupled systems of linear equations for
r D 1; : : : ; d

Awr D zr (8)

with wr D ..W/r1; : : : ; .W/rM /
T , A 2 R

M�M and zr 2 R
M . The entries of the

matrix A and the vectors zr can be computed for i; j D 1; : : : ;M by

.A/ij D
Z
Rd

p.t/
Z
Œ0;1�L

 .t; x/�j .x/�i .x/dxdt C 2�

ˇ
.�i ; �j /H and (9)

.zr /i D
Z
Rd

p.t/
Z
Œ0;1�L

 .t; x/.t/r�i .x/dxdt ; r D 1; : : : ; d: (10)

Note here that the derivation of our model in Sect. 2 started with the explicit
knowledge of the continuous density p.t/. This is however in general not the case
in most practical settings. There, rather an empirical density pemp

N .t/ based on N
data points .tn/NnD1 is given instead. Therefore, for the remainder of this paper, we
furthermore replace the continuous density p.t/ by a sum of Dirac-delta-functions
p

emp
N .t/ D 1

N

PN
nD1 ıtn.t/. Then, the dt-integrals in (9) and (10) get replaced by

sums, which corresponds to discretization by sampling.
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4.1 Original GTM

Now, two further discretization steps can be taken. First, we choose L-variate
Gaussians as the specific functions in the basis function vector � W Œ0; 1�L ! R

M .
Their centers lie on a uniform mesh in the L-dimensional latent space with mesh
width h1. Then M D O.h�L

1 / and h1 D O.M� 1
L /, respectively. Secondly,

we choose a tensorized rectangle rule on a uniform mesh with width h2 for the
numerical quadrature of the dx-integrals in (9) and (10), which results in K D
O.h�L

2 / quadrature points .xi /KmD1. This is equivalent to assuming a grid-based
latent space distribution, as it is done in [4].

We obtain the resulting systems of linear equations (8), where now

.A/ij D 1

NK

NX
nD1

KX
mD1

 .tn; xm/�j .xm/�i .xm/C 2�

ˇ
.�i ; �j /H and (11)

.zr /i D 1

NK

NX
nD1

KX
mD1

 .tn; xm/.tn/r�i .xm/ ; r D 1; : : : ; d; (12)

for i; j D 1; : : : ;M .
Note that in our successive minimization of K , see Sect. 3, the minimization (6)

with respect to  equals the E-Step and the minimization steps (5) and (7) with
respect to ˇ and y equal the M-Step of the well-known Expectation Maximization-
algorithm [8]. In all steps, the discretized versions of y and the dx-integrals now
need to be employed. Altogether, we finally obtain the GTM [4], or, the other way
around, we see that the original GTM is a special discretization of our generative
model (1).

Note furthermore that the M degrees of freedom in the discretization and the K
function evaluations for numerical quadrature have both an exponential dependence
on the embedding dimension L. This severely limits the GTM to the cases L � 3.
To overcome this issue, we will choose some other type of discretization of our
generative model in the following.

4.2 Sparse GTM

We now suggest to use a sparse grid discretization [6] for the components of the
mapping y instead of a uniform, full mesh. We denote the resulting numerical
method as the sparse GTM. To explain our new approach in detail, let us first
consider a one-dimensional level-wise sequence of conventional sets of piecewise
linear basis functions on the interval Œ0; 1�. There, the space Vl on level l � 0

contains nl D 2l C 1 hat functions �l;i W Œ0; 1� ! R

�l;i .x/ D max.1 � 2l jx � xl;i j ; 0/ ;
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l = 3

l = 2

l = 1

l = 0

Fig. 3 The first four hierarchical surplus spaces of the one-dimensional hierarchical basis (left).
Two-dimensional tensorization and the sparse subspace (right)

which are centered at the points of an equidistant mesh xl;i D 2�l i; i D 0; : : : ;

nl � 1. Next, we consider the hierarchical surplus spaces Wl , where VlC1 D Vl ˚
WlC1, see also the left-hand side of Fig. 3. They can be easily constructed by

Wl D spanf�l;i W i 2 �lg with �l WD
(

f0; 1g for l D 0

fi odd; 1 � i � 2l � 1g else.

With the multi-indices l D .l1; : : : ; lL/ 2 N
L, i D .i1; : : : ; iL/ 2 N

L, the d -
variate functions �l;i.x/ D �l1;i1 .x1/ � � ��lL;iL .xL/ and the Cartesian products �l WD
�L
sD1�ls , we obtain L-dimensional spaces Wl D spanf�l;i W i 2 �lg. Then,

V
.1/
J WD

M
jlj

1

�J
Wl D

LO
sD1

JM
lsD0

Wli D
LO
sD1

VJ

resembles just a normal isotropic full grid (FG) space up to level J , while

V
.1/
J WD

M
jlj1�JCd�1

Wl (13)
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denotes the sparse grid (SG) space1 on level J . The former has M FG D O.2LJ /
degrees of freedom, while the latter has only M SG D O.J L�12J / degrees of
freedom. However, under the assumption of bounded mixed derivatives, both
discretizations have essentially the same L2-error convergence rate, see [6, 9] for
further analysis and implementational issues. The use of this kind of discretization
for every component of the vector-valued mapping y, i.e. ySG D .ySG

1 ; : : : ; ySG
d /

with ySG
r 2 V .1/

J ; r D 1; : : : ; d , then yields a sparse GTM.
The corresponding L-dimensional integration problems (9) and (10) for setting

up the associated systems of linear equations (8) are approximated by evaluation
points xm with fixed weights �m for m D 1; : : : ; K . Here, methods like Quasi
Monte-Carlo or sparse grid quadrature [11] can be used. Then, K does not exhibit
the ‘curse of dimensionality’ with respect to L.

We obtain the resulting systems of linear equations (8), where now

.A/l;i;k;j D 1

N

NX
nD1

KX
mD1

�m .tn; xm/�l;i.xm/�j;k.xm/C 2�

ˇ
.�l;i; �k;j/H and (14)

.zr /l;i D 1

N

NX
nD1

KX
mD1

�m .tn; xm/.tn/r�l;i.xm/ ; r D 1; : : : ; d; (15)

with jlj1; jkj1 � J C d � 1; i 2 �l; j 2 �k.
When we minimize the functional K in y-direction the systems (8) have to be

solved. As recommended in [4], we use a direct method. An LU factorization of
the matrix A costs O

�
.M SG/3

�
. Then, the forward and backward substitution steps

for d different right-hand sides of (8) cost O
�
d � .M SG/2

�
. For high-dimensional

data sets with d > M SG, these steps can be more relevant cost-wise than the initial
factorization of A.

It is also possible to solve the system (8) for each right-hand side by an iterative
method. Then the costs are O.d �#it �X/, where #it denotes the number of necessary
iteration steps and X is the cost of one matrix-vector multiplication. Typically, the
unidirectional principle [2, 5] is used for the fast multiplication with sparse grid
operator matrices, but this algorithm is not applicable here since the function  
in (14) does not allow a product representation in x. However, in contrast to
the Original GTM from Sect. 4.1, our sparse GTM results in a somewhat sparse
matrix A. This can be exploited in the matrix vector multiplication of A. Note
that the regularization term 2�

ˇ
.�; �/H prevents the matrix A from being severely

ill-conditioned. Here, however, keeping #it low and bounded independently of
the discretization level J is a matter of preconditioning the matrix (14), which
is nontrivial and future work. Since we presently cannot guarantee that the costs

1We can replace jlj1 by jlj1 C jfs W ls D 0gj in (13), which leads to a slightly different treatment
of boundary functions, but has otherwise the same asymptotic properties, see [9].
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Fig. 4 The three-dimensional ‘open box’ (left), a sparse GTM fitted to this dataset (middle) and
the two-dimensional projection of the data points (right)

O.d �#it�X/ are lower than O
�
d �.M SG/2

�
for the direct method in high-dimensions,

we decided to stick with the LU factorization for now.
To demonstrate the nonlinear quality of the method, we apply the sparse GTM to

the ‘open box’ benchmark dataset [17] in Fig. 4. We see a reasonable unfolding of
the box in the two-dimensional embedding, which would not be possible with linear
methods, like e.g. a conventional PCA.

5 Numerical Experiments

In this section, we will now present the results for the sparse GTM for some
problems from dimensionality reduction and data classification.

5.1 Dimensionality Reduction

On the left-hand side of Fig. 5, we present a toy example with data points stemming
from a wave-shaped manifold. Since we here have a sufficiently large amount
of data points, we need no regularization term. We measure the GTM functional
value G .y; ˇ/, see (2), after 5 minimization cycles for K , see (3). On the right-
hand side, we see that the sparse GTM achieves about the same reduction in the
GTM functional value with substantially less degrees of freedom than the GTM
based on a full grid.

Next, we consider a real-world problem. Figure 6 shows a three-dimensional
projection of a 12-dimensional data set. It consists of 1,000 data points with
diagnostic measurements of oil flows along a multi-phase pipeline. The three
different class types in the plot represent stratified, annular and homogeneous
multi-phase configurations, compare [3] for further details. In [4], it was shown
how a two-dimensional embedding of the data with the GTM gives an improved
separation of the clusters compared to the embedding with the PCA. We now run
this experiment with a sparse GTM with L D 2 and L D 3, discretization level
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Fig. 6 Embedding of a 12-dimensional data set with three class labels by the sparse GTM in two
dimensions (left) and three dimensions (right)

J D 4, H1
mix-seminorm regularization and � D 4:0 � 10�3. We see that the three-

dimensional latent space offers an even more detailed picture of the data than the
two-dimensional embedding and a slightly better separation of the different clusters.

5.2 Classification

We now use the sparse GTM for classification. To this end, we append a class
variable cn 2 f�1; 1g to the data points by

t0
n WD ..tn/1; : : : ; .tn/d ; cn/

T for n D 1; : : : ; N : (16)

We first use the sparse GTM to fit the mapping y and the inverse variance ˇ to these
points. Then, we can classify new data points with help of the density qy;ˇ of (1) by

c.t/ WD
(
1 if qy;ˇ.t1; : : : ; td ; 1/ � qy;ˇ.t1; : : : ; td ;�1/
�1 else.
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We apply this technique to ‘Connectionist Bench (Sonar, Mines vs. Rocks)’, a
real-world data set from the UCI Machine Learning Repository [1]. It consists of
approximately 200 measurements with 60 dimensions and two class labels.

In [12], this data was randomly split into two parts. One part was used to train
various neuronal networks, the other one was used to measure the quality of the
model. The best neuronal network achieved an average classification rate of 84.7 %.

We use our sparse GTM with latent space dimensions L D 2 and L D 3

and a regularization term based on the H1
mix-seminorm. We achieve classification

rates between 72.0 and 84.6 % already for L D 2, depending on the regularization
parameter � and the discretization level J . For L D 3, J D 3 and � D 1:0 � 10�4,
we even reach a classification rate of 85.6 %, which clearly shows the potential of
our new approach.

6 Conclusions

We presented a generative model that can be used for dimensionality reduction
and classification of high-dimensional data. For a certain choice of discretization
involving uniform grids, we obtained the original generative topographic mapping
from [4]. Using a sparse grid discretization for the mapping, we obtained our new
sparse GTM. It gives about the same quality with less degrees of freedom. Moreover,
it has the perspective to overcome complexity issues of the grid-like structures,
which limit the conventional GTM to a low number of latent space dimensions.
For example, in dimension L D 4 and discretization level J D 5 the sparse grid
approach with index set fl W jlj1 C jfs W ls D 0gj � J C d � 1g has 7;681 degrees of
freedom, which is still treatable using a direct solver, whereas the full grid already
has 1;185;921 degrees of freedom. For dimensions like L D 10 the situation is
as follows: Full grids with L D 10 and J D 4 have 2:0 � 1012 degrees of freedom
(5:8 �1011 inner functions and 1:4 �1012 boundary functions), which is clearly beyond
the capabilities of current computers. Sparse grids have 1:1 �107 degrees of freedom,
of which only 2;001 are inner functions and 10;817;088 are boundary functions.
Of course, this is still too much for a direct solver, but now only the number of
boundary functions poses a bottleneck. Modified boundary functions with improved
properties can be found in [9,19], so there is some hope to treat higher dimensional
latent spaces. Furthermore, note that the runtime complexity depends only linearly
on the data space dimension d and the number of data points N . This makes the
sparse GTM a suitable tool for high-dimensional data sets. For further experiments
and results, cf. [13, 14].
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