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Abstract When feedback control systems are given a commanded desired tra-
jectory to perform, they produce a somewhat different trajectory. The concept of
bandwidth is used to indicate what frequency components of the trajectory are
executed reasonably well. Iterative Learning Control (ILC) iteratively changes the
command, aiming to make the control system output match the desired output. The
theory of linear ILC is reasonably well developed, but in hardware applications
the nonlinear effects from hitting actuator saturation limits during the process of
convergence of ILC could be detrimental to performance. Building on previous work
by the authors and coworkers, this paper investigates the conversion of effective ILC
laws into a quadratic cost optimization. And then it develops the modeling needed
to impose actuator saturation constraints during the ILC learning process producing
Quadratic Programming based ILC, or QP-ILC. The benefits and the need for ILC
laws that acknowledge saturation constraints are investigated.

1 Introduction

Iterative learning control is a relatively new form of control theory that develops
methods of iteratively adjusting the command to a feedback control system aiming
to converge to that command that produces zero tracking error of a specific desired
trajectory. References [1–3] develop various linear formulations. Reference [4]
develops the supervector approach to mathematical modeling of ILC that is used
here. There are some perhaps surprisingly strong mathematical convergence results
for very general nonlinear systems, Refs. [5, 6], but they tend to use the simplest
form of ILC that can have extremely bad transients [3] and may require that
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the system being controlled has the property that the output is instantaneously
changed by a step change in the input [6]. Reference [7] develops methods of
numerical computation for implementation of various effective linear ILC laws to
nonlinear systems. Our objective here is to generalize methods of ILC to handle the
specific kind of nonlinearity presented by inequality constraints on the actuators.
The work follows on from [8] including generalization to form well posed inverse
ILC problems, and is related to [9].

The present paper considers three effective linear ILC laws, a Euclidean norm
contraction mapping ILC law which we refer to as the P transpose ILC law [10],
the partial isometry ILC law [11], and the ILC law based on a quadratic cost penalty
function on the transients, or changes in the control action from iteration to iteration
[12, 13]. Reference [14] shows how one can create a unified formulation of each
of these control laws by appropriate choices of the weights in the quadratic cost
control. Most discrete time systems that come from a continuous time system fed
by a zero order hold have an unstable inverse which implies that the control action
needed for zero tracking error is an unstable function of time step. This difficulty
can be addresses by the methods of Refs. [15–17].

This paper considers linear systems subject to inequality limits on actuators.
It combines these approaches to form a quadratic cost minimization problem,
formulating the needed equations to represent actuator saturation limits, thus
forming a well posed quadratic programming problem [18, 19]. From the point of
view of quadratic programming, these problems are small and easily solved for the
updates to the commands made each iteration.

2 Two Classes of ILC Problems with Constraints

Time optimal control problems usually involve control actions that are bang bang,
i.e. on the actuator constraint boundary. Fuel optimal control can also have actuators
at their limits. One form of ILC considers the equations from actuator to output.
In this case, it is reasonable to consider the relatively simple situation of an ILC
problem where this input is saturated. Figure 1 illustrates this situation, which is
referred to later as Problem 1. We use G.s/ D Œa=.s C a/�Œ!2

0 =.s2 C 2�!2
0/� with

!0 D 37 and � D 0:5, sampling at T D 1=100 s in numerical examples. ILC makes
use of stored data from the previous run, and hence must it be digital and must use
sampled data. Here we use a zero order hold. Converted to state variable form, the
continuous time and discrete time modes are

D/A
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Fig. 1 Problem 1, where ILC adjusts input that is subject to inequality constraints
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Fig. 2 Problem 2, a feedback control system with saturation limits on the actuator output

Px.t/ D Acx.t/ C Bcu.t/ I y.t/ D Cx.t/

x..k C 1/T / D Ax.kT/ C Bu.kT/ I y.kT/ D Cx.kT/

A D eAcT I B D A�1
c .A � I /Bc

(1)

The more common situation has the ILC adjusting the command to a digital
feedback control system, as in Fig. 2. The G1.z/ represents the digital feedback
control law while G2.s/ represents the dynamics of an actuator whose output feeds
the plant equation G3.s/. An H.s/ is included because applications such as robotics
often benefit from the use of rate feedback. The mathematical formulation of ILC
subject to actuator output saturation is developed in general for hard saturation limits
on u.t/.

Numerical examples for Problem 2 use G1.z/ D K1 D 12;050, a proportional
controller whose computation is considered instantaneous and therefore it does not
produce a time step delay. The actuator dynamics are represented by G2.s/ D
1=.s C a/ with a D 41:8 while G3.s/ D 1=.s2 C 4s/, H.s/ D 1 C 0:1268s,
and T D 1=100 s.

3 Several Effective Linear ILC Laws

3.1 General ILC Supervector Formulation

Consider a discrete time input output state space model with its convolution sum
solution

x..k C 1/T / D Ax.kT/ C Bu.kT/ I y.kT/ D Cx.kT/ C �.kT/

y.kT/ D CAkx.0/ C
k�1X

iD0

CAk�i�1Bu.iT/ C �.kT/

(2)
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The �.kT/ represents any disturbance that repeats every run, and it is represented
by its equivalent effect on the output. A one time step delay from a change in the
input to the resulting change in the output is assumed. The mathematics can easily
be altered to account for a different delay. Hence, for control action starting at time
step zero, the desired trajectory y�.kT/ is defined starting with time step one, and
continuing to time step p, with associated error e.kT/ D y�.kT/�y.kT/. Following
[4] we define symbols with underbars to represent the history of the associated
variables for any run (subscript j will be applied to indicate iteration or run number
j ). Based on the one time step delay through the system, the entries in u start with
time step 0 and go to p � 1, and for y; y�; e; � start with time step 1 and go to p.
Then

y D P u C NAx.0/ C � I e D �P u C .y� � NAx.0/ � �/

P D

2

6664

CB 0 � � � 0

CAB CB � � � 0
:::

:::
: : :

:::

CAp�1B CAp�2B � � � CB

3

7775
NA D

2

6664

CA
CA2

:::

CAp

3

7775
(3)

3.2 General Linear ILC and Convergence

A general ILC law updates the input action according to

uj C1 D uj C Lej (4)

where L is a matrix of ILC gains. By taking the difference of the right hand equation
in (3) for two successive iterations, one obtains the error convergence condition. By
substituting the error equation in (3) into (4), one also obtains the control action
convergence condition

ej C1 D .I � PL/ej

uj C1 D .I � LP/uj C L.y� � NAx.0/ � �/ I �j C1u D .I � LP/�j u
(5)

Defining �j u D uj � u1 converts the second equation into the third. Convergence
of the error requires that the spectral radius of I � PL be less than unity, and a
sufficient condition is that the maximum singular value is less than unity.
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3.3 Euclidean Norm Contraction Mapping ILC Law
(P Transpose Law)

This law picks L D �P T where � is a positive gain to be chosen [10]. Write the
singular value decomposition of P as P D USVT . Note that P is lower triangular
with nonzero elements on the diagonal, and therefore in theory is full rank with
S D diag.�1; �2; : : : ; �p/ having all positive diagonal elements. It can however be
badly ill conditioned, and this is accounted for below. Equations (5) can be rewritten
for this law

U T ej C1 D .I � �S2/U T ej I V T �j C1u D .I � �S2/V T �j u (6)

The Euclidean norms of ej and U T ej are the same, and similarly for �j u.
Monotonic convergence is obtained for all initial error histories if and only if 1���2

i

is less than unity in magnitude for all i , or it converges if 0 < � < 2=�2
i for all i .

If 1 � ��2
i is positive, then the corresponding component of the error will converge

from the same side each update, and if it is negative this component of the error will
alternate in sign from iteration to iteration.

3.4 Partial Isometry ILC Law

Set L D �VUT as in [11] and one obtains convergence to zero error as in Eq. (6)
with I � �S2 replaced by I � �S , with 0 < � < 2=�i . This law learns faster for
high frequency error components, but is somewhat less robust to model errors.

3.5 General Quadratic Cost ILC Law

Usually quadratic cost control implies a compromise between control effort and
speed of decay of the transients. ILC wants zero error, but uses the quadratic cost
compromise on the size of the control update from iteration to iteration, controlling
the learning transients. The quadratic cost at iteration j that determines uj C1

minimizes

Jj D eT
j C1Qej C1 C ıj C1uT Rıj C1u I ıj C1u D uj C1 � uj (7)

Normally, one asks that Q be positive semidefinite and R be positive definite. In
this case, we want zero final tracking error so we want Q positive definite, and R

need not be positive definite. Write the right hand equation in (3) for j C 1 and for
j , and then (7) can be rewritten as
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Jj D .ej � P ıj C1u/T Q.ej � P ıj C1u/ C ıj C1uT Rıj C1u

D ıj C1uT .P T QP C R/ıj C1u � 2ıj C1uT P T Qej C eT
j Qej (8)

Instead of R having to be positive definite, this quadratic cost law requires the
Hessian P T QP C R to be positive definite, which actually allows for negative R.
Setting the derivative with respect to ıj C1u to zero produces the ILC law

uj C1 D uj C Lej D uj C .P T QP C R/�1P T Qej (9)

3.6 Simple Quadratic Cost ILC

Often when applying quadratic cost control designs one does not have much
guidance on how to pick the weight matrices, and one uses simple choices. Here
we consider Q D I because we want all error components to go to zero, and let
R D rI where r is a scalar gain. Then

L D V.rI C S2/�1SUT

.U T ej C1/ D ŒI � S.rI C S2/�1S�.U T ej / (10)

D diag
�
1 � �2

i

r C �2
i

�
.U T ej / D diag

� r

r C �2
i

�
.U T ej /

In this case, each component of the error on the orthonormal basis vectors in U will
converge monotonically without alternating sign when r is positive, but it is possible
to have convergence for negative values provided r > ��2

i for all i .

3.7 Defining Well Posed ILC Inverse Problems

Continuous time systems fed by a zero order hold can be converted to discrete
time systems with identical output histories at sample times. For continuous time
systems with pole excess of 3 or more and sufficiently fast sampling, this conversion
introduces zeros outside the unit circle. This means that the inverse problem is
unstable. References [15–17] address this problem, for example, by asking for zero
error every other time step making a kind of generalized hold. We rewrite Eq. (3) as

eD;j D �PDuj C �
y�

D
� NADx.0/ � �D

� I ıj C1eD D �PDıj C1u (11)

Initially write the equation for all time steps at the faster sample rate used by the
control input. Then delete whichever rows are associated with errors that are not to
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be addresses. Note that this makes P a rectangular matrix. The General Quadratic
Cost ILC Law generalizes to

Jj D eT
D;j C1QeD;j C1 C ıj C1uT Rıj C1u

uj C1 D uj C LDeD;j I LD D .P T
D QPD C R/�1P T

D Q
(12)

Note that P T
D QPD is now positive semidefinite. The Euclidean Norm Contraction

Mapping ILC law generalizes immediately to LD D �P T
D . The Partial

Isometry Law needs the singular value decomposition of PD denoted by

PD D U
�
S 0

� �
V1 V2

�T D USVT
1 making LD D �V1U

T .

4 Quadratic Cost Versions of These Effective ILC Laws

Equation (7) is the general version of quadratic cost ILC. By setting Q D I

and R D rI the general version reduces to the Simple Quadratic Cost ILC law.
However, the other two ILC law presented can also be produced from the general
quadratic cost function. The Euclidean Norm Contraction Mapping Law L D �P T

is produced when one sets Q D �I and R D I � �P T P and substitutes into the
L of Eq. (9). The partial isometry law is obtained when R D VS.I � �S/V T D
P T U.I � �S/V T with the same Q D �I . We note that when substituted into L,
one obtains L D .VSVT /�1VSUT �. The inverse involved can be ill conditioned
since S determines the condition number of P discussed above. The details of the
computation of the updates using the quadratic cost formulation determine whether
there is some additional difficulty when using this law in quadratic cost form.

One of the issues in the learning transients of ILC laws when there are inequality
constraints is whether the iterations try to go beyond the actuator limit during the
convergence process, and as a result perhaps the convergence process might fail.
We note that the Simplified Quadratic Cost ILC Law in Eq. (10), when r is picked
larger than zero, will have every component of the error projected onto the unit
vectors of U converging to zero without changing sign. Thus if the initial trajectory
starts with each of these components smaller than those needed for zero error, and
the desired trajectory is feasible, i.e. it does not require actuator output beyond the
actuator limits, then one expects convergence without difficulty using the learning
law without regard to the inequality constraints. Using r that is negative seems
counter intuitive, and furthermore how negative it can be is less than minus the
smallest singular value which is often a very small number. When using the P

transpose law, picking � so that 0 < 1 � ��2
i < 1 for all i , will similarly ensure

monotonic approach of the same sign to zero error for each of the error components
on the unit vectors of U . Any i for which �1 < 1 � ��2

i < 0 will alternate the sign
of this component of the error each iteration. If the desired trajectory is feasible but
goes near the actuator limit, the alternating sign of error components could easily
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make the control law ask to go beyond the limit. For the partial isometry law, the
corresponding conditions are 0 < 1 � ��i and �1 < 1 � ��i < 0.

To address the ill conditioning problem discussed above, and also convert to the
P transpose and partial isometry laws to quadratic cost ILC form we pick weights
in cost function (12) as follows. For P transpose, simply use Q D �I and R D
I ��P T

D PD . For the partial isometry law one again uses Q D �I , and the R matrix
becomes more complicated

R D V

�
S.I � �S/ 0

0 I

	
V T (13)

Substitution into Eq. (12) produces the needed LD D �V1U
T .

5 The Quadratic Programming Problem for Problem 1

Having produced quadratic cost versions of each of the above control laws, we are
ready to impose inequality constraints on the actuator by formulating the update for
each iteration as a quadratic programming (QP) problem:

min: J D 1

2
zT Hz C gT z subject to: A1z � Z1 and A2z D Z2 (14)

Using the general quadratic cost ILC law, which can represent any of the ILC laws
discussed above by choice of Q and R, at each iteration we seek to minimize Jj of
Eq. (7). The equality constraint A

2
z D Z

2
could be used for the dynamics ıj C1e D

�P ıj C1u, but we can simply substitute analytically to obtain the cost equation (8)
with H D 1

2
.R C P T QP/ and gT D eT

j QP. In Problem 1, the input is subject to
inequality constraints umin � u � umax which is to be interpreted component by
component. These constraints are imposed with A

1
; Z

1
using ıj C1u � umax � uj

and �ıj C1u � �.umin � uj /.

6 Formulating the Quadratic Programming Problem
for Problem 2

6.1 Closed Loop Dynamics for Problem 2

Generation of the QP version of Problem 2 requires some effort to formulate the
inequality constraints. We assume that the hardware has a hard constraint at its limit.
This time the constraint is on the output of a continuous time transfer function that
may represent the actuator, umin � u.t/ � umax. For simplicity, we formulate the



QP Based ILC 45

problem asking to satisfy the constraints at the sample times umin � u.kT/ � umax,
and ignore any issues associated with violation of constraints between sample times.
Referring to Fig. 2, we can write equations going around the loop. For the controller

e.kT/ D yI .kT/ � f .kT/

f .kT/ D y.kT/ C K Py.kT/

xd ..k C 1/T / D Ad xd .kT/ C Bd e.kT/

v.kT/ D Cd xd .kT/ C Dd e.kT/

(15)

We want to know not only the output y.t/ at least at the sample times, but also we
want to monitor the value of u.t/ at the sample times, and for purposes of computing
the feedback with H.s/ D 1 C Ks we want to know Py.kT/. The actuator and the
plant equations in continuous time are

Pxa.t/ D Aa;cxa.t/ C Ba;cv.t/ I u.t/ D Caxa.t/

Pxp.t/ D Ap;cxp.t/ C Bp;cu.t/ D Ap;cxp.t/ C Bp;cCaxa.t/ I y.t/ D Cpxp.t/

Py.t/ D Cp Pxp.t/ D CpAp;cxp.t/ C CpBp;cCaxa.t/
(16)

One can combine these equations using a combined state xap D
h
xT

a xT
p

iT

and

compute three output quantities

2

4
u.t/

y.t/

Py.t/

3

5 D
2

4
Ca 0

0 Cp

CpBp;cCa CpAp;c

3

5
�

xa.t/

xp.t/

	
(17)

The combined equations have input v.t/ coming from a zero order hold, and hence it
can be converted to a difference equation giving these output quantities at the sample
times without approximation. One can now combine these equations with (15)
adding the controller state variable to those in (16) to form the closed loop state
equations relating the command yI;j .kT/ in iteration j to the resulting output
yj .kT/ and the actuator output uj .kT/ which is subject to saturation

xCL;j ..k C 1/T / D ACLxCL;j .kT/ C BCLyI;j .kT/

yj .kT/ D CCLxCL;j .kT/

uj .kT/ D CuxCL;j .kT/

(18)
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6.2 Dynamics When the Actuator Is Saturated

When the actuator is at a saturation limit usat , then when simulating, the feedback
loop is only needed to determine when the actuator leaves its saturated value. The
output and its derivative are given by

xp..k C 1/T /DApxp.kT/CBpusat I ApDexp.Ap;cT / I Bp D A�1
p;c.Ap � I /Bp;c

y.kT/ D Cpxp.kT/ I Py.kT/ D CpApxp.kT/
(19)

To determine in simulation when the actuator leaves saturation, one uses these
values in Eqs. (15) to determine v.kT/, and feeds this into the discrete time version
of the first row equations of (16) in order to monitor the value of u.kT/.

6.3 The QP Problem for Problem 2

Form two different P matrices, PCL making use of system matrices ACL; BCL; CCL,
and the second Pu using ACL; BCL; Cu. For simplicity we ignore the repeating
disturbance term so that

y
j

D PCLy
I;j

C NACLxCL.0/

ej D �PCLy
I;j

C .y� � NACLxCL.0//

uj D Puy
I;j

C NAuxCL.0/

ıj C1u D Puıj C1y
I

(20)

where NACL and NAu are formed as in Eq. (3) using ACL and CCL or Cu respectively.
Then the QP problem at iteration j is to minimize the following quadratic cost
subject to the following inequality constraints

Jj D ıj C1y
T

I
.P T

CLQPCL C R/ıj C1y
I

� 2ıj C1y
T

I
P T

CLQej C eT
j Qej

umin � uj C Puıj C1y
I

� umax

(21)

7 Numerical Study of QP Based ILC

To create a desired trajectory that rides the actuator or input limit we pick u.t/ D
satf0:5Œ1 � cos.2�t/�g, saturated at the value 0.7. Then we compute the output
and use it as the desired trajectory. In some applications the inequality constraint
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Fig. 3 Problem 1, P transpose ILC law with � D 1. Left: hardware imposes the limit. Right:
hardware allows violation of limit

is a hard constraint that cannot be violated. For example, sometimes when a DC
motor is used in a control system, it has a voltage limiter on it that imposes a
hard constraint. Other times, the manufacturer lists a limit which can be based
on such things as heating constraint in sustained operation. In this case, violating
the constraint temporarily during the learning process can be acceptable. Here we
examine the behavior of ILC laws in three cases: (1) When the law and the hardware
are allowed to violate the limit temporarily. (2) When the law is allowed to ask
for signals that violate the limit, but the hardware imposes the limit. (3) When
the corresponding QP based ILC law incorporates the limits in the updates each
iteration.

Figure 3 shows the convergence to the needed u.kT/ using a P transpose ILC
law when the hardware does not allow violation of the constraint, and when it does.
The root mean square (RMS) of the tracking error for each iteration is essentially
identical, but the former learns slightly faster. It is interesting to note that although
the mathematics indicates that all time steps converge to zero error, the last time
step in these plots of the u.kT/ is converging very slowly. This phenomenon has
now been studied in Ref. [20].

An interesting example was run using the P transpose ILC law with a gain of
� D 2:3 which is above the stability limit of 2:2. As one might expect, the RMS
error when violation was allowed went unstable. But with the hardware imposing the
limit, convergence approaching zero error occurred, i.e. the hardware limit stabilized
an unstable ILC.

Figure 4 illustrates the RMS error performance as ILC iterations progress for the
partial isometry ILC law and the simple quadratic cost ILC law. The dashed curves
in each case show the convergence when the ILC law could violate the constraint but
the hardware imposed the constraint. The corresponding curves when the hardware
allowed violation of the constraints looked very similar, except that the somewhat
quick changes in slope in the figures disappear. The solid curves are the RMS errors
for the corresponding QP algorithms that make use of the limits in the updates
computed. Note that in both cases, the QP algorithm eventually outperforms the
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Fig. 4 Problem 2. Left: UVT ILC with � D 1, Right: simple quadratic cost ILC, hardware imposes
limit, r D 1. Versus QP

other algorithms. Note that the VUT law reaches lower error levels since it converges
linearly instead of quadratically in small errors.
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