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Abstract The synchronization in cellular automata has been known as firing
squad synchronization problem (FSSP) since its development. The firing squad
synchronization problem on cellular automata has been studied extensively for more
than fifty years, and a rich variety of synchronization algorithms has been proposed
not only for one-dimensional arrays but also for two-dimensional arrays. In the
present paper, we focus our attention to the two-dimensional array synchronizers
that can synchronize any square/rectangle arrays and construct a survey on recent
developments in their designs and implementations of optimum-time and non-
optimum-time synchronization algorithms for two-dimensional arrays.

1 Introduction

Synchronization of large scale networks is an important and fundamental computing
primitive in parallel and distributed systems. We study a synchronization problem
that gives a finite-state protocol for synchronizing cellular automata. The syn-
chronization in cellular automata has been known as firing squad synchronization
problem (FSSP) since its development, in which it was originally proposed by J.
Myhill in Moore [8] to synchronize all parts of self-reproducing cellular automata.
The problem has been studied extensively for more than 50 years [1–28].

In the present paper, we focus our attention to two-dimensional (2D) array
synchronizers that can synchronize square/rectangle arrays and construct a survey
on recent developments in designs and implementations of optimum-time and
non-optimum-time synchronization algorithms for the two-dimensional arrays.
Specifically, we attempt to consider the following questions:

• Is there any new 2D FSSP algorithm other than classical ones?
• What is the smallest 2D synchronizer?
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• How can we synchronize 2D arrays with the general at any position?
• How do the algorithms compare with each other?
• Can we extend the 2D synchronizers proposed so far to three-dimensional arrays?

Generally speaking, in the design of 2D synchronizers, configurations of a one-
dimensional synchronization algorithm are mapped onto a 2D array through a
mapping scheme so that all of the cells on the 2D array would fall into a final
synchronization state simultaneously. The mapping schemes we consider include
a rotated L-shaped mapping, a zebra mapping, a diagonal mapping, and a one-
sided recursive-halving marking based mapping. All mappings will be employed
efficiently in the design of 2D FSSP algorithms for square and rectangle arrays.
Due to the space available we omit the details of those algorithms and their
implementations.

2 Firing Squad Synchronization Problem

2.1 FSSP on 1D Arrays

The firing squad synchronization problem (FSSP, for short) is formalized in terms
of the model of cellular automata. Consider a one-dimensional (1D) array of finite
state automata. All cells (except the end cells) are identical finite state automata.
The array operates in lock-step mode such that the next state of each cell (except
the end cells) is determined by both its own present state and the present states of
its right and left neighbors. Thus, we assume the nearest left and right neighbors.
All cells (soldiers), except one general cell, are initially in the quiescent state at
time t D 0 and have the property whereby the next state of a quiescent cell having
quiescent neighbors is the quiescent state. At time t D 0 the general cell is in the
fire-when-ready state, which is an initiation signal to the array.

The FSSP is stated as follows: Given a 1D array of n identical cellular automata,
including a general at one end that is activated at time t D 0, we want to design the
automata M = (Q, ı) such that, at some future time, all the cells will simultaneously
and, for the first time, enter a special firing state, where Q is a finite state set
and ı W Q3 ! Q is a next-state function. The tricky part of the problem is that
the same kind of soldier having a fixed number of states must be synchronized,
regardless of length n of the array. The set of states and next state function must be
independent of n. Figure 1 is a space-time diagram for the optimum-step firing squad
synchronization algorithm. The general at left end emits at time t D 0 an infinite
number of signals which propagate at 1=.2kC1�1/ speed, where k is positive integer.
These signals meet with a reflected signal at half point, quarter points, : : :, etc.,
denoted by ˇ in Fig. 1. It is noted that these cells indicated by ˇ are synchronized.
By increasing the number of synchronized cells exponentially, eventually all of the
cells are synchronized.
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Fig. 1 Space-time diagram
for optimum-time firing
squad synchronization
algorithm

n

 

Time

Cellular Space

t = 2n-2

quarter
quarter

half

1   2  3 . . .

1/1

1/3

1/7

1/15

1/1

1/3

1/7

t = 0

Reflected
signal

Reflected
signal

Reflected
signal

The problem was first solved by J. McCarthy and M. Minsky who presented a 3n-
step algorithm for 1D cellular array of length n. In 1962, the first optimum-time, i.e.
.2n � 2/-step, synchronization algorithm was presented by Goto [4], with each cell
having several thousands of states. Waksman [28] presented a 16-state optimum-
time synchronization algorithm. Afterward, Balzer [1] and Gerken [3] developed
an eight-state algorithm and a seven-state synchronization algorithm, respectively,
thus decreasing the number of states required for the synchronization. Mazoyer [7]
developed a six-state synchronization algorithm which, at present, is the algorithm
having the fewest states for 1D arrays. In the sequel we use the following theorem
as a base algorithm in the design of 2D array algorithms.

Theorem 1 (Goto [4], Waksman [28]). There exists a cellular automaton that can
synchronize any 1D array of length n in optimum 2n � 2 steps, where an initial
general is located at a left or right end.
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Fig. 2 A two-dimensional
(2D) cellular automaton
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2.2 FSSP on 2D Arrays

Figure 2 shows a finite 2D array consisting of m � n cells. Each cell is an identical
(except the border cells) finite-state automaton. The array operates in lock-step
mode in such a way that the next state of each cell (except border cells) is determined
by both its own present state and the present states of its north, south, east and west
neighbors. Thus, we assume the von Neumann-type four nearest neighbors. All cells
(soldiers), except the north-west corner cell (general), are initially in the quiescent
state at time t D 0 with the property that the next state of a quiescent cell with
quiescent neighbors is the quiescent state again. At time t D 0, the north-west
corner cell C1;1 is in the fire-when-ready state, which is the initiation signal for
synchronizing the array. The firing squad synchronization problem is to determine
a description (state set and next-state function) for cells that ensures all cells enter
the fire state at exactly the same time and for the first time.

A rich variety of synchronization algorithms for 2D arrays has been proposed.
Concerning the rectangle synchronizers, see Beyer [2], Shinahr [10], Schmid [9],
Szwerinski [11], Umeo [12], Umeo [13], and Umeo, Hisaoka, and Akiguchi [14].
As for square synchronization which is a special class of rectangles, several square
synchronization algorithms have been proposed by Beyer [2], Shinahr [10], and
Umeo, Maeda, and Fujiwara [20]. In recent years, Umeo and Kubo [18] developed
a seven-state square synchronizer, which is a smallest implementation of the
optimum-time square FSSP algorithm, known at present. One can easily see that
it takes 2n � 2 steps for any signal to travel from C1;1 to Cn;n due to the von
Neumann neighborhood. Concerning the time optimality of the two-dimensional
square synchronization algorithms, the following theorems have been established.

Theorem 2 (Beyer [2], Shinahr [10]). There exists no 2D cellular automaton that
can synchronize any square array of size n � n in less than 2n � 2 steps, where the
general is located at one corner of the array.
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Theorem 3 (Shinahr [10]). There exists a 17-state cellular automaton that can
synchronize any square array of size n � n at exactly 2n � 2 optimum steps.

The lower bound of the time complexity for synchronizing rectangle arrays is as
follows:

Theorem 4 (Beyer [2], Shinahr [10]). There exists no cellular automaton that can
synchronize any rectangle array of size m � n in less than m C n C max.m; n/ � 3

steps, where the general is located at one corner of the array.

Theorem 5 (Beyer [2], Shinahr [10]). There exists a cellular automaton that can
synchronize any rectangle array of size m � n in exactly m C n C max.m; n/ � 3

steps, where the general is located at one corner of the array.

3 Rotated L-Shaped Mapping Based Algorithm A1

The first 2D synchronization algorithm was developed independently by Beyer [2]
and Shinahr [10]. It is based on a simple mapping which embeds a 1D optimum-
time FSSP algorithm onto L-shaped sub-arrays composing a 2D array. We refer the
embedding as rotated L-shaped mapping.

The algorithm for 2D square arrays operates as follows: By dividing an entire
square array of size n�n into n rotated L-shaped 1D arrays, shown in Fig. 3 (left), in
such a way that the length of the i th (from outside) L-shaped array is 2n�2iC1 .1 �
i � n/. One treats the square synchronization as n independent 1D synchronizations
with the general located at the bending point of the L-shaped array. We denote the
i th L-shaped array by Li and its horizontal and vertical segment is denoted by Lh

i

and Lv
i , respectively. Note that a cell at each bending point of the L-shaped array is

shared for each synchronization by the two segments. See Fig. 3 (left). Concerning
the synchronization of Li , it can be easily seen that a general is generated by the
cell Ci;i at time t D 2i � 2 with the four nearest von-Neumann neighborhood
communication, and the general initiates the horizontal (row) and vertical (column)
synchronizations on Lh

i and Lv
i , each of length n � i C 1 using an optimum-time

synchronization algorithm which can synchronize arrays of length ` in 2` � 2 steps
(Theorem 1). For each i , 1 � i � n, the i th L-shaped array Li can be synchronized
at time t D 2i � 2 C 2.n � i C 1/ � 2 D 2n � 2. Thus the square array of size
n�n can be synchronized at time t D 2n�2 in optimum-steps. In Fig. 3 (left), each
general is represented by a black circle � in a shaded square and a wake-up signal
for the synchronization generated by the general is indicated by a horizontal and
vertical arrow. Shinahr [10] gave a 17-state implementation based on Balzer’s eight-
state synchronization algorithm (Balzer [1]). Later, it has been shown in Umeo,
Maeda and Fujiwara [20] that nine states are sufficient for the optimum-time square
synchronization:

Theorem 6 (Umeo, Maeda, and Fujiwara [20]). There exists a nine-state 2D CA
that can synchronize any n � n square array in 2n � 2 steps.
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Fig. 3 A synchronization scheme based on rotated L-shaped mapping for n � n square cellular
automaton (left) and zebra mapping for n � n square cellular automaton (right)

The first optimum-time rectangle synchronization algorithm was developed by
Beyer [2] and Shinar [10] based on the rotated L-shaped mapping. The rectangular
array of size m�n is regarded as min.m; n/ rotated L-shaped 1D arrays, where they
are synchronized independently using the generalized firing squad synchronization
algorithm. The configurations of the generalized synchronization on 1D array are
mapped onto the 2D array. Thus, an m � n array synchronization problem is
reduced to independent min.m; n/ 1D generalized synchronization problems such
that P.m; mCn�1/, P.m�1; mCn�3/; : : : ; P.1; n�mC1/ in the case m � n

and P.m; mCn�1/, P.m�1; mCn�3/; : : : ; P.m�nC1; m�nC1/ in the case
m > n, whereP.k; `/ means the 1D generalized synchronization problem for ` cells
with a general on the kth cell from left end. Beyer [2] and Shinahr [10] presented
an optimum-time synchronization scheme in order to synchronize any m � n arrays
in m C n C max.m; n/ � 3 steps. Shinahr [10] has given a 28-state implementation.
Umeo, Ishida, Tachibana, and Kamikawa [16] gave a precise construction of the
28-state automaton having 12,849 rules.

Theorem 7 (Shinahr [10]). There exists a 28-state cellular automaton that can
synchronize any m � n rectangular arrays in optimum-time m C n C max.m; n/ � 3

steps.
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4 Zebra Mapping Based Algorithm A2

In this section we first consider a state-efficient optimum-time square synchroniza-
tion algorithm A2 proposed in Umeo and Kubo [18]. The algorithm is a variant of
the L-shaped mapping. We show that seven states are sufficient for the optimum-
time square synchronization. The proposed algorithm is basically based on the
rotated L-shaped mapping scheme presented in the previous section. However, it
is quite different from it in the following points. The mapping onto square arrays
consists of two types of configurations: one is a one-cell smaller synchronized
configuration and the other is a filled-in configuration with a stationary state.
The stationary state remains unchanged once filled-in by the time before the final
synchronization. Each configuration is mapped alternatively onto an L-shaped array
in a zebra-like fashion. The mapping is referred to as zebra mapping. Figure 3
(right) illustrates the zebra mapping which consists of an embedded synchronization
layer and a filled-in layer. In our construction we take the Mazoyer’s 6-state
synchronization rule as an embedded synchronization algorithm. See Mazoyer
[7] for the six-state transition rule set. Figure 4 shows some snapshots of the
synchronization process operating in optimum-steps on a 13 � 13 square array. The
readers can see how those two types of configurations are mapped in the zebra-like
fashion. The constructed seven-state cellular automaton has 787 transition rules,
which can be found in Umeo and Kubo [18].

Theorem 8 (Umeo and Kubo [18]). The seven-state square synchronization algo-
rithm A2 can synchronize any n � n square array in optimum 2n � 2 steps.

As for the rectangular arrays, Umeo and Nomura [23] constructed a ten-state
1629-rule 2D cellular automaton that can synchronize any m � n rectangle arrays
in m C n C max.m; n/ � 2 steps. See Fig. 5 for its snapshots. Note that the time
complexity is one step larger than optimum.

Theorem 9 (Umeo and Nomura [23]). There exists a ten-state 2D CA that can
synchronize any m � n rectangle arrays in m C n C max.m; n/ � 2 steps.

5 Diagonal Mapping Based Algorithm A3

In this section we study a synchronization algorithm based on diagonal mapping.
With the diagonal mapping, configurations of 1D cellular array can be embedded
onto a square/rectangle array divided along the principal diagonal. Here we give a
decomposition of a square array. We divide n2 cells on a square array of size n � n

into 2n � 1 groups gk , �.n � 1/ � k � n � 1 along the principal diagonal such that

gk D fCi;j jj � i D kg; �.n � 1/ � k � n � 1:



252 H. Umeo

t = 0
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X Q Q Q Q Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 1
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G Q Q Q Q Q Q Q Q Q Q Q
2 G Q Q Q Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 2
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X A C Q Q Q Q Q Q Q Q Q Q
2 A X Q Q Q Q Q Q Q Q Q Q Q
3 C Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 3
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q Q Q Q Q Q Q Q
2 G X G Q Q Q Q Q Q Q Q Q Q
3 B G Q Q Q Q Q Q Q Q Q Q Q
4 A Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 4
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q Q Q Q Q Q Q Q
2 G X X C Q Q Q Q Q Q Q Q Q
3 C X X Q Q Q Q Q Q Q Q Q Q
4 G C Q Q Q Q Q Q Q Q Q Q Q
5 G Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 5
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B C Q Q Q Q Q Q Q
2 G X X X C Q Q Q Q Q Q Q Q
3 B X X G Q Q Q Q Q Q Q Q Q
4 A X G Q Q Q Q Q Q Q Q Q Q
5 B C Q Q Q Q Q Q Q Q Q Q Q
6 C Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 6
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C A Q Q Q Q Q Q
2 G X X X C A Q Q Q Q Q Q Q
3 C X X A C Q Q Q Q Q Q Q Q
4 G X A X Q Q Q Q Q Q Q Q Q
5 Q C C Q Q Q Q Q Q Q Q Q Q
6 C A Q Q Q Q Q Q Q Q Q Q Q
7 A Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 7
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q A A G Q Q Q Q Q
2 G X X X X X B Q Q Q Q Q Q
3 B X X G B A Q Q Q Q Q Q Q
4 A X G X G Q Q Q Q Q Q Q Q
5 Q X B G Q Q Q Q Q Q Q Q Q
6 A X A Q Q Q Q Q Q Q Q Q Q
7 A B Q Q Q Q Q Q Q Q Q Q Q
8 G Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 8
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q A B B C Q Q Q Q
2 G X X X X X X C Q Q Q Q Q
3 C X X G C G G Q Q Q Q Q Q
4 G X G X X C Q Q Q Q Q Q Q
5 Q X C X X Q Q Q Q Q Q Q Q
6 A X G C Q Q Q Q Q Q Q Q Q
7 B X G Q Q Q Q Q Q Q Q Q Q
8 B C Q Q Q Q Q Q Q Q Q Q Q
9 C Q Q Q Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 9
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q B C C A Q Q Q
2 G X X X X X X C A Q Q Q Q
3 B X X G B A B C Q Q Q Q Q
4 A X G X X X C Q Q Q Q Q Q
5 Q X B X X G Q Q Q Q Q Q Q
6 Q X A X G Q Q Q Q Q Q Q Q
7 B X B C Q Q Q Q Q Q Q Q Q
8 C C C Q Q Q Q Q Q Q Q Q Q
9 C A Q Q Q Q Q Q Q Q Q Q Q

10 A Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 10
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q Q C A A G Q Q
2 G X X X X X X X X B Q Q Q
3 C X X G C G Q C A Q Q Q Q
4 G X G X X X C A Q Q Q Q Q
5 G X C X X A C Q Q Q Q Q Q
6 Q X G X A X Q Q Q Q Q Q Q
7 Q X Q C C Q Q Q Q Q Q Q Q
8 C X C A Q Q Q Q Q Q Q Q Q
9 A X A Q Q Q Q Q Q Q Q Q Q

10 A B Q Q Q Q Q Q Q Q Q Q Q
11 G Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 11
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B C Q A A B B C Q
2 G X X X X X X X X X C Q Q
3 B X X G B A Q A A G Q Q Q
4 A X G X X X X X B Q Q Q Q
5 B X B X X G B A Q Q Q Q Q
6 C X A X G X G Q Q Q Q Q Q
7 Q X Q X B G Q Q Q Q Q Q Q
8 A X A X A Q Q Q Q Q Q Q Q
9 A X A B Q Q Q Q Q Q Q Q Q

10 B X G Q Q Q Q Q Q Q Q Q Q
11 B C Q Q Q Q Q Q Q Q Q Q Q
12 C Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C Q A B B C C G
2 G X X X X X X X X X C A Q
3 C X X G C G Q A B B C Q Q
4 G X G X X X X X X C Q Q Q
5 Q X C X X G C G G Q Q Q Q
6 C X G X G X X C Q Q Q Q Q
7 Q X Q X C X X Q Q Q Q Q Q
8 A X A X G C Q Q Q Q Q Q Q
9 B X B X G Q Q Q Q Q Q Q Q

10 B X B C Q Q Q Q Q Q Q Q Q
11 C C C Q Q Q Q Q Q Q Q Q Q
12 C A Q Q Q Q Q Q Q Q Q Q Q
13 G Q Q Q Q Q Q Q Q Q Q Q Q

t = 13
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q C Q Q B C C B A
2 G X X X X X X X X X X X X
3 B X X G B A Q Q B C C A Q
4 A X G X X X X X X C A Q Q
5 Q X B X X G B A B C Q Q Q
6 C X A X G X X X C Q Q Q Q
7 Q X Q X B X X G Q Q Q Q Q
8 Q X Q X A X G Q Q Q Q Q Q
9 B X B X B C Q Q Q Q Q Q Q

10 C X C C C Q Q Q Q Q Q Q Q
11 C X C A Q Q Q Q Q Q Q Q Q
12 B X A Q Q Q Q Q Q Q Q Q Q
13 A X Q Q Q Q Q Q Q Q Q Q Q

t = 14
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C A Q Q C B A C
2 G X X X X X X X X X X X X
3 C X X G C G G Q Q C A A C
4 G X G X X X X X X X X B Q
5 Q X C X X G C G Q C A Q Q
6 C X G X G X X X C A Q Q Q
7 A X G X C X X A C Q Q Q Q
8 Q X Q X G X A X Q Q Q Q Q
9 Q X Q X Q C C Q Q Q Q Q Q

10 C X C X C A Q Q Q Q Q Q Q
11 B X A X A Q Q Q Q Q Q Q Q
12 A X A B Q Q Q Q Q Q Q Q Q
13 C X C Q Q Q Q Q Q Q Q Q Q

t = 15
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q A A G Q G A C B
2 G X X X X X X X X X X X X
3 B X X G B A B C Q A A C B
4 A X G X X X X X X X X X X
5 Q X B X X G B A Q A A G Q
6 A X A X G X X X X X B Q Q
7 A X B X B X X G B A Q Q Q
8 G X C X A X G X G Q Q Q Q
9 Q X Q X Q X B G Q Q Q Q Q

10 G X A X A X A Q Q Q Q Q Q
11 A X A X A B Q Q Q Q Q Q Q
12 C X C X G Q Q Q Q Q Q Q Q
13 B X B X Q Q Q Q Q Q Q Q Q

t = 16
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q A B B A G C B Q
2 G X X X X X X X X X X X X
3 C X X G C G Q C Q A C B Q
4 G X G X X X X X X X X X X
5 Q X C X X G C G Q A B B A
6 A X G X G X X X X X X C Q
7 B X Q X C X X G C G G Q Q
8 B X C X G X G X X C Q Q Q
9 A X Q X Q X C X X Q Q Q Q

10 G X A X A X G C Q Q Q Q Q
11 C X C X B X G Q Q Q Q Q Q
12 B X B X B C Q Q Q Q Q Q Q
13 Q X Q X A Q Q Q Q Q Q Q Q

t = 17
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q B A C G B Q Q
2 G X X X X X X X X X X X X
3 B X X G B A Q C Q G B Q Q
4 A X G X X X X X X X X X X
5 Q X B X X G B A Q Q B A C
6 Q X A X G X X X X X X C Q
7 B X Q X B X X G B A B C Q
8 A X C X A X G X X X C Q Q
9 C X Q X Q X B X X G Q Q Q

10 G X G X Q X A X G Q Q Q Q
11 B X B X B X B C Q Q Q Q Q
12 Q X Q X A C C Q Q Q Q Q Q
13 Q X Q X C Q Q Q Q Q Q Q Q

t = 18
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q G C B G C Q Q
2 G X X X X X X X X X X X X
3 C X X G C G Q C G G C Q Q
4 G X G X X X X X X X X X X
5 G X C X X G C G G Q G C B
6 Q X G X G X X X X X X X X
7 G X Q X C X X G C G Q C G
8 C X C X G X G X X X C A Q
9 B X G X G X C X X A C Q Q

10 G X G X Q X G X A X Q Q Q
11 C X C X G X Q C C Q Q Q Q
12 Q X Q X C X C A Q Q Q Q Q
13 Q X Q X B X G Q Q Q Q Q Q

t = 19
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B A G B Q G B A Q
2 G X X X X X X X X X X X X
3 B X X G B A Q G A G B A Q
4 A X G X X X X X X X X X X
5 B X B X X G B A B A G B Q
6 A X A X G X X X X X X X X
7 G X Q X B X X G B A Q G A
8 B X G X A X G X X X X X X
9 Q X A X B X B X X G B A Q

10 G X G X A X A X G X G Q Q
11 B X B X G X Q X B G Q Q Q
12 A X A X B X G X A Q Q Q Q
13 Q X Q X Q X A X Q Q Q Q Q

t = 20
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G B C G C Q G C G C
2 G X X X X X X X X X X X X
3 C X X G C G C G C G C G C
4 G X G X X X X X X X X X X
5 B X C X X G C G B C G C Q
6 C X G X G X X X X X X X X
7 G X C X C X X G C G C G C
8 C X G X G X G X X X X X X
9 Q X C X B X C X X G C G C

10 G X G X C X G X G X X C Q
11 C X C X G X C X C X X Q Q
12 G X G X C X G X G C Q Q Q
13 C X C X Q X C X C Q Q Q Q

t = 21
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B G B G G B G G B G B
2 G X X X X X X X X X X X X
3 B X X G B G B G B G B G B
4 G X G X X X X X X X X X X
5 B X B X X G B G B G G B G
6 G X G X G X X X X X X X X
7 G X B X B X X G B G B G B
8 B X G X G X G X X X X X X
9 G X B X B X B X X G B G B

10 G X G X G X G X G X X X X
11 B X B X G X B X B X X G Q
12 G X G X B X G X G X G Q Q
13 B X B X G X B X B X Q Q Q

t = 22
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G G G G G G G G G G G G
2 G X X X X X X X X X X X X
3 G X X G G G G G G G G G G
4 G X G X X X X X X X X X X
5 G X G X X G G G G G G G G
6 G X G X G X X X X X X X X
7 G X G X G X X G G G G G G
8 G X G X G X G X X X X X X
9 G X G X G X G X X G G G G

10 G X G X G X G X G X X X X
11 G X G X G X G X G X X A A
12 G X G X G X G X G X A X Q
13 G X G X G X G X G X A Q Q

t = 23
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X X X X X X X X X X X X X
2 X X X X X X X X X X X X X
3 X X X X X X X X X X X X X
4 X X X X X X X X X X X X X
5 X X X X X X X X X X X X X
6 X X X X X X X X X X X X X
7 X X X X X X X X X X X X X
8 X X X X X X X X X X X X X
9 X X X X X X X X X X X X X

10 X X X X X X X X X X X X X
11 X X X X X X X X X X X X X
12 X X X X X X X X X X X X X
13 X X X X X X X X X X X X Q

t = 24
1 2 3 4 5 6 7 8 9 10 11 12 13

1 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F
3 F F F F F F F F F F F F F
4 F F F F F F F F F F F F F
5 F F F F F F F F F F F F F
6 F F F F F F F F F F F F F
7 F F F F F F F F F F F F F
8 F F F F F F F F F F F F F
9 F F F F F F F F F F F F F

10 F F F F F F F F F F F F F
11 F F F F F F F F F F F F F
12 F F F F F F F F F F F F F
13 F F F F F F F F F F F F F

Fig. 4 Snapshots of the seven-state zebra-type square synchronizer on a 13 � 13 array

Each cell in gk on the 2D square simulates the state of its corresponding cell Ck

in the 1D array of length 2n � 1, �.n � 1/ � k � n � 1. It has been shown in
Umeo, Hisaoka, and Akiguchi [14] that any 1D generalized FSSP algorithm with an
Inner-Independent Property Z (below) can be easily embedded onto 2D rectangle
arrays without introducing additional states. The statement can also be applied to
square arrays.

Inner-Independent Property Z: Let St
i denote the state of Ci at step t . We say that

an FSSP algorithm has Inner-Independent Property Z , where any state St
i appearing

in the area Z can be computed from its left and right neighbor states St�1
i�1 and St�1

iC1

but it never depends on its own previous state St�1
i .
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t = 0
1 2 3 4 5 6 7 8 9

1 G Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 1
1 2 3 4 5 6 7 8 9

1 Q ] Q Q Q Q Q Q Q
2 [ Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 2
1 2 3 4 5 6 7 8 9

1 Q A ] Q Q Q Q Q Q
2 B TX Q Q Q Q Q Q Q
3 [ Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 3
1 2 3 4 5 6 7 8 9

1 Q A Q ] Q Q Q Q Q
2 B X TX Q Q Q Q Q Q
3 Q TX Q Q Q Q Q Q Q
4 [ Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 4
1 2 3 4 5 6 7 8 9

1 Q Q A A ] Q Q Q Q
2 Q X X TX Q Q Q Q Q
3 B X Q Q Q Q Q Q Q
4 B TX Q Q Q Q Q Q Q
5 [ Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 5
1 2 3 4 5 6 7 8 9

1 Q A A A Q ] Q Q Q
2 B X X X TX Q Q Q Q
3 B X TX Q Q Q Q Q Q
4 B X Q Q Q Q Q Q Q
5 Q TX Q Q Q Q Q Q Q
6 [ Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 6
1 2 3 4 5 6 7 8 9

1 Q A A Q A A ] Q Q
2 B X X X X TX Q Q Q
3 B X G Q Q Q Q Q Q
4 Q X Q Q Q Q Q Q Q
5 B X Q Q Q Q Q Q Q
6 B TX Q Q Q Q Q Q Q
7 [ Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 7
1 2 3 4 5 6 7 8 9

1 Q A Q A A A Q ] Q
2 B X X X X X TX Q Q
3 Q X Q ] Q Q Q Q Q
4 B X [ Q Q Q Q Q Q
5 B X Q Q Q Q Q Q Q
6 B X Q Q Q Q Q Q Q
7 Q TX Q Q Q Q Q Q Q
8 [ Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 8
1 2 3 4 5 6 7 8 9

1 Q Q A A A Q A A C
2 Q X X X X X X TX Q
3 B X Q A ] Q Q Q Q
4 B X B TX Q Q Q Q Q
5 B X [ Q Q Q Q Q Q
6 Q X Q Q Q Q Q Q Q
7 B X Q Q Q Q Q Q Q
8 B TX Q Q Q Q Q Q Q
9 [ Q Q Q Q Q Q Q Q

10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 9
1 2 3 4 5 6 7 8 9

1 Q A A A Q A A [ C
2 B X X X X X X X TX
3 B X Q A Q ] Q Q Q
4 B X B X TX Q Q Q Q
5 Q X Q TX Q Q Q Q Q
6 B X [ Q Q Q Q Q Q
7 B X Q Q Q Q Q Q Q
8 B X Q Q Q Q Q Q Q
9 Q TX Q Q Q Q Q Q Q

10 [ Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 10
1 2 3 4 5 6 7 8 9

1 Q A A Q A A [ ] C
2 B X X X X X X X X
3 B X Q Q A A ] Q Q
4 Q X Q X X TX Q Q Q
5 B X B X Q Q Q Q Q
6 B X B TX Q Q Q Q Q
7 B X [ Q Q Q Q Q Q
8 Q X Q Q Q Q Q Q Q
9 B X Q Q Q Q Q Q Q

10 B TX Q Q Q Q Q Q Q
11 [ Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 11
1 2 3 4 5 6 7 8 9

1 Q A Q A A [ B [ C
2 B X X X X X X X X
3 Q X TX A A A Q ] Q
4 B X B X X X TX Q Q
5 B X B X TX Q Q Q Q
6 B X B X Q Q Q Q Q
7 Q X Q TX Q Q Q Q Q
8 B X [ Q Q Q Q Q Q
9 B X Q Q Q Q Q Q Q

10 B X Q Q Q Q Q Q Q
11 Q TX Q Q Q Q Q Q Q
12 [ Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 12
1 2 3 4 5 6 7 8 9

1 Q Q A A [ Q B [ C
2 Q X X X X X X X X
3 B X Q A A Q A A C
4 B X B X X X X TX Q
5 B X B X G Q Q Q Q
6 Q X Q X Q Q Q Q Q
7 B X B X Q Q Q Q Q
8 B X B TX Q Q Q Q Q
9 B X [ Q Q Q Q Q Q

10 Q X Q Q Q Q Q Q Q
11 B X Q Q Q Q Q Q Q
12 B TX Q Q Q Q Q Q Q
13 C Q Q Q Q Q Q Q Q

t = 13
1 2 3 4 5 6 7 8 9

1 Q A A [ B B G [ C
2 B X X X X X X X X
3 B X Q A Q A A [ C
4 B X B X X X X X TX
5 Q X Q X Q ] Q Q Q
6 B X B X [ Q Q Q Q
7 B X B X Q Q Q Q Q
8 B X B X Q Q Q Q Q
9 Q X Q TX Q Q Q Q Q

10 B X [ Q Q Q Q Q Q
11 B X Q Q Q Q Q Q Q
12 ] X Q Q Q Q Q Q Q
13 C TX Q Q Q Q Q Q Q

t = 14
1 2 3 4 5 6 7 8 9

1 Q A [ Q B B G [ C
2 B X X X X X X X X
3 B X Q Q A A [ ] C
4 Q X Q X X X X X X
5 B X B X Q A ] Q Q
6 B X B X B TX Q Q Q
7 B X B X [ Q Q Q Q
8 Q X Q X Q Q Q Q Q
9 B X B X Q Q Q Q Q

10 B X B TX Q Q Q Q Q
11 ] X [ Q Q Q Q Q Q
12 [ X Q Q Q Q Q Q Q
13 C X Q Q Q Q Q Q Q

t = 15
1 2 3 4 5 6 7 8 9

1 Q [ B B Q B G [ C
2 B X X X X X X X X
3 Q X TX A A [ B [ C
4 B X B X X X X X X
5 B X B X Q A Q ] Q
6 B X B X B X TX Q Q
7 Q X Q X Q TX Q Q Q
8 B X B X [ Q Q Q Q
9 B X B X Q Q Q Q Q

10 ] X B X Q Q Q Q Q
11 A X Q TX Q Q Q Q Q
12 ] X [ Q Q Q Q Q Q
13 C X Q Q Q Q Q Q Q

t = 16
1 2 3 4 5 6 7 8 9

1 [ Q B B B [ G [ C
2 Q X X X X X X X X
3 B X Q A [ Q B [ C
4 B X B X X X X X X
5 B X B X Q Q A A C
6 Q X Q X Q X X TX Q
7 B X B X B X Q Q Q
8 B X B X B TX Q Q Q
9 ] X B X [ Q Q Q Q

10 Q X Q X Q Q Q Q Q
11 A X B X Q Q Q Q Q
12 ] X B TX Q Q Q Q Q
13 C X C Q Q Q Q Q Q

t = 17
1 2 3 4 5 6 7 8 9

1 B B Q B B [ B [ C
2 [ X X X X X X X X
3 B X Q [ B B G [ C
4 B X B X X X X X X
5 Q X Q X TX A A [ C
6 B X B X B X X X TX
7 B X B X B X TX Q Q
8 ] X B X B X Q Q Q
9 A X Q X Q TX Q Q Q

10 A X B X [ Q Q Q Q
11 G X B X Q Q Q Q Q
12 ] X ] X Q Q Q Q Q
13 C X C TX Q Q Q Q Q

t = 18
1 2 3 4 5 6 7 8 9

1 B B B Q B [ B [ C
2 [ X X X X X X X X
3 B X [ Q B B G [ C
4 Q X Q X X X X X X
5 B X B X Q A [ ] C
6 B X B X B X X X X
7 ] X B X B X G Q Q
8 Q X Q X Q X Q Q Q
9 A X B X B X Q Q Q

10 A X B X B TX Q Q Q
11 G X ] X [ Q Q Q Q
12 ] X [ X Q Q Q Q Q
13 C X C X Q Q Q Q Q

t = 19
1 2 3 4 5 6 7 8 9

1 B B B B G [ B [ C
2 [ X X X X X X X X
3 G X B B Q B G [ C
4 B X [ X X X X X X
5 B X B X Q [ B [ C
6 ] X B X B X X X X
7 A X Q X Q X Q ] Q
8 A X B X B X [ Q Q
9 Q X B X B X Q Q Q

10 A X ] X B X Q Q Q
11 G X A X Q TX Q Q Q
12 ] X ] X [ Q Q Q Q
13 C X C X Q Q Q Q Q

t = 20
1 2 3 4 5 6 7 8 9

1 B B B B G Q B [ C
2 Q X X X X X X X X
3 G X B B B [ G [ C
4 B X [ X X X X X X
5 ] X B X [ Q B [ C
6 Q X Q X Q X X X X
7 A X B X B X Q A C
8 A X B X B X B TX Q
9 A X ] X B X [ Q Q

10 ] X Q X Q X Q Q Q
11 G X A X B X Q Q Q
12 ] X ] X B TX Q Q Q
13 C X C X C Q Q Q Q

t = 21
1 2 3 4 5 6 7 8 9

1 Q B B B G B G [ C
2 B X X X X X X X X
3 G X B B B [ B [ C
4 ] X [ X X X X X X
5 A X G X B B G [ C
6 A X B X [ X X X X
7 Q X B X B X Q [ C
8 A X ] X B X B X TX
9 A X A X Q X Q TX Q

10 ] X A X B X [ Q Q
11 A X G X B X Q Q Q
12 ] X ] X ] X Q Q Q
13 C X C X C TX Q Q Q

t = 22
1 2 3 4 5 6 7 8 9

1 B Q B B G B G [ C
2 B X X X X X X X X
3 C X B B B [ B [ C
4 Q X Q X X X X X X
5 A X G X B B G [ C
6 A X B X [ X X X X
7 A X ] X B X [ ] C
8 Q X Q X Q X Q X X
9 A X A X B X B X Q

10 ] X A X B X B TX Q
11 A X G X ] X [ Q Q
12 ] X ] X [ X Q Q Q
13 C X C X C X Q Q Q

t = 23
1 2 3 4 5 6 7 8 9

1 B B Q B G B G [ C
2 ] X X X X X X X X
3 C X Q B B [ B [ C
4 [ X B X X X X X X
5 Q X G X B B G [ C
6 A X ] X [ X X X X
7 A X A X G X B [ C
8 A X A X B X [ X X
9 G X Q X B X B X TX

10 ] X A X ] X B X Q
11 A X G X A X Q TX Q
12 ] X ] X ] X [ Q Q
13 C X C X C X Q Q Q

t = 24
1 2 3 4 5 6 7 8 9

1 ] B B [ G B G [ C
2 [ X X X X X X X X
3 C X B Q B [ B [ C
4 ] X B X X X X X X
5 [ X C X B B G [ C
6 Q X Q X Q X X X X
7 A X A X G X B [ C
8 A X A X B X [ X X
9 G X A X ] X B X G

10 Q X ] X Q X Q X Q
11 A X G X A X B X Q
12 ] X ] X ] X B TX Q
13 C X C X C X C Q Q

t = 25
1 2 3 4 5 6 7 8 9

1 A ] B [ B B G [ C
2 ] X X X X X X X X
3 C X B B G [ B [ C
4 [ X ] X X X X X X
5 B X C X Q B G [ C
6 [ X [ X B X X X X
7 Q X Q X G X B [ C
8 A X A X ] X [ X X
9 G X A X A X G X C

10 A X ] X A X B X [
11 G X A X G X B X Q
12 ] X ] X ] X ] X Q
13 C X C X C X C TX Q

t = 26
1 2 3 4 5 6 7 8 9

1 A Q ] [ B B G [ C
2 ] X X X X X X X X
3 C X ] B G Q B [ C
4 [ X [ X X X X X X
5 B X C X B [ G [ C
6 Q X ] X B X X X X
7 [ X [ X C X B [ C
8 ] X Q X Q X Q X X
9 G X A X A X G X C

10 A X ] X A X B X ]
11 G X A X G X ] X [
12 ] X ] X ] X [ X Q
13 C X C X C X C X Q

t = 27
1 2 3 4 5 6 7 8 9

1 G A A C B B G [ C
2 ] X X X X X X X X
3 C X A ] G B G [ C
4 [ X ] X X X X X X
5 G X C X B [ B [ C
6 B X [ X ] X X X X
7 B X B X C X G [ C
8 C X [ X [ X B X X
9 A X G X Q X G X C

10 A X ] X A X ] X [
11 G X A X G X A X B
12 ] X ] X ] X ] X [
13 C X C X C X C X Q

t = 28
1 2 3 4 5 6 7 8 9

1 G A [ C ] B G [ C
2 ] X X X X X X X X
3 C X A Q C B G [ C
4 [ X ] X X X X X X
5 G X C X ] [ B [ C
6 B X [ X [ X X X X
7 ] X B X C X G [ C
8 C X Q X ] X B X X
9 [ X C X [ X C X C

10 A X Q X ] X Q X [
11 G X A X G X A X B
12 ] X ] X ] X ] X Q
13 C X C X C X C X C

t = 29
1 2 3 4 5 6 7 8 9

1 G [ ] C [ ] G [ C
2 ] X X X X X X X X
3 C X G [ C ] G [ C
4 [ X ] X X X X X X
5 G X C X G C B [ C
6 ] X [ X ] X X X X
7 [ X G X C X G [ C
8 C X ] X [ X ] X X
9 ] X C X G X C X C

10 [ X [ X C X [ X [
11 G X G X A X G X G
12 ] X ] X ] X ] X ]
13 C X C X C X C X ]

t = 30
1 2 3 4 5 6 7 8 9

1 C ] [ C ] [ C [ C
2 ] X X X X X X X X
3 C X C [ C ] C [ C
4 [ X ] X X X X X X
5 C X C X [ C ] [ C
6 [ X [ X ] X X X X
7 ] X C X C X C [ C
8 C X ] X [ X ] X X
9 [ X C X ] X C X C

10 ] X [ X C X [ X [
11 C X C X [ X C X C
12 ] X ] X ] X ] X Q
13 C X C X C X C X [

t = 31
1 2 3 4 5 6 7 8 9

1 C C C C C C C C C
2 C X X X X X X X X
3 C X C C C C C C C
4 C X C X X X X X X
5 C X C X C C C C C
6 C X C X C X X X X
7 C X C X C X C C C
8 C X C X C X C X X
9 C X C X C X C X C

10 C X C X C X C X C
11 C X C X C X C X C
12 C X C X C X C X C
13 C X C X C X C X C

t = 32
1 2 3 4 5 6 7 8 9

1 X X X X X X X X X
2 X X X X X X X X X
3 X X X X X X X X X
4 X X X X X X X X X
5 X X X X X X X X X
6 X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X

10 X X X X X X X X X
11 X X X X X X X X X
12 X X X X X X X X X
13 X X X X X X X X X

t = 33
1 2 3 4 5 6 7 8 9

1 F F F F F F F F F
2 F F F F F F F F F
3 F F F F F F F F F
4 F F F F F F F F F
5 F F F F F F F F F
6 F F F F F F F F F
7 F F F F F F F F F
8 F F F F F F F F F
9 F F F F F F F F F

10 F F F F F F F F F
11 F F F F F F F F F
12 F F F F F F F F F
13 F F F F F F F F F

Fig. 5 Snapshots of the ten-state zebra-type rectangle synchronizer on a 13 � 9 array

A special 15-state generalized FSSP algorithm with the Inner-Independent
Property Z can be realized in Ishii, Yanase, Maeda, and Umeo [6]. The 15-state
algorithm with the property Z can be embedded on any square arrays without
introducing additional states, yielding a 15-state optimum-time square synchroniza-
tion algorithm.

Theorem 10 (Ishii, Yanase, Maeda, and Umeo [6]). There exists a 15-state
cellular automaton that can synchronize any n � n square array in optimum 2n � 2

steps.

As for the rectangle case, Umeo, Hisaoka, and Akiguchi [14] constructed a 12-
state optimum-time rectangle synchronizer. See Umeo, Hisaoka, and Akiguchi [14]
for details.
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Theorem 11 (Umeo, Hisaoka, and Akiguchi [14]). There exists a 12-state cellu-
lar automaton that can synchronize any m � n square array in optimum m C n C
max.m; n/ � 3 steps.

6 One-Sided Recursive-Halving Marking Based
Algorithm A4

In this section we present an optimum-time synchronization algorithm A4 which
is based on a marking called one-sided recursive-halving marking. The marking
scheme prints a special mark on cells in a cellular space defined by one-sided
recursive-halving. The marking itself is based on a well-known optimum-time one-
dimensional synchronization algorithm. Let S be a one-dimensional cellular space
consisting of cells Ci , CiC1; : : :, Cj , denoted by [i : : : j ], where j > i . Let jS j
denote the number of cells in S , that is jS j D j � i C 1 for S D[i : : : j ]. A cell
C.iCj /=2 in S is a center cell of S , if jS j is odd. Otherwise, two cells C.iCj �1/=2 and
C.iCj C1/=2 are center cells of S .

The one-sided recursive-halving marking for a given 1D cellular space Œ1 : : : n�

is defined as follows:

One-Sided Recursive-Halving Marking

begin
S := [1...n];
while |S| > 1 do

if |S| is odd then
mark a center cell Cx in S

S := [x...n];
else

mark center cells Cx and Cx+1 in S

S := [x+ 1...n];
end

We have developed a simple implementation of the one-sided recursive halving
marking on a 13-state cellular automaton. It can be easily seen that any 1D cellular
space of length n with the one-sided recursive-halving marking initially can be
synchronized in optimum n � 1 steps.

Now we consider a square array of size n�n with an initial general G on C1;1. The
square is regarded as consisting of two triangles: upper and lower halves separated
by a diagonal, shown in Fig. 6 (left). Each upper and lower half triangle consists of
n columns and n rows, each denoted by ck and rk; 1 � k � n, such that:
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Fig. 6 A square array is decomposed into an upper and lower triangle (left) and an illustration of
the synchronization scheme in each triangle (right)

ck D fCi;k j 1 � i � kg; rk D fCk;j j 1 � j � kg:

Note that the length of ck and rk is k for 1 � k � n. An overview of the algorithm
A4 is:

• Each upper and lower half triangle is synchronized independently.
• At time t D 0 the array begins to prepare printing the one-sided recursive halving

mark on each column and row, each starting from top of each column and a left
end of each row, respectively, in the triangles. The marking operation will be
finished before the arrival of the first wake-up signal for the synchronization.

• Simultaneously, the general generates two signals sH and sV at time t D 0. Their
operations are as follows:

– Signal sH : The sH -signal travels along the first row at 1=1-speed and reaches
C1;n at time t D n � 1. Then it reflects there and returns the same route at
1=1-speed, and reaches C1;1 again at time t D 2n � 2. On the return way, it
generates a general on C1;i at time t D n � 1 C n � .i � 1/ D 2n � i , at every
visit of C1;i , where 1 � i � n. See Fig. 6 (right). The general is denoted by
a black circle �. A ripple-like line, staring from the symbol �, shown in Fig. 6
(right), illustrates the initiation of the synchronization process initiated by the
general. The general initiates a synchronization for the i th column, and yields
a successful synchronization at time t D 2n � 2. Note that the length of the
i th column is i and the synchronization is started at time t D 2n � i , for any
1 � i � n. In this way, the upper half triangle can be synchronized in 2n � 2

steps.
– Signal sV : The sV -signal travels along the 1st column at 1=1-speed and

reaches Cn;1 at time t D n � 1. Then it reflects there and returns the same
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Table 1 A list of FSSP algorithms for square arrays

Algorithms & # of # of Time Communication

implementations states rules complexity model Mapping

Beyer [2] — — 2n � 2 O(1)-bit L-shaped

Algorithm A1

Shinahr [10] 17 — 2n � 2 O(1)-bit L-shaped

Algorithm A1

Umeo, Maeda and 9 1718 2n � 2 O(1)-bit L-shaped

Fujiwara [20]

Algorithm A1

Umeo and Kubo [18] 7 787 2n � 2 O(1)-bit Zebra

Algorithm A2

Umeo, Maeda, 6 942 4n � 4 O(1)-bit Diagonal

Hisaoka, and

Teraoka [21]

Algorithm A3

Ishii et al. [6] 15 1614 2n � 2 O(1)-bit Diagonal

Algorithm A3

Umeo, Uchino and 37 3271 2n � 2 O(1)-bit Recursive-

Nomura [25] Halving

Algorithm A4

Gruska, Torre and — — 2n � 2 1-bit L-shaped

Parente [5]

Algorithm A1

Umeo and 49 237 2n � 2 1-bit L-shaped

Yanagihara [26]

Algorithm A1

route at 1=1-speed, and reaches C1;1 again at time t D 2n � 2. On the return
way, it generates a general on Ci;1 at time t D n� 1 Cn� .i � 1/ D 2n� i , at
every visit of Ci;1, where 1 � i � n. The general initiates a synchronization
for the i th row. Note that the length of the i th row is i . The i th row can be
synchronized at time t D 2n � 2, for any i , 1 � i � n. Thus, the lower half
triangle can be synchronized in 2n � 2 steps.

We implemented the algorithm A4 on a 2D cellular automaton. The constructed
cellular automaton has 37 internal states and 3,271 transition rules. Thus we have:

Theorem 12 (Umeo, Uchino, and Nomura [25]). The synchronization algorithm
A4 can synchronize any n � n square array in optimum 2n � 2 steps.

As for the rectangle case, Umeo, Nishide, and Yamawaki [22] constructed a
2D cellular automaton with 384-states and 112,690-rules. See Umeo, Nishide, and
Yamawaki [22] for details.
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Table 2 A list of FSSP algorithms for rectangle arrays

Algorithms & # of # of Time Communication

implementations states rules complexity model Mapping

Beyer [2] — — m C n C max.m; n/ � 3 O(1)-bit L-shaped

Algorithm A1

Shinahr [10] 28 — m C n C max.m; n/ � 3 O(1)-bit L-shaped

Umeo et al. [16] 28 12849�

Algorithm A1

Umeo and 10 1629 m C n C max.m; n/ � 2 O(1)-bit Zebra

Nomura [23]

Algorithm A2

Umeo, Hisaoka and 12 1532 m C n C max.m; n/ � 3 O(1)-bit Diagonal

Akiguchi [14]

Algorithm A3

Umeo, Maeda, 6 942 2m C 2n � 4 O(1)-bit Diagonal

Hisaoka, and

Teraoka [21]

Algorithm A3

Umeo, Nishide and 384 112690 m C n C max.m; n/ � 3 O(1)-bit Recursive-

Yamawaki [22] Halving

Algorithm A4

Theorem 13 (Umeo, Nishide, and Yamawaki [22]). The algorithm A4 can syn-
chronize any m � n rectangular array in m C n C max.m; n/ � 3 optimum steps.

7 Conclusions

In this paper, we have presented a survey on recent developments of optimum-time
and non-optimum-time FSSP algorithms for 2D arrays. In Tables 1 and 2 we present
a list of implementations of square/rectangle FSSP algorithms for cellular automata
with O(1)-bit and 1-bit communications.

The O(1)-bit communication model, discussed in this paper, is a usual cellular
automaton in which the amount of communication bits exchanged in one step
between neighboring cells is assumed to be O(1) bits. The 1-bit communication
model is a subclass of the O(1)-bit model, in which inter-cell communication is
restricted to 1-bit communication.

For a long time only one FSSP algorithm based on the rotated L-shaped mapping
proposed by Beyer [2] and Shinar [10] has been known. The readers can see how a
rich variety of 2D FSSP algorithms exists. Some algorithms can be easily extended
to 3D arrays. The embedding schemes developed in this paper would be useful for
further implementations of multi-dimensional synchronization algorithms.
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