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Abstract We describe a novel Eulerian interface-sharpening approach for the
efficient numerical resolution of contact discontinuities arising from inviscid com-
pressible flow in more than one space dimension. The algorithm uses the single-
phase compressible Euler equations as the model system, and introduces auxiliary
differential terms to the model so as to neutralize numerical diffusion that is
inevitable when the original Euler system is solved by a diffused interface method. A
standard fractional-step method is employed to solve the proposed model equations
in two steps, yielding an easy implementation of the algorithm. Preliminary results
obtained using an anti-diffusion based model system are shown to demonstrate the
feasibility of the algorithm for practical problems.

1 Introduction

Computing a non-oscillatory, positivity-preserving, sharply resolved volume frac-
tion function, denoted by ˛ 2 Œ0; 1�, for the initial-value problem of the volume-
fraction transport equation

@t˛ C u � r˛ D 0 (1)

with discontinuous initial data is of fundamental importance in many practical prob-
lems of interest. One simple example is concerned with an unsteady, incompressible,
viscous, two-phase flow that is governed by the incompressible Navier-Stokes
equations,

r � u D 0;

@t .�u/C r � .�u ˝ u C pIN / D r � � C �g C f� ;
(2)
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where u denotes the velocity vector, � the density, p the pressure, IN the N � N

identity matrix (N the number of spatial dimensions), � D �
�ru C ruT

�
the stress

tensor, g the gravitational field, and f� D ���r˛ the capillary force. We assume
that the fluids of interest consist of two different phases, gas and liquid, for instance,
separated by immiscible interfaces, where in regions ˛ D 0 and ˛ D 1, the fluid
is single phase (gas or liquid), while in regions 0 < ˛ < 1, we have a (gas-liquid)
two-phase coexistent phase. In the latter case, it is a common practice to set the
density as well as the material quantities such as the dynamic viscosity � and the
surface-tension coefficient � by the solution of (1) via a simple ˛-weighted average,

z D ˛z1 C .1� ˛/z2

for z D �; �; � ; zk the kth phasic variable of z. In addition to that, from the given set
of volume fractions, the normal direction r˛ and the curvature � D r � .r˛=jr˛j/
at the interface that contributes to the capillary force f� on the right-hand side of the
momentum equations may be calculated via numerical means.

For incompressible two-phase flow governed by (1) and (2), interface sharpening
of some kind (cf. [1, 8, 15–17] and references therein) is a popular technique that is
applied together with an underlying advection scheme to compute a sharp solution
profile of (1); this yields an accurate definition of the aforementioned physical
and geometrical quantities present in (2) near the interfaces, and is viable to the
remaining parts of the flow solver. Among various interface-sharpening approaches,
in this work, we are interested in a class of methods that is based on the inclusion of
a differential source term to (1) in a form,

@t˛ C u � r˛ D 1

�
D˛; (3a)

as a numerical model for interface-sharpening, where � 2 lR is a free parameter. In
the work proposed by Olsson, Kreiss, and coworker (cf. [9, 10]), the term D˛ is of
an interface-compression type as

D˛ WD r � Œ."r˛ � n � ˛ .1 � ˛// n� ; (3b)

where both a nonlinear convection and a linear diffusion term are introduced in the
model. Here n D r˛=jr˛j is the unit normal, and " > 0 is the diffusion coefficient
which is assumed to be in the order of the spatial mesh size. On the other hand, in
the work advocated by So, Hu, and Adams [13], it takes simply the linear diffusion
term, but is of an anti-diffusion one, as

D˛ WD �r � ."r˛/ ; (3c)

where the diffusion coefficient " is assumed to be in the order of the velocity vector
in absolute value which mimics the diffusion rate from the modified equation of the
numerical method.
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Our goal here is to describe a novel approach that generalizes (3) for interface-
sharpening of discontinuous volume fractions in incompressible flow to more
general interfaces (i.e., contact discontinuities) that are governed by the Euler
equations in the compressible single-phase flow; an extension of this approach to the
multi-phase case will be reported elsewhere. The proposed model that we are going
to describe in Sect. 2 will be formulated in such a way that a standard fractional-step
method can be applied, yielding a simple and yet accurate algorithm for numerical
approximation.

2 Mathematical Models

The basic physical conservation laws for the inviscid, non-heat conducting, single-
phase, compressible flow in Cartesian coordinates take the form

@t�C r � .�u/ D 0;

@t .�u/C r � .�u ˝ u C pIN / D 0;

@tE C r � .Eu C pu/ D 0:

(4)

We assume that the constitutive law for the fluid phase of interest satisfies a Mie-
Grüneisen equation of state of the form

p.�; e/ D pref.�/C � .�/� Œe � eref.�/� : (5)

Here e denotes the specific internal energy, � D .1=�/.@ep/j� is the Grüneisen
coefficient, and pref, eref are the properly chosen states of the pressure and the
internal energy along some reference curve (e.g., along an isentrope, a single shock
Hugoniot, or the other empirically fitting curves) in order to match the experimental
data of the material being examined. For simplicity, each of the expressions � , pref,
and eref is taken as a function of the density only, see Sect. 4 for an example. We
have E D �e C �u � u=2 denoting the total energy as usual.

To derive our compressible model for interface-sharpening that may be used in a
diffused interface method for numerical approximation, as in our previous work for
compressible multiphase flow solver (cf. [12]), we begin by considering an interface
only problem (i.e., a contact discontinuity in gas dynamics) where both the pressure
and the velocity are assumed to be constants in the whole domain, while the density
is having jumps across some interfaces. Then from (4), we find easily the basic
transport equations for the interfaces as

@t�C u � r� D 0; (6a)

u .@t�C u � r�/ D 0; (6b)

u � u
2

.@t� C u � r�/C Œ@t .�e/C u � r .�e/� D 0: (6c)
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With the interface-sharpening model (3) for the volume fraction in mind, it should
be sensible to assume a variant model for the density as

@t�C u � r� D 1

�
D�; (7a)

where the term D� can be defined analogously based on either the interface-
compression or the anti-diffusion formulation. Having that, to ensure the velocity
remains at a constant state across the interfaces Eq. (6b) should be modified by

u .@t� C u � r�/ D 1

�
u D�: (7b)

Furthermore, to ensure the pressure retains in equilibrium also, using the equation of
state (5) and Eq. (6a), together with a proper smoothness assumption of the density,
it is not difficult to show that Eq. (6c) should be modified by

u � u
2

.@t �C u � r�/C Œ@t .�e/C u � r .�e/� D 1

�

hu � u
2

C @�.�e/
i
D�;

(7c)

where we have @.�e/=@� D eref C �e0
ref � .�p0

ref C .p � pref/�
0/=� 2; z0 D dz=d�

for z D � , pref, and eref.
Since in general we are interested in shock wave problems as well, we should

apply the interface-sharpening terms described above only locally near the inter-
faces. For this reason, it is common to introduce an interface indicator, denoted by
HI , to the model so that it takes effect near the interfaces only, and has no effect on
the other genuinely nonlinear shock and rarefaction waves (cf. [11]).

With that, in summary, the interface-sharpening model we propose to solve
inviscid compressible single-phase flows with the Mie-Grüneisen equation of
state (5) in Cartesian coordinates takes the form

@t�C r � .�u/ D 1

�
HID�;

@t .�u/C r � .�u ˝ u C pIN / D 1

�
HID�u;

@tE C r � .Eu C pu/ D 1

�
HIDE:

(8)

Here, without causing any confusion, in Eq. (8) we have used the notations D�u WD
uD�, and DE WD .u � u=2� @.�e/=@�/D�.

To end this section, for the ease of the latter discussion, it is useful to write (8)
into a dimension-wise expression by
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@tq C
NX

jD1
@xj fj .q/ D 1

�
 .q/; (9a)

with q, fj , and  defined respectively by

q D .�; �u1; : : : ; �uN ;E/
T ; (9b)

fj D �
�uj ; �u1uj C pıj1; : : : ; �uNuj C pıjN ;Euj C puj

�T
; (9c)

 D HI

�D�;D�u1 ; : : : ;D�uN ;DE

�T
; (9d)

where ıij is the Kronecker delta.

3 Numerical Methods

To approximate (9) numerically, a fractional step method that consists of the
following steps in each time iteration is employed:

(1) Solve the model equation without interface-sharpening terms

@tq C
NX

jD1
@xj fj .q/ D 0 (10a)

using a state-of-the-art shock-capturing method over a time step 	t .
(2) Iterate the equation with the interface-sharpening terms

@
q D  .q/ (10b)

using a simple explicit method, over a time step 	
 towards a “sharp layer”;

 D t=� is a scaled time variable.

Note that in step 1 we have used a standard high-resolution finite-volume
method based on a wave-propagation viewpoint for the numerical approximation
of Eq. (10a) (cf. [5]), and in step 2 we have employed an explicit first-order in
time and second-order in space finite difference method for discretizing Eq. (10b)
(cf. [7, 11, 14]). In this work, the local interface indicator HI is defined as a
Heaviside function of form

HI .z/ D
�
1 if z � z0,
0 otherwise,

where the variable z can be taken as some measure of the physical quantities such
as density, entropy, pressure, and velocity. Alternatively, it can be taken on an
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augmented variable such as the volume fraction that is introduced to Eq. (8) for that
matter. Here z0 is some prescribed tolerance on z, see [11] for the other approach.

In the numerical results shown in Sect. 4, an anti-diffusion based model equation
with D� D �r � ."r�/ is used in the model for approximation. Here the diffusion
coefficient " is chosen to be a function of the local velocity that varies both in space
and time. To stabilize the computation of r� and so the flux "r�, the MINMOD

limiter is imposed in step 2 of the method (cf. [2, 3]). As to the stopping criterion
towards a “sharp layer”, in practice, only 1 or 2 iterations are sufficient for the
interface-sharpening purpose.

4 Numerical Examples

We now present sample results obtained using our interface-sharpening method with
anti-diffusion based model equations in both one and two dimensions. Additional
results that further validate the proposed method will be reported elsewhere.

Example 4.1. Our first test problem is the classical Sod shock tube problem in
one dimension, where initially the state variables are .�; u1; p/L D .1; 0; 1/

and .�; u1; p/R D .0:125; 0; 1/, respectively. Here L is the state used for
x1 2 Œ0; 0:5/, andR is the state used for x1 2 Œ0:5; 1�. The fluid inside the domain is
gas modeled by the ideal gas equation of state p.�; e/ D .� � 1/�e with � D 1:4.
There are non-reflecting outflow boundaries on the left and right sides.

In Fig. 1, we show interface-sharpening results for the density, velocity, and
pressure at time t D 0:15 using a 100 grid. It is easy to see that our interface-
sharpening algorithm works in a satisfactory matter on the interface without
introducing any spurious oscillations in the pressure, while retaining the same
solution structure in the region of shock and rarefaction waves.
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Fig. 1 Interface-sharpening result for the Sod shock tube problem at time t D 0:15 using a 100
grid. The solid line shown in the graph is the exact solution
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Example 4.2. Our second example in one dimension is an impact problem in
which a pre-compressed semi-infinite aluminum slab at rest with .�; p/ D
.4;000 kg/m3; 7:93� 109 Pa/ is being hit by an ambient aluminum slab traveling at
the speed 2 km/s from the right to the left with the reference state .�; p/ D .�0; p0/.
We assume that the constitutive law of an aluminum satisfies the Mie-Grüneisen
equation of state (5) with � , pref, and eref defined by

� .�/ D �0.1 � �/˛; pref.�/ D �0c
2
0�

.1 � s�/2 ; eref.�/ D �

2�0
.p0 C pref.�// ;

where the numerical values of the material constants are taken to be �0 D
2;785 kg/m3, p0 D 0, c0 D 5;328m/s, s D 1:338,�0 D 2, and ˛ D 1; � D 1��0=�.

In this setup, it is not difficult to show that the exact solution of this problem
would consist of a leftward going shock wave to the stationary aluminum, a material
interface, and a rightward going shock wave to the moving aluminum. Figure 2
shows results with and without interface-sharpening at time t D 50
s using a 200
grid. From the figure, we observe a slight improvement on the interface structure,
see [12] also for a similar calculation.

Example 4.3. We are next concerned with a passive evolution of a two-dimensional
square column of size .x1; x2/ 2 Œ0:3; 0:7� � Œ0:3; 0:7�m2 in a unit square domain
with uniform equilibrium pressure p D 105 Pa and constant particle velocity
.u1; u2/ D .102 m/s; 102 m/s/. In this test, the density in the region inside a
square column is 1;500 kg/m3, and it is 1;000 kg/m3 otherwise. We use the linearized
Mie-Grüneisen equation of state p.�; e/ D .� � 1/ �e C c20 .� � �0/ to model the
material in the whole domain with the material-dependent quantities taken to be
� D 4:4, �0 D 1;000 kg/m3, c0 D 1;624m/s. Figure 3 shows contour plots of
the density obtained using the method with and without interface-sharpening at
time t D 0:02 s using a 100 � 100 grid. An excellent interface-sharpening result
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Fig. 2 Interface-sharpening result for the aluminum impact problem at time t D 50
s using 200
grids. The solid line shown in the graph is the exact solution and the symbol “�” is the result
obtained using the method without interface-sharpening
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Fig. 3 Numerical results for
a passive evolution of a
square column. Contours of
the density are shown at time
t D 0:02 s obtained using the
method with and without
interface-sharpening on a
100� 100 grid

With anti−diffusion Without anti−diffusion

is observed, whereas a severely diffused interface is seen using the standard high-
resolution method. Here periodic boundary conditions are used on all sides.

Example 4.4. Our second example in two dimensions is a Mach 3 shock wave in air
interacting with a heavier circular gas column. In this test, we take a shock tube of
size .x1; x2/ 2 Œ�1; 1�� Œ0; 0:5�m2, and consider a planarly leftward-moving shock
wave with initial position x1 D 0:7m and states in the pre- and post-shock as

.�; u1; u2; p/pre-shock D �
1 kg/m3; 0; 0; 105 Pa

�
;

.�; u1; u2; p/post-shock D �
3:857 kg/m3; �831:479 m/s; 0; 1:033 � 106 Pa

�
;

respectively. In addition to that, we assume a stationary heavier circular gas column
with radius 0:2m and center .0:4; 0/m lying in front of the shock. Inside the gas
column the flow is in standard atmospheric condition with density � D 10 kg/m3;
this gives us one example that the interface is accelerated by a shock wave coming
from the light-fluid to the heavy-fluid region, yielding a transmitted shock wave, an
interface, and a reflected shock after the interaction. As in Example 4.1, the fluid
under consideration is an ideal gas with � D 1:4.

In Fig. 4, we show schlieren images of density obtained using the method with
and without interface-sharpening at six different times t D 2i � 10�1 ms for i D
1; 2; : : : ; 6, with a 800 � 200 grid. It is interesting to see that as far as the global
wave structure (i.e., the shape and location of the incident, transmitted and reflected
waves) is concerned, we observe similar behavior of the solutions between those
two. However, a sharper resolution of the contact line is observed when our anti-
diffusion method is in use.

Example 4.5. Finally, we are interested in a model blast wave problem with
complex wave interactions and a general equation of state. As initial condition,
we have a stationary circular gaseous explosive charge of radius 0:1m and center
.0; 0:25/m located in a rectangular domain .x1; x2/ 2 Œ�1; 1�� Œ0; 1�m2. Inside the
circular region, the density and pressure are � D 1;700 kg/m3 and p D 1012 Pa,
while outside the circular region, we have � D 1;000 kg/m3 and p D 5 � 1010 Pa.
The material in the entire domain is modeled by the Jones-Wilkins-Lee equation of
state for gaseous explosives (cf. [4]) in that it takes the form (5) with
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Fig. 4 Numerical results for a Mach 3 shock wave in air interacting with a heavier circular gas
column. Schlieren images of density are shown at six different times t D 2i � 10�1 ms for i D
1; 2; : : : ; 6, obtained using the method with and without interface-sharpening (drawn on the top
and bottom parts of each graph, respectively) with a 800� 200 grid

� .V / D �0; pref.V / D A exp

��R1V

V0

�
C B exp

��R2V

V0

�
;

eref.V / D A V0

R1

exp

��R1V

V0

�
C B V0

R2

exp

��R2V

V0

�
� e0;

where V D 1=� is the specific volume. The material-dependent quantities we use
in the simulations are �0 D 0:28, �0 D 1;640 kg/m3, e0 D 0, A D 494GPa,
B D 1:21GPa, R1 D 4:94, and R2 D 1:21. The boundary conditions are solid
walls on the top- and bottom-side, and non-reflecting on the left- and right-side.

In this problem, due to the pressure difference, breaking of the circular membrane
occurs instantaneously, yielding an outward-going shock wave, an inward-going
rarefaction wave, and a contact discontinuity lying in between. At a later time, this
outward-going shock wave is reflected from the bottom wall, and so the inward-
going rarefaction is bounced back from the explosive center; this generates complex
wave interactions afterwards.

Figure 5 shows schlieren images of density at three different times t D 18, 36,
and 72
s. Here we have performed the computations using both the anti-diffusion
based interface-sharpening method with a 400�200 grid, and also the local adaptive
mesh refinement (AMR) version of the method without anti-diffusion (cf. [6]). In
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Fig. 5 Numerical results for a blast wave problem in two dimensions. Schlieren images of density
are shown at three different times t D 18, 36, 72
s obtained using the methods with anti-diffusion
(the left column) and with local adaptive mesh refinement (the right column)

the later AMR runs, the base grid used here is 200�100 and with a two-level of grid
refinement; the refinement ratio is 4 for each level of grid, i.e., in the refined region
the mesh size is twice smaller than in the anti-diffusion runs. From the figure, we
observe the same qualitative structure of solution between them, especially on the
structure of shock waves; this is as expected because for the Euler equations without
any source terms the shock wave is stable under mesh refinement. This is not the
case, however, for interfaces (contact discontinuities); a difference in the solution
then occurs due to the perturbation of complex wave interactions upon them.

5 Conclusion

We have described a class of interface-sharpening methods for single-phase com-
pressible flow with interfaces. Numerical validation of the proposed methods using
an anti-diffusion based model system has been performed. It shows the feasibility
of the algorithm for sharpening compressible interfaces numerically in one and
two dimensions. Ongoing work is to validate the method using the interface-
compression based model, and extend the method to compressible multiphase flow
and to mapped grids with complex geometries.
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