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Abstract A reduced-order strategy based on the reduced basis (RB) method
is developed for the efficient numerical solution of statistical inverse problems
governed by PDEs in domains of varying shape. Usual discretization techniques are
infeasible in this context, due to the prohibitive cost entailed by the repeated eval-
uation of PDEs and related output quantities of interest. A suitable reduced-order
model is introduced to reduce computational costs and complexity. Furthermore,
when dealing with inverse identification of shape features, a reduced shape repre-
sentation allows to tackle the geometrical complexity. We address both challenges
by considering a reduced framework built upon the RB method for parametrized
PDEs and a parametric radial basis functions approach for shape representation. We
present some results dealing with blood flows modelled by Navier-Stokes equations.

1 Introduction

In a parametrized context, given a mathematical model of a system the forward
problem consists in evaluating some outputs of interest (depending on the PDE
solution) for specified parameter inputs. Whenever some parameters are uncertain,
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we aim at inferring their values (and/or distributions) from indirect observations by
solving an inverse problem: given an observed output, can we deduce the value
of the parameters that resulted in this output? Parameter identification can be
performed in two ways, either in a deterministic or in a statistical framework. In
the former case, we solve an optimization problem by minimizing (in the least-
square sense) the discrepancy between the output quantities predicted by the PDE
model and observations: this leads to a single-point estimate in the parameter space,
provided the optimization problem is feasible. In the latter case, we quantify the
relative likelihood of the parameters, which are consistent with the observed output.
Following a Bayesian approach, this results in the posterior probability density
function, which includes information both on prior knowledge on parameters
distribution and on the model used to compute the PDE-based outputs. Inverse
problems governed by PDEs entail several computational challenges for current
discretization techniques, such as the finite element method. When the parameters
to be identified are related with the shape of the domain, the problem is even
more complicated. In this framework, computational costs arise from three distinct
sources: (1) numerical approximation of the state system (usually a nonlinear system
of PDEs); (ii) handling domains of arbitrary shapes; (iii) sampling high-dimensional
parameter spaces or performing numerical optimization procedures.

In this paper, we address these challenges by developing a reduced framework
based on both state and parameter reduction, in order to devise a low-dimensional,
computationally inexpensive but accurate model that predicts outputs of a high-
fidelity, computationally expensive model.

The reduction in state is obtained through a reduced basis (RB) approximation
[7]: thanks to a suitable offline/online stratagem, online PDE evaluations for any
value of input parameters are completely independent of the expensive offline
computation and storage of the basis functions. On the other hand, when input
parameters are related to geometrical features, we rely on low-dimensional but
flexible shape parametrizations, able to represent wide families of complex shapes
by means of a handful of input parameters.

2 Inverse Problems Governed by PDEs

We introduce a compact description of general inverse problems governed by
parametrized PDEs. We denote by g € D C R? the finite-dimensional vector
of parameters to be identified, and consider an input-output map g +— y(p) from
parameters to observations that is given by two discretized PDEs (taken here linear
for notational simplicity):

State equation: Ay (puy(p) = f (1)
Observation equation:  y 5 () = Cy(p)uy(p)
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State variables and observed outputs are denoted by uy € RY and y, €
RM, respectively. By subscript N we signify the dimension of the state space,
dim(uy) = N, which in the case of Finite Element (FE) discretizations is typically
very large, whereas the dimension of the parameter space, dim(u) = P, and of the
observation space, dim(y ) = M can be different and typically P, M < N.Inour
case, p is related to the shape of the domain §2 = £2(u) where the state problem is
posed.

Whereas the forward problem is to evaluate y () given u, the inverse problem
can be formulated as follows [3,5]: given an observation y* = y + & with (additive)
noise &, find the parameter u* that satisfies y* = Cy (s *)un (1*). This problem is
often ill-posed in one of three basic ways: (i) the solution u* does not exist (e.g. due
to M > P and the presence of noise); (ii) the solution * is not unique (e.g. due to
M < P or data degeneracy); or (iii) the solution g* does not depend continuously
on y*. An example of an inverse problem that is ill-posed in the third sense is
the Calderén problem of determining the conductivity field inside an object based
on the observation of a Dirichlet-to-Neumann or Neumann-to-Dirichlet map on a
subsection of the boundary.

2.1 A Deterministic Approach

In order to treat ill-posed inverse problems, the classical approaches [1] are largely
based on solving regularized least-squares (RLS) problems of the type:

#res = arg min - 5ly" =y (0I5 + S0 =ty 2)
m

The first term minimizes the discrepancy between the observation y* and the
model prediction y () given by (1). The second term convexifies the problem
and assures a unique estimator pg; ¢ is recovered. This approach is also sometimes
called variational data assimilation. The choice of the norm ||w ||, := /1T Ru, the
regularization parameter « > 0, and the prior value g, play an important role in
the quality of the estimator fg, q.

2.2 A Bayesian Approach

Under the assumption of independent and identically distributed (i.i.d.) noise, & ~
N(0,021), and Gaussian parameter distribution, it ~ N(f1, X), it is easy to show
that the maximum a posteriori (MAP) estimator

Maap 1= argmax 7, (| y™) (3)
WERP
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obtained by maximizing the conditional probability density function
2 - — —
Ty (137 ~ exp (<HIy" =y — S - T (k- )

coincides with the Tykhonov-regularized least-squares estimator, that is to say
KRrLs = Kyaps as long as we choose f o, = L, o = o2,and R = ¥ 'in (2). In
fact, the estimator given by (3) is an example of a wider class of statistical estimators
called Bayesian estimators. The benefit of using statistical methods for solving
inverse problems is that one is able to characterize the variance of the prediction
p* due to measurement and model errors more precisely than from the single-point
estimates obtained by solving (2).

Bayesian estimators are a subset of statistical estimators that are widely used to
solve ill-posed inverse problems. The basic principle of Bayesian inference is that
the conditional distribution of the unknown parameters w given an observation y*
can be approximated by

s *I;L(y*“'b)”u(ll') ny*\u(y*lﬂ)nu,prior(l") *
T+ (rly*) = = A = Ty post(R[¥¥)
Kl Ty (3% Ty (3% topost

obtained by using the Bayes’ formula on a prior distribution 7, prior(pt) for the
unknown parameters. The prior 7, prior €ncapsulates our prior knowledge (structure,
regularity, locality, etc.) about the distribution of the uncertain parameters and
should be carefully selected based on problem-specific considerations — we do not
treat this point in this work since selecting an informative prior is a challenging
problem all by itself. The conditional distribution 7y |,, which in the case of
additive noise can be expressed as

Ty | (V™ | 1) = Tnoise (¥ — ¥y (1)),

is called the likelihood function. The posterior distribution 1, pos can then be used
to compute various estimators for w* and to provide conditional statistics such as
covariances for these estimators. The advantage of the Bayesian approach compared
to more classical methods is that a prior that carries sufficient information about
the true underlying structure of the parameters often provides more meaningful
estimates and regularizes the inverse problem in a more natural way than relying
on abstract regularization terms, as in (2), that might not have any interpretation.

Statistical methods used to solve an inverse problem can be computationally
much more expensive than the deterministic approach due to the necessity of
performing sampling in high-dimensional spaces in order to compute sample
statistics [3,5]. This cost is exacerbated by the fact that each evaluation requires the
solution of the forward problem in the form of a (potentially large-scale) discrete
PDE. To this end we introduce a reduced order model to speed up the computations
entailed by statistical inversion.
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3 Computational and Geometrical Reduction

We now present a brief description of the two main blocks on which the reduced
order model relies: reduced basis method for parametrized PDEs and radial
basis functions for low-dimensional shape parametrization. Further methodological
aspects and details and can be found e.g. in [6].

The reduced basis method provides an efficient way to compute an approxi-
mation u, () of the solution uy (@) (as well as an approximation y,(p) of the
output y 5 (g)) through a Galerkin projection onto a reduced subspace made up of
well-chosen full-order solutions (also called snapshots), corresponding to a set of
parameter values S, = {u', ..., u"} selected by means of a greedy algorithm [7].
Let us denote by Z, € RV the matrix

Zy=[wm(p)| ... [ (p)] “

obtained by aligning the snapshot vectors (a Gram-Schmidt orthonormalization
procedure has to be considered after each basis is added to the reduced space, but
for the sake of simplicity we consider the same notation). We denote by n << N the
dimension of the reduced state space. Then, the reduced-order solution is given by
a linear combination Z,u, (x) of the snapshots, being u,, € R” the solution of the
following problem:

State equation: A, (p)u,(n) = f,(1)
Observation equation:  y,(n) = C,(w)u,(p),

where
Ay() = ZJAN(W)Zy. o =Z]Ey.  Cy=CyZ,.

To get very fast input/output evaluations, RB methods rely on the assumption
of affine parametric dependence in Ay () and f 5 (p), i.e. on the possibility to
express Ay (p) = Z(?ZAI Oa(p)AY and f y(p) = quzfl O () f4, so that the
expensive p-independent quantities can be evaluated and stored just once. This is
a property inherited by the PDE model, which can be eventually recovered at the
discretization stage [7].

Once the reduced model is built in the offline stage, it can be exploited at
the online stage to speed up the solution of the optimization problem (2) in the
deterministic case or (3) in the Bayesian case. The corresponding reduced-order
version of the former reads as follows:

min 3y =yl + Sl = gl 6)
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whereas in the case of a statistical inverse problem we obtain:

ILK/IAP (= argmax nﬂ,posl(l'l' | y*) )
RERP

being

Tnoise (¥ — yn(ﬂ))”u,prior(ﬂ)
Ty ™) '

”u,posl(”’|y*) =

In this way, state reduction allows to speed up both numerical optimization schemes
or sampling algorithms required e.g. to compute statistical estimates based on the
posterior distribution.

Concerning parameter space reduction, here we consider a low-dimensional
parametrization based on Radial Basis Functions (RBF), an interpolatory technique
which allows to define shape deformations through a set of control points (which
can be freely chosen, according to the family of deformations to be described), i.e.
a linear combination of affine and radial, nonaffine terms; see e.g. [6] for more
insights. In this way, parameter space reduction is afforded by selecting only a small
set of P &~ (O(10) control points at a preceding stage — state reduction through the
RB method is built for a problem where shape parametrization has already been
performed. A RB paradigm for simultaneous state and parameter reduction has been
introduced in [5] in order to tackle the case of distributed parametric fields (instead
of parameter vectors), and represents a possible extension of our current framework.

4 Application and Results

We now apply the reduced framework of the previous section to the solution of
an inverse problem arising in modeling of blood flows. Since a strong mutual
interaction exists between haemodynamic factors and vessels geometry, improving
the understanding of the interplay between flows and geometries may be useful not
only for the sake of design of better prosthetic devices [4], but also to characterize
pathological risks, such as in the case of narrowing or thickening of an arterial
vessel [3]. Typical portions of cardiovascular network where lesions and pathologies
may develop are made up by curved vessels and bifurcations; an important segment
where vessel diseases are often clinically observed is the human carotid artery [2,6],
which supplies blood to the head.'

'The common carotid artery (CCA) bifurcates in the lower neck into two branches, the internal
and the external carotid arteries (ICA and ECA, respectively). Stenoses, that is the narrowing of
the inner portion of an artery, manifest quite often in the ICA.
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Fig. 1 Left: shape representation of a stenosed carotid artery bifurcation through RBF
parametrization. Right: velocity profiles (cm/s) in four different carotid bifurcations parametrized
with respect to the diameters d. = d. (i1, j12) of the CCA at the bifurcation and dj, = dp (3, [L4)
of the mid-sinus level of the ICA

Let us consider a steady, incompressible Navier-Stokes model to describe blood
flows in a two-dimensional carotid bifurcation (see Fig. 1):

—vAv+ (v-V)v+Vp =1f in 2(n)

Vv=0 in 2(w)
V= Vi on [, (8)
v=20 onl},
a
—p~n+v—v=0 on I,
on

being (v, p) the velocity and the pressure of the fluid, respectively, and v > 0
its kinematic viscosity. In view of studying computationally expensive inverse
problems, which entail the repeated simulation of these flow equations, we cannot
afford at the moment the solution of PDE models involving more complex features,
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such as flow unsteadiness and arterial wall deformability — computational costs
would be too prohibitive.

In this context, a typical forward problem is the evaluation of flow indices related
with geometry variation that assess/measure the occlusion risk. Typical examples
are given by vorticity, shear rates, wall shear stresses. On the other hand, we might
be interested in recovering some geometrical features by observing some physical
index related to flow variables. In particular, the inverse problem we want to solve
is the following: is it possible to identify the entity of the occlusions (i.e. the
diameters d. of the CCA at the bifurcation and dj, of the mid-sinus level of the
ICA, respectively) from the observation of the mean pressure drop

y(u)=/_ p(ﬂ)dl"—/ p(p)dr

in out

between the internal carotid outflow I,,; and the inflow I7,?

To exploit the reduced framework presented in Sect. 3, we represent local shape
deformations through a RBF parametrization built over p = 4 control points
(represented as the bullets in Fig. 1), located in one of the branches and close to
the bifurcation. In this case, Gaussian RBFs have been used in order to describe
local but moderate deformations representing possible stenoses, being 4 € D =
[—0.25,0.25]* the vector of the displacements of the control point in the horizontal
direction; see [6] for more details.

By applying the RB method to the parametrized Navier-Stokes problem (8) we
reduce the dimension of the state space from N = 26,000 (P, /IP; FE discretization)
to n = 45. Four examples of computed RB solutions are reported in Fig. 1. We
remark the strong sensitivity of the flow with respect to varying diameters d. =
d.(u1, p) of the CCA at the bifurcation and d, = dp(u3, it4) of the mid-sinus
level of the ICA, respectively. See e.g. [3, 6] for more insights on RB methodology
for nonlinear Navier-Stokes equations.

Thus, we can take advantage of both the deterministic and the Bayesian
framework to solve this inverse identification problem, by considering surrogate
measurements of the mean pressure drop.

In the first case, we demonstrate the solution of the deterministic inverse problem
for two different observed values of the pressure drop, s* = —1,400 and s* =
—2,200, by assuming 5 % relative additive noise in the measurements. The results
of the inverse identification problem are given in Fig. 2 for 100 realization of random
noise in both cases: each point in the graph corresponds to the recovered diameters
(d..dp) given a noisy observation. We observe that in the case s* = —1,400
recovered values of the diameters are more smeared out, since locally the pressure
drop surface is almost flat, but result is close in values to the considered observation.

Thus, in the former case s* = —1,400 the inverse problem is worse conditioned
than in the latter s* = —2,200, where the recovered values (d., dp) lie in a smaller
region of the space. However, the solution of a single optimization problem is
more feasible in the former case compared to the latter: solving 100 optimization
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problems took about 14h in the former and about 25.6h in the latter case,
respectively. We remark that solving 100 inverse problems of this type through
a full-order discretization technique would have been infeasible on a standard
workstation. Thus, even in presence of small noises, the result of a deterministic
inverse problem may be very sensitive — just when one diameter is known,
the second one can be recovered. This is due to the fact that several geometrical
configurations — in terms of diameters (d., dj) — may correspond to the same output
observation.

Following instead the Bayesian approach, we are able to characterize a set of
configurations, rather than a single configuration: this is done by providing the joint
probability distribution function for the (uncertain) diameters (d., d») encapsulating
the noise related to measurements, as discussed in Sect. 2.2. Let us denote by d =
(d.,dy)T € R? the vector of the two diameters and assume that the prior distribution
is aprior() ~ N(dp, Xr), being dyy € R? the (prior) mean and X € R>?
the (prior) covariance matrix, encapsulating a possible prior knowledge on the
diameters distribution (e.g. from observations of previous shape configurations). By
supposing that also the measurements of the pressure drop are expressed by i.i.d.
Gaussian variables, such that i (y* — ¥, (d)) ~ N(0,0?%), we can compute the
explicit form of the posterior probability density g posi(d|y *). Thus, provided some
preliminary information on plausible values of the diameters, the observation of a
(large) sample of outputs allows to characterize a set of plausible configurations as
the ones maximizing the posterior probability density 7q posi(d|y*). In particular,
we consider two different realizations of prior normal distributions, obtained by
choosing the mean dy; = (0.803,0.684)7 as given by the diameters corresponding
to the reference carotid configuration, and
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Fig. 3 Top: two different choices of the prior distribution on diameters d = (d.,d;)"; left:
Taprior ~ N (dar, X, ), right: 7t prior ~ N (das, Zay,). Center and bottom: results of the Bayesian
inverse problems (left: maprior ~ N(dp, Xngy), right: Taprior ~ N(dp, Xpy,)) and observed
pressure drop s* = —1,400 (second row) and s* = —2,200 (third row)
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ie., we assume that the two diameters are a priori independent (X, case)
or correlated (X, case), respectively. The two prior distributions, as well as
the resulting posterior distribution obtained for two different observed values
s* = —1,400 and s* = —2,200 of the pressure drop are reported in Fig. 3. In the
case at hand, we do not rely on the Metropolis-Hastings algorithm for the evaluation
of the posterior distribution, since its expression can be computed explicitly. Thus,
by computing a sample of 1,600 values of pressure drops on a uniform 40 x 40 grid
on the (d.,dp) space, we obtain the posterior densities 7q posi(d|y™*) represented
in Fig.3 in about 0.1 h, since any online evaluation of the reduced Navier-Stokes
problem takes about 2.5 s.
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