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Abstract Exponential Runge–Kutta methods are tailored for the time discretization
of semilinear stiff problems. The actual construction of high-order methods relies
on the knowledge of the order conditions, which are available in the literature up
to order four. In this short note, we show how the order conditions for methods
up to order five are derived; the extension to arbitrary orders will be published
elsewhere. Our approach is adapted to stiff problems and allows us to prove high-
order convergence results for variable step size implementations, independently of
the stiffness of the problem.

1 Introduction

In this paper, we derive the stiff order conditions for exponential Runge–Kutta
methods up to order five. These conditions are important for constructing high-order
time discretization schemes for semilinear problems

u0.t/ D Au.t/C g.u.t//; u.t0/ D u0; (1)

where A has a large norm or is even an unbounded operator. The nonlinearity g,
on the other hand, is supposed to be nonstiff with a moderate Lipschitz constant
in a strip along the exact solution. Abstract parabolic evolution equations and their
spatial discretizations are typical examples of such problems.

Exponential integrators have shown to be very competitive for stiff problems, see
[1, 4, 9]. They treat the linear part of problem (1) exactly and the nonlinearity in an
explicit way. A recent overview of such integrators and their implementation was
given in [7]. The class of exponential Runge–Kutta methods was first considered
by Friedli [2] who also derived the nonstiff order conditions. For stiff problems, the
methods were analyzed in [5]. In that paper, the stiff order conditions for methods
up to order four were derived.
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Motivated by the fact that exponential Runge–Kutta methods can be viewed as
small perturbations of the exponential Euler method, we present here a new and
simple approach to derive the stiff order conditions. Instead of inserting the exact
solution into the numerical scheme and working with defects, as it was done in
[5, 8], we analyze the local error in a direct way. For this purpose, we reformulate
the scheme as a perturbation of the exponential Euler method and carry out a
perturbation analysis. This allows us to generalize the order four conditions that
were given in [5] to methods up to order five. The error analysis is performed
in the framework of strongly continuous semigroups [11] which covers parabolic
problems and their spatial discretizations. The work is inspired by our recent paper
[10], where exponential Rosenbrock methods were constructed up to order five.

The paper is organized as follows. In Sect. 2, we introduce a reformulation
of exponential Runge–Kutta methods which turns out to be advantageous for the
analysis. Our abstract framework is given in Sect. 3. The new stiff order conditions
are derived in Sect. 4. Section 5 is devoted to the convergence analysis. The main
results are given in Table 1 and Theorem 1.

Table 1 Stiff order conditions for explicit exponential Runge–Kutta methods up to order 5. The
variables Z, J , K , L denote arbitrary square matrices, and B an arbitrary bilinear mapping of
appropriate dimensions. The functions  k;l are defined in (21)

No. Order condition Order

1
Ps

iD1 bi .Z/ D '1.Z/ 1

2
Ps

iD2 bi .Z/ci D '2.Z/ 2

3
Pi�1

jD1 aij.Z/ D ci'1.ciZ/; i D 2; : : : ; s 2

4
Ps

iD2 bi .Z/
c2i
2Š
D '3.Z/ 3

5
Ps

iD2 bi .Z/J 2;i .Z/ D 0 3

6
Ps

iD2 bi .Z/
c3i
3Š
D '4.Z/ 4

7
Ps

iD2 bi .Z/J 3;i .Z/ D 0 4

8
Ps

iD2 bi .Z/J
Pi�1

jD2 aij.Z/J 2;j .Z/ D 0 4

9
Ps

iD2 bi .Z/ciK 2;i .Z/ D 0 4

10
Ps

iD2 bi .Z/
c4i
4Š
D '5.Z/ 5

11
Ps

iD2 bi .Z/J 4;i .Z/ D 0 5

12
Ps

iD2 bi .Z/J
Pi�1

jD2 aij.Z/J 3;j .Z/ D 0 5

13
Ps

iD2 bi .Z/J
Pi�1

jD2 aij.Z/J
Pj�1

kD2 ajk.Z/J 2;k.Z/ D 0 5

14
Ps

iD2 bi .Z/J
Pi�1

jD2 aij.Z/cjK 2;j .Z/ D 0 5

15
Ps

iD2 bi .Z/ciK 3;i .Z/ D 0 5

16
Ps

iD2 bi .Z/ciK
Pi�1

jD2 aij.Z/J 2;j .Z/ D 0 5

17
Ps

iD2 bi .Z/B
�
 2;i .Z/;  2;i .Z/

� D 0 5

18
Ps

iD2 bi .Z/c
2
i L 2;i .Z/ D 0 5
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2 Reformulation of Exponential Runge–Kutta Methods

In order to solve (1) numerically, we consider a class of explicit one-step methods,
the so-called explicit exponential Runge–Kutta methods

Uni D e ci hnAun C hn

i�1X

jD1
aij.hnA/g.Unj/; 1 � i � s; (2a)

unC1 D ehnAun C hn

sX

iD1
bi .hnA/g.Uni/: (2b)

The stages Uni are approximations to u.tn C cihn/, the numerical solution unC1
approximates the true solution at time tnC1 and hn D tnC1� tn denotes the step size.
The coefficients aij.hnA/ and bi.hnA/ are usually chosen as linear combinations
of the entire functions 'k.cihnA/ and 'k.hnA/, respectively. These functions are
given by

'0.z/ D e z; 'k.z/ D
Z 1

0

e .1��/z
�k�1

.k � 1/Š d�; k � 1 (3)

and thus satisfy the recurrence relation

'kC1.z/ D 'k.z/ � 'k.0/
z

; k � 0: (4)

It turns out that the equilibria of (1) are preserved if the coefficients aij and bi of the
method fulfill the following simplifying assumptions (see [5])

sX

iD1
bi .hnA/ D '1.hnA/;

i�1X

jD1
aij.hnA/ D ci'1.cihnA/; 1 � i � s: (5)

The latter implies in particular that c1 D 0. Without further mention, we will assume
throughout the paper that (5) is satisfied.

Following an idea of [6, 12], we now express the vector g.Uni/ as

g.Uni/ D g.un/CDni; 1 � i � s (6)

and rewrite (2) in terms of Dni. Since c1 D 0, we consequently have Un1 D un and
Dn1 D 0. The method (2) then takes the equivalent form
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Uni D un C cihn'1.cihnA/F.un/C hn

i�1X

jD2
aij.hnA/Dnj; 1 � i � s; (7a)

unC1 D un C hn'1.hnA/F.un/C hn

sX

iD2
bi .hnA/Dni (7b)

with F.u/ D Au C g.u/.
Since the vectors Dni are small in norm, in general, exponential Runge–Kutta

methods can be interpreted as small perturbations of the exponential Euler scheme

unC1 D un C hn'1.hnA/F.un/:

The reformulated scheme (7) can be implemented more efficiently than (2), and it
offers advantages in the error analysis, see below.

3 Analytic Framework

For the error analysis of (7), we work in an abstract framework of strongly continu-
ous semigroups on a Banach space X with norm k � k. Background information on
semigroups can be found in the monograph [11].

Throughout the paper we consider the following assumptions.

Assumption 1. The linear operator A is the infinitesimal generator of a strongly
continuous semigroup e tA on X .

This implies (see [11, Thm. 2.2]) that there exist constantsM and ! such that

ke tAkX X � M e!t ; t � 0: (8)

Under the above assumption, the expressions 'k.hnA/ and consequently the
coefficients aij.hnA/ and bi.hnA/ of the method are bounded operators, see (3).
This property is crucial in our proofs.

For high-order convergence results, we require the following regularity
assumption.

Assumption 2. We suppose that (1) possesses a sufficiently smooth solution u W
Œ0; T � ! X with derivatives in X and that g W X ! X is sufficiently often
Fréchet differentiable in a strip along the exact solution. All occurring derivatives
are assumed to be uniformly bounded.

Assumption 2 implies that g is locally Lipschitz in a strip along the exact
solution. It is well known that semilinear reaction-diffusion-advection equations can
be put into this abstract framework, see [3].
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4 A New Approach to Construct the Stiff Order Conditions

In this section, we present a new approach to derive the stiff order conditions for
exponential Runge–Kutta methods. It is the well-known that the exponential Euler
method

unC1 D un C hn '1.hnA/F.un/ (9)

has order one. In view of (7b), exponential Runge–Kutta methods can be considered
as small perturbations of (9). This observation motivates us to investigate the vectors
Dni in order to get a higher-order method.

Let Qun denote the exact solution of (1) at time tn, i.e., Qun D u.tn/. In order to
study the local error of scheme (7), we consider one step with initial value Qun, i.e.

OUni D Qun C cihn'1.cihnA/F.Qun/C hn

i�1X

jD2
aij.hnA/ ODnj; (10a)

OunC1 D Qun C hn'1.hnA/F.Qun/C hn

sX

iD2
bi .hnA/ ODni (10b)

with

ODni D g. OUni/ � g.Qun/; OUni � u.tn C cihn/: (11)

Let Qu.k/n denote the k-th derivative of the exact solution u.t/ of (1), evaluated at
time tn. For k D 1; 2 we use the corresponding notations Qu0n; Qu00n for simplicity. We
further denote the k-th derivative of g.u/ with respect to u by g.k/.u/.

4.1 Taylor Expansion of the Exact and the Numerical Solution

On the one hand, expressing the exact solution of (1) at time tnC1 by the variation-
of-constants formula

QunC1 D u.tnC1/ D ehnA Qun C hn

Z 1

0

e .1��/hnAg.u.tn C �hn// d� (12)

and then expanding g.u.tn C �hn// in a Taylor series at Qun gives

QunC1 D Qun C hn'1.hnA/F.Qun/

C
kX

qD1
hqC1n

Z 1

0

e .1��/hnA
�q

qŠ
g.q/.Qun/.V; : : : ; V„ ƒ‚ …

q times

/ d� C Rk

(13)
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with V D 1
�hn

�
u.tn C �hn/ � u.tn/

�
and the remainder

Rk D hkC2n

Z 1

0

e .1��/hnA
Z 1

0

�kC1.1 � s/k

kŠ
g.kC1/.Qun C s�hnV /.V; : : : ; V„ ƒ‚ …

kC1 times

/ ds d�:

It is easy to see that kRkk � ChkC2n where the constant C only depends on values
that are uniformly bounded by Assumptions 1 and 2. From now on, we will use the
Landau notation for such remainder terms. Thus, we will write Rk D O.hkC2n /.

Expanding u.tn C �hn/ in a Taylor series at tn gives

V D
mX

rD1

.�hn/
r�1

rŠ
Qu.r/n C O.hmn /:

Inserting these expressions into (13) for k D 4, using (3) and the symmetry of the
multilinear mappings in (13), we obtain

QunC1 D Qun C hn'1.hnA/F.Qun/C h2n'2.hnA/L C h3n'3.hnA/M

C h4n'4.hnA/N C h5n'5.hnA/P C O.h6n/
(14)

with

L D g0.Qun/Qu0n; M D g0.Qun/Qu00n C g00.Qun/.Qu0n; Qu0n/;
N D g0.Qun/Qu.3/n C 3g00.Qun/.Qu0n; Qu00n/C g.3/.Qun/.Qu0n; Qu0n; Qu0n/;
P D g0.Qun/Qu.4/n C 3g00.Qun/.Qu00n; Qu00n/C 4g00.Qun/.Qu0n; Qu.3/n /

C 6g.3/.Qun/.Qu0n; Qu0n; Qu00n/C g.4/.Qun/.Qu0n; Qu0n; Qu0n; Qu0n/:

(15)

On the other hand, expanding ODni in (11) in a Taylor series at Qun, we obtain

ODni D
kX

qD1

h
q
n

qŠ
g.q/.Qun/.Vi ; : : : ; Vi„ ƒ‚ …

q times

/C O.hkC1n / (16)

with

Vi D 1

hn

� OUni � Qun
� D ci'1.cihnA/F.Qun/C

i�1X

jD2
aij.hnA/ ODnj: (17)

Inserting (16) into (10b), we get

OunC1 D Qun C hn'1.hnA/F.Qun/

C
sX

iD2
bi .hnA/

kX

qD1

h
qC1
n

qŠ
g.q/.Qun/.Vi ; : : : ; Vi„ ƒ‚ …

q times

/C O.hkC2n /:
(18)
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In order to construct methods of order 5 we set k D 4 and compute Vi .

Lemma 1. Under Assumptions 1 and 2, we have

'1.cihnA/F.Qun/ D Qu0n C cihn

2Š
Xi C c2i h

2
n

3Š
Yi C c3i h

3
n

4Š
Zi C O.h4n/ (19)

with

Xi D Qu00n � 2Š'2.cihnA/L; Yi D Qu.3/n � 3Š'3.cihnA/M;

Zi D Qu.4/n � 4Š'4.cihnA/N:
(20)

Proof. It is easy to see from (1) that Au.k/.t/ D u.kC1/.t/� dk

dtk
g.u.t//. Thus Au.k/.t/

is bounded for all k. Evaluating it at t D tn for k D 1; 2; 3 by using the chain rule,
we obtain expressions for AQu0n; AQu00n; and AQu.3/n . Using F.Qun/ D Qu0n and employing
the recurrence relation 'k.hnA/ D 1

kŠ
C hnA'kC1.hnA/, we get

'1.cihnA/F.Qun/ D Qu0n C cihn

2Š
Xi C c2i h

2
n

3Š
Yi C c3i h

3
n

4Š
Zi C h4nc

4
i '5.cihnA/AQu.4/n :

ut
In the subsequent analysis, we use the abbreviations aij D aij.hnA/, bi D bi .hnA/,
and

 j;i D  j;i .hnA/ D
i�1X

kD2
aik.hnA/

c
j�1
k

.j � 1/Š
� cji 'j .cihnA/: (21)

Lemma 2. Under Assumptions 1 and 2, the following holds

Vi D ci Qu0n C hn

�c2i
2Š

Qu00n C  2;i L
�

C h2n

�c3i
3Š

Qu.3/n C  3;i M C
i�1X

jD2
aijg
0.Qun/ 2;j L

�
C h3n

�c4i
4Š

Qu.4/n C  4;i N

C
i�1X

jD2
aijg
0.Qun/ 3;j M C

i�1X

jD2
aijg
0.Qun/

j�1X

kD2
ajkg

0.Qun/ 2;k L

C
i�1X

jD2
aijcj g

00.Qun/.Qu0n;  2;j L/
�

C O.h4n/:

(22)

Proof. Using (16) and (17) repeatedly, one obtains the following representations
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ODnj D hng
0.Qun/Vj C h2n

2Š
g00.Qun/.Vj ; Vj /C h3n

3Š
g.3/.Qun/.Vj ; Vj ; Vj /C O.h4n/;

Vj D cj '1.cj hnA/F.Qun/C
j�1X

kD2
ajk

�
hng
0.Qun/Vk C h2n

2Š
g00.Qun/.Vk; Vk/

�
C O.h3n/;

Vk D ck'1.ckhnA/F.Qun/C hn

k�1X

lD2
aklg

0.Qun/Vl C O.h2n/ and

Vl D cl'1.clhnA/F.Qun/C O.hn/:

Applying Lemma 1 to the first terms of Vj ; Vk , Vl and then sequentially inserting Vl
into Vk , Vk into Vj , and Vj into ODnj, we obtain the full expression of ODnj with the
remainder O.h4n/. Substituting this into (17), employing Lemma 1 once more and
combining all obtained terms we get (22). ut

The following result follows immediately from Lemma 2.

Lemma 3. Under Assumptions 1 and 2 we have

g.4/.Qun/.Vi ; Vi ; Vi ; Vi / D c4i g
.4/.Qun/.Qu0n; Qu0n; Qu0n; Qu0n/C O.hn/;

g.3/.Qun/.Vi ; Vi ; Vi / D c3i g
.3/.Qun/.Qu0n; Qu0n; Qu0n/C hn

�
3
2
c4i g

.3/.Qun/.Qu0n; Qu0n; Qu00n/

C 3c2i g
.3/.Qun/.Qu0n; Qu0n;  2;i L/

�
C O.h2n/;

g00.Qun/.Vi ; Vi / D c2i g
00.Qun/.Qu0n; Qu0n/C hn

�
c3i g
00.Qun/.Qu0n; Qu00n/

C 2cig
00.Qun/.Qu0n;  2;i L/

�
C h2n

�c4i
3
g00.Qun/.Qu0n; Qu.3/n /C 2cig

00.Qun/.Qu0n;  3;i M/

C 2cig
00.Qun/

�Qu0n;
i�1X

jD2
aijg
0.Qun/ 2;j g0.Qun/Qu0n

� C c4i
4
g00.Qun/.Qu00n; Qu00n/

C c2i g
00.Qun/.Qu00n;  2;i L/C g00.Qun/. 2;i L;  2;i L/

�
C O.h3n/: ut

Employing the results of Lemma 3, we get the expansion of the numerical solution

OunC1 D Qun C hn'1.hnA/F.Qun/C h2n
� sX

iD2
bici

�
L C h3n

� sX

iD2
bi
c2i
2Š

�
M

C h4n

� sX

iD2
bi
c3i
3Š

�
N C h5n

� sX

iD2
bi
c4i
4Š

�
P C R C O.h6n/

(23)

with L, M, N and P as in (15), and the remaining terms
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R D h3n

sX

iD2
big
0.Qun/ 2;i L C h4n

sX

iD2
big
0.Qun/ 3;i M

C h4n

sX

iD2
big
0.Qun/

i�1X

jD2
aijg
0.Qun/ 2;j L C h4n

sX

iD2
bici g

00.Qun/
�Qu0n;  2;i L

�

C h5n

sX

iD2
big
0.Qun/ 4;i N C h5n

sX

iD2
big
0.Qun/

i�1X

jD2
aijg
0.Qun/ 3;j M

C h5n

sX

iD2
big
0.Qun/

i�1X

jD2
aijg
0.Qun/

j�1X

kD2
ajkg

0.Qun/ 2;k L

Ch5n
sX

iD2
big
0.Qun/

i�1X

jD2
aijcj g

00.Qun/
�Qu0n;  2;j L

� C h5n

sX

iD2
bi cig

00.Qun/
�Qu0n;  3;i M

�

Ch5n
sX

iD2
bicig

00.Qun/
�Qu0n;

i�1X

jD2
aijg
0.Qun/ 2;j L

�Ch5n
sX

iD2

bi

2Š
g00.Qun/

�
 2;i L;  2;i L

�

C h5n

sX

iD2
bi
c2i
2Š
g00.Qun/

�Qu00n;  2;i L
� C h5n

sX

iD2
bi
c2i
2Š
g.3/.Qun/

�Qu0n; Qu0n;  2;i L
�
:

4.2 Local Error and Derivation of Stiff Order Conditions

Now we are ready to study the order conditions. Let QenC1 D OunC1� QunC1 denote the
local error, i.e., the difference between the numerical solution OunC1 after one step
starting from Qun and the corresponding exact solution of (1) at tnC1, and let

 j .hnA/ D
sX

iD2
bi .hnA/

c
j�1
i

.j � 1/Š
� 'j .hnA/; j � 2:

Subtracting (14) from (23) gives

QenC1 D h2n 2.hnA/L C h3n 3.hnA/M C h4n 4.hnA/N

C h5n 5.hnA/P C R C O.h6n/:
(24)

The stiff order conditions can easily be identified from (24). They are summarized
in Table 1. Note that the last two terms in R give rise to the same order condition,
which is labeled 18 in Table 1.
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The first nine conditions in Table 1 are the same as in [5]. Note that the method
satisfies c1 D 0 and  j;1 D 0 for all j . Therefore, all sums in Table 1 with the very
exception of the first one start with the lower index 2.

5 Convergence Analysis

With the above local error analysis at hand, we are now ready to prove convergence.

Theorem 1. Let the initial value problem (1) satisfy Assumptions 1 and 2. Consider
for its numerical solution an explicit exponential Runge–Kutta method (7) that
fulfills the order conditions of Table 1 up to order p for some 2 � p � 5. Then,
the numerical solution un satisfies the error bound

kun � u.tn/k � C

n�1X

iD0
h
pC1
i ; (25)

uniformly on t0 � tn � T . In particular, the constantC can be chosen independently
of the step size sequence hi in Œt0; T �.

Proof. The proof is quite standard. It only remains to verify that the numerical
scheme (7) is stable. For this, let vk and wk denote two approximations to u.tk/
at time tk . Performing n � k steps (n > k) gives

vn D e .hn�1C:::Chk/Avk C
n�1X

mDk
hme .hn�1C:::ChmC1/A

sX

iD1
bi .hmA/g.Vmi /

and a similar expression for wn. Using the Lipschitz condition of g and the stability
estimate (8) on the semigroup shows the bound

kvn � wnk � QC
�
kvk � wkk C

n�1X

mDk
hmkvm � wmk

�

with a constant QC that can be chosen uniformly in n and k for t0 � tk � tn � T .
The application of a standard Gronwall inequality thus proves stability.

We now make use of the fact that the global error un � u.tn/ can be estimated by
the sum of the propagated local errors Ouk � Quk, k D 1; : : : ; n. Due to the stability of
the error propagation, we obtain at once (25). ut

A discussion of the solvability of the order conditions given in Table 1, sample
methods and numerical experiments will be published elsewhere.
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