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Abstract This paper describes a superspace method to identify a state-space model
and an associated Kalman filter gain from input-output data. Superstate vectors
are simply vectors containing input-output measurements, and used directly for
the identification. The superstate space is unusual in that the state portion of the
Kalman filter becomes completely independent of both the system dynamics and
the input and output noise statistics. The system dynamics is entirely carried by the
measurement portion of the superstate Kalman filter model. When model reduction
is applied, the system dynamics returns to the state portion of the state-space model.

1 Introduction

Finding a state-space model of a system and an associated optimal observer/Kalman
filter gain in the presence of unknown process and measurement noises is a well-
known and important system identification problem. The identification problem is
nonlinear because it involves the product of the system matrix and the state, both
of which are unknown. A method known as Observer/Kalman filter identification
(OKID) bypassed the need to determine the system states by working through an
intermediate set of parameters called Observer/Kalman filter Markov parameters
[1]. These parameters are related to input-output data linearly, and can thus be
found by a simple linear least-squares solution. The nonlinear step is handled by
the Eigensystem Realization Algorithm (ERA), which offers an analytical (exact)
solution to the problem of recovering a state-space model representation from the
identified Markov parameters [2]. Under appropriate conditions, OKID identifies
a state-space model of the system and an associated Kalman filter gain that is
optimal with respect to the unknown process and measurement noises embedded in
the input-output data. There are numerous extensions of the observer-based method
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[3–5], such as residual whitening [6], and methods that are derived from interaction
matrices [7].

Another important class of methods that solved this problem is known as
“subspace methods” [8, 9]. These methods put the emphasis on the recovery of
the system states from input-output measurements by various oblique projection
techniques. A fundamental attraction of this approach is that once the states are
known, the identification of the state-space model becomes linear. These methods
are also capable of recovering the optimal Kalman filter gain when the input-output
measurements are corrupted by unknown process and measurement noises. There
are numerous variations of the subspace technique [10–12]. The method used in
this paper for comparison purpose is N4SID [13].

This paper describes a recently developed class of methods which can be referred
to as “superspace methods”. A superstate vector is made up of input and output
measurements. These superstate vectors are treated as the states of the system, and
used directly in the identification of the state-space model and an associated Kalman
filter gain. The superspace method bypasses the need to recover the states of the
system as required in a subspace method. It also sidesteps the need to work through
the Markov parameters as in OKID-based methods. In this paper, we further show
that in the space of the superstates, the system matrices that define the state portion
of the Kalman filter are made up entirely of 1’s and 0’s. They do not need to be
identified, and even more interestingly, they are independent of the system dynamics
and the process and measurement noise statistics. All system dynamics are carried
in the output measurement portion of the Kalman filter. When model reduction is
applied, the dynamics of the system returns to the state portion of the model as one
would expect in a state-space model. The superspace idea has also been recently
applied successfully to the bilinear system identification problem [14].

2 Mathematical Formulation

The state-space identification problem has many related or equivalent forms. We
will use one that is both common in literature and convenient for stating our
algorithm.

2.1 Problem Statement

Suppose a set of input-output measurements, fu0; u1; � � � ; usg, fy0; y1; � � � ; ysg, of
an m-input, q-output system corrupted by unknown process and measurement
noises, is given. The objective of the problem is to find a state-space representation
fA; B; C; Dg and a steady-state Kalman filter gain K such that the input-output
measurements are related to each other by the following innovation form of the
state-space model,
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OxkC1 D A Oxk C Buk C Kek (1)

yk D C Oxk C Duk C ek (2)

where Oxk denotes the (unknown) Kalman filter state, K is the (unknown) corre-
sponding steady-state Kalman filter gain, and ek is the (unknown) Kalman filter
residual that is unique for the given system, input-output measurements, and noises
in the system, ek D yk � Oyk D yk � .C Oxk C Duk/. The innovation form is derived
from the conventional process form,

OxkC1 D A Oxk C Buk C wk (3)

yk D C Oxk C Duk C nk (4)

The process noise wk and measurement noises nk are assumed to be independent,
white, zero-mean, and Gaussian. The Kalman filter gain K is a function of the
system state-space model and the covariances of the process and measurement
noises. In the identification problem, only input-output measurements are known.
The noise covariances are unknown.

2.2 A Superstate Vector Definition

A superstate vector zk is defined from input-output data as follows,

zk D

2
6664

vk�p

:::

vk�2

vk�1

3
7775 vk D

�
uk

yk

�
(5)

From the given input-output measurements, these superstates can be easily created,
and used in the subsequent superspace identification method.

3 A Superspace Identification Algorithm

A superspace identification algorithm is summarized below.

• Choose a value for p such that .m C q/p defines the dimension of the superstate
vector, which is typically larger than the true minimum state dimension of the
system being identified.

• Form the following matrix Z from the available input-output data,
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Z D

2
666664

v0 v1 � � � vs�p vs�pC1

v1 v2 � � � vs�pC1 vs�pC2

:::
:::

:::
:::

:::

vp�2 vp�1 � � � vs�2 vs�1

vp�1 vp � � � vs�1 vs

3
777775

(6)

Define Z0 as Z with its last column removed, and Z1 as Z with its first column
removed. Furthermore, define

Up D �
up upC1 � � � us

�
Yp D �

yp ypC1 � � � ys

�
Vp D

�
Up

Yp

�
(7)

• Solve for NA�, NB�, C �, and D� by least-squares from

Z1 D NA�Z0 C NB�Vp (8)

Yp D C �Z0 C D�Up C E�
p (9)

It turns out that there is no need to solve for NA�, NB� from (8), as they are simply
matrices made up of 0’s and 1’s,

NA� D
"

0.p�1/b�b

ˇ̌
I.p�1/b�.p�1/b

0b�b j 0b�.p�1/b

#
NB� D

�
0.p�1/b�b

Ib�b

�
(10)

where b D m C q. A key point to observe here is that NA�, NB� are completely
independent of the system dynamics and the process and measurement noise
statistics. Information about the system is completely contained in C � and D�,
which can be solved by least-squares,

�
C � j D�� D Yp

�
Z0

Up

��

(11)

The � denotes the Moore-Penrose pseudo-inverse. Z1 is not needed in (11), but
will be used later in establishing the optimality of the algorithm.

• Lastly, a representation of fA; B; C; D; Kg denoted by fA�; B�; C �; D�; K�g
can be recovered from NA�, NB�, C �, D� based on the following relationship,

NA� D A� � K�C � NB� D �
B� � K�D� j K��

(12)

Recall that C � and D� are obtained from (11), NA� and NB� are given in (10).
The matrix NB�, which is defined in (10), has two partitions according to (12):
the left partition is B� � K�D� of dimensions pb � m, the right partition
is K� of dimensions pb � q. Because NB� is made up of entirely 0’s and 1’s
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and known beforehand, these partitions are known. B� can be recovered from
the first partition of NB� because K� are D� known. Similarly, A� can be
recovered from NA� because K� and C � are known. Having obtained a full set
of fA�; B�; C �; D�; K�g, standard model reduction techniques can be applied
to reduce the dimension of fA�; B�; C �; D�; K�g to the correct minimum state
dimension of the system being identified.

4 Optimality of Superspace Identification

We now establish the optimality of the combination fA�; B�; C �; D�; K�g by
proving that Markov parameters of the combination fA�; B�; C �; D�; K�g match
the Markov parameters of the optimal Kalman filter given in (1) and (2). First, we
need to eliminate ek from the state portion of the Kalman filter by solving for ek

in (2) and substituting it into (1) to produce

OxkC1 D NA Oxk C NBvk (13)

yk D C Oxk C Duk C ek (14)

where NA D A � KC, NB D ŒB � KD j K�, and vk is defined in (5). Define

OXp D � Oxp � � � Oxs

� OXpC1 D � OxpC1 � � � OxsC1

�
Ep D � Oep � � � Oes

�
(15)

Equations (13) and (14) can be written for all available time steps,

OXpC1 D NA OXp C NBVp (16)

Yp D C OXp C DUp C Ep (17)

where Vp D �
vp vpC1 � � � vs

�
: Next, we express OXp and OXpC1 in terms of input

and output measurements. As long as p is sufficiently large such that NAp � 0, then
by repeated substitution, the Kalman filter state can be expressed in terms of input
and output measurements, and when packaged together, can be put in the form,

� Oxp OxpC1 � � � OxsC1

� D � NAp�1 NB � � � NA NB NB �
2
6664

v0 v1 � � � vs�pC1

v1 v2 � � � vs�pC2

:::
:::

:::
:::

vp�1 vp � � � vs

3
7775 (18)

Define Cp D � NAp�1 NB ; : : : ; NA NB; NB�
. It follows from (18) that

OXp D CpZ0
OXpC1 D CpZ1 (19)
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where Z1 and Z2 are the two partitions of Z as previously defined in (6).
Substituting (19) into (16) produces

CpZ1 D NACpZ0 C NBVp (20)

Yp D CCpZ0 C DUp C Ep (21)

This is the relation that the ideal optimal system matrices need to satisfy with the
given input-output measurements. Notice that Ep here is made of the innovation
sequence fekg. In the superspace algorithm, we impose (8) and (9). To relate (20)
and (21) to (8) and (9), premultiplying (8) by Cp produces

CpZ1 D Cp
NA�Z0 C Cp

NB�Vp (22)

Yp D C �Z0 C D�Up C E�
p (23)

In the superspace identification algorithm, C � and D� are solved from (11) by least-
squares. This step ensures that the residual E�

p is minimized and orthogonal to
the input and output data. These are the conditions that the optimal Kalman filter
residual must satisfy, hence E�

p D Ep . Furthermore, if the input-output data set is
sufficiently rich such that the matrix formed by Z0 and Vp is full rank, we also have

NACp D Cp
NA� (24)

NB D Cp
NB� (25)

CCp D C � (26)

D D D� (27)

As long as p is sufficiently large such that NAp � 0, our choices of NA� and NB�
in (10) indeed satisfy (24) and (25). Furthermore, it can be shown that the Markov
parameters of the identified Kalman filter match the Markov parameters of the
optimal Kalman filter. For example, the first Markov parameter can be shown to
match,

C � NB� D .CCp/ NB� D C.Cp
NB�/ D C NB (28)

Similarly, the second Markov parameter can also be shown to match,

C � NA� NB� D C.Cp
NA�/ NB� D C. NACp/ NB� D C NA.Cp

NB�/ D C NA NB (29)

and so on. The two sets of system matrices have the same Markov parameters. This
result establishes the optimality of the identified Kalman filter.
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We discuss briefly how the superspace method is different from the subspace
method. Although there are several variants of the subspace identification method,
the well-known N4SID is used for the present discussion. The N4SID method
first estimates the optimal states by an oblique projection, then estimates all the
system state-space matrices by least-squares. The superspace method bypasses the
state estimation step by forming the superstates, and uses them directly in the
identification. The least-squares calculation is used to obtain the coefficients of the
measurement equations. The state portion of the Kalman filter are made up of 1’s
and 0’s, and they do not need to be computed. More fundamentally, in deriving the
subspace method, the process form of the state-space model is used to establish the
input-output relationship, whereas in the superspace method the innovation form
which involves the Kalman filter is used. The subspace method is thus process
form oriented, whereas the superspace method is innovation form oriented. A
consequence of using the innovation form is that the superspace identification
method simultaneously recovers the steady-state Kalman filter gain together with
the system state-space model, whereas in the subspace method, the Kalman filter
gain is typically computed as an additional step.

5 Illustrative Examples

This section demonstrates the effectiveness of the superspace identification method
using both simulated and experimental data. Comparison of the results to those
obtained with the subspace N4SID algorithm will also be provided.

5.1 A Simulated System

The following system is driven by random input excitation, and the resultant output
is recorded for system identification,

A D
� �0:35 �0:5

1 0

�
B D

�
1

0

�
C D �

0 0:5
�

D D 0

In order to show the convergent behavior, the input-output data record is deliberately
chosen to be large (216 samples). The input and measurement noise covariances
are Q D 0:025; R D 0:025 corresponding to the input and measurement noises
shown in Figs. 1 and 2. Using p D 8 in the identification, the final model order is
reduced to 2. Figure 3 shows the Kalman filter Markov parameters, C .A � KC/k B

and C .A � KC/k K , constructed from the identified state-space model and the
identified Kalman filter gain by both methods. These Markov parameters are
compared to those of the optimal Kalman filter whose gain is computed from perfect
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Fig. 1 Input data with added noise
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Fig. 2 Output data with added noise

knowledge of the system model and the input and measurement noise covariances.
Figure 4 shows the residuals of the identified Kalman filters and the state-state
models by both methods (superspace and N4SID) matching the residuals of the



State-Space Model and Kalman Filter Gain Identification by a Superspace Method 129

0 5 10 15 20 25

−0.1

0

0.1

0.2

0.3

0.4

0.5

Kalman Filter Markov Parameter (1st Component)

Simulated
Superspace
N4SID

0 5 10 15 20 25 30
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Kalman Filter Markov Parameter (2nd Component)

Simulated
Superspace
N4SID

Fig. 3 Kalman filter Markov parameters by two identification methods (superspace and N4SID)
compared to the Kalman filter Markov parameters computed from perfect knowledge of the system
model and noise statistics
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Fig. 4 Comparison of identified filter residuals to optimal Kalman residual (left), and identified
state-space model residuals to truth model residual (right)

optimal filter and of the truth model point-wise. The results confirm that both
methods produce optimal identification results as expected.

5.2 CD Player Arm

A set of experimental data of a CD player arm is used in this example [15]. The
system has two inputs and two outputs. The input-output data record used for
identification is shown in Figs. 5 and 6 (2,048 samples). Using p D 6 in the
identification, the final system order is reduced to 12 before the identification results
are compared. Figure 7 shows a comparison of the identified Kalman filter outputs
to the measured outputs. Figure 8 shows a comparison of the identified state-space
model outputs to the measured outputs. Overall, both methods appear to capture the
dynamics of the mechanism relatively well with this set of input-output data.
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Fig. 5 Input signals of CD player arm
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Fig. 6 Output signals of CD player arm
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Fig. 7 Comparison of Kalman filter outputs to measured outputs by two identification methods
(superspace and N4SID)
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Fig. 8 Comparison of state-space model outputs to measured outputs by two identification
methods (superspace and N4SID)

6 Conclusions

A superspace method for identification of a system state-space model and its
associated Kalman filter gain has been formulated. It is found that in the space of
the superstates, which are vectors of input and output measurements, the matrices
that define the state portion of the Kalman filter are made up entirely of 0’s
and 1’s. These matrices are known in advance, and do not need to be identified.
Because they are known in advance, they are completely independent of the actual
system dynamics and the noise statistics. This is a highly intriguing and very
counter-intuitive result. Moreover, in the superstate space, the system dynamics are
contained the measurement equation, not the state portion, of the Kalman filter.
When model reduction is applied, the actual system dynamics returns to the state
portion of the reduced-order model as one would expect in a state-space model.
Optimality of the proposed superspace identification method is also established in
theory and confirmed in numerical simulation. The Kalman filter identified from
input-output measurements by the superspace technique is found to match the
optimal Kalman filter derived from perfect knowledge of the system and perfect
knowledge of the noise statistics, both in their Markov parameters and their output
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residuals. When applied to experimental data of a CD arm mechanism, the method
produces excellent results when compared to an established subspace identification
method.
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