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Preface

High performance scientific computing is an interdisciplinary area that combines
many fields such as mathematics and computer science as well as scientific and
engineering applications. It is an enabling technology for both competitiveness in
industrialized countries and for speeding up development in emerging countries.
High performance scientific computing develops methods for modeling, computer
aided simulation and optimisation of complex systems and processes. In practical
applications in industry and commerce, science and engineering, it helps to conserve
resources, to avoid pollution, to reduce risks and costs, to improve product quality,
to shorten development times or simply to operate systems better. Topical aspects
of scientific computing have been presented and discussed at the Fifth International
Conference on High Performance Scientific Computing that took place in Hanoi
on March 5-9, 2012. The conference has been organized by the Institute of
Mathematics of the Vietnam Academy of Science and Technology (VAST), the
Interdisciplinary Center for Scientific Computing (IWR) of the University of
Heidelberg, Ho Chi Minh City University of Technology, and the Vietnam Institute
for Advanced Study in Mathematics.

More than 270 participants from countries all over the world attended the
conference. The scientific program consisted of in total more than 190 talks, a
big part of them presented in 19 mini-symposia. Eight talks were invited plenary
lectures given by Frank Allgower (Stuttgart), Ralf Borndorfer (Berlin), Ingrid
Daubechies (Durham), Mats Gyllenberg (Helsinki), Karl Kunisch (Graz), Volker
Schulz (Trier) and Christoph Schwab (Zurich).

Topics included mathematical modeling, numerical simulation, methods for
optimization and control, parallel computing, software development, applications
of scientific computing in physics, mechanics and biomechanics, material science,
hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, trans-
port, logistics, communication networks, scheduling, industry, business and finance.

This proceedings volume contains 21 carefully selected contributions referring
to lectures presented at the conference. We would like to thank all authors and the
referees.
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A Non-causal Inverse Model for Source Signal
Recovery in Large-Domain Wave Propagation

Hunter M. Brown, Minh Q. Phan, and Stephen A. Ketcham

Abstract A non-causal inverse model for source signal recovery is formulated. The
inverse model is derived from a causal forward model. For a dynamical system
where the causal inverse is unstable, a non-causal inverse model can be used instead.
Application of the non-causal inverse technique on a High Performance Computing
(HPC) acoustic propagation model of an office and laboratory campus in Hanover,
New Hampshire, USA is presented.

1 Introduction

In the area of short-duration large-domain acoustic and seismic signal propagation,
highly accurate reduced-order models represent an enabling technology, [1-4]. Such
models are derived from HPC-derived data, and can be used for rapid prediction of
the dynamic responses without resorting to the time-consuming HPC simulation.
Significant savings in computational resources and time can be achieved by this
strategy, reducing what normally takes hours on a HPC supercomputer to minutes
on a laptop. Current research efforts are being made to extend the use of reduced-
order models beyond output prediction. These efforts include the problems of source
signal recovery and source localization. By taking advantage of the knowledge of
the dynamics of the environment represented by these reduced-order models, it is
possible to address the source signal recovery and localization problems in a highly
complex multi-path environment with non-line-of-sight sensors.

A source signal can be recovered by the use of inverse models. The original
dynamical system is in continuous time, but we often use a discrete-time model
to represent it. If the forward continuous-time dynamical system is asymptotically
stable, then the poles of the discrete-time transfer function lie inside the unit circle
on the complex plane. The discrete-time zeros, on the other hand, may lie outside
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the unit circle. This situation occurs when the pole-zero excess of the original
continuous-time model is three or more, and the sampling interval is sufficiently
small, [5—7]. A causal inverse for such a system is unstable because the zeros outside
the unit circle become the unstable poles of the inverse transfer function. When this
happens another method is needed to recover the source signal. In this paper we
formulate a non-causal inverse model for the inverse problem. In our applications,
the source signal recovery is performed off-line, hence the use of such a non-causal
inverse model is acceptable.

First, we derive a causal inverse model in state-space form. The state-space
representation is chosen for the inverse models because the HPC-derived models
that are being used in our research are superstable models which are in state-space
form, [8]. Next, the causal inverse derivation is extended to produce a non-causal
inverse model that can be used for source signal recovery. Finally, numerical results
using an HPC-derived model of an office and laboratory campus are provided to
illustrate the validity of the developed non-causal inverse technique.

2 Mathematical Formulation

We now derive the inverse models in state-space forms. A causal inverse model is
derived first, followed by its extension to a non-causal inverse model.

2.1 A Causal Inverse Model

Consider a forward system with at least as many independent outputs g as the
number of independent inputs 7,

x(k + 1) = Ax(k) + Bu(k) (1)
y(k) = Cx(k) + Du(k) 2)

Suppose that the direct transmission term D is non-zero, and D has a left-inverse,
denoted by D, such that D™D = 1. Then u(k) can be solved from the
measurement equation of the state-space model as

u(k) = DT y(k) — DT Cx(k) 3)

Substituting (3) into the state equation (1) immediately produces the following
causal inverse model in state-space form,

x(k +1) = A*x (k) + B*y(k) 4)
u(k) = C*x(k) + D*y(k) ()
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where the matrices that define the causal inverse model are:
A* = A—-BD'C B* = BD" C*=-D"C D*=D7% (6)

The state-space model and its causal inverse model derived above assume the
existence of a direct transmission term D which might not exist. If this is the case,
by time-shifting the output measurements, an artificial D term can be created. In
the acoustic signal propagation problem where the output sensors and the source
are not collocated, there is a time delay before a signal at a source location reaches
the i-th sensor location. This causes a number of Markov parameters to be zero or
very small,

CiB=CAB=---=C A% 'B~0 7

where C; is the output influence matrix associated with the i-th output, and the
time delay o; can be different for each output location. Although these number of
“zero” Markov parameters might be small relative to the duration of interest, it is still
important to explicitly call out these time delays to avoid numerical ill-conditioning
in the inverse solution. To remove these “zero” Markov parameters, the state-space
model to use for the i-th output is

x(k + 1) = Ax(k) + Bu(k) (8)
yi(k + o + 1) = C A% x (k) + C; A% Bu(k) 9)

By shifting the measurement forward by a sufficient number of time steps, we can
create an artificial direct transmission term that relates y;(k + o; + 1) to u(k).
Outputs from different locations can be combined to produce a single measurement
equation,

yiltk +a; +1) C A4 T! C A" B
yalk + oy + 1) Cr A% ] C,A“ B

. = ) x(k) + . u(k) (10)
vk +ay, + 1) C, A% ! C,A%“B

As long as the matrix that multiplies u(k) in (10) above has a left-inverse, then
the procedure previously applied to (2) can be performed on the new measurement
equation (10). Strictly speaking, the resultant inverse model will be non-causal, but
this non-causality is not fundamental as it is entirely caused by inverting transfer
functions with time delays. This inverse is numerically sensitive because the matrix
that plays the role of a new direct transmission term, whose left-inverse needs to
be found, contains small (but non-zero) values. This calls for a more genuine non-
causal inverse model, which will be derived in the next section.
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2.2 A Non-causal Inverse Model

Let us start by considering the measurement equation for a single output 7. Using
the simplified definitions,

k) =yik +o; +1), C=CA""" D;=CAB (11)
Equations (8) and (9) can be re-written as

x(k + 1) = Ax(k) + Bu(k) (12)
zi(k) = Cix(k) + Dju(k) (13)

Propagating (13) forward by s — 1 time steps, and packaging the results produces

z: (k) = O;x (k) + Tyu(k) (14)
where
zi (k) u(k)
2k = zi(k :+ 1) Culh) u(k + 1) 15)
zi(k +'s—1) u(k +.s—1)
G b
~ CA . C; D;
0i = . ’ i= : . (16)
é,AH C’,-A;‘ZB . é,b D;

Measurements from multiple locations can be combined. This action will improve
the conditioning of the inverse problem. Mathematically, the improvement comes
about because new non-redundant equations are added without increasing the
number of unknowns in u(k). We can write Eq.(14) for each available sensor,

i =1,2,...,q,and the resultant equations can be combined into a single equation.
Define
z,(k) 0:1 7?1
25(k) ~ 0, . T,
z(k) = ) . 0= |, T=| . (17)

z,(k) 0, T,
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The counterpart of (14) for all available sensors is
z(k) = Ox(k) + Tu(k) (18)

If there is a sufficient number of output sensors to make the inverse problem well-
conditioned, u(k) can be solved from (18) as,

u(k) = =TT Ox(k) + T (k) (19)

Notice that the matrix 7', whose left-inverse 71 needs to be > computed, involves
not only D; but also the additional Markov parameters C; B, CiAB,...,C; A 2B
for all available sensors. The Moore-Penrose pseudo-inverse of T computed via its
singular value decomposition can be used for the left-inverse required in (19). The
Markov parameters in (17) represent the propagation dynamics a number of steps
after the source signal arrives at the sensor locations. To complete the derivation, we
extract u(k) from the first r rows of u(k),

u(k) = —[T*] Ox(k) +[T*], z(k) (20)

where the notation [T+]r is used to denote the first r rows of 7'F. By including a

sufficient number of additional Markov parameters beyond D;, we have eliminated
the single-term dependence on the expression of u(k) in (13). Combining (20) with
the state equation in (12) produces the following non-causal inverse model in state-
space form,

x(k + 1) = Ax (k) + Bz(k) (21)
u(k) = Cx(k) + Dz(k) (22)

where the matrices that define the non-causal inverse model are:
A=A-B[T*] O (23)
(24)
(25)

In summary, the non-causal inverse model given in (21) and (22) has the following
properties: (a) It can handle systems with no direct transmission term, (b) It allows
for location-dependent time delays from source to sensors, (c) It does not depend
on the inverse of a single term. The inverse model can be derived from a forward
state-space model, including the state-space model in superstable form described
below.
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3 Superstable Model Representation

In the source signal propagation problem it has been found that the unit pulse
response model is a very convenient model to develop. The unit pulse response
model relates the output measurements to the input through a finite impulse response
model,

y(k) = hulk — 1) + hou(k = 2) + -+ + hpu(k — p) (26)
where h;,i = 1,2,..., p, are called the Markov parameters of the system,
hy=CB, hy=CAB, hy;=CA’B,... , h,=CA’"'B 27)

In an acoustic signal propagation problem, p is typically in the range of 512—
1,024. A direct transmission term is usually not present. The Markov parameters,
which define the coefficients of the pulse response model, can be estimated by the
inverse Fast Fourier Transform (FFT) technique. The dynamic model is in unit pulse
response form, yet the inverse models derived here are in state-space form. It is
therefore necessary to convert the unit pulse response model to state-space form.
This task can be accomplished by the Eigensystem Realization Algorithm (ERA),
[9,10]. However, for short duration processes, it is much more convenient to use an
alternate representation which are the finite-time superstable models described in
[8]. There are two forms of the superstable state-space representation:

The first form is suitable when the number of outputs is much fewer than the
number of sources, g K r,

0lyxg O === 0 hy
0 0 Ipeg - ha
A=l 0 By =|hs (28)
0 0 - 0 Iy :
00 00 Paxpq hy paxr
Cr=[1Ix00--0] (29)

The second form is suitable when the number of outputs is much larger than the
number of sources, g > r,

0 0 0 0 L
Ly O -+ 0 0 0
A=| 0 Iy = @ B=| 0 (30)
: 0 0 :
0 0 0 IxO0 0 J .«

prxpr
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Co=[hihyhy-h,] (€19

q Xpr
To model the propagation dynamics from a potentially large number of sources to a
small number of sensors (e.g., a moving source where each point in space can be a
potential source location), the first form is preferred because it results in a model of
smaller state dimensions. On the other hand, to model the signal propagation from
a small number of sources throughout a very large domain (where the number of
output locations can be every point in the domain of interest), the second form is
preferred.

4 Illustrative Examples

An HPC-derived acoustic model of an office and laboratory campus is used in this
simulation. The model is derived by the following procedure. A 3D finite-difference
time-domain (FDTD) computation is used to simulate the propagation of a sound
source placed at the center of the campus model, Fig. 1. This simulation takes

Sensor Locations

100

50

-100

-100 -50 0 50 100
x (m)

Fig. 1 A center source and various sensor locations located throughout the CRREL campus
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approximately 15 h using 256 cores of a Cray XT3 with 2 GB of memory per core.
The FDTD model has just under 2.7 billion cells, out of which 758 million output
locations are selected to represent an output field 0.6-m above the ground surface
and building roofs. From this simulation data, the inverse FFT method is used to
compute 1,024 Markov parameters that describe the 1,024-sample long dynamics
from the center source to the 758 million output locations. The sampling interval is
selected to be 0.002115s. The unit pulse response model, defined by these Markov
parameters, is then converted into a state-space model via the second form of the
superstable representation. Once the dynamic model is in state-space format, a non-
causal inverse state-space model can be developed.

To test the validity of the inverse model, a test input is applied at the center
source, and the outputs are recorded at a selected number of locations that are
labeled 1 through 20 in Fig. 1. The inverse model is used to determine if the test
input signal can be correctly recovered from the output at each of these locations.
Typical results are reported here. Figure 2 shows the output at location 14, and
the test input signal recovered from this output signal by the non-causal inverse
model. Figure 3 shows the corresponding result if the output at location 10 is used
instead. Because it is difficult to visually compare the recovered input signal to

MEASURED OUTPUT 4 INPUT SIGNALRECOVERY
0.02% Orignalinpul Signal
2L
; W\“‘ "W‘*’
2
-4
1 Recovered input Signal
2
°W#(W;W4ﬂ “W& Wﬁ'w Mﬁfﬂw
“2H
-4
) x10” i
Error
o e B W L Y
o WS N .
VT A M
0 200 400 500 800 000 1200 i i y ; ; ;
Tirrwe Shep o 100 200 300 Timestepd00 00 600 00

Fig. 2 Measured output at location 14 and recovered source signal by non-causal inverse model

& MEASURED OUTPUT . INPUT SIGMNAL RECOVERY
15 Origiral Input Sigral

e
el

1107
Emor |

=

L

=

s T n A 4

0 200 400 600 BOO 1000 1200 2 P L . 1 i i

Timne Step 0 100 200 J00Timwsep 400 500 600 700

Fig. 3 Measured output at location 10 and recovered source signal by non-causal inverse model
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MEASURED OUTPUT INFUT SIGNAL RECOVERY

| MW%WWW‘WM |

Error

200 400 600 800 1000 1200 i . . .
Time Step o 1on 200 300Temestep 400 500 600 700

Fig. 4 Measured output at location 14 with noise and recovered source signal

10° MEASURED QUTPUT 4 INPUT SIGNAL RECOVERY
onginal input Sigral |
2 R | -
| 1 1 bk il .
o i 4
oL k) i i
2 L )
3
Reécoverad Input Signal
2h ; . ]
i | v ‘ wﬂ ! hbd |
| i AL i
-2 ! | |1 ' ' 4
1
ST . T . T .
0 it i 4
A5 . . . . .
0 200 400 600 200 1000 1200 ; : ] : ) :
Tine Ship [ 100 200 300Tmestepd0 500 600 700

Fig. 5 Measured output at location 10 with noise and recovered source signal

the test input signal, the small difference between these two signals is also shown.
Examination of these figures indicates that the source signal is recovered reasonably
well. In a typical dynamical system, the high-frequency components of the input
signal are attenuated by the dynamics of the model, thus one should not expect
that these components can be recovered exactly. This explains the high-frequency
error between the recovered and test input signals in these plots. In the pseudo-
inverse computation of T in (19) the “smaller” singular values are neglected. In
so doing, the higher-frequency portion of the model corresponding to these singular
values is not inverted. Counterparts of Figs. 2 and 3 when 5 % measurement noise
is added to the output data are shown in Figs.4 and 5 for the same two output
locations. The results suggest a graceful degradation of the recovered source signal.
Techniques to recover the source signal optimally in the presence of noise are treated
in a subsequent paper.
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5 Conclusions

A non-causal method for input signal recovery from output measurements has been
derived. If a direct transmission term is present in the forward model, then the
input at a certain time step immediately affects the output at the same time step.
In this case, it is possible to derive an inverse model that is causal. Unfortunately,
for most signal propagation problems, this is not the case due to the non-collocation
of sources and sensors. Causal inverses also suffer from another fundamental issue.
When the pole-zero excess of the original continuous-time dynamical system is 3
or more, the discrete-time transfer function contains at least one zero outside the
unit circle if the sampling interval is sufficiently small. This fact causes the discrete-
time causal inverse model to be unstable. A non-causal inverse can be used instead.
Indeed, a non-causal inverse model can always be expected because the input at a
certain time step influences the output at the subsequent time steps. It makes sense
therefore to use measurements from subsequent time steps to recover the input at
a previous time step. Simulation results confirm the validity of an inverse model
derived from an HPC-model of an office and laboratory campus.

Acknowledgements This work is supported by a research grant from the US Army Corps of
Engineers Cold Regions Research and Engineering Laboratory (CRREL) to Dartmouth College.
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Parallel-in-Space-and-Time Simulation
of the Three-Dimensional, Unsteady
Navier-Stokes Equations

for Incompressible Flow

Roberto Croce, Daniel Ruprecht, and Rolf Krause

Abstract In this paper we combine the Parareal parallel-in-time method together
with spatial parallelization and investigate this space-time parallel scheme by
means of solving the three-dimensional incompressible Navier-Stokes equations.
Parallelization of time stepping provides a new direction of parallelization and
allows to employ additional cores to further speed up simulations after spatial
parallelization has saturated. We report on numerical experiments performed on a
Cray XEG6, simulating a driven cavity flow with and without obstacles. Distributed
memory parallelization is used in both space and time, featuring up to 2,048 cores
in total. It is confirmed that the space-time-parallel method can provide speedup
beyond the saturation of the spatial parallelization.

1 Introduction

Simulating three-dimensional flows by numerically solving the time-dependent
Navier-Stokes equations leads to huge computational costs. In order to obtain
a reasonable time-to-solution, massively parallel computer systems have to be
utilized. This requires sufficient parallelism to be identifiable in the employed
solution algorithms. Decomposition of the spatial computational domain is by now
a standard technique and has proven to be extremely powerful. Nevertheless, for a
fixed problem size, this approach can only push the time-to-solution down to some
fixed threshold, below which the computation time for each subdomain becomes
comparable to the communication time. While pure spatial parallelization can
provide satisfactory runtime reduction, time-critical applications may require larger
speedup and hence need additional directions of parallelism in the used numerical
schemes.

One approach that has received increasing attention over recent years is par-
allelizing the time-stepping procedure typically used to solve time-dependent
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problems. A popular algorithm for this is Parareal, introduced in [10] and com-
prehensively analyzed in [6]. Its performance has been investigated for a wide range
of problems, see for example the references in [11, 12]. A first application to the
2D-Navier-Stokes equations, focussing on stability and accuracy without reporting
runtimes, can be found in [5]. Some experiments with a combined Parareal/domain-
decomposition parallelization for the two-dimensional Navier-Stokes equations
have been conducted on up to 24 processors in [14, 15]. While they successfully
established the general applicability of such a space-time parallel approach for the
Navier-Stokes equations, the obtained speedups were ambiguous: Best speedups
were achieved either with a pure time-parallel or a pure space-parallel approach,
depending on the problem size.

In this paper we combine the Parareal-in-time and domain-decomposition-in-
space techniques and investigate this space-time parallel scheme by means of
solving a quasi-2D and a fully 3D driven cavity flow problem on a state-of-the-
art HPC distributed memory architecture, using up to 2,048 cores. We demonstrate
the capability of the approach to reduce time-to-solution below the saturation point
of a pure spatial parallelization. Furthermore, we show that the addition of obstacles
into the computational domain, leading to more turbulent flow, leads to slower
convergence of Parareal. This is likely due to the reported stability issues for
hyperbolic and convection-dominated problems, see [4, 12].

2 Physical Model and Its Discretization and Parallelization

The behavior of three-dimensional, incompressible Newtonian fluids is described by
the incompressible Navier-Stokes equations. In dimensionless form the according
momentum- and continuum equation read

1
du4+u-Va= —Au—-Vp
Re
V.u=0 €]

with u = (u,v,w) being the velocity field consisting of the Cartesian velocity-
components, p being the pressure and Re the dimensionless Reynolds number.

The Navier-Stokes solver is based on the software-package NaSt3DGP [2, 8]
and we further extended it by an MPI-based implementation of Parareal [10]. In
NaSt3DGP, the unsteady 3D-Navier-Stokes equations are discretized via standard
finite volume/finite differences using the Chorin-Temam [1, 13] projection method
on a uniform Cartesian staggered mesh for robust pressure and velocity coupling.
A first order forward Euler scheme is used for time discretization and as a
building block for Parareal, see the description in Sect.2.1.2. Second order central
differences are used for the pressure gradient and diffusion. The convective terms are
discretized with a second order TVD SMART [7] upwind scheme, which is basically
a bounded QUICK [9] scheme. Furthermore, complex geometries are approximated
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using a first order cell decomposition/enumeration technique, on which we can
impose slip as well as no-slip boundary conditions. Finally, the Poisson equation for
the pressure arising in the projection step is solved using a BiCGStab [16] iterative
method.

2.1 Parallelization

Both the spatial as well as the temporal parallelization are implemented for
distributed-memory machines using the MPI-library. The underlying algorithms are
described in the following.

2.1.1 Parallelization in Space via Domain Decomposition

We uniformly decompose the discrete computational domain §2;, into P subdomains
by first computing all factorizations of P into three components,i.e. P = P*- P7 .
Pz, with P*, PY, P* € N. Then we use our pre-computed factorizations of P as
arguments for the following cost function C with respect to communication

IoJoJ K 1K
px py ' py pz pr Pz

C(P*, PY, P = 2)
with I,J and K as the total number of grid-cells in x-, y- and z-direction.
Finally, we apply that factorization for the domain decomposition for which C is
minimal, i.e. the space decomposition is generated in view of the overall surface area
minimization of neighboring subdomains. Here, P is always identical to the number
of processors Ny, so that each processor handles one subdomain. Since the stencil
is five grid-points large for the convective terms and three grid-points for the Poisson
equation, each subdomain needs two ghost-cell rows for the velocities and one
ghost-cell row for the pressure Poisson equation. Thus our domain decomposition
method needs to communicate the velocities once at each time-step and the pressure
once at each pressure Poisson iteration.

2.1.2 Parallelization in Time with Parareal

For a given time interval [0, T'], we introduce a coarse temporal mesh
O=t<n<...<ty, =T 3)

with a uniform time-step size At = ¢, —t;. Further, we introduce a fine time-step

8t < At and denote by N the total number of fine steps and by N, the total number
of coarse steps, that is
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N At = N8t = T., “4)

Also assume that the coarse time-step is a multiple of the fine, so that

5 =:N.eN. (5)
Parareal relies on the iterative use of two integration schemes: a fine propagator
Zs; that is computationally expensive, and a coarse propagator ¢4, that is compu-
tationally cheap. We sketch the algorithm only very briefly here, for a more detailed
description see for example [10].
Denote by Z (Y, ty+1,tn), 4 (¥, tu+1, ;) the result of integrating from an initial
value y at time #,, to a time 7,1, using the fine or coarse scheme, respectively. Then,
the basic iteration of Parareal reads

Y = D g t) + s Va1 1) — Gar (Y b1 1) (6)

with super-scripts referring to the iteration index and y, corresponding to the
approximation of the solution at time #,. Iteration (6) converges to a solution

Yo+1 = y&(y;h Z‘n+la tn)7 (7)

that is a solution with the accuracy of the fine solver. Here, we always perform some
prescribed number of iterations ;. We use a forward Euler scheme for both .,
and ¥, and simply use a larger time-step for the coarse propagator. Experimenting
with the combination of schemes of different and/or higher order is left for future
work.

Once the values y,’j in (6) from the previous iteration are known, the compu-
tationally expensive calculations of the values ygt(yﬁ, th+1,1x) can be performed
in parallel for multiple coarse intervals [t,,#,+1]. In the pure time-parallel case,
the time-slices are distributed to N, . cores assigned for the time-parallelization.
Note that in the space-time parallel case, the time-slices are not handled by single
cores but by multiple cores, each handling one subdomain at the specific time, see
Sect.2.1.3.

The theoretically obtainable speedup with Parareal is bounded by

Ny,
s(N.) < Ptime 8
(Np) = N, ®)
with Np,,. denoting the number of processors in the temporal parallelization and

Nj; the number of iterations, see for example [11]. From (8) it follows that the
maximum achievable parallel efficiency of the time parallelization is bounded by
1/ Ny Parareal is hence considered as an additional direction of parallelization to
be used when the spatial parallelization is saturated but a further reduction of time-
to-solution is required or desirable. Some progress has recently been made deriving
time-parallel schemes with less strict efficiency bounds [3, 11].
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Fig. 1 Decomposition of the time interval [0, 7] into N, time-slices. The spatial mesh at each
point #; is again decomposed into P subdomains, assigned to N, . cores. Because the spatial

parallelization does not need to communicate across time-slices, thepcores from every spatial mesh
are pooled into one MPI communicator. Also, in the time parallelization, only cores handling the
same subdomain at different times have to communicate. Note that for readability the sketched
spatial mesh is 2D, although the simulations use a fully 3D mesh

2.1.3 Combined Parallelization in Space and Time

In the combined space-time parallel approach as sketched in Fig. 1, each coarse time
interval in (6) is assigned not to a single processor, but to one MPI communicator
containing N, cores, each handling one subdomain of the corresponding time-
slice. The total number of cores is hence

N

Protal

=N,

Ptime

X Npspace . (9)

Note that the communication in time in (6) is local in the sense that each processor
has only to communicate with the cores handling the same subdomain in adjacent
time-slices. Also, the spatial parallelization is not communicating across time-slices,
so that for the evaluation of .% or ¢ in (6), no communication between processors
assigned to different points in time is required. We thus organize all available cores
into two types of MPI communicators: (i) Spatial communicators collect all cores
belonging to the solution at one fixed time-slice, but handling different subdomains.
They correspond to the distributed representation of the solution at one fixed time-
slice. There are N, spatial communicators and each contains Ny .. cores. (ii)
Time communicators collect all cores dealing with the same spatial subdomain,
but at different time-slices. They are used to perform the iterative update in (6)
of the local solution on a spatial subdomain. There are N, .. time communicators,
each pooling N, cores. No special attention was paid to how different MPI tasks
are assigned to cores. Because of the very different communication pattern of the
space- and time-parallelization, this can presumably have a significant effect on the
overall performance. More detailed investigation of the optimal placement of tasks
is planned for future studies with the here presented code.
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3 Numerical Examples

In the following, we investigate the performance of the space-time parallel approach
for two numerical examples. The first is the classical driven-cavity problem in a
quasi-2D setup. Figure 2 shows the flow in a xy-plane with z = 0.05 at times
t =08, t =80andr = T = 80.0. The second example is an extension where
49 obstacles (cubes) are inserted into the domain along the median plane, leading
to fully 3D flow. Figure 3 sketches the obstacles and the flow at time t = T = 24.
Both problems are posed on a 3D-domain with periodic boundary conditions in
z-direction (note that x and z are the horizontal coordinates, while y is the vertical
coordinate). Initially, velocity and pressure are set to zero. At the upper boundary, a
tangential velocity upoundary = 1 is prescribed, which generates a flow inside the
domain as time progresses. No-slip boundary conditions are used at the bottom
and in the two yz-boundary planes located at x = 0 and x = 1 as well as on
the obstacles. The parameters for the two simulations are summarized in Table 1.
To assess the temporal discretization error of %, the solution is compared to a
reference solution computed with %, 10, giving a maximum error of 1.2 x 107
for the full 3D flow with obstacles. That means that once the iteration of Parareal
has reduced the maximum defect between the serial and parallel solution below this
threshold, the time-parallel and time-serial solution are of comparable accuracy. We
use this threshold also for the quasi-2D example, bearing in mind that the simpler
structure of the flow in this case most likely renders the estimate too conservative.
The code is run on a Cray XE6 at the Swiss National Supercomputing Centre,
featuring a total of 1,496 nodes, each with two 16-core 2.1 GHz AMD Interlagos
CPUs and 32 GB memory per node. Nodes are connected by a Gemini 3D torus
interconnect and the theoretical peak performance is 402 TFlops.

Fig. 2 Simulation 1: Arrows and grayscale plot for the range [0.0, 0.75] of the Euclidean norm of
the quasi two-dimensional driven cavity flow field along the center plane at three points in time
t=0.8andt =8.0and? =T = 80.0
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Fig. 3 Simulation 2: Arrows and grayscale plot for the range [0.0, 0.75] of the Euclidean norm
of the fully three-dimensional driven cavity flow field with obstacles along the center plane at
t=T=240

Table 1 Simulation parameters for the quasi-2D driven cavity flow (Simulation 1) and the fully
3D driven cavity flow with obstacles (Simulation 2)

Sim. 1 :| £, = [0,1] x [0,1]| Sim. 2 :| £2;, = [0,1] x[0,1] x [0, 1]
% [0,0.1]

Sim. 1 :| Ny X Ny X N.| = 32X32x5 |Sim.2 :| N, X N, X N,| = 32X32x32

Sim. 1 :|T = 80 Sim.2 :| T = 24

Both :| At = 0.01 Both : |t = 0.001

Both :|Re = 1,000 Both  :| upoundary =1

Sim. 1 1| Ny = 1,2,4,8 Sim. 2 :| Npge = 1,...,128

Sim. 1 :| N, = 4,8,16 Sim. 2 :| N, = 8§,16,32

Ptime Ptime

3.1 Quasi-2D Driven Cavity Flow

Figure 4 shows the maximum difference between the time-parallel and the time-
serial solution at the end of the simulation versus the number of iterations of
Parareal. In all three cases, the error decreases exponentially with Nj;. The threshold
of 1.2 x 1072 is reached after a single iteration, indicating that the performance of
Parareal could probably be optimized by using a larger Af. Figure 5 shows the
total speedup provided by the time-serial scheme running %5 with only space-
parallelism (circles) as well as by the space-time parallel method for different values
of Np... All speedups are measured against the runtime of the time-serial solution
run on a single core. The pure spatial parallelization reaches a maximum speedup
of a little over 6 using 8 cores. For Nj; = 1, the space-time parallel scheme reaches
a speedup of 14 using 64 cores. This amounts to a speedup of roughly 14/6 =~ 2.33
from Parareal alone. For Ny = 2 the speedup is down to 8, but still noticeably larger
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Fig. 4 Maximum difference to time-serial solution versus number of Parareal iterations for the
Cartesian velocity (u, v) and pressure p of the quasi 2D driven cavity problem at time ¢ = 80.0 for
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Fig. 5 Total speedup of the combined space-time parallelization for quasi 2D driven-cavity flow
with Ny = 1 (left) and Ny, = 2 (right) iterations

than the saturation point of the pure space-parallel method. Note that because of the
limited efficiency of the time parallelization, the slopes of the space-time parallel
scheme are lower for larger values of N,

time *

3.2 Full 3D Driven Cavity Flow with Obstacles

Depending on the number of Parareal iterations for three different values of N,
Fig. 6 shows the maximum difference between the time-parallel and the time-serial
solution in terms of the 3D-Cartesian velocity (i, v, w) and pressure p. In general, as
in the quasi-2D case, the error decays exponentially with the number of iterations,
but now, particularly pronounced for N, . = 32, a small number of iterations
has to be performed without large effect before the error starts to decrease. This
is likely due to the increased turbulence caused by the obstacles, as it is known

that Parareal exhibits instabilities for advection dominated problems or hyperbolic
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Fig. 6 Maximum difference to time-serial solution at end of simulation versus number of Parareal
iterations for the 3D driven cavity flow with obstacles for N, .. = 8 (left), Ny, = 16 (middle),
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Fig. 7 Total speedup of the combined space-time parallelization for 3D cavity flow with obstacles
for a fixed number of N, = 3 iterations (left) and a number of iterations chosen to achieve a defect
below 107 in all solution components (right). Note that the solutions in the left figure are not
comparable in accuracy

problems [6,12]. A more detailed analysis of the performance of Parareal for
turbulent flow and larger Reynolds numbers is left for future work. Figure 7 shows
the total speedup measured against the runtime of the solution running .%;, serially
with Np,... = 1. The time-serial-line (circles) shows the speedup for a pure spatial
parallelization, which scales to Ny, = 16 cores and then saturates at a speedup
of about 18. Adding time-parallelism can significantly increase the total speedup, to
about 20 for N, = 4, about 27 for N, .. = 8 and to almost 40 for N, . = 16
for a fixed number of N;; = 3 iterations (left figure). However, as can be seen
from Fig. 6, the solution with N, = 32 is significantly less accurate. The right
figure shows the total speedup for a number of iterations adjusted so that the defect
of Parareal in all cases is below 107 in all solution components (cf. Fig. 6). This
illustrates that there is a sweet-spot in the number of concurrently treated time-
slices: At some point the potential increase in speedup is offset by the additional
iterations required. In the presented example, the solution with N, = 16 is clearly

more efficient than the one with N, = 32.

time
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4 Conclusions

A space-time parallel method, coupling Parareal with spatial domain decom-
position, is presented and used to solve the three-dimensional, time-dependent,
incompressible Navier-Stokes equations. Two setups are analyzed: A quasi-2D
driven cavity example and an extended setup, where obstacles inside the domain
lead to a fully 3D driven flow. The convergence of Parareal is investigated and
speedups of the space-time parallel approach are compared to speedups from a
pure space-parallel scheme. It is found that Parareal converges very rapidly for
the quasi-2D case. It also converges in the 3D case, although for larger numbers
of Parareal time-slices, convergence starts to stagnate for the first few iterations,
likely because of the known stability issues of Parareal for advection dominated
flows. Results are reported from runs on up to 128 nodes with a total of 2,048
cores on a Cray XEG6, illustrating the feasibility of the approach for state-of-the-
art HPC systems. The results clearly demonstrate the potential of time-parallelism
as an additional direction of parallelization to provide additional speedup after a
pure spatial parallelization reaches saturation. While the limited parallel efficiency
of Parareal in its current form is a drawback, we expect the scalability properties of
Parareal to direct future research towards modified schemes with relaxed efficiency
bounds.
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Mathematical Modeling of Emotional Body
Language During Human Walking

Martin L. Felis, Katja Mombaur, and Alain Berthoz

Abstract The study of emotional facial expressions and of emotional body lan-
guage is currently receiving a lot of attention in various research areas. In this
research, we study implicit bodily expression of emotions during standard motions
such as walking forwards. An underlying assumption of our work is that all human
motion is optimal in some sense and that different emotions induce different
objective functions, which result in different deformations of normal motion. We
created a 2-D rigid-body model of a human for which we use its dynamics
simulation in an optimal control context. This approach allows us to obtain different
styles of motion by using different objective criteria. We present the model, the
optimal control problem formulation and the direct multiple-shooting method that
efficiently solves this problem. The results of this work form the foundation for
further analysis of emotional motions using inverse optimal control methods.

1 Introduction

When actors portray characters on stage they use much more than only their voice
and words to convey the feelings of their alter ego. It is an interplay of verbal and
non-verbal expression that creates the impression of lively personalities instead of
blank inanimate robots. But also when removing voice and facial expressions our
perception is still able to read the emotional state.

Already Darwin [2] asked whether facial and bodily expressions of emotions
are inherent or whether they are learned during lifetime. He also proposed that
expressions which can be found in both man and animals, such as the sneer, are
due to a common genetic ancestors. More recently Ekman [3] created the Facial
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Action Coding System (FACS), which is able to categorize and encode almost every
anatomically possible facial expression.

But emotions are not only expressed in faces but also using body posture and
movement. Already simple visualizations such as point light displays of a walking
person suffices for us to be able to recognize emotions [1]. This is demonstrated by
the computer program “BML Walker” described in [15]. It allows specification of
physical properties such as sex, weight, and also emotional aspects nervous-relaxed
and happy-sad via sliders. A point light display of a motion that fits to the chosen
parameter is generated on-the-fly. Generation of emotional motions therefore seems
to be possible. But how can we use this to gain insight into emotions?

In [13] kinematic analysis of emotional walking motions was done. They used
motion capture data and used a non-linear blind-source separation method. It
efficiently finds only a few source components that approximate high-dimensional
emotional walking. This allows one to simulate different emotional styles on a
kinematic skeleton. Furthermore these spatio-temporal primitives are specific for
different emotions and indicate emotion-specific primitives in the human motor
system.

Only little research of emotional body language has so far been done by using
(rigid-body) dynamics. In [11] a learning method was used to create stylized
motions which can be used as a physics-based animation system. It allows one to
learn a parameter vector 6 from motion-capture data, which can then be applied to
different motions. The vector 6 contains information such as elasticity parameters
for shoe contact, muscles and tendons and also preferences for certain muscles. The
method was used to learn emotional styles, but focus of this research is on generation
of stylized animations and not on emotional body language itself.

With our research, we want to explore emotional body language on the level of
rigid-body dynamics. One of the assumptions of our work is that human motions are
optimal in some sense. Optimization has already been successfully used to create
human like motions such as running [14] or platform diving [8]. We therefore use a
model-based approach using a rigid-body model and optimal control methods. This
allows us to look at emotional body language on a level of forces and torques that
act in or on the body. One of the key questions we have is, whether it is possible to
relate certain emotions to specific goals in the form of objective functions.

In this paper we want to show our preliminary results that will form the base
for future work for that we want to use motion capture data and inverse optimal
control methods. For this we want to follow the method presented in [12] which
uses a bi-level approach to identify the objective function that is described as a
linear combination of base criteria. Using this, the identification of the objective
function is then formulated as a least-squares parameter estimation of the linear
coefficients that tries to fit the optimally controlled motion to that of a recorded
emotional motion which requires the solution of an optimal control problem in the
lower loop.

This paper focuses on this lower level optimal control problem along with a
selection of base criteria functions and their solutions.
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2 Rigid-Body Model for Human Walking

The multi-body model we created consists of 12 bodies, including legs (which are
split-up in thigh and shank), feet, upper- and lower-arms, head, and trunk. It is a
2-D model that moves in the sagittal plane and has 14 degrees of freedom (3 for
the pelvis, 2 for each hip, knee, ankle, shoulder, and elbow and 1 for the head).
During contact with the ground the model is subject to algebraic constraints. We
use multiple distinct Phases for each set of contact constraints. Collisions of the
foot with the ground are modeled as inelastic impacts.

The state of the body is described using generalized coordinates which are
denoted by g. The variables ¢, ¢, and t are the generalized velocities, accelerations
and joint torques. Our model is an underactuated system which means there are
fewer actuators than degrees of freedom. In our case, the 3 degrees of freedom of
the pelvis are not actuated, which results in 7o(¢) = 7;(¢#) = 12(¢) = 0 at all times.
All other degrees of freedom and also their corresponding joints are called actuated.

We use data from the biomechanics literature [10] for both the kinematic and
inertial quantities so that our model matches that of an adult male person.

The damping effects of muscles and tendons are modeled using linear damper
elements at the actuated joints. We use an identical damper constant for correspond-
ing left and right joints which results in 6 damper constants. These constants are
added as free parameters to the optimization problem.

An overview of the model is given in Fig. 1a and the possible types of contact for
a single foot is shown in Fig. 1b.

i) Flat (F) i) Toe (T) iii) Heel (H)

Fig. 1 Overview of the model structure and the contact constraints. (a) Overview of our model
topology. The model has 12 segments and 14 degrees of freedom. (b) Contact model for ground
foot. The square markers and coordinated arrows describe the contact points and contact normals
along which the contact point translation is constrained. The constraint forces are applied on the
foot segment
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2.1 Phases

We are interested in a periodic gait, which means that the pose at the end of a double
step is identical to that at the beginning. A symmetric periodic gait is a further
simplification which assumes that a step with the right leg is the step of the left leg
mirrored on the sagittal plane. This allows us to restrict ourselves to the optimization
of a single step and posing appropriate periodicity constraints.

For each type of contact with the ground we have different constraint sets and
therefore different ODEs for the model dynamics. Figure 2 shows the single step we
optimize, the order of the individual model phases, and when collisions occur. In
total we have four contact phases: Right Flat, Right Toes, Right Toes Left Heel,
Right Toes Left Flat and two collision events: at touchdown of Left Heel and
touchdown of the Left Toes.

The actual durations of each of the phases are not prescribed. Instead each they
are determined by the optimization.

2.2 Contact Modeling

As a contact model we use a single segment flat foot. Different numbers of
constraints are imposed on the model, depending on the type of contact: three
constraints when the foot is flat on the ground, two constraints when either heel
or toes are in contact, or no constraints when the foot is swinging (Fig. 1b).

RF RT \lRT LH |“"RTLF |

Fig. 2 Overview of the gait phases and the constraint sets RF' Right Flat, RT Right Toes, RT LH
Right Toes Left Heel, RT LF Right Toes Left Flat. Ground collisions occur at 7D LH (touchdown
Left Heel) and 7D LT (touchdown Left Toes)
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The constrained dynamics can be expressed as a differential algebraic equation
with:

M(q)§ = —C(q.9) — G(q)" A + T, (1a)
g(g) =0. (1b)

where M (q) is the joint-space inertia matrix, C(g, ¢) the Coriolis and gravitational
forces, and 7 the joint actuation torques. The matrix 7" maps the applied torques
onto the actuated joints. The matrix G(q) is the contact Jacobian of the contact
constraints g(g) and A are the contact forces. The constraint Jacobian G(gq) has full
rank due to the choice of contact points and normals (Fig. 1b).

Using index reduction this is transformed into a linear system of the form:

(M(CI) GT(q))(C'I') _ (—C(Q,Q)+Tf) @)
Gl@ O A —v(4.9)

where y(q, ¢) contains derivative terms of the algebraic contact equation (1b). The
matrix on the left-hand side is regular and the system can therefore be solved to
obtain §.

With the invariants g,,5(f0) = g(q(t%)) = 0 and gy (t)) = % g(q(t)) = 0,
fulfilled at the beginning of the time horizon, the system (2) is mathematically
equivalent to (1). When using this formulation one normally has to pay attention
on drift of the algebraic constraint during numerical integration over larger time
horizons. For our case the integration duration is usually less than a second so we
do not need to account for this.

By setting x(¢) = (q(¢),4(¢))" and u(t) = () and due to the regularity of
the matrix in (2) we can embed the contact dynamics (2) in an ordinary differential
equation (ODE):

X = ft. x(1), u(r)). 3)

The dimensions and equations for G(g), y(q,q), and A change depending on the
contact type which results in multiple distinct ODEs which each describe the
dynamics for a specific set of constraints. The model equations for the different
contact phases i are denoted by:

X = fi(t.x(t),u)). 4

This formulation allows us to describe the dynamics of the character as continuously
differentiable functions for each set of constraints as required by our trajectory
optimization method.
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2.3 Ground Collision

We model the foot touchdown as an inelastic collision. Such a contact gain has two
consequences: the set of constraints change, which results in a change of the model
equation (4) and furthermore in a discontinuity of the generalized velocities ¢.

If a contact gain is detected at time 7, we can compute the change of the velocities
from right before the contact event g to after the collision ¢;F by solving

( M) GLW@) (q':) _ (M(q)q';) -
Gnew(q) O A O '

The matrix G, (g) is the constraint Jacobian for the new constraint set and A the
impulse in cartesian coordinates that acts at the contact points of the new constraint
set. Solving this equation ensures that the invariant g,;(7;) = 0 is fulfilled.

Analog to the model equations this equation can also be written as a transition
function:

x(tF) = hi(x(1))) (©6)

for which i denotes the specific constraint set used for the constraint Jacobians.

On contact losses there is no discontinuity for the generalized velocities ¢,
therefore no special treatment is required. In this case the transition function (6)
simplifies to x(r ) = x(t7).

2.4 Dynamics Implementation

All modeling and computation is done using the RBDL — the Rigid Body Dynamics
Library. It is a highly efficient C++ code that contains some essential rigid-
body dynamics algorithms such as the Recursive Newton-Euler Algorithm (inverse
dynamics), the Composite Rigid-Body Algorithm (computation of the joint-space
inertia matrix), and the Articulated Body Algorithm (forward dynamics).

The library strongly builds on the concept of Spatial Algebra [4], which is a both
concise and efficient notation for describing rigid-body kinematics and dynamics.
Instead of expressing the motion of the individual bodies using two distinct sets
of 3-D equations (one for translations and one for rotations) it combines the two
equations in a uniform 6-D formulation. This results in less equations but also fewer
lines of code.

RBDL uses by default the Eigen3 C++ template library [6] for linear algebra. It
automatically makes use of high-performance SSE instructions that greatly speeds
up evaluation of the 6-D expressions if supported by the CPU.

Computations for the joint-space inertia matrix M(g) is done using the the
Composite Rigid-Body Algorithm. The Recursive Newton-Euler Algorithm is used
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to compute the coriolis and gravitational forces C(q, ¢). The library also computes
the contact Jacobians G(q) and derivative terms y(g,q). RBDL then builds the
linear system (2) and solves it using a Householder QR decomposition provided
by the Eigen3 library.

The RBDL is freely available under the permissive zlib-License and can be
obtained from [5].

3 Optimal Control Problem Formulation of a Human Gait

By using optimal control methods we can simultaneously optimize the motion
x(t) = [q(t).4(t)]", the controls u(t) = t(¢) and the parameters p, such as the
spring damper constants and steplength and velocity. We have four model equations
(RE, RT, RT LH, RT LF), which results in a four—phase optimal control problem.

3.1 General Formulation

The whole optimal control problem can be written as:

4 g 4
min zj’@@mmwmw+2@mmm) (7a)
X()u(),ptrsots 1 Jio —

subject to:
x(t) = fit,x(@),u(t),p), teti—1.t],i=1,...,4, (7b)
x(tf) = hi(x (@), j =223, (70)
gi(t,x(),u(t),p) =0, telt—, ], i=1,...,4, (7d)
réd(x(fo), ..., x({&x), p) = 0, fo, ...t € [to, t4], (7e)
ri”eq(x(fo),...,x(fk),p) >0, fo,...fk € [lo,t4]. (7%)

The objective function (7a) used here is split up in two parts: the Lagrange
terms @;, that are evaluated over the whole phase duration and the Mayer terms
@y, that are evaluated at the end of each phase. The former can be used to e.g.
minimize the torques applied whereas the latter can for example be used to minimize
time. Equivalence of the two terms can be shown but their explicit use eases the
formulation of certain optimization criteria. We used different objective criteria to
achieve different walking styles:

* Minimum Torques: here we minimize the control effort formulated as @;, =
||Wu(t)||> with a diagonal scaling matrix W that accounts for different strengths
of joint actuation.
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e Minimum Time: this optimization criterion does not need a Lagrangian term.
Only a Mayer term at the last phase is needed which is @y, (t4, x(t4)) = t4.

e Minimum Angular Amplitudes: for this criterion we minimize the amplitudes
of the actuated joints by setting @7, = ||Gacruarea(t)||*.

¢ Minimum Head Angular Velocity: here we want to minimize the global head
angular velocity, which we formulate as ¢7, = (§peniskoiz(t) + GHeadroz(1))>.

Equations (7b) are the model equations from Sect. 2.2 for each contact phase.
The transition functions in (7c) are used to describe the changes from one phase to
another which we described in Sect.2.3. General state and control bounds such as
joint and torque limits are described by (7d). Posture conditions (e.g. foot positions),
periodicity at given points in time and detection of phase switches are modeled
by (7e) and (7f). The latter also includes a minimum step size of 0.4 m to ensure a
sufficient walking distance.

3.2 Numerical Solution

To solve this problem we use a direct multiple shooting method which is imple-
mented in the software package MUSCOD-II [9]. It discretizes the continuous
formulation (7a)—(7f) for both controls and states by dividing the time horizon in M
so-called multiple shooting intervals. The states are discretized as starting values s ;
for initial value problems defined for each multiple shooting interval j. The controls
are discretized by parameters r; for simple base functions on each multiple-shooting
interval, such as piecewise constant, piecewise linear or spline functions for each
interval. To ensure that the resulting states represent a continuous solution additional
continuity conditions

x(tj41:87,7j) =541 =0

are formulated.

By doing so the functions x (¢) and u(¢) were replaced by their finite dimensional
counterparts So, ...,Sy and ro, ..., ry—;. Further discretization of the constraints
and objective function leads to an nonlinear optimization problem of variables y =
[50: 705 - - - s M —1, 80, Pst1s - .., 14]T of the form:

min F(y)
y

subject to:

g(y)=0
h(y) =0

This problem is then solved by using a specially tailored sequential quadratic
programming (SQP) method.
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4 Results

For the control discretization we used spline functions and 10 multiple shooting
intervals for the first phase (Right Flat) and 5 for each of the others (Right Toes,
Right Toes Left Heel, and Right Toes Left Flat). The computation time for each
motion is around 30 min on an Intel 17 920 processor.

A visualization of the computed gaits is presented in Fig. 3. The motions vary
greatly in terms of speed and style. The motions are physically valid for the current
model topology and look natural. There is a natural arm swing opposite to the leg
swing.

While the motions “Minimum Torques” and “Minimum Head Angular Velocity”
do look similar, there is a substantially stronger arm swing for the latter objective
criteria. Arm motions counteract the rotational motions of the lower limbs and
help to stabilize the upper body. In addition, arm motions can serve to damp out
perturbations induced in the walking system by ground impacts. The two motions
also differ in average velocity which is 0.99m/s for “Minimum Torques” and
1.12 m/s for “Minimum Head Angular Velocity”.

Fig. 3 Visualization of the optimized walking motions for the used objective criteria. (a) Mini-
mum torques. (b) Minimum time. (¢) Minimum angular amplitudes. (d) Minimum head angular
velocity
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The resulting motion for “Minimum Time” features a posture that is leaned
forward as one would expect for a fast gait and it is also the motion with the shortest
duration and also the highest average velocity of 1.6 m/s (duration: 0.3 s, step length:
0.48 m). The motion “Minimum Angular Amplitudes” has an average velocity of
1.45m/s (duration: 0.44s, step length: 0.64 m). Here, the overall posture is held
upright and conveys a strong tenseness.

5 Conclusion and Outlook

The model and optimal control problem was presented together with various
objective criteria and how the optimal control problem can be solved using a
direct method. We computed optimized motions for four different objective criteria
that resulted in four distinct walking styles. The motions themselves are highly
coordinated and compliant. The method presented is well suited to generate off—
line open—loop walking motions for a complex full-body human model.

The achieved results form the base of our further work to identify specific objec-
tive functions using an inverse optimal control problem formulation as successfully
used in [12]. For this we would like to optimize gaits using a linear combination of
multiple objective criteria, such as

*  Maximum average velocity

*  Minimum/maximum energy

*  Minimum/maximum acceleration

o Minimum/maximum jerk

e Minimum/maximum ground impacts

*  Maximum angular amplitudes

e Minimum/maximum positive or negative work
*  Maximum manipulability measure [7].

These individual objective criteria will serve as base-functions for the identification
of the objective function of emotional motions using inverse optimization. A first
step for this would be a direct comparison of gaits computed by optimizations with
recorded motions obtained by motion capture.

A more realistic model for the ground contact would be using spheres for the heel
and toes of the foot or a single ellipsoid. This would allow continuous rolling curved
surface instead of the discrete phases of the current flat foot. Another modeling
extension would be to create a 3-D model and investigate turning or walking along
curved paths. Additionally it would be an interesting question whether we could
apply these objective functions for other types of motion such as grasping or other
gestures.

Evaluating the results of the different objective criteria, the trajectories of the
“Minimum Head Angular Velocity” solution seems to be the closest to a natural
walking solution for a neutral emotional state. The importance of this criterion and
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others in the context of neutral motions and emotionally modified motions is further
evaluated in our current research.
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On Quadratic Programming Based Iterative
Learning Control for Systems with Actuator
Saturation Constraints

Fei Gao and Richard W. Longman

Abstract When feedback control systems are given a commanded desired tra-
jectory to perform, they produce a somewhat different trajectory. The concept of
bandwidth is used to indicate what frequency components of the trajectory are
executed reasonably well. Iterative Learning Control (ILC) iteratively changes the
command, aiming to make the control system output match the desired output. The
theory of linear ILC is reasonably well developed, but in hardware applications
the nonlinear effects from hitting actuator saturation limits during the process of
convergence of ILC could be detrimental to performance. Building on previous work
by the authors and coworkers, this paper investigates the conversion of effective ILC
laws into a quadratic cost optimization. And then it develops the modeling needed
to impose actuator saturation constraints during the ILC learning process producing
Quadratic Programming based ILC, or QP-ILC. The benefits and the need for ILC
laws that acknowledge saturation constraints are investigated.

1 Introduction

Iterative learning control is a relatively new form of control theory that develops
methods of iteratively adjusting the command to a feedback control system aiming
to converge to that command that produces zero tracking error of a specific desired
trajectory. References [1-3] develop various linear formulations. Reference [4]
develops the supervector approach to mathematical modeling of ILC that is used
here. There are some perhaps surprisingly strong mathematical convergence results
for very general nonlinear systems, Refs. [5, 6], but they tend to use the simplest
form of ILC that can have extremely bad transients [3] and may require that
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the system being controlled has the property that the output is instantaneously
changed by a step change in the input [6]. Reference [7] develops methods of
numerical computation for implementation of various effective linear ILC laws to
nonlinear systems. Our objective here is to generalize methods of ILC to handle the
specific kind of nonlinearity presented by inequality constraints on the actuators.
The work follows on from [8] including generalization to form well posed inverse
ILC problems, and is related to [9].

The present paper considers three effective linear ILC laws, a Euclidean norm
contraction mapping ILC law which we refer to as the P transpose ILC law [10],
the partial isometry ILC law [11], and the ILC law based on a quadratic cost penalty
function on the transients, or changes in the control action from iteration to iteration
[12, 13]. Reference [14] shows how one can create a unified formulation of each
of these control laws by appropriate choices of the weights in the quadratic cost
control. Most discrete time systems that come from a continuous time system fed
by a zero order hold have an unstable inverse which implies that the control action
needed for zero tracking error is an unstable function of time step. This difficulty
can be addresses by the methods of Refs. [15-17].

This paper considers linear systems subject to inequality limits on actuators.
It combines these approaches to form a quadratic cost minimization problem,
formulating the needed equations to represent actuator saturation limits, thus
forming a well posed quadratic programming problem [18, 19]. From the point of
view of quadratic programming, these problems are small and easily solved for the
updates to the commands made each iteration.

2 Two Classes of ILC Problems with Constraints

Time optimal control problems usually involve control actions that are bang bang,
i.e. on the actuator constraint boundary. Fuel optimal control can also have actuators
at their limits. One form of ILC considers the equations from actuator to output.
In this case, it is reasonable to consider the relatively simple situation of an ILC
problem where this input is saturated. Figure 1 illustrates this situation, which is
referred to later as Problem 1. We use G(s) = [a/(s + a)][w3/(s* + 2Lw})] with
wo = 37 and ¢ = 0.5, sampling at 7 = 1/100 s in numerical examples. ILC makes
use of stored data from the previous run, and hence must it be digital and must use
sampled data. Here we use a zero order hold. Converted to state variable form, the
continuous time and discrete time modes are

U2 DA U(s) Y(s) Y(2)
—> > G(s) > AD ——>
(ZOH)
u(kT) u(t) ¥ (KT)

Fig. 1 Problem 1, where ILC adjusts input that is subject to inequality constraints
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Y(2) E(2) V(2) V(s) U(s) Y(s) Y(2)
— W‘—» D/A —>| GQ(S) |—>| GS(S) |——> AD
(ZOH)
y(KT) & e(kT) V(kT) V() u(t) 0] W(KT)
F(2)
A/D H(s) |¢———"——
pres | Ho) |

Fig. 2 Problem 2, a feedback control system with saturation limits on the actuator output

x(t) = Acx(1) + Beu(r) ; y(1) = Cx(1)
x((k + 1)T) = Ax(kT) 4+ Bu(kT) ; y(kT) = Cx(kT) (1)
A= et ; B=A"(A-1)B,

The more common situation has the ILC adjusting the command to a digital
feedback control system, as in Fig.2. The G(z) represents the digital feedback
control law while G, (s) represents the dynamics of an actuator whose output feeds
the plant equation G (s). An H(s) is included because applications such as robotics
often benefit from the use of rate feedback. The mathematical formulation of ILC
subject to actuator output saturation is developed in general for hard saturation limits
on u(t).

Numerical examples for Problem 2 use G1(z) = K; = 12,050, a proportional
controller whose computation is considered instantaneous and therefore it does not
produce a time step delay. The actuator dynamics are represented by Ga(s) =
1/(s + a) with a = 41.8 while G3(s) = 1/(s> + 4s), H(s) = 1 + 0.1268s,
and T = 1/100s.

3 Several Effective Linear ILC Laws

3.1 General ILC Supervector Formulation

Consider a discrete time input output state space model with its convolution sum
solution

x((k + 1)T) = Ax(kT) + Bu(kT) : y(kT) = Cx(kT) + v(kT)
k—1
y(kT) = CA*x(0) + Y CA*"'Bu(iT) + v(kT)
i=0

2
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The v (kT) represents any disturbance that repeats every run, and it is represented
by its equivalent effect on the output. A one time step delay from a change in the
input to the resulting change in the output is assumed. The mathematics can easily
be altered to account for a different delay. Hence, for control action starting at time
step zero, the desired trajectory y*(kT) is defined starting with time step one, and
continuing to time step p, with associated error e (kT) = y*(kT)—y (kT). Following
[4] we define symbols with underbars to represent the history of the associated
variables for any run (subscript j will be applied to indicate iteration or run number
J). Based on the one time step delay through the system, the entries in u start with
time step 0 and go to p — 1, and for y, y*, e, v start with time step 1 and go to p.
Then

y = Pu+ Ax(0) +v : e=—Pu+(y* —Ax(0)—v)
CB 0 -0 CA
CAB CB -0 - CA? 3)
P = ) . o A=
CAP~'B CAP2B --- CB CA?

3.2 General Linear ILC and Convergence

A general ILC law updates the input action according to
Ui =U; +L€j 4

where L is a matrix of ILC gains. By taking the difference of the right hand equation
in (3) for two successive iterations, one obtains the error convergence condition. By
substituting the error equation in (3) into (4), one also obtains the control action
convergence condition

€iy1 = ( —PL)éj

ujpy = —LPu; + L(y* —Ax(0)—v) : Ajyu=(I—LP)Aju
Q)

Defining A;u = u; — u,, converts the second equation into the third. Convergence

of the error requires that the spectral radius of / — PL be less than unity, and a
sufficient condition is that the maximum singular value is less than unity.
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3.3 Euclidean Norm Contraction Mapping ILC Law
(P Transpose Law)

This law picks L = ¢PT where ¢ is a positive gain to be chosen [10]. Write the
singular value decomposition of P as P = USV'. Note that P is lower triangular
with nonzero elements on the diagonal, and therefore in theory is full rank with
S = diag(01,07,...,0p,) having all positive diagonal elements. It can however be
badly ill conditioned, and this is accounted for below. Equations (5) can be rewritten
for this law

Ulejpi=U—¢SHUTe; o+ VIAjpu=(U—¢SHV Au (6

The Euclidean norms of ¢; and U Te ; are the same, and similarly for Aju.
Monotonic convergence is obtained for all initial error histories if and only if 1—¢o?
is less than unity in magnitude for all i, or it converges if 0 < ¢ < 2/0? for all i.
If 1 — ¢ is positive, then the corresponding component of the error will converge
from the same side each update, and if it is negative this component of the error will
alternate in sign from iteration to iteration.

3.4 Partial Isometry ILC Law

Set L = ¢VU T as in [11] and one obtains convergence to zero error as in Eq. (6)
with I — ¢S? replaced by I — ¢S, with 0 < ¢ < 2/o0;. This law learns faster for
high frequency error components, but is somewhat less robust to model errors.

3.5 General Quadratic Cost ILC Law

Usually quadratic cost control implies a compromise between control effort and
speed of decay of the transients. ILC wants zero error, but uses the quadratic cost
compromise on the size of the control update from iteration to iteration, controlling
the learning transients. The quadratic cost at iteration j that determines u;
minimizes
T T .

Jj =€j+1Q€j+1 + 84 Réjpu 8j+1£:Ej+1_Zj (7
Normally, one asks that Q be positive semidefinite and R be positive definite. In
this case, we want zero final tracking error so we want Q positive definite, and R

need not be positive definite. Write the right hand equation in (3) for j + 1 and for
j, and then (7) can be rewritten as
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Jj=(e; — P8jyu)" Qe; — P8jy1u) + 811" RS; 4 1u
=841’ (PTOP+ R)Sj11u—28;1u” P Qe; +¢] Qe; (®)

Instead of R having to be positive definite, this quadratic cost law requires the
Hessian PT QP + R to be positive definite, which actually allows for negative R.
Setting the derivative with respect to §; 1 u to zero produces the ILC law

wjp=u;+Le; =u; +(PTOP+R)™'PT Q¢; ©)

3.6 Simple Quadratic Cost ILC

Often when applying quadratic cost control designs one does not have much
guidance on how to pick the weight matrices, and one uses simple choices. Here
we consider Q = [ because we want all error components to go to zero, and let
R = rl where r is a scalar gain. Then

L=Vl + S tsuT

(UTe; ) =1 —StI+5*)7'SIU"e)) (10)
. o} . r
= dzag(l D Cy1‘2)(UT€],) = dzag(r n oiz)(Ung)

In this case, each component of the error on the orthonormal basis vectors in U will
converge monotonically without alternating sign when r is positive, but it is possible
to have convergence for negative values provided r > —o? for all i.

3.7 Defining Well Posed ILC Inverse Problems

Continuous time systems fed by a zero order hold can be converted to discrete
time systems with identical output histories at sample times. For continuous time
systems with pole excess of 3 or more and sufficiently fast sampling, this conversion
introduces zeros outside the unit circle. This means that the inverse problem is
unstable. References [15—17] address this problem, for example, by asking for zero
error every other time step making a kind of generalized hold. We rewrite Eq. (3) as

ep; =—Ppu; + (ZE —Apx(0) —vp) ; 841ep = —Pp;tiu (11)

Initially write the equation for all time steps at the faster sample rate used by the
control input. Then delete whichever rows are associated with errors that are not to
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be addresses. Note that this makes P a rectangular matrix. The General Quadratic
Cost ILC Law generalizes to

—_ T . T .
Jj=epj+19€pjt1 +8j+1u RSj1u

12)

Zj+1zﬂj+LD€D,j ; LD:(PDTQPD+R)_1PDTQ
Note that Pg QP is now positive semidefinite. The Euclidean Norm Contraction
Mapping ILC law generalizes immediately to Lp = ¢Pg . The Partial
Isometry Law needs the singular value decomposition of Pp denoted by

Pp=U[S0][Vi Va]" = USVT making L, = ¢V,UT.

4 Quadratic Cost Versions of These Effective ILC Laws

Equation (7) is the general version of quadratic cost ILC. By setting Q = I
and R = rl the general version reduces to the Simple Quadratic Cost ILC law.
However, the other two ILC law presented can also be produced from the general
quadratic cost function. The Euclidean Norm Contraction Mapping Law L = ¢P7
is produced when one sets Q = ¢ and R = I — ¢PT P and substitutes into the
L of Eq.(9). The partial isometry law is obtained when R = VS(I — ¢S)VT =
PTU(I — ¢S)VT with the same Q = ¢1. We note that when substituted into L,
one obtains L = (VSVT)~'VSUT ¢. The inverse involved can be ill conditioned
since S determines the condition number of P discussed above. The details of the
computation of the updates using the quadratic cost formulation determine whether
there is some additional difficulty when using this law in quadratic cost form.

One of the issues in the learning transients of ILC laws when there are inequality
constraints is whether the iterations try to go beyond the actuator limit during the
convergence process, and as a result perhaps the convergence process might fail.
We note that the Simplified Quadratic Cost ILC Law in Eq. (10), when r is picked
larger than zero, will have every component of the error projected onto the unit
vectors of U converging to zero without changing sign. Thus if the initial trajectory
starts with each of these components smaller than those needed for zero error, and
the desired trajectory is feasible, i.e. it does not require actuator output beyond the
actuator limits, then one expects convergence without difficulty using the learning
law without regard to the inequality constraints. Using r that is negative seems
counter intuitive, and furthermore how negative it can be is less than minus the
smallest singular value which is often a very small number. When using the P
transpose law, picking ¢ so that 0 < 1 — ¢a,.2 < 1 for all i, will similarly ensure
monotonic approach of the same sign to zero error for each of the error components
on the unit vectors of U. Any i for which -1 <1 — ¢a,.2 < 0 will alternate the sign
of this component of the error each iteration. If the desired trajectory is feasible but
goes near the actuator limit, the alternating sign of error components could easily
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make the control law ask to go beyond the limit. For the partial isometry law, the
corresponding conditions are 0 < 1 — ¢po; and —1 < 1 — ¢po; < 0.

To address the ill conditioning problem discussed above, and also convert to the
P transpose and partial isometry laws to quadratic cost ILC form we pick weights
in cost function (12) as follows. For P transpose, simply use O = ¢/ and R =
I —¢P} Pp. For the partial isometry law one again uses Q = ¢/, and the R matrix
becomes more complicated

_[SU—8)0] 7
R_V[ . I}v (13)

Substitution into Eq. (12) produces the needed Lp = ¢ VU T,

S The Quadratic Programming Problem for Problem 1

Having produced quadratic cost versions of each of the above control laws, we are
ready to impose inequality constraints on the actuator by formulating the update for
each iteration as a quadratic programming (QP) problem:

1
min: J = EZTHZ + g"z subjectto: A,z <Z, and A,z = Z, (14)

Using the general quadratic cost ILC law, which can represent any of the ILC laws
discussed above by choice of O and R, at each iteration we seek to minimize J; of
Eq. (7). The equality constraint A,z = Z, could be used for the dynamics §; e =
— P38 41u, but we can simply substitute analytically to obtain the cost equation (8)
with H = %(R + PTQP) and g7 = QJTQP. In Problem 1, the input is subject to
inequality constraints u,,, < u < u,, . which is to be interpreted component by
component. These constraints are imposed with A, Z, using §; 114 < u,,, —u;

j
and =8 411 < — (U, — U;).

6 Formulating the Quadratic Programming Problem
for Problem 2

6.1 Closed Loop Dynamics for Problem 2

Generation of the QP version of Problem 2 requires some effort to formulate the
inequality constraints. We assume that the hardware has a hard constraint at its limit.
This time the constraint is on the output of a continuous time transfer function that
may represent the actuator, uy;, < u(t) < up.. For simplicity, we formulate the
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problem asking to satisfy the constraints at the sample times u;, < u(kT) < Uy,
and ignore any issues associated with violation of constraints between sample times.
Referring to Fig. 2, we can write equations going around the loop. For the controller

e(kT) = y1(kT) — f(kT)

J(&T) = y(kT) + Ky(kT)
xq((k + 1)T) = Agxq(kKT) + Bye(kT)

v(kT) = Cyxq(kT) + Dge(kT)

15)

We want to know not only the output y(¢) at least at the sample times, but also we
want to monitor the value of u(¢) at the sample times, and for purposes of computing
the feedback with H(s) = 1 + Ks we want to know y(kT). The actuator and the
plant equations in continuous time are
Xo(t) = Agexa(t) + Baev(t) 1 u(t) = Cuxy(t)
Xp(t) = Apexp(t) + Bpeu(t) = Apexp(t) + By Coxa(t) 1 y() = Cpx,(2)
V(1) = Cpxp(t) = CpApcxp(t) + CpBp o Coaxalt)

(16)
T

One can combine these equations using a combined state x,, = [qu x;] and
compute three output quantities

u(t) C, 0

Xq (2
y@) | = 0 C, |:x Ef;:| 17)
y(1) CpBpcCa Cpdpe] ="

The combined equations have input v(¢) coming from a zero order hold, and hence it
can be converted to a difference equation giving these output quantities at the sample
times without approximation. One can now combine these equations with (15)
adding the controller state variable to those in (16) to form the closed loop state
equations relating the command y; ;(kT) in iteration j to the resulting output
¥ (kT) and the actuator output u; (kT)) which is subject to saturation

xcrj((k + 1)T) = Acrxcr,j (KT) + Bepys,j (kT)
y;j(kT) = Ccrxcy,j (kT) (18)
uj (kT) = Cu-xCL,j (kT)
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6.2 Dynamics When the Actuator Is Saturated

When the actuator is at a saturation limit uy,,, then when simulating, the feedback
loop is only needed to determine when the actuator leaves its saturated value. The
output and its derivative are given by

xp((k + DT)=Apx,(kKT)+Bpttsas ; Ap=exp(ApcT): B, = A;,i(Ap —1)B),

Y(kT) = Cpx,(kT) ; y(kT) = C,Apx,(kT) 1)

To determine in simulation when the actuator leaves saturation, one uses these
values in Egs. (15) to determine v(kT), and feeds this into the discrete time version
of the first row equations of (16) in order to monitor the value of u(kT).

6.3 The QP Problem for Problem 2

Form two different P matrices, P¢; making use of system matrices Acy, Ber, Cer,
and the second P, using Acr, Bcr, C,. For simplicity we ignore the repeating
disturbance term so that

Y, = PCLXI’J. + Acrxcr(0)
¢ =—Pay, +0" - Acrxcr(0))
' B (20)
Zj = Pull,j + AuxCL(O)

Sj+1u= Pubjt1y,

where A¢; and A, are formed as in Eq. (3) using A¢; and C¢y, or C,, respectively.
Then the QP problem at iteration j is to minimize the following quadratic cost
subject to the following inequality constraints

Jj = 8j41y] (P&LQPcL + R)Sj 11y, —28;41y ] Pl Qe + e Qe (1)
u inSZj+PL‘8j+1XI =u

=mi —max

7 Numerical Study of QP Based ILC

To create a desired trajectory that rides the actuator or input limit we pick u(¢) =
sat{0.5[1 — cos(2mt)]}, saturated at the value 0.7. Then we compute the output
and use it as the desired trajectory. In some applications the inequality constraint
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Fig. 3 Problem 1, P transpose ILC law with ¢ = 1. Left: hardware imposes the limit. Right:
hardware allows violation of limit

is a hard constraint that cannot be violated. For example, sometimes when a DC
motor is used in a control system, it has a voltage limiter on it that imposes a
hard constraint. Other times, the manufacturer lists a limit which can be based
on such things as heating constraint in sustained operation. In this case, violating
the constraint temporarily during the learning process can be acceptable. Here we
examine the behavior of ILC laws in three cases: (1) When the law and the hardware
are allowed to violate the limit temporarily. (2) When the law is allowed to ask
for signals that violate the limit, but the hardware imposes the limit. (3) When
the corresponding QP based ILC law incorporates the limits in the updates each
iteration.

Figure 3 shows the convergence to the needed u(kT) using a P transpose ILC
law when the hardware does not allow violation of the constraint, and when it does.
The root mean square (RMS) of the tracking error for each iteration is essentially
identical, but the former learns slightly faster. It is interesting to note that although
the mathematics indicates that all time steps converge to zero error, the last time
step in these plots of the u(kT) is converging very slowly. This phenomenon has
now been studied in Ref. [20].

An interesting example was run using the P transpose ILC law with a gain of
¢ = 2.3 which is above the stability limit of 2.2. As one might expect, the RMS
error when violation was allowed went unstable. But with the hardware imposing the
limit, convergence approaching zero error occurred, i.e. the hardware limit stabilized
an unstable ILC.

Figure 4 illustrates the RMS error performance as ILC iterations progress for the
partial isometry ILC law and the simple quadratic cost ILC law. The dashed curves
in each case show the convergence when the ILC law could violate the constraint but
the hardware imposed the constraint. The corresponding curves when the hardware
allowed violation of the constraints looked very similar, except that the somewhat
quick changes in slope in the figures disappear. The solid curves are the RMS errors
for the corresponding QP algorithms that make use of the limits in the updates
computed. Note that in both cases, the QP algorithm eventually outperforms the
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Fig. 4 Problem 2. Leftr: UVT ILC with ¢ = 1, Right: simple quadratic cost ILC, hardware imposes
limit, » = 1. Versus QP

other algorithms. Note that the VU law reaches lower error levels since it converges
linearly instead of quadratically in small errors.
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A Sparse Grid Based Generative Topographic
Mapping for the Dimensionality Reduction
of High-Dimensional Data

Michael Griebel and Alexander Hullmann

Abstract Most high-dimensional data exhibit some correlation such that data
points are not distributed uniformly in the data space but lie approximately on a
lower-dimensional manifold. A major problem in many data-mining applications is
the detection of such a manifold from given data, if present at all. The generative
topographic mapping (GTM) finds a lower-dimensional parameterization for the
data and thus allows for nonlinear dimensionality reduction. We will show how a
discretization based on sparse grids can be employed for the mapping between latent
space and data space. This leads to efficient computations and avoids the ‘curse of
dimensionality’ of the embedding dimension. We will use our modified, sparse grid
based GTM for problems from dimensionality reduction and data classification.

1 Introduction

High-dimensional data often exhibit a correlation structure between the variables,
which means that there are areas in the data space with little or no data points.
A suitable low-dimensional projection of the data then allows a more compact
description, a better visualization and a more efficient processing.

One approach to dimensionality reduction is to express the high-dimensional
data in terms of latent variables. A well-known method is the Principal Component
Analysis (PCA), which is based on the diagonalization of the data covariance
matrix. However, the PCA is by construction a linear method. As such, it is not
capable of modeling nonlinear lower-dimensional dependencies and sometimes may
fail. A simple three-dimensional example, the so called ‘Swiss roll’, is given in
Fig. 1. Here, the topological structure of the data is not preserved under the mapping
into two dimensions and points originally far apart on the manifold are close-by in
the two-dimensional projection.

This is why nonlinear methods are necessary. Some common approaches are
multidimensional scaling (MDS), curvilinear component analysis (CCA), curvilin-
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Fig. 1 The projection of the ‘Swiss roll’ data (left) onto the first two principal components results
in a two-dimensional representation (right)

ear distance analysis (CDA), Laplacian eigenmaps (LE), locally linear embedding
(LLE), Kohonen’s self-organizing map (SOM), generative topographic mapping
(GTM) and kernel PCA (KPCA), cf. [17]. Unfortunately, capturing nonlinearities
comes at the price of a significant increase in computational complexity and with
the problem of possibly finding only a locally optimal solution.

In this article we will focus on the generative topographic mapping (GTM) [4].
Usually, the latent space of the generative model is limited to two or three
dimensions due to the ‘curse of dimensionality’. It means that the cost complexity
for the approximation to the solution of a problem grows exponentially with the
dimension d, i.e. it is of the order &'(h=¢) with & being the one-dimensional mesh-
width. Instead, we use sparse grids [6] for the discretization of the mapping between
latent space and data space. Then, the number of degrees of freedom grows only by
O(h~" (logh~")?~1), which is a substantial improvement. This approach has also
been followed for principal curves and manifolds in [10]. Of course, this saving in
computational complexity comes at a cost, namely an additional logarithmic error
term and a stronger smoothness assumption on the mapping. As a result, we get a
sparse GTM (SGTM), which basically achieves the same level of accuracy with less
degrees of freedom. In contrast to the conventional GTM, it can cope with higher-
dimensional latent spaces.

This paper is organized as follows: In Sect. 2, we describe our generative model,
which is based on a mapping between the lower-dimensional latent space and the
data space. In Sect. 3, we present a method to find the mapping by minimizing a
certain target functional, i.e. the regularized cross-entropy between the model and
the given data. Then, in Sect. 4, we show how we can obtain the original GTM as
well as the sparse GTM by special discretization choices. In Sect. 5, we apply the
sparse GTM to a benchmark dataset from literature and a real-world classification
problem. Some final remarks conclude this paper.
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2 The Generative Model

In the following, we will describe a generative model, which is based on a low-
dimensional parameterization.

We want to represent a d-dimensional density p(t) > 0.t € R?, by a density
that is intrinsically low-dimensional. To this end, we introduce a mapping

y: [0, 1]F - R¢

with L <« d that connects the L-dimensional latent space [0, 1]* and the data
space R?. The generated density is then

/2
Gy p(t) = (%) /[0 Lo (—§||y(x> —t||2) ax . )

It can be interpreted as the image of an L-dimensional uniform distribution under the
mapping y with additional Gaussian noise, which is controlled by the parameter S,
see Fig.2 for an illustration. It is easy to see that fRd qyp)dt = 1,1ie. gypis a
density in the d-dimensional data space.

The aim is now to choose a mapping y and an inverse variance 8 € R, such
that the dissimilarity between gy g and p is minimized. To be precise, for a given
regularization term AS(y) and density p(t), we want to minimize the regularized
cross-entropy [16]

G(y,B) .= H(p,qyp) +AS(y) 2

- B — 4 B
= /Rd p(t)log/[o.l]L eXp( 5 Iy —t| )dxdt 5 log — +A5(y)

in 'y and §. For the remainder of this paper, we assume S(y) = ZZ=1 lvell%s

where y(x) = (y1(X),...,yq(x)) and || - ||z = (, ')}1/2 denotes a given norm or
seminorm in a prescribed Hilbert space H . This naturally requires the components
of the vector-valued function y to be an element of H. For an in-depth discussion of

latent space mapping data space

y(x)

Fig. 2 The L-dimensional data space is mapped by y into the d-dimensional data space. There,
the model assumes multivariate Gaussian noise with variance g~
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the relation between regularization terms and associated function spaces, see [20].
A weak regularization with a too small A or even A = 0 leads to overfitting, i.e.,
the method models random noise instead of a meaningful underlying relationship
between latent variables and the data set. A regularization that is too strong might
prevent the method from discovering relevant features of the data. We recommend
choosing the parameter A for reconstruction and classification tasks by cross-
validation techniques [7, 15].

3 Functional Minimization

Let us now show how the GTM functional ¢ can be efficiently minimized even
though it is nonlinear and nonconvex in y and 8. It is important to note that the
functional equals the logarithm of the partition function, and we can rearrange it
to its free energy form for easier numerical treatment. First we define the posterior
probabilities Ry 5 : RY x [0, 1]* — R by

o5 Iyt
Ry 5(t,Xx) := .
re (%) e O gy
Next, we introduce the functional
Hwy.p= [ oo /[ LY Tz e vt 3)
R 0,1

d
+§ /Rd J40) /[OJ]L Y (t,x)|ly(x) — t]*dxdt — E]og% +AS(y).

Here, for all t € R it must hold that v/ (x, t) is a density in x. Then, a lengthy, but
otherwise simple calculation reveals that

H (Ryp.y.B)=%(y.p) forall y.8B. “

We now minimize % by successively minimizing with respect to its single
parameters v, y and 8. This is advantageous, because these subproblems are convex
even though ¥ is not.

The following three minimization steps have to be carried out in an outer iteration
until we converge to a local minimum. Minimizing with respect to 8 yields

1

-1
wgning 2 (0.y.0) = (5 [0 [ vanlyow-thasa) .
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The posterior probabilities Ry g minimize JZ” w.r.t. ¥, i.e.

argmin,, ¢ (V.y. ) = Ryp . (6)

which is analogous to statistical physics, where the Boltzmann-distribution mini-
mizes the free energy [18]. In combination with (4), this step can be understood as
a projection back into the permissible search space since

J (argminy (Y. y, ).y, B) = X (Ryp.y. B) =9 (y. B) .

To minimize .# in y-direction, we need to solve the quadratic regression type
problem

21
wgnin, [ p0 [ vanlye-tPaaes Zsw . @)

4 Discretization of the Model

We now discretize the mapping y by M basis functions ¢; : [0, 1f - R,j =
1,..., M, and obtain yy;(x) = We¢(x) with the coefficient matrix W € R>M
and ¢(x) = (¢1(x),..., ¢ (x))T. The minimization of the # -functional in y-
direction (7) then amounts to solving d decoupled systems of linear equations for
r=1,...,d

Aw, =z, (8

with w, = (W),1,....,(W)m)T, A € RMM and z, € RM. The entries of the
matrix A and the vectors z, can be computed fori, j = 1,..., M by

27
A); = / () / V()¢ b ()dxdt + 2o (g b)) and ()
R4 [0.1]£ .3

(z,); :/ p(t)/ v(t, x)(t),¢; (x)dxdt , r=1,...,d. (10)
R4 [0.1£

Note here that the derivation of our model in Sect.2 started with the explicit
knowledge of the continuous density p(t). This is however in general not the case
in most practical settings. There, rather an empirical density pfvmp (t) based on N
data points (t, ,]1\'=1 is given instead. Therefore, for the remainder of this paper, we
furthermore replace the continuous density p(t) by a sum of Dirac-delta-functions
Pyt () = % Zfl\;l 8¢, (t). Then, the dt-integrals in (9) and (10) get replaced by
sums, which corresponds to discretization by sampling.



56 M. Griebel and A. Hullmann
4.1 Original GTM

Now, two further discretization steps can be taken. First, we choose L-variate
Gaussians as the specific functions in the basis function vector ¢ : [0, 1]* — RM.
Their centers lie on a uniform mesh in the L-dimensional latent space with mesh
width #;. Then M = O(hiL) and by = OM _%), respectively. Secondly,
we choose a tensorized rectangle rule on a uniform mesh with width 4, for the
numerical quadrature of the dx-integrals in (9) and (10), which results in K =
O'(hy*) quadrature points (x;)X_,. This is equivalent to assuming a grid-based
latent space distribution, as it is done in [4].
We obtain the resulting systems of linear equations (8), where now

1 LK 24
(Wi = 5 2 2 V(b Xy (%) (%) + 5 @9 and (D)
n=1m=1
1 N K
(Zr)i = W};; 1p(tn’Xm)“n)r‘pi("m) ) r = 1,...,d, (12)

fori,j=1,....,.M.

Note that in our successive minimization of ", see Sect. 3, the minimization (6)
with respect to i equals the E-Step and the minimization steps (5) and (7) with
respect to B and y equal the M-Step of the well-known Expectation Maximization-
algorithm [8]. In all steps, the discretized versions of y and the dx-integrals now
need to be employed. Altogether, we finally obtain the GTM [4], or, the other way
around, we see that the original GTM is a special discretization of our generative
model (1).

Note furthermore that the M degrees of freedom in the discretization and the K
function evaluations for numerical quadrature have both an exponential dependence
on the embedding dimension L. This severely limits the GTM to the cases L < 3.
To overcome this issue, we will choose some other type of discretization of our
generative model in the following.

4.2 Sparse GTM

We now suggest to use a sparse grid discretization [6] for the components of the
mapping y instead of a uniform, full mesh. We denote the resulting numerical
method as the sparse GTM. To explain our new approach in detail, let us first
consider a one-dimensional level-wise sequence of conventional sets of piecewise
linear basis functions on the interval [0, 1]. There, the space V; on level [ > 0
contains 7; = 2! + 1 hat functions ¢ ; : [0,1] — R

¢r.i(x) = max(1 — 2! |x —x1],0),
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——

= DK

Fig. 3 The first four hierarchical surplus spaces of the one-dimensional hierarchical basis (left).
Two-dimensional tensorization and the sparse subspace (right)

which are centered at the points of an equidistant mesh x;; = 27lii =0,...,
n; — 1. Next, we consider the hierarchical surplus spaces W, where V41 = V; &
W, 41, see also the left-hand side of Fig. 3. They can be easily constructed by

{0, 1} for/ =0

W, =span{¢;; :i € &} with §& :=
pamL fiodd,1<i<2 —1} else.

With the multi-indices 1 = (I;,...,1;) € Nt i = (iy,...,iy) € N, the d-
variate functions ¢y;(X) = ¢y, ., (x1) -+ - ¢y, i, (xr) and the Cartesian products & :=
stzlé‘;S, we obtain L-dimensional spaces W) = span{¢y; : i € &}. Then,

L J L
V= P m=QDW =QWw
Noo<J s=11,=0 s=1

resembles just a normal isotropic full grid (FG) space up to level J, while

viie= @ w (13)

Ny<J+d—1
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denotes the sparse grid (SG) space' on level J. The former has M6 = ¢ (2L/)
degrees of freedom, while the latter has only M6 = @(JE7127) degrees of
freedom. However, under the assumption of bounded mixed derivatives, both
discretizations have essentially the same L,-error convergence rate, see [6, 9] for
further analysis and implementational issues. The use of this kind of discretization
for every component of the vector-valued mapping y, i.e. y5¢ = (yISG, oS p )
with y56 € V(l) r =1,...,d, then yields a sparse GTM.

The corresponding L-dimensional integration problems (9) and (10) for setting
up the associated systems of linear equations (8) are approximated by evaluation
points x,,, with fixed weights y,, for m = 1,..., K. Here, methods like Quasi
Monte-Carlo or sparse grid quadrature [11] can be used. Then, K does not exhibit
the ‘curse of dimensionality’ with respect to L.

We obtain the resulting systems of linear equations (8), where now

N K
A
(Aikj = N Z Z m W (b s Xm ) Pri(Xm ) P (Xm) + %(d’l,ivd’k,j)H and  (14)
N K
(z )i = N Z=: Z=: YW (b, X)) () r P1i (Xim) r=1,....d, (15)

with |l|1, |k|1 <J+d-1ljie ég'l,j € gk-

When we minimize the functional %" in y-direction the systems (8) have to be
solved. As recommended in [4], we use a direct method. An LU factorization of
the matrix A costs &((M5¢)3). Then, the forward and backward substitution steps
for d different right-hand sides of (8) cost &'(d - (M5)?). For high-dimensional
data sets with d > M 39, these steps can be more relevant cost-wise than the initial
factorization of A.

It is also possible to solve the system (8) for each right-hand side by an iterative
method. Then the costs are &(d -#it- X'), where #it denotes the number of necessary
iteration steps and X is the cost of one matrix-vector multiplication. Typically, the
unidirectional principle [2, 5] is used for the fast multiplication with sparse grid
operator matrices, but this algorithm is not applicable here since the function ¥
in (14) does not allow a product representation in x. However, in contrast to
the Original GTM from Sect.4.1, our sparse GTM results in a somewhat sparse
matrix A. This can be exploited in the matrix vector multiplication of A. Note
that the regularization term %( ) prevents the matrix A from being severely
ill-conditioned. Here, however, keeping #it low and bounded independently of
the discretization level J is a matter of preconditioning the matrix (14), which
is nontrivial and future work. Since we presently cannot guarantee that the costs

'We can replace |1|; by |I|; + |{s : I, = 0}| in (13), which leads to a slightly different treatment
of boundary functions, but has otherwise the same asymptotic properties, see [9].
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Fig. 4 The three-dimensional ‘open box’ (left), a sparse GTM fitted to this dataset (middle) and
the two-dimensional projection of the data points (right)

O'(d -#it- X ) are lower than & (d (M SG)Z) for the direct method in high-dimensions,
we decided to stick with the LU factorization for now.

To demonstrate the nonlinear quality of the method, we apply the sparse GTM to
the ‘open box’ benchmark dataset [17] in Fig. 4. We see a reasonable unfolding of
the box in the two-dimensional embedding, which would not be possible with linear
methods, like e.g. a conventional PCA.

S Numerical Experiments

In this section, we will now present the results for the sparse GTM for some
problems from dimensionality reduction and data classification.

5.1 Dimensionality Reduction

On the left-hand side of Fig. 5, we present a toy example with data points stemming
from a wave-shaped manifold. Since we here have a sufficiently large amount
of data points, we need no regularization term. We measure the GTM functional
value ¥4(y, ), see (2), after 5 minimization cycles for ", see (3). On the right-
hand side, we see that the sparse GTM achieves about the same reduction in the
GTM functional value with substantially less degrees of freedom than the GTM
based on a full grid.

Next, we consider a real-world problem. Figure 6 shows a three-dimensional
projection of a 12-dimensional data set. It consists of 1,000 data points with
diagnostic measurements of oil flows along a multi-phase pipeline. The three
different class types in the plot represent stratified, annular and homogeneous
multi-phase configurations, compare [3] for further details. In [4], it was shown
how a two-dimensional embedding of the data with the GTM gives an improved
separation of the clusters compared to the embedding with the PCA. We now run
this experiment with a sparse GTM with L = 2 and L = 3, discretization level
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—=— sparse GTM

100-6 |-

1005 |-

GTM functional value
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Fig. 5 Reduction in the GTM functional value with respect to the degrees of freedom per y-
component for a GTM with a full grid discretization and the sparse GTM

0.6 |-

o2

0.2

Fig. 6 Embedding of a 12-dimensional data set with three class labels by the sparse GTM in two
dimensions (/eft) and three dimensions (right)

1. -seminorm regularization and A = 4.0 x 1073, We see that the three-
dimensional latent space offers an even more detailed picture of the data than the
two-dimensional embedding and a slightly better separation of the different clusters.

J =4 H!

5.2 Classification

We now use the sparse GTM for classification. To this end, we append a class
variable ¢, € {—1, 1} to the data points by

t = ((t)1,...,(t)a,c))" for n=1,...,N. (16)

We first use the sparse GTM to fit the mapping y and the inverse variance § to these
points. Then, we can classify new data points with help of the density gy g of (1) by

1 ifgyp(ti,....ta. 1) > qyp(ti, ... .ta,—1)

c(t) ;=
—1 else.



A Sparse Grid Based Generative Topographic Mapping 61

We apply this technique to ‘Connectionist Bench (Sonar, Mines vs. Rocks)’, a
real-world data set from the UCI Machine Learning Repository [1]. It consists of
approximately 200 measurements with 60 dimensions and two class labels.

In [12], this data was randomly split into two parts. One part was used to train
various neuronal networks, the other one was used to measure the quality of the
model. The best neuronal network achieved an average classification rate of 84.7 %.

We use our sparse GTM with latent space dimensions L = 2 and L = 3
and a regularization term based on the H . -seminorm. We achieve classification

rates between 72.0 and 84.6 % already for L = 2, depending on the regularization
parameter A and the discretization level J. For L =3, J =3 and A = 1.0 x 1074,
we even reach a classification rate of 85.6 %, which clearly shows the potential of
our new approach.

6 Conclusions

We presented a generative model that can be used for dimensionality reduction
and classification of high-dimensional data. For a certain choice of discretization
involving uniform grids, we obtained the original generative topographic mapping
from [4]. Using a sparse grid discretization for the mapping, we obtained our new
sparse GTM. It gives about the same quality with less degrees of freedom. Moreover,
it has the perspective to overcome complexity issues of the grid-like structures,
which limit the conventional GTM to a low number of latent space dimensions.
For example, in dimension L = 4 and discretization level J = 5 the sparse grid
approach with index set {1 : |l|; + |[{s : [y = 0}| < J + d — 1} has 7,681 degrees of
freedom, which is still treatable using a direct solver, whereas the full grid already
has 1,185,921 degrees of freedom. For dimensions like L = 10 the situation is
as follows: Full grids with L = 10 and J = 4 have 2.0 - 10'? degrees of freedom
(5.8-10'"" inner functions and 1.4-10'? boundary functions), which is clearly beyond
the capabilities of current computers. Sparse grids have 1.1-107 degrees of freedom,
of which only 2,001 are inner functions and 10,817,088 are boundary functions.
Of course, this is still too much for a direct solver, but now only the number of
boundary functions poses a bottleneck. Modified boundary functions with improved
properties can be found in [9, 19], so there is some hope to treat higher dimensional
latent spaces. Furthermore, note that the runtime complexity depends only linearly
on the data space dimension ¢ and the number of data points N. This makes the
sparse GTM a suitable tool for high-dimensional data sets. For further experiments
and results, cf. [13, 14].



62 M. Griebel and A. Hullmann
References
1. Bache, K., Lichman, M.: UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(2012)

Balder, R., Zenger, C.: The solution of multidimensional real Helmholtz equations on sparse
grids. SIAM J. Sci. Comput. 17, 631-646 (1996)

Bishop, C., James, G.: Analysis of multiphase flows using dual-energy gamma densitometry
and neural networks. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect.
Assoc. Equip. 327(2-3), 580-593 (1993)

. Bishop, C., Svensen, M., Williams, C.: GTM: the generative topographic mapping. Neural

Comput. 10(1), 215-234 (1998)

. Bungartz, H.: Diinne Gitter und deren Anwendung bei der adaptiven Losung der dreidi-

mensionalen Poisson-Gleichung. Dissertation, Fakultit fiir Informatik, Technische Universitit
Miinchen (1992)

. Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 1-123 (2004)
. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 31(4), 377-

403 (1978)

. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM

algorithm. J. R. Stat. Soc. 39, 1-38 (1977)

. Feuersinger, C.: Sparse Grid Methods for Higher Dimensional Approximation. Siidwest-

deutscher Verlag fiir Hochschulschriften AG & Company KG, Saarbriicken (2010)
Feuersénger, C., Griebel, M.: Principal manifold learning by sparse grids. Computing 85(4),
267-299 (2009)

Gerstner, T., Griebel, M.: Dimension—adaptive tensor—product quadrature. Computing, 71(1),
65-87 (2003)

Gorman, R., Sejnowski, T.: Analysis of hidden units in a layered network trained to classify
sonar targets. Neural Netw. 1, 75 (1988)

Griebel, M., Hullmann, A.: Dimensionality reduction of high-dimensional data with a nonlin-
ear principal component aligned generative topographic mapping. SIAM J. Sci. Comput. 36(3),
A1027-A1047 (2014)

Hullmann, A.: Schnelle varianten des generative topographic mapping. Diploma thesis,
Institute for Numerical Simulation, University of Bonn (2009)

Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence —
Volume 2 (IICAI’95), San Francisco, pp. 1137-1143. Morgan Kaufmann (1995)

Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York/London
(2007)

Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other
variants. In: Learning in Graphical Models, pp. 355-368. Kluwer Academic, Dordrecht/Boston
(1998)

Pfliiger, D., Peherstorfer, B., Bungartz, H.: Spatially adaptive sparse grids for high-dimensional
data-driven problems. J. Complex. 26(5), 508-522 (2010)

Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT, Cambridge (2001)


http://archive.ics.uci.edu/ml

Sparse Approximation Algorithms for High
Dimensional Parametric Initial Value Problems

Markus Hansen, Claudia Schillings, and Christoph Schwab

Abstract We consider the efficient numerical approximation for parametric non-
linear systems of initial value Ordinary Differential Equations (ODEs) on Banach
state spaces S over R or C. We assume the right hand side depends analytically
on a vector y = (¥;)j»1 of possibly countably many parameters, normalized
such that |y;| < 1. Such affine parameter dependence of the ODE arises, among
others, in mass action models in computational biology and in stoichiometry with
uncertain reaction rate constants. We review results by the authors on N-term
approximation rates for the parametric solutions, i.e. summability theorems for
coefficient sequences of generalized polynomial chaos (gpc) expansions of the
parametric solutions {X(-; y)}yey with respect to tensorized polynomial bases
of L>(U). We give sufficient conditions on the ODEs for N-term truncations
of these expansions to converge on the entire parameter space with efficiency
(i.e. accuracy versus complexity) being independent of the number of parameters
viz. the dimension of the parameter space U. We investigate a heuristic adaptive
approach for computing sparse, approximate representations of the {X(z;y) : 0 <
t < T} C S. We increase efficiency by relating the accuracy of the adaptive initial
value ODE solver to the estimated detail operator in the Smolyak formula. We also
report tests which indicate that the proposed algorithms and the analyticity results
hold for more general, nonaffine analytic dependence on parameters.

1 Introduction

Numerous systems in engineering and life- and in social sciences are modelled by
initial value ordinary differential equations (ODEs). In particular, complex systems
require state spaces S of high or even infinite dimension.

In recent years, in particular in connection with applications in life-sciences,
climate-sciences but also in economics, particular attention has been paid to initial
value ODE models for systems with uncertainty. We mention only stoichiometric
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descriptions of biochemical reaction pathways with uncertain reaction rate con-
stants, chemical reaction cascades with uncertain reaction rate constants, mass
action models with uncertain reaction rates. In complex systems, the goal of
computation is in obtaining the system characteristics on the entire parameter space
in one single numerical forward simulation. Besides the efficient numerical forward
solution of parametric initial value ODEs by combination of adaptive parameter
collocation approaches with adaptive numerical initial value solvers such as [15,16]
and the references there, additional problems consist in optimization resp. in optimal
control of systems described by initial value ODEs.

Some form of Sparsity in the parametric dependence of the solution (resp. the
control resp. the optimum) is necessary in order to allow for efficient approximations
of the parametric solutions on the entire, possibly high-dimensional parameter
space. Here, we present theoretical results from [17] on the sparsity of solutions
of parametric ODEs and propose computational approaches which allow to exploit
computationally the sparse parameter dependence of the solutions.

Unless stated otherwise, the state space S is assumed to be a separable, reflexive
Banach space, and will be understood over the coefficient field R; occasionally,
however, we shall also work with the extension of S to the coefficient field C. By
RY and CN, we denote the countable cartesian products of R and C, respectively.
Likewise, U = (-1, 1)N will denote the countable product of the open interval
(=1,1) and U = [—1, 1]V. We shall denote the state of the system by X(¢) € S for
t € [0, T]. The parameter dependence of X on the parameter sequence y € U is
indicated by X (¢; y).

On the parameter domain U, we consider high-dimensional, parametric, deter-
ministic ODE initial value problems (ODE-IVP):

Given xo(y) € Sand T € (0, 00), find X (¢, x0; y) : [to, T] X S x U — S such that
inS

dXx

o =Xy X@wiy) =x(y). wn=t=T. VyeU. (1)

Here, S denotes the state space of the parametric model (1). We shall mostly be
concerned with the case of initial value ordinary differential equations (ODEs),
when S = R, with particular attention to the case of high or even infinite
dimensional state spaces, i.e. RY with large d, but [17] covers also the infinite
dimensional case, when S is a separable and reflexive Banach space.

The parameter dependence of X on y € U is indicated by X(¢; y). We denote
N = {1,2,...} and Ny = N U {0}. We use standard multiindex notation: for a
sequence y = (y;);>1 of parameters and for a sequence v € Ng’ of nonnegative
integers, we denote by § = {v € N : |v]| < co}. As any v € § has only finitely
many nonzero entries, the definitions

ovl
| = 1 = , v
v._llv]., [v| = E vj, By—ayl”‘ayz“zm

jeN jeN
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for multi-factorials, the length of a multi-index v and for the partial derivative of
order v are well-defined for v € §.

In practice efficient solution methods in the case where the number of parameters
is large are of interest. In particular, it would be highly desirable to identify
methods which are dimensionally robust, i.e. whose efficiency (meaning accuracy
versus computational cost measured in terms of the total number of floating point
operations to achieve this accuracy) is provably robust with respect to the number of
parameters which requires consideration of (1) for parameter sequences. In [17] we
showed, analogously to earlier results for linear, elliptic partial differential equations
[8,10, 11, 18] sparsity of the parametric solutions’ dependence on y.

It is well-known and classical (e.g. [20, Chap. 13]) that for parametric right
hand sides f(z, X;y) which are Lipschitz continuous with respect to (¢, X) and
which depend analytically on the parameters y, the solution X (¢; y) in turn depends
analytically on the parameter vector y. In [17], we extended the proof in [20] of this
(classical) result to a possibly countable number of parameters with quantitative
bounds on the size of domains of analyticity. This allows us to establish in [17]
best N -term convergence rates for parametric expansions of the solution X(t; y)
under a sparsity hypothesis on the vector field f(¢, X;y). The rates of best N-
term approximation will be shown to be achievable with N -term truncated Taylor
expansions of the solution X(¢, y) in the parameter space U which we prove
to converge uniformly for all y belonging to the parameter domain U. The key
mathematical principle behind these results is the fact that sparsity in the input
vector field f(t, X;y) implies sparsity (in a sense to be made precise below) in
the parametric solution’s Taylor expansion

1

X(t:y) =) T,y . T, := SOX@E =0 t=t=T. yelU.
VEF '

2

In [17], similar results are also established for other polynomial expansions of the
solution, such as Legendre or Chebyshev expansions.

The theoretical result on sparse parameter dependence in [17] opens the per-
spective of dimensionally robust, adaptive algorithms for the efficient solution of
large systems of parametric ODE’s on possibly infinitely dimensional parameter
spaces. This requires to address the following issues: first, under the (unrealistic)
assumption of having available exact solutions of the ODE-IVP (1) for a single
instance of the parameter vector y € U at unit cost, concrete sequences of sparse,
finite, monotone index sets My C § (to which we will also refer as “sparsity
models”) for at most N “active” Taylor coefficients T,(¢), v € My, can be
constructed such that the corresponding, finitely truncated parametric expansions

Xpy(@:y) = Y To@)y" 3)

VEMNy

realize the best N -term asymptotic convergence rate.
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One particular class of sparsity models are monotone index sets A C §
which were introduced in [8] in the context of adaptive Taylor approximations
of parametric elliptic partial differential equations. This notion is based on the
following ordering of §: for any two indices u,v € §, we say that 4 < v if and
only if u; < v; forall j > 1. We will also say that u < v if and only if © < v and
p; < v; for at least one value of ;.

Definition 1. A sequence (a,),ez of nonnegative real numbers is said to be
monotone decreasing if and only if for all u,v € §

w=v=a =a,.

Aset® # A C §is called monotone if andonly if v e A and u <v = pu € A.

Once concrete, finite, monotone My sparsity models have been selected, the eval-
uation of the truncations (3) requires approximation of the expansion coefficients
T,(¢) in (2) for v € M. Naturally, the assumption of an exact solution of the
ODE-IVP (1) for a single instance of the parameter vector y in O(1) work and
memory is not realistic. Thus to still achieve the rate of best N -term approximation
also for the approximate partial sums

Xpmut:y) = Y Tu@)y", )

VEMy

where T,(t) € S are the Taylor coefficients obtained with an approximate initial
value ODE solver, the effort for computing the coefficients has to be balanced
against the respective impact for approximating X (¢; y) by an initial value ODE
solver.

In doing so, we obtain an approximate, adaptive numerical solution of the
parametric ODE-IVP (1) to a prescribed accuracy ¢ uniformly on the entire param-
eter domain U. This ultimately enables us to approximately calculate all further
relevant information about the parametric solution (e.g. statistical moments), again
up to an arbitrary prescribed accuracy, by several classes of adaptive approximation
algorithms based on Galerkin projection (see, e.g. [14]) or by sparse collocation as
in [3,4,19] or by adaptive truncation (4) of the Taylor expansions (2) as in [8]. We let
B denote a separable Banach space both over R as well as its complexification over
C (i.e. an extension of B whose restriction to real valued elements coincides with the
original space B). We shall need spaces of (differentiable) functions with values in
B. We denote by C(U; B) = C°(U; B) the space of functions from U into B which
are, as B-valued functions, continuous on U (where U is equipped with the product
topology). Moreover, for any k € N, we denote by C*([0, T']; B) the space of func-

tions f : [0,T] — B whose k-th Fréchet derivative C:ka with respect to ¢ € [0, T
belongs to C°([0, T']; B). These spaces C*([0, T']; B), equipped with the norms

— &f
£ et oy = max, {15 Fleogorim ) - k€N, )
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are themselves separable Banach spaces. Similar notations are used, if the interval
[0, T'] is itself replaced by another Banach space S. Then the derivatives % have
to be understood as Fréchet derivatives, i.e. i—{ is a mapping from S taking values
in L(S, B), the space of bounded linear operaiors from S into B. Finally, spaces of

locally Lipschitz continuous functions will be defined below.

2 Parametric Initial Value ODEs

For a parameter sequence y = (»;);>1 € U and a Banach state space S, we
assume given an initial state xo(y) € S and a parametric family of vector fields
f(t,X;y):[0,T] xS xU + S. Then we are interested in solving (1) numerically
to a prescribed tolerance uniformly for all values y € U.

As we think of applications to large mass-action models in computational
chemistry and biology, attention will be in the following on the particular case when
the dependence of the vector field f in (1) on the parameter vector y € U is affine,
i.e. foreveryt € [0, T] and every X € S,

fO.X:9) = fot.X)+ )y fit.X), 0<1<T <oo. (©6)
j=1

Here, we assume that each f; € (f;) ;>0 is continuous with respect to ¢ and satisfies
certain Lipschitz conditions with respect to X uniform in ¢ € [0, T']. For the non-
parametric problem % = g(t, X), X(to) = xo, itis classical that the right-hand-side
g being locally Lipschitz continuous, i.e. for every X, € S there is a neighbourhood
U = U(Xy) such that

VX, X'eU Vte[0.T]: |gt.X)—gt. X )s = LX)IX - X'lls (D

for some constants L(Xj), implies existence and uniqueness of local solutions,
i.e. existence of unique solutions on some maximally extended subinterval
[0,8) C [0,T], see e.g. [12]. To obtain global, parametric solutions we imposed
in [17] a local Lipschitz condition: for every R > 0, there exist constants L(R) > 0
such that for every X, X’ € B = {X € S : | X|ls < R} and for every ¢ € [0, T
holds

lg(t. X) —gt. X")lls < LIRIX - X'|s,

where

g X)—g. X)s
L(R) := |glleLips.r) = sup
Pen 1€[0.T).X#X'€BR X —X'lls
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A continuous function g belongs to £Lip(S), if L(R) < oo for all R > 0. The
subclass £Lip,(S) consists of all functions g € ¢Lip(S) which additionally fulfill
g(t,0) = Oforall t € [0, T]. Then £Lipy(S) equipped with the increasing family
of norms || - ||¢Lip(s,r) becomes a complete locally convex vector space. Our main
assumption on (6) is f; € £Lip,(S) forall j,ie.for j =0,1,2,... holds

(L, X)— fi@t, X'
L;(R) = sup 14, %) f’/( s _ £i.0)=0. (8)
1€[0.T],.X#X’€Bg X — X'|ls

In order to prove results which are independent of the number of terms in
the affine expansion (6), we shall further require summability of the coefficient
sequence ( f;);=1. Specifically, we assume the sequence of Lipschitz constants to
be summable, i.e.

. 1
VR>0: (Lj(R))jZl e tI(N) . )
Under this assumption, the sum in (6) converges uniformly with respectto y € U

and for all (¢, X) € [0, T] x S.In [17], we showed

Proposition 1. Let the conditions (8) and (9) be satisfied. Then the sum in (6)
converges absolutely and uniformly in U as a {Lip,(S)-valued mapping.

Moreover, we may also consider S to be a complex Banach space: besides being
of independent interest, the proofs in [17] used analytic continuations and complex
variable techniques even for problems with real-valued parameter sequences y € U.
In [17] we showed

Theorem 1. Assume (8) and (9). Moreover, suppose the initial condition xy €
CU,S) satisfies

sup [[xo(2)|ls < (1 —«)r, r = Re LRT/x (10)
€U

forsome R > 0and0 < k < 1, whereld = {¢ € C: |¢| < 1IN,
Then the IVP (1) (with to = 0) admits a unique solution X € BrlyR C
Cl([0,T];: CU:S)), where

Bl ={Y eC'(0.T:CWUS)):  sup e ™MNY(t,2)|s <r}
(1,2)€[0,T]xU

If, in addition, for some k € N
Vji=>0: f;:[0,T] xS —> S is k-times continuously differentiable,  (11)

then for every z € U the unique solution X(-,x0(z);z) of (1) belongs to
CHY([0. T S).



Sparse Approximation Algorithms for High Dimensional Parametric IVPs 69

Moreover, the solution X(-, xo;z) depends continuously on the data xo and
parameters z. If. additionally, the functions f; are analytic as C*([0, T]; S)-valued
mappings, then X is analytic onU as a C**1([0, T); S)-valued mapping.

3 Sparsity

It was shown in [17] that if the sequence f; in (1) is sparse in the sense that if
(I fi llevipy(s.R)) j=1 € £7(N) for all R > 0 for some 0 < p < 1, then the sequence
(T,)veg of Taylor coefficients of the solution is equally sparse.

Theorem 2. Consider the parametric IVP ODE (1) for parameter vectorsy € U =
[—1, 1)V, If there exist real numbers R > 0 and 0 < « < 1 with the following
properties:

1. In (1) the vector field f depends on the parameter vector y in the affine
fashion (6) with the coefficient functions f; satisfying for some 0 < p <1

(1115 ”lLipO(S,R))jZl € ¢ (N) and (P; ”fj”ZLipO(S,R))jZI el'(N),
(12)

where the scaling vector p is given by p; = max(l, ﬁ) for some arbitrary
J

ﬁxed8 > 0, and Lj (R) = ||f] ”(Lip()(S,R)-
2. The initial data xo € C([0, T] x Uz; S) satisfies

sup [|xo(2)|| < (1 — k) Re LRI/ (13)

€Uz

Then the Taylor expansion (2) of the parametric solution X(¢t;y) of (1) is p-sparse
in the following sense: for every N € N, there exists a finite, monotone set Ay C §
of indices v € § corresponding to N Taylor coefficients T, with largest norm in
Cri.r)/ ([0, T]; S) such that it holds

1
sup | X () = > Ty <CN”, r= > —1 (14)
€
Y veAy L(.R) /. T.S
and where
> T(0)yY € Pa (U:C'([0.T]:S)) . (15)

VEAN
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For0 < p < lasin (12), (T))vez € €7 (S;Cl([O, T];S)). Finally, let (11) be
satisfied for some k > 0. Denote by A’I‘V C § a finite, monotone set of N largest

Taylor coefficients (measured in Cf(';’lR)/K([O, T1;S)). Then

1
sup | X(;y) — E T,(t)y" <CN7’", r=—-—1. (16)
U p
o vedly ChE ) (0TES)

L(B.R)/x
In [17], also results analogous to Theorem 2 for N-term approximations with
finite, monotone index sets for tensorized Legendre and Chebyshev systems are
proved. The sparsity result Theorem 2 yields the existence of a family of sparse,
N -term polynomial approximations of the parametric solutions X (¢; y). Apart from
monotonicity its proof does not shed light on the structure resp. on the construction
of concrete sets Ay C § which would yield the proven convergence rate with,
possibly, a suboptimal constant.

Unlike in the case of linear problems which was considered in [8], due to
the strongly nonlinear nature of the problem (1), stable computation of Taylor
coefficients T, (¢) is, in general, not advisable (although in biological systems
engineering schemes are developed for efficient computation of sensitivities Te, ()).

We therefore consider collocation approximations of (1) using Smolyak type
collocation operators which are unisolvent on finite, monotone sets (see, e.g. [9]).
In order to exploit sparsity in polynomial expansions of the parametric solutions, as
provided by Theorem 2, with collocation schemes, it is important that for finite,
monotone sets A C § of “active” polynomial coefficients we have available
unisolvent, sparse polynomial interpolants.

4 Numerical Examples

In the present section, we present heuristic adaptive algorithms which attempt to
iteratively localize a sequence {Ay }yen of finite, monotone sets which, although
possibly not optimal in the sense of best N-term approximation, will deliver the
optimal rate for given summability of the parametric inputs. We place particular
attention on high-dimensional parameter spaces, but also investigate the scaling of
the proposed algorithms with respect to the dimension p of the state space S (always
assumed here to be finite dimensional, i.e. S = R?).

We emphasize that the examples which are presented here are illustrative model
problems, and that the development of “industrial strength” numerical solvers for
high-dimensional, parametric initial value ODEs is, currently, in its infancy; the
present section is intended to give a first indication of scaling and performance of the
proposed methods, and, in particular, also identifies specific directions for further
algorithm development.
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The proposed algorithm successively tries to identify the most profitable indices
in a neighborhood of the finite, monotone set Ay of currently active indices in
terms of error and work contribution. Following [1, 13], for a finite, montone subset
ACT = Ng in the sense of Def. 1, to every v € A we associate its ‘expected
profit’, defined by

L AE(v; Ajt)
8 E) =0 AW ) 0
where & C [0,7T] is a suitable, finite subset, AW (v; A) = ]_[Z=1(mvk -
my,—1), m—; := 0, denotes the work contribution associated with the num-
ber of interpolation points m; and AE(v; Ast) = 3o/ [IX(t:x}), ... ,x;j) —
AU A)X(t; x]"-ll e x;j)||5 € C°([0, T]) the error contribution with A = {u €
A:lpl <|vltandI = {j e NY: j; =1,...,m;,,l = 1,...,d}. Note that the
multiindices are assumed to be finite, i.e. § = N¢, which fits into the theoretical
framework discussed above, by setting the remaining entries equal to zero in the
infinite-dimensional case.

In what follows, we consider for a given finite, monotone index set Ay the

Smolyak interpolant (cf. [2])

AU A)X (15 9) = D (A X(9)0)

VEAN

with the increment A" X (¢;-) = ®?=1(U’V —U™HX(t;4),v € Ay,

id, forn =0

U= 0,U"(X(15) = :
Z?”:l X(t; x)Iy, forn > 1

l 7 univariate Lagrange interpolation polynomials at

L. Clenshaw-Curtis abscissas x in [-1, 1], i.e.

x) = —cos (BU=P) L j =1,....m, ifm, > 1and x{ = 0if m, = 1

withmo = landm, = 2" + 1, forn > 1
2. Symmetrized Leja abscissas x’;, e.g.
x{=0,if j =1,
xy =1,if j =2,
x3y = —1,if j = 3 and
= arg max,e[_p ]_[]i:1 |x —x}|,j =4,...,m,,if j even,
x" = —x;?_l , ] =4,...,my,if j odd,
with m, = 2n + 1, forn > 0 (cf. [5-7)).

In order to approximate the finite, monotone index set maximizing the profit of
each index with respect to the indicator (17), we consider the following algorithm,
due to [13].
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1: function ASG

2 dy < 2,v<1(0,0), A < 0, L. < {v}

3 Compute AY(X(¢;)) and the error indicator g,
4: while max,ey,,,,, (gv) > tol do

5: Select v from 1., with largest g,

6: if v =¢,, then

7 du <~ da + 1, Iactive <~ Iactive ) {ed,,}
8: Compute A (X(¢;-)) and the error indicator g,,,
9: end if

10: A< AU{}

11: for j =1,...,d,do

12: 0<v+te;

13: ifo—e, € A, V1 <m < d then

14 Iactive <~ Iactive U {0}

15: Compute A?(X(¢;-) and the error indicator g,
16: end if

17: end for

18: end while
19: end function

Due to the monotonicity requirement of the index set A, it holds {0} C A, so that
the proposed algorithm starts with the initial index set Ay = {0}. Then, all feasible
neighbor indices are computed, so that the monotonicity of the set A is preserved
and a percentage of new indices with the largest profit is added to the index set A.
This procedure is repeated until the estimated profit of the remaining indices is
smaller or equal than a given tolerance fol. Note that the dimension of the indices
is also adaptively controlled, i.e. the dimension of the parameter space is iteratively
enlarged according to the above results. The example concerns a parametric initial
value problem of the following form.

Given X(0,y) = xo e R, T = 1,U = [-1,1]¢, find X(¢;y) : [0,1]xU — R
such that X(0;y) =xo=1€R

dx d
- = Xy =+ Sy X, 0sc<1, (18)

Jj=1

with f; = (47)" . s> 1, i €N

In (18), the exponent 0 = =1 in all experiments which are considered below.
We note that 0 = 41 implies affine dependence of the right hand side in (18)
on the parameter vector y, as was assumed in the theoretical setting in Sects. 2
and 3 above. Therefore, the parametric family of solutions admits, indeed, sparse
representations with respect to the parameter vector y. We emphasize, however, that
due to the linear character of the ODE IVP (18), this can also be verified directly
from the explicit expression (19). We note that (19) reveals that for 0 = +1, the
parametric solution is a separable function of the parameters y;, so that very
favourable approximation properties by Smolyak interpolation can be expected.
On the other hand, for ¢ = —1, the exact solution is not separable with respect
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to the parameters y;. By direct analysis of the solution formula (19) ahead it
can be verified that the parametric solution of (18) allows a representation as
unconditionally convergent Taylor expansions with p-summable coefficients, even
though for 0 = —1 the dependence of f(z, X; y) on the parameter vector y in (18)
is not affine, and the abstract existence theory in [17, Sect. 2 & 3] is not applicable;
the N-term approximation results in [17, Sect. 4], however, are applicable based
on Taylor coefficient estimates obtained from (19) ahead (indicating, among others,
that the theory in [17] could be generalized to certain types of nonaffine, analytic
dependence of f(t, X;y) on the parameter vector y). To study the potential of the
sparse approximation with respect to the variable y, we will compare the resulting
index sets with results based on the exact solution of (18) given by

d
X(t;y) = xoexp(t(fo+ ) fi¥))") 0<t<1,VyeU. (19
=1

4.1 Separable Parametric ODE

First, we consider the case of separable solutions ¢ = 1 and restrict the discussion
to the ten-dimensional case, i.e.

10 s

1 s

1L X;y)= l—i-g i\ ——
f( y) j=1J’j (]+1)

In the following figure, the adaptively constructed finite, monotone index sets
based on Clenshaw-Curtis and Leja points as well as the corresponding error
contributions, where the adaptivity indicator is chosen as

e AE(v; Ajt)
$ol A E) = Ay )

E =1{0,0.1,0.2,...,1.0}
are shown. Results based on the exact solution using linear ansatz functions to
discretize the time interval [0, 1] (At = 27%) are compared to the numerical solution
of the ODE (18) using MATLAB’s ode45 (Runge-Kutta method 4(5) with variable
time step and dense output, see [15, 16] for more details) with prescribed tolerance
eps = 2.22045 - 107", In the case of Clenshaw-Curtis as well as of Leja points,
it can be stated that both approaches lead to the same adaptively constructed index
sets, so that the approximation of the solution (18) does not affect the approximation
of the solution with respect to the parameter sequence y, see Fig. 1.

We further investigate this effect by comparing the resulting grids for the case
s = 4 (cp. Fig. 2 using Clenshaw-Curtis points and Leja nodes).

Similar to the case s = 2, there is a perfect match between the two solutions
in both cases, i.e. considering Clenshaw-Curtis as well as Leja points. Finally,
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Fig. 1 Adaptively constructed index set A (left) and comparison of the error contribution of each
index v € A exemplarily shown at time 7y = 0.0,#5 = 0.5, ¢, = 1.0 based on the exact solution
(black) and numerical solution (gray) (6 = 1, s = 2,d = 10, tol = 107*, exact: At = 278,
Z =1{0,0.1,0.2,..., 1.0}, oded5: eps = 2.22045 - 10!, Clenshaw-Curtis nodes (above), Leja
nodes (below))
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Fig. 2 Adaptively constructed index set A (left) and comparison of the error contribution of each
index v € A exemplarily shown at time 7y = 0.0,#5 = 0.5, ¢;p = 1.0 based on the exact solution
(black) and numerical solution (gray) (0 = 1, s = 4, d = 10, tol = 10™*, exact: At = 278,
Z =1{0,0.1,0.2, ..., 1.0}, oded5: eps = 2.22045 - 10!, Clenshaw-Curtis nodes (above), Leja
nodes (below))

the sparsity of the solution X (¢;-) with respect to y is explored by adapting the
accuracy of the ODE solver according to the impact of the index on the solution.
Therefore, we estimate the error contribution of a new feasible index v for a given
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Fig. 3 Comparison of the error contribution of each index v € A for the case s = 2 (left) and

s = 4 (right) exemplarily shown at time #;p = 1.0 based on the adaptive strategy controlling
the tolerance of the ODE solver (light gray) with the exact solution (black) and numerical
solution with fixed error tolerance (gray) (0 = 1, d = 10, tol = 107*, exact: At = 278,

Z =1{0,0.1,0.2,..., 1.0}, oded5: eps = 2.22045 - 1014, ode45: adaptive eps, Clenshaw-Curtis
nodes (above), Leja nodes (below))

finite, monotone index set A C § by the maximum of the error contributions of all
predecessors

AE(V;A) = max max AE(v —e;; Ast), (20)

v—e; €AV j€Esupp(v) t€EE

normalized by AE v;A) = %, so that the error tolerance eps of the ODE
solver is chosen as

eps

_— 21
AE(®v; A) @b

epsadapt (U) =

The resulting adaptively constructed index sets for the case s = 2 as well as s = 4
are practically identical to the set obtained by using the exact solution. Figure 3
illustrates the error contribution based on the proposed adaptive strategy compared
to the solutions depicted in Figs. 1 and 2. We can observe that the fully adaptive
strategy yields the same accuracy as the reference solution while minimizing at the
same time the work contribution for each index. The same effect can be explored
using Leja points.

The speedup in terms of function evaluations required for the approximation of
the ODE solution and in terms of computation time are summarized in the following
table.
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Table 1 Comparison of the number of function evaluations and computation time using the
proposed adaptive strategy to control the error tolerance of the ODE solve and the non-adaptive
approach using a fixed tolerance of eps = 2.22045- 107 (¢ = 1,d = 10, tol = 10™*, Apple
Mac Mini, 2.66 GHz Intel Core 2 Duo, 4 GB)

Clenshaw-Curtis nodes Leja nodes

# feval ‘ cpu feval (s) # feval cpu feval (s)
s=2
Fixed tolerance 202,575 41.28 328,006 66.52
Adaptive strategy 95,399 20.84 138,089 29.504
s=4
Fixed tolerance 29,984 6.36 29,985 6.14
Adaptive strategy 14,348 3.20 14,350 3.13

t=1.0

rerror contribution (exact solution)
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Fig. 4 Adaptively constructed index set A (left) and comparison of the error contribution of each
index v € A exemplarily shown at time #;, = 1.0 based on the adaptive strategy controlling the
tolerance of the ODE solver (light gray) with the exact solution (black) and numerical solution
with fixed error tolerance (gray) (6 = 1,d = 100, s = 2, tol = 107*, exact: At = 278,
Z =1{0,0.1,0.2,..., 1.0}, oded5: eps = 2.22045 - 1014, ode45: adaptive eps, Clenshaw-Curtis
nodes (above), Leja nodes (below))

To verify the efficiency of the proposed method in the high-dimensional case,
the underlying problem is considered for d = 100. As in the previous example, a
variation of the parameter s (s = 2, s = 4) as well as results based on the exact
solution (19) and numerical solution of (18) using the Matlab ode45 solver with
fixed and adaptive error tolerance considering Clenshaw-Curtis and Leja points are
presented.

Figure 4 illustrate the case s = 2, where the grids based on the exact as well
as on the non-adaptive and adaptive numerical solution of the ODE are identical.
Increasing the parameter (s = 4) leads to the same finite, monotone index set as
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Table 2 Comparison of the number of function evaluations and computation time using the
proposed adaptive strategy to control the error tolerance of the ODE solver with the non-adaptive
approach using a fixed tolerance of eps = 2.22045 - 10~!* (0 = 1,d = 100, tol = 10~*, Apple
Mac Mini, 2.66 GHz Intel Core 2 Duo, 4 GB)

Clenshaw-Curtis nodes Leja nodes
# feval cpu feval (s) # feval cpu feval (s)
s=2
Fixed tolerance 3,591,145 830.50 4,089,927 935.77
Adaptive strategy 1,302,439 312.56 1,468,805 349.63
s=4
Fixed tolerance 29,984 9.86 29,985 9.58
Adaptive strategy 14,348 4.73 14,350 4.76
400 CIgnsha\(v—CurTis nodgs 3 ‘ t=1.0
350 ;‘ WMerror contribution (exact solution)
3 | 25 Merror contribution (ode45 eps=2.22045 10’14)
3300 |
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Fig. 5 Adaptively constructed index set A (left) and comparison of the error contribution of each
index v € A exemplarily shown at time ;o = 1.0 based on the adaptive strategy controlling the
tolerance of the ODE solver (light gray) with the exact solution (black) and numerical solution
with fixed error tolerance (gray) (c = —1,d = 10, s = 2, tol = 107%, exact: At = 278,
2 ={0,0.1,0.2,..., 1.0}, ode45: eps = 2.22045 - 10~'4, ode45: adaptive eps, Clenshaw-Curtis
nodes)

in the ten-dimensional case (see Fig.3). The statistics for the case d = 100 are
summarized in Table 2.

4.2 Non-separable ODE

We will now discuss the non-separable case, i.e. 0 = —1 in (18). Numerical results
are presented considering a variation of the parameter s in the ten-dimensional
case, i.e. d = 10. The following figure shows the adaptively constructed index
set and comparison of the error contribution of each index based on the adaptive
strategy controlling the tolerance of the ODE solver with the exact solution and
numerical solution with fixed error tolerance using Clenshaw-Curtis interpolation
points (Fig. 5).

Comparing the results with the separable case (cf. Fig. 1), we can state that the
number of indices of the adaptive sparse grid is enlarged approximately by a factor
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Fig. 6 Adaptively constructed index set A (left) and comparison of the error contribution of each
index v € A exemplarily shown at time ;o = 1.0 based on the adaptive strategy controlling the
tolerance of the ODE solver (light gray) with the exact solution (black) and numerical solution
with fixed error tolerance (gray) (c = —1,d = 10, s = 3, tol = 107*, exact: At = 278,
2 ={0,0.1,0.2,..., 1.0}, ode45: eps = 2.22045 - 10~'4, ode45: adaptive eps, Clenshaw-Curtis
nodes (above), Leja nodes (below))

5 to reach the given tolerance. In the case of Leja points, the prescribed tolerance
cannot be reached in a reasonable computation time due to the higher number of
indices (resulting from the linear growth of the interpolation nodes) and the related
overhead caused by the search of new admissible indices. Therefore, we additionally
present results for the case s = 3 in order investigate the influence of the choice of
interpolation nodes in the non-separable case, see Fig. 6.

Increasing the sparsity with respect to the parameter y can be exploited by the
algorithm in both cases, that means in the case of Clenshaw-Curtis and Leja points,
cf. Fig.7.

Similar to the separable case (cf. Tables 1 and 2), the proposed adaptive control
of the accuracy of the ODE solver can significantly reduce the overall costs of
the algorithm (see Table 3). Further, the computational effort needed to construct
the finite, monotone index sets in the case of Clenshaw-Curtis and Leja nodes are
comparable in the case s = 4 due to the low order of the grids.

4.3 ODE System

The separable as well as the non-separable case clearly demonstrate the speedup
which can be gained by the fully adaptive strategy. The savings in CPU time
become even more evident considering a high-dimensional ODE where the main
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Fig. 7 Adaptively constructed index set A (left) and comparison of the error contribution of each
index v € A exemplarily shown at time #;, = 1.0 based on the adaptive strategy controlling the
tolerance of the ODE solver (light gray) with the exact solution (black) and numerical solution
with fixed error tolerance (gray) (0 = —1,d = 10, s = 4, tol = 107*, exact: At = 278,
Z =1{0,0.1,0.2,..., 1.0}, oded5: eps = 2.22045 - 10714, ode45: adaptive eps, Clenshaw-Curtis
nodes (above), Leja nodes (below))

Table 3 Comparison of the number of function evaluations and computation time using the
proposed adaptive strategy to control the error tolerance of the ODE solver with the non-adaptive
approach using a fixed tolerance of eps = 2.22045 - 10~ (0 = —1,d = 10, tol = 10™*, Apple
Mac Mini, 2.66 GHz Intel Core 2 Duo, 4 GB)

Clenshaw-Curtis nodes Leja nodes

# feval cpu feval (s) # feval cpu feval (s)
s=2
Fixed tolerance 974,838 195.31 - -
Adaptive strategy 528,549 108.97 - -
s=3
Fixed tolerance 65,433 14.28 227,539 47.05
Adaptive strategy 33,378 7.54 88,696 19.26
s=4
Fixed tolerance 34,596 7.60 34,269 7.19
Adaptive strategy 15,846 3.33 15,779 3.38

part of the computational effort results from the numerical solution of the underlying
differential equation. To investigate this point, we consider the following system of
parametric ODEs given by X(t;y) : [0, 1] x U - R?, T = 1,U = [-1,1]¢

dX

T XO0:;y)=xo=1€R’, 0<r<1, VyeU (22)
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Table 4 Comparison of the number of function evaluations and computation time using the
proposed adaptive strategy to control the error tolerance of the ODE solver with the non-adaptive
approach using a fixed tolerance of eps = 2.22045 - 10~ ' (Apple Mac Mini, 2.66 GHz Intel Core
2 Duo, 4 GB)

Clenshaw-Curtis nodes Leja nodes
Total cpu Total cpu

# feval cpu feval (s) |time (s) # feval cpu feval (s) |time (s)
d =10, p=10
Fixed tolerance 223,554 |96.28 470.53 223,142 | 98.21 477.26
Adaptive strategy | 114,448 | 50.25 423.99 114,336 | 50.98 429.02
d =10, p = 100
Fixed tolerance 224,475 | 450.32 3,921.83 224,042 |445.91 3,914.81
Adaptive strategy | 114,819 | 227.41 3,698.53 | 114,703 |228.42 3,677.16

with A(y) = (au(¥)) . k,I =1,..., p given by

Sk
L+ () itk=p—i+1

aw = )
0, otherwise
and sy = 1.2, sy = k,Vk = 2,..., p. The error contribution of each index v is
estimated by the maximum error contribution of the components X; ,i = 1,...p
with X = (Xy,..., X p)T. The results are summarized in Table 4.

The presented investigations show the potential of the adaptive error control of
the ODE solver. In terms of function evaluations needed for the numerical solution
of the underlying ODE and the corresponding cpu time, the adaptive approach is
able to halve the computational effort by maintaining at the same time a comparable
accuracy of the fully adaptive approximation in ¢ and with respect to y, cp.
Table 4.
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Investigating Capturability in Dynamic Human
Locomotion Using Multi-body Dynamics
and Optimal Control

Khai-Long Ho Hoang, Katja Mombaur, and Sebastian 1. Wolf

Abstract An important goal in the development of advanced prosthetic devices is
to enhance the stability of prosthetic gait and eventually to augment safety. For this,
a fundamental understanding of stability and stabilization mechanisms of human
walking motions is crucial. The objective of this work is to evaluate if the stability
of human walking can be linked to the concept of N-step Capturability developed in
robotics. The main idea of this concept is represented by the Instantaneous Capture
Point (ICP), which indicates the position on the ground where a two-legged walking
system would have to place the next step in order to come to a complete stop and
the respective N-Step Capture Regions where a stop after N steps can be reached.
While a human walker does not precisely step onto the ICP since this would be
inefficient, we hypothesize that the location of this point can be used to parameterize
the location of the foot position. Experiments were performed in a gait lab to record
the kinematic data of healthy human gait on level ground. The human body was
modeled as a multi-body system composed of eight rigid bodies that represent the
pelvis and three-segmented legs as well as the upper body merged into a single
trunk segment. Using optimal control methods, joint angle trajectories of the multi-
body model were generated that best fit the experimental data while considering the
kinematic and physiological constraints of the human body. The trajectory of the
ICP was computed using the kinematic and kinetic data of the multi-body model
that derived from the solution of our optimal control problem. The results show that
the ICP is directly approached by the swing foot during swing phase and suggest
a correlation between the foot placement strategy in human walking and N-Step
Capturability.
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1 Introduction

In the recent years highly versatile exo-prostheses have emerged enabling an
amputee patient to master various difficult gait situations, e.g. walking at different
gait speeds, ascending and descending slopes, and walking on uneven terrain. With
micro-processor assisted prosthetic devices that make use of sensory information
and passive-adaptive mechanical elements highly dynamic locomotion became
possible for the patient and mobility is enhanced. Nevertheless, stable walking
is still challenging for above-knee amputee patients due to the absence of active
control possibilities over the knee and ankle joint of the prosthetic devices. Under-
standing the strategy of healthy humans in maintaining balance while performing
dynamic locomotion is the key-task to develop more versatile and safe prosthetic
components. Analytical stability criteria need to be established to exploit the entire
potential given by controlled prosthetic devices.

Dynamic stability of prosthetic walking was analyzed in [1] where commercially
available microprocessor-controlled knee joints were compared in a biomechanical
analysis. Here, the risk of falling with transfemoral prostheses was investigated
in everyday situations such as abruptly stopping and side-stepping, stepping on
an obstacle and stumbling. However, a measure to quantify stability has not been
formulated. Stability in terms of variability and symmetry of prosthetic gait was
studied in [4,9] where unstable walking was defined to be related to deviation from
symmetric motion patterns. In our work, however, we assume that stable walking
can also be achieved with asymmetric gait.

We try to understand stability in human walking by exploiting the concept
of Capturability and perform dynamic simulation using optimal control. Our
motivation is to find a measure to quantify stability and predict unstable gait
situations. We regard the typical trajectory of walking motion as a sequence of
initiated falling motions into the walking direction followed by well-timed catch
motions performed by the leg that has just swung forward [13].

In Sect.2 we will describe the motion capture experiments performed in the
gait lab. The multi-body model that is used as a mathematical representation of the
human body and the formulation of the equations of motion are introduced in Sect. 3
followed by a short review about the most commonly used stability criteria in biped
walking analysis in Sect. 4. Section 5 contains the formulation of the optimal control
problem to generate the human walking motion. The results of our investigation are
summarized in Sect. 6 and discussed in Sect. 7.

2 Motion Capture Experiments for Human Walking

We performed experiments in the gait laboratory involving healthy subjects walking
on level ground. Data from one subject (male, 30 years, 1.87 m, 86 kg) walking on
level ground (walking speed: v = 1.5m/s, step length /; = 0.83 m) were further
processed.
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The walking motion of the subject was recorded using an image-based motion
capture system which consists of 12 Vicon [14] infrared-based cameras recording
the 3-dimensional trajectories of 48 retro-reflective markers attached to the subject’s
body. The images were recorded with a sample frequency of 120 Hz. The marker
positions on the skin were chosen such that they can be easily identified, the relative
movement between skin and bones was minimal, and the positions of the joint
centers could easily by reconstructed from the markers.

The orientation and position of the major body segments in Euclidean space
are reconstructed from the marker trajectories using the Plug-in Gait model [14], a
marker-based representation of the joint centers of the human body. The body pose
reconstruction provides us with the joint-angles for all degrees of freedom (DoF) of
our model that we will introduce more detailed in Sect. 3.

3 Modeling the Human Body

Our investigation of balancing strategies in human walking concentrates on phe-
nomena resulting from larger movements while smaller effects, such as deforma-
tions, can be omitted. This allows us to perform dynamic simulation using the
methods of multi-body dynamics.

3.1 Multi-body Representation of the Human Body

The parts of the body that are relevant for walking motions are represented by rigid
bodies that are connected to each other by ball joints allowing three rotational
degrees of freedom in each joint. For the upper body we consider the head,
arms and trunk combined in a single rigid body which, accordingly, is named the
HAT-segment (Head, Arms, Trunk). The multi-body model of the human body is
comprised of eight rigid bodies representing the segments HAT, pelvis, right and
left thigh, right and left shank, and right and left foot. These segments are connected
by seven joints representing the lumbo-sacral joint, the right and left hip, right and
left knee, right and left ankle. Figure 1 shows the configuration of the 27 DoF multi-
body model.

The 27 DoF of the model are composed of 3 translational and 3 rotational DoF
for the pelvis segment which are relative to the global frame and 7 x 3 rotational
DoF that specify the rotation of a more distal segment relative to the next proximal
one with the pelvis being the most proximal segment.

The anthropometric data of the subject which will be set as model parameters in
our multi-body model are obtained using regression equations by de Leva [3] that
receive the subject’s total mass (86kg) and total height (1.87 m) as input. Table 1
lists all relevant parameters of the multi-body model where the CoM is assumed to
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Fig. 1 The 27 DoF
multi-body model of the
human body is comprised of
eight segments connected by
seven ball joints

Table 1 Anthropometric data of the subject (male, 30 years, 1.87 m, 86kg) according to regres-
sion equations by de Leva

Segment Segment CoM Inertia radius (mm)
Body part | length (mm) |mass (kg) | position (mm) | (sagittal, transversal, longitudinal)
Pelvis 156.5 9.61 95.7 96.3 86.2 91.9
Thigh 4534 12.18 —185.7 149.2 | 149.2 67.6
Shank 466.2 3.72 —207.9 1189 |116.1 48.0
Foot 41.5° 1.37 —20.8¢ 71.2 67.9 344
277.1° 122.4¢
HAT 491.6 22.22 249.4 168.4 | 144.6 |144.8

2 Height of the foot segment

® Length of the foot segment

¢ Relative to longitudinal axis of the foot segment
4 Relative to sagittal axis of the foot segment

be located on the longitudinal axis of each segment and assigned relative to the next
proximal joint position.

3.2 Equations of Motion

To describe the dynamics of the multi-body model equations of motion are
formulated using the modeling tool RigidBodyDynamicsLibrary [6]. Since our
model is formulated with generalized coordinates g, the equations of motion can
be expressed as

M(q)G+ N(q.q) =< )]

where M (q) is the symmetric positive definite 27 x 27-mass-matrix, N(g,q) the
27 x 1-vector of generalized non-linear effects that contains the Coriolis, centrifugal
and gravitational forces, and t the 27 x 1-vector of generalized torques. We compute
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M (q) in a highly efficient way using the Composite Rigid Body Algorithm (CRBA)
and N(q, ¢) using the Recursive Newton Euler Algorithm (RNEA) [5].

3.3 Ground Contact Model

The contact of the model with the ground is modeled as a rigid three point
contact at each foot where the three contact points are located at the Calcaneus
(heel), the medial Metatarsal Phalangeal Joint (mMTPJ) and the lateral Metatarsal
Phalangeal Joint (IMTPJ), see Fig.2. As soon as contact occurs, the vertical
position of the contact points that are in touch with the ground are restricted to the
ground by algebraic equality constraints. Furthermore, the horizontal accelerations
of the contact points are set to zero.
Using the ground contact model we receive the Index 1-DAE

M(@)§ =7 —N(q.9) + G(g) A )
G(q)q = —v(q,9), 3)

M GT G T—N
1) = . @)
G 0 A —y
where G are the point Jacobians of the contact points, A the contact forces and y the
generalized acceleration independent part of the contact point accelerations [11].
In human walking, the occurrence of contact is subject to an impact and leads to

discontinuities in the generalized velocities ¢. We compensate these by introducing
events of infinitesimal length where we apply the system of equations

(& 5) (%) =) ®

or in matrix notation

Fig. 2 The ground contact is mMTP)

modeled at the three contact
points Calcaneus (heel),
medial Metatarsal
Phalangeal Joint (mMTPJ) heel
and lateral Metatarsal
Phalangeal Joint IMTPJ)
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)

ABAVATATATA)

1st phase: 2nd phase 3rd phase (transition): | 4th phase: 5th phase 6th stage
right full contact right heel off left heel touchdown right toe, left heel (transition): right tee, left full
contact left toe touchd, contact

Fig. 3 The model stages according the typical human walking cycle

where A refers to an inelastic impulse, g+ denotes the generalized velocities
right after the impact and g— the generalized velocities right before the impact,
respectively.

With every change in G(g) that arises due to changing ground contact properties
we formulate a separate model stage and create a new set of equations of motion (4).
Figure 3 shows the human walking cycle and the resulting sequence of stages.
Simulating the typical sequence of human gait with our three-point foot model
leads to six different stages regarding the ground collision and lift-off of the contact
points. This number of stages also includes transition stages that are needed to
compensate impacts due to a touch-down of a contact point using (5).

4 Stability, Balance and Capturability

The investigation of balance and stability in human walking can lead to advances
in the field of humanoid robotics motivated by the intention to find methods to
efficiently control biped walking while avoiding the robot from falling down [18].

Considering strictly periodic motions, self-stable open-loop gait has been sim-
ulated exploiting Lyapunov’s first method as a mathematical definition of stabil-
ity [11]. Here, asymptotic stability is given for a T -periodic solution of a T-periodic
non-autonomous system x(¢) = f(z, x(¢)) with f(,-) = f@¢t + T,-) if all
eigenvalues A; of the monodromy matrix X(t + T) = dxé;z)n are inside the unit
circle |A;(X(t + T))| < 1.

A very popular criterion to ensure balance of biped robots is used with the Zero
Moment Point (ZMP) which is defined as a ground-reference point where the net
moment generated from the ground reaction forces vanishes for the two axes that
span the ground plane [17]. In humanoid robotics the dynamic feasibility of desired
trajectories is usually ensured as long as the ZMP lies well within the borders of
the base of support (BoS). Dynamic feasibility of the desired trajectory cannot be
guaranteed if the ZMP lies on the edge of the BoS [15].
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Another meaningful method which can also be used to quantify balance of a
biped walking system keeps track of Hg, the rate of change of angular momentum
at the center of mass (CoM) of the system [7]. This method refers to the preservation
of rotational stability and considers a biped walking system to be rotational stable
if the external forces and moments sum up to a zero centroidal moment. According
to fundamental principles of mechanics this leads to a minimization of Hg. The
ground-reference point Zero Rate of Change of Angular Momentum (ZRAM)
indicates the position on the ground where min Hg = GP x R with G denoting
the position of the center of mass, P the position of the center of pressure and R
referring to the resultant ground reaction force (GRF).

Push recovery, i.e. enabling a humanoid robot to recover itself from a sudden
arbitrary push to avoid falling down, led to the concepts of N-Step Capturability
with the main idea represented by the Capture Point [16]. The Capture Point (CP) is
defined as the ground-reference point indicating the position where a biped walking
system would have to step on to come to a complete stop. Assuming that the CP can
be reached instantaneously and neglecting the time that is needed to swing the foot
forward leads to the Instanteneous Capture Point (ICP).

In order to find the position of the ICP we regard the human body as an inverted
pendulum with variable rod length. The position of the inverted pendulum’s point
mass is equal to the CoM of our multi-body model while the pivot point of the
inverted pendulum is located at the ground projection of the ankle joint 7. =
(Xankie Yankie Zankie)” Of the current stance leg. Considering the orbital energy of the
inverted pendulum

. 2 2
1 X 1 X — Xankle
Epx=-\—) —z|\—— and (6)
' 2 woZ 2 Z

1 y 2 1 (y _yankle)2
Ep, = - =— —— | — 7
By 2 (woz) 2 Z 7

with Ejp, = Ep, = 0 we receive the location of the ICP:

; 100
ricp = P |:r + —i| where P=]010
@ 000
projects r;cp on the ground, r refers to the position of the CoM and wy = /£ is

20
the reciprocal of the time constant of the inverted pendulum [8].

Since, as mentioned earlier, we regard human walking motion as a sequence
of falling and catching, we hypothesize that walking can be described related to
push recovery and exploiting the concept of N-Step Capturability. We try to find a
correlation between the position of the ICP and the actual foot placement during
human walking in order to quantify stability in human locomotion.
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5 Optimal Control Problem

We intend to find joint angle trajectories x(¢#) and joint torques u(¢) for our
multi-body model that best fit the experimental data @yjocqp using least-squares
algorithms (LSQ) while considering given constraints. Considering also the contact
properties as discussed in Sect. 3.3) this leads us to a multi-stage optimal control
problem of the following form:

ain [ S0 )~ GontexIE S @
subject to: X(@) = fi(t, x(t), u(t)) or DAE )
x(@F) = h(x (@), (10)
gi(t, x(t),u(t)) = 0, (an

for t € [fi1.b]. i =1.....0p fo=0, iy, =1y
rei(x(0),..., x(t7)) = 0, (12)
rind(x(0),..., x(t7)) > 0, (13)

where we minimize the objective function (8) by modifying the states x(t) =
(q(t),q(t)) and the controls u(t) = t(t). In (9) we find the right hand side of
the set of equations of motion that are formulated separately for each of the n,,
model stages. With (10) stage transitions are modeled considering (5). The path
constraints (11) define general limits to the states that are given by physiological
constraints such as maximum joint angles. The equality constraints (12) and
inequality constraints (13) ensure stage-wise general non-linear constraints such as
contact point position at ground contact or positive contact forces.

This optimal control problem is solved using the direct multiple-shooting method
that is implemented in the optimal control code MUSCOD-II [2,10, 12]. This method
uses a piecewise constant control discretization for the discretization of the optimal
control problem. Furthermore, the original boundary value problem is transformed
into a set of initial value problems with corresponding continuity and boundary
conditions by the multiple shooting state parameterization.

With identical grids for the multiple-shooting state parameterization and the
control discretization, this leads to a structured non-linear programming problem.
This discretized problem can be efficiently solved with SQP algorithms adapted
to the structure of the problem [10] as well as fast and reliable integration of the
trajectories on the multiple-shooting intervals with regard to sensitivity information.
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6 Results

We were able to simulate human gait fitting the model state variables to the
experimental data in a least squares sense. Only the left step starting from left toe off
until right toe off was simulated since we assume a healthy gait to be symmetric.
The step is separated into the left swing phase (first 80 %) and the initial double
stance (last 20 %). The trajectory of the simulated pelvis CoM in the global frame
is compared to the measured trajectory in Fig. 4. The simulated and measured joint
angle trajectories in the sagittal plane are shown in Fig.5 for the left and the right
leg, respectively.

The simulated and measured joint angle trajectories of both the right and the left
leg as well as the simulated and measured displacement of the pelvis in the global
frame show only small deviations. Larger deviations that occur in the double stance
phase are due to the three-point foot model which does not precisely represent the
complex kinematic behaviour of the human foot.

In the left and the middle plot of Fig. 6 the displacement in x and y-direction
(in walking direction and to the left) of the ICP is depicted together with the
displacement of the projection of the left and right ankle on the xy-plane for the
whole step. The right plot shows the absolute distance from the ankle projections to
the ICP. In x-direction the ICP trajectory is greater than the trajectory in both feet
for the whole step with the position of the swing foot (left) converging to the ICP
position during the swing phase. At the end of the swing phase when the left heel

o x—translation y—-translation z-lranslation
; X =
E o —-—""‘“fﬂ_ﬁﬂ v1 T A 09 /: \/—\
= -05 :—:'—_'T'ﬂm 0.1 ‘3 - -
-1 0.09 0.9
0 100% 0 100% 0 100%
[ — Oplimization Motion Capture ]

Fig. 4 Motion capture and simulation results for x,y,z-trajectories of the pelvis CoM

Left hip Left knee Left ankle
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Fig. 5 Motion capture and simulation results for sagittal angles of right and left hip, knee and
ankle
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Fig. 6 The first two plots show the displacement of ICP and left and right ankle projection on
the ground (xy-plane) in x and y-direction during the left step. The third plot shows the absolute
distance from right and left foot to the ICP

gains ground contact, the x-position of the left ankle is 0.089 m less than the ICP
x-position. In y-direction the ICP position is less than the left ankle position but
greater than the position of the right ankle for the whole step with the swing foot
position converging to the ICP position as close as 0.091 m. The absolute distance
of the swing foot to the ICP is strictly monotonic decreasing during the swing phase
indicating that the ICP is directly approached by the swing foot. The fact that the
swing foot does not reach as far as the ICP can be interpreted as a foot placement
strategy in human walking where the ability to come to a stop after each step is
intentionally risked in order to initiate the next step.

7 Discussion

Our investigation was motivated by the need to understand the stability mechanisms
of human walking in order to enhance stability in prosthetic devices. We hypothesize
a correlation between the stability of human walking and the Instantaneous Capture
Point. Although a human walker does not precisely step onto the ICP, we suggest
that this point can be used to parameterize the location of the foot position.
Using optimal control methods, joint angle trajectories of the multi-body model
were generated that best fit the experimental data in a least-squares sense while
considering the kinematic and physiological constraints of the human body. Our
results on the actual foot placement at heel strike in relation to the current position
of the Instantaneous Capture Point supported our assumption that human walking
can be regarded as a sequence of falling and catching motions. The trajectory of the
ICP was computed using the kinematic and kinetic data of the multi-body model
that derived from the solution of our optimal control problem. The trajectory of the
ground projection of the swing foot ankle was found to converge to the trajectory of
the ICP. This suggests that the ICP trajectory can be used to compute the location of
the foot position.
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High Performance Calculation of Magnetic
Properties and Simulation of Nonequilibrium
Phenomena in Nanofilms

Vitalii Yu. Kapitan and Konstantin V. Nefedev

Abstract Images of surface topography of ultrathin magnetic films have been used
for Monte Carlo simulations in the frame of the ferromagnetic Ising model to
study the hysteresis and thermal properties of nanomaterials. For high-performance
calculations, a super-scalable parallel algorithm was used for finding the equilibrium
configuration. The changing of the distribution of spins on the surface during the
reversal of the magnetization and the dynamics of the nanodomain structure of
thin magnetic films under the influence of a changing external magnetic field were
investigated.

1 Introduction

Theoretical research and simulation of the physical properties of ultrathin fer-
romagnetic films due to the existence of fundamental problems of physics of
magnetic phenomena are needed. Computer processing of experimental data and
subsequent simulation of the surface of the magnet on the basis of these data
allow for obtaining new information about the physical nature of ferromagnetism
and ferromagnetic anisotropy and to visualize the processes of the reversal of
magnetization in external fields. The physical properties of thin ferromagnetic films
and the important points of view in their practical applications in microelectronics
and computer technology were studied, as nanostructured soft magnetic thin films
are currently the main material for manufacturing components of magnetic random
access memory (MRAM) [1-6].
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The problem of the existence of magnetic transitions in systems with long-range
interaction between the particles has been discussed in terms of a random field [7-9].
In these papers, it has been shown that not only the long-range exchange interaction
but also the usual short-range direct exchange interaction can lead to a state of a
spin glass. In this regard, a comparison of the results of the analytical theory and
numerical simulations, developed by the authors in [10-12], would be very useful
and productive in terms of the development of our understanding of the processes
of ordering and randomization.

The development of computing and supercomputer technology provides new
classes of algorithms that can solve complex problems of numerical simulation
and handle large and superlarge volumes of data [13]. Moreover, the level of
sampling elements in a computer model of today is determined by the resolution
of the scanning tunneling microscope (STM) or the atomic force microscope
(AFM) [14]. The aim of this work is to develop a computer model and to create
an application software for processing data obtained with an STM and an AFM, as
well as to calculate the magnetic and structural properties of the quasi-nanocluster
magnets and the simulation of magnetic hysteresis phenomena, with similar use of
microscopic images for the simulation of the magnetic characteristics as considered
in [15,16].

2 The Model

A method for obtaining samples and experimental data was published in [17, 18].
The essence of the proposed method of computer image processing and subsequent
Monte Carlo (MC) simulations is based on the fact that raster STM and AFM images
were constructed by means of filling the three-dimensional space fcc lattice. The
brightness of a pixel in the STM image is a function of the distance between the
tip and the surface, so the image pixels were used to construct a magnet with a
given number of atomic layers, the number of which was controlled by experimental
methods. The selected algorithm is described in detail in [17]. Note that some
aspects of the implementation of statistical Monte Carlo methods, including issues
of their parallelization of simulation of magnetic phenomena and other problems of
mathematical physics are presented in [19-25].

Model elements are located in the lattice sites-spins S;, whose values have
changed abruptly. Furthermore, a model lattice with a specified coordination number
is constructed on the fcc lattice. In principle, the simulation can occur within any
known model, such as the Ising model or the Heisenberg exchange integral of a
certain value. We have used the Ising model, where each spin lattice model nanofilm
interacts via direct exchange with its nearest neighbors (up to 12 neighbors). In the
Metropolis algorithm, the value of the Boltzmann constant k = 1 and the value
of the exchange integral J = 1 were given in dimensionless units. Dimensionless
units are often used in numerical simulations to simplify the arithmetic operations
with fractional numbers of very small magnitude (1072). The use of such units
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can increase the efficiency of applied parallel algorithms for simulation and reduce
the resource requirements of a computer system, such as RAM, and the size of
sent messages between parallel streams that directly affect the performance of
computing. In addition, it should be noted that the experimental determination of
the Curie temperature or the blocking temperature of superparamagnetic particles
to study monolayer nanostructures involves serious technical and engineering
difficulties. Therefore, it is easy to recalculate the obtained qualitative characteristics
of investigated nanosystems in the presence of experimental data on the Curie
temperature and the spin of interacting magnetic ions and move to a quantitative
predictive description of what is observed in numerical and physical experiment
phenomena. The transition from these values to the experimental physical quantities
can be carried out in accordance with expression (1):

3kT.
J=——=—(S+1), 1

s WD (D
with z — the number of nearest neighbors, 7, — the Curie temperature, S — the spin
of the ion.

3 A Parallel Metropolis Algorithm

The STM images processing algorithm is discussed in paper [18]. We formed the
three-dimensional lattice of Ising spins from the data of BMP file. The number of
rows in the array is the height of the studied image and the number of columns is
the width of the picture, besides the “depth”, is set equal to the number of layers of
Co in the sample (based on experimental data). The parallelism of the algorithm is
implemented by splitting the three-dimensional array of spins on the part (plane),
the MPI library was used for their subsequent distribution, and accordingly, each
of the planes was processed in a separate computation process. The selection of
the spin for the coup and the execution of the MC simulation for it is produced
in “checkerboard decomposition”. This is done to solve the problem of boundary
conditions, which are calculated for the selected spin of the plane (see Fig.1).
During the MC simulation with a part of the array in the frame of one thread, the
initial values of the neighbors of the selected spin do not change, that is, in this case,
for each step of temperature or field, half of the MC steps are performed for half of
the system of spins (Fig. 1b) and then for the second part of the system of spins
(Fig. Ic).
A parallel Metropolis algorithm is as follows:

1. In each process, we send the number of rows (planes) of the three-dimensional
array of spins proportional to the number of processes (right braces in Fig. 2). We
used an approach in which the maximum number of processes for the execution
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Checkerboard Decomposition
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Fig. 1 Distribution of the matrix on the processes in a checkerboard pattern

0 (root) 0 (root)
1
2 2
3 3

Fig. 2 Distribution of the rows of blocks to process

of the program is equal to one of the linear dimensions of the STM (AFM) image
in pixels;

2. For each spin of the cobalt samples (see [17]), the highest possible number of
nearest neighbors is z = 12. Therefore for the correct accounting of neighbors
for spins located at the boundary of a block of rows in each process (Fig. 2, spin
is marked by a white cross) we should take in account additional boundary rows.
Nearest neighbors (NN), as seen in Fig. 2, are located in different processes (left
braces in Fig. 2);

3. Distribution of the blocks of rows was done by using the in-line functions
MPI_Scatterv and the gathering, respectively, by MPI_Gatherv.

The search for the equilibrium configuration is performed using a Monte Carlo
method (Metropolis algorithm).

Hysteresis magnetic phenomena are explained as the effect of nonequilibrium.
For the simulation of reversal magnetization processes in the monolayer samples,
only surface points of the sample were used, and the number of MC steps was
proportional to the number of lattice sites. The system of spins could not went into
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an equilibrium state during the time of experiment. This leads to the phenomenon
of magnetic hysteresis in the proposed model. The absence of an exact match of
simulated and experimental data is due to the simplicity of the model.

For large systems of Ising spins, the movement toward equilibrium could be
very slow, especially at low temperatures 7. Therefore, in order to speed up
obtaining the most probable configurations, the parallel computing scheme was
used. The scalability of the algorithms is based on the independent scheme of
calculations. Maximum scalability is determined by the pixel resolution of the
STM (AFM) images. Splitting into two groups of processes by MPI command,
MPI_Comm_group, could increase the efficiency of the calculation.

4 The Critical Concentration and Ferromagnetism

In [7], the authors have presented a method to calculate the critical concentration p,
required for a phase transition to ferromagnetism in the crystal lattices with different
numbers of nearest neighbors. In this paper, the authors have determined the critical
concentration of magnetic atoms for the transition to the ferromagnetic state for
the monolayer and submonolayer samples of experimental data, which are given
in [17,18]. The critical concentration p, for the transition to the ferromagnetic state
at T = 0 was determined from the relation (2):

Pec = —- 2)
Z

Table 1 shows the critical concentration required for a phase transition to the
ferromagnetic state, which implies that the sample of 1.5 ML at low temperatures
should be in a state of the cluster ferromagnetism as p < p.. That is confirmed
by the data on the temperature dependence of magnetization for samples at 1.5,
2.0, 2.5, and 3.0 monolayer, shown in Fig.3. It is clear that in our model, the
number of nearest neighbors is a natural number for each selected node. However,
the number of nearest neighbors varies depending on the vacancies, the presence or
absence of which is determined in the computer processing of the STM images. It
is known that in the mean-field model, the Curie temperature 7, is proportional to

Table 1 Calculated concentrations of atoms in comparison with the critical concentrations and
Curie temperature for different samples

The average number of

The number of monolayers nearest neighbors z T, p.at% De

1.5 ML 3.615 3.00 0.38 0.55
2.0 ML 6.984 6.15 0.50 0.29
2.5 ML 8.177 7.80 0.63 0.24

3.0 ML 9.308 8.70 0.76 0.21
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the number of nearest neighbors z in the lattice spin system. As seen from the table,
the data obtained by numerical MC simulations confirm this dependence, for which
the coefficient of proportionality is preserved, including substantially increasing the
average number of neighbors.

5 Discussion of the Results of Numerical Simulations
and Experimental Data

Reference [26] provides data about the magnetic properties of ultrathin films, which
were epitaxially grown on Co single crystal Cu (111) using a magneto-optical Kerr
effect. The magnetic behavior is compared with the samples that have the same
structure but have different numbers of monolayers. The authors [26] attempted to
establish a phenomenological law for the temperature dependence of magnetization
for the number of monolayers of Cu coverage varying from 1 to 4. Moreover, a
linear decrease in the magnetization was associated with the presence of islands and
clusters, which show superparamagnetic behavior in a wide temperature range and
cluster size. Similar results were obtained by Mossbauer microscopy and in [27,
28]. It is alleged that such superparamagnetic islands lead to the acceleration of the
linear decrease in the magnetization with temperature, as opposed to the observed
behavior of the Ising spins, which is discussed in [29]. As seen in Fig. 3 of this paper,
the linear dependence of magnetization on the temperature of the samples with the
number of monolayers of cobalt 2.0, 2.5, and 3.0 is not observed in the Ising model.
Moreover, numerical simulation allows for visualizing the process of destruction
of the magnetization on the surface of the model sample and in the surface layers.
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The linearity of the behavior of the magnetization is observed only for the samples
1.5, but it was found that within the frame of model this sample did not show the
superparamagnetic behavior of islands.

6 The Critical Field of Switching

The energy of each of the 2V possible states of a system of N Ising spins interacting
via direct exchange J, in an external magnetic field /2, equals the sum of the energies
of all pairwise interactions and the energy of interaction of the system with external
magnetic field.

N—-1 N N
H==] 3 S5S;—h)_S. 3)

i=1 j=i+1 i=1

If a direct short-range exchange is used between the spins in the crystal lattice
in which each node has z neighbors, then the second summation of the first term is
carried out only on the nearest neighbors.

i=1

N z
A== ), o)
j=1

where 2 is introduced to compensate for double-counting pairwise interactions. In
fact, the sum of external and internal fields is in parentheses.
In the partition function of the summation is over all the spins in the system

ZyhT) = Y Y Y el ®

ST 5 Sn

The probability of one of the 2"V configurations determines the Gibbs factor (6)

-
Pe(h,T) = el ©)

If the system (+J) spins, described by the Hamiltonian (3), and it is in an
external magnetic field 2 at T = 0, then the system will be in the global energy
minimum. This minimum corresponds to the magnetic state of complete ordering
(ferromagnetism), and the probability of this event is equal to one, according to (5).
The instantaneous change in the sign of the external field in the —A should lead to
an instantaneous change in the sign of the spin excess. This is due to decreasing of
the Zeeman energy.
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At finite temperature T # 0 and T < T, the sign of the external magnetic field
changes from & to —h, which should also lead to a reversal of the spin excess. For
an infinite number of spins N at finite temperature, there is an unlimited number of
magnetic configurations with the same spin and the same excess energy, that is, an
equal probability of realization. Changes in the sign of the field at 7 # O and T <
T. should increase the probability of symmetric configurations with opposite value
of the spin excess. Currently available methods for MC simulations, for example,
the algorithm Metropolis-Hastings, to achieve equilibrium imply that the motion of
the system in state space is similar to a Markov process, where the probability of
each successive configuration depends on the previous implementation (6)

P(E¢) = P(Ei, Ey) —> P(Es, E\) = -+ — P(E,, E, ). (7

The movement toward equilibrium in such an approach is carried out by
successive reversal individual spins in accordance with rule (7).

The MC method for simulation of hysteresis phenomena in frame of the Ising
model is used. A field of anisotropy /4, is a field of switching %, in our model. It
was introduced to save the sign of spin excess (8) in given direction in an external
field

N—-1 N N N
H==T 3" SiS;—hY Si—hy Y IS ®)

i=1 j=i+1 i=1 i=1

such that a magnetization reversal will occur at the equality of energy of the spin
system in the external magnetic field and anisotropy energy.

To research the phenomenon of a magnetic hysteresis, the spin-flip probability
was taken into account in the model, see Fig.4. The transition to a state, which
corresponds to the minimum energy, is possible only after overcoming a potential
barrier.

Fig. 4 Variants of the
transition back to a state of
minimum energy: (a) without
the field of switching; (b)
taking into account the field
of switching

E2
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The Metropolis algorithm steps, taking into account the critical field of switching,
are as follows

1. We calculate the interaction energy of the spin with its neighbors in the original
position £ and in the new one E,. The energy of the new position was compared
with the energy of the old one;

2. The new position is accepted and becomes the initial for the next step, if
E, < E;. Otherwise calculate the probability of reversal p and generate a
random number from the interval (0, 1) (9), where p is given by:

9
%,ifE2>E1. ()

p:{ B < By,

e

3. If p is greater than this a random number, then the new position is accepted,
otherwise it is rejected, and the old position remains the initial for a new attempt;

4. In addition to the spin-flip probability shown above, in the model was taken into
account the spin-flip probability. It was calculated using the energy of the field
of switching, which prevents the reversal (10):

Sihs

p=e T, (10)

and then generate a random number from the interval (0,1);

5. If the flip probability is greater than this random number, then the MC-steps (1-3)
are performed, else the orientation of the spin does not change and the algorithm
moves to the next spin.

The critical field of switching of a magnetic particle (macrospins) is a field
necessary to change the magnetization of the magnetic particles. The effective field
of switching is introduced to account for the spin-orbit interaction, which leads to
the well-known phenomenon of anisotropy in the macroscopic scale. In ultrafine
materials, a scatter in the values of critical fields, so-called coercive spectrum, can
be observed. In a computer model of epitaxial nanostructures in this approximation,
all the spins interact, with some introduced to an average effective field, which
supports the direction of spin. The reorientation of the spin occurs when the Zeeman
energy (energy of the spin in an external field) and the energy of the spin in the
effective field of switching are equal. The probability of switching is greater when
the temperature is higher, and as the temperature increases, so does the probability
of thermodynamic fluctuations, the probability of overcoming the energy barrier
created by the effective field, and thus the probability of switching off the local
energy minimum. In our model, we used the following values of the field of
switching for the samples with different number of monolayers: 1.5 ML - 2 r. u.,
20ML -8r.u.,25ML -4r. u., and 3.0 ML - 2 r. u. The different values of the
field of switching were due to the need to provide qualitative agreement with the
experiment.
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7 Visualization of the Magnetization Reversal in an External
Magnetic Field

The practical value of the proposed method also consists in the fact that the
results of MC simulations of collective effects in nano-objects can be compared
with experimental results using the parallel magneto-optical Kerr effect (PMOKE),
which allows you to directly observe the magnetic state of the surface nanostructure
shown in Fig. 5. The formation of the simulated PMOKE image is as follows: take
into account only the surface atoms of the sample, and if the spin is up, then draw a
white pixel, and if the spin is down, then draw a black pixel. The approach used for
the simulation of images allows the visual to trace the magnetization reversal of the
spins of the sample.

The magnetic state of the surface of the discontinuous film 2.5 ML cobalt in
four of the most interesting points (Fig. 5a—d) of the hysteresis loop was obtained
by computer processing of the STM image of Fig. 5e and subsequent numerical
simulation based on the critical field of the magnetization reversal. From Fig. 5a—d,
it can be seen and it is very logical that in an external magnetic field, the energy
minimization of the Ising spin system is due to the decrease in the number of
spins with the direction “antiparallel to the field”. The corresponding images of the
magnetization distribution are shown in Fig. 5b, c. Magnetization reversal process
occurs primarily at the boundaries of clusters. In places where the spins have the

Fig. 5 Hysteresis loop for a sample of 2.5 ML; (a—d) Simulated PMOKE-images; (¢) STM-image
of a sample of 2.5 ML
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smallest number of nearest neighbors reversal magnetization takes place more easy.
Bright cluster boundaries in Fig. 5b and dark cluster boundaries in Fig. 5c indicate
instability of spins in presence of thermodynamic fluctuations, despite the fact that
the sample is at a temperature below 7. The system proceeds to point “c” where
there is great magnetization in the absence of an external field.

8 Conclusion

The three-dimensional array of spins at the designed lattice sites was divided into
subarrays, whose number was divisible by the number of computational processes
(nucleus). Access to elements of a subvector in the Metropolis algorithm was
implemented in a staggered manner. This allows to avoid conflicts in the merge
calculation operations.

Within the frame of the model, hysteretic magnetic phenomena are explained
as the effect of nonequilibrium. It was shown that if the relaxation time is a lot
more than the time of experiment, this could lead to the phenomenon of magnetic
hysteresis.

Developed models, algorithms, and software have good scalability. The reason
for this is to use the independent scheme of calculations. The simulation results
and theoretical estimates for Co nanostructures are in qualitative agreement with
the experiment for determining the concentrations of phase transitions in the
ferromagnetic state.

This work was supported by Scientific Fund of Far Eastern Federal University
(FEFU) #12 — 07 — 13000 — 18/13 and the state task of the Ministry of Education
and Science of Russia #559.
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Inverse Problem of the Calculus of Variations
for Second Order Differential Equations
with Deviating Arguments

Galina Kurina

Abstract The paper is devoted to the solvability conditions for the inverse problem
of the calculus of variations for second order differential equations with deviating
arguments.

Also we are interested in explicit formulae for the functional of the inverse
problem defined by the integral that differs from the standard one by that the
required function has a retarded argument.

1 Introduction

We consider the following problem. Let a second order differential equation with
deviating arguments be given. It is required to know whether there exists a functional
defined by an integral for which this equation is a necessary condition for the
extremum of the functional. If such a functional exists, then we must find it.

This problem is called the inverse problem of the calculus of variations.

For differential equations without deviating arguments, the inverse problem of
the calculus of variations was considered in, e.g., [6].

The survey [2] is devoted to various approaches and results on the inverse
problems of the calculus of variations.

If the one-parameter group of variational symmetries is known, then we can find
a solution of Euler’s equation of the second order in quadratures (see, e.g., [4]).

Differential equations with deviating arguments have numerous applications in
automatic control theory, in the theory of self-oscillating systems, in the study of
duct-burning problems in rocketry. They occur in problems of long-term forecasting
in economics, in various biophysical problems, etc. The number of these applica-
tions is steadily increasing.

The reason for the occurrence of delays in variational problems in control theory
is sometimes related to time delays incurred in signal transmission. However,
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110 G. Kurina

usually it is due to simplifying assumptions that reduce the action of intermediate
transmitting and amplifying devices in the system to delays in the transmission of
signals (see [1]).

The inverse problem of the calculus of variations for asymmetrical problems in
the case of differential equations of second order with deviating arguments was
considered in [7]. Some results concerning inverse problems in the symmetrical
case were obtained in [5]. They will be discussed in Sect. 3.

The paper is organized as follows. In Sect.2 we present the results devoted to
solving inverse problems in the asymmetrical case. Section 3 deals with symmetrical
case. Some illustrative examples are also given.

2 Asymmetrical Problems

We start with the results from [7] devoted to the so-called asymmetrical problems.

2.1 Necessary Condition for an Extremum of a Functional
with Delay

Problem: find the extremum of the functional

b

() = / F(x. y (). y(x — 6). y'(x)) dx (1

a

under the given conditions

y(x)=¢x), a—0<x=<a; yb)=y. 2

Admissible functions y are real valued and belong to W,!.

Here y : [a,b] — R, 6 € (0,b—a) and y, - are given numbers, ¢ : [a —0,a]
R and F : [a,b] x R? — R are given functions such that ¢ € C'[a — 0, a] and the
function F is continuous and twice continuously differentiable with respect to all of
its arguments.

We will use the notation

F=F(x+06,y(x+0),y(x),y (x+0)),

_ F+F, x € la,b—0],

P=VF xem-0.1]
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Theorem 1 ([3]). Let an extremum of functional (1) under boundary conditions (2)
be attained at y in the space Wzl. Then y almost everywhere on [a, b] satisfies the
equation

d
Py(x) — aq}y’m =0. 3)

Relation (3) is a generalization of Euler’s equation to the case of a functional with
retarded argument.

We can obtain the assertion of Theorem 1 (see [7]) by using well known control
optimality conditions in the form of Pontryagin’s maximum principle for problems
with delay.

We obtain from (3) the analog of Euler’s equation in the expanded form, namely,

Fy) + Fyo) = For o) = Fyioy (0 (X) = Fygyy 0y (x — 0)—

’ “4)
—Fyy oy (x) =0, x¢€la,b-0],

Fyoy = Foy o) = Fyoy Y () = Fyx—o)y )y’ (x — 0)—

/ %)
—Fyyy 0y (x) =0, x € (b—06.b].

2.2 The Inverse Problem of the Calculus of Variations

Next, let a second order differential equation with deviating arguments be given. Let
us try to find a functional of the form (1) such that the given equation is a necessary
condition for the extremum. In fact, we need to find a function F of four arguments
defining the functional (1).

Thus, suppose that there is an equation depending on variables

x, y(x), y(x £6), y'(x), Y (x£6), y'(x), y'(x £86).

It follows from the necessary condition of extremum (4) and (5) for a functional
of the form (1) that the given equation must be given by different formulas on two
intervals [a, b — 8] and (b — 6, b]. In addition, we also see that it must be linear with
respect to

y'(x—0), y'(x)

and not containing

y'(x —=0), y'(x + 0).
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Thus, in view of (4) and (5) the given equation has the following form:

A'X)+B+CY(x—0)+D =0, xela,b—10], (6)

A'(xX)+B+C(x—0)=0, xe((b-0,b], @)

where the functions A, B,C,D depend on x, y(x),y(x — 0), y'(x); we

assume that they are twice continuously differentiable. In fact, these smoothness
assumptions can be weakened (see formulas below).

Let us refine the settings of the inverse problem. For given Eqgs. (6) and (7) it

is required to find a functional of the form (1) for which the left-hand side of

Euler’s equation coincides with the left-hand side of Eqgs. (6) and (7) for all twice
continuously differentiable functions y(-) satisfying conditions (2).

Theorem 2. The inverse problem of the calculus of variations has a solution if and
only if the functions in (6) and (7) satisfy the following conditions
CY’(X) - Ay(x—@) =0, XxE€]la,b],
By —Ax — Y (X)Ayy =0, x €a,b],
Dyuxy+C =0, xela+0,Db],

V()
Dy + / Cydy (x) = Gyyy-) =0, x € [a+6.b],
0

where
y(x) ¥ (x)
G =Gy s = [ (B [ Buod/+ E)do + 0.
0 0
0 , xe(b-0,b],

0 = yx) , o Y (x+60) B
i (D + [ Cdy(x+0)— Gy(x))dy(x), xelfab—0,
0 0

y(x=0) y'(x)

E=E(x.y(). y(x — ) = / ( / Ay r—trdy (x) — C)dy(x — 0). x € [a. b,
0 0

the function Q for x € [a, b — 0] is determined successively on the intervals
b—-kO,b—(k—1)0], k=2,...:b—k0 >a.

Further, the function F, which determines the solution of the form (1) of the
inverse problem of the calculus of variations, can be expressed as follows:
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V() Y (x)
Fe_ / (/Ady’(x))dy’(x)+Ey’(x)+G, x € [a,b]. @®)
0 0

2.3 Example 1

Let us solve the inverse problem of the calculus of variations for equations of the
form

M(x,y(x), y(x —0), Y (x),y'(x = 0),y"(x)) = —(2x* — ay(x — 0))y" (x)+
+24y(x) —4dxy' (x) + ay'(x)y'(x—0) =0, xe((b-20,b],
)

M(x,Y(x),Y(X—Q),Y’(x),Y’(X—Q),Y"(x))—%(ﬂ(x-i-@))z =0, xe¢lab-0]
(10)

Here  and 0 < 6 < b — a are parameters.
Comparing (9) and (10) with (7) and (6), respectively, we get

A=-2x>+ay(x—60), B=24ykx)—4/'(x), C =ay (x),
o
D=2 (/(x).
It is easy to check that the solvability conditions obtained in Theorem 2 are valid in

this case.
Using (8), we obtain the function

F=12(y(x)* +x*(y'(x))* - %y(x -0 ()%,

which determines the functional (1).

3 Symmetrical Problems

Further, we consider the so-called symmetrical problems where admissible func-
tions y satisfy the following conditions:

o(x), x € [a—0,d],

Y(x), x € [b—0,b]. (11)

y(x) =

where ¢ and ¥ are given continuously differentiable functions.
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3.1 Euler’s Equation

Problem: find the extremum of the functional

b
J(y) = /F(x,y(X),y(x —0).y'(x),y'(x — 0))dx 12)

a

under the given conditions (11).

Here the function F is assumed to be twice continuously differentiable with
respect to all arguments.

In contrast to Sect.2, the integrand contains the derivative depending on a
retarded argument and the given symmetrical conditions for a required function y
are different from the previous asymmetrical conditions (2).

Set

F:=F(x+0,y(x+0),y(x).y (x +0), y(x)),
®:=F+F.

Theorem 3 ([3]). If functional (12) under boundary conditions (11) attains on
y(x) an extremum in W, then y(x) must satisfy the equation

d
Py (x) — y Py(xy =0 13)

dx
almost everywhere on [a, b — 0].

Relation (13) is a generalization of Euler’s equation to the case of functional (12).
From (13), we obtain the Euler’s equation in the expanded form

Dyx) — Doy (x) = Py)y' (1)) () = Pyx—6)y/ (0¥ (x — 0)—
=Py (x)y (0" (X) = Dyrx—0)y (0" (X = 0) = Dyietp)y )y (X +0)— (14
— Py (x+)y/ ()" (x + 6) = 0.

3.2 The Inverse Problem of the Calculus of Variations

Taking into account the form of the Euler’s equation (14), we will consider the
following equation with deviating arguments

AY'(x —0) +BY'(x) + CY'(x +0) + D = 0. (15)

Here D := D, 4+ D, the functions A and D; depend on
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X, y(-x)v y(x - 9)7 y/(x)s y/(-x - 9)7
the functions C and D, depend on
x40, y(x +6), y(x), ¥ (x +0),y'(x),

and the function B depends on

x,y(x), y(x £0), ' (x), y'(x £ 6).

All functions in (15) are continuously differentiable with respect to the arguments.
It is also assumed that admissible functions y satisfy (11).

Consider the inverse problem of the calculus of variations for Eq. (15). Namely,
we seek for a functional of the form (12), for which Euler’s equation coincides with
Eq. (15).

The next result provides the necessary solvability conditions for the given inverse
problem.

Theorem 4. [f the inverse problem of the calculus of variations for Eq. (15) has a
solution in the form of the functional (12) with the function F, which is three times
continuously differentiable, then the functions A, B, C, D satisfy the following
conditions:

Ay ) = By (x-6), (16)

By (ete) = Cy(x)s (17)

A=cC, (18)

Dy () = By + By’ (x) + Byx—6)y'(x —0) + Byeva)y'(x + ), 19)
Dyt = —Dyy + 2(Ax + Aye10)y (X + 0) + Ay Y (%)), (20)
LDy (et0) — l?y’(x)) = 2((By(x+0) — Ay<x>)yj’(x)+ 2D

H(Coet) = By@)y"(x + 6) + Dyeto) = Dyn)-
Proof. If the inverse problem of the calculus of variations has a solution, then there

is a function F such that Eq. (15) is the Euler’s equation for the functional (12) with
the integrand F. Taking into account (14), we obtain

A =—Fy -0y, (22)

B = —®y 1)y (), (23)
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C = —Fy(x40)y(x): (24)

D = D) = Py (x) — Py()y' (0¥ (X) = Pyi—0)y ()Y (x — 0)— (25)
—Dy(xt0)y' (0 (x + 0).

The latter implies conditions (16)—(21) in Theorem 4. O

Remark 1. Necessary and sufficient solvability conditions for the inverse problem
of the calculus of variations in the case of a system of differential-difference
equations of second order under other assumptions on required functions are given
in [5]. We note that in that paper there are some misprints.

Using the detailed structure of given Eq.(15), Theorem 4 provides conditions
which are simpler than the conditions in [5]. Moreover, the conditions from
[5] follow from our conditions in Theorem 4. In particular, the cumbersome
condition (12) from [5] is equivalent for a one-dimensional function to the simpler
conditions (16), (17), and (19) in Theorem 4.

Set

y(x) Y (x—6) ¥ (x+6)

E o= /( / Ay (x—0) + / Apiody (r+6)~B)dy (), (26)
0 0 0

y(x) y'(x) ¥ (x—0) ) ,
G:=J (Dl + ( [ Aywmd (x —0) - Ey(x))dy (x)—
0 0 0
V' (x=0) V' (x—0)
[ Ady (x —0) + Ey — ( [ Aywdy (x —0) — Ey(x)) Y- @7
0 0
¥ (x=0)

(] A o= 0) = By )5 = )b,

Theorem 5. [f the coefficients of (15) satisfy (16)—(18) and

Byto) =0 under y'(x+60) =0, Gy =0, Gyu- =0,
B V' (x+6) V() - -
Dy =Gy + [ <— [ Aywdy' (x) + Eyey + At
0 0

V' (x+6)

+A,t0) + z‘fy(x)y/(x))dy/(x +0)+ [ Ayprody(x+0)y(x +0),
0
(28)

then the function F determining the solution (12) of the inverse problem of the
calculus of variations can be expressed as follows:
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"(x) V' (x—0)
F = / (E - / Ady (x — 9))dy’(x) +G. (29)
0 0

~

Proof. Formulae (26), (27), and (29) are obtained taking into account relations (22)—
(25). Using the given conditions, we obtain the assertion of this theorem by
immediate transformations. O

Remark 2. With the help of the explicit formula (29) we can easily find a solution
of the inverse problem of the calculus of variations. For general nonlinear problems,
the formula (2) for the solution from [5] is not always practically applicable.

3.3 Example 2

Consider the following equation

=y (x = 0)y"(x = 0) = (2x* = y(x = 0) + y'(x + 0))y" (x)—
—y'()y"(x + 0) + 24y (x) = (4x = y'(x = 0))y'(x) — 3(/(x + 6))* = 0.
(30)

Let us solve the corresponding inverse problem of the calculus of variations.
Comparing (30) with (15), we get

A=—y'(x—=0), B=-2x>24+y(x—-0)—y(x+0), C=—y(x),
Dy =24y(x) — (4x — y'(x = 0))y'(x), Dy =—1(y'(x + 0))~

It is easy to verify that the solvability conditions obtained in Theorems 4 and 5 are
valid in this case.
Therefore, by (26) and (27), we get
E=(Qx*—y(x—0)y'(x). G=12y*(x).

Finally, using (29), we obtain the function

F = (8 = 5y(= )0/ () + 50 00/ = ) + 12700,

which defines the required functional (12). It is not difficult to verify directly
that (30) is really the Euler’s equation for functional (12) with the obtained
function F.
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3.4 Example 3 (The Linear Case)

Let us consider the linear equation with deviating arguments from [5]
2
D @)y = 0) + Bi(x)yP (x) + Cx)yP(x +6) + p(x) =0, 3D
1=0
where A;, B;,Ci,p € C 2. The solution of the inverse problem of the calculus of
variations for this equation is presented in [5]. We note that in that paper there is the
misprint in the formula for the solution, namely, the number 2 must be stand before

the term u” (¢) p(?).
Comparing (31) with (15) we have

A= A(x), B=By(x). C=0Cyx), Dy =Ao(x)y(x—0)+ Bo(x)y(x) + p(x) +
+A1(x)y (x = 0) + B1(x)y'(x). Dy = Co(x)y(x + 6) + C1(x)y"(x + 0).

From Theorem 4 we obtain conditions (20) in [5]. The conditions from Theorem 5
give the additional condition for coefficients in (31)

Ai(x) = A5(x), Co(x) = Ao(x +0), Ay(x +0) = Ci(x). (32)

In view of (26), (27), (19), and (29) we have
1
F=— EBz(X)(y’(X))Z—Az(X)y’(x —=0)y'(x) + (Ao(x)y(x — 0) + p(x))y(x) +

3B ()

The last expression coincides with the integrand in [5] if we take into account the
conditions in Theorem 5 and correct the indicated misprint in [5].

In order to obtain the solution of the inverse problem of the calculus of variations
in the form from [5] without additional conditions (32), we must take in (29)

E= %()’(x)(Bl(x)—Bﬁ(x)) —2By(x)y' (x) + (Ci(x — 0) — Cy(x — 0))y(x —6)),

1
G =@ Ao(x) + Colx = 0)y(x — 0) + y () (Ai(x) — A3(0)y'(x = 0) +

+ By (x) (3 (x))? + 2y (x) p(x)).
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State-Space Model and Kalman Filter Gain
Identification by a Superspace Method

Ping Lin, Minh Q. Phan, and Stephen A. Ketcham

Abstract This paper describes a superspace method to identify a state-space model
and an associated Kalman filter gain from input-output data. Superstate vectors
are simply vectors containing input-output measurements, and used directly for
the identification. The superstate space is unusual in that the state portion of the
Kalman filter becomes completely independent of both the system dynamics and
the input and output noise statistics. The system dynamics is entirely carried by the
measurement portion of the superstate Kalman filter model. When model reduction
is applied, the system dynamics returns to the state portion of the state-space model.

1 Introduction

Finding a state-space model of a system and an associated optimal observer/Kalman
filter gain in the presence of unknown process and measurement noises is a well-
known and important system identification problem. The identification problem is
nonlinear because it involves the product of the system matrix and the state, both
of which are unknown. A method known as Observer/Kalman filter identification
(OKID) bypassed the need to determine the system states by working through an
intermediate set of parameters called Observer/Kalman filter Markov parameters
[1]. These parameters are related to input-output data linearly, and can thus be
found by a simple linear least-squares solution. The nonlinear step is handled by
the Eigensystem Realization Algorithm (ERA), which offers an analytical (exact)
solution to the problem of recovering a state-space model representation from the
identified Markov parameters [2]. Under appropriate conditions, OKID identifies
a state-space model of the system and an associated Kalman filter gain that is
optimal with respect to the unknown process and measurement noises embedded in
the input-output data. There are numerous extensions of the observer-based method
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[3-5], such as residual whitening [6], and methods that are derived from interaction
matrices [7].

Another important class of methods that solved this problem is known as
“subspace methods” [8, 9]. These methods put the emphasis on the recovery of
the system states from input-output measurements by various oblique projection
techniques. A fundamental attraction of this approach is that once the states are
known, the identification of the state-space model becomes linear. These methods
are also capable of recovering the optimal Kalman filter gain when the input-output
measurements are corrupted by unknown process and measurement noises. There
are numerous variations of the subspace technique [10-12]. The method used in
this paper for comparison purpose is N4SID [13].

This paper describes a recently developed class of methods which can be referred
to as “superspace methods”. A superstate vector is made up of input and output
measurements. These superstate vectors are treated as the states of the system, and
used directly in the identification of the state-space model and an associated Kalman
filter gain. The superspace method bypasses the need to recover the states of the
system as required in a subspace method. It also sidesteps the need to work through
the Markov parameters as in OKID-based methods. In this paper, we further show
that in the space of the superstates, the system matrices that define the state portion
of the Kalman filter are made up entirely of 1’s and 0’s. They do not need to be
identified, and even more interestingly, they are independent of the system dynamics
and the process and measurement noise statistics. All system dynamics are carried
in the output measurement portion of the Kalman filter. When model reduction is
applied, the dynamics of the system returns to the state portion of the model as one
would expect in a state-space model. The superspace idea has also been recently
applied successfully to the bilinear system identification problem [14].

2 Mathematical Formulation

The state-space identification problem has many related or equivalent forms. We
will use one that is both common in literature and convenient for stating our
algorithm.

2.1 Problem Statement

Suppose a set of input-output measurements, {uo, Uy, -+, Us}, {Vo, Y1, -, Vs}» Of
an m-input, g-output system corrupted by unknown process and measurement
noises, is given. The objective of the problem is to find a state-space representation
{A, B,C, D} and a steady-state Kalman filter gain K such that the input-output
measurements are related to each other by the following innovation form of the
state-space model,
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Xi+1 = AXr + Buy + Key (1)
vk = CXx + Duy + e ()

where X; denotes the (unknown) Kalman filter state, K is the (unknown) corre-
sponding steady-state Kalman filter gain, and ej is the (unknown) Kalman filter
residual that is unique for the given system, input-output measurements, and noises
in the system, ey = yr — yx = yx — (CXx + Duy). The innovation form is derived
from the conventional process form,

X1 = AXk + Buy + wy 3)
e = CXr + Duy + ny 4)
The process noise wy and measurement noises nj are assumed to be independent,
white, zero-mean, and Gaussian. The Kalman filter gain K is a function of the
system state-space model and the covariances of the process and measurement

noises. In the identification problem, only input-output measurements are known.
The noise covariances are unknown.

2.2 A Superstate Vector Definition

A superstate vector zx is defined from input-output data as follows,

Vk—p

% = : vk = [uk} ()
Vik—2 Yk
Vik—1

From the given input-output measurements, these superstates can be easily created,
and used in the subsequent superspace identification method.

3 A Superspace Identification Algorithm

A superspace identification algorithm is summarized below.

* Choose a value for p such that (m + g) p defines the dimension of the superstate
vector, which is typically larger than the true minimum state dimension of the
system being identified.

* Form the following matrix Z from the available input-output data,
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Vo Vi o Vs—p Vs—p+l
Vi V2 o Vs—ptl Vs—p42
Z = : : 6)
Vp—2 Vp—1 *** Vs—2 Vs—1
Vp—1 Vp =+ Vs—1 Vs

Define Z, as Z with its last column removed, and Z; as Z with its first column
removed. Furthermore, define

U
Up=[upupsr---us ] Yp=[yp yps1 -] Vp:|:_p:| (7

 Solve for A*, B*, C*, and D* by least-squares from

Z, = A*Zy+ B*V, ®)
Y],:C*Zo-l—D*Up-l-E; )

It turns out that there is no need to solve for A*, B* from (8), as they are simply
matrices made up of 0’s and 1’s,

I [Ow—l)bxb | 1<p—1>bx<p—1>b} B — [%—nbxb} (10)
Opxp | Opx(p—1)b Ipxp

where b = m + q. A key point to observe here is that A*, B* are completely

independent of the system dynamics and the process and measurement noise

statistics. Information about the system is completely contained in C* and D*,

which can be solved by least-squares,

* *7 _ ZO f
(c*| D ]_Y,,[U_J (11)

The T denotes the Moore-Penrose pseudo-inverse. Z; is not needed in (11), but
will be used later in establishing the optimality of the algorithm.

 Lastly, a representation of {4, B,C, D, K} denoted by {4*, B*,C*, D*, K*}
can be recovered from A*, B*, C*, D* based on the following relationship,

A* = A*—K*C* B* =[B*—K*D* | K*] (12)

Recall that C* and D* are obtained from (11), A* and B* are given in (10).
The matrix B*, which is defined in (10), has two partitions according to (12):
the left partition is B* — K*D* of dimensions pb x m, the right partition
is K* of dimensions pb x ¢. Because B* is made up of entirely 0’s and 1’s
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and known beforehand, these partitions are known. B* can be recovered from
the first partition of B* because K* are D* known. Similarly, A* can be
recovered from A* because K* and C* are known. Having obtained a full set
of {A4*, B*,C*, D*, K*}, standard model reduction techniques can be applied
to reduce the dimension of {4*, B*, C*, D*, K*} to the correct minimum state
dimension of the system being identified.

4 Optimality of Superspace Identification

We now establish the optimality of the combination {4*, B*,C*, D*, K*} by
proving that Markov parameters of the combination {A*, B*,C*, D*, K*} match
the Markov parameters of the optimal Kalman filter given in (1) and (2). First, we
need to eliminate e; from the state portion of the Kalman filter by solving for e
in (2) and substituting it into (1) to produce

Rkg1 = AXr + By (13)
vi = CXy + Duy + e (14)

where A = A — KC, B = [B — KD | K], and vy is defined in (5). Define
sz[fcpmfcs] Xp+1=[f€p+1"'5€s+1] Ep:[ép"'éS] (15)

Equations (13) and (14) can be written for all available time steps,

X,+1 = AX, + BV, (16)
Y,=CX,+DU, +E, (17)
where V, = [v, vp41 -+ vy |. Next, we express Yp and Xp-i—l in terms of input

and output measurements. As long as p is sufficiently large such that A? ~ 0, then
by repeated substitution, the Kalman filter state can be expressed in terms of input
and output measurements, and when packaged together, can be put in the form,

Vo Vi o Vs—p+l
N N _ _ __ VI V2 trt Vs—pt2
[%) Xpt1 - Rsp1 ] =[AP"'B --- AB B] S (18)

vp—l vp e Vg

Define 6, = [A?"'B, ..., AB. B].Itfollows from (18) that

A A

X, =%,2 Xp11 =67, (19)
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where Z| and Z, are the two partitions of Z as previously defined in (6).
Substituting (19) into (16) produces

6,2\ = A6€,Zy + BV, (20)
Y,=C%,Zy+DU, + E, Q1)

This is the relation that the ideal optimal system matrices need to satisfy with the
given input-output measurements. Notice that E, here is made of the innovation
sequence {ex}. In the superspace algorithm, we impose (8) and (9). To relate (20)
and (21) to (8) and (9), premultiplying (8) by €, produces

€, Z1 = C,A*Zo + €,B*V, (22)
Y,=C"Zo+ D*U, + E, (23)

In the superspace identification algorithm, C* and D* are solved from (11) by least-
squares. This step ensures that the residual E; is minimized and orthogonal to
the input and output data. These are the conditions that the optimal Kalman filter
residual must satisfy, hence E; = E,. Furthermore, if the input-output data set is
sufficiently rich such that the matrix formed by Z and V), is full rank, we also have

A€, = ¢, A* (24)
B=%,8" (25)
C%,=C* (26)

D = D* 27)

As long as p is sufficiently large such that A? =~ 0, our choices of A* and B*
in (10) indeed satisfy (24) and (25). Furthermore, it can be shown that the Markov
parameters of the identified Kalman filter match the Markov parameters of the
optimal Kalman filter. For example, the first Markov parameter can be shown to
match,

C*B*=(C%,)B*=C(¢,B*)=CB (28)
Similarly, the second Markov parameter can also be shown to match,
C*A*B* = C(6,A*)B* = C(A%,)B* = CA(%¢,B*) = CAB (29)

and so on. The two sets of system matrices have the same Markov parameters. This
result establishes the optimality of the identified Kalman filter.
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We discuss briefly how the superspace method is different from the subspace
method. Although there are several variants of the subspace identification method,
the well-known N4SID is used for the present discussion. The N4SID method
first estimates the optimal states by an oblique projection, then estimates all the
system state-space matrices by least-squares. The superspace method bypasses the
state estimation step by forming the superstates, and uses them directly in the
identification. The least-squares calculation is used to obtain the coefficients of the
measurement equations. The state portion of the Kalman filter are made up of 1’s
and 0’s, and they do not need to be computed. More fundamentally, in deriving the
subspace method, the process form of the state-space model is used to establish the
input-output relationship, whereas in the superspace method the innovation form
which involves the Kalman filter is used. The subspace method is thus process
form oriented, whereas the superspace method is innovation form oriented. A
consequence of using the innovation form is that the superspace identification
method simultaneously recovers the steady-state Kalman filter gain together with
the system state-space model, whereas in the subspace method, the Kalman filter
gain is typically computed as an additional step.

S Illustrative Examples

This section demonstrates the effectiveness of the superspace identification method
using both simulated and experimental data. Comparison of the results to those
obtained with the subspace N4SID algorithm will also be provided.

5.1 A Simulated System

The following system is driven by random input excitation, and the resultant output
is recorded for system identification,

A:[_Ofs_g‘s} B:[H c=[005] D=0

In order to show the convergent behavior, the input-output data record is deliberately
chosen to be large (2'® samples). The input and measurement noise covariances
are 0 = 0.025, R = 0.025 corresponding to the input and measurement noises
shown in Figs. 1 and 2. Using p = 8 in the identification, the final model order is
reduced to 2. Figure 3 shows the Kalman filter Markov parameters, C (4 — KC)k B
and C (A — KC)k K, constructed from the identified state-space model and the
identified Kalman filter gain by both methods. These Markov parameters are
compared to those of the optimal Kalman filter whose gain is computed from perfect
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Input Signal

° ' ' Noise'free inptljt being'used '
4 Noise added to input into the system []
3 ]
2 ]
1 ]
0 ]
-1 ]
-2 ]
-3 ]
-4 ]

-5 L L L L L L
0 1 2 3 4 5 6 7

Fig. 1 Input data with added noise

Output Signal
3 - - - - - -
Original noisefree output
Noise added to output being used

x 10*

Fig. 2 Output data with added noise

knowledge of the system model and the input and measurement noise covariances.
Figure 4 shows the residuals of the identified Kalman filters and the state-state
models by both methods (superspace and N4SID) matching the residuals of the
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Kalman Filter Markov Parameter (1st Component) Kalman Filter Markov Parameter (2nd Component)
0.06
0.5 © Simulated o Simulated
—*— Superspace| 0.04 —
0.4 —+— N4SID —+— N4SID
0.02
0.3 0 -5
0.2 -0.02
-0.04
0.1
-0.06
0 -0.08
-0.1 -0.1
-0.12
0 5 10 15 20 25 0 5 10 15 20 25 30

Fig. 3 Kalman filter Markov parameters by two identification methods (superspace and N4SID)
compared to the Kalman filter Markov parameters computed from perfect knowledge of the system
model and noise statistics

Kalman Filter Residuals State-Space Model Residuals
0.6
© Optimal Kalman Filter 0.6 © - Truth Model
—— Superspace —— Superspace
0.4 —+— N4SID —+— N4SID
0.4
02 0.2
0 0
-0.2 -0.2
-0.4 -0.4
0 5 10 15 20 25 5 10 15 20 25 30

Fig. 4 Comparison of identified filter residuals to optimal Kalman residual (left), and identified
state-space model residuals to truth model residual (right)

optimal filter and of the truth model point-wise. The results confirm that both
methods produce optimal identification results as expected.

5.2 CD Player Arm

A set of experimental data of a CD player arm is used in this example [15]. The
system has two inputs and two outputs. The input-output data record used for
identification is shown in Figs.5 and 6 (2,048 samples). Using p = 6 in the
identification, the final system order is reduced to 12 before the identification results
are compared. Figure 7 shows a comparison of the identified Kalman filter outputs
to the measured outputs. Figure 8 shows a comparison of the identified state-space
model outputs to the measured outputs. Overall, both methods appear to capture the
dynamics of the mechanism relatively well with this set of input-output data.
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Kalman Filter Output 1
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Kalman Filter Output 2

—— Measured
- ® -Superspace|

0.7

—— Measured

131

0.4 - *  N4SID

0.6
0.5
0.4
0.3
0.2
0.1

=0.1
-0.2
-0.3

480 490 500 510 520 530 480 485 490 495 500 505 510 515 520 525 530

Fig. 7 Comparison of Kalman filter outputs to measured outputs by two identification methods
(superspace and N4SID)

State-Space Model Output 1 State-Space Model Output 2

—— Measured
- © -Superspace|
2 *  N4SID

1 —— Measured
- ® - Superspace

600 620 640 660 680 700 600 620 640 660 680 700

Fig. 8 Comparison of state-space model outputs to measured outputs by two identification
methods (superspace and N4SID)

6 Conclusions

A superspace method for identification of a system state-space model and its
associated Kalman filter gain has been formulated. It is found that in the space of
the superstates, which are vectors of input and output measurements, the matrices
that define the state portion of the Kalman filter are made up entirely of 0’s
and 1’s. These matrices are known in advance, and do not need to be identified.
Because they are known in advance, they are completely independent of the actual
system dynamics and the noise statistics. This is a highly intriguing and very
counter-intuitive result. Moreover, in the superstate space, the system dynamics are
contained the measurement equation, not the state portion, of the Kalman filter.
When model reduction is applied, the actual system dynamics returns to the state
portion of the reduced-order model as one would expect in a state-space model.
Optimality of the proposed superspace identification method is also established in
theory and confirmed in numerical simulation. The Kalman filter identified from
input-output measurements by the superspace technique is found to match the
optimal Kalman filter derived from perfect knowledge of the system and perfect
knowledge of the noise statistics, both in their Markov parameters and their output
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residuals. When applied to experimental data of a CD arm mechanism, the method
produces excellent results when compared to an established subspace identification
method.
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Stiff Order Conditions for Exponential
Runge-Kutta Methods of Order Five

Vu Thai Luan and Alexander Ostermann

Abstract Exponential Runge—Kutta methods are tailored for the time discretization
of semilinear stiff problems. The actual construction of high-order methods relies
on the knowledge of the order conditions, which are available in the literature up
to order four. In this short note, we show how the order conditions for methods
up to order five are derived; the extension to arbitrary orders will be published
elsewhere. Our approach is adapted to stiff problems and allows us to prove high-
order convergence results for variable step size implementations, independently of
the stiffness of the problem.

1 Introduction

In this paper, we derive the stiff order conditions for exponential Runge—Kutta
methods up to order five. These conditions are important for constructing high-order
time discretization schemes for semilinear problems

W (t) = Au(t) + g(u(1).  u(to) = uo. (1

where A has a large norm or is even an unbounded operator. The nonlinearity g,
on the other hand, is supposed to be nonstiff with a moderate Lipschitz constant
in a strip along the exact solution. Abstract parabolic evolution equations and their
spatial discretizations are typical examples of such problems.

Exponential integrators have shown to be very competitive for stiff problems, see
[1,4,9]. They treat the linear part of problem (1) exactly and the nonlinearity in an
explicit way. A recent overview of such integrators and their implementation was
given in [7]. The class of exponential Runge—Kutta methods was first considered
by Friedli [2] who also derived the nonstiff order conditions. For stiff problems, the
methods were analyzed in [5]. In that paper, the stiff order conditions for methods
up to order four were derived.
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Motivated by the fact that exponential Runge—Kutta methods can be viewed as
small perturbations of the exponential Euler method, we present here a new and
simple approach to derive the stiff order conditions. Instead of inserting the exact
solution into the numerical scheme and working with defects, as it was done in
[5, 8], we analyze the local error in a direct way. For this purpose, we reformulate
the scheme as a perturbation of the exponential Euler method and carry out a
perturbation analysis. This allows us to generalize the order four conditions that
were given in [5] to methods up to order five. The error analysis is performed
in the framework of strongly continuous semigroups [11] which covers parabolic
problems and their spatial discretizations. The work is inspired by our recent paper
[10], where exponential Rosenbrock methods were constructed up to order five.

The paper is organized as follows. In Sect.2, we introduce a reformulation
of exponential Runge—Kutta methods which turns out to be advantageous for the
analysis. Our abstract framework is given in Sect. 3. The new stiff order conditions
are derived in Sect.4. Section 5 is devoted to the convergence analysis. The main
results are given in Table 1 and Theorem 1.

Table 1 Stiff order conditions for explicit exponential Runge—Kutta methods up to order 5. The
variables Z, J, K, L denote arbitrary square matrices, and B an arbitrary bilinear mapping of
appropriate dimensions. The functions v ; are defined in (21)

No. Order condition Order
1 Yo bi(Z) = p1(2) 1
2 Yl bi(Z)ei = 92(Z) 2
3 Y ag(2) = oG Z), i=2....5 2
4 YD) = 0u(2) 3
5 Y= bi(Z)JY2:(Z2) =0 3
6 YL bi(2)% = pu(2) 4
7 S bi(Z)I Y3 (Z) =0 4
8 i bi(2)T X a(Z2) T2, (Z) = 0 4
9 Y bi(Z)ei Ky i (Z) =0 4

10 Y bi(2)% = ¢s5(2) 5

11 S bi(Z) IV (Z) =0 5

12 S bi(Z2)] Zj_za,j(Z)J%](Z) =0 5

13 S bi(Z2)] Zj L ai(Z)J Y2 ap(Z2) I i (Z) = 0 5

14 Nl bi(2)T Y ag(Z)ej K j(Z) =0 5

15 S bi(Z)ci K3 (Z) =0 5

16 Y bi(2)ei K Yy ag(Z) Y (Z) =0 5

17 Y bi(Z)B(Y2:(2), ¥2:(Z)) =0 5

18 Y= bi(Z)e] Ly i (Z) = 0 5
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2 Reformulation of Exponential Runge-Kutta Methods

In order to solve (1) numerically, we consider a class of explicit one-step methods,
the so-called explicit exponential Runge—Kutta methods

i—1

Uni = " uy + hy Y agaA)g(Uy), 1=i<s, (2a)
j=1
tprr =" Muy + hy Y bi(hy A)g(Un). (2b)

i=1

The stages U,; are approximations to u(t, + c;h,), the numerical solution u,;
approximates the true solution at time #,4; and h, = t,41 —t, denotes the step size.
The coefficients a;;(h,A) and b;(h,A) are usually chosen as linear combinations
of the entire functions ¢ (c;h,A) and @i (h, A), respectively. These functions are
given by

k—1

1
— oz — (=0z_~ 4. k>
n@ =¢, g = [ e k=

and thus satisfy the recurrence relation

o (2) — @i (0)
—

0r+1(z) = k > 0. 4)

It turns out that the equilibria of (1) are preserved if the coefficients a;; and b; of the
method fulfill the following simplifying assumptions (see [5])

s i—1
Y bi(hA) = @i(hA), Y aj(hyA) = cigi(cihyA), 1<i<s. (5
i=1 j=1

The latter implies in particular that ¢; = 0. Without further mention, we will assume
throughout the paper that (5) is satisfied.
Following an idea of [6, 12], we now express the vector g(U,;) as

and rewrite (2) in terms of D,;. Since ¢; = 0, we consequently have U,; = u, and
D,; = 0. The method (2) then takes the equivalent form
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i—1
Uni =ty + cihy@i (cihy AYF () + hy Y ai(ha A)Dyy, 1 <i <5, (Ta)
=2

Un1 = thy + hy@1(hy A)F (i) + hy Y bi(hy A) Dy (7b)
i=2

with F(u) = Au + g(u).
Since the vectors D,; are small in norm, in general, exponential Runge—Kutta
methods can be interpreted as small perturbations of the exponential Euler scheme

Un+1 = Uy + hyor1(hy, A)F (uy).

The reformulated scheme (7) can be implemented more efficiently than (2), and it
offers advantages in the error analysis, see below.

3 Analytic Framework

For the error analysis of (7), we work in an abstract framework of strongly continu-
ous semigroups on a Banach space X with norm || - ||. Background information on
semigroups can be found in the monograph [11].

Throughout the paper we consider the following assumptions.

Assumption 1. The linear operator A is the infinitesimal generator of a strongly
continuous semigroup e on X.

This implies (see [11, Thm. 2.2]) that there exist constants M and w such that
lelxx < Me®', 1>0. 3)

Under the above assumption, the expressions ¢i(h,A) and consequently the
coefficients a;j(h,A) and b;(h,A) of the method are bounded operators, see (3).
This property is crucial in our proofs.

For high-order convergence results, we require the following regularity
assumption.

Assumption 2. We suppose that (1) possesses a sufficiently smooth solution u :
[0,T] — X with derivatives in X and that g : X — X is sufficiently often
Fréchet differentiable in a strip along the exact solution. All occurring derivatives
are assumed to be uniformly bounded.

Assumption 2 implies that g is locally Lipschitz in a strip along the exact
solution. It is well known that semilinear reaction-diffusion-advection equations can
be put into this abstract framework, see [3].
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4 A New Approach to Construct the Stiff Order Conditions

In this section, we present a new approach to derive the stiff order conditions for
exponential Runge—Kutta methods. It is the well-known that the exponential Euler
method

Upt+1 = Uy + hy @1 (hy A)F (1) 9)

has order one. In view of (7b), exponential Runge—Kutta methods can be considered
as small perturbations of (9). This observation motivates us to investigate the vectors
D,,; in order to get a higher-order method.

Let u, denote the exact solution of (1) at time ¢, i.e., i, = u(t,). In order to
study the local error of scheme (7), we consider one step with initial value i, i.e.

i—1

Uni = ity + Cihp1 (cihn AV F (i) + Y (i A) Dy, (10a)
j=2
g1 = ity + hy@1 (R A)F (ity) + ha Y bi(hy A) Dy (10b)
i=2
with
Dy = g(U) = g(n).  Uni ~ ulty + cihy). (1n

Let 12,(1]() denote the k-th derivative of the exact solution u(¢) of (1), evaluated at
time #,. For k = 1,2 we use the corresponding notations i), i,/ for simplicity. We
further denote the k-th derivative of g(u) with respect to u by g (u).

4.1 Taylor Expansion of the Exact and the Numerical Solution

On the one hand, expressing the exact solution of (1) at time #,1; by the variation-
of-constants formula

1
ﬁn-i—l = u(tn-i-l) = ehnA’;n + hn/ e(l_e)h”Ag(M([n + th)) do (12)
0

and then expanding g (u(t, + 6h,)) in a Taylor series at i, gives
i;ln+l = i;ln + hn(pl(hnA)F(i;ln)

k 1 04 (13)
N Z o / e1=0mAZ_o@ G\ (V,...,V)d0 + %
q=1 0 ¢

q times
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with V' = (u(t,, + 6h,) — u(tn)) and the remainder

1 L gk+1(1 _ o)k
Ry = h’;“/ e“—@)”nA/ ¥g<k+”(ﬁn + 560h,V)(V,...,V)dsd6.
0 0 k' N’
k41 times

It is easy to see that || %] < Ch*™2 where the constant C only depends on values

that are uniformly bounded by Assumptions 1 and 2. From now on, we will use the

Landau notation for such remainder terms. Thus, we will write %, = O (h%*?).
Expanding u(z, 4+ 0h,) in a Taylor series at ¢, gives

S (Oh) m
V=2 T o,
r=1

Inserting these expressions into (13) for k = 4, using (3) and the symmetry of the
multilinear mappings in (13), we obtain

fiyt1 = ity + ha@1 (hy A)F (i) + h2@2(hy A)L + h3(hy AYM

(14)
+ ht@y(hy AN + 2 ps(h, AP + O(h®)
with
L = g'(itn)it,, M= g (i), + g" (i) ity ity,),
N = g'(in)) + 38" (iin) ity ity) + g (i) (it ity it).
(15)
P = g/ ()il + 3g" (itn) (i), ity)) + 4" (itn) (it} i)
+ 68 (i) (it i1}, i) + g (it (W), i1, i 01 ).
On the other hand, expanding ﬁni in (11) in a Taylor series at i,, we obtain
k Y
Dy =Y g D@)(Vi..... Vi) + O™ (16)
q=1 q times
with
i—1
1
Vi= h_(Um - Mn) = cipi(cihy A F (ity) + Za,](h A)Dnz (I7)
j=2
Inserting (16) into (10b), we get
hq“ (18)

+Zb(h A)Z

(q) (ﬁn)(u) + ﬁ(h’,j“)‘

q times
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In order to construct methods of order 5 we set k = 4 and compute V;.

Lemma 1. Under Assumptions I and 2, we have

cih 2h2 3h3
1(cihy A)F (@) = iy + =2 Xi + 52V + 07+ O () (19)
with
X; =it —2!ga(cihy A)L Y, = i — 3lg3(cih, A)M,

(20)
Z, = u — 4 4(cih, A)N.

Proof. Itis easy to see from (1) that Au® () = u(kH)(t)—;t—ig(u(t)). Thus Au® (¢)
is bounded for all k. Evaluating it at ¢ = ¢, for k = 1,2, 3 by using the chain rule,
we obtain expressions for Ai),, Ai,, and AilY. Using F(iiy) = i, and employing
the recurrence relation ¢y (h, A) = % + hy A@r41(h, A), we get

ih c?h? cinl

o1(cihy A)F (ity) = i, + 62'”X,- TR TR + hyctps(cihy, A) AilD.

O

In the subsequent analysis, we use the abbreviations a; = a;j(h,A), b; = b;(h, A),
and

Vi = ji(hy A) = Za,k(h NG —c!qoj(cihnA). @1)

1)'

Lemma 2. Under Assumptions 1 and 2, the following holds

Vi = ¢iill, + hy (2’2'~,/{+1/f21 )

+h2( i)+ Y M+Zaqg(un)1/fz, )+h3(““°+w4

'Vl
3! =

Zaug (Mn)%, M + Zaug (it ) Za]kg (itn) Y2k L

j=2 j=2

i—1
+ 3 aie; @)@, v2, 1) + O ).
j=2
' (22)

Proof. Using (16) and (17) repeatedly, one obtains the following representations
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N ~ , h -
By = b/ @)V + 22 ) (V). V) + 22 @) (V). V). V) + 00,

~.

L _ K
v, = chol(c,»hnA)F(unHZa,-k(hng/(un)vk + 2L ”(un)(Vk,Vk)) + o),
k=2
k—1
Vi = ckpi(cxhn A Fitn) + hy Y aug (@) Vi + O(h})  and
1=2

Vi = cioi(cihn A)F () + O (hy).

Applying Lemma 1 to the first terms of V;, Vi, V; and then sequentially inserting V;

into Vi, Vj into V;, and V; into ﬁnj, we obtain the full expression of ﬁnj with the
remainder &'(h}). Substituting this into (17), employing Lemma 1 once more and
combining all obtained terms we get (22). O

The following result follows immediately from Lemma 2.

Lemma 3. Under Assumptions 1 and 2 we have

gV @) Vi, Vi, Vi, Vi) = ¢} g ) (@, it i, i1, + O (hy),

l‘l’ n’

£ @) Vi Vi Vi) = 2 ) iy ) ) + (3 o) . 7 )
+ 3¢2¢ ) @) it 1, Y2 L)) + O (),

g @) (Vi Vi) = 1" Gin) i i1,) + o ] 8" o) G

+ 268" (i) (@ V2 L) + 2 (2 L )1 7Y) + 208" )y s M)
i—1

+2¢i8" @) (i, Y aig (@) ;&' (@n)il)) + " g (i) (@, it}
j=2
+ ¢ g" (i) (@), Y20 L) + g" (1) (Y2i L. Y2 L)) + O(hy). O

Employing the results of Lemma 3, we get the expansion of the numerical solution
~ ~ 2N SN~ G
Byt = T + hp1 (g AYF (@) + H2( Y byci)L + hn(z biz—’!)M

i=2 i=2
(23)

+h4<Zb 3')N+h5(Zb )P+R+ o)

with L, M, N and P as in (15), and the remaining terms
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R=h > big (i) Voi L+ hy Y big (it) V3 M

i=2 i=2

K i—1 K
0y > big i) Y agg (i)Yo L+ hy Y bicig (i) (it Y20 L)

i=2 j=2 i=2

i—1

+ hs Zb g (“n)wh N+ hs Zb g (”n)zayg () Y3 ; M

i=2

+ hS Z bzg (i) Zaug (i) Zalkg (@) Y2 L

j=2

s i—1 s
0y big! () Y asic; & Gin) (it Y2 L) + k3 Y bicig” () (it Y130 M)

i=2 j=2 i=2

b, -
+h5 Zb ng (un) Zat]g (Mn)%, )+h2 Z Z_!g (”n)(wli L,V L)

i=2

+h52b—‘g”(un (it Y. L +h52b <-”>(un) (it 1y Y2 L).

4.2 Local Error and Derivation of Stiff Order Conditions

Now we are ready to study the order conditions. Let &,41 = it 41 — it +1 denote the
local error, i.e., the difference between the numerical solution i, 4+ after one step
starting from i, and the corresponding exact solution of (1) at #,+, and let

Vv (hy A) = Zb(h Ao~ et 22

- D!
Subtracting (14) from (23) gives

Ens1 = h2Ya(hy AL + B3 y3(hy AYM + By s (hy AN

(24)
+ hy s (hy AP + R + O(hY).
The stiff order conditions can easily be identified from (24). They are summarized
in Table 1. Note that the last two terms in R give rise to the same order condition,
which is labeled 18 in Table 1.
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The first nine conditions in Table 1 are the same as in [5]. Note that the method
satisfies ¢; = 0 and ;1 = O for all j. Therefore, all sums in Table 1 with the very
exception of the first one start with the lower index 2.

S Convergence Analysis

With the above local error analysis at hand, we are now ready to prove convergence.

Theorem 1. Let the initial value problem (1) satisfy Assumptions 1 and 2. Consider
for its numerical solution an explicit exponential Runge—Kutta method (7) that
fulfills the order conditions of Table 1 up to order p for some 2 < p < 5. Then,
the numerical solution u,, satisfies the error bound

n—1
ln — u(t)|| < C > AL (25)

i=0

uniformlyonty < t, < T.In particular, the constant C can be chosen independently
of the step size sequence h; in [ty, T].

Proof. The proof is quite standard. It only remains to verify that the numerical
scheme (7) is stable. For this, let v; and wy denote two approximations to u(#x)
at time #;. Performing n — k steps (n > k) gives

n—1 s
v, = e(h”_l+"'+h")Avk + Z hme(h”_1+"'+h’"+1)A Zbi (hmA)g(Vini)

m=k i=l1

and a similar expression for w,,. Using the Lipschitz condition of g and the stability
estimate (8) on the semigroup shows the bound

n—1

v = wall < € (I =will + 3 v = winl)

m=k

with a constant C that can be chosen uniformly in n and k forty <t <¢t, <T.
The application of a standard Gronwall inequality thus proves stability.

We now make use of the fact that the global error u,, — u(#,) can be estimated by
the sum of the propagated local errors iy — itx, k = 1, ..., n. Due to the stability of
the error propagation, we obtain at once (25). O

A discussion of the solvability of the order conditions given in Table 1, sample
methods and numerical experiments will be published elsewhere.
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A Reduced-Order Strategy for Solving Inverse
Bayesian Shape Identification Problems
in Physiological Flows

Andrea Manzoni, Toni Lassila, Alfio Quarteroni, and Gianluigi Rozza

Abstract A reduced-order strategy based on the reduced basis (RB) method
is developed for the efficient numerical solution of statistical inverse problems
governed by PDEs in domains of varying shape. Usual discretization techniques are
infeasible in this context, due to the prohibitive cost entailed by the repeated eval-
uation of PDEs and related output quantities of interest. A suitable reduced-order
model is introduced to reduce computational costs and complexity. Furthermore,
when dealing with inverse identification of shape features, a reduced shape repre-
sentation allows to tackle the geometrical complexity. We address both challenges
by considering a reduced framework built upon the RB method for parametrized
PDEs and a parametric radial basis functions approach for shape representation. We
present some results dealing with blood flows modelled by Navier-Stokes equations.

1 Introduction

In a parametrized context, given a mathematical model of a system the forward
problem consists in evaluating some outputs of interest (depending on the PDE
solution) for specified parameter inputs. Whenever some parameters are uncertain,
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we aim at inferring their values (and/or distributions) from indirect observations by
solving an inverse problem: given an observed output, can we deduce the value
of the parameters that resulted in this output? Parameter identification can be
performed in two ways, either in a deterministic or in a statistical framework. In
the former case, we solve an optimization problem by minimizing (in the least-
square sense) the discrepancy between the output quantities predicted by the PDE
model and observations: this leads to a single-point estimate in the parameter space,
provided the optimization problem is feasible. In the latter case, we quantify the
relative likelihood of the parameters, which are consistent with the observed output.
Following a Bayesian approach, this results in the posterior probability density
function, which includes information both on prior knowledge on parameters
distribution and on the model used to compute the PDE-based outputs. Inverse
problems governed by PDEs entail several computational challenges for current
discretization techniques, such as the finite element method. When the parameters
to be identified are related with the shape of the domain, the problem is even
more complicated. In this framework, computational costs arise from three distinct
sources: (1) numerical approximation of the state system (usually a nonlinear system
of PDEs); (ii) handling domains of arbitrary shapes; (iii) sampling high-dimensional
parameter spaces or performing numerical optimization procedures.

In this paper, we address these challenges by developing a reduced framework
based on both state and parameter reduction, in order to devise a low-dimensional,
computationally inexpensive but accurate model that predicts outputs of a high-
fidelity, computationally expensive model.

The reduction in state is obtained through a reduced basis (RB) approximation
[7]: thanks to a suitable offline/online stratagem, online PDE evaluations for any
value of input parameters are completely independent of the expensive offline
computation and storage of the basis functions. On the other hand, when input
parameters are related to geometrical features, we rely on low-dimensional but
flexible shape parametrizations, able to represent wide families of complex shapes
by means of a handful of input parameters.

2 Inverse Problems Governed by PDEs

We introduce a compact description of general inverse problems governed by
parametrized PDEs. We denote by g € D C R? the finite-dimensional vector
of parameters to be identified, and consider an input-output map g +— y(p) from
parameters to observations that is given by two discretized PDEs (taken here linear
for notational simplicity):

State equation: Ay (puy(p) = f (1)
Observation equation:  y 5 () = Cy(p)uy(p)
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State variables and observed outputs are denoted by uy € RY and y, €
RM, respectively. By subscript N we signify the dimension of the state space,
dim(uy) = N, which in the case of Finite Element (FE) discretizations is typically
very large, whereas the dimension of the parameter space, dim(u) = P, and of the
observation space, dim(y ) = M can be different and typically P, M < N.Inour
case, p is related to the shape of the domain §2 = £2(u) where the state problem is
posed.

Whereas the forward problem is to evaluate y () given u, the inverse problem
can be formulated as follows [3,5]: given an observation y* = y + & with (additive)
noise &, find the parameter u* that satisfies y* = Cy (s *)un (1*). This problem is
often ill-posed in one of three basic ways: (i) the solution u* does not exist (e.g. due
to M > P and the presence of noise); (ii) the solution * is not unique (e.g. due to
M < P or data degeneracy); or (iii) the solution g* does not depend continuously
on y*. An example of an inverse problem that is ill-posed in the third sense is
the Calderén problem of determining the conductivity field inside an object based
on the observation of a Dirichlet-to-Neumann or Neumann-to-Dirichlet map on a
subsection of the boundary.

2.1 A Deterministic Approach

In order to treat ill-posed inverse problems, the classical approaches [1] are largely
based on solving regularized least-squares (RLS) problems of the type:

#res = arg min - 5ly" =y (0I5 + S0 =ty 2)
m

The first term minimizes the discrepancy between the observation y* and the
model prediction y () given by (1). The second term convexifies the problem
and assures a unique estimator pg; ¢ is recovered. This approach is also sometimes
called variational data assimilation. The choice of the norm ||w ||, := /1T Ru, the
regularization parameter « > 0, and the prior value g, play an important role in
the quality of the estimator fg, q.

2.2 A Bayesian Approach

Under the assumption of independent and identically distributed (i.i.d.) noise, & ~
N(0,021), and Gaussian parameter distribution, it ~ N(f1, X), it is easy to show
that the maximum a posteriori (MAP) estimator

Maap 1= argmax 7, (| y™) (3)
WERP
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obtained by maximizing the conditional probability density function
2 - — —
Ty (137 ~ exp (<HIy" =y — S - T (k- )

coincides with the Tykhonov-regularized least-squares estimator, that is to say
KRrLs = Kyaps as long as we choose f o, = L, o = o2,and R = ¥ 'in (2). In
fact, the estimator given by (3) is an example of a wider class of statistical estimators
called Bayesian estimators. The benefit of using statistical methods for solving
inverse problems is that one is able to characterize the variance of the prediction
p* due to measurement and model errors more precisely than from the single-point
estimates obtained by solving (2).

Bayesian estimators are a subset of statistical estimators that are widely used to
solve ill-posed inverse problems. The basic principle of Bayesian inference is that
the conditional distribution of the unknown parameters w given an observation y*
can be approximated by

s *I;L(y*“'b)”u(ll') ny*\u(y*lﬂ)nu,prior(l") *
T+ (rly*) = = A = Ty post(R[¥¥)
Kl Ty (3% Ty (3% topost

obtained by using the Bayes’ formula on a prior distribution 7, prior(pt) for the
unknown parameters. The prior 7, prior €ncapsulates our prior knowledge (structure,
regularity, locality, etc.) about the distribution of the uncertain parameters and
should be carefully selected based on problem-specific considerations — we do not
treat this point in this work since selecting an informative prior is a challenging
problem all by itself. The conditional distribution 7y |,, which in the case of
additive noise can be expressed as

Ty | (V™ | 1) = Tnoise (¥ — ¥y (1)),

is called the likelihood function. The posterior distribution 1, pos can then be used
to compute various estimators for w* and to provide conditional statistics such as
covariances for these estimators. The advantage of the Bayesian approach compared
to more classical methods is that a prior that carries sufficient information about
the true underlying structure of the parameters often provides more meaningful
estimates and regularizes the inverse problem in a more natural way than relying
on abstract regularization terms, as in (2), that might not have any interpretation.

Statistical methods used to solve an inverse problem can be computationally
much more expensive than the deterministic approach due to the necessity of
performing sampling in high-dimensional spaces in order to compute sample
statistics [3,5]. This cost is exacerbated by the fact that each evaluation requires the
solution of the forward problem in the form of a (potentially large-scale) discrete
PDE. To this end we introduce a reduced order model to speed up the computations
entailed by statistical inversion.
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3 Computational and Geometrical Reduction

We now present a brief description of the two main blocks on which the reduced
order model relies: reduced basis method for parametrized PDEs and radial
basis functions for low-dimensional shape parametrization. Further methodological
aspects and details and can be found e.g. in [6].

The reduced basis method provides an efficient way to compute an approxi-
mation u, () of the solution uy (@) (as well as an approximation y,(p) of the
output y 5 (g)) through a Galerkin projection onto a reduced subspace made up of
well-chosen full-order solutions (also called snapshots), corresponding to a set of
parameter values S, = {u', ..., u"} selected by means of a greedy algorithm [7].
Let us denote by Z, € RV the matrix

Zy=[wm(p)| ... [ (p)] “

obtained by aligning the snapshot vectors (a Gram-Schmidt orthonormalization
procedure has to be considered after each basis is added to the reduced space, but
for the sake of simplicity we consider the same notation). We denote by n << N the
dimension of the reduced state space. Then, the reduced-order solution is given by
a linear combination Z,u, (x) of the snapshots, being u,, € R” the solution of the
following problem:

State equation: A, (p)u,(n) = f,(1)
Observation equation:  y,(n) = C,(w)u,(p),

where
Ay() = ZJAN(W)Zy. o =Z]Ey.  Cy=CyZ,.

To get very fast input/output evaluations, RB methods rely on the assumption
of affine parametric dependence in Ay () and f 5 (p), i.e. on the possibility to
express Ay (p) = Z(?ZAI Oa(p)AY and f y(p) = quzfl O () f4, so that the
expensive p-independent quantities can be evaluated and stored just once. This is
a property inherited by the PDE model, which can be eventually recovered at the
discretization stage [7].

Once the reduced model is built in the offline stage, it can be exploited at
the online stage to speed up the solution of the optimization problem (2) in the
deterministic case or (3) in the Bayesian case. The corresponding reduced-order
version of the former reads as follows:

min 3y =yl + Sl = gl 6)
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whereas in the case of a statistical inverse problem we obtain:

ILK/IAP (= argmax nﬂ,posl(l'l' | y*) )
RERP

being

Tnoise (¥ — yn(ﬂ))”u,prior(ﬂ)
Ty ™) '

”u,posl(”’|y*) =

In this way, state reduction allows to speed up both numerical optimization schemes
or sampling algorithms required e.g. to compute statistical estimates based on the
posterior distribution.

Concerning parameter space reduction, here we consider a low-dimensional
parametrization based on Radial Basis Functions (RBF), an interpolatory technique
which allows to define shape deformations through a set of control points (which
can be freely chosen, according to the family of deformations to be described), i.e.
a linear combination of affine and radial, nonaffine terms; see e.g. [6] for more
insights. In this way, parameter space reduction is afforded by selecting only a small
set of P ~ (O(10) control points at a preceding stage — state reduction through the
RB method is built for a problem where shape parametrization has already been
performed. A RB paradigm for simultaneous state and parameter reduction has been
introduced in [5] in order to tackle the case of distributed parametric fields (instead
of parameter vectors), and represents a possible extension of our current framework.

4 Application and Results

We now apply the reduced framework of the previous section to the solution of
an inverse problem arising in modeling of blood flows. Since a strong mutual
interaction exists between haemodynamic factors and vessels geometry, improving
the understanding of the interplay between flows and geometries may be useful not
only for the sake of design of better prosthetic devices [4], but also to characterize
pathological risks, such as in the case of narrowing or thickening of an arterial
vessel [3]. Typical portions of cardiovascular network where lesions and pathologies
may develop are made up by curved vessels and bifurcations; an important segment
where vessel diseases are often clinically observed is the human carotid artery [2,6],
which supplies blood to the head.'

'The common carotid artery (CCA) bifurcates in the lower neck into two branches, the internal
and the external carotid arteries (ICA and ECA, respectively). Stenoses, that is the narrowing of
the inner portion of an artery, manifest quite often in the ICA.
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Fig. 1 Left: shape representation of a stenosed carotid artery bifurcation through RBF
parametrization. Right: velocity profiles (cm/s) in four different carotid bifurcations parametrized
with respect to the diameters d. = d. (i1, j12) of the CCA at the bifurcation and dj, = dp (3, [L4)
of the mid-sinus level of the ICA

Let us consider a steady, incompressible Navier-Stokes model to describe blood
flows in a two-dimensional carotid bifurcation (see Fig. 1):

—vAv+ (v-V)v+Vp =1f in 2(n)

Vv=0 in 2(w)
V= Vi on [, (8)
v=20 onl},
a
—p~n+v—v=0 on I,
on

being (v, p) the velocity and the pressure of the fluid, respectively, and v > 0
its kinematic viscosity. In view of studying computationally expensive inverse
problems, which entail the repeated simulation of these flow equations, we cannot
afford at the moment the solution of PDE models involving more complex features,
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such as flow unsteadiness and arterial wall deformability — computational costs
would be too prohibitive.

In this context, a typical forward problem is the evaluation of flow indices related
with geometry variation that assess/measure the occlusion risk. Typical examples
are given by vorticity, shear rates, wall shear stresses. On the other hand, we might
be interested in recovering some geometrical features by observing some physical
index related to flow variables. In particular, the inverse problem we want to solve
is the following: is it possible to identify the entity of the occlusions (i.e. the
diameters d. of the CCA at the bifurcation and dj, of the mid-sinus level of the
ICA, respectively) from the observation of the mean pressure drop

y(u)=/_ p(ﬂ)dl"—/ p(p)dr

in out

between the internal carotid outflow I,,; and the inflow I7,?

To exploit the reduced framework presented in Sect. 3, we represent local shape
deformations through a RBF parametrization built over p = 4 control points
(represented as the bullets in Fig. 1), located in one of the branches and close to
the bifurcation. In this case, Gaussian RBFs have been used in order to describe
local but moderate deformations representing possible stenoses, being 4 € D =
[—0.25,0.25]* the vector of the displacements of the control point in the horizontal
direction; see [6] for more details.

By applying the RB method to the parametrized Navier-Stokes problem (8) we
reduce the dimension of the state space from N = 26,000 (P, /IP; FE discretization)
to n = 45. Four examples of computed RB solutions are reported in Fig. 1. We
remark the strong sensitivity of the flow with respect to varying diameters d. =
d.(u1, p) of the CCA at the bifurcation and d, = dp(u3, it4) of the mid-sinus
level of the ICA, respectively. See e.g. [3, 6] for more insights on RB methodology
for nonlinear Navier-Stokes equations.

Thus, we can take advantage of both the deterministic and the Bayesian
framework to solve this inverse identification problem, by considering surrogate
measurements of the mean pressure drop.

In the first case, we demonstrate the solution of the deterministic inverse problem
for two different observed values of the pressure drop, s* = —1,400 and s* =
—2,200, by assuming 5 % relative additive noise in the measurements. The results
of the inverse identification problem are given in Fig. 2 for 100 realization of random
noise in both cases: each point in the graph corresponds to the recovered diameters
(d..dp) given a noisy observation. We observe that in the case s* = —1,400
recovered values of the diameters are more smeared out, since locally the pressure
drop surface is almost flat, but result is close in values to the considered observation.

Thus, in the former case s* = —1,400 the inverse problem is worse conditioned
than in the latter s* = —2,200, where the recovered values (d., dp) lie in a smaller
region of the space. However, the solution of a single optimization problem is
more feasible in the former case compared to the latter: solving 100 optimization
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problems took about 14h in the former and about 25.6h in the latter case,
respectively. We remark that solving 100 inverse problems of this type through
a full-order discretization technique would have been infeasible on a standard
workstation. Thus, even in presence of small noises, the result of a deterministic
inverse problem may be very sensitive — just when one diameter is known,
the second one can be recovered. This is due to the fact that several geometrical
configurations — in terms of diameters (d., dj) — may correspond to the same output
observation.

Following instead the Bayesian approach, we are able to characterize a set of
configurations, rather than a single configuration: this is done by providing the joint
probability distribution function for the (uncertain) diameters (d., d») encapsulating
the noise related to measurements, as discussed in Sect. 2.2. Let us denote by d =
(d.,dy)T € R? the vector of the two diameters and assume that the prior distribution
is aprior() ~ N(dp, Xr), being dyy € R? the (prior) mean and X € R>?
the (prior) covariance matrix, encapsulating a possible prior knowledge on the
diameters distribution (e.g. from observations of previous shape configurations). By
supposing that also the measurements of the pressure drop are expressed by i.i.d.
Gaussian variables, such that i (y* — ¥, (d)) ~ N(0,0?%), we can compute the
explicit form of the posterior probability density g posi(d|y *). Thus, provided some
preliminary information on plausible values of the diameters, the observation of a
(large) sample of outputs allows to characterize a set of plausible configurations as
the ones maximizing the posterior probability density 7q posi(d|y*). In particular,
we consider two different realizations of prior normal distributions, obtained by
choosing the mean dy; = (0.803,0.684)7 as given by the diameters corresponding
to the reference carotid configuration, and
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ie., we assume that the two diameters are a priori independent (X, case)
or correlated (X, case), respectively. The two prior distributions, as well as
the resulting posterior distribution obtained for two different observed values
s* = —1,400 and s* = —2,200 of the pressure drop are reported in Fig. 3. In the
case at hand, we do not rely on the Metropolis-Hastings algorithm for the evaluation
of the posterior distribution, since its expression can be computed explicitly. Thus,
by computing a sample of 1,600 values of pressure drops on a uniform 40 x 40 grid
on the (d.,dp) space, we obtain the posterior densities 7q posi(d|y™*) represented
in Fig.3 in about 0.1 h, since any online evaluation of the reduced Navier-Stokes
problem takes about 2.5 s.
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A Mathematical Study of Sprinting
on Artificial Legs

Katja Mombaur

Abstract In 2008, the remarkable performance of the double amputee sprinter
Oscar Pistorius initiated a discussion of whether his running prostheses might
give him an advantage over able-bodied sprinters. He uses carbon fiber Cheetah
devices by Ossur that have spring-like properties; and the assumption was that the
high passive torques and the lower moments of inertia of the prosthetic lower legs
more than compensate for the absence of active ankle torques. The purpose of our
research is to use mathematical models and optimal control techniques to better
understand the underlying mechanics and control of sprinting on prostheses and to
bring new insights into the continuing discussion. We established rigid multibody
system models for the hybrid dynamics of able-bodied as well as double amputee
sprinters. In the present study, we use models in the sagittal plane with 9 bodies
and 11 degrees of freedom. In the able-bodied case, there are torque actuators at
all eight internal joints; in the double amputee case, the actuators at the ankles
are replaced by linear spring damper elements, but the other six actuators remain.
Running motions for this model are generated by solving a multiphase optimal
control problem with discontinuities and periodicity constraints, using an efficient
direct multiple shooting approach.

1 Introduction

Before the Olympic Games 2008 in Beijing a big discussion started about whether
the double amputee sprinter Oscar Pistorius, who came remarkably close to Olympic
standards in the 400 m race, should be allowed to participate. In the original study
presented by Briiggemann [3] and co-workers the claim was that the carbon fiber
Cheetah devices (Ossur) that Pistorius uses actually give him an advantage over
able-bodied sprinters and that the spring-like properties of the prostheses and the
lower moment of inertia of the lower leg more than compensate for the absence of
an active ankle torque.
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The debate between biomechanical experts is still not settled, as can be seen
in the point-counterpoint article [8]. While one party (Weygand and Bundle) claims
to have detected an indication of advantages of the amputee sprinter, the other
party (Kram et al.) disputes that measurements from one single world class double
amputee do not allow generalization of any findings. Also comparisons with single
amputees may not help because it is assumed that persons with one healthy and
one prosthetic leg will have to rely on completely different running strategies than
double amputees. Some of the arguments (against Pistorius) in the above literature
are based on very simple mass-spring models. While such models of the SLIP
type have already been very useful for studying some gait characteristics [1, 6],
we consider them misleading in this case because they do not give insights into the
energetics and performance limits of the running systems.

But why is there such a controversy? Why is it not just considered as a great
achievement that it is possible to provide specific running prostheses that allow
amputees to reach able-bodied performance ranges — a goal that it still unreached in
the case of (more versatile) prostheses for everyday walking motions? Or formulated
simply: why don’t they just let him run? As Burkett et al. [4] point out, there are
several ethical issues to be considered:

* In a running competition the nature of the movement of athletes should clearly
be running and not any form of bouncing, hopping etc. Studies of the knee angle
range of Pistorius let this appear questionable.

e A permission for the springy carbon devices might open the field for other
technologies, resulting e.g. in able-bodied athletes competing with giant springs
below their feet and completing the race in a few bounces. Where to set the
boundary between allowed and forbidden devices?

* In order to guarantee justice in sports, it is important to keep competitions at
the performance level and not shift them to a technology level (as is the case in
formula 1 races), which would put even greater burdens on athletes from poorer
countries.

Later, Oscar Pistorius was allowed to compete (since no advantage could yet be
proven) and has participated in the World Championships in South Korea in 2011
as well as the 2012 Olympics in London, which was a great success for him. But
the discussion continues, and it seems necessary to apply alternative techniques to
obtain new insights.'

The goal of this paper is to address the problem by means of Scientific
Computing techniques. In order to evaluate double amputee sprinting, we are using
detailed multibody system models of the human body (with healthy as well as

'Remark: Very sadly, at the time of completing the final version of this article (Spring 2013), 1 year
after the HPSC conference, Pistorius is not competing any more since he is facing trial for murder
of his girlfriend, R. Steenkamp. His personal future is unclear. However, the questions discussed in
this article is still very relevant, since there are also other equally talented double amputee sprinters,
such as Alan Oliveira from Brazil.
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damper

Fig. 1 Top: Stick figures of the able-bodied (a) and the double amputee (b) sprinting models.
Bottom: Ossur cheetah carbon fiber prostheses (¢, courtesy of R. Saemunsson, Ossur) and
corresponding spring-damper model (d)

prosthetic legs (Fig. 1)) and optimal control techniques in order to generate natural
dynamic running motions for both systems.

In Sect.2, we present the mathematical models of running motions of able-
bodied and amputee running that we established and used for the study. Section 3
describes the formulation and solution of optimal control problems to determine
optimal running motions. In Sect. 4 we show numerical optimization results for both
models. Section 5 contains a discussion and perspectives for future research in this
area.

2 Modeling Running Motions With and Without Prostheses

In this study we use two different models, one of a double transtibial amputee
sprinter, and — for reference purposes — a model of an able-bodied athlete with
comparable figure, i.e. with the same geometric and inertial parameters for the
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non-affected segments. To describe human running motions, we use a multibody
system model in the sagittal plane with 9 segments: trunk, arms, upper legs, lower
legs and feet. The model has 11 degrees of freedom (DOF) in flight: 3 global DOF
associated with the position and orientation of the trunk and 8 internal DOF related
to internal joint angles. In the case of the able-bodied sprinter, all 8 internal joints
(shoulders, hips, knees and ankles) are equipped with torque actuators summarizing
the action of all related muscles at these joints. For the double amputee sprinter, the
two actuators at the ankles are replaced by linear spring damper elements, but the
other six actuators remain.

The modeled subject has an overall weight of 83.3kg and a height of 1.85m
corresponding to the data of Oscar Pistorius. For the anthropometric geometry and
inertia data, we use an extrapolation of the de Leva data [5] to the desired height and
weight, as well as data for the prostheses and the stump given in [3].

The model describes human-like forefoot running, i.e. there is no flat foot ground
contact but only point-like contact with the ball of foot, which is assumed to be rigid
and non-sliding. Detailed muscle dynamics are not included in the model yet, but
we consider doing so at a later stage of this research.

From a mathematical perspective, models of running motions take the form
of a periodic hybrid dynamical system. They consist of a sequence of alternating
flight phases and single-leg contact phases. We consider here only running motions
that are periodic and symmetric, i.e. right and left steps are identical. Each phase
of the motion (flight phase and single-leg contact phase) is described by its own
set of ordinary differential or differential-algebraic equations, as described below.
Between phases, there may be discontinuities in the state variables, namely the
velocities, e.g. at touchdown of the foot on the floor, which is assumed to be
completely inelastic. These assumptions allow us to reduce the model of the periodic
running motion to the model of a single step with a subsequent leg shift and
periodicity constraints (see Fig.2). The total time of the step 7' as well as the
individual phase times are free variables of the model.

Running - just one step modeled
Running - 2 steps
ichdaw R R liscontinuity
Single Flight Single Flight Single Flight
support support support

Periodicity constraints
including left shift

Fig. 2 The sequence of periodic running steps can be reduced to the model of one step with leg
shift and periodicity constraints for the optimal control problem formulation
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The motion during flight phase is described by a set of ordinary differential
equations:

M(q, p)i + N(q.49.p)q = F(q.49, p, #), )]

which can also be written as a first-order system with position g and velocity v = ¢
as state variables. M is the mass matrix containing the system’s inertial properties,
and N the vector of nonlinear effects, such as Coriolis, gyroscopic and centrifugal
forces. F is the vector of all external forces, such as gravity, muscle torques .#,
drag, etc. Multibody models of such complexity cannot be derived by hand but have
to be established using automatic model generator software. We have used the tool
HuMAnS by Wieber [15] to generate the terms M and N of the model.

During the single-leg contact phase, the number of DOF is reduced by two
because the ball of one foot is in non-sliding contact with the ground. We keep the
same number of coordinates and describe the reduction by a constraint of the form
g(q) = 0, which results in a description by an index 3 differential algebraic equation
(DAE). Index reduction finally results in an index 1 DAE system with invariants:

qg=v (2)
Vv=a 3)

M GT\ (a\ _(~N+F
(%)) -57) @
8pos = g(q(t)s ]7) =0 (5)
8vel = G(q(t)s ]7) : q(l) = 0. (6)

Position p and velocity v are again differential state variables, and acceleration
a := ¢ and Lagrange multipliers A form the algebraic state variables. G denotes
the Jacobian of the position constraints G = (dg/dq), and y the corresponding
Hessian y = ((0G/9q) ¢) ¢. Equations (5) and (6) describe the invariant manifolds
on position and velocity level (resulting from index reduction) that the solution
must satisfy. In the optimization, we take into account the unilateral nature of the
ground contact constraint (i.e. ground cannot pull but only push against the foot) by
formulating an inequality constraint on the Lagrange multiplier associated with the
normal contact force.

Phase switches between flight and contact phase do not take place at given
time points but depend on the position variables of the human as expressed in the
corresponding switching functions:

s(q(ty).v(ty), p) = 0. (7

Touch-down occurs when the foot gets down to the height of the ground, and lift-
off takes place when the vertical contact force (represented by the negative of the
respective Lagrange multiplier in Eq. (4)) becomes zero.
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The discontinuities of the velocities at touchdown (resulting from the fact that
the velocity of the foot contact point is instantly set to zero at inelastic contact and
that this shock wave propagates through the whole body) can be computed as

M GTY (v+ Mv_
= 8
(5 9= (") ®
using the same matrices as above. Periodicity constraints are imposed in the model
on all velocity variables v and a reduced set of position variables g,., eliminating the

coordinate describing the forward running direction of the robot, after formulation
of the leg shift.

3 Computing Optimal Running Motions

Optimal running motions can be generated by solving a multi-phase optimal control
problem with discontinuities:

nph

min Z(/ ' ¢ (x (1), u(r)) dr + cpj(rj,x(c,))) )
xQut)e =\

s.t. X() = fi(t,x(t),u)) for telr_i, 1],

J=1. . np 10=0,71,=T (10)
x(t;') =x(t;)+ J(r;) for j=1,....np (11
g, x(t),u()) >0 for telrj1,7;], j=1,....nm (12)
Teq(x(0),...,x(T)) =0 (13)
Fineg(x(0), ..., x(T)) > 0 (14)

In this formulation, x(¢) represents the vector of state variables (summarizing
position and velocity variables) and u(¢) is the vector of control variables (here
joint torques .#; produced by the muscles). For one step, the number of phases
npn = 2. T is the vector of free phase switching times with total step time 7" = 1, .
Equation (9) describes the objective function in a general form and is further
discussed below. Equations (10) and (11) are placeholders for the hybrid dynamic
model of the running motion discussed in the previous section. In addition, there are
continuous inequality constraints of form (12), including lower and upper bounds
on all variables, but also more complex relations between several variables, and
coupled and decoupled point-wise equality and inequality constraints (13) and (14),
such as start and end point constraints, phase switching conditions or periodicity
constraints.
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For the solution of these multi-phase optimal control problems, we use the
powerful optimal control code MUSCOD developed at IWR Heidelberg [2, 9, 10].
This code can be applied to mechanical DAEs of the above form, as described
in [13]. MUSCOD uses a direct method (also called first-discretize-then-optimize
approach) for control discretization, and multiple shooting for state parameteri-
zation. The result of these two discretization steps for which identical grids are
chosen is a nonlinear programming problem (NLP) of large dimension. It is solved
by a specially tailored sequential quadratic programming (SQP) method that uses
condensing in the solution of each QP subproblem.

4 Numerical Results

We now present the numerical results for the optimal control problem solutions for
both the able-bodied runner model and the double amputee model. In both cases, an
objective function minimizing the integral over the weighted sum of all joint torques
squared has been applied

T
: 2
min E wiu;) dt 15
x()u().T /0 - ( ) ( )

where w; are weight factors taking into account the respective maximum torque at
each joint. Note that u3 = ug = 0 in the double amputee case, since there is no active
torque in the ankle. Our experience has shown that this objective function, with
and without additionally minimizing the variation of torques, creates very natural
motions for a variety of specified motion tasks [7, 12, 14]. The task set in this case is
a periodic running motion at a given average speed of 9km/h = 32.4 m/s which is
about the top speed in 400 m races. This speed is imposed as a constraint of type (13)
in the optimal control problem. Humans are highly redundant systems which are
capable of performing motions in an infinite number of ways, some of them more
natural, and some of them quite awkward (some not very serious but convincing
demonstration of the latter case are given in the Monty Python sketch “The ministry
of silly walks”). The above objective function (15) serves to select from all possible
periodic motions at that speed the one that is characterized by minimum effort in
that particular measure and that also is perceived as a natural way of performing the
motions.

Figure 3 shows animation sequences of the optimized solutions for both models.

Figure 4 contains the histories of all torque variables for the able-bodied and the
amputee running solution. The meaning of the eight torque plots is explained in the
figures. As mentioned before, the active torque in the ankles is zero for the running
motion with prostheses. It is remarkable that all other six torques are much smaller
in the double amputee case than in the able-bodies case (corresponding torque plots
in the upper and lower part of the figure have the same scale). It seems that much
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Fig. 3 Animation sequences of optimized able-bodied and double amputee running

of the work actively done in the able-bodied case can be compensated by passive
action of the spring element, such that much less active work is required.

This impression of Fig. 4 is supported by the computational results for different
criteria given in Fig. 5. For comparison purposes, we have computed the following
effort-related criteria:

The integral over the absolute values of the control variables (= torques) fOT |u; | dt

The integral over the squared of the control values fOT uldt

The mechanical work fOT (u; §;)dt, where ¢; denotes the angular velocity at joint
The absolute mechanical work fOT |u; i |dt.

All integrals are approximately computed in terms of Riemann integrals using
information at multiple shooting and control grid points. In the tables below, values
are given for each joint separately, as well as the sums over all joints ) ., except for
the case of the mechanical work where a sum would be meaningless since positive
and negative values would computationally cancel out each other, while in reality
there is no gain of energy due to negative mechanical work in a joint. All values are
much lower in the double amputee case.
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Fig. 4 Comparison of torque variables for able-bodied (fop) and double amputee running (bottom)
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Fig. 5 Comparison of four different criteria for able-bodied and double amputee running

Able-bodied runner Double amputee
T L B
. I' ' 1 ¥ v v v L}

] L

Nearly no knee flexion

Fig. 6 Comparison of knee flexion angles for optimal solutions of the two models (the plots show
the relative knee angles as functions of time, and the dashed line marks the start of the contact
phase while the final solid lines marks lift-off)

Another difference that has previously been observed in the experiments [3] is
that the knee angle flexion is much smaller in running motions with prostheses than
in able-bodied running, leading sometimes to the claim that the resulting motion
can not be classified as running any more. This observation of the smaller knee
angle-variation is confirmed by the computational results (see Fig. 6). The resulting
running style of the double amputee model is clearly different from the one of the
able-bodied model, but it still looks like what a layman would define as running
(compare Fig.3). We find it hard to decide at this point where the line between
running and other types of motions should be drawn.

S Discussion and Perspectives

This paper presents first steps towards an analysis of prosthetic running motions
using dynamical models and optimal control techniques. The ultimate goal of
this research is to address the question if springy prosthetic devices can present
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an advantage or disadvantage with respect to able-bodied running in the case
of 400m races. We are still quite far from answering this question, but the
computations presented in this paper were meant to demonstrate that mathematical
optimal control can be a useful tool to investigate motions, and in particular those
types of motions for which no sufficient basis of experimental motion capture data
is available. It could be shown in this paper that indeed the double amputee running
motions require much less effort than the able-bodied motions in terms of several
different measures, i.e. it is more efficient.

However, it is important to point out the obvious fact that the goal of a track
race is not to run with the least effort, but to be the fastest at the end. While in a
marathon race the more efficient runner will have a severe advantage at the end, it
is undisputed that in a 100 m race the goal is to produce as much power as possible
in the very short time of the race. For 400 m it is not so clear, since runners tend
to fatigue towards the end, and efficiency may play a role, but certainly it is not the
only deciding factor. Together with cooperation partners from biomechanics we will
perform an extensive literature study about the right performance criterion for the
different races (100, 200 and 400 m) and how to properly formulate this criterion
based on the dynamical model. We are also investigating the question about the
objective functions applied by able-bodied and amputee sprinters during these races.
Mathematically, this results in the solution of an inverse optimal control problem
based on motion capture measurements of the respective sprinters, as started in [11]
with a three-dimensional 25 DOF model.

In addition, we are working on several modeling questions in order to have a
more realistic representation of the problem. Is a mechanical model using torque
inputs sufficient to perform the study, or do models of muscle fatigue, metabolic
energy consumption etc. have to be taken into account? Is there a way to relate
these quantities to joint torques? Another concern is how realistic (individual) torque
limits for able-bodied and amputee sprinters can be determined from measurements
and taken into account for the computations. A realistic model also would have
to consider the fact that not only the missing links and joints are affected (clearly
Pistorius has no active ankle torques and different properties of the lower legs), but
also the adjacent segments and joints are affected, since muscles responsible for the
knee motion which have their insertion points in the lower leg are impaired due to
the amputation. Due to two-joint muscles, this may even affect joints that are further
away.

Last, but not least, it remains to be determined which race situations should be
considered for a fair comparison. So far only cyclic running at uniform (top) speed
has been considered in this study as well as in the other studies mentioned in the
introduction. However, 400 m races also include other phases, such as a propulsive
start from a forward crouched, half-lying position, an acceleration phase and also
a deceleration phase after the finish line (which does not have to be optimal but at
least feasible without a fall). While it may be comparatively easy to optimize the
design of such a passive device as a carbon fiber spring for one particular mode of
operation, i.e. a running motion at one selected speed, it seems quite impossible to
tune it simultaneously for the different challenges of the different phases of motion.
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Pictures of Pistorius in the starting blocks with his extremely long lower prosthetic
legs suggest that he has a disadvantage at least in this phase of the race, if not in
others, too. Our future computations will consider multiple set point optimization
for the different phases of the race.
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Hilbert Space Treatment of Optimal Control
Problems with Infinite Horizon

Sabine Pickenhain

Abstract We consider a class of infinite horizon optimal control problems as
optimization problems in Hilbert spaces. For typical applications it is demonstrated
that the state and control variables belong to a Weighted Sobolev — and Lebesgue
space, respectively. In this setting Pontryagin’s Maximum Principle as necessary
condition for a strong local minimum is shown. The obtained maximum principle
includes transversality conditions as well.

1 Introduction

This paper is devoted to the theory of Pontryagin’s Maximum Principle derived to
infinite horizon optimal control problems. This special class of problems arises in
the theory of economic growth and in processes where the time 7 is an exponentially
distributed random variable, see [1, 11]. Known results about the validity of
Pontryagin’s Maximum Principle use an approximation approach, [1, 2, 6]. Halkin
in [6] remarks: “The first tendency, when one considers optimization problems with
infinite horizon, is to assume that all results which are known for the finite horizon
case can be carried to the infinite horizon case by replacing evaluations of quantities
at the terminal time with evaluations of the limit of the same quantities as the time
tends to infinity.” The limitation of this approach is underscored in the cited paper
of Halkin [6]. In the present paper we propose a completely different approach.
We show that in typical applications the state and control variable belongs to a
Weighted Sobolev- and Lebesgue space respectively. If the problem is formulated
in the Hilbert spaces W, (R, w) for the state and Lo(R*, w) for the control, it
can be treated by Hilbert space methods. Making appropriate assumptions on the
growth of the data of the problem, we can prove Pontryagin’s Maximum Principle
as a separation theorem in Hilbert spaces. In contradiction to the first approach
the obtained maximum principle includes also transversality conditions and the
existence of optimal solutions can be guaranteed, see [9].
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Applications

Optimal economic growth: The earliest consideration of an economic optimal
control problem on an unbounded interval goes back to Ramsey [12]. In a recent
version, the problem can be formulated as follows, see ([3], p. 6 ff.):

J(K,Z,C) = /ooe_QtU(C(t))dt—>Max! (1)
0

F(K®)) = Z@t) + C(t), (2)

K(t) = Z(t) — n K@), 3)

K(0) = ko. 4)

Here the production function F and the utility function U are given while
the investment resp. consumption rates Z and C and the capital stock K are
optimization variables. Under certain assumptions on the data, it can be shown
that there exists a constant capital level k such that, “for any nonnegative value
of o the optimal trajectory over an infinite time horizon exists and converges
toward k, and this is true for any initial state ko™ ([3], p. 8). From this property
it is clear that the function K cannot belong to any usual Sobolev space but to a
weighted space as introduced below.

Production-inventory model: This model has been presented in ([13],
pp. 154 ff.):

J(I, P) = /Oooe—gf ( g (1(t)—1 () )2+% (P()-P () )2) di—sMin ! (5)

I(ty= P@t) — S@t), I(0)= 1. (6)

Here [ and P are given goal levels for inventory and production, S is
the given sales rate, & and c¢ are given positive coefficients, and the actual
inventory and production rates / and P are optimization variables. Again, the
optimal trajectory of the problem belongs to a weighted Sobolev space. Since
the objective in this problem is similar to the norm in the weighted space
Wi(RJ,—, W) with () = e™2', it seems to be very natural to choose Wi(R+, )
as the state space. We mention that here and in the preceding example, the
integrals have to be understood in the Lebesgue sense.
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3 Problem Formulation

The considered applications belong to the following general class of infinite horizon
optimal control problems:

(P){;o : Joo(x,u) = /00 r(t, x(t),u(t)) u(t) dt — Min ! @)
0

(x, 1) € Wy(Re, 1) X Ly (R, 1), ®)

x(t) = f(t,x(@),u(t)) a.e.onR4, x(0) = xo, 9)

u(t) e UCR a.e.onRy (10)

The integral in (7) is the Lebesgue integral. The set of all admissible pairs, denoted
by .27; , consists of all processes satisfying (8)—(10) and make the Lebesgue integral
in (7) finite. The function u is a density function in the sense explained below. The
weighted spaces W;(R+, w) and Ly (R4, i) will be defined in the next session.

4 Weighted Lebesgue and Sobolev Spaces

Let us write [0, 00) = R4 . We denote by M(R+ ), L,(R+) and C°(R4 ) the
spaces of all functions x: R4y — R which are Lebesgue measurable, in the
pth power Lebesgue integrable or continuous, respectively, see ([4], p. 146 and
pp- 285, [5], pp. 228). The Sobolev space Wlp (R+) is defined then as the space
of all functions x: Ry — R, that belong to L,(R+) and admit distributional
derivatives x ([14], p. 49) belonging to L,(R+ ) as well. A continuous function
©: Ry — R with positive values is called a weight function. A weight function is
a density function iff it is Lebesgue integrable over R , fooo u(t)dt < oo holds,
(see [8], p. 18). By means of a weight function p € CO(R+ ), we define for any
1 < p < oo the weighted Lebesgue space

oo 1/
LRy ) = {xeMRy) | ||x||Lp<R+,,L)=(/O X1 p(eydr) " < o0}

For x € Lp (R+, u) we can define its distributional derivative x, ([14], p. 46),
and we are led to the weighted Sobolev space of those L, (R+ , j1) functions having
a distributional derivative in L ,(R+ , u):

W,Bop ) = {x € MBy) [ x €L, (R ). & €L, Ry p1) )
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(see [8], p. 11 f.). Equipped with the norm

| x ||W},(]R+ w = lx ”Lp(]R+ w H % ||Lp(R+ e
W}, (R+, #) becomes a Banach space (this can be confirmed analogously to ([8],

p- 19). Any linear, continuous functional ¢ : L, (R+, ) — R can be represented by
afunction ¢ € L (R4, p) with pl4gl=1lifl<p<ooandg = cif p = 1:

(0.x) = [ eOx0u0d VxeL, M. (an

We may apply ([5], p. 287), since the measure generated by the density function p is
o-finite on R . For p = 2 the spaces L,(R+ , ) and Wé(]R+, 1) become separable
Hilbert spaces, see [8]. and (11) is the scalar product L,(R4 , ).

5 Main Result and Conclusions

We prove Pontryagin’s Maximum Principle for a model problem with one state,
linear state equation with respect to state and control, and objective which is convex
with respect to the control:

(P)éo : Joo(x,u) = /00 r(t, x(t),u(t)) u(t) dt — Min ! (12)
0

(x,u) € Wy(Ry, 1) X Ly(R, 1) , (13)

x() = A@)x(t) + B(t)u(t) a.e.onRy , x(0) =xo, (14)

u(t) e UCR a.e.on R4 . (15)

Let the following assumptions be satisfied for (P)L,.
e V1:r, A, B € C! with respect to all its arguments, ((¢) is a density.
e V2:r(t, &) isconvexon U forall (¢,&) € R+ x R, U is convex and compact.
« V3:Forall ((.w) € Ly(Roy. 12) X Log(Ry). (£(). w(t)) € W(r), with
W(t) = {(£,v) e R*||§ = x*(1)|u(t) <o, ve U}, t € Ry, g9 > 0,

let

r (¢, w() € Ly(Ry, p)  and r(-, £(). () € Ly(R+. 1)

t
* V4 A, B € L,(Ry) and 3T > 0 with [ 2A4(s)ds < —In(u(t))Vt > T.
T
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In the case of infinite horizon optimal control problems we can find several
optimality criteria, which are adapted either to problems with improper Lebesque
integrals J;,:

Jiim 1= hrn L/f(t)dt

see [3], or to problems (P)L with Lebesgue integrals, see [11].
Our considerations are focused on global optimality in the sense of Lebesgue
integrals:

Definition 1. Let processes (x,u),(x*,u*) € 7 be given. Then the pair
(x*,u*) € o is called globally optimal for (P)L (criterion L1), if for any
pair (x,u) € 7 holds

[e.]

/oo r(t,x(t),u(t)),u(t)dt—/ r(t, x*(t), u*())pu(t)dt > 0. (16)
0 0

The maximum principle for (P)% reads as follows:

Theorem 1. Ler assumptions VI-V4 be satisfied and (x*,u*) € <7 be an optimal

solution of (P)L, in the sense of criterion L1. Then there are multipliers (Ao, y),
with

Ao =1 (N)

yeW,)R*, u™), lim y(T)=0 (T)

T—o0
H(t,x*(t),u* (1), y(@), o) = max H(t,x*(t),v,y(t), o) a.e.onR* (M)
¥(t) = —Hg(t,x*(t),u*(t), y(t), o) ae onRT, (K)

where H : Rt x R x R x R x R — R is the Pontryagin function,

H(t.§.v.1,40) = =Aor (1,5, V(1) + nf (. §.v).

Proof. Step 1:

Lemma 1 (Variational Lemma). Let (x,u) € o7 and (x*,u*) € o7 optimal
in the sense of criterion L1, then for all { := x — x* € W,/(RT, p), [IC]] < 1,
w = u—u* € Ly(R™, ) the first order one-sided variation of the objective is
nonnegative,
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0 <8 Joo((x™ u®), (L. W) := lim Joo (Xe, te) = Joo (X™, u™)

£—>0+0 €
< /{rg(t,X*(t),u*(t))Z(t)+[r(t,X*(t),u(t))—r(t,x*(t),u*(t))]}u(t)dt- (17)
0

Proof. Let x.(t) := x*(¢) + e(x — x™)(¢), u.(¢) := u*(t) + e(u —u*)(¢). Then for
sufficiently small ¢ it holds Joo(x,, u;) < 00, since

Joo (Xe, tte) = Joo (x™, ™) = /{r(f,xa(t),us(t)) — (1, x* (1), () b (r)dt
0

—¢ / (re(t, E(0). e (1)) (x=x™) (1)
0

+ 1t Ge0). (1) (™) (O} (1)t
by the Mean Value Theorem with (Eg(t), u(t)) € W(t), since

18e() = X (O)](0) < elx(0) = x*Ol(e) < cellx =2 [T =0

and u.(¢) € U. Applying Schwarz inequality we find

1

Joolentts) = Joo (6", u%) < ( [ e, as(r))u(t)dr) =5 s o
0

o0 1

e ( [ B0 ) =l < 0

0
(18)

due to assumption V3. Calculating §* Joo ((x*, u*), (¢, w)) we obtain

8T Joo((X*,u®), (L, w)) = lim

£—>0+0

Joo(Xe, te) — Joo (X™*, u™)
et

= / {re(t, x* (), u™ (@)C () + ro(t, x* (), u™ @)w(t)}u()dt =0 (19)
0

Assumption V3 is used again to ensure that the limiting passage ¢ — 0 + 0 can be
done under the integral sign, since the Lebesque integral converges uniformly with
respect to the parameter €. Because of the convexity of r, assumption V1, it follows
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/{rg(t,X*(t),u*(t))é(t) + [r (@ x™ (@), u@)) — r (e, x* (1), u™ ()] hu(r)dt
0

> 8% Joo((x™, "), (&, w)) = 0. (20)

Step 2: Let

ay(u) = / (1 x*(0).u(0) — r (X (O O dr, @1
0

bi(§) = / re(t, X* (), u* (1)) () () dt, (22)

0
ar(w(t)) .= —B)(w(t)), w(t) = u(t) —u*(t), (23)
ba(C(1)) := E(1) — A@)E(2). (24)

Lemma?2. (1) a;: L,(RT, w) — R is convex and weakly lower semicontinuous
on U, where the set U is defined by

U:={ue Loc(R4)|u(t) € Ua.e.on Ry} (25)

(2) by : WHR™, n) — Ris linear and continuous.

Proof. (1) Remark that U is a convex and bounded subset of L,(R™, i), since U
is convex and compact and u is a density function,

o0 o
2 I 2 :
6 i = [ OO = max 12O [ g = < o
0 0
Assume {¢"} — @in Ly(R™, ). Then
o0
ay (") —a (i) = /rv(t,x*(t), (@) (" (1) — a(t))u(r)dr. (26)
0
Since r,(-, x* (), () € Ly(R*, ) due to assumption V3, L with

L(u" (1) —u(r)) := /rv(t,X*(t),ﬂ(t))(u"(f) — u(t))pu(t)dt
0
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is a linear and bounded functional in Ly(R*, 1) thus
liminf,_; [a; (") — a;(it)] > 0.

(2) The linearity of b; is obvious and b; is bounded, since

|bl(é‘)|:|/ré(t,x*(t),u*(t))é-(t),u(t)d[|fc”é—”Lz(]R“',M)EC||§||W21(]R+.M) (27)
0

due to Schwarz inequality.
Lemma3. (1) a, : Lo(RT, ) — L,(RY, ) is linear and continuous on W,
where the convex set W is

W = {w(t) = u(t) —u*(t)|lu € Lo(RY, ), u(t), u*(t) e U .

(2) by: WH(RT, ) = Lo(R, w) is linear and continuous.

Proof. (1) Itis again obvious that a; is linear. a; is continuous since

t€ER4+

a0 e = [ (330 B0 )@= OF o) de=e ol ey C8)
0

if assumption V4 is satisfied.
(2) b, is bounded since

16212 1y = [0 = AOLOPRO 1 = Wiy v,y D)
0

assuming sup A%(t) < oo according to V4.
teR4

Now the set of variations M is defined by

M = {(20.2) € Rx Ly(R™, 1) | z0 = a1 (u) + b1 (2),
2(t) = ax(u(?)) + b2 (8(2)). (30)
Le Wy (R, w), ¢(0)=0, ¢l <1
ue LR, p). u(t) e U}.
It follows immediately from Lemmas 2 and 3 that M is a convex set in R x

Ly(R™, ). Its closure in R x Ly(R*, ) is denoted by M.
Step 3: (M dos not coincide with the whole space R x Lo(R™, 1))
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Lemma 4. The pair (—a,0) € R x Ly(R*, i) does not belong to M for a > 0.

Proof. Let (Z,0) € M, then there is a sequence {(z},z")}, (z',z") € M with:

2 > ai@) +bi(¢V), {2} — 2 € R, (1)
2 = a ) + by(¢N), 2V} = 0 € Ly@RF, ). (32)

v

The corresponding sequences

(M Y e W) Y 0) = 0. ¢V <1, (33)
Wy, u e LR, w), u¥(t) e U (34)

have the following properties:

A: There is a subsequence of {¢V}, denoted again by {¢V} such that

=t io=0.8) <1
B: There is a subsequence of {u"}, denoted again by {1}, such that
W’y —~ e Ly(RY, w), a(t) € U ae.
This follows from the theorem of Banach/Alaoglu, in this special case see ([9],
p. 84 ff.)
Applying Lemmas 2 and 3, we can pass to the limit in (32) and obtain

a>(W) + ba(§) = 0,(0) = 0, £ € Wy (R, ), |IZ]| < 1, (35)

wi=i—u* i) € U e Ly(RY, p). (36)

We conclude that (%, i), with X := x* 4 ¢, it := u* + W, is admissible for (P)L,
and therefore we obtain by Lemma 1

lim z) =% > a1 (@) + bi(§) > 0.
N—o0

Step 4: We apply the Hahn Banach separation theorem, to separate the closed set
M and the compact set {(—a, 0)} € R x Ly(R*, i), o > 0, which are disjoint sets
in R x Ly(R™, i) according to Lemma 4.

We obtain the existence of functions ¢ € R x Ly(R™, 1) such that for all
(z0,27) € M the following inequalities hold:

(qy. (—2.,0)) < 10 < V20 < (g0 (20.2)) - (37)
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With ¢ = (A«, yo) inequalities (37) read as follows:

— Aot < AgZ0 + Yoz V(20.2) € M. (38)
Of cource (zo = 0,z = 0) belongs to M, thus we obtain A, > 0 from (38) for each
o> 0.

Step 5: (The canonical equation)
Let now u = u*, then we obtain from (38) by division by 4, and y, := {—”

—o < bi(0) + (Fu.b2(0)) VEe W, RY. ). IICI <1,£(0)=0. (39)

Foro = %, n € N, we conclude because of the linearity of »; and b, with y, := y,,

| G b2 [ < cligll Ve € Wy (RT. ). £(0) = 0. (40)
The sequence {y,} is bounded on
Z:={ze LR Wl =b().C e Wy RT. 1), £(0) =0} (@&

We show that Z is dense in L,(R™, ).

Lemma 5. The set
Zy:={ze€ Ly(R", ) NCRY)|z=b2(0). L € W) (RY, ), £(0) =0} (42)

is dense in Ly(R*, u) N C(R™T).

Proof. Letz € Ly(R, u) N C(RY) be arbitrary and ¢ € W,'[0, T] be the unique
solution of the equation

¢() = / (AG)C(s) + 2(s)}ds. 1 < T, 43)
0

see ([7], p.60) with 2 (T) =: ¢r. We extend this solution continuously to (7, co) by
the solution of

t

£ty =tr + / {AG)Z(s)}ds. (44)

T

R !
This solution has the representation {(f) = Crexp{ A(s)ds}, t > T. Due to
T

assumption V4 it follows
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/ Z2)p@t)dt < co. (45)
T

We conclude from (45) that the generated solution 2 has the properties
¢ e W) R, w), £(0) = 0. With 27 = by({) we have

(o]

/ (1) — 27 (0) u(t)dr < / 2(0u0)dr (46)
T

0

which tends to 0 for T — oo. Thus for z € Ly(R™T, u) N C(R™) there exists
¢ e WrRT, 1), £(0) = 0, zr = ba(¢) and ||z — 27 [l 1, w+ ) < € for sufficiently
large T. Since Ly(R™, 1) N C(R™) is dense in Ly(R™, 1) the proof is complete.

Using the previous Lemma the sequence {j,} is bounded on L,(R™, ) and by
the theorem of Banach/Alaoglu it possesses a weak convergent subsequence, again
denoted by {j,} converging to yo € Lo(R™, u). Passing to the limit, we obtain
from (39)

bi(Q) + (0.52(5)) =0 V¢ € Wy (RT, ). £(0) =0. (47)

Equation (47) has the following form

0= /{rs(hx*(l),u*(t))é(t) + 30 (0[5 () — AN O (t)dr
0

=/{[yo(f)u(f)]f(l)ﬂrs(l,X*(t),M*(f))u(l)—yo(t)u(l)A(l)]é(l)}dt (48)
0

VL e W) (RT. ). £(0) = 0.

Equation (48) is a variational equation which shows by definition that you has a
generalized derivative ([14], p. 49), with

o] = [re(t, x* (). u* () p(t) — yo() (1) A(1)]- (49)

Using the definition of the Pontryagin function we arrive with y := you at the
canonical equation

Y(t) = —He(1,x* (1), u* (). y(1).1) ae.on R*. (50)
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Step 6: (Transversality condition) The adjoint function y belongs to W21 R, u™h
since

o0 o o

[ yonwa = [vowonoa= [ iosod <. 6y
0 0 0
/ R0 () dr = / [re (1 ™ (0,0 (6)) — yo(O) AP o) (52)
0 0

<o [ 00 0) + BOLOMO) <
0

Lemma 6. I[fx € W) (R*, w), y € WH(R™, u™') then

lim y(T)x(T) =0 and lim y(T) =0. (53)
T—o00

T—o00

Proof. Since x € W,/(RT, ), y € W) (R, ™), we have

o0
/ @)y Olde < 131 g o 1] gt oty < 0. (54)
0

T d

[ 15 EO3@ldr = 1 ol Do 53)

0

+ Xl L, @t o 19 1w+ 1y < 00

Both inequalities imply xy € W,'(R*) and lim y(T)x(T) = 0, see [10]. Since

T—o00
W is a density function, we can apply the last equation with x = 1 and obtain
lim y(T) =0.
T—o00

Step 7: (Maximum condition) Let now x = x* then we obtain from (38)

1
—— < a1(u) + (Ju,ax(u)) YueU,neN. (56)
n
Passing to the limit and using Lemmas 2 and 3 we obtain

0 < a;(u) + (yo,ax(u)) Yu e U. (57)
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The last inequality is the integrated Maximum condition,

o0 o0
/H(t,x*(t),u*(f),y(f),ko)dtz/H(t,x*(t),u(t),y(t),ko)dt VYueU. (58)
0 0

Finally the pointwise condition (M) follows from standard techniques, see [7] and
the proof is complete. O

6 Conclusions

For the class of problems considered we obtained a maximum principle in normal
form (A9 = 1) including transversality conditions. Additionally, we proved that the
adjoint variable y belongs to a weighted Sobolev space too, y € W (R*, ™).
Using a similar scheme of proof the result can be extended to more general problem
settings, i.e. to problems with vector valued states and controls and state equations
which are linear with respect to the control only. The Hilbert space approach opens
the door for spectral methods and Ritz type approximations of the problem.
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Optimum Operation of a Beer Filtration Process

Cesar de Prada, Smaranda Cristea, Rogelio Mazaeda, and Luis G. Palacin

Abstract This paper deals with the optimum operation of a beer filtration process
that uses membranes for this task. Due to fouling, the operation requires cleaning,
which damages the membranes, and creates a discontinuous operation. The optimal
economic operation can be defined in terms of minimizing the number of chemical
cleanings, as well as the use of energy, when processing a certain amount of beer in
a given time. The problem is hybrid in nature, due to the discontinuities created
by the cleanings. The corresponding optimization problem is formulated in the
framework of predictive control but integrating the economic operation as target
of the controller and different time scales. Also, instead of using binary variables
for representing the discontinuities, the problem employs a sequential approach,
embedding them in the dynamic simulation of the process model combined with
a control parameterization that allows computing the solution in terms of the
continuous variables that represent its degrees of freedom. Results of the optimal
operation are presented.

1 Introduction

In breweries, beer is filtered in order to remove different types of impurities helping
obtaining in this way the desired color and taste. Today, this operation is performed
in many factories using special membranes that allow pass the beer and retain the
impurities. The process follows the schematic displayed in Fig. 1: from a pressurized
tank of filtered beer, this is pumped to a set of membranes where the separation
takes place. One fraction goes through the membrane as permeate while the rest, the
retentate, returns to the recycled beer tank, circulating again in closed loop until all
beer has been processed.

The membranes considered in this paper are of hollow fiber type, like the ones
in Fig. 2: a bunch of fibers each one being a long pipe with microscopic holes in its
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Fig. 1 Schematic of the basic control system of the beer filtration process

surface that allow permeating the beer but not the impurities. The beer flows along
the fibers flowing out partially as permeate, while the non-filtered portion leaves
the fiber by the other end. From the point of view of the beer filtration, these are
of two kinds: those that do not cross the membrane and form a cake layer in the
inside, acting as an additional filter, and those that get trapped in the membrane
pores obstructing them partially.

The operation of the plant is usually performed using the control system repre-
sented in Fig. 1. A pressure control loop maintains the pressure in the recycled beer
tank injecting CO, gas to avoid foam formation, while two flow control loops fix the
values of permeate and cross flow and another loop helps maintaining the recycled
beer temperature using a heat exchanger. In addition, there are measurements of the
permeate side pressure and the trans-membrane pressure. The cake layer grows as
time passes due to new deposits of impurities and, as a result, the trans-membrane
pressure (TMP) that is required to maintain the flow of filtered beer increases.
When this pressure has risen up to a certain value (TMP,,,,), the filter needs to
be cleaned to restore normal operation, which is done with the so called backflush
cleanings (BF). These remove the cake layer, but not all the impurities attached to
the membrane pores, so that, when the process is re-started again, the initial trans-
membrane pressure required to maintain the permeate flow is higher than in the
previous cycle, and the time required to reach the TMP,,,, decreases, as can be
seen in Fig. 3. After several cycles, this time 7 is too short and a deeper cleaning
is needed, the so called chemical cleaning (CIP) that restores the membrane to its
original state, but producing damage so shortening its life
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The usual target is to filter a certain amount of beer to be delivered to the clients
by a specified time. The beer to be filtered is stored in a raw beer tank and is supplied
to the recycled beer tank to be processed. Besides fulfilling this target, there is a
clear interest in performing the task in the best possible way, both from economic
and process points of view. The economics involve the energy pumping costs and the
cleaning costs, while the process operation requires fulfilling a set of constraints and
enlarge the membrane life, minimizing the number of chemical cleanings needed to
process a certain amount of beer, because membranes are quite expensive.

The optimal plant operation involves decisions at different levels, in particular,
the following values have to be chosen: the number of chemical cleanings (CIPs),
the number of backflushes per CIP, the value of the cross and permeate flow set
points (O fr, O p) and the maximum trans-membrane pressure (TMP,,,.) between
backflushes that allow processing the specified amount of beer by the required final
time. Notice that besides different levels, there are also discrete and continuous
variables implicated. The natural approach is, then, to formulate a set of hierarchical
optimization problems like in [3], where a three layer optimization is proposed, with
the two upper ones solving MIP problems to schedule production, providing the
number of cleaning cycles, and the one below them and above the control layer
using NLP optimization to determine the best TMP,,,, and flows. Nevertheless,
this approach involves a lot of computation and it is not suitable for real-time
application.

This paper presents an alternative that merges economic optimization and control
and uses especial parameterizations to solve the problem using a small number
of NLP problems in a single layer. This provides an efficient way of solving
the problem and shows a way of dealing with mix-integer dynamic optimization
problems that can be applied in other contexts as well. The paper is organized as
follows: after this introduction, the optimization problem is formulated in Sect. 2,
then, Sect.3 shows results obtained with a particular beer assignment and gives
implementation directions. The paper ends with some conclusions and references.

2  Optimizing Control

The main elements of the proposed approach are synthesized next. The first one
is integration of economic optimization and dynamic control in the framework of
Model Predictive Control (MPC), what is called optimizing control, [4, 6, 8]. The
approach takes decisions about the manipulated process variables at a certain time
instant according to the solution of a dynamic optimization problem, where the cost
function is directly the economic aim one tries to optimize. The solution is applied
to the process and the next sampling time the problem is repeated, updated with the
new information collected from the process. The second element recognizes the fact
that the behavior of the process between two chemical cleanings (CIP) is uniform
and that not all the decision variables mentioned in the different time scales involved
are fully independent. In fact, given the cross and permeate flow and a TMP,,,,,
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and assuming that a minimum time between backflushes, 7., has been fixed, the
number of backflushes between two chemical cleanings and the total duration of
the CIP, tc, can be determined, and, hence, the number of CIPs, as some global
constraints concerning the total amount of beer to be processed must be satisfied. In
particular, with reference to Fig. 4, these constraints are:

tc
ch det =Vr
0

Ncte < tr (1)

Where N¢ is the number of CIPs, t¢ is the elapsed time of a chemical cycle, Vr is
total amount of filtered beer to be processed, which is known, Q , the permeate flow
and 77 the assigned time for filtering. Notice that N¢ from (1) can be a real number,
as the last CIP cycle can finish incomplete. So, the global problem can be reduced
to the optimization of a chemical cleaning cycle, assuming of all them uniform,
provided that the constraints (1) are explicitly considered in the optimization. In
this way, the large time scale covered by the processing of the beer assignment can
be shortened and the corresponding time scale integrated in a shorter time scale
problem.

This problem is displayed in Fig. 5. The cost function to maximize is the global
one, covering the total number of CIP cycles, but the decision variables and the
dynamic model are reduced to the ones of a chemical cycle. In particular, the cost
function Jr is formulated as the economic target:

ic tc

o dt — o dt

Jr = Nc[ Ofo tCQp lfo thpC :| ?)
_aZ,[() PFQFdl—Ol,%fO QFdl—(X4NB—O{5
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Which includes several terms with «; representing prices: o price of beer, o
price of energy in permeate pump, o, price of energy in cross flow pump, o3 price
of cross flow cooling, o4 cost of a backflush, «s cost of a chemical cleaning and N¢
the number of CIPs. Notice that the first term tries to maximize the filtered beer per
CIP, contributing indirectly to maximizing the membrane life which expands for a
certain number of CIPs.

The constraints are the ones that apply to a CIP, with the addition of the
global ones (1), and include ranges for the process variables and other operational
limitations. Concerning the decision variables, the two flows Q g and Q p, cross flow
and permeate, as well as the maximum trans-membrane pressure to fire a backflush
cleaning, TMP,,,,, were chosen. They can be given different parameterizations,
compromising between increasing the degrees of freedom of the problem and
increasing the computation time.

The third element deals with the way the optimization is performed considering
the discontinuities over a CIP. The embedded logic approach [8] has been used,
which follows a sequential method for solving the dynamic optimization problem,
including the discontinuous operation as part of the model simulation according
to Fig. 6.

The dynamic model follows [9] and comprises equations for hydraulic flows,
growing cake, membrane fouling, etc. It has been implemented in the simulation
environment EcosimPro [1], an object oriented language implementing a good
treatment of discontinuities and facilities for optimization according to a sequential
approach. The integration of the model starts from the current point and implements
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a backflush cleaning each time the TMP reaches the value TMP,,,,, starting again
the filtration from the new conditions of the membrane pores until the elapsed
time between two backflushes is less or equal to T¢, in which case a chemical
cleaning takes place and the simulation ends. So, N¢ and Jr are evaluated, as well
as the constraints and their values are sent back to the optimization algorithm. As
no explicit integer variables are used, in principle, an NLP method such as SQP
(Sequential Quadratic Programming), could be used.

Nevertheless, notice that the discontinuities involved are not input discontinuities
but state ones and this may create problems in the computation of the cost function
gradient in the optimization. This type of discontinuities are fired when a certain
transition function ¢(x,u) in the model changes sign, according to the time
evolution of the model states x, as in the upper part of Fig. 7, where a change from
model k to model k + 1 at time instant #* is represented besides the corresponding
sensibilities 5. Of course, the sensibilities, defined as the derivatives of the states
with respect to the decision variables, may jump at ¢*, but, in principle, this jump
does not means that the gradient of the cost function is discontinuous.
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The problem may appear if the situation represented in the bottom of Fig. 7, takes
place, because here, a small change in the decision variable, changes the number of
discontinuities, impeding the right computation of the gradients. This is exactly the
situation with our problem, in which a small change in the value of TMP,,,, may
change by one the number of backflushes, that is of discontinuities of a CIP.

To avoid this problem, an alternative was used in the paper, based in recognizing
that the integer number of possible backflushes typically doesn’t change much in
practice. It consist in solving in parallel a number of similar problems, but, each one
with a fixed and different number of backflushes NB, and then select the one with the
best cost function Jr. As Np is fixed, the above mentioned problem disappears and
an NLP method can be used, which speeds up the computations. Of course, the price
to pay is repeating the NLP problem a small number of times (3—6 being adequate)
but it compensates as there is no need to formulate the problem as a mixed-integer
optimization one. In order to impose a fix number of backflushes in the operation,
notice that two new constraints must be added in order to obtain realistic solutions:

A[NB <T.
AINB—I > TC (3)

That corresponds with forcing the last backflush to fulfill the condition of a
chemical cleaning and the previous one not to fulfilling it.

3 Results and Implementation

The proposed approach has been tested with a realistic simulation of the beer
filtration process, coupled to an optimizing controller as the one described in section
two. The numbers correspond to a small pilot plant and are not representative of an
industrial installation, but describe quite well the possibilities of the method. The
assignment was to process a volume of V7 = 0.051 m?® in less than 5 days. The
process constraints were given by:

0.008 < Qr <0.021 m3/h
0.6 < TMPyu < 1.9 bars @)
0.0002 < Q p < 0.0007 m3/h

In Fig. 8, results of three parallel dynamic optimizations, each one identical, but
with different values of Np, taken as 5, 6 and 7, are given. In this case, the associated
cost function J7 to the case Np equal to 6 is the best one, so that this value was
selected. The optimal solution corresponds to a benefit of 34.9317 Euros, and the
assignment was performed in less than 5 days, with 9.66 CIPS, which means 9 full
cycles and a partial one at the end. The optimal decision variables were:
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Fig. 8 Optimal solution of three parallel cases with NB selected as 5, 6 and 7 backflushes

Regarding implementation, it is worth mentioning that the differential algebraic
system of equations (DAE), resulting after discretization along the fiber axial
direction of the original partial differential equations (PDE) first-principle model,
reaches a substantial size: with 16 discretizations, it presents a number of 647
equations in total, with 68 dynamic states.

The required numerical optimization to obtain the best possible working regime
for the installation is of a dynamical nature. In order to be able to apply the standard
NLP techniques, the so called direct sequential approach [2] is adopted in this case.
The input to the plant, or control vector, is parameterized, and then, the resulting
initial value problem (IVP) is solved, meaning that the dynamic equations of the
model are numerically integrated for a duration corresponding to a complete CIP
cycle. The modelling and numerical integration has been implemented by means
of the EcosimPro tool. The specific integration software used was DASSL [7],
while the numerical programming has been performed by an SQP-type algorithm
as implemented in SNOPT [5].

The obtained computation time of around 10 min, using a 1.83 GHz standard
PC with 1 GB of RAM, it is not negligible. It can be attributed to the combination
of already mentioned factors, in particular the size of the model and the control
vector parameterization strategy adopted. In relation with the latter, it should be
emphasized that the model has to be integrated for a whole CIP cycle horizon at
every step of the optimization algorithm. Furthermore, this integration is performed,
not once, but several times for each SQP iteration, in order to automatically obtain
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Table 1 Decision variables Variable Value Units
values
Np 6
Or 0.008 m’
TMP,;,.x 1.9 bars
0, 0.00048444 m’/h
Chemical cleaning cycle 11.8916 h
Computation time 623 s

information concerning the gradients using discrete perturbations for each input.
In any case, although there is room for improvement, the control processing time
already obtained, opens the door to real-time implementation given the time scales
of the process.

Further work is needed to include several elements that are required in an
industrial plant. Among them, it is necessary to update the model with on-line
measurements from the plant in order to tune it according to the different beer types
and membrane quality that one can find over the process operation. At the same
time, closed loop operation requires the incorporation in the problem formulation
of the shrinking time horizon that appears in real-time operation as time passes. In
relation with this, it should be said that the values for the three input degrees of
freedom appearing in Table 1, are the optimal constant values which were obtained
for the entire exercise in an open loop fashion. The implementation of a closed loop
receding horizon scheme, would, on the other hand, immediately provide, at each
sampling instant, new values for the same control inputs, that would be optimal at
the new conditions, taking into consideration the presence of disturbances.

4 Conclusions

A novel approach has been presented to reformulate an optimization problem that
combines different time scales and decision levels as well as continuous and discrete
decisions. Furthermore, the model presents a variable structure in the sense that
it has several discontinuities whose existence cannot be known beforehand since
they depend on the dynamical evolution of the state. The approach is based on the
idea of optimizing control, mixing economic optimization and dynamic control,
as well as in the use of embedded logic optimization with a sequential approach
to dynamic optimization. Finally, the discontinuity analysis has led to incorporate
parallel computation to solve the hybrid problem in an efficient way. The method
has been tested in a simulated process giving promising results.
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Energy-Aware Lease Scheduling in Virtualized
Data Centers

Nguyen Quang-Hung, Nam Thoai, Nguyen Thanh Son, and Duy-Khanh Le

Abstract Energy efficiency has become an important measurement of scheduling
algorithms in virtualized data centers. One of the challenges of energy-efficient
scheduling algorithms, however, is the trade-off between minimizing energy con-
sumption and satisfying quality of service (e.g. performance, resource availability
on time for reservation requests). We consider resource needs in the context of
virtualized data centers of a private cloud system, which provides resource leases
in terms of virtual machines (VMs) for user applications. In this paper, we propose
heuristics for scheduling VMs that address the above challenge. On performance
evaluation, simulated results have shown a significant reduction on total energy
consumption of our proposed algorithms compared with an existing First-Come-
First-Serve (FCFS) scheduling algorithm with the same fulfillment of performance
requirements. We also discuss the improvement of energy saving when additionally
using migration policies to the above mentioned algorithms.

1 Introduction

Cloud computing [4] has been developed as a utility computing model and is driven
by economies of scale. Reduction in energy consumption (kWh) for cloud systems,
which are built up from virtualized data centers [3, 11], is of high concern for any
cloud provider. Energy-aware scheduling of VMs in virtualized data centers is still
challenging [1, 3,7, 10]. There are several works that have been proposed to address
the problem of energy-efficient scheduling of VMs in cloud data centers. Some
works [1, 10] proposed scheduling algorithms to change adaptatively processor
speed when executing user applications such that the changing processor speed
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method meets user requirements and reduces power consumption of processors
when executing user applications. Some other works proposed algorithms that
consolidate VMs onto a small set of physical servers in a virtualized datacenter
[3,7] such that power consumption of physical servers is minimized. However, the
challenge of reducing energy consumption while preserving quality of service (e.g.
performance or resource availability on time for reservation request) remains.

Sotomayor et al. [11, 12] have proposed a lease-based model for resource
provisioning problems and presented FCFS-based scheduling algorithms to meet
user performance. The presented scheduling algorithms in that works, however, have
never involved energy efficiency. In this paper, we introduce an energy-aware lease
scheduling problem with trade-off between minimizing of energy consumption and
satisfying quality of service. We concern on the provision of hardware resources.
The software requirements on provisioning resource are out of scope of this paper.
Using VMs incurs some overheads (e.g. transferring VM images); therefore, these
overheads of VMs should be considered in the problem of scheduling VM-based
leases. The resource allocation problem of VMs with multiple resources is NP-hard.
Each VM requires multiple resources such as CPU, memory, I/O to execute its
applications. The resource allocation problem can be seen as a d-dimensional Vector
Bin Packing problem (VBP;) [8], in which each physical server with multiple
resources is considered as a d-dimensional bin, and each virtual machine is a
d-dimensional item with various sizes of requested resources (e.g. CPU, memory).
The VBP, is claimed as NP-hard problem for Vd > 1 [8].

In recent research, Fan et al. [5] claimed a linear relationship between power
consumption (in Watts) on a physical server and its load (i.e., CPU utilization).
The authors estimate that the power consumption of an idle (0 % CPU utilization)
server is equal or greater than 50 % of the power consumption of the server at
full load (100 % CPU utilization). Barroso and Holzle [2] have proposed a case
of energy-proportional computing where all components in a computer could be
turned on/off on demand. In this paper, we propose an energy-aware scheduling
algorithm to map user lease requests onto physical servers. The objective of our
scheduling algorithm is to find an optimal schedule that has a minimum number of
active physical servers and finishes all user lease requests while satisfying user lease
requirements. Our scheduling algorithm includes two phases: power-aware VM
allocation and re-scheduling. Our proposed allocation algorithm uses the minimum
number of physical servers on mapping of the ready leases (in scheduler’s queue).
We also solve a re-scheduling problem by suspending, migrating, and resuming
leases from physical servers that have CPU utilization lower than a pre-defined low-
threshold. These low load physical servers could be put into energy saving modes
(e.g. stand-by, suspend to disk, or turn idle nodes off) to avoid unwanted power
consumption (e.g. 50 %) in idle nodes [3].

The remainder of the paper is organized as follows. In Sect. 2, we discuss the
works that are related to our approach and energy-aware scheduling of virtual
machines in virtualized data centers. We present the lease scheduling problem and
the proposed energy-aware scheduling and migration algorithms in Sect. 3. The
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results of our simulation study are reported and discussed in Sect. 4. The last section
gives conclusions and future work.

2 Related Works

Sotomayor et al. [11, 12] proposed a lease-based model and implemented First-
Come-First-Serve (FCES) [6] and back-filling [6] algorithms to schedule best effort,
immediate and advanced reservation leases. The FCFS and back-filling algorithms
consider only one performance metric such as waiting time and slowdown, without
mentioning energy efficiency. To maximize performance, these scheduling algo-
rithms tend to choose free load servers (i.e. those with the highest-ranking scores)
when allocating a new lease. Therefore, a lease with just a single VM can be
allocated on a big, multi-core physical server. This could waste a lot of energy.
The authors also proposed a migration algorithm for preempting a best-effort lease
in case the scheduler needs more resources for an advanced reservation lease.
However, the authors did not use the migration algorithm on dynamic consolidation
of VMs to turn low utilization servers off for energy saving. Instead, our allocations
will choose working physical servers and turn off other free load servers. We also
improve the migration algorithm to allow migration of leases that are running on
low utilization servers, and turn these servers off.

Albers et al. [1] reviewed some energy-efficient algorithms which are used to
minimize flow time by changing processor speed according to job size. Laszewski
et al. [10] proposed scheduling heuristics and presented application experience for
reducing power consumption of parallel tasks in a cluster with the Dynamic Voltage
Frequency Scaling (DVES) technique. We did not use the DVFES technique to reduce
energy consumption on data centers.

Previous research [3, 7] presented scheduling algorithms that place virtual
machines (VMs) in virtualized data centers to minimize energy consumption.
Beloglazov et al. [3] presented a modified best-fit decreasing (denoted as MBFD)
heuristic for placement of VMs and VM migration policies under adaptive thresh-
olds in virtualized data centers. The MBFD sorts all VMs in a decreasing order of
CPU demands and tends to allocate a VM to an active physical server that would
take the minimum increase of power consumption. The MBFD can reduce energy
consumption in a heterogeneous environment. On the other hand, choosing a host
with least increasing power consumption can lead to performance inefficiency. The
MBFD will prefer a lower-performance host rather than a higher-performance host
if each processor in the lower-performance host consumes less power than each
processor in the higher-performance host does. The MBFD is also not concerned
about the duration time of VMs. In contrast, our proposed allocation algorithms
account for the duration time of VMs and will greedily allocate VMs belonging to
a lease to the same physical machine. The previous migration policies [3] did not
concern on overheads of migration (e.g. suspend, resume, and migration time) of
VMs. We study effects of the overheads of migration of VMs on a schedule plan.
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An optimum allocation of each independent VM is studied in [7]. In the paper, the
authors developed a score-based allocation method to calculate the scores matrix of
allocations of m VMs to n physical servers. A score is the sum of many factors such
as power consumption, hardware and software fulfillment, resource requirement.
These studies are unsuitable for the following lease scheduling in this paper. We
consider the case where each user lease has a limited duration time and contains
a group of concurrent VMs (e.g. each MPI job requires tens to thousands of VMs
concurrently).

3 Problem Description

Given a set of leases L; (i € [1;n]) to be scheduled on a set of physical servers M; (j
€ [1;m]). We extend the resource model that is defined in [11]. A user requests some
leases. A user i lease requests (1) a set of rn; identical virtual machines (VMs),
(2) start time (st;), and (3) duration of the lease (dur;). In the user i lease, each k™
VM requires uj, percent of CPU utilization (e.g. each 100 % is one core), rix MB of
memory, d;; MB of disk image, and by MB/s of network bandwidth. A lease can be
a best-effort or an advanced reservation lease that is without or with user specified
start time. Each physical server has total U percent of CPU utilization, R megabytes
(MB) of memory, D MB of available file system, Bw MB/s of network bandwidth.
In this paper, we use the following energy consumption model proposed in [3,5]:

P; = Pye + (Puax — Piare) X CPU; (1)

where Pige, Ppax, and P; are idle power, maximum power, and total system
power of a single physical server (M), and CPU; is the server’s CPU utilization
where 0 < CPU; < 1.

The objective is to find an optimal schedule that maps all user lease requests
into the smallest number of physical servers in order to minimize total energy con-
sumption of all activated physical machines and to satisfy QoS (e.g. performance,
or resource is available on time for advanced reservation leases [11]). Formally, we
formulate the static VM allocation problem as following:

m
Minimize Z(Pidle + (Pmax - Pidle) X CPU]) X yj
j=1

subject to

rn;

n
Zzuikxikjijij, j=1....m (2)
i=1 k=1

rn;

n
erikxikijijj, j=1,....m (3)

i=1k=1
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rn;

Zzbzkxzkj<BW]Xy17 j=1,...,m (4)
i=1k=1
szlkxlk]<D ijv j=1,...,m (5)

i=1k=1

Zn:zm:xikal, k=1,...,rni (6)

i=1j=1

Z =1 Zk 1 Wik Xikj
U

CPU; = j=1....m @)

where the binary variables x;; € {0,1} and y; € {0, 1}. x; = 1 if and only if
the k™ VM of the lease L; is allocated on the server M i,and y; = 11if and only
if the server M is allocating resources for at least one VM and y; = 0 if and
only if the server M; is in a sleep state. (That is we assume that a server in sleep
state does not consume energy). Equations (2)—(5) are constraints on resources of
each physical server, Eq. (6) describes the fact that each VM will be allocated on
only one physical machine. The CPU utilization of a physical machine is calculated
by Eq. (7). We assume that the CPU utilization is unchanged during an interval of
two continuous events of the scheduler. The energy consumption (E ;) of a physical
machine formulates as:

T
Ej :/ Pj(l)dl ®)
0

The makespan of a schedule (C,,,y), is defined as the maximum of the completion
time of all leases and formulated as: C,;y = max{C(L;)|[i = 1,...,n}, where
the C(L;) is completion time of a lease L;. The C(L;) formulated as C(L;) =
(st; + dur; + tng + 17 + 1""S), where st;, dur;, ing 15, 11" are start time,
duration time, mlgration time, suspend time, and transfemng time of image-disks
of some VMs of the lease respectively.

3.1 A Special Case

Given a set of leases L; (i € [1;n]) to be scheduled on a set of identical physical
servers M; (j € [1;m]). Let us assume that all user leases request only one VM. We
formulate the special lease scheduling with a single-VM problem as following:

m n
Minimize Z EoxT; + Z e;

j=l1 i=1
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where Ey is the base energy consumption of the physical server in a unit of
time, T is the working time of the physical server M; (j € [1;m]), ¢; is the energy
consumption for executing the user lease L; (i € [1;n]).

3.2 Scheduling Algorithm

Our lease scheduling problem is on-line scheduling. The scheduling algorithm is
triggered by an event of a new lease or at a regular interval. Firstly, the algorithm
sorts the list of leases (e.g. best-effort leases, immediate leases, etc.) in a queue
that are ready to run in decreasing order by lease duration. A lease that has longest
duration time will be mapped first. Secondly, the algorithm uses a heuristic (FF-
MAP-H2L or FF-MAP-L2H) for mapping leases onto physical servers in order to
minimize the number of active physical servers. The two allocation algorithms, FF-
MAP-H2L and FF-MAP-L2H, which are discussed in our previous works [9], both
use two ways in sorting the list of physical servers (i.e. in the order of highest to
lowest ranking scores of physical servers and reverse). They allocate a new lease
to some active physical servers such that every VM in the new lease is allocated
successfully. They always sort free load physical servers at the tail of the sorted list
of physical servers. Our energy-aware lease scheduling algorithm is presented in
Algorithm 1.

Algorithm 1 Energy-aware lease scheduling

Input: leases in queue, set of physical hosts

Output: None or a mapping of scheduled leases

1: Q = Sort ready leases in queue in decreasing order of their durations.

2: For each lease [ in the sorted lease queue Q

3: Use FF-MAP-H2L or FF-MAP-L2H to map the lease / to the first active physical server.
4: End For

5: If all leases in the queue are mapped successfully, return the mapping of scheduled leases.

6: Else return None.

In this paper, we extend the FF-MAP-H2L with migration, called (i) PMIG-
LxHy-FF-MAP-H2L and (ii) MIG-LxHy-FF-MAP-H2L. Both of the two algo-
rithms (i) and (ii) do re-scheduling by migrating all of the running leases on physical
servers My (k € [l;m]) that have resource utilization less than a defined low
threshold (x) (e.g. 0.4) and medium threshold (y) (e.g. 0.8). Then the scheduler sets
the servers M}, passive and puts them in energy-saving mode (e.g. sleep, shut down).
A system administrator sets our defined low and medium thresholds. The algorithm
(i) differs from the algorithm (ii) by adding one more step to check whether there
are enough available resources in set S,.q, where Syeq = {M;|Vj € [I;m] Ax <
cpuload(h) < y}, or not before it re-schedules all of the running leases on low
utilization servers.
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We also consider the overheads for migrating leases in both PMIG-LxHy-FF-
MAP-H2L and MIG-LxHy-FF-MAP-H2L. Given a lease L; with set of L;, VMs,
the overhead for migrating the lease L; includes migration time 7", 5 suspend
time and ¢/ resume time of the set of the lease’s VMs. The migration time includes
¢/*™ transferring time of image-disks of these VMs. The scheduler can estimate the
migration time, suspend and resume time before re-schedule the migrated leases in
future. A. Beloglazov’s work [3] did not consider the migration overheads.

For example, consider a lease with two (2) VMs where each VM requires
1,024 MB of physical memory, 4,096 MB of hard disk, a 100 MB/s network, and
a physical memory bandwidth of 32MB/s. Then, we have: £/ = 1/ = 2 x
(1,024/32) = 64.00s, 1" = 2% (4,096/100) = 81.92's. The total migration time
that is the sum of migration, suspend and resume times is 145.92s. Consequently,
the migration time causes the lease’s waiting time increase.

4 Experimental Study

The system architecture of an energy-efficient resource manager for private clouds
was proposed in our previous work [9]. Our proposed system has been deployed
on a system with a cloud management software (e.g. OpenNebula) and a resource
management (e.g. Haizea) in order to set up a private cloud. Figure 1 shows the
proposed system architecture (a) and lease scheduler (b) for provision resources.

We use a script, which is provided by Haizea [11], to run and convert 30 days of
a log trace in Parallel Archive Workload (SDSC-BLUE-2000-3.1-cln.swf [15]). We
did not change information on the number of jobs, the job arrival time, time to finish
the jobs during the conversion. Each simulation will create a total of 5,108 leases.
Each lease has a various number of identical VMs with the same size (e.g. single
core, 1,024 MB of RAM). We assume that the deployment of VMs on physical
servers does not incur overheads. We assume that the simulated cloud data center
has 1,000 homogeneous physical servers. Each physical server has a 16/32-core
CPU. Overheads of re-scheduling include the suspend/resume rate of 32 MB/s and
the network bandwidth of 100 Mbps.

We experimented with the following lease allocation algorithms:

(1) Non Power-Aware Greedy (NPA Greedy): The original greedy algorithm in
Haizea [11].

(2-3)  Our scheduling algorithm with FF-MAP-L2H, FF-MAP-H2L.

(4-6) The PMIG-LxHy-FF-MAP-H2L with three settings at 0.5, 0.4 and
0.3 low-threshold values and 0.8 high-threshold value that are denoted as
PMIG-L50H80-FF-MAP-H2L, PMIG-L40H80-FF-MAP-H2L and PMIG-
L30H80-FF-MAP-H2L.

(7-9) MIG-L50H80-FF-MAP-H2L, MIG-L40H80-FF-MAP-H2L and MIG-
L30H80-FF-MAP-H2L: Running the MIG-LxHy-FF-MAP-H2L with three
settings at 0.5, 0.4 and 0.3 low-threshold values and 0.8 high-threshold value
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Fig. 1 The system architecture: (a) System architecture and (b) Lease scheduler

Table 1 Power consumption (Watt) of two HP Proliant servers (Source from [13, 14])

Platform Pigie(W) Prax(W)
HP Proliant DL585 G5 (2.7 GHz, AMD Opteron 8384) 299 521
HP Proliant DL785 G5 (2.30 GHz, AMD Opteron 8376 HE) 444 799

We collect experimental data on two physical server models: (i) HP Proliant
DL585 G5 (2.7 GHz, AMD Opteron 8384, 16 GB of physical memory) [13]; and
(ii) HP Proliant DL785 G5 (2.30 GHz, AMD Opteron 8376 HE, 32 GB of physical
memory) [14]. Table 1 shows the average active power of both server models.
Tables 2 and 3 show simulation results of the above lease allocation algorithms
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Table 2 Total energy consumption (kWh), total waiting time, and makespan (C,,,,) of lease
allocation algorithms. Each server has 16 cores and 16 GB of physical memory and the power
model of HP Proliant DL585 G5 (Pin = 299W, Pyax = 521W), Toupend = Tresume = 32 MBIs,
network bandwidth is 100 Mbps

Energy Total waiting Total migrated
Algorithm (kWh) time (h) Chax (h) | leases
(1) NPA Greedy 3,287.59 0.000 735.757 0
(2) FE-MAP-H2L 2,736.07 0.000 735.757 0
(3) FF-MAP-L2H 2,741.61 0.000 735.757 0
(4) PMIG-L50H80-FF-MAP-H2L | 2,644.36 | 355.869 737.246 | 483
(5) PMIG-L40H80-FF-MAP-H2L | 2,625.84 | 222.711 735.828 | 300
(6) PMIG-L30H80-FF-MAP-H2L | 2,654.22 | 175.804 736.943 | 223
(7) MIG-L50H80-FF-MAP-H2L 2,682.05 | 158.893 735.757 | 134
(8) MIG-L40H80-FF-MAP-H2L 2,660.86 71.347 735.757 | 165
(9) MIG-L30H80-FF-MAP-H2L 2,674.44 25.438 735757 | 112

Table 3 Total energy consumption (kWh), total waiting time, C,,,, of lease allocation policies.
Each server has 32 cores, 32 GB of physical memory and the power model of HP Proliant DL785
G5 (Pyin = 444W, Ppo = T99W), Tospena = Tresume = 32MB/s, network bandwidth is
100 Mbps

Energy Total waiting Total migrated
Algorithm (kWh) time (h) Chax (h) | leases
(1) NPA Greedy 3,676.35 0.000 735.757 0
(2) FE-MAP-H2L 2,260.60 0.000 735.757 0
(3) FF-MAP-L2H 2,282.37 0.000 735.757 0
(4) PMIG-L50H80-FF-MAP-H2L | 2,165.67 |757.395 736.943 | 464
(5) PMIG-L40H80-FF-MAP-H2L | 2,167.33 | 195.388 736.989 | 297
(6) PMIG-L30H80-FF-MAP-H2L | 2,171.52 | 137.541 735.828 | 225
(7) MIG-L50H80-FF-MAP-H2L 2,215.98 56.566 735.757 | 109
(8) MIG-L40H80-FF-MAP-H2L 2,207.44 | 520.333 735.757 | 113
(9) MIG-L30H80-FF-MAP-H2L 2,197.66 55.699 735757 | 118

on a simulated cluster with 16 and 32 core architectures and compare their total
energy consumption (kWh) to the NPA Greedy algorithm [11]. Figure 2 shows the
total energy consumption (kWh) of each allocation algorithm.

The results show that the energy-aware lease scheduling has the total waiting time
and C,,,, equal to that of the NPA in the experiments. Compared to the NPA, the
energy-aware lease scheduling with both FF-MAP-H2L and FF-MAP-L2H reduces
the total energy consumption in both 16-core and 32-core cases. Our proposed
algorithms reduced total energy consumption that is linear increasing in the number
of cores in each host. Moreover, using the FF-MAP-H2L with migration algorithms
at three (0.5, 0.4, 0.3) threshold values, called PMIG-L50H80-FF-MAP-H2L,
PMIG-L40H80-FF-MAP-H2L, PMIG-L30H80-FF-MAP-H2L, MIG-L50H80-FF-
MAP-H2L, MIG-L40H80-FF-MAP-H2L and MIG-L30H80-FF-MAP-H2L, also



204 N. Quang-Hung et al.

a soo Y - Total Waiting Time- b 2000
— 700 \ (16-core)i ) o 3500 A\
g ] = A— Total Waiting Time .,
2 600 o (32-core) - 3000 e
2 s00 P A £ 2500 \\0 ------ PPN
Ea 400 1 ' —\ = 2000 A -A- ~h-A--k-A -Ak-4A
c .\ L &%
= [ . \ =
£ 300 N 1 g 1500
= I N \ “. 1 \ wi
= 200 3 1000
£ T: =
2 100 . = X "-, \ @ Energy (16-core)
: \‘ ."-.‘ 500 — A- Energy (32-core)
ol atr—ab— % o ‘ ‘

Z 3 3 Z 3 3
= [ v o h .
< =< > =2 =
2 3 3 o £ %
® r - 2 £ £
=N ~ ~ o 1)
2 ISE.- < B I

1ZH-dVIN-44-08H0ST-OIINd
1¢H-dVIN-33-08HO%1-OIINd
1¢H-dVIN-34-08HOET-OIINd
1ZH-dVIN-44-08HOST-9IW
1ZH-dVIN-14-08HOY1-9IN
1ZH-dVIN-44-08HOET-9IN
1¢H-dVIN-44-08H0ST-91Nd
1ZH-dVIN-44-08HOY1-91INd
1ZH-dVIN-44-08HOET-DIINd
1ZH-dVIN-14-08HOST-OIN
1ZH-dVIN-14-08HOYT-OIN
1ZH-dVIN-14-08HOET-OIN

Fig. 2 The total energy consumption (kWh) for the investigated algorithms. (a) Total waiting time.
(b) Total energy consumption

reduced the total energy consumption more than the FF-MAP-H2L, FF-MAP-L2H
and NPA without migration. A disadvantage of these migration algorithms, however,
is the decreasing performance, i.e. these migration algorithms increase the total
waiting time of migrated leases when we consider overheads in migration and
rescheduling these migrated leases. Consequently, C,,,, can be increased.

5 Conclusions and Future Work

This work presents an energy-aware lease scheduling problem and proposes a
scheduling algorithm for lease scheduling problems to minimize the total energy
consumption. The simulation results show that our algorithms reduce the total
energy consumption significantly compared with an existing FCFS-based algorithm
in the Haizea. Our algorithms are also beneficial on multi-core architectures, i.e. the
more cores the machines have, the more the energy consumption is reduced.

In future, we are interested in cloud systems with heterogeneous resources. The
cloud systems will provide resources to many types of leases such as best-effort,
advanced reservation, and immediate leases at the same time. We will investigate
the VM placement problem with multiple resources (e.g. CPU, RAM, network
bandwidth, etc.) and scheduling algorithms to solve the special case of energy-aware
lease scheduling.
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Mathematical Models of Perception
and Generation of Art Works by Dynamic
Motions

Alexander Schubert, Katja Mombaur, and Joachim Funke

Abstract This paper presents a study on the role of dynamic motions in the
creation and perception processes of action-art paintings. Although there is a lot
of interest and some qualitative knowledge around, there are no quantitative models
in the scientific computing sense about this process yet. To create such models and
implement them on a robotic platform is the objective of our work. Therefore, we
performed motion capture experiments with an artist and reconstructed the recorded
motions by fitting the data to a rigid-body model of the artist’s arm. A second
model of a 6-DOF robotic platform is used to generate new motions by means
of optimization and optimal control algorithms. Additionally, we present an image
analysis framework that computes certain image characteristics related to aesthetic
perception and a web tool that we developed to perform online sorting and cluster
studies with participants. We present first results concerning motion reconstruction
and perception studies and give an outlook to what will be the next steps towards an
autonomous painting robotic platform.

1 Introduction

The cognitive processes of generating and perceiving abstract art are — in contrast to
figurative art — mostly unknown. Within the process of perceiving representational
art works, the effect of meaning is highly dominant. In abstract art, with the lack
of this factor, the processes of perception are much more ambiguous, relying on
a variety of more subtle qualities. In this work, we focus on the role of dynamic
motions performed during the creation of an art work as one specific aspect that
influences our perception and aesthetic experience.
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1.1 Action Paintings: Modern Art Works Created by Dynamic
Motions

The term “action painting” was first used in the essay “The American Action
Painters” by Harold Rosenberg in 1952 [1]. While the term ‘“action painting” is
commonly used in public, art historians sometimes also use the term “Gestural
Abstraction”. Both terms emphasize the process of creating art, rather than the
resulting art work, which reflects the key innovation that arose with this new form
of painting in the 1940s to the 1960s. The artists often consider the physical act
of painting itself as the essential aspect of the finished work. The most important
representative of this movement is Jackson Pollock (1912-1958), who introduced
this new style around 1946. Clearly, artists like Pollock do not think actively about
dynamic motions performed by their bodies the way, mathematicians from the area
of modeling and optimal control do. But from a mathematical and biomechanical
point of view it is very exciting that one of the main changes they applied to their
painting style in order to achieve their aim of addressing the subconscious mind has
been a shift in the manner they carry out their motions during the creational process

1.2 Understanding the Perception and Generation of Art Works

Since humans possess many more degrees of freedom than needed to move a hand
(or any end-effector that they might be using for painting, like brushes or pencils),
the motions executed by an artist can be seen as a superposition of goal directed
motions and implicit, unconscious motions. The former are carried out to direct his
hand to the desired position, the latter are the result of some unconscious process
defining a particular style of the motion. From a mathematical perspective, this can
be seen as an implicitly solved optimal control problem with a certain cost function

Fig. 1 An action painting in
the style of Jackson Pollock,
painted by “JacksonBot”
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Fig. 2 Schematic overview of experimental and computational parts of study

relating to smoothness, jerk, stability or energy costs. The assumption that human
motion can be described in this manner has been widely applied and verified, for
example in human locomotion. For details, see [2] or [19].

When looking at action paintings, we note that this form of art generation is a
very extreme form of this superposition model with a negligible goal-directed part.
Therefore, it is a perfect basis to study the role of (unconscious) motion dynamics
on a resulting art work.

The goal of our project is to use state-of-the-art tools from scientific computing to
analyze the impact of motion dynamics both on the creational and perceptual side of
action-painting art works. Figure 2 shows a schematic overview of the experimental
and theoretical parts of our project. On the one hand, we perform perception studies,
in which participants are shown different action paintings and then have to describe
how they perceive these paintings. On the basis of these experiments, models for the
perception of action paintings are established. On the other hand, we have conducted
motion capture studies in which an artist generated action paintings. The painting
process was recorded using several inertia sensors on the artist’s arm and hand which
provide both kinematic and dynamic data. On the basis of these recordings, we
reconstructed and analyzed the artist’s motion. Results from both approaches — on
perception and on the generation of action art — will later be implemented on a
robot for validation purposes. In this paper, we present some preliminary results
on modeling, motion reconstruction as well as on perception studies and our image
analysis framework.

1.3 Paper Outline

This paper is organized as follows: In Sect. 2, we will give an introduction to the
current theory of art perception and an overview of the tools we developed for
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image analysis and online perception experiments. In Sect. 3, we first briefly discuss
the mathematical background of our work by introducing optimal control problems
and the direct multiple shooting method. Then, we describe the reconstruction of
recorded motions from an artist using multibody dynamics and optimal control
theory. Thereafter, we present our plan to create new motions for our robotic
platform by solving an optimal control problem to compute the joint torques.
Finally, in Sect. 4, we conclude our current findings and present the next steps in
our project plan.

2 Modeling the Perception of Art Works

When we talk about models for art perception in this paper, we have to state that we
do not want to create a new qualitative model for art perception but we want to find
quantitative data that link the motion dynamics of the creation process to viewers’
aesthetic experience when looking at the painting. Once we find this data, we aim to
integrate it into existing perception models, possibly modifying or improving them.
Our main goal is, however, to develop a simple mathematical model that allows our
robotic platform to continuously monitor its painting process and to adapt its motion
dynamics considering previously given goals.

2.1 Previous Work/State of the Art

The perception of art, especially abstract art, is still an area of ongoing
investigations. Therefore, no generally accepted theory including all facets of art
perception exists. There are, however, different theories that can explain different
aspects of art perception. One example of a theory of art perception is the one
presented by Leder etal. in [3] (see Fig. 3). In the past, resulting from an increasing
interest in embodied cognition and embodied perception, there has been a stronger
focus on the nature of human motion and its dynamics regarding neuroscience or
rather neuroaesthetics as well as psychology and history of art. There are several
results, showing that we perceive motion and actions with a strong involvement of
those brain regions that are responsible for motion and action generation. These
findings support the theory that the neural representations for action perception and
action production are identical (see, e.g. [4]). The relation between perception and
embodied action simulation also exists for static scenes (see, e.g. [5]) and ranges
even to the degree, where the motion is implied only by a static result of this very
motion. For example, Knoblich etal. showed in [6] that the observation of a static
graph sign evokes in the brain a motor simulation of the gesture, which is required
to produce this graph sign. Finally, in [7], D. Freedberg and V. Gallese proposed
that this effect of reconstructing motions by embodied simulation mechanisms will
also be found when looking at “art works that are characterized by the particular
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Fig. 3 Figure taken from Leder etal. [3]

gestural traces of the artist, as in Fontana and Pollock™ — a conjecture that has first
been observed empirically by Taylor etal. in [8].

2.2 Perception Experiments

This section describes our perception experiments which are performed using a web
interface that we created for this purpose.

We performed two pre-studies to find out, whether human contemplators can
distinguish robot paintings from human-made paintings and how they evaluate robot
paintings created by the robot JacksonBot [17] using motions that are the result
of an optimal control problem with different mathematical objective functions. In
the first study, we showed nine paintings to 29 participants, most of whom were
laymen in arts and only vaguely familiar with Jackson Pollock. Seven paintings were
original art works by Jackson Pollock and two paintings were generated by the robot
platform JacksonBot. We asked the participants to judge which of the paintings
were original paintings by Pollock and which were not, but we intentionally did
not inform them about the robotic background of the “fake” paintings. As might
be expected, the original works by Pollock had a higher acceptance rate, but, very
surprisingly, the difference between Pollock’s and JacksonBot’s paintings was not
very high (2.74 & 0.09 vs. 2.85 £ 0.76, on a scale of 1-5).

In the second study, the participants were shown ten paintings created solely
by the robot platform, but with two different objective functions (maximizing
and minimizing overall angular velocity in the robot arm) in the optimal control
problem. The participants easily distinguished the two different painting styles.

After the pre-studies, we developed a more sophisticated web-based platform for
further, more detailed investigations on this subject.
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The first goal of our detailed perception experiments is to find out about the way,
viewers judge action-art paintings regarding similarity. Therefore, we present a set
of stimuli consisting of original action-art paintings by Pollock and other artists and
added images, that were painted by our robot platform. Participants are then asked
to perform different tasks with these stimuli.

The web-interface provides three different study types for perception analysis. In
the first task, the viewers are presented three randomly chosen paintings and asked
to arrange them on the screen according to their similarity. As a result, for every set
of three paintings A, B, C, we obtain a measure dygc = ij;;}ﬁ for the similarity of
two paintings in comparison with another pair of two paintings.

In the second task, people are basically asked to perform a standard sorting
study, i.e. they are asked to combine similar paintings in groups and to give
some information about their reasons for the chosen groups (Fig.4). The results
of this task are used to validate the information obtained by the previous one and,
additionally, they are used to gain more information about the attributes and traits,
people seem to use while grouping.

Finally, participants are shown images individually and are asked to judge them
on different absolute scales. The results from this task are used to obtain an overall
scaling for the first two tasks.

Once, we have obtained this information for a sufficient amount of robot
paintings, we can use standard procedures from statistics like fuzzy cluster analysis
or multidimenstional scaling to determine whether viewers differentiate between
paintings created by different objective functions or rather whether they rate
paintings created by the same objective function as similar. Additionally, we can link
the given cluster descriptions to certain objective functions (e.g. paintings created by
maximum jerk motions might be clustered together and be described as “aggressive”
or “dynamic”).

Fig. 4 Interface for web-based perception studies
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2.3 Perception Models

As stated in Sect. 2, we want to develop a model that allows our robotic platform to
monitor its painting process using a camera system and — based on an evaluation of
its current status — to change its movement according to predefined goals. Therefore,
we developed an image analysis software tool based on OpenCV for details, see [9]
that uses a variety of different filters and image processing tools that are related to
aesthetic experience. For an overview on the software, see [10]. To give only one
example, Taylor etal. showed in [11] that fractal-like properties of art works might
be of interest, particularly when looking at action-art paintings. We address the
question of fractal-like properties by computing two values: the fractal dimension
D using the “box counting” method and the Fourier power spectrum using FFT. The
fractal dimension is calculated by overlapping the given image with a continuously
refining two-dimensional grid of width €. If N(¢g) is the number of “boxes” that
cover a part of the object of interest, the fractal dimension is given by:

log N
D = lim 22V (1)
e—0 log <
By linking these low-level image features to the viewer’s judgements described
in the previous paragraph, the robot will be able to predict the most likely judgement
of a viewer and to adapt its movement accordingly.

3 Modeling the Generation of Art Works by Dynamic
Motions

As mentioned in Sects. 1.1 and 1.2, the generation of action paintings uses motions
that arise from the subconscious of the artists. Therefore, we cannot try to generate
similar motions by traditional path planning. Instead, we apply our approach of
generating motions as the result of an optimal control problem, which is much more
suited to address this type of motions.

3.1 Mathematical Background

To perform mathematical computations on motion dynamics, we first need to create
models of a human and the robot arm. In this case, by “model”, we mean a physical
multi-body model consisting of rigid bodies which are connected by different types
of joints (prismatic or revolute). Depending on the number of bodies and joints,
we end up with an certain number of degrees of freedom and a set of generalized
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variables ¢ (coordinates), ¢ (velocities), § (accelerations), and 7 (joint torques).
Given such a model, we can fully describe its dynamics by means of

M(q)j + N(g.q) =t 2

where M(q) is the joint space inertia matrix and N(q, §) contains the generalized
non-linear effects. Once we have such a model, we can formulate an optimal control
problem using x = [¢,¢]” as states and u = T as controls. The OCP can be written
in a general form as:

T
min / L(t.x(0).u(t). p)dt + Py (T1.x(T1)  (3)
xauT1 Jp

subject to:
X = f(t.x(1), u(), p) “4)
g(x(@),u(t),p) =0 (5)
rry(x(To), p) + rry (x(T1), p) = 0 ©6)

where p contains several model parameters which in our case are fixed and g
contains constraints like joint and torque limitations. Note, that all the dynamic
computation from our model is included in the RHS of diff.eq. (4), The objective
function is given by the sum of the Lagrange term fTTO " L(t, x(t), u(t), p)dt and the
Mayer term @y, (77, x(T})). The former is used to address objectives that have to be
evaluated over the whole time horizon (such as minimizing jerk), the latter is used
to address objectives that only need to be evaluated at the end of the time horizon
(such as overall time). In our case, we will often only use the Lagrange term. For
details about the specific problems we used, see Sects. 3.3 and 3.4.

To solve such a problem numerically, we apply a direct multiple shooting
method which was developed by Bock and Plitt [12] and is implemented in the
software package MUSCOD-II, which is maintained and developed further at
IWR. It discretizes the continuous formulation of our optimal control problem by
dividing the time horizon in several so-called multiple shooting intervals I;. This
discretization is used both for controls and states, the latter are parameterized as
starting values s; for an initial value problem on each multiple shooting interval /;.
The controls are given by simple base functions i,; (e.g. piece-wise constant, piece-
wise linear or spline functions) for each interval. Additional continuity conditions

X(tj+1,Sj,ljl|1/.) —Sji4+1 = 0
are added for each multiple-shooting-node to ensure a continuous solution. Further

discretization of the constraints and objective function leads to a nonlinear optimiza-
tion problem:
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myin F(y) (7N
subject to:

g(y) =0 ®)

h(y) =0 ©))

where y contains the variables s;, T and the parameters describing the control
base functions u|;;. This problem is then solved by using a specially tailored
sequential quadratic programming (SQP) method. For a more detailed description
of the algorithm, see [12, 13]. Regarding dynamics computation, we use the Rigid
Body Dynamics Library (RBDL) [14] which is an highly efficient C++ library for
forward and inverse rigid body dynamics and includes all major algorithms like the
articulated body algorithm and a recursive Newton-Euler algorithm.

3.2 Previous Work/State of the Art

Optimization and optimal control techniques are very powerful tools that can be
applied concerning many aspects of our research. In this specific case, we use
optimization methods to compute the full trajectory of our robotic platform. Our
basic approach is that humans are unwittingly applying optimization in different
areas like motion control or complex problem solving. As mentioned in Sect. 1.2,
this approach of characterizing human motions as solution of an optimal control
problem has been successfully applied in several areas, particularly in walking
and running motions (see [2, 15]), but also (very recently) regarding emotional
body language during human walking (see [16]). Concerning the application of
our approach on painting motions, a first proof of concept has been given by
our previous robotic platform “JacksonBot”. Even though with “JacksonBot”, the
optimization was purely kinematic with no respect to motion dynamics, paintings
created using different optimality conditions were clearly distinguished by viewers
(see [17)).

3.3 Experiments with Artists

In order to study the way, real human artists move during action-painting, we
performed motion-capture studies. We started with several experiments where we
recorded the motion of a collaborating artist and plan to redo the same experiments
with other artists for validation purposes. We used three inertia sensors to record
dynamic data D pur. for each of the three segments of the artist’s arm (hand, lower
arm, upper arm). To fit this data to our 9 DOF model of a human arm that is based on
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data from deLeva [18], we formulated an optimal control problem which generates
the motion x(t) = [g(¢),4(¢)]7 and the controls u(t) = t(¢) that best fit the
captured data with respect to the model dynamics f.

min > [|D*(x(t:0)) = Docap 1)1 3 o

D*(x(t; o)) resulting from a solution of

XU

Tir
mln/ |:Z OliLi(l,x(t),u(l),p)] dt (11
To

i=1

subject to:
X(t) = f(t,x(1),u), p) (12)
r (x(To), p) + rry (x(T1), p) = 0 (13)
gx(),u(t), p) =0 (14)

The constraints in this case are given by the limited angles of the human arm joints
and torque limitations of the arm muscles. Figure 5 shows the computed states and
the fit quality of the acceleration data for a very dynamic, jerky motion. Note that
for this type of motion, the fact that the angle values are approaching the joint
limitations is plausible.

3.4 Motion Generation for Robot Platform by Means
of Optimal Control

To generate new motions for our robotic platform (a 6-DOF-KUKA arm) we
created a 6-DOF rigid-body-model of the arm. We now can compute end-effector
trajectories as results of optimal control problems with different objective functions.
The mathematical problem is described and solved using the optimal control code
MUSCOD-II as it has been described in Sect.3.1. In this case, we include all
limitations of our KUKA arm using the inequality constraints g(x(¢), u(t), p) > 0
and choose from a set of different objective functions L derived either from our
motion capture experiments or motivated from physical extremes (e.g. maximizing
the torque or minimizing the variance of the angular velocities in all joints).

The paintings created by the robot based on (a superposition of) these objective
functions will be added to the paintings already present in the framework of our
perception studies. This has two major advantages compared to human-created
paintings: First, we know the exact details about the underlying motion dynamics
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and can therefore derive correlations more easy. Second, we can easily create images
specifically suited to an area of interest in our perception study.

4 Summary

An overview of our approach to investigate the influence of dynamic motions on
modern art works was presented. We successfully reconstructed artist’s motions
from dynamic motion-capture data using a rigid-body model of the artist’s arm.
We described the advantages of our optimal control approach to this specific type of
human motions and portrayed the combination of several tools for perception studies
and image analysis with a robotic platform in order to uncover the subconscious
nature of action-painting motions. In the next step, we will use the motion capture
data obtained from experiments with our collaborating artist not only to reconstruct
the motion, but to use an inverse optimal control approach (like successfully used
in a similar case by Mombaur etal. in [19]) to retrieve the underlying objective
functions of these motions. To do so, we will use an efficient direct all-at-once
approach as presented by Hatz etal. in [20]. We will link these objectives both to
low-level image features detected by our image analysis framework and viewers’
judgements derived from our online-tool. That way, we aim to build a database
containing all this information as a foundation to create a feedback for the robot
painting process.
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An Eulerian Interface-Sharpening Algorithm
for Compressible Gas Dynamics

Keh-Ming Shyue

Abstract We describe a novel Eulerian interface-sharpening approach for the
efficient numerical resolution of contact discontinuities arising from inviscid com-
pressible flow in more than one space dimension. The algorithm uses the single-
phase compressible Euler equations as the model system, and introduces auxiliary
differential terms to the model so as to neutralize numerical diffusion that is
inevitable when the original Euler system is solved by a diffused interface method. A
standard fractional-step method is employed to solve the proposed model equations
in two steps, yielding an easy implementation of the algorithm. Preliminary results
obtained using an anti-diffusion based model system are shown to demonstrate the
feasibility of the algorithm for practical problems.

1 Introduction

Computing a non-oscillatory, positivity-preserving, sharply resolved volume frac-
tion function, denoted by o € [0, 1], for the initial-value problem of the volume-
fraction transport equation

dia+u-Va =0 (D)

with discontinuous initial data is of fundamental importance in many practical prob-
lems of interest. One simple example is concerned with an unsteady, incompressible,
viscous, two-phase flow that is governed by the incompressible Navier-Stokes
equations,

V-u=0,
@
9 (pu) + V- (pu®u+ply) =V -1+ pg+1;,
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where u denotes the velocity vector, p the density, p the pressure, Iy the N x N
identity matrix (N the number of spatial dimensions), T = € (Vu + VuT) the stress
tensor, g the gravitational field, and f, = —oxVa the capillary force. We assume
that the fluids of interest consist of two different phases, gas and liquid, for instance,
separated by immiscible interfaces, where in regions « = 0 and o = 1, the fluid
is single phase (gas or liquid), while in regions 0 < o < 1, we have a (gas-liquid)
two-phase coexistent phase. In the latter case, it is a common practice to set the
density as well as the material quantities such as the dynamic viscosity € and the
surface-tension coefficient o by the solution of (1) via a simple a-weighted average,

z=az1+ (1—a)zn

for z = p, €, 0; 7x the kth phasic variable of z. In addition to that, from the given set
of volume fractions, the normal direction Vo and the curvature « = V - (Va/|Va|)
at the interface that contributes to the capillary force f, on the right-hand side of the
momentum equations may be calculated via numerical means.

For incompressible two-phase flow governed by (1) and (2), interface sharpening
of some kind (cf. [1, 8, 15-17] and references therein) is a popular technique that is
applied together with an underlying advection scheme to compute a sharp solution
profile of (1); this yields an accurate definition of the aforementioned physical
and geometrical quantities present in (2) near the interfaces, and is viable to the
remaining parts of the flow solver. Among various interface-sharpening approaches,
in this work, we are interested in a class of methods that is based on the inclusion of
a differential source term to (1) in a form,

1
o, +u-Va = —D,, (3a)
n

as a numerical model for interface-sharpening, where n € R is a free parameter. In
the work proposed by Olsson, Kreiss, and coworker (cf. [9, 10]), the term D, is of
an interface-compression type as

Dy :=V-[(eVa-n—a(l —a))n], (3b)

where both a nonlinear convection and a linear diffusion term are introduced in the
model. Here n = Va/| V| is the unit normal, and & > 0 is the diffusion coefficient
which is assumed to be in the order of the spatial mesh size. On the other hand, in
the work advocated by So, Hu, and Adams [13], it takes simply the linear diffusion
term, but is of an anti-diffusion one, as

D, = -V -(eVa), (3¢)
where the diffusion coefficient ¢ is assumed to be in the order of the velocity vector

in absolute value which mimics the diffusion rate from the modified equation of the
numerical method.
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Our goal here is to describe a novel approach that generalizes (3) for interface-
sharpening of discontinuous volume fractions in incompressible flow to more
general interfaces (i.e., contact discontinuities) that are governed by the Euler
equations in the compressible single-phase flow; an extension of this approach to the
multi-phase case will be reported elsewhere. The proposed model that we are going
to describe in Sect. 2 will be formulated in such a way that a standard fractional-step
method can be applied, yielding a simple and yet accurate algorithm for numerical
approximation.

2 Mathematical Models

The basic physical conservation laws for the inviscid, non-heat conducting, single-
phase, compressible flow in Cartesian coordinates take the form

dp+ V- (pu) =0,
9, (pu) + V- (pu®@u+ply) =0, “4)
E+V-(Eu+ pu) =0.

We assume that the constitutive law for the fluid phase of interest satisfies a Mie-
Griineisen equation of state of the form

P(P, 8) = pref(p) + F(p)p [e - eref(p)] . (5)

Here e denotes the specific internal energy, I" = (1/p)(d.p)|, is the Griineisen
coefficient, and pf, ers are the properly chosen states of the pressure and the
internal energy along some reference curve (e.g., along an isentrope, a single shock
Hugoniot, or the other empirically fitting curves) in order to match the experimental
data of the material being examined. For simplicity, each of the expressions I, pref,
and e is taken as a function of the density only, see Sect.4 for an example. We
have £ = pe + pu - u/2 denoting the total energy as usual.

To derive our compressible model for interface-sharpening that may be used in a
diffused interface method for numerical approximation, as in our previous work for
compressible multiphase flow solver (cf. [12]), we begin by considering an interface
only problem (i.e., a contact discontinuity in gas dynamics) where both the pressure
and the velocity are assumed to be constants in the whole domain, while the density
is having jumps across some interfaces. Then from (4), we find easily the basic
transport equations for the interfaces as

dp+u-Vp=0, (6a)
u(dp+u-Vp) =0, (6b)

%(atwu- Vp) + [0: (pe) +u-V (pe)] = 0. (6¢)
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With the interface-sharpening model (3) for the volume fraction in mind, it should
be sensible to assume a variant model for the density as

1
dgp+u-Vp= ;Dp, (7a)

where the term D, can be defined analogously based on either the interface-
compression or the anti-diffusion formulation. Having that, to ensure the velocity
remains at a constant state across the interfaces Eq. (6b) should be modified by

1
u(dp+u-Vp) = ;u D,. (7b)

Furthermore, to ensure the pressure retains in equilibrium also, using the equation of
state (5) and Eq. (6a), together with a proper smoothness assumption of the density,
it is not difficult to show that Eq. (6¢) should be modified by

. 1 .
5= @up+u- V) + [0 (pe) + - V (pe)] = p (55 + 4 (00)]| D,

(70)

where we have d(pe)/0p = et + pelys — (Iply + (p — pret) ')/ T2 7 = dz/dp
forz = I', pret, and eyes.

Since in general we are interested in shock wave problems as well, we should
apply the interface-sharpening terms described above only locally near the inter-
faces. For this reason, it is common to introduce an interface indicator, denoted by
Hj, to the model so that it takes effect near the interfaces only, and has no effect on
the other genuinely nonlinear shock and rarefaction waves (cf. [11]).

With that, in summary, the interface-sharpening model we propose to solve
inviscid compressible single-phase flows with the Mie-Griineisen equation of
state (5) in Cartesian coordinates takes the form

1
dp+ V- (pu) = ;HID;»
1
9 (pu) + V- (pu®@u+ ply) = ;HIDva (8)
1
GE+ V. (Ell"‘r‘ pll) = —H;Dg.
m

Here, without causing any confusion, in Eq. (8) we have used the notations D, :=
uD,, and Dg := (u-u/2 — d(pe)/p)D,.

To end this section, for the ease of the latter discussion, it is useful to write (8)
into a dimension-wise expression by
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N
1
0ig + Y 0x, fi(g) = V@, (%)

J=1

with g, f;, and ¥ defined respectively by

g = (p,pur,...,puy,E)", (9b)
fj = (puj,puluj + ijl,...,puNuj + ijN,Euj + puj)T , (9¢)
w = HI (Dvapuls s stuNsDE)T ) (9d)

where §;; is the Kronecker delta.

3 Numerical Methods

To approximate (9) numerically, a fractional step method that consists of the
following steps in each time iteration is employed:

(1) Solve the model equation without interface-sharpening terms

N
dig+ Y 0y, fi(g) =0 (10a)

j=1

using a state-of-the-art shock-capturing method over a time step At.
(2) Iterate the equation with the interface-sharpening terms

0.9 = ¥(q) (10b)

using a simple explicit method, over a time step At towards a “sharp layer”;
T =t/ is a scaled time variable.

Note that in step 1 we have used a standard high-resolution finite-volume
method based on a wave-propagation viewpoint for the numerical approximation
of Eq.(10a) (cf. [5]), and in step 2 we have employed an explicit first-order in
time and second-order in space finite difference method for discretizing Eq. (10b)
(cf. [7, 11, 14]). In this work, the local interface indicator H; is defined as a
Heaviside function of form

1 ifz >z,
H = -
1@ 0 otherwise,

where the variable z can be taken as some measure of the physical quantities such
as density, entropy, pressure, and velocity. Alternatively, it can be taken on an
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augmented variable such as the volume fraction that is introduced to Eq. (8) for that
matter. Here zj is some prescribed tolerance on z, see [11] for the other approach.

In the numerical results shown in Sect. 4, an anti-diffusion based model equation
with D, = —V - (¢Vp) is used in the model for approximation. Here the diffusion
coefficient ¢ is chosen to be a function of the local velocity that varies both in space
and time. To stabilize the computation of Vp and so the flux eVp, the MINMOD
limiter is imposed in step 2 of the method (cf. [2, 3]). As to the stopping criterion
towards a “sharp layer”, in practice, only 1 or 2 iterations are sufficient for the
interface-sharpening purpose.

4 Numerical Examples

We now present sample results obtained using our interface-sharpening method with
anti-diffusion based model equations in both one and two dimensions. Additional
results that further validate the proposed method will be reported elsewhere.

Example 4.1. Our first test problem is the classical Sod shock tube problem in
one dimension, where initially the state variables are (p, u;, p)r = (1, 0, 1)
and (p, u;, p)r = (0.125, 0, 1), respectively. Here L is the state used for
x1 € [0,0.5), and R is the state used for x; € [0.5, 1]. The fluid inside the domain is
gas modeled by the ideal gas equation of state p(p,e) = (y — 1)pe with y = 1.4.
There are non-reflecting outflow boundaries on the left and right sides.

In Fig. 1, we show interface-sharpening results for the density, velocity, and
pressure at time t+ = 0.15 using a 100 grid. It is easy to see that our interface-
sharpening algorithm works in a satisfactory matter on the interface without
introducing any spurious oscillations in the pressure, while retaining the same
solution structure in the region of shock and rarefaction waves.

density velocity pressure

Fig. 1 Interface-sharpening result for the Sod shock tube problem at time ¢ = 0.15 using a 100
grid. The solid line shown in the graph is the exact solution
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Example 4.2. Our second example in one dimension is an impact problem in
which a pre-compressed semi-infinite aluminum slab at rest with (p, p) =
(4,000 kg/m?, 7.93 x 10° Pa) is being hit by an ambient aluminum slab traveling at
the speed 2 km/s from the right to the left with the reference state (o, p) = (po, po)-
We assume that the constitutive law of an aluminum satisfies the Mie-Griineisen
equation of state (5) with I, prf, and er defined by

,0003 n

(1 —sn)?

where the numerical values of the material constants are taken to be py =
2,785kg/m?, po = 0,¢o = 5,328 m/s, s = 1.338, Iy = 2,anda = 139 = 1—po/p.

In this setup, it is not difficult to show that the exact solution of this problem
would consist of a leftward going shock wave to the stationary aluminum, a material
interface, and a rightward going shock wave to the moving aluminum. Figure 2
shows results with and without interface-sharpening at time t = 50 s using a 200
grid. From the figure, we observe a slight improvement on the interface structure,
see [12] also for a similar calculation.

I(p) =1 =0  prilp) = eret(p) = Z—ZO (Po + Pret(p)) .

Example 4.3. We are next concerned with a passive evolution of a two-dimensional
square column of size (x;,x;) € [0.3,0.7] x [0.3,0.7] m? in a unit square domain
with uniform equilibrium pressure p = 10°Pa and constant particle velocity
(u1, up) = (10> m/s, 10%> m/s). In this test, the density in the region inside a
square column is 1,500 kg/m3, anditis 1,000 kg/m3 otherwise. We use the linearized
Mie-Griineisen equation of state p(p,e) = (y — 1) pe + ¢3 (p — po) to model the
material in the whole domain with the material-dependent quantities taken to be
y = 44, pp = 1,000kg/m3, co = 1,624 m/s. Figure 3 shows contour plots of
the density obtained using the method with and without interface-sharpening at
time t = 0.02s using a 100 x 100 grid. An excellent interface-sharpening result

density velocity pressure
4.5 q

=

3 O  sharpen ® .
x no sharpen
exact
25 2
0 0.5 1 1
X X X

Fig. 2 Interface-sharpening result for the aluminum impact problem at time ¢ = 50 s using 200
grids. The solid line shown in the graph is the exact solution and the symbol “X” is the result
obtained using the method without interface-sharpening
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Fig. 3 Numerical results for With anti-diffusion Without anti-diffusion
a passive evolution of a
square column. Contours of
the density are shown at time
t = 0.02 s obtained using the
method with and without
interface-sharpening on a
100 x 100 grid

is observed, whereas a severely diffused interface is seen using the standard high-
resolution method. Here periodic boundary conditions are used on all sides.

Example 4.4. Our second example in two dimensions is a Mach 3 shock wave in air
interacting with a heavier circular gas column. In this test, we take a shock tube of
size (x1,x2) € [—1, 1] x [0,0.5] m?, and consider a planarly leftward-moving shock
wave with initial position x; = 0.7 m and states in the pre- and post-shock as

(p. U1, Uz, P)preshock = (1 kg/m®, 0, 0, 10° Pa)
(o, w1, U2, P)posishock = (3.857 kg/m®, —831.479 m/s, 0, 1.033 x 10° Pa),

respectively. In addition to that, we assume a stationary heavier circular gas column
with radius 0.2 m and center (0.4,0) m lying in front of the shock. Inside the gas
column the flow is in standard atmospheric condition with density p = 10kg/m’;
this gives us one example that the interface is accelerated by a shock wave coming
from the light-fluid to the heavy-fluid region, yielding a transmitted shock wave, an
interface, and a reflected shock after the interaction. As in Example 4.1, the fluid
under consideration is an ideal gas with y = 1.4.

In Fig. 4, we show schlieren images of density obtained using the method with
and without interface-sharpening at six different times t = 2/ x 10~ ms for i =
1,2,...,6, with a 800 x 200 grid. It is interesting to see that as far as the global
wave structure (i.e., the shape and location of the incident, transmitted and reflected
waves) is concerned, we observe similar behavior of the solutions between those
two. However, a sharper resolution of the contact line is observed when our anti-
diffusion method is in use.

Example 4.5. Finally, we are interested in a model blast wave problem with
complex wave interactions and a general equation of state. As initial condition,
we have a stationary circular gaseous explosive charge of radius 0.1 m and center
(0,0.25) m located in a rectangular domain (x;, x5) € [—1, 1] x [0, 1] m?. Inside the
circular region, the density and pressure are p = 1,700 kg/m® and p = 10'?Pa,
while outside the circular region, we have p = 1,000kg/m> and p = 5 x 10'°Pa.
The material in the entire domain is modeled by the Jones-Wilkins-Lee equation of
state for gaseous explosives (cf. [4]) in that it takes the form (5) with
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top: with sharpening time=0.4m tEmeJU.Gms
bottom: no sharpening

time=0.2ms

time=0.8ms time=1ms time=1.2ms

Fig. 4 Numerical results for a Mach 3 shock wave in air interacting with a heavier circular gas
column. Schlieren images of density are shown at six different times ¢t = 2/ X 10~ ms for i =
1,2,..., 6, obtained using the method with and without interface-sharpening (drawn on the rop

and bottom parts of each graph, respectively) with a 800 x 200 grid

RV R,V
F(V) = FO? pl'Cf(V) = A exp( Vl ) + B exp( V2 )a
0

0
AV RV BV, —R,V
eer(V) = Rloexp( Vol )+T2°exp( Vj )_e‘”

where V' = 1/p is the specific volume. The material-dependent quantities we use
in the simulations are Iy = 0.28, py = 1,640kg/m3, ep = 0, A = 494GPa,
B = 1.21GPa, R} = 4.94, and R, = 1.21. The boundary conditions are solid
walls on the top- and bottom-side, and non-reflecting on the left- and right-side.

In this problem, due to the pressure difference, breaking of the circular membrane
occurs instantaneously, yielding an outward-going shock wave, an inward-going
rarefaction wave, and a contact discontinuity lying in between. At a later time, this
outward-going shock wave is reflected from the bottom wall, and so the inward-
going rarefaction is bounced back from the explosive center; this generates complex
wave interactions afterwards.

Figure 5 shows schlieren images of density at three different times r = 18, 36,
and 72 ps. Here we have performed the computations using both the anti-diffusion
based interface-sharpening method with a 400 x 200 grid, and also the local adaptive
mesh refinement (AMR) version of the method without anti-diffusion (cf. [6]). In
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With interface-sharpening With AMR

t=18us

t=36us

Fig. 5 Numerical results for a blast wave problem in two dimensions. Schlieren images of density
are shown at three different times ¢ = 18, 36, 72 s obtained using the methods with anti-diffusion
(the left column) and with local adaptive mesh refinement (the right column)

the later AMR runs, the base grid used here is 200 x 100 and with a two-level of grid
refinement; the refinement ratio is 4 for each level of grid, i.e., in the refined region
the mesh size is twice smaller than in the anti-diffusion runs. From the figure, we
observe the same qualitative structure of solution between them, especially on the
structure of shock waves; this is as expected because for the Euler equations without
any source terms the shock wave is stable under mesh refinement. This is not the
case, however, for interfaces (contact discontinuities); a difference in the solution
then occurs due to the perturbation of complex wave interactions upon them.

5 Conclusion

We have described a class of interface-sharpening methods for single-phase com-
pressible flow with interfaces. Numerical validation of the proposed methods using
an anti-diffusion based model system has been performed. It shows the feasibility
of the algorithm for sharpening compressible interfaces numerically in one and
two dimensions. Ongoing work is to validate the method using the interface-
compression based model, and extend the method to compressible multiphase flow
and to mapped grids with complex geometries.
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Numerical Simulation of the Damping Behavior
of Particle-Filled Hollow Spheres

Tobias Steinle, Jadran Vrabec, and Andrea Walther

Abstract In light of an increasing awareness of environmental challenges, exten-
sive research is underway to develop new light-weight materials. A problem arising
with these materials is their increased response to vibration. This can be solved using
a new composite material that contains embedded hollow spheres that are partially
filled with particles. Progress on the adaptation of molecular dynamics towards a
particle-based numerical simulation of this material is reported. This includes the
treatment of specific boundary conditions and the adaption of the force computation.
First results are presented that showcase the damping properties of such particle-
filled spheres in a bouncing experiment.

1 Motivation

The quality of industrial machines suffers because of vibration due to their opera-
tion. To improve the quality of such products, it is important to find possibilities
to suppress this unwanted side-effect. Adding massive material to the assembly
is the classical way to achieve this. However, to reduce manufacturing costs and
the impact on the environment (for instance, by saving energy), it is also desirable
to construct machines that are as lightweight as possible. Therefore, an extensive
effort in research of lightweight materials is underway. The Fraunhofer Institute of
Advanced Manufacturing Technology and Materials (IFAM) in Dresden studies and
manufactures structures constructed from hollow spheres. These structures can be
used, e.g., in a sandwich configuration within the casings of machines, cf. Fig. 1.
To combine lightweight materials with vibration damping, research is now being
focused on particle-filled hollow sphere structures, cf. Fig.2. The inclusion of a
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ceramic powder inside the hollow spheres leads to a high damping [6]. Such a
material possesses several properties that make its application very attractive. For
instance, because of the metallic nature of these spheres, they are resistant to
solvents and because of their small size, as an ensemble they can easily be adapted
to a broad variety of shapes. To couple the spheres, different techniques can be
employed, for instance, using glue, solder or embedding them into a matrix.

As a measure for the damping, the time between two bounces of a single sphere
is used. The IFAM has an experimental test setup for this purpose that records the
sound of the collisions with a fundament. Obtaining a numerical simulation to study
the damping influence of the particles in this bouncing experiment is the goal of
this work. This would allow for parameter studies, for example with respect to
the optimal size or number of particles within the sphere. First simulations were
conducted by Blase [1] for the two-dimensional case. She used a collision detection
approach such that the system temporally evolved from collision to collision
between the hull of the hollow sphere and a particle or between two particles. As

Fig. 2 Schematic cross-section
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the number of particles increases, this detection scheme breaks down due to the
numerical effort. It has to be noted that within a single sphere, up to 2 - 10° particles
have to be considered. Therefore, the high complexity of this approach requires a
different method when expanding the simulation to the three-dimensional case. This
alternative approach should thus be based on a time integration method.

2 Molecular Dynamics

For the simulation of the dynamic behavior of the filled spheres, the tracking of
the translational and rotational movement of all enclosed particles is required.
To achieve this, a variety of methods is available. One of them is molecular
dynamics (MD), which typically considers the trajectories of molecules on the
nanoscopic scale. MD simulations are able to track trillions of molecules [2]. Based
on a program that is available at the University of Paderborn and was originally
developed by Mader [7], an adaption to the present case is underway.

To compute the translational propagation of a particle i, the Newtonian equation
of motion has to be considered

. _l
X, =m; F;,

where x; is the position of the particle in space, and F; and m; denote the force

acting on the particle and its mass, respectively. Rewriting this second order ordinary

differential equation (ODE) as a system of first order ODE leads to
\.’,'Za,'Zmi_lFi, XiZVi.

Here, v; is the velocity and a; the acceleration of the particle i. Using a Taylor

expansion, these equations can be numerically solved over time using an explicit
Leapfrog scheme [4]

1 1
Vit =T L drm (1)

1 1

+1
X' =X drv 7 @

Note that the solutions for the velocities and positions of the particles are obtained

alternatingly at each half time-step, giving the Leapfrog scheme its name.
Analogously to the translational movement, for the rotational movement of

particle i, the angular velocity and the orientation 6; in space are needed. The
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angular velocity w; is defined in terms of the angular momentum j; and the moment
of inertia tensor I;

wi =6; =L . (3)
The torque 7; is the rate of change of the angular momentum

_di

= “

Subsequently, Taylor expansions of Eqgs. (3) and (4) can be integrated to obtain
the desired physical properties. For the orientation q; in space, Fincham’s explicit
rotational quaternion algorithm [3] was used that reduces the complexity of this
calculation by saving one vector product evaluation. For the main part of the
algorithm, Fincham proposed a quaternion representation matrix Q(q;) and a
modified angular velocity w; to obtain the spatial orientation. The change of the
orientation over time is

dq;
o 0(q;)w; .

On that basis, q; can be obtained with a Taylor expansion. The main equations of
the rotational leapfrog scheme are

.n+% n—1i

i =0 4T

" P YR
o =qi+ 500w

Combined with Egs.(1) and (2), this then gives a full representation of the
translational and rotational movement of a particle over time.

The forces and torques acting on the particles in are based on a pair-potential U
which describes the force that one particle exerts on another particle as a function
of their mutual distance. The force is given by the derivative of the potential with
respect to their distance r;;

du

Fj=——".
/ dl‘ij

A popular interaction potential used in MD is the Lennard-Jones 12-6 potential

o 12 o 6
y y

where o denotes the size parameter of the considered particle and ¢ is the depth of
the potential well (cf. Fig. 3).
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Fig. 3 Lennard-Jones potential

During simulation, the inter-particle potential (5) is only evaluated up to a
certain cut-off distance r. around each particle, because particles that are far apart
from each other interact only weakly. Additionally, cutting off the potential saves
computational effort. Due to the steep slope of the potential, particles that are very
close to each other will exert a large repulsive force, while particles further apart
will attract each other. This behavior models real-world atomistic forces (repulsion
by electronic overlap and attraction by dispersion) reasonably well.

3 Adapting Molecular Dynamics to Particle Dynamics

While MD methods are well suited for simulating the behavior of molecules on the
nanoscopic scale, several adjustments have to be made for the present application
where mesoscopic particles are considered. For instance, the periodic boundary
conditions, that are usually assumed in MD, have to be changed to reflective
boundary conditions for the interactions of the particles with the hollow sphere.
In this work, two approaches were followed.

The first approach uses the conservation law of momentum to derive the
velocities of the particles ¥, and the hollow sphere V, after their eventual collision

mplvp|+ms|vs| :mp|€’p|+ncls|€’€| . (6)
For each time step, the masses and velocities of particles that are reflected by the
hull are accumulated in a substitute particle with corresponding total mass m,, and

velocity v,,. Combining the definition of the coefficient of restitution (COR)

A
Vol — vl
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Fig. 4 Exponential barrier potential

with Eq. (6), the solution for the velocities of the reflected particles and the hull after
central inelastic collisions are obtained by

Vo = Vs + =22 (1 4 &) (Vi — Vy), @)

mg+ny,

Vo=V, + msnj_“mp 1+ &) (vs—v,) .
To account for the shape of the sphere, the resulting velocities of the particles are
subjected to a reflection with the tangential plane at the point of impact. If n is the
normal vector of that tangential plane and v, the velocity of the particle after the
reflection, the new velocity vector V,, is obtained by rotating ¥, around n by 180°.
Therefore, the resulting velocity of the skewed collision is

Vp-n

[In]?

Vor =V, —2 n,
with ¥, according to Eq. (7). If the COR is known, this gives an exact computation
of the reflection. However, this discrete mechanical approach disrupts the otherwise
continuous, potential-based nature of MD.

The second approach thus uses an interaction potential between the particles and
for the spheric hull. As particles approach the hull of the sphere, the forces arising
from the potential are evaluated. To prevent particles from exiting the sphere, an
exponential barrier potential was used

Uep(r) =8 - (exp (r) — r), ®)

where § controls the force of the interaction and r is the distance between the particle
and the hull of the sphere (cf. Fig.4). For the collisions between particles, the LJ
potential was used. To avoid attracting forces, the cut-off radius was selected as

1
r. = 2%60.
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Fig. 5 Particle consisting of eight spheres

In this way, the potential is O when particles have a distance greater than r. where
it would normally be attracting. Also, the force reaches 0 at r. while staying
continuously differentiable. This homogenizes the overall approach to use only
continuous potentials for all interactions.

The particles that are filled into the hollow sphere are manufactured using a
complex process during which they assume different shapes and sizes. Common
shapes include cylinders and spheres as well as particles with rugged edges
and hooks. In MD, the same variation has to be considered, when simulating
different molecule species. There, molecules are assembled from several spheres
in a molecule-fixed coordinate system. This approach can be used for the particles
considered here as well. Different shapes can be built from elementary spherical
shaped parts and the number of each particle type can be specified as input for the
algorithm (cf. Fig. 5).

For the initial configuration, instead of the regular lattice often used in MD, the
particles were aligned in a spherical shape using spherical coordinates such that
they do not overlap. The particle types were then randomly distributed throughout
the initial configuration. In the present simulation, the particles were dropped first in
the spherical hull and were given time to settle at the bottom. After this preparation,
the particle-filled sphere was dropped towards the fundament. Thus, for the damping
behavior, the initial setup was irrelevant. Figure 6 shows the initial configuration of
2 - 10* particles using the visualization tool MegaMol of the VISUS group at the
University of Stuttgart [5].

4 Results

To study the damping behavior of the particle-filled spheres, the experimental setup
of the IFAM was modeled in the computer. A sphere was dropped from a certain
height hy. To measure the damping, the time interval A¢ between the first two
bounces was sampled. The comparison with the bouncing time interval of an empty
sphere gives a good indication of the damping due to the particles. According to
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Fig. 6 Initial configuration with 2 - 10* particles

Jehring et al. [6], the resulting COR of the system can then be obtained using the
equations of the vertical throw. It evaluates as

g
r = ——At? s
=\ 8ho

where g is the gravitational acceleration. It was aimed at a comparison of this
experiment with the present numerical simulations. A single hollow sphere with
a diameter of 3 mm and a mass of 12.518 mg was considered that was dropped onto
a fundament from a height of 1.5 mm. The spherical particles in the hollow sphere
had a uniform diameter of 31 um and a mass of 41 ng. For the reflection of the
sphere on the surface, a barrier potential similar to Eq. (8) was used. The sphere was
treated as a particle approaching the fundament with the imposed barrier potential
for the interaction and rebound. The cut-off radius was set to 35 um. The numerical
results were obtained on the OCuLUS computer at the Paderborn Center for Parallel
Computing (PC?). Table 1 lists the preliminary results that were obtained with a time
step of 1 ws. Figure 7 shows the results for a variety of different time steps. For too
large time steps, such as 5 s, the simulation leads to false results due to inadequate
numerical integration of the equations of motion. However, the choice of the time
step size has no significant influence on the damping behavior as soon as it is small
enough to discretize the particle motions and a reasonably large number of particles
is used in the experiment.

As can be seen, the number of particles has a large effect on the damping. It is
expected from the physical experiments that as the number of particles increases,
reducing Atz further at first, the damping properties of the filled hollow sphere
will eventually start to deteriorate and approach the behavior of a solid sphere.
Quantifying the number of particles when this happens is of great interest.
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Table 1 Time interval Az between the first and second bounce on the fundament

Particles At (ms) & Particles At (ms) &
50 34.66 0.3134 2,500 34.33 0.3104
100 34.66 0.3134 5,000 34.02 0.3076
250 34.54 0.3123 7,500 32.92 0.2977
500 34.56 0.3125 10,000 32.41 0.2930
750 34.52 0.3121 12,500 31.97 0.2891
1,000 34.62 0.3130 15,000 31.62 0.2859
1,500 34.46 0.3115 17,500 31.35 0.2835
2,000 34.35 0.3106 20,000 30.76 0.2781
36
o 0.01ps
o 0.05ps
35& N o 0.1ps ||
g v 1us
, a4l 0088 v A 2ps
€
b
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Fig. 7 Simulation results for different time step lengths

5 Future Work

As can be seen from the computation times in Fig. 8, the complexity of the standard
MD algorithm is O(N?), where N is the number of particles. Therefore, when
larger particle numbers have to be considered, adaptations must be made to achieve
reasonable computing times. One approach is the linked cell algorithm [4]. This
algorithm retains the basic structure of the MD algorithm, but makes a crucial
adaptation in the force computation algorithm. By dividing the simulation volume
into equally sized cells when computing the forces that act on a certain particle,
only particles in the same cell and in neighboring cells have to be considered. This
reduces the complexity to O(N) [4]. However, the linked cell algorithm works best
when the particles are evenly distributed throughout the simulation volume. In the
present case, the particles tend to accumulate over time at the bottom of the hollow
sphere, which results in a few cells that are crowded and many cells that do not
contain any particles. To cope with this aggregation, the cells need to adapt to that
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situation to retain the efficiency of the algorithm. This will be the subject of future
work.

Increasing the particle number will allow to directly compare results from
numerical simulation to physical experiments. To simulate the material on a larger
scale, a significant number of filled spheres must be considered. The simulation
therefore has to be extended in this respect. The nature of coupling between the
different parts needs to be evaluated carefully as different types of assembly can be
manufactured, e.g. by gluing or soldering. Deformations of the spheres occurring in
the material may have to be considered as well. Natural parallelization by assigning
a single sphere to each process should yield reasonable computing times for the
numerical simulation of this complex material when combined with the linked cell
algorithm.

6 Conclusion

Progress on the simulation of particle-filled spheres by adaption of molecular
dynamics was presented. Preliminary results show the effect of an increasing
number of particles on the damping of a filled hollow sphere. The dramatic effect
of the particles seen in the physical experiment can also be seen in the numerical
simulation. The complexity of the algorithm has to be improved, e.g., by an adapted
linked cell algorithm, to allow for larger particle numbers. The modeling of friction
between particles also plays an important role and there are several approaches that
have to be evaluated.
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FSSP Algorithms for Square and Rectangular
Arrays

Hiroshi Umeo

Abstract The synchronization in cellular automata has been known as firing
squad synchronization problem (FSSP) since its development. The firing squad
synchronization problem on cellular automata has been studied extensively for more
than fifty years, and a rich variety of synchronization algorithms has been proposed
not only for one-dimensional arrays but also for two-dimensional arrays. In the
present paper, we focus our attention to the two-dimensional array synchronizers
that can synchronize any square/rectangle arrays and construct a survey on recent
developments in their designs and implementations of optimum-time and non-
optimum-time synchronization algorithms for two-dimensional arrays.

1 Introduction

Synchronization of large scale networks is an important and fundamental computing
primitive in parallel and distributed systems. We study a synchronization problem
that gives a finite-state protocol for synchronizing cellular automata. The syn-
chronization in cellular automata has been known as firing squad synchronization
problem (FSSP) since its development, in which it was originally proposed by J.
Myhill in Moore [8] to synchronize all parts of self-reproducing cellular automata.
The problem has been studied extensively for more than 50 years [1-28].

In the present paper, we focus our attention to two-dimensional (2D) array
synchronizers that can synchronize square/rectangle arrays and construct a survey
on recent developments in designs and implementations of optimum-time and
non-optimum-time synchronization algorithms for the two-dimensional arrays.
Specifically, we attempt to consider the following questions:

* Is there any new 2D FSSP algorithm other than classical ones?
* What is the smallest 2D synchronizer?
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* How can we synchronize 2D arrays with the general at any position?
* How do the algorithms compare with each other?
* Can we extend the 2D synchronizers proposed so far to three-dimensional arrays?

Generally speaking, in the design of 2D synchronizers, configurations of a one-
dimensional synchronization algorithm are mapped onto a 2D array through a
mapping scheme so that all of the cells on the 2D array would fall into a final
synchronization state simultaneously. The mapping schemes we consider include
a rotated L-shaped mapping, a zebra mapping, a diagonal mapping, and a one-
sided recursive-halving marking based mapping. All mappings will be employed
efficiently in the design of 2D FSSP algorithms for square and rectangle arrays.
Due to the space available we omit the details of those algorithms and their
implementations.

2 Firing Squad Synchronization Problem

2.1 FSSPon ID Arrays

The firing squad synchronization problem (FSSP, for short) is formalized in terms
of the model of cellular automata. Consider a one-dimensional (1D) array of finite
state automata. All cells (except the end cells) are identical finite state automata.
The array operates in lock-step mode such that the next state of each cell (except
the end cells) is determined by both its own present state and the present states of
its right and left neighbors. Thus, we assume the nearest left and right neighbors.
All cells (soldiers), except one general cell, are initially in the quiescent state at
time ¢ = 0 and have the property whereby the next state of a quiescent cell having
quiescent neighbors is the quiescent state. At time ¢ = 0 the general cell is in the
fire-when-ready state, which is an initiation signal to the array.

The FSSP is stated as follows: Given a 1D array of n identical cellular automata,
including a general at one end that is activated at time ¢ = 0, we want to design the
automata M = (Q, §) such that, at some future time, all the cells will simultaneously
and, for the first time, enter a special firing state, where Q is a finite state set
and § : Q% — Q is a next-state function. The tricky part of the problem is that
the same kind of soldier having a fixed number of states must be synchronized,
regardless of length n of the array. The set of states and next state function must be
independent of n. Figure 1 is a space-time diagram for the optimum-step firing squad
synchronization algorithm. The general at left end emits at time ¢+ = 0 an infinite
number of signals which propagate at 1/(2¥T1—1) speed, where k is positive integer.
These signals meet with a reflected signal at half point, quarter points, ..., etc.,
denoted by © in Fig. 1. It is noted that these cells indicated by ©® are synchronized.
By increasing the number of synchronized cells exponentially, eventually all of the
cells are synchronized.
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Fig. 1 Space-time diagram Cellular Space
for optimum-time firing
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algorithm
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The problem was first solved by J. McCarthy and M. Minsky who presented a 3n-
step algorithm for 1D cellular array of length 7. In 1962, the first optimum-time, i.e.
(2n — 2)-step, synchronization algorithm was presented by Goto [4], with each cell
having several thousands of states. Waksman [28] presented a 16-state optimum-
time synchronization algorithm. Afterward, Balzer [1] and Gerken [3] developed
an eight-state algorithm and a seven-state synchronization algorithm, respectively,
thus decreasing the number of states required for the synchronization. Mazoyer [7]
developed a six-state synchronization algorithm which, at present, is the algorithm
having the fewest states for 1D arrays. In the sequel we use the following theorem
as a base algorithm in the design of 2D array algorithms.

Theorem 1 (Goto [4], Waksman [28]). There exists a cellular automaton that can
synchronize any 1D array of length n in optimum 2n — 2 steps, where an initial
general is located at a left or right end.
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Fig. 2 A two-dimensional
(2D) cellular automaton

Csn

Cmn

2.2 FSSPon 2D Arrays

Figure 2 shows a finite 2D array consisting of m x n cells. Each cell is an identical
(except the border cells) finite-state automaton. The array operates in lock-step
mode in such a way that the next state of each cell (except border cells) is determined
by both its own present state and the present states of its north, south, east and west
neighbors. Thus, we assume the von Neumann-type four nearest neighbors. All cells
(soldiers), except the north-west corner cell (general), are initially in the quiescent
state at time t = O with the property that the next state of a quiescent cell with
quiescent neighbors is the quiescent state again. At time + = 0, the north-west
corner cell Cy is in the fire-when-ready state, which is the initiation signal for
synchronizing the array. The firing squad synchronization problem is to determine
a description (state set and next-state function) for cells that ensures all cells enter
the fire state at exactly the same time and for the first time.

A rich variety of synchronization algorithms for 2D arrays has been proposed.
Concerning the rectangle synchronizers, see Beyer [2], Shinahr [10], Schmid [9],
Szwerinski [11], Umeo [12], Umeo [13], and Umeo, Hisaoka, and Akiguchi [14].
As for square synchronization which is a special class of rectangles, several square
synchronization algorithms have been proposed by Beyer [2], Shinahr [10], and
Umeo, Maeda, and Fujiwara [20]. In recent years, Umeo and Kubo [18] developed
a seven-state square synchronizer, which is a smallest implementation of the
optimum-time square FSSP algorithm, known at present. One can easily see that
it takes 2n — 2 steps for any signal to travel from C;; to C,, due to the von
Neumann neighborhood. Concerning the time optimality of the two-dimensional
square synchronization algorithms, the following theorems have been established.

Theorem 2 (Beyer [2], Shinahr [10]). There exists no 2D cellular automaton that
can synchronize any square array of size n x n in less than 2n — 2 steps, where the
general is located at one corner of the array.
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Theorem 3 (Shinahr [10]). There exists a 17-state cellular automaton that can
synchronize any square array of size n X n at exactly 2n — 2 optimum steps.

The lower bound of the time complexity for synchronizing rectangle arrays is as
follows:

Theorem 4 (Beyer [2], Shinahr [10]). There exists no cellular automaton that can
synchronize any rectangle array of size m X n in less than m + n + max(m,n) — 3
steps, where the general is located at one corner of the array.

Theorem 5 (Beyer [2], Shinahr [10]). There exists a cellular automaton that can
synchronize any rectangle array of size m x n in exactly m + n + max(m,n) — 3
steps, where the general is located at one corner of the array.

3 Rotated L-Shaped Mapping Based Algorithm .4,

The first 2D synchronization algorithm was developed independently by Beyer [2]
and Shinahr [10]. It is based on a simple mapping which embeds a 1D optimum-
time FSSP algorithm onto L-shaped sub-arrays composing a 2D array. We refer the
embedding as rotated L-shaped mapping.

The algorithm for 2D square arrays operates as follows: By dividing an entire
square array of size n xn into n rotated L-shaped 1D arrays, shown in Fig. 3 (left), in
such a way that the length of the i th (from outside) L-shaped array is 2n—2i +1 (1 <
i < n). One treats the square synchronization as n independent 1D synchronizations
with the general located at the bending point of the L-shaped array. We denote the
ith L-shaped array by L; and its horizontal and vertical segment is denoted by L
and LY, respectively. Note that a cell at each bending point of the L-shaped array is
shared for each synchronization by the two segments. See Fig. 3 (left). Concerning
the synchronization of L;, it can be easily seen that a general is generated by the
cell C;; at time + = 2i — 2 with the four nearest von-Neumann neighborhood
communication, and the general initiates the horizontal (row) and vertical (column)
synchronizations on LI and LY, each of length n — i + 1 using an optimum-time
synchronization algorithm which can synchronize arrays of length £ in 2 — 2 steps
(Theorem 1). For each i, 1 <i < n, the ith L-shaped array L; can be synchronized
attimet = 2i — 2+ 2(n —i + 1) —2 = 2n — 2. Thus the square array of size
n xn can be synchronized at time t = 2n —2 in optimum-steps. In Fig. 3 (left), each
general is represented by a black circle e in a shaded square and a wake-up signal
for the synchronization generated by the general is indicated by a horizontal and
vertical arrow. Shinahr [10] gave a 17-state implementation based on Balzer’s eight-
state synchronization algorithm (Balzer [1]). Later, it has been shown in Umeo,
Maeda and Fujiwara [20] that nine states are sufficient for the optimum-time square
synchronization:

Theorem 6 (Umeo, Maeda, and Fujiwara [20]). There exists a nine-state 2D CA
that can synchronize any n X n square array in 2n — 2 steps.
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Fig. 3 A synchronization scheme based on rotated L-shaped mapping for n X n square cellular
automaton (left) and zebra mapping for n X n square cellular automaton (right)

The first optimum-time rectangle synchronization algorithm was developed by
Beyer [2] and Shinar [10] based on the rotated L-shaped mapping. The rectangular
array of size m x n is regarded as min(m, n) rotated L-shaped 1D arrays, where they
are synchronized independently using the generalized firing squad synchronization
algorithm. The configurations of the generalized synchronization on 1D array are
mapped onto the 2D array. Thus, an m X n array synchronization problem is
reduced to independent min(m, n) 1D generalized synchronization problems such
that P(m,m+n—1),P(m—1,m+n-3), ..., P(l,n—m—+1)inthecase m <n
and Pm,m+n—1),P(m—1,m+n-3), ..., P(m—n+1,m—n+1) in the case
m > n, where P (k, £) means the 1D generalized synchronization problem for £ cells
with a general on the kth cell from left end. Beyer [2] and Shinahr [10] presented
an optimum-time synchronization scheme in order to synchronize any m X n arrays
inm + n + max(m, n) — 3 steps. Shinahr [10] has given a 28-state implementation.
Umeo, Ishida, Tachibana, and Kamikawa [16] gave a precise construction of the
28-state automaton having 12,849 rules.

Theorem 7 (Shinahr [10]). There exists a 28-state cellular automaton that can
synchronize any m X n rectangular arrays in optimum-time m + n + max(m,n) — 3
steps.
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4 Zebra Mapping Based Algorithm A,

In this section we first consider a state-efficient optimum-time square synchroniza-
tion algorithm 4, proposed in Umeo and Kubo [18]. The algorithm is a variant of
the L-shaped mapping. We show that seven states are sufficient for the optimum-
time square synchronization. The proposed algorithm is basically based on the
rotated L-shaped mapping scheme presented in the previous section. However, it
is quite different from it in the following points. The mapping onto square arrays
consists of two types of configurations: one is a one-cell smaller synchronized
configuration and the other is a filled-in configuration with a stationary state.
The stationary state remains unchanged once filled-in by the time before the final
synchronization. Each configuration is mapped alternatively onto an L-shaped array
in a zebra-like fashion. The mapping is referred to as zebra mapping. Figure 3
(right) illustrates the zebra mapping which consists of an embedded synchronization
layer and a filled-in layer. In our construction we take the Mazoyer’s 6-state
synchronization rule as an embedded synchronization algorithm. See Mazoyer
[7] for the six-state transition rule set. Figure 4 shows some snapshots of the
synchronization process operating in optimum-steps on a 13 x 13 square array. The
readers can see how those two types of configurations are mapped in the zebra-like
fashion. The constructed seven-state cellular automaton has 787 transition rules,
which can be found in Umeo and Kubo [18].

Theorem 8 (Umeo and Kubo [18]). The seven-state square synchronization algo-
rithm A can synchronize any n X n square array in optimum 2n — 2 steps.

As for the rectangular arrays, Umeo and Nomura [23] constructed a ten-state
1629-rule 2D cellular automaton that can synchronize any m x n rectangle arrays
in m + n + max(m,n) — 2 steps. See Fig.5 for its snapshots. Note that the time
complexity is one step larger than optimum.

Theorem 9 (Umeo and Nomura [23]). There exists a ten-state 2D CA that can
synchronize any m X n rectangle arrays in m + n + max(m,n) — 2 steps.

5 Diagonal Mapping Based Algorithm .4;

In this section we study a synchronization algorithm based on diagonal mapping.
With the diagonal mapping, configurations of 1D cellular array can be embedded
onto a square/rectangle array divided along the principal diagonal. Here we give a
decomposition of a square array. We divide n? cells on a square array of size n x n
into 2n — 1 groups g, —(n — 1) < k < n — 1 along the principal diagonal such that

g =1{Cijlj—i=k}, —-n—1)<k<n-—1.
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Theorem 11 (Umeo, Hisaoka, and AKiguchi [14]). There exists a 12-state cellu-
lar automaton that can synchronize any m X n square array in optimum m + n +
max(m,n) — 3 steps.

6 One-Sided Recursive-Halving Marking Based
Algorithm A,

In this section we present an optimum-time synchronization algorithm .44 which
is based on a marking called one-sided recursive-halving marking. The marking
scheme prints a special mark on cells in a cellular space defined by one-sided
recursive-halving. The marking itself is based on a well-known optimum-time one-
dimensional synchronization algorithm. Let S be a one-dimensional cellular space
consisting of cells C;, C;11, ..., C;, denoted by [i ... j], where j > i. Let |S]|
denote the number of cells in S, thatis |S| = j —i + 1 for S =[i...j]. A cell
C(i+j)/2n S is a center cell of S, if |§| is odd. Otherwise, two cells C; 4 j—1)/> and
C(i+j+1)/2 are center cells of S

The one-sided recursive-halving marking for a given 1D cellular space [1...n]
is defined as follows:

One-Sided Recursive-Halving Marking

begin
S = [l..n];
while |S| > 1 do
if |S| is odd then
mark a center cell C, in S
S = [z...n];
else
mark center cells C; and Cp41 in S
S = [z+1..n];
end

We have developed a simple implementation of the one-sided recursive halving
marking on a 13-state cellular automaton. It can be easily seen that any 1D cellular
space of length n with the one-sided recursive-halving marking initially can be
synchronized in optimum n — 1 steps.

Now we consider a square array of size n xn with an initial general G on C; ;. The
square is regarded as consisting of two triangles: upper and lower halves separated
by a diagonal, shown in Fig. 6 (Ieft). Each upper and lower half triangle consists of
n columns and n rows, each denoted by ¢ and ry, 1 < k < n, such that:
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Fig. 6 A square array is decomposed into an upper and lower triangle (/eft) and an illustration of
the synchronization scheme in each triangle (right)

a ={Ciu |1 =i <k}, n=1{C,ll1=j =<k}

Note that the length of ¢, and ¢ is k for 1 < k < n. An overview of the algorithm

Ay is:

* Each upper and lower half triangle is synchronized independently.

» Attimet = O the array begins to prepare printing the one-sided recursive halving
mark on each column and row, each starting from top of each column and a left
end of each row, respectively, in the triangles. The marking operation will be
finished before the arrival of the first wake-up signal for the synchronization.

* Simultaneously, the general generates two signals sy and sy at time ¢ = 0. Their
operations are as follows:

— Signalsy: The sy-signal travels along the first row at 1/1-speed and reaches
Cy, attime t = n — 1. Then it reflects there and returns the same route at
1/1-speed, and reaches C;; again at time t = 2n — 2. On the return way, it
generates a generalon C;; attimet =n—14n— (i —1) = 2n —1i, at every
visit of C;;, where 1 < i < n. See Fig. 6 (right). The general is denoted by
a black circle o. A ripple-like line, staring from the symbol e, shown in Fig. 6
(right), illustrates the initiation of the synchronization process initiated by the
general. The general initiates a synchronization for the i th column, and yields
a successful synchronization at time ¢t = 2n — 2. Note that the length of the
ith column is i and the synchronization is started at time ¢ = 2n — i, for any
1 <i < n.In this way, the upper half triangle can be synchronized in 2n — 2
steps.

— Signal sy: The sy-signal travels along the Ist column at 1/1-speed and
reaches C, ; at time t = n — 1. Then it reflects there and returns the same
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Table 1 A list of FSSP algorithms for square arrays

Algorithms &
implementations
Beyer [2]
Algorithm A
Shinahr [10]
Algorithm A
Umeo, Maeda and
Fujiwara [20]
Algorithm A
Umeo and Kubo [18]
Algorithm A,
Umeo, Maeda,
Hisaoka, and
Teraoka [21]
Algorithm A3
Ishii et al. [6]
Algorithm Aj
Umeo, Uchino and
Nomura [25]
Algorithm Ay
Gruska, Torre and
Parente [5]
Algorithm A
Umeo and
Yanagihara [26]
Algorithm A

# of
states

17

15

37

49

# of
rules

1718

787

942

1614

3271

237

Time
complexity
2n—2
2n—2
2n—2
2n—2
4n —4
2n—2
2n—2
2n—2
2n—2

Communication
model

O(1)-bit
O(1)-bit

O(1)-bit

O(1)-bit

O(1)-bit

O(1)-bit

O(1)-bit

1-bit

1-bit

H. Umeo

Mapping
L-shaped

L-shaped

L-shaped

Zebra

Diagonal

Diagonal

Recursive-
Halving

L-shaped

L-shaped

route at 1/1-speed, and reaches C, ; again at time ¢ = 2n — 2. On the return
way, it generates a generalon C; ; attimet =n—14+n—( —1) =2n—i,at
every visit of C; 1, where 1 < i < n. The general initiates a synchronization
for the ith row. Note that the length of the ith row is i. The ith row can be
synchronized at time ¢t = 2n — 2, for any i, 1 <i < n. Thus, the lower half
triangle can be synchronized in 2n — 2 steps.

We implemented the algorithm .44 on a 2D cellular automaton. The constructed
cellular automaton has 37 internal states and 3,271 transition rules. Thus we have:

Theorem 12 (Umeo, Uchino, and Nomura [25]). The synchronization algorithm

Ay can synchronize any n x n square array in optimum 2n — 2 steps.

As for the rectangle case, Umeo, Nishide, and Yamawaki [22] constructed a
2D cellular automaton with 384-states and 112,690-rules. See Umeo, Nishide, and
Yamawaki [22] for details.
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Table 2 A list of FSSP algorithms for rectangle arrays

Algorithms & #of |#of Time Communication
implementations states | rules complexity model Mapping
Beyer [2] — — m 4+ n + max(m,n) — 3 | O(1)-bit L-shaped
Algorithm A

Shinahr [10] 28 — m 4+ n + max(m,n) — 3 | O(1)-bit L-shaped
Umeo et al. [16] 28 12849*

Algorithm A

Umeo and 10 1629 m +n + max(m,n) — 2 | O(1)-bit Zebra
Nomura [23]

Algorithm A,

Umeo, Hisaoka and | 12 1532 m 4+ n + max(m,n) — 3 | O(1)-bit Diagonal
Akiguchi [14]

Algorithm Aj

Umeo, Maeda, 6 942 2m +2n —4 O(1)-bit Diagonal

Hisaoka, and
Teraoka [21]

Algorithm Aj

Umeo, Nishide and | 384 | 112690 |m + n 4+ max(m,n) — 3 | O(1)-bit Recursive-
Yamawaki [22] Halving
Algorithm Ay

Theorem 13 (Umeo, Nishide, and Yamawaki [22]). The algorithm A, can syn-
chronize any m x n rectangular array in m + n + max(m, n) — 3 optimum steps.

7 Conclusions

In this paper, we have presented a survey on recent developments of optimum-time
and non-optimum-time FSSP algorithms for 2D arrays. In Tables 1 and 2 we present
a list of implementations of square/rectangle FSSP algorithms for cellular automata
with O(1)-bit and 1-bit communications.

The O(1)-bit communication model, discussed in this paper, is a usual cellular
automaton in which the amount of communication bits exchanged in one step
between neighboring cells is assumed to be O(1) bits. The 1-bit communication
model is a subclass of the O(1)-bit model, in which inter-cell communication is
restricted to 1-bit communication.

For a long time only one FSSP algorithm based on the rotated L-shaped mapping
proposed by Beyer [2] and Shinar [10] has been known. The readers can see how a
rich variety of 2D FSSP algorithms exists. Some algorithms can be easily extended
to 3D arrays. The embedding schemes developed in this paper would be useful for
further implementations of multi-dimensional synchronization algorithms.
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Optimization Issues in Distributed Computing
Systems Design

Krzysztof Walkowiak and Jacek Rak

Abstract In recent years, we observe a growing interest focused on distributed
computing systems. Both industry and academia require increasing computational
power to process and analyze large amount of data, including significant areas
like analysis of medical data, earthquake, or weather forecast. Since distributed
computing systems — similar to computer networks — are vulnerable to failures,
survivability mechanisms are indispensable to provide the uninterrupted service.
Therefore, in this paper we propose a novel 1 4 1 protection mechanism. We
formulate an ILP model related to optimization of survivable distributed computing
systems. The objective is to allocate computational tasks to computing nodes and
dimension network capacity in order to minimize the operational cost of the com-
puting system and satisfy survivability constraints. To facilitate high computational
complexity caused by NP-completeness in solving the ILP problem, we propose
additional cut inequalities that can be applied for the branch-and-cut algorithm. We
consider the cut-and-branch variant of the B&C algorithm. To construct additional
cut inequalities we use the idea of cover inequalities and mixed integer rounding
(MIR) inequalities. Results of experiments conducted using CPLEX solver are
provided and discussed.

1 Introduction

Recently, distributed computing systems are gaining much attention due to a
growing demand to process large computational tasks in many different fields, e.g.,
collaborative visualization of large scientific databases, financial modeling, medical
data analysis, bioinformatics, experimental data acquisition, climate/weather model-
ing, earthquake simulation, astrophysics and many others [13, 15, 18]. Development
of distributed computing systems triggers the need to make research on a wide range
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of various topics. In this work, we focus on one of these aspects and address the
problem of scheduling and capacity design in the overlay computing systems.

The distributed computing systems like Grids can be developed using special
dedicated high-speed networks [18], as well as the Internet can be used as the
backbone network for overlay-based systems [16, 17]. We focus on the latter case,
as overlays offer considerable network functionalities (e.g., diversity, flexibility,
manageability) in a relatively simple and cost-effective way, as well as regardless
of physical and logical structure of underlying networks. Efficiency of distributed
computing systems may be significantly impacted by failures of network elements
(i.e., nodes, or links) most frequently caused by human errors (e.g., cable cuts), or
forces of nature (e.g., earthquakes, hurricanes). Therefore, network survivability,
i.e., ability to provide the continuous service after a failure [5], becomes a crucial
issue. Most commonly, it is assured by means of additional (backup) resources
(e.g., transmission links/paths, computing units) used after the failure affecting
the components of the main communication path (called working path) as the
main network resources of task processing. To provide survivability for distributed
systems, we propose a proactive approach based on the 1 + 1 method applied
in connection-oriented computer networks [5, 14, 17]. In a non-failure operating
state of the system, results (output data) are concurrently sent from two computing
nodes to all receivers requesting information. After a failure, one of the considered
computing nodes remains operational, implying that results of computation are
provided with no violation at all.

Survivability of distributed computing systems (in particular including protection
of computing units), is a relatively new topic, and only a few proposals exist in
the literature. However, most of them assume that the computing system uses a
dedicated optical network, e.g., [3, 4,9, 16]. The main novelty of this work is
that we consider a survivable distributed system working as an overlay network,
i.e., a network that is built on top of an existing underlying network providing
basic networking functionalities, including routing and forwarding. In this overlay
structure, the underlying network can be based on either wired or even wireless
communications (the latter one realized e.g., according to 802.11s standard of
wireless mesh networks with highly directional antennas providing mutually non-
interfering links).

It is worth noting that issues of survivable distributed systems design are
addressed in many currently ongoing projects aimed to determine the architecture of
Future Internet. In particular, they are one of the main aims of the Polish IIP project
[7], and in particular with respect to the assumed IIP activities, including Internet
3D (Task 3.3), or medical digital libraries (Task 3.2.4).

The main contributions of the paper are threefold. (i) A new ILP model for
scheduling and capacity design in overlay computing system with additional sur-
vivability constraints. (ii) Cut inequalities proposed to facilitate solving of the ILP
model. (iii) Numerical results presenting the performance of the overlay computing
system in various conditions and effectiveness of additional cuts.

The rest of the paper is organized as follows. In Sect. 2, we present the system
architecture, and formulate the ILP model. The respective cut inequalities are
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introduced in Sect. 3. Section 4 includes results of numerical experiments. Section 5
concludes the work.

2 ILP Model of Scheduling and Capacity Design
in Survivable Distributed Computing Systems

The ILP model of a survivable distributed computing system is formulated accord-
ing to real overlay systems as well as according to assumptions presented in previous
works on optimization of distributed computing systems [1,3,4,7,9,10,16,17, 19].
Note that the presented model is generic, thus the model can be applied to optimize
various kinds of computing systems including Grids and public resource computing
systems [13, 15, 18].

2.1 Notation

The computing system considered here consists of nodes indexed by v =
1,2,...,V representing computing elements (individual computers or clusters),
as well as sources of input data and destinations of output data. The system works
on top of an overlay network (e.g., Internet), and each node is connected by an
access link to the network. Connectivity between nodes is provided by virtual links
of the overlay realized by paths consisting of links deployed in the underlying
network. According to [1], nodes’ capacity constraints are typically adequate in
overlay networks. Additionally, in overlays the underlaying physical network is
typically assumed to be overprovisioned, and the only bottlenecks are access links
[19]. Therefore, the only network capacity constraints in the model refer to access
links. Since the access link capacity is to be dimensioned, integer variable z, denotes
the number of capacity modules allocated to the access link of node v. We assume
that each node v is assigned to a particular ISP (Internet Service Provider), which
offers high speed access link with a capacity module m, given in Mbps (e.g., Fast
Ethernet). Each node is already equipped with some computers, and p, denotes the
processing power of node v given by a number of uniform tasks that node v can
performin I s.

The computing system is to process a set of computational tasks of the same
required processing power, e.g., a number of FLOPS and indexed by r =
1,2,..., R. Each task r belongs to a particular computational project k. Each task r
can be processed independently, i.e., we assume that there is no dependency between
individual tasks. For each task r, there is a source node that produces the input data,
and one or more destination nodes that receive the output data including results of
computations (processing). Constants s,, and t,, are used to denote the source and
destination nodes of each task, i.e., 5., is 1, if node v is the source node of task
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Destination
node and backup
node of task 3

Destination node
Processing node
of task 1

Source node
Processing node
of task 2

Processing node of task 3
and backup node of task 2

Fig. 1 Example of a survivable distributed computing system

r; 0 otherwise. In the same way, #,, is 1, if node v is the destination node of task r; 0
otherwise. Constants a, and b, denote the transmission rate of input data and output
data, respectively, per task r given in bps (bits per second).

The workflow of the system is as follows. The project input data is transferred
from the source node providing input data to one or more computing nodes that
process the data. Next, the output data (results of computations) is sent from each
computing node to one or more destination nodes. Similar to [4, 10, 16], we assume
that computational projects are long-lived, i.e., they are established for a relatively
long time (e.g., days, weeks). The input and output data associated with the project is
continuously generated and transmitted. Thus, computational and network resources
can be allocated in the system using offline optimization methods.

A simple example to illustrate the system architecture of the survivable dis-
tributed computing system is shown in Fig. 1. We assume that the system contains
five computing nodes denoted as A, B, C, D, and E, which are connected to the
overlay network. There are three tasks to be processed in the system. The workflow
is as follows. Node A is the source node of all tasks. Therefore, node A provides
input data related to the tasks (rectangles labeled i1, 12 and 13). Nodes B and
D are destinations of all tasks. Rectangles labeled p1, p2, and p3 denote the
places where a particular task is processed. Rectangles labeled o1, 02, and o3
denote results of computations related to tasks 1, 2 and 3, respectively. Due to the
survivability requirements, each of the three tasks is processed at two separate nodes
— primary tasks are marked with rectangles p1, p2, and p3, while backup tasks are
labelled b1, b2 and b3, respectively. For example, task 1 is processed at nodes B
and C. Moreover, in the illustration we report network flows generated to deliver the
input and output data. Solid line denotes the flow of input data. Circle with a number
inside denotes the indices of tasks the input data is related to. Dotted line denotes
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the flow of output data. Again, the numbers in circles indicate task indices the data
belongs to. Assignment of tasks to processing nodes generates network traffic. For
instance, node A uploads two copies of task 1 and 3 input data, and one copy of
task 2 input data.

Many computational tasks processed in distributed systems are of great impor-
tance and need execution guarantees, e.g., medical applications, business analysis,
weather forecasts, etc. However, distributed systems — similar to communication
networks — are subject to various unintentional failures caused by natural disasters
(hurricanes, earthquakes, floods, etc.), overload, software bugs, human errors, and
intentional failures caused by maintenance action or sabotage [17]. Such failures
influence network infrastructure connecting computing nodes, e.g., access link fail-
ure, underlying physical network link failure, etc. Moreover, elements of distributed
computing systems are also subject to various breakdowns (e.g., hardware failure,
power outage, software bug, etc.). Therefore, in distributed computing systems, to
provide guarantees on computational tasks completion, execution and delivery of
results need to be enhanced with some survivability mechanisms.

We consider a failure that leads to a situation when the results to be obtained
at one of the computing nodes are not delivered to the requesting destination
nodes (e.g., due to an access link failure, backbone link failure, backbone node
failure, etc., and processing issues including node hardware failure, power outage,
etc.). To protect the distributed computing system against these kinds of failures,
we introduce a similar approach as in connection-oriented networks, i.e., 1 + 1
protection developed in the context of Automatic Protection Switching (APS)
networks [5]. The key idea is to assign to each computational task two computing
nodes: primary and backup. Both nodes simultaneously process the same input data
and next send results to all destination nodes. To make the system more flexible,
not all tasks are to be protected — parameter o, is 1, if task r requires protection; 0,
otherwise.

Moreover, we assume that the maximum number of computing nodes involved in
one project cannot be larger than S. For instance, if S = 1, then all uniform tasks of
a particular project can be computed only in one node. When S = V, the number of
computing nodes is not limited. We refer to S as a split ratio. The motivation behind
this parameter follows from management issues, i.e., less computing nodes (lower
value of the split ratio) facilitates the management of the computing system.

The objective of our model is to minimize the operational cost (OPEX) of the
computing system including expenses related to two elements: transmission and
processing. Constant &, given in euro/month denotes the whole OPEX cost related
to one capacity module allocated for node v and includes leasing cost of the capacity
module paid to the ISP as well as all other OPEX costs like energy, maintenance,
administration, etc. Constant ¥, denotes the OPEX cost related to processing of
one uniform task in node v. The ¥, cost is defined in euro/month and contains
all expenses necessary to process the uniform computational tasks including both
processing and storage issues (e.g., energy, maintenance, hardware amortization,
etc.).
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2.2 ILP Model

Indices

v, w=1,2,...,V  computing nodes
k=1,2,...,K computational projects
r=12,...,R computational tasks
Constants

py maximum processing rate of node v

a, transmit rate of input data per task r (Mbps)

b,  transmit rate of output data per task r (Mbps)

s,y = 1, if v is the source node of task r; 0 otherwise

t,, = 1,if v is the destination node of task r; O otherwise

t,  number of destination nodes for task r, i.e., , = X\t,,

S split ratio

yy  OPEX cost related to processing of one task in node v (euro/month)
Y,  OPEX cost related to one capacity module of node v (euro/month)
m,  size of the capacity module for node v (Mbps)

o = 1, if task r requires protection; 0, otherwise

8« = 1,if task r belongs to project k; 0, otherwise

Variables

X, = 1, if task r is allocated to primary computing node v; 0, otherwise (binary)
v = 1, if task r is allocated to backup computing node v; 0, otherwise (binary)

zy  capacity of node v access link expressed in the number of capacity modules
(non-negative integer)
up, = 1, if project k uses computing node v; 0, otherwise (binary)

Objective It is to determine scheduling of tasks to primary and backup nodes as
well as dimension network access links to minimize the operational cost of the
system, i.e.:

mmlmlze C = Eva%‘v + Er Ev(xrvwv + yrvwv) (1)

Constraints

(a) Each computing node v has a limited processing power p,. Therefore, each
node cannot be assigned with more tasks to calculate than it can process. Both
primary and backup nodes must be taken into account:

Z‘l‘(-xrv + yrv) = Dv; V= 1,2, LV (2)

(b) Download capacity constraint — incoming flow of each node cannot exceed the
capacity of the access link
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Er(l _srv)ar (xrv+yrv)+ Ertrvbr(l _xrv+ar _yrv) 5 ZyMmy; V= 17 27 DRI Vv

3)

(c) Upload capacity constraint — outgoing flow of each node cannot exceed the
capacity of the access link:

Esrvar(l _-xrv+05r +yrv)+ Er(tr _trv)br(xrv"‘yrv) 5 ZyMmy; V= 1, 27 DRI Vv
“)

(d) Each task r must be assigned to exactly one primary node:
Yxp=1, r=12,...,R 4)
(e) If task r is to be protected (i.e., &, = 1), it must be assigned to a backup node:
XV = r=12,...,R (6)
(f) In order to provide survivability, primary and backup nodes must be disjoint:
X+ yr) < 1; r=12,....R v=12,...,V @)

(g) Definitions of variables to determine participation of a node in a computational
project — both primary and backup nodes are considered:

Xp <Upy; r=12,...,R v=12,....,.V k=12,....K dx=1

(®)
Vv < Upy; r=12,....,.R v=12,....V k=12,....K 6x=1
©))

(h) The split of each computational project cannot exceed the given limit S:
Do <8;  k=1,2,...,K (10)

3 Cut Inequalities

The problem (1)-(10) is NP-hard, since it is equivalent to the network design
problem with modular link capacities [14]. Therefore, we propose here to use
additional cut inequalities that can be applied in construction of the branch-and-cut
(B&C) algorithm. We consider the cut-and-branch variant of the B&C algorithm, in
which cut inequalities are added to the root node of the solution tree. It means that
all generated cuts are valid throughout the whole B&C tree [12].

The first cut is a lower bound on y, values. Notice that if node v is a destination
node of task r (¢, = 1), it must receive the output data (results of computations)
related to task r. Node v can receive the data in two ways: either as the input data
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(that is later processed in this node to obtain the output data), or as the output data.
However, notice that if node v is the source node of task r (s,, = 1), the considered
node is not obliged to download the data related to task r. First, we consider the case
when task r is not to be protected (o, = 0). The download capacity of node v related
to processing of task » must then exceed the following value #,, (1 —s,,)min(a,, b,),
i.e., the minimum of input and output data rates of task r is selected. If task r is
to be protected (o, = 1), node v receives results of computations twice. However,
according to constraint (7), the same node cannot serve as both a primary and a
backup computing node of task r, i.e., data related to task r cannot be downloaded
in both cases (primary and backup processing) as the input data. Consequently, two
cases are possible: (i) node v downloads input and output data of task r; (ii) node
v downloads twice output data of task r. Summarizing, the download capacity of v
related to processing of protected task 7 must exceed the value of ¢,,(1—s,,)min(a, +
b,, 2b,). Let d,, denote the lower bound of a download flow related to node v and
task r:

trv(l - Srv)min(ara br)a oy =

drv = .
tr(1 — sp)min(a, + br72br); o =1

an

In analogous way, we analyze the upload capacity of node v related to processing
of task r. If node v is the source node of task r (s,, = 1), the data related to task
r is to be delivered to all destination nodes of this task. Again, the data can be
sent either as input data (rate a,) to another processing node, or node v performs
task r and sends the output data (rate b, ) to (¢, — t,,) nodes (all destination nodes
except for itself). If task r is not protected (o, = 0), the upload capacity of node
v related to task r must exceed the s,, value equal to min(a,, (¢, — ,)b,). When
task r is protected (o, = 1), due to constraint (7), it is again not possible that node v
serves as both a primary and a backup node, performs task r twice, and consequently
sends the output data of both a primary and a backup task. Therefore, two cases are
possible: (i) node v uploads input data (rate a,) to primary and backup nodes; (ii)
node v calculates task r (for instance as a primary node) and sends the output data
(rate b, ) to destination nodes, the data related to backup task is sent as input data
(rate a, ). The upload capacity of node v related to task r must thus exceed the value
of s,, equal to min(2a,, a, + (t, — t,)b;). Let e,, denote the lower bound of upload
flow related to node v and task r:

Srvmin(ary (tr - Z‘rv)br); oy = 0

12
spymin(2a,, a, + (t, — ty,)b;); a =1 (12)

€ =

Combining definitions (11)—(12), and with MIR (Mixed Integer Rounding)
approach [6-11], we can formulate the following cuts:

[Erdrv/mv—| = Zv; v=12,...,V (13)

|—2rerv/mv—| = Zv; v=12,...,V (14)



Optimization Issues in Distributed Computing Systems Design 269

Moreover, we propose to use cuts based on the Cover Inequality (CI) approach
[2]. Two constraints are taken into account, i.e., the processing limit (3) and the
split limit (10). To limit the number of possible cover inequalities, we first solve
linear relaxation of the model (1)—(10). Next, in the obtained solution, we identify
variables x,,, y,, and uy, that are not integer. For these variables, the CI approach is
next applied in the context of constraints (3) and (10).

4 Results

In this section, we present results of computational experiments. The ILP model
introduced in Sect. 2 was used to obtain the optimal results using the branch-and-cut
algorithm offered by CPLEX 11.0 solver [8]. The goal of experiments was twofold.
First, we examined how the split ratio and protection scope parameters influence the
OPEX cost of the distributed computing system. Second, we evaluated efficiency
of the additional cut inequalities. Experiments were run on a PC computer with
IntelCore i7 processor and 4 GB RAM. Since there are no existing benchmark
systems, we generated at random two sets of example systems according to
parameter values presented in Table 1. For each size of the system, we created
12 different sets of systems. Moreover, 11 configurations of various protection
requirements were investigated with the following values of the protected tasks
percentage (PTP): 0, 10, 20, ..., 100 %. Thus, the overall number of individual
cases tests was 132 (i.e., 12 x 11). Two values of the split ratio were used in the
experiments: 4 and the maximum possible value (20 in the case of 20-node systems,
and 30 in the case of 30-node systems, accordingly). Execution time of CPLEX
was set to 20 min. Since, when using the default settings of the optimality gap (i.e.,
0.0001), CPLEX was not able to stop calculations within this time limit, we set the
optimality gap to 0.01 instead of the default value of 0.0001.

The first part of experiments was to examine the influence of the split ratio
and protection scope on the overall OPEX cost. To show the aggregate results, for
each unique system, we calculated the relative OPEX cost normalized using the

Table 1 Parameters of analyzed systems

20-node systems 30-node systems
Number of computing nodes 20 30
Number of projects 10 20
Number of tasks per project 30-70 40-80
Cost of capacity module 120-400 120400
Processing cost of one unit 50-150 50-150
Processing limit of one node 10-40 10-40
Number of destination nodes 14 1-6

Input and output data rates 5-15 5-15
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Table 2 Average relative cost as a function of protected tasks percentage and split ratio

20-node systems 30-node systems
PTP (%) S =4 (%) S =20 (%) S =4 (%) S = 30(%)
0 100 100 100 100
10 112 113 113 113
20 125 124 124 124
30 139 139 137 137
40 151 151 150 149
50 163 163 163 162
60 176 176 174 173
70 189 189 188 187
80 200 200 200 199
90 211 211 207 206
100 224 224 223 222

Table 3 Cut inequalities performance as a function of PTP

No cuts MIR CI MIR + CI

Time Time Time Time
PTP (%) | (s) BB nodes | (s) BB nodes | (s) BB nodes | (s) BB nodes
0 63 523 66 536 158 1,478 65 527
10 57 479 56 481 50 513 305 | 4,527
20 94 521 90 521 1,947 | 32,938 440 | 4,763
30 893 | 9,035 866 | 9,097 805 | 9,020 503 | 4,522
40 129 539 125 542 340 | 2,108 130 497
50 983 | 5,726 952 | 5,764 2,317 | 24,695 3,179 | 30,287
60 928 | 4,333 898 | 4,337 955 | 7,559 328 1,253
70 5,250 | 27,844 5,082 | 27,883 4,714 | 41,262 2,002 | 9,378
80 1,256 | 4,299 1,213 | 4,299 3,807 | 17,587 1,589 | 8,586
90 11,530 | 74,287 11,324 | 74,307 4,500 |20,705 2,056 | 9,516

cost obtained for PTP =0 %. The average value for each value of PTP was next
computed. In Table 2, we report results for two sets of systems and two split ratio
values.

The trend in Table 2 is similar for both types of systems, i.e., the relative
cost grows linearly with the increase of the PTP parameter. Moreover, there is
a very small difference between both presented values of the split ratio. Detailed
comparison of two cases of the split ratio shows that the average gap between both
values of the split ratio (i.e., 4 versus 20 (30)) is less than 1 %. Thus, the influence of
the split ratio on the OPEX cost is very limited. Another important conclusion is that
the average cost of systems with full protection (PTP = 100 %) is about 122—124 %,
compared to the case of unprotected tasks (PTP = 0 %) for all reported cases.

The second goal of experiments was to verify the performance of additional cut
inequalities. In Table 3, we report results in terms of execution time and the number
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of B&B nodes obtained for one of 30-node systems. We can see that in general,
application of both additional cuts (MIR and CI) reduces both the execution time
and the number of B&B nodes. However, results of some individual cases show
non-stability, i.e., additional cuts sometimes do not improve performance.

S Concluding Remarks

In this paper, we addressed the problem of providing protection of information flows
against failures of network elements forming the communication layer of distributed
computing systems. In particular, we focused on multipath routing design with
disjoint working and transmission paths, called 1 4 1 protection scheme, that has
never been addressed in the literature before. An ILP model was formulated to
provide optimal routing results. It is worth noting that our method, enhanced with
additional cut inequalities, turned out to be able to find solutions in short time.
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